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ABSTRACT 

 
 

Avian influenza is a highly mutable RNA virus that is readily passed between bird 

species, and from birds to humans. It is possibly the greatest airborne pandemic threat to the 

human population. An inexpensive vaccine that is easy to produce, store, and administer is 

necessary for the prevention of this disease. We purified a novel protein construct (U65-mHAt) 

which includes the mature transcript of Influenza A subtype H5N1 virus and loaded it into 

particles made of beta-glucan, a known adjuvant that has been shown to improve immune system 

response to the influenza vaccine. This system is cost effective, can be rapidly amplified, and is 

easily administered making it a viable option for preventing a worldwide H5N1 pandemic. 
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BACKGROUND 

 

Written accounts of influenza outbreaks date back as far as 212 BC among the Roman 

army and their opponents during the besieging of Achradina.  There are also claims that 

Hippocrates documented an influenza epidemic in 412 BC but there is no conclusive evidence to 

verify this (Livius, 1905).  Influenza is an Orthomyxoviridae virus, which are enveloped virus' 

containing a single-stranded RNA genome. One deadly feature of this particular virus is its high 

rate of mutation (Barry, 2005).  Influenza is so mutable that 99% of all virions don't even end up 

as live virus. Influenza pandemics have been a reoccurring trend throughout human history, and 

have had some of the largest mortality rates of any pandemics the world has seen. The fear of a 

worldwide outbreak is a constant threat to humanity. 

 

Influenza Types 

Three types of influenza are able to infect humans; type A, which is the only type 

responsible for causing pandemics, type B, and type C. Influenza binds to the cell sialic acid 

receptors of a host cell using the hemagglutinin and neuraminidase proteins expressed on the 

surface of the virus (Figure-1). These two chemicals are responsible for enabling the virus to 

enter the host cell nucleus to allow replication of the viral genome. After many cycles of 

replication, up to 1 million times greater than cellular DNA replication, the virus destroys the 

host cell. The newly replicated viruses are released into the organism.  There are 15 different 

characterized subsets for hemagglutinin (which bind to sialic acid receptors to begin infection of 

the host cell), and nine of neuraminidase (which cleaves sialic acid receptors in order to release 
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the progeny to attack other cells) that we use to classify current known influenza viruses 

(Wagner et al., 2002).   

 

Figure 1: Diagram of an Influenza Virus (Bickel, 2006). 

  

H1N1 influenza contains the type 1 of both hemagglutinin and neuraminidase. It was in 

fact, H1N1 influenza that caused the pandemic of 1918, killing up to 100 million people 

worldwide.  H5N1 influenza, also known as the bird flu, is a variant strain that originated in 

Hong Kong (Lederberg, 2001). This virus was first discovered in 1997.  Novel mutations have 

allowed other strains of the virus to infect humans throughout history, and have resulted in other 

influenza pandemics in the past, including the Asian flu of 1956, and the Hong Kong flu of 1968, 

both which contain RNA found in avian influenza.  "While the pandemic human influenza 

viruses of 1957 (H2N2) and 1968 (H3N2) clearly arose through reassortment between human 



 7 

and avian viruses, the influenza virus that caused the 'Spanish flu' in 1918 appears to be entirely 

derived from an avian source" (Belshe, 2005).  

 Currently, there is a worldwide outbreak of swine influenza (MacKenzie, 2009), that 

according to early characterization, is an H1N1 strain. This swine strain seems to been able to 

pass from human to human, previously been seen only in the H1N1 „Spanish flu‟ in 1918.  Swine 

influenzas have been found in multiple forms in the past, including H5N1. The last scare of a 

swine influenza pandemic was in 1976 when an army recruit died from H1N1, but it did not 

appear to spread. Lack of preparation in terms of vaccine production and supply is very evident 

with this most recent H1N1 scare, and shows just how crucial influenza vaccines are for 

protecting our society. While H1N1's potential for a pandemic is more immediate, H5N1 has a 

greater potential for a more deadly pandemic.  

 

Avian Influenza 

Many wild birds that become infected with avian influenza do not display any 

symptoms.  However, their saliva and feces are capable of transferring the virus to other birds 

and mammals.  Humans on the other hand, are capable infection by avian influenza, and will 

initially display symptoms similar to the common cold.  Symptoms can vary depending on the 

individual, and can range from mild effects of coughing, headache, sore throat and sneezing, to 

more serious effects such as pneumonia.  However there is a more pathogenic form of the virus 

that “advances at a rapid speed and may stimulate illnesses on visceral organs which could lead 

to 90-100% mortality rate within 48 hours” (CDC, 2009).  Most mortality from influenza is due 

to pneumonia that develops after infection. Currently avian influenza cannot easily be passed 

from human to human, unlike the current H1N1 outbreak, which is why a pandemic outbreak has 
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not occurred. Unfortunately avian influenza's mutable nature could lead to a mutation that allows 

for an easier human to human infection which, combined with the lack of a potent vaccine, 

creates the worry of a pandemic outbreak. 

Most seasonal strains of the influenza virus are highly contagious and attack the upper 

respiratory track. But a recent paper has helped explain why H5N1 is normally less contagious.  

According to a paper published in Nature the expression of a specific surface molecule, SA 

2,6Gal of respiratory cells is largely responsible for the ability of H5N1 to attach to human 

cells and replicate (Shinya, 2006). This surface molecule is found only in the lower regions of 

the human lung, which significantly reduces H5N1 human infection. Since influenza infection 

generally occurs in upper respiratory cells, replication of the H5N1 virus in humans becomes 

difficult which helps to explain its low incidence from bird to human, and the virtual lack of 

incidence from human to human (Shinya, 2006). 

H5N1 influenza is not easy to diagnose because early symptoms are nearly identical to 

the common flu, and therefore early diagnosis of a mounting H5N1 pandemic is unlikely. There 

are only a few labs in the world that are capable of identifying the virus. If a human was infected 

and went to his primary care physician, they would probably dismiss it as the common cold.  But 

even if the person were lucky enough to know they were infected with H5N1 influenza (such as 

during an outbreak), the >90% mortality rate combined with a rapid onset of the disease leaves 

little chance of survival. 

The only current treatment for H5N1 influenza is an antiviral drug called Oseltamivir.  

”Oseltamivir is a neuraminidase inhibitor which acts as a transition-state analogue inhibitor of 

influenza neuraminidase, preventing progeny virons from emerging from infected cells” 

(Moscona, 2005). This treatment was invented by United States Gilead Sciences, which is a 
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pharmaceutical company focused on developing therapeutics to prevent deadly diseases, and was 

trademarked under the name “Tamiflu.”  The problem with this treatment though is it was not 

created specifically to fight H5N1.  The following is an excerpt from a Daily Net News article 

after Tamiflu‟s initial testing in December of 2005: 

“Dr. Nguyen Tuong Van, who runs the intensive care unit of the Center for Tropical 

Diseases in Hanoi, followed World Health Organization guidelines in her treatment of patients 

but concluded it had no effect on the disease.  "We place no importance on using this drug on 

our patients," she said. "Tamiflu is really only meant for treating ordinary type A flu. It was not 

designed to combat H5N1 ... [Tamiflu] is useless."  Van said bird flu is far worse than SARS, an 

avian-linked respiratory illness, which she has also treated. Caring for H5N1 victims requires 

intensive patient "support" with modern technology, like ventilators and dialysis machines, if 

patients are to be kept alive. Even Western countries with wide access to technology would see 

their medical infrastructure strained to the limit if the dreaded pandemic comes.” (World Net 

Daily) 

 

Therefore if a severe avian influenza epidemic were to occur in any nation, there would be a 

serious problem, as there are currently no effective treatments, making worldwide spread of the 

disease possible.  An oral vaccine designed to stop the replication of this virus is important for 

being proactive towards fighting this disease. 

 

Influenza Vaccines 

Prevention of a disease with a vaccine is better than treating the symptoms of a disease 

after infection.  However, the traditional needle injection by healthcare professionals is not the 

most cost or time efficient option.  The United States contains approximately 300 million 

people.  If an avian influenza pandemic were to break out, an intravenous version of this vaccine 

would require 300 million sterilized needles to be used and disposed of properly, and would 

result in massive lines at health care facilities waiting for limited licensed personnel to 

administer the vaccine.   
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Oral vaccines are not only easily stored and distributed, but also have other inherent 

characteristics that make them superior to injected vaccine. The largest benefit is that “oral 

vaccines stimulate both systemic and mucosal immune responses, while injected vaccines only 

lead to serum antibody production” (Chen et al., 2001).  The initial stimulation of mucosal 

antibodies close to the virus's point of entry has been known to elicit a quicker immune response, 

sometimes preventing the pathogen from ever entering lymphatic tissue. It has been 

demonstrated in viruses that an efficient immune response is not elicited through traditional oral 

vaccines, as compared to traditional intramuscular vaccines (Lin, 2007). This decrease in oral 

vaccine effectiveness is usually attributed to loss of antigen due to natural degradation of the 

delivered antigenic proteins in the digestive tract. Thus, a great deal of research has focused on a 

way to protect an oral vaccine as it travels from the mouth to the gut-associated lymphatic tissue, 

and any strategy to increase the potency is encouraged. 

Avian influenza‟s high virulence is due to high rates of mutation in the hemagglutinin 

(HA) gene, non structural genes (NS), and the PB2 gene.  As previously mentioned, HA is 

responsible for the binding of the virus to the host cell, and “alterations of HA occur during 

adaptation of influenza viruses to a new host species, as in the 1957 and 1968 influenza 

pandemics” (Hughes et al., 2001).  NS genes are viral regulatory genes that help cause viral 

infections and incapacitate interferon that initiate signaling to the immune system. The PB2 gene 

“encodes an internal polymerase that influences the outcome of infection” and contains 

mutations that are underlying mechanisms for species to species evolution (Webby and Webster, 

2003).   

The adaptive molecular evolution of these three genes were studied for avian influenza 

and simulated to determine an average rate of mutation for each component (Webby and 
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Webster, 2003). The simulation was based on the Markov model of codon substitution for 

detecting significant rate shifts using comparisons of synonymous and non-synonymous 

nucleotide substitutions.  The results concluded “that NS genes have the fastest rate of evolution 

and seem to be most significant for molecular adaptation of the parasite. This was also confirmed 

by determining the trees generated for these genes by a maximum likelihood algorithm”.  

Figure-2 shows avian influenza phylogenetic trees that illustrate the variance in mutagenicity of 

each genetic component. 

9 

Figure 2: Phylogenetic Tree of Avian Influenza. (Webby and Webster, 2003) 

 

In contrast to the NS gene conclusion of Webby and Webster (2003), Hughes et al (2001) noted, 

“when serially passaged in this cell line, human H3N2 viruses lost sialidase activity due to a 

large internal deletion in the NA gene, without alteration of the HA gene. So these 2001 findings 

indicate that NA mutations can contribute to the adaptation of influenza A virus to new host 

environments and hence may play a role in the transmission of virus across species (Hughes et 

al., 2001).  Thus neuraminidase should not be discredited as a factor of a strain‟s virulence. 

 Hemagglutinin is the second most mutable gene in avian influenza and is responsible for 

binding to the receptors of host cells. The mature hemagglutinin sequence was chosen as the 

antigen of interest for this project.   
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Hepatitis B Surface Antigen (HBsAg) 

 

Blumberg and Alter first isolated the Hepatitis-B surface antigen (HBsAg) in 1965, and 

the first Hepatitis-B vaccine became available in 1981. Today, many children are vaccinated 

with HBsAg protein, and this antigen has become the basis of a very effective Hepatitis-B 

vaccine.  The current wealth of knowledge on the structure of HBsAg (Figure-3) allows the use 

of recombinant constructs with added domains on the N-terminus end.  For example, adding 

Green Fluorescent Protein (GFP) to the N-terminus of HBsAg allows the presence of the 

recombinant protein to be visualized (Huang and Mason, 2004). 

 

 

 

 

 

 

 

 

 Hepatitis B Surface Antigen forms structures referred to as Virus-Like Particles (VLP). 

These VLP structures resemble the assembled virus (without the genome) and are generally a 

mixture of both protein and lipid.  HBsAg has three characterized forms. The most antigenic 

form is the similar to what is found naturally in the human body. With domains added to the N-

terminus, HBsAg should still form VLP's and have the added domains decorating the outside of 

the particles.     

  

Figure 3: Structure of the Hepatitis-B Surface 

Antigen (HbsAg) Secondary Structure. (Image: 

Mahoney and Kane, 1999) 
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1→3 Linked -D-Glucan Particles 

Yeast cell walls are multilayered (Figure-4), composed of an outer fibrillar layer, and -

glucan layers sandwiched between layers of mannoprotein. -Glucan is a polymer of glucose 

residues that is the main cell wall structural component in fungi, plants and some bacteria. The 

glucose residues are joined in a backbone of (13)-linked -D glucopyranosyl units, with 1→6 

side chains of different lengths.  The -glucan particles used in this project were derived from 

yeast (Saccharomyces cerevisiae) by removing all the mannoproteins found on the outer layer, as 

well as the soluble proteins that are exposed within the yeast cell.  This leaves only -glucan 

particles (diagram right side), which can act as a vessel for proteins, DNA, or any 

macromolecule of interest. Their shape is reminiscent of a yeast cell, as would be expected, and 

reasonably sized proteins can easily diffuse in or out of the particle due to the porous nature of -

glucan.  This diffusion property was important to overcome in our project, since the protein 

should not diffuse out of the particle prior to uptake by the macrophage or monocyte cells.  We 

attempted to trap our protein of interest (U65-mHAt) in these particles, as well as other proteins 

we were investigating. 

 

Figure 4: Derivation of Yeast Glucan Particles (YGP) from Yeast Cell Membranes.  
The diagram shows what is left of the yeast membrane after GP transformation. 
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An important characteristic of -glucan is that it is a proven adjuvant that safely and 

effectively boosts the immune system (Chihara, 1992).  A variety of cell surface receptors bind 

-glucan, including lectins, scavenger receptors, integrins on monocytes and macrophages, 

neutrophils, natural killer (NK) cells, and various lymphocyte subpopulations (Brown and 

Gordon, 2003). -Glucan particles stimulate an immune reaction, but they also have a 

characteristic that is unique to most adjuvants.  “Agents that stimulate the immune system can 

push the system to over-stimulation, and hence are contraindicated in individuals with 

autoimmune diseases, allergies, or yeast infections." (Chihara, 1992).
 
 1,3 -D-glucans seem to 

make the immune system work better without becoming overactive. They accomplish this by 

activating phagocytes, whose function is to trap and destroy foreign substances in our bodies 

such as bacteria, viruses, fungi, and parasites. 1,3 -D-glucan has also been noted to “enhance 

anti-tumor and anti-infection functions in animals” (Xiao et al., 2004) making it ideal for cancer 

prevention and a means to prevent infection after high risk surgeries. Therefore the glucan 

particles not only are used as a cage to protect the loaded protein until it transported into the gut 

associated lymphatic tissue, but also to boost the immune system reaction to produce more 

antibodies to the enclosed antigen (Hong, 2004). 

-Glucan's unique properties as an adjuvant make it an ideal oral vaccine delivery system 

for avian influenza HA (Figure-5).  The vaccine protein could be packaged into yeast glucan 

particles, ingested, and would be taken up by glucan receptors on monocytes and macrophage 

cells to stimulate an immune response against the packaged protein. 
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Figure 5: Yeast Glucan Particles as Vaccine Delivery Vehicles.  

(Tipper, unpublished 2009) 

 

Although using -glucan particles as an oral delivery mechanism seems like a potent, 

effective way to deliver a vaccine, the method of association between the antigen and the glucan 

particle could be a large factor for vaccine efficacy. Since the glucan protects the antigen through 

the digestive track to the gut associated lymphatic tissue, keeping the antigen as far from the 

surrounding proteins would be ideal. The Ostroff lab developed a charged core approach to 

achieve this purpose. By incubating the glucan particles with negatively charged RNA followed 

by positively charged PEI the antigens will aggregate inside the glucan particles to form clusters 

too large to escape through the porous membrane. It was hypothesized that due to the nature of 

the charged core, using oppositely charged trapping polymers to surround the particle would 

assist in binding or “trapping” the protein of interest to the newly created core of the particle, 

preventing escape.  This trapping can later be visualized by microscopy of the glucan particles at 
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100x magnification after tagging the isolated protein of interest with fluorescein isothiocyanate 

(FITC) or GFP. 

 

U65 Fibrillar Scaffold 

 The construct used for the oral avian influenza vaccine in this project was composed of a 

yeast U65 fibrillar scaffold (Figure-6) attached to the mature form of H5 hemagglutinin found in 

avian influenza.  “U74 consists of U65, the N-terminal prion-forming 65 residues of the yeast 

URE2 gene product, Ure2p, followed by a 9 residue linker.  Ure2p and U65 self-assemble into 

polymeric amyloid fibrils when over-expressed in yeast.  Any coupled protein will decorate the 

surface of these fibrils, often in natively folded form, as demonstrated by GFP fluorescence” 

(Tipper, unpublished 2009). 

The U65 Fibrillar Scaffold,

C-terminus

Peptide

loop

Antigen
Antigen
Antigen
Antigen
Antigen
Antigen
Antigen

Modified from Nature 6-9-05 

Cover  

Figure 6: Structure of the U65 Yeast Fibrillar Scaffold. 

 



 17 

 In Saccharomyces cerevisiae, the protein Ure2p is a regulator of nitrogen catabolism. The 

prion form of Ure2p, is referred to as [URE3].  There are two regions on Ure2p that allow 

binding of Ure2p to itself. The first is contained in the primary 65 residues, and was the U65 

domain used in this project. The U65 constructs were designed by Donald Tipper PhD, and 

contain those first 65 residues, followed by a nine amino acid linker sequence, and then the 

antigenic domain(s) of interest. As shown in Figure-6, U65 can create a large molecule if many 

of the proteins aggregate, especially into polymeric amyloid fibrils. U65 also expresses any 

domain attached on the C-terminus end of the protein outside of the aggregate, decorating it with 

the desired domain, assuming the protein was stable after translation.  

 Multiple U65 constructs were studied during the development of this avian influenza 

vaccine, and are named U65-GFP, U65-mHAt, and U65-mHAt-GFP. The mHAt domain is the 

H5 antigenic sequence for H5N1, and thus is the sequence necessary to elicit proper immune 

system response to avian influenza. Green Fluorescent Protein (GFP) is a very stable protein that 

folds easily and can be expressed in many different organisms. It is commonly used to track a 

protein of interest visually since it can usually be detected either by eye or more accurately by 

fluorescence microscopy. 

 

Delivery and Immune Response to an Oral Vaccine 

An oral vaccine must successfully deliver an antigen to lymphatic tissue without protease 

or other degradation of the antigen occurring. Donald Tipper PhD and Gary Ostroff PhD have 

successfully shown in mice that an antigen loaded in a glucan particle can be orally administered 

and achieve the appropriate immune response thereafter (Tipper, unpublished 2009). The yeast 
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-glucan shell cannot easily be digested by gastrointestinal enzymes. After successful loading of 

a payload, the -glucan has been shown to adequately protect its cargo until it reaches the 

targeted lymphatic tissue (Figure-7). It is hypothesized that phagocytosis by a macrophage 

occurs at this point (diagram upper right), degrading the -glucan particle and subsequently 

presenting the antigen on its surface and initiating the desired immune response. At this point the 

-glucan has stimulated the release of lymphokines (diagram right side), causing inflammation 

and a boost to antibody production to the presented antigen.  

 

Figure 7: Example of -Glucan's Interaction with Macrophages and 

Their Effect in the Immune System. (Hohl and Pamer, 2006). 

 

The route of vaccine administration is the path the vaccine takes to come into contact 

with the body‟s immune system.  There are two main routes that vaccines are usually distributed, 

intravenously and mucosal, and each has a major effect on how the drug is taken up by the body 

and distributed.  Intravenous injections of drugs have many advantages including that they are 

fast, effective, and one injection is usually good for months.  The disadvantages to injections are 
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they require sterile equipment, patients should not inject themselves, and intravenous injections 

are more dangerous because they bypass natural defenses. 

 Mucosal (oral) administered vaccinations do not come with any of the negative side 

effects that intravenous injections do.  Oral vaccinations are taken up by the gut and interact with 

macrophages.  Unlike intravenous vaccines, oral vaccines are usually taken in multiple doses for 

a few days in order to achieve maximal effect.  Additionally, oral vaccines do not require a 

specialist to administer the injection, nor does it require a high degree of sterility that if 

compromised could cause infection and even death in serious cases.  With intravenous injections, 

inflammation of a vein, known as phlebitis, is possible and can allow bacteria to enter can cause 

infection.  However, if an oral vaccine is taken, the skin is never punctured, allowing no chance 

of infection.  “With the exception of critically ill patients and those unable to absorb oral drugs, 

clinicians should consider oral therapy before resorting too quickly to i.v. antimicrobial agents” 

(Cunha, 2009).  Additionally the β-glucan particles used in this project act as adjuvants, in 

addition to carrying the antigen to macrophage cells.  The benefits of oral vaccines include being 

safer, cheaper, and easier to administer than current vaccination methods.   

Testing has been done concerning the way -glucan particles interact with the body, 

specifically dendritic cells.  Dendritic cells form in the immune system of mammals and serve as 

antigen processing cells. The interaction of dendritic cells with -glucan is an important 

interaction to understand.  It was found that, “Dectin-1, the major receptor for -glucan, is a C-

type lectin that is highly expressed on dendritic cells (DCs). Its expression can also be detected 

in macrophages, monocytes, and neutrophils.  Although the exact signal transduction pathways 

have not been elucidated, these events can lead to activation of nuclear factor of activated T cells 

(NFAT), nitrogen-activated protein kinases, and nuclear factor kappa B (NF-κB), leading to 
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cytokine production” (Ostroff et al., 2009).  Therefore, -glucan particles loaded with an antigen 

of interest will cause a boost in the immune system via activation of T cells, which cause 

cytokine production.  
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PROJECT PURPOSE 

 
 

One of the largest possible pandemic threats to our society is avian influenza, as 

discussed in the Background.  Gary Ostroff PhD previously used -glucan particles in an oral 

vaccine for anthrax and found “these results demonstrate the potential for -1,3-glucan immune 

modulators to provide a significant degree of protection against anthrax, a potential biological 

warfare (BW) agent in a mouse model of anthrax infection” (Kournikakis et al., 2003).  Since 

previous experiments demonstrated great success with -glucan, it was hypothesized that this 

approach could be used to create a cheap and efficient oral vaccine against avian influenza if the 

proper antigen were attached. 

The purpose of this project was to create a viable, oral avian influenza vaccine by 

encapsulating a known H5 antigen sequence, specifically the mature hemagglutinin in the 

specific H5N1 variant, into glucan particles. Reaching that goal required that we determine ideal 

growth conditions, extraction and isolation processes, and glucan particle trapping conditions for 

proteins derived from yeast transformants expressing different proteins of interest.  These 

trapped proteins would then be inspected within their glucan shells using microscopy and SDS 

gel analysis to determine whether the protein was packaged within the shell.  If successful, the 

goal would then be to analyze the oral vaccine efficacy in producing an immune response in 

mice given gastrointestinally or subcutaneously. 
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MATERIALS AND METHODS 

 

MATERIALS 

Buffer A (modified)    BufferA1= buffer A + 1X protease inhibitors 

50 mM Tris-HCl pH 7.6  100X protease inhibitors 

150 mM NaCl    100 mM PMSF.  17.4 mg/ml in 100% ETOH. 

10 mM NaN3      100X Pepstatin A 0.2 mg/ml in same solution,   

10 mM KF    Store @ -20 
o
C 

2.5 mM EDTA    

    

XP Buffer: 10 ml Buffer pH 9.5 + 20 µl NBT stock and 20 µl BCIP stock  

pH 9.5 Buffer: 12g Tris base, 0.8 g Tris/HCl, 5.8g NaCl, and 5 ml of 1M MgCl2 

Coomassie IPA (IPA). Per liter, 500 mg Coomassie R250, 250 ml IPA, 70 ml glacial acetic acid 

 

Stain 20-60 min.  Destain same without dye. 

YPG: 20g yeast extract, 40g peptone, and 54 ml 75% glycerol per two liters. 

YEPD made of 5.1 grams yeast nitrogen base, 15 grams of ammonium sulfate, 6 grams of 

Leu/Trp D/O powder, 18 grams of sucrose, 81 ml of 75% glycerol, and 3 ml of 1000x vitamins 

(1x) per three liters of media. 

 

 

METHODS 

 
Media and Growing Conditions 

Several different yeast media compositions were used throughout these experiments for 

growing yeast transformants. Selection for plasmid maintenance at normal copy number in pG4 

transformants of strain PAP1502 required growth at 30°C in Ura drop out (D/O) media, which is 

made of 1.7g yeast nitrogen base, 5 grams of ammonium sulfate, 2 grams of Ura D/O powder, 

and 20 grams of glucose per liter. Transformants are re-grown in non-selective YEPD medium 

for storage at 4°C, since cells grown only in D/O media die rapidly when stored. 

 The YEPD-grown cells were later used to inoculate 2.5 liter Fernbach flasks containing 

450 mL Leu/Trp drop out media, which is made of 5.1 grams yeast nitrogen base, 15 grams of 

ammonium sulfate, 6 grams of Leu/Trp D/O powder, 18 grams of sucrose, 81 ml of 75% 
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glycerol, and 3 ml of 1000x vitamins (1x) per three liters of media.  All of the media used above 

were filter sterilized before use or storage. Growth in Leu/Trp drop out media requires a much 

higher plasmid copy number, and the shift to the glycerol carbon source relieves all catabolite 

repression of Gal promoter (See Figure-8) expression so that after 24 to 30 hours, when a 

spectrophotometric absorbance reading at 600nm should be approximately 5.0, expression is 

induced - the cells should be removed from the shaker, spun down at 3,000 RPM, and have YPG 

added to half the original Leu/Trp volume.  After being suspended in YPG at room temperature, 

the cells were shaken in a two-liter flask without foaming for 10 minutes.  Then 10% of the total 

volume of 20% galactose was added to induce expression, and the cultures were grown for an 

additional 18-24 hours. 

 

GAL1 UAS GDH U65-mHAt tPGK tPGK 2-micron leu2d Amp  Ori E URA3

Tightly regulated Antigen Expression. 

pG2-GFP  Plasmid Vector

Expression cassette              replication functions

GAL1 UASTRP1 GAL4

PAP1502 host strain ura3 leu2 pep4 prb1 trp1::pGAL1-GAL4

Galactose Gal4p

 

Figure 8: Expression Cassette and Regulation of Induction.  
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Harvesting After Inducing and Breaking Procedure to obtain 16kg Sup and Pel 

After approximately 24 hours of inducing the cells, the cultures were removed and 

transferred to a plastic J10 rotor bottle.  A spectrophotometric absorbance reading at 600nm was 

taken of all samples and they were spun at 4,000 RPM for 5 minutes. If the samples contained 

GFP, a quantitative assay was carried out before centrifugation. The supernatant was then 

removed, and the pellet was suspended in less than 20 mL of 0.15 M NaCl.  The sample was then 

spun at 4,000 RPM for another 5 minutes, and then the pellet was suspended in approximately 10 

mL of buffer A1.    

 In order to break the cells, the samples were filled with glass beads to half of their total 

volume. The samples were cooled on ice for 90 seconds, and then vortexed on the maximum 

setting for 90 seconds. This process was repeated approximately 8 times, and the samples were 

viewed under a microscope to check for breakage. If the cells were not entirely broken, continue 

cooling and vortexing. 

 Next the bottom of the plastic containers holding the samples were punctured multiple 

times, then placed within identical tubes bonded together. This construct was centrifuged at less 

than 500 RPM until the entire sample was passed to the punctured tube to the lower tube, leaving 

the glass beads behind.  The glass free, broken sample was spun for an hour to separate out the 

16kg supernatant and pellets, both of which were stored for SDS-PAGE gel analysis. 

 

SDS-Page Gels 

The protein samples were run on a 12.5% bis-acrylamide denaturing gel after being 

heated in the presence of sodium dodecyl sulfate (SDS) so that proteins would not fold and affect 

gel migration.  Samples were consistently made up of approximately 15X concentration.  
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Additionally -mercaptoethanol (BME) was added at a 1% concentration to the samples after 

incubation in order to disrupt disulfide bonds and ensure proper mobility through the gel.  All 

gels were run at 100 volts, and included a protein ladder for size determinations, and were 

stained for 20 minutes using Coomassie blue, then destained. 

 

Semi Dry Electroblotting to Immobilon 

 Three pieces of 3MM paper and one sheet of immobilon membrane were cut to the size 

of the gel to be electroblotted.  A corner of the immobilon membrane was cut in order to 

recognize Lane 1.  Two pieces of 3MM paper were soaked in transfer buffer and then placed on 

the bottom electrode.  The membrane was then soaked initially in methanol (MeOH) and then in 

transfer buffer, and placed on top of the first two pieces of 3MM paper.  The SDS-PAGE gel was 

placed on top of the membrane after a wash with transfer buffer, and then the third piece of 

3MM paper was added to cover the gel. A glass rod was gently rolled back and forth over the 

final piece of 3MM paper to remove any air bubbles, and then the electroblot was run at a 

constant current at 0.2 A for 4 minigels (0.15 if only 1-2 gels) for one hour. Once complete, the 

membrane was removed and stored in a plastic dish, and shaken in 5% fat-free dried milk in 1X 

TTBS for one hour. The membrane should now have all protein that was in the gel; a quick 

indicator is being able to see the pre-stained ladder.  

 

Western Blot Procedure 

5% fat-free dried milk in 1X TTBS was poured off of the membrane, and the primary 

antibody of interest was used at approximately 1:5,000 dilution overnight at 4°C on an 

oscillating table. The next day the primary antibody was recovered and stored for future use, and 
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the membrane was washed in 1X TBST and placed on a oscillating table a series of times first 

for 1 minute, then 5 minutes, and finally 10 minutes, using new TBST in each wash. The 

membrane was then probed using 1:5,000 Goat anti-mouse-AP for two hours at room 

temperature. The 1, 5, and 10-minute TBST washes were repeated, and the membrane was 

washed in pH 9.5 buffer for ten minutes.  The membrane was then developed in XP at room 

temperature.  Color development was stopped at any time by washing with water.  The duration 

of time before color development ceases was recorded and a picture was taken of the resulting 

blot. 

 

Ultracentrifugation for VLP Isolation 

 This technique was performed by Lori in the Morrison lab.  After selective solubilization 

of U65-mHAt into a minimal volume, the sample was loaded onto a sucrose gradient. A sucrose 

gradient contained in dialysis tubing was constructed to have 3 concentration differentials of 

30%, 60% and 80% and volumes of 1ml, 2ml, and 4ml, respectively. Dialysis tubes were used 

with an 11 ml capacity, so the maximum amount of loadable sample per centrifugation tube is 4 

ml.  The tube was spun in an ultracentrifuge at 35,000 RPM for approximately 18 hours at 4°C, 

then the fractions were recovered separately in 1mL tubes. U65-mHAt was consistently in the 

bottom four fractions after ultracentrifugation.  

  

Sizing Column 

The column was 90 ml of Sephadex and was run in 0.1M Methylamine buffer + 0.1% 

Sarkosyl. We collected 25 samples of 3 ml each after letting the first 10 ml through. We had 

previously determined that nothing eluted in that first 10 ml. 
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-Glucan Trapping 

-Glucan particles with charged cores (yeast cell walls stripped of all proteins, leaving 

solely the shell) were added in solution with our protein of interest.  A trapping polymer was 

then added with the intent of our protein being suspended between the core and trapping 

polymer.  See Appendix for details. 
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RESULTS 
 

 

 

Protein Constructs 

 

The proteins referred to in this project are novel constructs created by Donald Tipper PhD 

using avian influenza H5 HA and GAG genes, provided by Antigen Express.  All proteins were 

expressed in Saccharomyces cerevisiae (Tables I and II).  Although our MQP team aided in 

making several new constructs, the ones referred to in this paper were previously transfected 

yeast strains.  U65-mHAt was the antigenic protein chosen for the avian influenza vaccine. Other 

proteins of interest were also cultured simultaneously for the purposes of either visualization by 

GFP, or the development of a different vaccine. 

 

Table I: Potential Vaccine Proteins 

U65-mHAt Novel protein consisting of the first 65 residues of the Ure2p gene 

followed by a 9 amino acid linker and finally by the mature 

hemagglutinin sequence from H5N1, provided by Antigen Express, with 

the final transmembrane domain not present 

HBs This is Hepatitis B Surface Antigen would make a potential oral 

Hepatitis B vaccine and would allow antibody comparisons to be made 

to the injectable form 

GAG-HBs This novel construct consists of GAG sequence provided by Antigen 

Express fused to HBsAg, GAG is the second closest protein to the 

exterior of HIV and is not nearly as mutable as the membrane protein, 

which is closest to the outside – would make a potential oral HIV 

vaccine as well as Hepatitis B vaccine 

VP1 The Mouse Polyoma Virus capsid protein, cloned from intact viral DNA 

by DJT makes Virus Like Particles similar to HBsAg – would make a 

potential Mouse Polyoma Virus vaccine 
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Table II: Proteins Expressing GFP 

U2N-GFP/U74-

GFP/U65-GFP 

Novel protein containing the first 65 residues of the Ure2p gene 

followed by a 9 amino acid linker sequence followed by GFP – used 

to track U65 constructs visually to evaluate expression and glucan 

particle loading 

U65-mHAt-GFP Same as previous but with the mHAt sequence between the linker and 

the GFP – used same as previous but could elicit an antibody response 

to HA if used as a vaccine 

GFP-HBs Hepatitis B Surface Antigen with GFP on the N terminus end – used 

same as previous but was expected to behave more like HBs 

VP1-GFP6 VP1 with GFP on the C terminus end – same as previous but for VP1 

 

 

Protein Purification 
 

16,000x g Centrifugations 

 

The first step in producing this vaccine was purifying the proteins of interest. For every 

protein, the first enrichment step was a 16,000 x g centrifugal spin after the grown yeast cells 

were harvested and broken to separate cell wall debris and membrane proteins from soluble 

proteins.  This centrifugation step pellets the U65-mHAt proteins, leaving the smaller soluble 

proteins in the supernatant, and allows the pellet to be resuspended in a different buffer.  Almost 

all of the proteins mentioned in Tables I and II were found in the 16,000 x g pellet.  However, 

GAG-HBs remained in the supernatant.  Figure-9 shows some supernatants and pellets collected 

after the 16kg centrifugation as analyzed on an SDS-PAGE gel.  In the figure, a solid circle 

surrounds the U65-mHAt band (at 66.2 kDa) found in the pellet fraction, and the dotted circle 

surrounds the same band (far less abundant) in the supernatant. Even though most of the proteins 

ended up in the pellet with the protein of interest, the supernatant not only gets rid of the soluble 

protein, but also allows for selective solublization of the target. There is a band at approximately 

66.2 kDa in protein that remained suspended in the supernatant. As this band appears to be 
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slightly shifted up from the comparable band in the pellet fraction, it remains unclear as to 

whether this is the protein of interest. 

 

 

Figure 9: SDS PAGE Analysis of Supernatants and Pellets from 16kg Centrifugation Step.  
The lanes are as follows: (from left to right) Ladder, GAG-HBs 16kg pellet, U65-mHAt 16kg 

pellet, GFP-HBs 16kg pellet, GAG-HBs 16kg supernatant, U65-mHAt 16kg supernatant, GFP-

HBs 16kg supernatant.  The solid circle indicates U65-mHAt in the 16kg pellets, and the dotted 

circle indicates U65-mHAt in the 16kg supernatants. 

 

Selective Solubilization 

 

Through numerous centrifugation trials, U65-mHAt and GFP-HBs were both found 

initially in the 16,000 x g pellet, separating them from all soluble yeast proteins. Both pellets 

were soluble in a solution of 0.1M Methylamine buffer at pH 10.7 with 0.1% Sarkosyl, when 

incubated at 37°C for 30 minutes. This was verified by SDS-page gel for U65-mHAt and by GFP 

assay for GFP-HBs (data not shown). 

 

 

Ultracentrifugation on a Discontinuous Sucrose Gradient 

 

The solubilized proteins were run in the SW41 rotor on the ultracentrifuge at 35,000 x g 

(35kg) for 18-24 hours, using a step gradient from 0 to 80% sucrose in MN buffer. This process 

separates proteins by density, with the antigenic proteins expected to run between the 60% and 

80% sucrose concentrations. The 0.1% sarkosyl buffer solubilizes an unidentified protein 
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polymer that forms a gel like polymer layer after 18hr centrifugation in sucrose. These polymers, 

which are believed to be mannoproteins, were not readily suspended, and became a problem 

when more than a minimal amount was present. The polymer formed throughout the region with 

the protein of interest, retaining it inside the gel, significantly decreasing the yield of U65-mHAt.  

Fortunately, this polymer was largely eliminated by repeated 16 kg centrifugation before use of 

sucrose gradients. The separation of U65-mHAt is shown in Figure 10. Lanes 9, 11, and 13, 

contained the antigenic protein in high levels showing how this step provided strong U65-mHAt 

enrichment. Lane 15 is not shown, but it was subsequently reanalyzed and was verified to 

contain U65-mHAt. Since the lanes were relatively similar, they were pooled, and used for the 

next step, thus allowing little to no loss of the antigenic protein. 

 
Figure10:  SW41 Fractions of mHAt. The sample on the left was the top fraction and the one ripped off on the right 

was the bottom one, with the intermediate ones in proper order from top to bottom. The ripped sample that was the 

bottom of the gradient looked similar to the fractions beside it, but with less overall protein. The four bottom most 

fractions were pooled for the next purification step. 

 

 

Acid Precipitation of U65-mHAt from a SW41 Gradient Spin 

 Proteins from pooled sucrose gradient fractions in MN buffer were quantitatively 

precipitated by the addition of acetic acid, reducing the pH to about 5 (Figure-11).  The total 

protein of the starting material is represented in lane 2. Even though this step provides limited 

enrichment, the ability to suspend the precipitate in a minimal volume is essential for the next 

enrichment step. 
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Figure 11: Acid Precipitation of the Sucrose Gradient Proteins.  Lane 5 shows the precipitated 

fraction used for the next step. 

 

 

 

Isolation of U65-mHAt Samples Using a Size Exclusion Column 

 

After isolation of the sucrose gradient fraction-5 protein, it was loaded onto a size 

exclusion column.  The fractions were acid precipitated to reduce the volume and allow a buffer 

change, then analyzed by PAGE (Figure-12).  This column allowed almost complete separation 

of U-65-mHAt from any impurities.  Note that the large molecular weight material at the top of 

the column is what we later found to be an aggregate of some sort that either disaggregated 

before loading or failed to load properly in the next step.  Access to a longer column would be 

ideal since an increase in resolution would completely get rid of the small impurity we saw at 

this point.  
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Figure 12: PAGE Analysis of the Column Fractions.  Proteins were separated on a size exclusion 

column, the fractions were precipitated, the analyzed by PAGE.  Lane 1 - Ladder, Lanes 8-12 contain the 

U-65-mHAt (see arrow) 

 

 

Trapping U-65-mHAt in Glucan Particles 

 

Using 8 potential trapping polymers, glucan particles were loaded with two purified 

proteins, U-65-mHAt and GFP-HBs. Using a variety of trapping polymers is necessary since 

some are bound to trap more efficiently than others for different proteins. The loading of the 

glucan particles was performed separately for U-65-mHAt and GFP-HBs. First, trapping of GFP-

HBs in glucan particles was attempted since it would allow GFP visual confirmation and analysis 

of loading.  U65-mHAt was the other protein of interest for use as an oral vaccine. Subsequently, 

FITC-labeled U65-mHAt also was used for trapping in glucan particles. 
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Verifying and Characterizing Loaded Glucan Particles 

 

Finally, the loaded glucan particles were lysed and analyzed by PAGE to verify correct 

loading. Figure-13 shows an SDS page gel of four loaded glucan particles next to an overloaded 

control lane.  The right lane shows a ladder and an arrow at 66.2 kDa indicating where U65-

mHAt should migrate. The protein migrated to the correct size, indicating no degradation had 

occurred in the packaging.  The lack of other proteins shows efficient isolation, and the relatively 

similar band intensity of the four shows similar trapping success for the four different polymers 

used. These particular U65-mHAt samples were not labeled with FITC, so microscopy of the 

loaded particle is not a viable option for verification of loading.  

The loaded GFP-HBs however is clearly seen under 1000x magnification in Figure-14. 

Using a blue filter to easily see the GFP and phase contrast to see the glucan particle, the image 

of a loaded glucan particle shows properly loaded glucan particle.  Figure-15 shows multiple 

forms of loading.  Some are ideal, and some were not properly loaded.  

 

 

Figure 13: PAGE Analysis of U65-mHAt From Loaded Glucan Particles.  Lanes 1-4 are loaded glucan 

particles ran to analyze loaded protein content. Lane 5 is overloaded with our sample with U65-mHAt as 

a positive control and lane 6 is a ladder. 
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Figure 14: GFP Microscopy of a Properly Loaded Glucan Particle. Note, the green is in the middle.  

The black outline around it (the heart shaped one) is the glucan particle 

 

 

 

 

 

Figure 15: GFP Microscopy of a Mixture of Properly and Improperly Loaded Glucan Particles. 
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DISCUSSION 

 

 
 The rapid rate of influenza viral RNA mutation, lower than ideal levels of antibody 

production in patients, high mortality rates, and short time between infection and death, all 

indicate that effective protection against an avian influenza pandemic is imperative.  Creating a 

potent vaccine against influenza is not only a convoluted, difficult task by itself, but the rapid 

rate of mutation of the virus makes complete vaccination against all forms of influenza even 

more improbable. U65-mHAt loaded in glucan particles delivered orally will theoretically 

provide excellent protection against the H5N1 variant of avian influenza. A dehydrated oral 

vaccine would also allow for cheap and easy storage, transport, and distribution. 

We ran into many unforeseen obstacles on the path to developing this vaccine. We started 

this project in September of 2008. Our first goal was to get proficient at producing large amounts 

of target proteins and getting those proteins into solution. Quick proficiency at properly growing 

and inducing cells was obtained and very few cultures were lost to contamination. Working with 

anywhere from three to seven different proteins at a time, we attempted to successfully affect 

solubility of target proteins by altering urea concentrations, presence of different detergents in 

varying amounts, buffers, temperature, protein concentration, salt concentration, and pH. The 

goal was to manipulate the proteins of interest's solubility easily, to allow a subsequent 16,000 x 

g centrifugation (or a series of them) until the protein of interest was pelleted. It was not until 

February 2009 that we successfully made significant enrichment on our main proteins of interest 

(U65-mHAt and GFP-HBs).  Another complication we ran into right around February was the 

discovery that the HBsAg in our yeast strain expressing HBsAg was not actually present. We 

spent many hours attempting to isolate HBsAg and verify its presence by Westerns. Due to the 
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use of old antibodies that were not giving consistent results, we were unable to determine the 

lack of HBsAg presence until we ran two GAG-HBs samples concurrently with HBsAg samples. 

We then saw clear HBsAg presence in the GAG-HBs samples and none in any of the supposed 

HBsAg samples. We had, up until that point, spent a significant fraction of our time specifically 

on HBsAg isolation. We also did not have an avian H5 HA antibody, so HA confirmation by 

Western blots of HA was not available. 

The original concept for trapping the proteins of interest in glucan particles was to have 

them assemble inside the glucan particles into complexes too large to diffuse out. For all of the 

HBsAg and VP1 containing vaccines, attempted assembly into large virus-like particles after 

diffusion into glucan particles was the concept for trapping without using trapping polymers. 

Similarly, U65‟s ability to self assemble was hypothesized (as with the virus-like particles) to 

catalyze into the larger aggregates under specific conditions. The original concept of the project 

was based on the previous successes. Unfortunately control of assembly was not found so we 

went with the backup plan of trapping polymers. Fortunately, the polymers worked fine for 

trapping and did not end up being a huge problem.  

There are many future experiments to this project that should be explored. One is the 

obvious continuation of the project to test whether the U65-mHAt loaded glucan particles when 

fed to mice create an antibody response to mHAt. Experiments on the ability of U65 to 

polymerize, and HBsAg and VP1 to assemble into virus-like particles, would be interesting and 

perhaps a necessary next step if loading with trapping polymers does not provide the desired 

antibody response for any reason. Finally, the loading of glucan particles with other antigens for 

vaccine production is the next logical step. While swine influenza (H1N1) seems like an obvious 

candidate for consideration, we have already started working on a couple variants of GAG, as an 
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antigen for HIV, which are to be loaded in glucan particles and eventually tested for antibody 

response. Using this method for producing oral vaccines could potentially be very valuable to 

our society and will hopefully find all the funding it needs to be explored in the future. 
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APPENDIX A 

 

BUFFERS 
      pKa (25o) Other 
FORMIC ACID-NA FORMATE  3.7 

LACTIC ACID-NA LACTATE  3.86 

ACETIC ACID-NA ACETATE  4.68 

NaH2 CITRATE-Na2H CITRATE  4.68  3.12   6.4 

SUCCINIC ACID-NA SUCCINATE 5.4  4.2 

KH2PO4-Na2HPO4  Na3PO4 6.86    12.0 

TRIS-HCL     8.1 at 25 C 

BORIC ACID-NA BORATE   9.18 

PIPES      6.8 

 

Grams per 400 ml  1M  Tris base  TrisHCl  

pH 7.5 at 25 C (7.2 at 37) 9.44  50.8 

pH 8.0 at 25 C (7.7 at 37) 21.2  35.5 

 

 

pH STANDARDS 

 
       0O 25O 37O 
0.02M KH2 CITRATE    3.93 3.84 3.82 

0.05M ACETIC/ 0.05M NA ACETATE  4.71 4.68 4.69 

25mM NaH Succinate/ 25mM Na2 Succinate  5.46 5.40 5.41 

50mM KH2 PO4 / 50mM Na2H PO4   6.98 6.86 6.84 

10 mM Na BORATE (CO2-FREE H2O)  9.46 9.18 9.07 

50 mM Na3 PO4     12.75 12.04 11.74 

 

WORKING SOLUTIONS 

 

0.5 M EDTA pH 8.0  94 g Na2 EDTA.2 H20  + ~ 10 g NaOH pellets, stir in 400 ml water, adjust 

to pH 8.0, dilute to 500 ml 

 

Ethidium bromide.  Dissolve in water at 2 mg/ml and store in the dark, use 1-2µl /10 ml of 

agarose.  Use gloves. 

 

Sodium chloride,  4M Dissolve 117g in 400 ml water, dilute to 500 ml 

Sodium hydroxide,  4M Dissolve 32g in 150 ml water, dilute to 200 ml  
50X TAE for Agarose gels  121 g Tris base, 28.5 ml glacial acetic, 50 ml 0.5 M EDTA to 500 

ml 
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Buffer A (modified)    BufferA1= buffer A + 1X protease inhibitors 

50 mM Tris-HCl pH 7.6  100X protease inhibitors 

150 mM NaCl    100 mM PMSF.  17.4 mg/ml in 100% ETOH. 

10 mM NaN3      100X Pepstatin A 0.2 mg/ml in same solution,   

10 mM KF    Store @ -20 
o
C 

2.5 mM EDTA    
    

Coomassie IPA (IPA). Per liter, 500 mg Coomassie R250, 250 ml IPA, 70 ml glacial acetic 

acid.  Stain 20-60 min.  Destain same without dye. 

 

 

Media 

 

LB   per liter:   10g  tryptone  Ampicillin, 100 mg/ml, store  at -20°C 

   5g      yeast extract 

   10g    NaCl 

 
YEPD per liter:   10g      yeast extract   YM1  Mix equal volumes of  

20g  peptone    2X YEPD and 

20g  glucose    2X YNB 

 

YPG per 2 liters:  20g      yeast extract 

40g  peptone 

54ml  75% glycerol 

8 ml Pen/Strep mix, as used for TC (to reduce bacterial    

  contamination) 

NB, it is more important to seal the 2L flasks used for 36-48 hr Gal 

 induction with both plugs and foil to exclude dust from the shaker 

 

Ura D/O per liter 1.7g YNB  (no AS or amino acids) 

Filter-sterilize  5g   AS (ammonium sulfate) 

   2g    Ura D/O powder 

   20g   glucose 

 For plates Autoclave above + 20g Agar in 900 ml water, then add 100 ml   

   20% glucose  

    

 

Leu/Trp D/O Suc/Gly as used routinely since 10/06. Filter-sterilize  
Increased sucrose (9g/liter) improves cell yield. 
  

Per 3 Liters  5.1g   YNB  (no AS or amino acids) 

   15g   AS (ammonium sulfate) 
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   6g    Leu-Trp D/O powder 

   18g   sucrose  (0.6%) 
81ml   75% glycerol  (2 %) 
3 ml  1000x vitamins  (1x).  Frozen stock 

(12 ml  Pen/Strep mix . Frozen stock- NOT essential) 

 

 

GFP assay; Gal-induced expression of GUL2-U2N-GFP  -UNL-GFP, etc. 

 

Normal growth and induction procedure (at 30C): 

Inocula.  Grow pGUL transformants of strain PAP1502 in Ura/ D/O 2% glucose to saturation, 

then re-grow in YEPD.  Store at 4C, can pour off 50% of settled sup to give 2X cells. 

Use 1-2 ml 2x or 2-4 ml 1x YEPD-grown cells to inoculate 450 ml Leu/Trp D/O with 0.9% 

sucrose and 2% glycerol (+/- additional vitamin supplement) in fluted Fernbachs, 200 rpm.  

Small scale: 25-50l inoculum in 5-10 ml Leu/Trp D/O in max tilted 25 ml tubes.  

After 24-30 hr, A600 should reach about 0.5-6, indicating significant growth on glycerol, 

resulting in de-repression of the GAL pathway.  Harvest cells (450 ml fills a J10 bottle, 10 ml in 

a 12 ml culture tube), suspend in 50% original volume of RT YPG, pour into 2L flask and grow 

with lower aeration (125 rpm; AVOID ANY FOAMING) for 10-20 min and then add 10% 

volume of 20% galactose.  Harvest induced cells after 18-24 hr. 

 

1. Measure A600 of the 2X culture (eg, if use 1/40 dilution, multiply result by 40). 

2. Measure GFP fluorescence of n l + 150 l PBS, in duplicate, in microtiter plate reader, 

using 488 excite and 520 emission = F520 

 

THEN, since A600 of 1 = 10
7
 cells/ml 

 

F520 per 10
6
 cells = 100/n X F520/A600  

 

For well-induced U2N-GFP, this should be 2500.   

For UNL-GFP, about 1500  

For VP1-GFP, about 1000  

For GFP-HB, about   900 

For U74-GAG-HBs about 100  

 

Assume GFPbex has 6x fluorescence of GFP 
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Prep of Electroporation-Competent E. coli. 
NB, it is convenient to do two cultures at once to balance centrifuge. 

 

Day 1; PM Inoculate 20 ml LB in 125 ml flask with DH5α, or XL1Blue. 

 Autoclave 1 L LB in 2 liter flask (best, 2.7L Fernbach) and leave at 37 ON. 

 Autoclave 1 L water and 600 ml 10% glycerol and store at 4 oC. 

 Make sure to have 6 sterile 450 ml bottles, 10 ml pipettes and 50 ml dispo tubes. 

 

Day 2; AM 

1.  Inoc the 1.2 L LB in Fernbach with 2-10 ml ON culture.  Shake till A600 is 0.4 to 0.6 (2-

3 hr) then immediately cool in ice.  Pour into 3 ice-cold 450 ml bottles and store on ice 15 min.  

Pre-cool J10 rotor to 4 oC, spin bottles 10 min 7.5k. 

2. Pour off sup, remove residual sup w pipette, suspend pellets in 5 ml ice-cold water using 

a 10 ml pipette.  

 Combine in one bottle, dilute to 450 ml total (35% original vol), mix. 

 Spin 10 min 8k at 4 oC.  CARE! Pellets are loose in water. 

3. Repeat wash in 450 ml water. 

4. Suspend each pellet in 10 ml ice cold 10% glycerol and combine in 50 ml tube. 

Dilute to 20 ml in ice cold 10% glycerol (2% orig vol), spin 10 min 10k.  Pour off sups. 

5. Suspend in 10ml (1% orig vol) ice cold 10% glycerol and spin 10 min 10k. 

6. Suspend in 2.5 ml (0.25% orig vol) ice cold 10% glycerol.  Aliquot 50 X 50 µl in Epps, 

freeze in dry ice and store at -70 oC.  

----------------------------------------------------------------------------------------------------------- 

ELECTROPORATION of E. coli 

Ligations; Dialyse 15-30 min on 0.05-0.2 micron filters floating on water to remove salts. 

NEED; sterile 1 mm cuvettes.  SOC or LB or TB (50 ml tube).   Sterile 18 mm tubes. Amp 

plates. 

1.   Remove frozen EP competent cells from -75 and melt in ice (20 min). 

2.   To 50 µl cells in Epp tube in ice, add 1- 5 µl of DNA in water or 1: 1 TE. 

 Transfer to sterile 1 mm cuvettes in ice.  Include a No DNA control. 

3.   Pulse in Goguen EP apparatus: 2.2 Kv;  depress to charge (1 sec), release to pulse.  OR use 

commercial apparatus at 1.25 Kv, depress both buttons to pulse, time constant should be >4 

4.   Immediately add 0.6 ml RT 
o
C SOC (or LB) and transfer to suitable tube 

5.   Rotate at 37 oC 60 min 

7.   Pour total on LB-Amp plate, sprea and incubate lid-up at 37 ON. 

DAY2.  set up miniprep cultures.  DAY3.   Prepare minipreps and analyze. 

NB: Test EP cells with 1 ng control plasmid and plate 100 µl of 1 ml.  10
6
/µg = 100 cfu‟s. 
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OR test colonies by PCR on day 2 (saves a day if probes good) 

 

 

YEAST  LiOAc TRANSFORMATION.    
 

One Step procedure (best, simplest). 
1. One step buffer, 0.2 m LiOAc pH 5.0, 30% PEG 3350 100 mM DTT, kept at -20C. 

2.   1 ml of freshly grown ON cells, A600 about 5, wash in 1 ml water, suspend in 100 µl 

One step.   

2A. OR  grow cells as for older procedure to get fresh culture at A600 1-2, wash in water and 

suspend in 1/40 original volume of 0.1M LiOAc.  Spin 0.1 ml, spin and suspend in 100 µl 

One step buffer.  

3.  Add 5 µl denatured 10 mg/ml HS DNA and 1-2 µl plasmid DNA 
Incubate 42 C 30 min, spin 5 sec, remove sup (use fresh sterile tips) suspend in 200 µl water 

and plate. Use Ura D/O plates for GUL vectors.  Incubate 2-3 days at 30C 

----------------------------------------------------------------------------------------------------------- 

 
OLDER Cells; should be growing healthily in early post-exponential phase at A600 of 1.5-2.5 

in rich broth such as YEPD or YM1.  Dilute a fresh ON in YM1 or YEPD 1/20 and grow ~4-5 

hr.  For transformants, etc requiring growth ON in D/O medium, dilute in YM1 for second 

growth.  

 

1.  Day 1: Fresh ON culture in 2.5 ml YEPD or DO inoc in late afternoon with 2 loops full 

(20µl)  of refrigerated saturated broth culture (grown in YM1).  

2.   On day2, pre-warm YEPD 20-50 ml to 30 oC in 250 ml flask in WB shaker. 

 Inoc with 1/20 vol of ON shake to A600~ 1.5 to 2 (~ 8.30AM-12.30PM) 

 Cells must be in exp phase when washed, Gietz recommends 107 cells/ml. 

   Higher OD seems optimal for SEY6210, must be optimized for each strain.  

3.   Harvest cells in 50 ml dispo tubes, 5 min at 2700 RPM (top speed) in GLC2B, RT oC. 

4.   Pour off sup, suspend (vortex) in original vol sterile water. 

5.   Spin again, suspend in 1 ml 100 mM LiOAc (not buffered), transfer to Epp tube. 

6.   Spin 5 sec, pour off, suspend by vortex in 1 ml LiOAc again.   

7.   Spin 5 sec, pour off, suspend by pipeting in 1/100 orig vol LiOAc.  

eg, 50 ml cells, add 0.5 ml, final vol about 0.7 ml.  Store on ice.  15 min to 24 hr 0°C. 

 

Procedure.  
1.   Epp tube + 50-120 µl cells 

 + 1/10 vol Herring sperm DNA (heated BWB 2 min, cooled in ice, or quick frozen) 
 + 1-10 µl DNA in TE or water 

 + 3.2 vol sterile 45% PEG 4000 in 100 mM LiOAc (9 vol 50% PEG + 1 vol 1M 

LiOAc). 

2.   Mix, incubate 30 min at 30 oC on rotator, then 20 min  42 oC. 

3.   Spin 5 sec, remove all sup with 200 µl tip (PEG inhibits growth) 

suspend in 1X TE or water, store in ice, plate at appropriate dilution. 
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STOCKS: filter sterilised.   

1.    10X TE, 100 mM Tris/HCl pH 7.5, 10 mM EDTA. 

2.    10X LiOAc, 1M, pH NOT adjusted. Making 1X fresh recommended, don‟ t know why. 

3.    45% PEG.    9 vol 50% PEG, 1 vol 10X LiOAc.  Filters very slowly! 

 

Protein Methods.  
Solutions for Western Blot, IP, EndoH, Protease K, Zymolyase etc. 

 
AntiBodies. Store  in 25 µl aliquots at –75

o
C. Unfreeze an aliquot only once and then keep at 4 

o
C. 

Primary AB's are diluted in 5% DM for Western detection and stored at4 
o
C.  These can be used 

at least 10 times, although the DM tends to decay.  To prevent microbial contamination, after 

first use, add Na Azide to 1 mM, but this must be completely washed out before secondary, since 

azide inhibits lumifos, etc 

 

Examples: 

Mouse monoclonal anti-HA (F-7) Santa Cruz biotech Cat # sc-7392 200 µg/ml, $275 per ml 

Dilute this primary AB 1/2000-4000 (10-20 µl/40 ml) in 5% DM. 

Mouse 3F4 anti-PrP ascites fluid (Lingappa, ).  Dilute 1/10,000 (4 µl/40 ml) in 5% DM. 

Mouse anti-HBs clone NE3 

 

Secondary AB.  Santa Cruz Cat #Sc-2031 HR peroxidase-labeled goat anti-mouse $60 per 200 

µg/0.5 ml 

Use 2 µl / 15 ml 5% DM, do not re-use, cannot add azide. 

OR Santa Cruz Cat #Sc-2066 AP (Alkaline phosphatase)-labeled goat anti-mouse.  Can use 

azide. 

 

 

100X Protease inhibitors (PI’s)  

To be added to solutions containing at least 1 mM EDTA.  This inhibits metallo-proteases 

    100 mM PMSF.  17.4 mg/ml in 100% ETOH. 

    100X Pepstatin A 0.2 mg/ml in same solution,  Store @ -20 
o
C. 

   100X  TPCK an optional additional inhibitor; 7 mg/ml in 100% anhydrous ETOH 

  Keep separate, Store @ -20 
o
C 

 

Buffer A (modified)   
50 mM Tris-HCl pH 7.6 

150 mM NaCl  

10 mM NaN3  

10 mM KF 

2.5 mM EDTA 

BufferA1= buffer A + 1X protease inhibitors 

BufferA2= buffer A + 1X pepstatin (no PMSF). Use with protease K (see below) 

Buffer A3= buffer A/4 = 1X PI‟s.  use to disperse HSP‟s prior to adding EndoH buffer. 
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10 X TTBS: per liter    5% DM (Non-Fat Dried Milk) in TTBS, Store 4 
o
C 

24.2 grams  Tris base    Antisera; dilute in 5% DM in TTBS.      

Store 4 
o
C 

292.2 grams  NaCl        

pH solution to 7.5 by adding ~ 14.3ml of conc HCl.     

Add 5 ml Tween 20  (0.5% Final), and dH2O to 1L     

 

RIPA Buffer for Immunoprecipitation    Protease K Stock: 1 mg/ml in 50 

mM Tris  

50 mM Tris-HCl pH 8,  (5 ml 1M/100 ml)  pH7.5, 20% glycerol, Store @ -20 
o
C. 

150 mM NaCl,   (3.75 ml 4M/100 ml)  Stability has not been tested.  

1 mM EDTA   (0.2 ml 0.5M/100 ml)  is a potential problem, so keep only 

two weeks. 

1% NP40, 0.5% DOCholate, 0.1% SDS  Also made w/o SDS and + PI's 

 

 

Coomassie stain after SDS-PAGE. 

Cut off stacking gel and transfer gel to small plastic tray or Tupperware box. 

 

Coomassie IPA.  0.05% in 25% IPA, 7% acetic acid.  Stain 20-60 min. 

   Per liter, 500 mg Coomassie R250, 250 ml IPA, 70 ml glacial acetic acid 

Destain same w/o dye + kimwipes, ON.  Can re-stain if desired 

 

 Older less useful:Coomassie stain (Maniatis) 0.25% in 50% methanol + 10% acetic acid.  Hard 

to dissolve stain.  Stain for not more than 20 min, or background is too high.  Can only re-use a 

few times 

De-stain in MeOH-acetic acid –water 30:7:63.-first one hour in used destain + kimwipes to 

adsorb stain 

-then ON in fresh destain + kimwipes in sealed bag/box. 

 
To store gels, rinse water then soak in 20% glycerol 1-18 hr and place between sheets of 

cellophane soaked in 20% glycerol and dry on clamped plastic frame ON. 

 

 

 

Quantitation of stained bands after SDS-PAGE.       NEED: Gels and data sheet to 

identify by # 

                 Tongue depressors, 

paper towels 

A. Stain and de-stain               Memory stick, Pen, 

White sheet 

 

B.  To image on Kodak 200 Imager before glycerol step. 
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Insert memory stick in USB drive (front bottom right).  Start  My computer   Drive Icon, 

Choose show files  See new window of files on the stick.  Can now drag image .tif files to this 

from DJT folder. 

Using tongue depressors, transfer de-stained gel to clear sheet-holder containing letter-quality 

white paper.   

Epi-White. Center, using preview to observe image. Set diaphragm (top ring) to max.  Exposure 

0.1 sec. 

Adjust exposure time to just over-expose, then use diaphragm to get band contrast best emulating 

the gel. 

Adjust magnification to get largest image.  

Capture. Select Crop tool, remove unwanted areas (Edit crop). Print 2 copies (contrast is > 

than image) 

 

C.  File  export data image 
Name the file (e. g., 4-10-07 gel #).  File type, choose 8 bit ….min/max .tif (default).   

Save in DJT folder.  Drag Gel Image .tif files to memory stick window.  
Open dragged icon to check transfer. Close gel images (Save changes?  NO).   

Repeat with other gels.  Eject flash drive by proper procedure (2
nd

 icon bottom 

right). 

 

 D. Quantitation on own computer 

Open Photoshop CS version 9  

1.Open the image file.  Should be grey scale, 8 bit, 256 levels 

 2. Adjust brightness/contrast so that background is white and bands have a relative 

density similar to the original gel. Save. 

 3. Window Histogram  Expanded view  show statistics 

 4. Select lasso tool.  Drag around a white area to establish maximal mean, should be 255.  

Drag around a band. Observe Histogram.  Record Band mean and pixels. 

5.  Drag the lasso to the same area of an adjacent “blank” lane (same protein loading but 

lacking the same expressed protein). Record Blank mean and pixels. 

 6. Drag around entire lane for both the band and blank lanes. Record Mean and pixels. 

Then  1.Band density = 255-Band mean X pixels. 

2.Blank density = 255-Blank mean- X pixels. 

3. Lane density =   255- Lane mean X pixels.  Ratio 1/3 or 2/3 x100 = % of total stain 

in the band. 

Then true % in band = % in band - % in blank. 

If the protein loadings are similar, so that total lane stain density appears consistent, then 

easier to calculate true band density = [255-(Band density-Blank density)] X pixels 
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 SDS-PAGE.  BioRad Miniprotean III. 
 

Stocks.    40% Acrylamide/bis 37.5/1 mixture, Bio-Rad, stored at 4 
o
C, brown bottle lab 

refrigerator. 

  Temed from Pharmacia (17-1312-01), on bench shelf. 

  10% Amonium persulfate, store at –20 
o
C. for 1 month maximum, then re-make. 

4X Separating gel buffer  = 1.5 M Tris pH 8.8 + 0.4% SDS 

4X Stacking gel buffer = 0.5 M Tris pH 6.8 + 0.4% SDS 

 

Volumes/gel 

The miniprotean gels have about 8X5 cm area of separating gel and 8X2 cm of stacking gel. 

Volumes/gel for 1 mm and 1.5 mm gels are 4 and 6 ml (separating) and 1.6 and 3.2 ml 

stacking. 

 

To allow excess gel as a check on polymerization, make following volumes (ml) 

 

         SEPARATING             STACKING 

# Gels 2 4 6 2 4 6 

1mm gels 10 20 30 4 8 12 

1.5 mm gels 15 30 45 6 12 18 

 

 

 

10% Resolving Gel composition.    Stacking gel composition 

Volume, ml 10 20 30 0.5M 

Tris 

 pH 

6.8 

2 3 4 6 8 

Water 4.8 9.6 14.4 1.5 2.3 3 4.5 6 

40% mix 2.5 5 7.5 0.25 0.38 0.5 0.75 1 

1.5 M Tris 8.8 2.5 5 7.5 0.25 0.38 0.5 0.75 1 

10% SDS 0.1 0.2 0.3 20 l 30 l 40 l 60 l 80 

l 

10% APS 0.1 0.2 0.3 20 l 30 l 40 l 60 l 80 

l 

TEMED 4 l 8 l 12 l 2 l 3 l 4 l 6 l 8 l 

 

For 10 ml of 8.5, 12.5 or 15% gels use 2.12, 3.1 or 3.75 ml 40% mix and reduce water so total 

is 7.3 ml  

 

5X Running Buffer: per liter 

15.1 g   Tris Base 

94 g      Glycine  Add 50 ml of 10% SDS  (final 0.5%) and dH2O to 1L. 

pH should be around 8.3, check at 1X, must not be >8.7. 

 

2X sample buffer 20% glycerol, 4% SDS  0.04% Bromophenol blue, 125 mM Tris-HCl pH 

6.8. 

3X sample buffer 30% glycerol, 6% SDS  0.06% Bromophenol blue 125 mM Tris-HCl pH 

6.8 
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per 100 ml: 30 ml glycerol, 6 g SDS, 60 mg BrP blue, 12.5 ml 1M Tris pH 6.8, water to 100 ml 

(56ml) 

 

 

PROCEDURE. 

1.  Clean plates thoroughly with water, finally with ethanol and kimwipes.  Normally use 1 mM 

plates/combs.   Both 0.75 and 1.5 mm plates are available and both 10 and 15 place combs.  10 

work better. 

 

2. Rubber mats of pouring apparatus should be clean.   

  Align bottom edges on flat (bench) surface in green frame, clamp frame (turn arms out) then 

clamp top of large plate onto gasket in holder.   

 

3. Make running gel mix in a 50 ml tube and stacking in a 15 ml tube  eg, for four 10% 1 mm 

gels:  

 10.7 ml water,  5 ml 40% acrylamide,   5 ml 5X buffer pH 8.8,  

  0.2 ml 10% APS,   15 µl TEMED. 

 Mix stacking gel at same time, but do not add TEMED. 

Pour gel from tube directly between plates (fill about 75%) and fill to top with water from 

squeeze bottle to exclude bubbles and O2 which inhibits polymerization (can also use 70% 

ethanol). 

Observe rest of mix in tube for gelling.  When set, 

Can now remove from frame and store in frig covered with Saran wrap, in sealed box to prevent 

evaporation. 

  

Addition of stacking gel and run.  

pour out the water, remove rest with paper towel, add TEMED to Stacking gel and pour in till 

full.  Insert the comb (use Kimwipe to divert splash at point of final insertion).  Wait until excess 

in tube is set before removing comb (~20 min). 

 

• Wash sides of the gels to remove any excess acrylamide. Place two gels in Miniprotean III 

apparatus, short plates inwards to create upper well.  Push both ends down as clamps are applied. 

Remove combs and fill wells with running buffer. Fill internal space with buffer, check for leaks.   

Add outer buffer, load samples and run. 

 

 Protein Samples; typically from 100 µl saturated culture 

~ 5.10
6
 cells, or about 20 µg total protein. 

 Mix protein samples with 50%  volume of 3X buffer .  Heat 2-3 min at 100 
o
C (10 min at 37 for 

membranes) 

Add β-ME to 2 to 5% just before use 

Load  with Hamilton syringe or gel loading 200 µl tips (SuperMkt # 287040).  

Run.  1- 2 hr at 100 volts (or ON 10 volts) till bands focused then 150 volts till dye and 20 kDa 

pre-stained marker near the bottom.     Should be about     mAmps.    
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Markers = Invitrogen Benchmak pre-stained (5 µl).  Visible transfer to membrane should occur. 

 

 

2. Semi-Dry Electroblotting to immobilon. BIO_RAD TRANS BLOT   

Western semi-dry electro-blot transfer  

10X Transfer Buffer: per liter   1X Transfer Buffer 

30g       Tris-base     100 ml 10X Transfer Buffer 

145.8g  Glycine     300 ml Methanol (30%) 

pH should be around 8.9, check at 1X.  Bring volume to 1L with dH2O 

 

Need three pieces of 3MM and one of immobilon per gel.  Size not larger than 8.5 X 6 cm 

(slightly >gel).  Use guillotine to cut. 

Cut off one corner of membrane, to correspond to nick at the top of Lane 1 (markers). 

With soft pencil, Label gel number at nick.  Mark as UP the side in contact with the gel during 

transfer. 

 

     Need small dish with ~15 ml transfer buffer and dish with MeOH. 

Soak two pieces of 3MM in transfer buffer, place on bottom electrode. 

Soak membrane in MeOH then transfer buffer.  Place membrane Up side Up on top of papers.  

Separate gel plates with razor blade and use it to remove stacking gel and any other unwanted 

sections. Cut off corner at top of lane 1 (markers), this marks the top of lane 1.   

Transfer to transfer buffer, wash 30 sec then place on membrane so that nicks correspond. 

Place third soaked paper sheet on top.  Roll gently in two directions with glass rod to remove 

bubbles. 

Run at constant current at 0.2 A for 4 minigels (0.15 if have only 1-2 gels, 0.3 if have 6) 1 

hour. 

 

Western Blot Procedure.  
 

Blocking.  Remove lid and upper plate; remove top paper sheet and gel.  Should see pre-stained 

markers transferred to membrane. Helps confirm orientation .  Move membrane to 5X10 plastic 

dish. 

Shake membranes in fresh 5% fat-free dried milk in 1X TTBS 1 hr 

 

DETECT Primary Antibody (overnight)  
A.  In closed plastic boxes (works more consistently) with primary AB ~1/5,000  (2 to 10 µl + 

40 ml 5% dry milk), overnight 4 C on oscillating table.  Add azide to 5 mM and add an extra 

washing step before the second wash to ensure complete azide removal.  Azide inhibits HRP 

detection, NOT AP detection.  Store the primary AB/5% DM mix at 4C for re-use. 

OR 

B.  Seal in bags with primary AB 1/4000  (1 µl + 4 ml 5% dry milk), overnight 4 C on tilt table.  

8X 20 cm Bags, cut in half, open all but one long side.  Insert membrane, seal two more sides.   

Sealer set at 2, about 1/2 sec per seal 

Add AB in 1 ml 5% dry milk slowly from base of bag on UP side, to leave as few bubbles as 

possible.  Remove any bubbles on UP side, seal 4
th

 side,   Place on rocker at 4C ON.    
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--------------------------------------------------------------------------------------------- 

Next day, Secondary Antibody:  HRP (peroxidase) Goat anti-mouse.    

1. Transfer the 5%DM/primary AB to storage tube, or pour from the plastic box. 

2.  WASH: Immerse membrane in 1X TTBS (15-20ml) place on rotating table, setting 6, for 

1 min then replace buffer, wash 5 min then replace and wash 10 min in 1X TTBS 

3. Shake in 15 ml 5% dry milk in 1X TTBA containing 2-4 µl HRP-labeled Goat-anti 

mouse (1/5000 final).  Rock 1-2 hr RT C. 

4. Wash 1 min in TTBS then 5 min then 10 min in 1X TTBS as in step 2 

 

Development fro HRP-labelled secondary. 

After wash, place membranes UP side (face in contact with gel during transfer) UP in flat-

bottomed dish.  

SuperSignal reagents Mix 0.5 ml of A and 0.5 ml of  B for each blot (do NOT cross-

contaminate bottles) 

Add 1 ml mix to each membrane blot , incubate 5‟ RT C. 

Remove blots, drain on Kimwipe, place UP FACE DOWN on cling film, wrap and place UP 

FACE UP in cassette. Fix with tape,  

Place two fluorescent tag labels between blots for localization of bands 

IN dark room, add film, close cassette. 

Develop after 10” to 30 „ 

 

Alternate Secondary Antibody: Goat anti-mouse-AP (alkaline phosphatase) conjugate.  

 Promega S372B AP conjugate. 100 µl at 1mg/ml.  Dilute 1/5,000 (2 µl/10ml) in 5% DM 

in PBST or TBST plus 4 mM azide (no interference). Can store at least 1 week at 4C. 

1. Wash off primary in TBST 1‟ 5‟ 10‟ 

2. Probe with 1/5,000 Goat anti-mouse-AP (10 ml) 2hr RT 

3. Pour off and store IIy, wash in TBST 1‟ 5‟ 10‟  

4. Wash in pH 9.5 buffer (10 ml 10 min) 

5. Develop in XP at RT, stop color development by washing with water.  Note relative 

times of band appearance.  Can wash briefly in MeOH BRIEFLY to remove 

background 

 

pH 9.5 Buffer (1X):  12 g  Tris base  

Per liter  0.8 g  Tris/HCl   NBT stock 2.5% in 100% DMF 

   5.8g  NaCl    BCIP stock  5% in 70% DMF 

   5 ml  1M MgCl2   Store Al foil-wrapped at -20C 

XP Reagent:  10 ml Buffer pH 9.5 + 20 µl NBT stock and 20 µl BCIP stock 

 

 

Washing glass beads. (0.5 mm-yeast cells). BioSpec Products, Inc.   (800) 617-3363 or (918) 

336-3363 

 

In most cases, cleaning new glass or ceramic bead media is unnecessary.  The only contaminate - 

carbon black - is so inert that its presence in your prep has no effect. Do not acid wash beads.  It 

is a waste of time. 
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Clean used beads by soaking over night in a solution of laboratory detergent.  Then rinse away 

all detergent with several changes of tap water and then with distilled water.  Dry the beads in an 

open stainless steel or glass tray at 40 to 70ºC.  If the dried beads do not pour freely (i.e., they are 

caked together), then they were not cleaned or rinsed well enough.  Repeat the cleaning protocol. 

 

If you are isolating nucleic acids from disrupted cells, beads can be soaked in a 1:10 dilution of 

ordinary household bleach (Clorox or equivalent) for 5 minutes.  This not only cleans and 

sterilizes the beads, but completely destroys contaminating nucleic acids.  See Biotechniques, 

Vol 12, 358-360 (1992). 

 

You can reuse beads about ten times before they wear down to too small a size.  

Autoclave only after cleaning. 

 

 

Ultracentrifuge runs for VLP isolation   
 

1. SW41 tubes, 11 ml capacity, can run at 35k.  Overnight, VLP‟s and membrane fragments 

will pellet through a 20% sucrose layer, separating them from soluble proteins. 

 

    To each tube add 5-6 ml of 20% sucrose in PBS (or other buffer) 

    Layer on 6-5 ml of the solubilized VLP‟s (eg, in buffer A1 +/- detergent, pH 10.7 carbonate 

+/- urea) 

    Run at 35k ON 4C 

 There will probably be a visible pellet of membrane.    

 Remove all of the sup except for the last 0.5-1 ml 

 Finally remove the last 0.5-1 ml  

 Disperse the pellet in PBS or pH 10.7 carbonate +/- urea , etc.  This should be the VLP fraction 

 

 

2. SW41 tubes or SW50.1 tubes, 5.5 ml capacity, can run both at 35k.  This provedure can b 

eused once the VLP‟s are separated from most of the soluble proteins, e.g by: 

 • Pelleting through 20% sucrose as above  Sample = dissolved pellet 

 • For HBsAg by binding to and elutinig from silica Sample = silica eluate 

 • For U65-fusions and for VP1-GFP and GFP-HBs by extensive washing of the 16 kg 

pellet from yeast cell breakage       Sample = pH 10.7 carbonate +/- urea extract of 

the washed 16kg pellet  

  Dissolve sucrose in the sample to make 60% final 

SW50.1 volumes        SW 41 volumes 

     To each tube add 0.5-1 ml of 80% sucrose in PBS (or other buffer) 1 ml 

     Layer on the sample in 60% sucrose (not more than 3 ml)  Up to 6 ml 

     Layer on 1-1.5 ml 50% sucrose       2-3 ml 

     Layer on 05-1 ml 10% sucrose      1 ml
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 Protein extracts from yeast for Western by Bead Breakage 
 

1. Stocks, storage of Yeast transformants;  

(eg, PrP YEp352 URA3 derivatives) grow in 5 ml Ura D/O ON to saturation. 

     Spin cells, remove sup, suspended cells in 5 ml YEPD, grown again 24 hrs, then store at 4 
o
C. 

 

 2.  Cultures:  fresh 3 ml ON cultures in UraD/O; inoc with 3 to 30 µl stocks. 

  Generation time in D/O is ~ 2 hr so 10 gen (2
10

 = 1024) = 20 hr, allowing 3µl in 3 ml to reach 

saturation. 

  Max A600 in D/O = 5 or about 5.10
7
 cells/ml.        Then 3 ml = 1.5x10

8 
cells = ~ 600µg total 

protein 

 

Grow cells to early stationary phase unless protein half lives are short or spheroplasts are 

wanted, 

in which case grow to late log, A600 = 1.5 to 2.5. 

      Harvest cells by 2X 4 sec full speed spin in 1.5 ml in Epp tubes,  

      Wash cells with 0.5 ml buffer A, spin 4 sec 

      Suspend in 200 µl buffer A1 (A + protease inhibitors). 

 

4.   BREAK:  Add  0.5 mm beads to just below meniscus (use standard scoop), cool in ice 5 

min. 

     Vortex 8 X 45 sec using multi-tube holder and newer mixer at max with 1 min cooling in wet 

ice between.  

 

5.   Isolation of LSS ; Open tubes, pierce bases with a hot needle, place in a labeled second set 

of tubes.          

     Spin  3 min ~3000g spin (min speed setting on microfuge).  

      Pellet = LSP = walls and unbroken cells + trapped membranes + any large aggregates  

 Sup = LSS. 

 

To analyze protein in the LSP for solubility in sarkosyl and sensitivity to protease K. 

    PrP’s in unbroken cells will be insoluble in 1% sarkosyl and completely resistant to protease 

K.  

   TM species trapped in ruptured cells will be soluble in 1% sarkosyl and sensitive to protease 

K + sark. 

   Aggregates of PrP
Res

 will be insoluble in 1% sarkosyl but may converted by protease K + 

sarkosyl to a highly resistant C-terminal fragment (residues ~111-231 = 13 kDa + any N-CHO).  

LSP, removal of walls and unbroken cells.  This may be necessary to allow identification of true 

aggregates. 

Suspend LSP in 0.2 ml buffer A1, spin 3 sec (or allow to settle 10 min) and recover the sup. 

Pellet residual LSP from sup by 60 sec spin and wash 2X in buffer A2 with 60 sec spin (to 

remove PMSF). 

Add sarkosyl to 1%, after 10 min RT 
o
C  

       a: remove 50% as control, add 2% by vol 100X PI‟s..  

       b: other 50%. Add protease K to 50 µg/ml, incubate 30 min RT or 37 
o
C, then add 2% by 

vol 100X PI‟s. 
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separate in airfuge as fro LSS below.  Run all 4 samples on gel  

 

6.   Airfuge to separate HSP and HSS. Transfer LSS (200 µl) to airfuge tube, spin 20 min 26-

28 psi 

        Pellet = HSP, membranes and ribosomes   Sup = HSS, cytosol 

 Pellet should be clearly visible as a translucent orangish button. 

 

7.   HSP pellet; add 30-50 µl 1% SDS in buffer A1, incubate 10‟ at 37 
o
C to dissolve. run gels 

later. 

 

SDS-PAGE adjust sample to represent about 0.1 ml of a saturated yeast culture (~1/30 of total). 

Eg, 5-15 µl HSP solution, etc, + buffer A1 to 15 µl and 15 µl 2X sample buffer. 

5 µl of the 200 µl LSS = membranes from ~ 10
8 

cells or ~ 15µg total protein  

Heat again 3‟ BWB (for membranes may be better to use 10‟ at 37
 o
C). Load 20-30 µl/well. 

 

 

 

Western blot Tests for integral transmembrane (TM) insertion. 

In TM form of PrP fusions should behave as integral membrane proteins.   

These should be in the LSS from broken cells and: 

•  In the HSP isolated by airfuge from the LSS. 

    Cytoplasmic and secreted proteins are in the HSS. 

•  Remain in the HSP in the presence of 0.1 M Na carbonate buffer (pH 11.5). 

 peripheral membrane proteins are solubilized 

•  Move to the HSS (dissolve) in the presence of non-ionic detergents such as 1% triton X100 or 

NP40 

    or 1% of the stronger zwitterionic detergent sarkosyl (or 1% triton + 0.1% sarkosyl). 

    Anything remaining in the HSP in 1% sarkosyl may be an aggregate (see LSP below). 

 Procedure 

1. Grow 3 ml of transformed cells in Ura D/O to early stationary phase, as usual. 

    Prepare LSS by bead breakage of 15 OD of cells (eg, 3 ml of cells at A600 = 5) in 200 µl 

buffer A1. 

    Split LSS into 3 X 60 µl in airfuge tubes. 

    a  ice (control). 

    b  + 7 µl 10% sarkosyl (or triton) mix gently,  ice 20 min,  

    c  + 7 µl 1 M Na2 CO3  mix gently,  ice 20 min. 

2. Spin all tubes in airfuge 10 min 28 psi. 

    Remove HSS, disperse HSP‟s in buffer A1 + 1% sarkosyl by pipetting 

3. Dissolve all 6 samples in equal vol SDS sample buffer, 10”, 37” or 3 min BWB.  

     Load 10%  SDS-PAGE.  Detect as usual, 6 lanes per transformant. 
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