

Worcester Polytechnic Institute

Whiskey2D
A 2D Game Creator
A Major Qualifying Project

Christopher Hanna, Daniel True
March 27th, 2015

Advisor: Professor Charles Rich

Table of Contents

CHAPTER 1 ­ INTRODUCTION ... 3
1.1 PROJECT GOALS .. 3
1.2 TARGET AUDIENCE ... 4
1.3 RELATED WORK .. 5

1.3.1 Related Work Summaries ... 5
1.3.2 Related Work Comparisons .. 9
1.3.3 MonoGame ... 10

1.4 ROADMAP .. 11

CHAPTER 2 ­ FUNCTIONALITY OF WHISKEY2D .. 12
2.1 CORE CONCEPTS .. 12

2.1.1 Levels .. 13
2.1.2 GameObjects .. 14
2.1.3 Scripts ... 16
2.1.4 Designer API ... 18
2.1.5 Media Support .. 19
2.1.6 Custom Rendering .. 20

2.2 EDITOR CONCEPTS ... 22
2.2.1 Using the Editor .. 24

2.3 INPUT, LOGGING, AND REPLAY ... 26

CHAPTER 3 ­ ARCHITECTURE OF WHISKEY2D ... 29
3.1 CORE ... 29

3.1.1 Game Manager .. 30
3.1.2 Game Services .. 31

3.2 EDITOR .. 35
3.2.1 File System .. 36
3.2.2 Descriptors .. 40
3.2.3 User Interface ... 45

3.3 GAME DATA LIFE CYCLE .. 50
3.3.1 Editor Serializations .. 51
3.3.2 GameData.dll ... 51

3.3.3 LAUNCHER.EXE & TARGET PLATFORMS ... 52

CHAPTER 4 ­ EXAMPLE GAME: MECHANICAL PLUNGE ... 54

CHAPTER 5 ­ DEVELOPING WHISKEY2D .. 61
5.1 DEVELOPMENT HISTORY ... 61

5.1.1 Timeline and Narrative ... 62
5.2 DEVELOPMENT ENVIRONMENTS AND TOOLS ... 71
5.3 DEVELOPMENT STYLE ... 73

5.3.1 Meeting Flow .. 74
5.4 USABILITY TESTING .. 75

5.4.1 Usability Testing Phase 1 .. 75
5.4.2 Usability Testing Phase 2 .. 76

1

5.4.3 Usability Testing Phase 3 .. 78
5.4.4 Usability Testing Results ... 80

5.5 SHOWCASE GAME DESIGN PROCESS .. 81

CHAPTER 6 ­ CONCLUSION ... 83
6.1 CHALLENGES ... 83

6.1.1 Technical ... 84
6.1.2 Usability Testing ... 87

6.2 DESIGN CHOICE LIMITATIONS ... 88
6.3 FUTURE DEVELOPMENT .. 89

6.3.1 Engine Development ... 90
6.3.2 Editor Development .. 90

WORKS CITED .. 92

APPENDIX A: WHISKEY2D DESIGNERS’ GUIDE .. 93
GETTING WHISKEY2D SETUP ... 93
DESIGNER API DOCUMENTATION ... 93
SHARED OBJECTS LISTING .. 93

APPENDIX B: USABILITY TESTING INSTRUCTIONS... 94
WHISKEY2D USER TEST 1 ... 94
WHISKEY2D USER TEST 2 ... 96
WHISKEY2D USER TEST 3 ... 99

APPENDIX C: DEVELOPMENT VIDEOS ... 102

2

Chapter 1 - Introduction
In the United States, the video game industry saw a 13.1 billion dollar revenue for

2014 (Statista 2015). The industry has been growing since the early 1980’s and shows no

sign of stopping. Thousands of games are released every year, mostly by independent

developers. In order to release this many games, many of them share a common set of

tools with one another, called a game engine. This engine facilitates rapid development for

each game, often providing rendering, physics systems, scripting, and more. Generally

speaking, engines are also bundled with customized Integrated Development Environments

(IDEs), or game editors that can create games built for the engine. These game creation

editors are invaluable for developers and supporting the large revenues seen by the

industry. For this Major Qualifying Project (MQP), we made a 2D game engine and editor

called Whiskey2D. The engine and editor, together, allow users to create and play their own

2D games from start to finish.

1.1 Project Goals

We had two main goals for the development of Whiskey2D. Firstly, we wanted our

finished product to be fully featured, usable, and accessible to our target audience of

hobbyist C# developers. Secondly, we wanted our development process to be well

organized, efficient, and highly productive. Our mission was to act like professional

developers, building robust software.

We wanted to build an engine and have it support the game creation process from

beginning to end. That meant that we needed a core game engine, as well as a game

editor. We also needed to create documentation for both components. We wanted our

software to be complete and only have tested and usable features.

3

In order to create the engine we wanted to build, we needed to ensure a good

software engineering process. From the beginning, we set out to do rapid development,

highly iterative, and well organized software design.

Despite trying to bring a rich and fully featured game engine to life, we were not

trying to create something completely new. There are already several excellent 2D game

creation engines available for free. We were trying to build something comparable to the

tools of the trade, build it well, and learn a lot along the way.

1.2 Target Audience

We wanted to keep Whiskey2D open and usable for as many people in our target

audience as possible. We kept the target audience in mind by conducting several usability

tests throughout Whiskey2D’s development.

Throughout this report, the term designer will be used for the person who will be

using Whiskey2D to build their own games. Designers will be expected to have a basic

knowledge of object-oriented design so that they can understand Whiskey2D’s constructs

and services. Designers will also need to be able to write code in basic C#. The designers

will not need extensive knowledge about how the editor works internally. They will only need

a high-level knowledge about what services Whiskey2D exposes publically. We expect that

the designers will be beginner to intermediate level game programmers. Whiskey2D will be

built so that is easy to use for newcomers to game programming. However, it will also be

just advanced enough to entertain more veteran game programmers. We expect that most

of the designers will be hobbyist game programmers.

To avoid confusion, the designer is the person who creates games using

Whiskey2D, while the player is the person who is actually playing the final game. Obviously,

4

the designer and the player may be the same person, but the terms will not be used

interchangeably. The player does not need to know anything about programming, C#, or

Whiskey2D at all.

1.3 Related Work

Before we began designing our system, we looked at a few examples of other game

engines and toolkits. The three main examples we looked at were GameMaker, Unity, and

Construct 2. Each provides its users with the ability to visually build a game, and deploy it to

multiple target platforms such as Windows, Mac, or Linux.

1.3.1 Related Work Summaries

GameMaker

GameMaker1 is made by Yoyo Games and is a 2D game editor and engine targeted

at hobbyist game creators. The software allows users to load in or build sprites that can be

applied to objects. The objects can be placed inside rooms, which is a GameMaker

abstraction for a level. Each object can be scripted with a proprietary language called Game

Maker Language (GML). The system is event driven, with some standard events included

out of the box, such as initialization, updating, input, and destruction events. Each game

has global properties, such as gravity, that can be accessed from any GML script.

GameMaker has built-in editors for sprite creation, script editing, and map editing, which

helps unify the game creation process. GameMaker can output games to several platforms.

A screenshot of GameMaker running can be seen in Figure 1.1 below.

1 More information on GameMaker can be found at https://www.yoyogames.com/studio

5

https://www.yoyogames.com/studio

FIGURE 1.1. A screenshot of GameMaker running. (i.solidfiles.net)

Unity

Unity1 is a 3D and 2D game development tool set. Unity is used by independent

developers, as well as professionals. After art assets have been created, Unity can support

the entire development process of a video game. Unity is itself the game engine that

projects will run on. The engine can be run on a variety of platforms, which makes Unity an

excellent tool for cross platform development. Games made with Unity consist of several

1 More information on Unity can be found at http://unity3d.com/

6

http://unity3d.com/

objects, all controlled by user definable scripts. The scripts can be written in three standard

languages: C#, JavaScript, or Boo. By giving users the power of a fully featured

programming language like C#, developers can do almost anything with their Unity objects.

Unity is not event driven out of the box, but users have created modifications that allow

Unity to use an event driven game design approach. Unity’s design is very modular and

supports a powerful plugin system. Unity has a dragndrop interface that allows users to

create and manipulate objects easily. A screenshot of Unity running can be seen in Figure

1.2 below.

FIGURE 1.2. A screenshot of Unity running. (video.ch9.ms)

7

Construct 2

Construct 21 is a 2D game editor targeted at hobbyist game creators. It is primarily a

dragndrop editor, but also gives users a special programming language to control their

game behavior with. The programming language is visually based, and therefore is not as

general as standard languages such as C# or JavaScript. However, for advanced users,

JavaScript can be injected into a Construct 2 project to control game behavior. Construct 2

games are event driven. Developers can specify event conditions and responses that

control the action of the game. Construct 2 is built to create games that run inside HTML5’s

canvas technology. In this regard, Construct 2 games can be run anywhere that supports

the canvas tag in HTML5. Construct 2 can be seen in Figure 1.3 below.

FIGURE 1.3. A screenshot of Construct 2 running (static2.scierra.net).

1 For information on Construct 2 can be found at https://www.scirra.com/construct2

8

https://www.scirra.com/construct2

1.3.2 Related Work Comparisons

After looking closely at GameMaker, Unity, and Construct 2, we were able to

compare and contrast them. We gathered a set of features we wanted to replicate from

each, and a set we wanted to avoid. The main metrics we used to measure each editor

were:

● The way game mechanics are controlled.

● The level of visual editing.

● The range of platforms outputted games can target.

In terms of controlling game mechanics, Construct 2 is the odd one out, using visual

programming as its primary way to manipulate game behavior. Unity and GameMaker both

use a more traditional scripting approach. Between those two, Unity allows scripts to be

written in standard languages, while GameMaker forces uses to use a proprietary language.

We think that using a language that people are already potentially knowledgeable about is a

good design choice. We decided to follow Unity’s approach, and use C# for our scripts.

There is already a plethora of documentation for C#, allowing us to focus our documentation

efforts on the rest of our software.

All three editors had a very high level of visual editing. Dragndrop editing is present

in all three editors, and is something that we wanted to include in Whiskey2D. The ability to

configure levels visually is very appealing, and makes it much easier for the game creators

to create their content.

Finally, all of the editors could create games for a variety of target platforms.

Construct 2 achieved this by compiling games to HTML5 and JavaScript so that games

9

could run in web browsers. The other two editors support game compilation to several

different platforms. We wanted to support multiple target platforms as well.

1.3.3 MonoGame

In order to satisfy our goals, we decided to start with an existing library called

MonoGame1. MonoGame is an open source implementation of Microsoft’s XNA2 library.

XNA was a service that provides game programmers with a basic game loop, intermediate

rendering capabilities, basic keyboard and mouse input, asset management, and other

features fundamental to every game. XNA was also Microsoft’s system to allow

independent developers to push games to Xbox Live. XNA was deprecated on April 1st,

2014, roughly around the time Microsoft released the Xbox One.

While Microsoft hasn’t publicly released anything to replace XNA, the open source

community has delivered MonoGame, which provides most of XNA’s features under the

same interfaces. MonoGame is written with openGL and Mono instead of DirectX and .NET

like XNA. By using openGL and Mono, MonoGame has the ability to deploy games to a

variety of target platforms, such as Windows, Mac, or Linux. MonoGame has become an

independent game developer standard, and has been used to create games like Fez3,

Bastion4, and more.

We decided to use MonoGame because of the features it supports, as well as its

ability to be cross platform. By taking advantage of MonoGame’s feature set, we were able

to focus on the engine architecture and editor rather than lower level requirements, such as

1 More information for MonoGame can be found at http://www.monogame.net/
2 More information on XNA can be found at https://msdn.microsoft.com/en-us/library/bb200104.aspx
3 More information on Fez can be found at http://fezgame.com/
4 More information on Bastion can be found at https://www.supergiantgames.com/games/bastion/

10

http://www.monogame.net/
https://msdn.microsoft.com/en-us/library/bb200104.aspx
http://fezgame.com/
https://www.supergiantgames.com/games/bastion/

an openGL rendering and window management. Using MonoGame allowed us to focus on

the implementing various features we found desirable in Unity, GameMaker, and

Construct2. MonoGame was our starting point for Whiskey2D, and is the backbone of our

system.

1.4 Roadmap

We built Whiskey2D’s engine and the editor with our goals in mind and with

inspiration from existing game editors. We implemented a fundamental set of game

features, and editor features that will be discussed in Chapter 2. We’ll explain how the

engine and editor work, as well as the complete life cycle of a game made with Whiskey2D

in Chapter 3. In Chapter 4, we’ll go over a showcase game made with Whiskey2D called,

Mechanical Plunge, and how it demonstrates the engine’s features. In Chapter 5, we will

explain how we worked as a team throughout the course of our MQP and the software

development process we used. Finally, Chapter 6 discusses the challenges we faced in

developing Whiskey2D, the lessons we learned, and how we were able to meet our project

goals.

11

Chapter 2 - Functionality of Whiskey2D
Whiskey2D is an engine for 2D games. Every game built with Whiskey2D will consist

of a few critical components, such as GameObjects and Scripts. In this Chapter, we will

discuss the core pieces of a Whiskey2D game, and how designers can utilize Whiskey2D’s

engine. We will also detail the basics of the Whiskey2D user interface, as well as how it is

used. Finally, we will explain how Whiskey2D supports a robust input feature that enables a

full log/replay system. The next Chapter will discuss the technical concepts behind the

features discussed in this Chapter. This Chapter is for the designer, while the next Chapter

discusses Whiskey2D’s underlying structure.

2.1 Core Concepts

Levels, GameObjects, Scripts, and Media are the core concepts to every Whiskey2D

game. Whiskey2D has a simple game loop system that issues update messages to the

current Level. A Level is the structure that includes a set of GameObjects. Every

GameObject has some collection of Scripts. When a Level is active, all of its GameObjects

get an update message. When a GameObject updates, it passes an update message to all

of its Scripts. Fundamentally, GameObjects represent objects and their data, while Scripts

represent object’s behavior. Scripts can be added or removed at runtime, allowing for robust

GameObject behavior patterns. Figure 2.1 below shows a breakdown of a Whiskey2D

game into its basic parts.

12

FIGURE 2.1. Basic breakdown of a typical Whiskey2D Game.

Designers make games by configuring GameObjects’ properties, writing code for

Scripts, and placing instances of GameObjects into Levels. Levels, GameObjects, and

Scripts will be discussed in detail in the following subSections.

2.1.1 Levels

All Whiskey2D games have a set of Levels. Each Level contains details about the

world, such as GameObjects, a Camera, and visual information for the rendering process.

One Level may be loaded at a time. When a Level is loaded, its update() function is called

from the Whiskey2D engine. The update() function updates every GameObject, as well as

the Level’s Camera. The Camera can move around the world and zoom in or out, showing

different parts of the Level to the User. A Level also has a background color and shader

hints for Whiskey2D’s rendering process. The game will always start at a given Level, and

the designer can load different Levels at runtime.

13

2.1.2 GameObjects

A GameObject is a functionallyabstract class, where designers will implement

subclasses for use in their game. For instance, a designer could create a Person class or a

Bike class which are both subclasses of GameObject. These GameObject instances are the

basic entities used to represent objects in a Whiskey2D game. The figure below (Figure 2.2)

visualizes these possible GameObjects and how they would look in the Whiskey2D editor.

FIGURE 2.2. Instances of different GameObject subclasses (Person and Bike).

GameObjects contain properties that hold relevant information about the state of

each object. By default, every GameObject comes with basic properties needed for the

game engine, and include Name, Position, Bounds, Sprite, Light, Layer, Shadows, and

Active.

As designers create their own types of GameObjects, they have the ability to add

their own properties to each of their new GameObject types. For example, the designer that

created the Person type might want to add a property Age, or FavoriteFood. Age could be

14

treated as an integer while FavoriteFood could be a String, and now whenever a Person

object is created, it will contain an Age and FavoriteFood property that can be accessed and

changed as needed. Figure 2.2 below is a class diagram showing this connection.

FIGURE 2.3. A class diagram for a Bike and Person.

As stated earlier, these GameObjects are what make up a Level, and their properties

are updated on every one of the game’s update ticks. The individual GameObjects contain

a set of Scripts, which are the entities that actually update the object’s property values. It is

the interaction between GameObjects and their Scripts that make the game play and

change through the passing of time.

Shared Objects

Whiskey2D comes with a few GameObject types that are built into the engine, and

are available for use in every project. This includes CameraMaster, an object used to

control the camera, CamZone, a camera zone object, SimpleLight, a light object, and

15

others. They are built into Whiskey2D’s engine and therefore cannot be edited. A complete

listing of shared objects can be found in the designers’ guide in Appendix A.

2.1.3 Scripts

A Script is an abstract class that allows designers to control GameObjects.

Designers can implement subclasses of Script and attach them to their GameObjects.

Every Script must have an onStart(), onUpdate(), and onClose() method. The onStart()

method is called when the Script is first attached to a GameObject. onUpdate() is called

every time the Script’s GameObject is updated by the Level. Finally, onClose() is executed

when the GameObject is closed, or terminated from the Level. Every Script may also be

active or inactive. If the Script is inactive, then it will not receive any calls to onStart(),

onUpdate(), or onEnd(). Since designers can write whatever code they want in the abstract

functions, they can activate or deactivate Scripts at any time.

The abstract Script class has a reference to the GameObject that it belongs to. The

GameObject is exposed to the designer’s subclass, allowing them to access and control

properties of the GameObject. The Script requires that the subclass be coded for a specific

type of GameObject. By ensuring that each type of Script only operates on a single type of

GameObject, the correct properties and type information of the GameObject can be given to

the Script at compile time. Below is a class diagram (Figure 2.4) for Script and our example

implementations.

16

FIGURE 2.4. A class diagram for Script, Ride and Talk.

Following the example described in the previous Section, a designer might write a

Ride script for the GameObject, Bike, and a Talk script for the GameObject, Person. The

Talk Script would have the required three methods, onStart(), onUpdate(), and onClose(),

as well as a class property, Gob, that was of GameObject type, Person. The onStart()

function could contain code that initializes the Script, and the onUpdate() method could

have code to make the person say their Age, or FavoriteFood. One possible implementation

of this behavior can be seen in the code sample (Figure 2.5) below.

17

public class Talk : Script<Person> {

bool hasSpoken; //local variable

public void onStart(){

hasSpoken = false; //initialize variables
}

public void onUpdate(){

if (!hasSpoken) {
//only speak if script hasn't spoken yet
//GameManager.Log will be discussed in Chapter 3.
GameManager.Log.debug("I am " + Gob.Age + " years old.");
hasSpoken = true;

}
}

public void onClose(){

//do nothing. Required by Script class.
}

}

FIGURE 2.5. A code snippet showing the basic structure of a script.

Shared Scripts

Like Shared Objects, Whiskey2D has builtin Scripts that are available to every

Whiskey2D project, and made to be used with some of the Shared Object types. These

scripts give behavior to the Shared Objects, and help facilitate rapid development of games

for the designer. However, not every Shared Object has a builtin Shared Script. These

Shared Scripts include the CameraMasterControl , used to control the camera,

SpriteEffectControl, used to control different SpriteEffect objects, and TriggerActivate , which

controls the behavior of a TriggerZone object.

2.1.4 Designer API

Whiskey2D’s engine provides a range of services to designers. When a designer is

writing a Script, they can access Whiskey2D’s services by making calls to the

GameManager. The GameManager is a centralized location where the designer can obtain

18

information about GameObjects, User Input, Levels, Rendering, Resources, and Logging. A

GameManager Application Program Interface (API) guide for writing Scripts can be found

through Appendix A.

The GameManager is also the component that issues update calls to Levels, and

subsequently, all GameObjects and Scripts. The GameManager is ultimately responsible for

everything that happens in a Whiskey2D game. Chapter 3 will go into further detail on the

GameManager and its properties.

2.1.5 Media Support

Whiskey2D supports two main types of media, sounds and images. All media must

be stored in the game’s media directory. Any media that is in this directory becomes

accessible during game time, and the designer can use it to bring their game to life.

Sound

Sound is a critical component of every game. Currently, Whiskey2D supports many

flavors of .wav audio. Once a sound file is placed in the media directory, it can be loaded by

creating a new Sound object with the .wav’s file path. Sound objects must be controlled

through a Script, or the shared object, SoundZone. Sounds can be played, paused,

stopped, or looped. Scripts may adjust a Sound’s pitch, volume, and pan, allowing

designers to create complex soundscapes in game. To play a sound over itself, like a

machine gun’s echo playing over previous gun shots, a Sound object can duplicate itself to

play the sound again. The details of the Sound class can be found in Appendix A.

19

Images

Whiskey2D allows basic geometry to be created dynamically, so designers can

create entire games without ever having to import an Image. However, having Images helps

bring games to higher level of realism, and are incredibly important. Images are loaded as

Sprites into Whiskey2D. A Sprite contains information about the image, as well as how the

designer has specified the image to display in game. The Sprite can be scaled, colored, and

rotated. When the Sprite is scaled, it can stretch the image, or it can be set to tile the image.

In addition, if a designer uses a sprite sheet as the image for a Sprite, then the Sprite can

be told to display only certain areas of the sprite sheet in rapid succession, thus achieving

2D animation. By default, every Sprite is set to display the entire image, by assuming that

the image is split into a 1x1 grid. However, when a sprite sheet is used, the designer can

change the Rows and Columns properties of the Sprite to specify the image grid. The Sprite

can still be scaled, and rotated correctly even when the grid is not 1x1. More details on the

precise commands for Sprite can be found in Appendix A.

2.1.6 Custom Rendering

Whiskey2D supports a wide variety of ways to customize the rendering process.

There are options to change the global level effects, the lighting and shadowing effects, and

even ways to specify custom shaders for individual rendering layers.

All GameObjects have a Layer that they are drawn on. The Layer has a blending

option, and two shader options, ShaderMode, and PostShaderMode. The Layer view can

be seen in Figure 2.6. The blending option will determine how GameObject’s Sprites blend

over each other. By giving the Layer a ShaderMode, it will apply the supplied shader to

every GameObject as it draws. The PostShaderMode will apply a shader to the entire

20

Layer, after all GameObjects have been drawn. All of these settings can be adjusted from

the Layer button, located on the Level’s toolbar. New shaders can be created inside the

media directory.

FIGURE 2.6. The Layer view.

GameObjects also have lighting and shadowing settings that can be adjusted in their

properties. Every GameObject can emit light, and a can cast shadows. There are several

options for customizing the behavior of shadows that can be seen in the Figure 2.7 below.

FIGURE 2.7. Various shadowing configurations. In order from left to right, no shadow, shadow and light inclusion,
shadow and light exclusion, partial shadow and light inclusion.

Additionally, the entire Level has customizable global effect settings. The designer

can control the level of bloom, saturation, and more from the level properties. Various

setting configurations can be seen in Figure 2.8 below.

21

FIGURE 2.8. Various bloom configurations. In order from left to right, no bloom, desaturated no bloom, saturated
bloom

2.2 Editor Concepts

The Whiskey2D editor takes its inspiration from other popular tools and IDEs like

Eclipse or Visual Studio. Like Visual Studio, only one project (a solution in Visual Studio)

may be loaded at a time. There are several views in the editor, each exposing different

aspects of the Whiskey2D game in development. A sample of the Whiskey2D editor can be

seen below, in Figure 2.9.

FIGURE 2.9. An instance of a Player, a Bike, and a Ground object

22

The Library View, on the left, shows all of the files associated with the game. It

shows the project directory’s main folders as Types, Scripts, Levels, Media, and common

elements of every Whiskey2D game. By selecting a file, designers can open a new tab in

the center view, or the Documents View in the center, as well as setting the Property View

on the right.

The Document and Property views are responsible for showing the details of the

selected file. In the screenshot above, a Level file has been selected. The Document View

is showing the contents of the Level. The designer has placed a few GameObjects, and

selected the Person instance. The Property View is showing the details of the selected

instance, the Person.

In the screenshot below, Figure 2.10, the designer has created and selected a Script

from the Library called BikeScript. The Document View has added a second tab, and now

shows the Script’s code, and the Property View shows the details of the Script. Notice that

the Script’s code contains errors. The errors are reported from the Output View on the

bottom of the screen.

Every tab in the Document View, as well as the Property View has a toolbar of

commands at the top. The commands in the toolbar are sensitive to what kind of information

is being shown. For example, when a Script tab is being shown, the only command

available is save, but when a Level tab is shown, commands related to the Level become

available. The top of the screen also has a command bar, with Compile and Play as the

only commands. These commands are accessible no matter what is being shown

elsewhere. They can be used to test the game. Lastly, the menu strip at the top can be

used to create new projects, open previous projects, and create new files.

23

FIGURE 2.10. Errors appear in the bottom of the UI.

As mentioned, the Whiskey2D editor is similar to other editors, such as Eclipse or

Visual Studio. Whiskey2D designers should be familiar with the concept of a project library

and having several tabs open at once. Whiskey2D’s UI is simple and straightforward, yet

powerful and robust.

2.2.1 Using the Editor

There are a many steps that must be taken to create a game in Whiskey2D. When

starting a new project, the designer starts with a blank slate. The only things that are given

are shared objects that can be used later in the designer’s levels.

24

The first thing the designer must do in starting a new project is to create their first

Level. A Level will have a designerentered name, as well as a background color and a

camera position. The level will act as a container for a group of objects that a game will

contain. Conceptually, Levels will be loaded at a certain point in response to some state

change in a game. A Player might do something while playing a game which prompts a

change in what objects are present, the current location of the game, its music, the

background, and so on.

After the designer creates her first Level, she can now populate her Level with

GameObjects. These objects make up everything that a level has in it, such as the main

character, any collidable objects, and any entities in the game that can interact with the

other objects. By default, the designer can instantiate any of the shared objects, but a

designer will most likely will want to create her own type of objects, too. To create a

GameObject type, the designer must provide a type name. The type will come with all the

default properties that all GameObjects contain, but the designer can then add any other

relevant properties that can be useful in the game. The designer must also decide what the

object will look like ingame. This is found as a property of the object, called Sprite.

Once the new GameObject types have been created, the designer can drag in

instances of these objects into the level. These objects can be placed into the level at the

position where the designer initially wants them to exist. These objects can be set to active

or not active depending on whether the designer wants them to exist as soon as the level is

loaded or whether they want the object to spawn in response to another action.

Now that the level has GameObjects populating the game, the GameObjects need

scripts to define their behavior. A designer will create and implement scripts for a

typebytype basis, meaning each script is written for a specific type of GameObject, and

25

only will work for an object of that type. A script can be used, for example, to move a

playable character in the game in response to a user’s input. Once the Scripts are

implemented, the designer can add these scripts to individual GameObject instances of the

correct type.

With the level now containing game objects and the game objects now containing

their scripts, the level can be played by a user or tested by the designer. Once the scripts

are refined to work as they should, and the game objects are fleshed out, the designer can

go forth and make another level. These levels can be loaded by scripts that game objects

contain. Before another level is loaded, the current level must be unloaded. Once the

project contains more than one level, the designer must select what the starting level must

be for the game. Once the starting level is selected by the designer, whenever the game is

launched, the selected level will be run first. Sequential levels will be launched through

scripts, in response to some state being achieved.

2.3 Input, Logging, and Replay

A very important element in Whiskey2D is its builtin log and replay service. Every

Whiskey2D game generates a log file that can be used to replay a gameplay session.

Replays can be used to send bug reports to the designer, to share memorable moments of

gameplay, or could be evolved slightly to support live debugging of a game. The details of

how Replay is supported architecturally will be discussed in the next chapter. However, the

rest of this Section serves as a brief featureoverview of log and replay.

Players of Whiskey2D games may enter input through a keyboard or mouse.

Whiskey2D retrieves the Input from the hardware, and makes it available to designers’

Scripts. From Scripts, designers can handle various input actions. Designers can also send

26

messages to Whiskey2D’s logging service, which are stored in a log file next the game’s

executable. The designer’s messages can also be seen ingame as well. Logging is an

invaluable service for designers that allow them to debug code.

The log file contains all of the designer’s log messages, as well as a complete set of

input messages. Whiskey2D internally sends log messages detailing the Input being

received from the keyboard and mouse. By storing all of the input in the log file, the log file

can be used as a replacement keyboard and mouse. To be clear, the log file that contains

designer messages is the same file that contains all input messages. As Figure 2.11 shows,

Whiskey2D’s input source may be either attached hardware, or it may be a log file

containing all of the relevant input information.

FIGURE 2.11. A process diagram showing that input can come from either physical hardware or a log file

By loading a log file as input to Whiskey2D, Whiskey2D will effectively replay a game

exactly how it was originally played. Since the engine is deterministic, the input is the only

thing driving the game in a unique direction. Essentially, the Input and Logging services are

27

built in such a way that entire Sections of gameplay can be exactly replicated at a later date,

just by loading the original log file. There are certainly limitations to this feature, such as

networking or file access. However, despite the limitations, the Replay feature gives

Whiskey2D games a powerful feature.

28

Chapter 3 - Architecture of Whiskey2D
Whiskey2D’s architecture comprises of three primary components, the Core, the

Editor, and the Launcher. As discussed in Chapter 2, the designer constructs a game in the

Editor, and then compiles it into a game that runs inside the Core. The third component for

running the game, called the Launcher, is used to launch a designer’s compiled game. The

three primary components can be seen in Figure 3.1. In this Chapter, we will discuss the

Core, the Editor, and the Launcher.

FIGURE 3.1. Whiskey2D’s three major components are shown.

3.1 Core

The Core is the code that runs a designer’s game. It is where all of the fundamental

classes exist that support the Editor and a designer’s game, such as Level, GameObject,

and Script. Everything that happens in a designer’s game is defined by their project code,

and the Core. The backbone of the Core is the GameManager. It managers all of the

services vital to running a designer’s game.

29

3.1.1 Game Manager

The GameManager’s primary responsibility is to run the Game Loop. The Game

Loop updates all of the Core’s critical services, and renders all GameObjects. The Game

Loop, seen in Figure 3.2, is akin to an organism’s heart, and is what sets the game’s

rhythm. The game’s data is only updated on each of the Game Loop’s iterations. In the first

step of the Game Loop, Input is retrieved from either the keyboard, or a log file. Secondly,

the Logging system records the input. After the input has been logged, the Game Loop

sends an update message to the Object Manager. This update message will update all of

the active Game Objects and Scripts. Finally, the Game Loop gives control to the Render

Manager, and the game is drawn to screen. Each of these processes will be discussed in

greater detail below.

FIGURE 3.2. A process diagram showing the game loop stages

In addition to running the Game Loop, the GameManager provides designers access

to all of the Core services, such as Input, Object management, Level data, and Logging, as

30

seen in Figure 3.3. The GameManager is a singleton, and has a set of static accessors that

retrieve the services.

Figure 3.3.: A breakdown diagram of the GameManager’s services

3.1.2 Game Services

Input and InputSource Service

The input service is provided by the InputManager and the InputSourceManager in

the Core. The InputManager processes the incoming input. The InputSourceManager

manages where the input is coming from. Whiskey2D is built so that different types of input

sources can be swapped out during gameplay, but functionally work the same. Because of

this, Whiskey2D can use either input from a mouse and keyboard or a log file. The data sent

from one input source looks the same as any other input source to Whiskey2D.

Logging and Replay Service

The LogManager provides Whiskey2D with a logging service that runs whenever the

game is run. The LogManager writes all the input coming from the current input source to a

log file. This log file is created in such a way that it can be used as an input source itself.

This means that after a player has played a portion of a level, the user can “restart” their

level and switch their input to the log file, which in turn makes the game play from the file.

The log file contains all of the input choices that the user made in the level previously, and

31

thus the game will play identical to how the human player did before. In order to support

replay of randomly generated values, Whiskey2D uses a custom Random service. The

Random service logs its original seed in the log file so that the same set of random numbers

can be produced on each replay.

The LogManager can also write other types of messages to the log file. These

messages, called Debug messages can be used by a designer in their Script files to debug

any problems they are having, or to check a variable’s values at specific times or after a

certain action is made.

Console Service

The designer can access a variety of ingame debug features of Whiskey2D by

pressing ‘~’ and opening the development console. Opening the console will pause the

game, and allow the designer to run several commands. The current command set is:

● help displays all available commands to the Console

● exit closes the game

● replay initiates a replay of the game

● reset restarts the game

● get reads a value of a GameObject’s property.

● countobjects displays the number of existing GameObjects

Adding commands can be done easily, by creating a new subclass of

ConsoleCommand. Unfortunately, commands may only be added at the Core’s

compiletime, and are therefore not modifiable later.

32

Object and Levels Services

The Object service is provided through ObjectManagers. ObjectManagers contains

and manage lists of GameObjects. In order to instantiate a GameObject, an ObjectManager

must be given the GameObject’s constructor. The GameManager has an ObjectManager

called Level, which is the default ObjectManager for GameObjects.

The ObjectManager groups the GameObjects into four lists: newlyAdded, active,

inactive, and dead. When a GameObject is added to the ObjectManager, it is put into the

newlyAdded list. Later, the GameObject will be moved to the active or inactive lists. Finally,

a GameObject will be placed in the dead group when the GameObject is closed.

When the ObjectManager updates, it follows three basic steps. First, it moves all

GameObjects in newlyAdded to the active or inactive lists depending on if the GameObject

should be available at the start of the Level. Next, the ObjectManager issues update

messages to every GameObject in the active list. Each GameObject in this list may create

or close other GameObjects. Doing so does not immediately affect the ObjectManager’s

active list. Finally, the ObjectManager destroys every GameObject in the dead list and

clears it. Using the different lists of GameObjects allows the GameObjects to create and

remove GameObjects. The ObjectManager also provides several utility functions to access

GameObjects. Notably, the ObjectManager can fetch type specific GameObjects by name.

A Level is a subclass of ObjectManager. A Level contains all of the initial

GameObjects required to play. In addition to providing the ObjectManager features, a Level

also contains various visual information, such as global lighting properties, shader

properties, and Camera data.

33

Rendering

Whiskey2D’s rendering process is invoked every tick of the Game Loop, immediately

after all of the GameObjects have been updated. The rendering is controlled by the

RenderManager, and relies heavily on MonoGame. Figure 3.4 shows the main phases in

rendering.

FIGURE 3.4. A process diagram, showing the various rendering stages.

In the first phase of rendering, all GameObjects have the opportunity to draw their

image to an intermediate buffer, called the scene buffer. This process is actually quite

complex, as the GameObejcts are first rendered to a buffer for their layer. As the

GameObjects are rendered to the layer buffer, any shader effect on the Layer will be

applied to the GameObject. Once all the layer’s GameObjects have rendered to the buffer,

the layer’s post shader effect will be applied to the entire buffer. This process is repeated for

all layers. As each layer finishes rendering, their buffer is written to the scene buffer. Finally,

after all layers are rendered to the scene buffer, on a separate buffer, all GameObjects can

draw to a lightmap. The lightmap is taken, shadowed, and then multiplied onto the scene

buffer, creating a lit world. The lighting and shadowing system is customizable.

34

Before the shadowed lightmap and the scene buffer are combined, each are run

through a post processing shader pipeline that enables bloom, blur, and saturation. Again,

these settings are highly configurable.

The Heads-Up-Display (HUD) objects and the ingame console are rendered to

another offscreen buffer. While the lightmap and the scene buffer are both rendered using

the active Level Camera’s transform matrix, the HUD buffer is rendered directly, with no

transformations applied. Finally, the lit scene buffer and the HUD buffer are layered over

one another, and drawn to the screen. The two main steps of the lighting rendering process

can be seen in Figure 3.5 below.

FIGURE 3.5. The phases of rendering lights and shadows. Left: only lightmap is rendered, with the shadowmap mask
applied. Middle: the regular scene. Right: images are combined.

3.2 Editor

The Whiskey2D Editor is the system that allows designers to visually create games.

The Editor can be thought of as three primary subsystems working in tandem. First, there is

a file system that the Editor must maintain. Secondly, there is a large system in place to

model a complete Whiskey2D game, without ever compiling any code. This system uses

Descriptors, which will be discussed in Section 3.2.2. Lastly, there is the entire User

Interface (UI) that supports the previous two systems. Figure 3.6 shows these main

components of the Editor.

35

FIGURE 3.6. A breakdown of the Editor’s primary components.

3.2.1 File System

At any given moment, the Editor has two file directories to manage. Primarily, the

Editor must maintain its own working directory, where the editor executable is stored. The

other directory is the Editor’s currently loaded Project directory. Every Project that the

designer works on is stored in a unique directory. Both the Editor’s directory and the Project

directory are vital to the game creation process, and can be seen in Figure 3.7.

FIGURE 3.7. A breakdown of the two directories maintained by the Whiskey2D Editor

36

Project directory

The Project directory contains all of the information about a designer’s Project. When

a designer creates a new Project, Whiskey2D will generate the directory structure seen in

Figure 3.8.

In the top level of the Project directory, there are two files, .gamedata and

.whiskeyproj. The .gamedata file will be discussed in greater detail in Section 3.3.2, but

generally can be thought of as a file containing all of the game’s uncompiled data. The

.whiskeyproj file is the main file of the Project. When a designer wants to load an existing

Project, they are prompted to select a .whiskeyproj file. The file contains data about the

project, such as title, and graphical settings.

FIGURE 3.8. The project directory.

The art directory contains all of the media that a designer wants to include in their

game. The details of how the media is handled will be discussed in the next Section on the

Editor’s working directory.

The bin directory contains the code library that is generated when the designer

builds their game. The only file in the bin directory will be gameData.dll, and will be

discussed in greater detail in Section 3.3.2.

37

The build directory is where the generated game is placed. The build directory will

contain all of the files required to play a Whiskey2D game, including all of its dependencies.

The src directory contains all of the designer’s generated C# source code. When a

designer creates a new type of GameObject, or Script, a file modelling the behavior of the

newly created entity is made and saved in the src directory. The generated code may be

edited with any text editor program. Each generated file has a code segment blocked off,

with comments asking designers to not edit the marked section. Other than the marked off

section, a designer can make any changes to a generated file they’d like.

The states directory contains all of the designer’s Levels. Each Level is represented

by a .state file, and contains the data for every detail about a level.

Editor Directory

The Editor directory is where the Editor executable runs from. This directory is

generated by Visual Studio when Whiskey2D is built. The directory structure can be seen in

Figure 3.9 but is not as important as the previously discussed Project directory. The critical

pieces of the Editor’s directory are the subdirectories, compile-exe, compile-lib, and

compile-media.

38

FIGURE 3.9. The directory for the editor.

The compile-lib directory contains all of the necessary library files for a Whiskey2D

game to run. The majority of these libraries are the MonoGame libraries. The compile-exe

directory contains a copy of the Launcher.exe. The Launcher.exe will be discussed in

greater detail in Section 3.3.3. The contents of both compile-lib and compile-exe are copied

to the Project directory’s build directory when the designer builds a game.

The other important directory is compile-media. When a designer loads a media

asset into their project, the asset is copied to the Project’s art directory, as well as the

Editor’s compile-media directory. The reason for this is because the Editor’s working

39

directory is not the same as the Project directory. When the Editor needs to load an asset, it

must be given a path relative to its own working directory. This is a limitation from the

underlying MonoGame code. To overcome the limitation, the asset is simply copied to

compile-media, so that the Editor can load it relative from the working directory. When a

designer builds their game, only the media from the Project’s art is copied to the outputted

build directory. Nothing from compile-media is used in the build process.

3.2.2 Descriptors

Descriptors are the second primary subsystem of the Editor. A Descriptor is

anything that models something that has yet to be created. The important concept behind

Descriptors is that they can generate the data they are modeling. All of the designer’s

GameObjects and Scripts need to be modelled by Whiskey2D’s Editor. This modelling is

achieved through using specialized Descriptors for each main kind of data in a Whiskey2D

game.

Everything that the designer builds in the Editor is stored as a Descriptor. A

Descriptor can be instructed to generate the structure it models. Using Descriptors,

Whiskey2D can model type information about GameObjects and Scripts without ever having

to compile anything. Descriptors are beneficial because they allow Whiskey2D to avoid

dynamic type management. Dynamic type management means that type information can be

added and removed from compiled programs at runtime. Achieving dynamic type

management in C# is difficult, error prone, and not directly supported. The usage of

Descriptors allows Whiskey2D to prevent loading and editing type information in program

memory. We explored C#’s native dynamic type management, but we decided against

40

using it. This was the central cause of a large Whiskey2D refactor, and thus will be

discussed in greater detail in Section 6.1.1.

There are two primary types of Descriptors used in Whiskey2D’s Editor,

FileDescriptors, and InstanceDescriptors. FileDescriptors are used to model information that

will eventually be stored in a file. There are various subclasses of FileDescriptor, including

CodeDescriptors, and LevelDescriptors. InstanceDescriptors, on the other hand, model

instantiations of designers’ GameObjects. All of the Descriptor subclasses can be seen in

Figure 3.10.

FIGURE 3.10. All of the Descriptor subclasses

FileDescriptor and the FileManager

FileDescriptors are Descriptors that model anything that will be generated to a file.

The two main classes of FileDescriptors are CodeDescriptors and LevelDescriptors. Each

of them generates data in a file that will be used later by Whiskey2D. All FileDescriptors are

41

managed by a singleton class called the FileManager. The FileManager is responsible for

keeping the Project’s FileDescriptors in sync with the .gamedata file.

CodeDescriptor

One kind of FileDescriptor is a CodeDescriptor. The CodeDescriptor keeps track of

C# code information, such as class name, namespace and using statements. When the

CodeDescriptor is asked to generate its model, it generates C# source code. The Editor

uses two kinds of CodeDescriptors: TypeDescriptors and ScriptDescriptors.

A TypeDescriptor models a subclass of GameObject. As discussed in Chapter 2, a

GameObject has a set of properties that every subclass will inherit. A TypeDescriptor keeps

track of default values for these properties, as well as any additional properties of the

subclass. TypeDescriptors can generate valid source code for the type they are modelling.

Similarly to TypeDescriptor, ScriptDescriptor models a subclass of Script. Every

Script must implement onStart(), onUpdate(), and onClose(). A ScriptDescriptor stores the

code that will be run in each method, and can use it to generate valid Script source code.

The source code is then used to build the full Whiskey2D game and the Descriptor is

discarded.

Level Descriptor

The second primary type of FileDescriptor is the LevelDescriptor. The

LevelDescriptor doesn’t generate human readable source code like CodeDescriptors do,

but instead generate the actual GameLevel data that Whiskey2D will use to run a Level. A

LevelDescriptor contains all of the data needed for a Level, with the exception of the Level’s

GameObjects. The designer’s GameObjects will not be compiled until the build process,

42

making it impossible for the LevelDescriptor to use them. Instead, the LevelDescriptor

contains a set of InstanceDescriptors.

InstanceDescriptor

InstanceDescriptors are the last kind of major Descriptor used in Whiskey2D. An

InstanceDescriptor describes an instance of a GameObject. Similar to how an object should

be created with a defined type in C#, all InstanceDescriptors must be created with an

existing TypeDescriptor. The TypeDescriptor gives the InstanceDescriptor all of its

properties and initial configurations. For example, if the designer wanted to have a

GameObject called Bike in their game, then they would need a TypeDescriptor called

BikeType, and an InstanceDescriptor created with BikeType. Figure 3.11 below shows how

TypeDescriptors and InstanceDescriptors map to real GameObjects in a compiled game.

FIGURE 3.11. This process diagram shows ineditor objects being converted into their ingame representation.

43

Again, the advantage to using Descriptors is that they can undergo changes without

invoking any sort of compilation. In the example above, if the designer wanted to modify the

BikeType so that it had an integer property, WheelRadius, they can simply modify the

TypeDescriptor. The edits to the TypeDescriptor will immediately trigger updates in all

InstanceDescriptors using the modified TypeDescriptor. The result of adding a property to a

TypeDescriptor will be that all of the associated InstanceDescriptors will gain the property.

The clearest way to think of TypeDescriptors and InstanceDescriptors is to picture

TypeDescriptor as a C# class, and InstanceDescriptor as an instance of the C# class.

Figure 3.12 shows how all Descriptors map to their real types and objects in a compiled

game.

FIGURE 3.12. This process diagram shows ineditor Descriptors being converted into their ingame representation.

44

3.2.3 User Interface

The last primary subsystem that the Editor provides is the UserInterface (UI)

itself. The UI gives the designer a visual way to interact with and construct their

games. Whiskey2D’s Editor is written using WinForms. With the exception of a few

utility windows, all of the Editor’s frames and views were built manually i.e., not

using the Visual Studio WinForm builder.

Figure 3.13 shows the Editor UI. The UI is made up of three primary views, with a

few other views providing support. The Library View allows the designer to interact with their

game files. The Document View lets the designer edit the core content of a file, and the

Property View gives additional control. A critical example of a Document View is the

WhiskeyControl view. The WhiskeyControl view is what renders Levels as they are being

built.

FIGURE 3.13. A screenshot of Whiskey2D’s editor GUI, with the Library on the left, Properties on the right, the
Documents in the center, and Output on the bottom.

45

Library View

The first primary view of the Editor is the Library View. It displays all of the files

associated with a Project, including all GameObject Types, Scripts, Art assets, Levels, and

a Project properties file. As mentioned in Chapter 2, the designer can use this view to add,

remove, or open files. Figure 3.14 is a zoomed in image of the Library view.

FIGURE 3.14. The Library view, which shows all of the files used in the active project.

Documents and Properties

When a designer opens a file from the Library, the Document View and Property

View change to reflect the new file. Opening different kinds of files will result in different

types of views being opened for the designer. For example, Figure 3.15 shows the

Document view as it looks when it is associated with a GameObject. This can also display

46

Levels, art assets, Script code, and more. Figure 3.16 shows the Property view when

looking at the Player type.

FIGURE 3.15. The Document view, currently showing GameObject code for the Player type.

FIGURE 3.16. Property view currently showing the properties for the Player type.

47

Whiskey2D also has an Output view, which can be seen at the bottom of the editor

UI. Figure 3.17 below shows the Output view for the same project. Here, the designer forgot

a ‘}’, and the output is telling them that.

FIGURE 3.17. The Output view in Whiskey2D’s editor UI.

The process of generating the appropriate WinForm views for different kinds of files

is handled by a utility class called the DocumentContentFactory . The

DocumentContentFactory is responsible for creating both the Document View, and the

Property View for a given Descriptor. Recall from the previous Section on Descriptors, that

essentially every important piece of data in the Editor is a Descriptor. The

DocumentContentFactory takes a Descriptor, and uses it to output the appropriate views.

This system is robust, because it allows new types of Descriptor to be added without a lot of

work.

WhiskeyControl

One extremely important view is the WhiskeyControl. The WhiskeyControl is

responsible for rendering a designer’s Level while they are developing it. The

WhiskeyControl is also in charge of handling any input that directly controls

48

InstanceDescriptors in a Level. The WhiskeyControl uses several utilities from the Core so

that it can model an actual Whiskey game as closely as possible. The WhiskeyControl

manages a gamepreview in WinForms, made solely out of Descriptors, whereas

MonoGame manages an actual game built out of compiled GameObjects and Scripts.

Since Instance Descriptors are specialized Game Objects, they can be rendered and

updated by the Core. The WhiskeyControl simulates a lightweight version of the Core’s

Game Loop in order to manage all Instance Descriptors. Each Instance Descriptor can be

selected, scaled, rotated, moved, and deleted. All of these actions are performed through

customized Scripts. A specialized GameObject, called ObjectController exists in

WhiskeyControl. The ObjectController has several attached Scripts that facilitate the

Instance transformations.

All of the Input that the ObjectController’s Scripts need comes through the same

Input system described in the previous Section. However, a new Input source, called the

EditorInputSource, is used. It captures data from the WinForms architecture, and converts

into a format that Whiskey Scripts can interpret.

Finally, the WhiskeyControl overrides most of the Core’s default rendering

technique. The Core’s rendering, and the Editor’s rendering are quite similar, but differ in

key ways, so as to warrant specialized code in the Editor. For example, the Editor’s

rendering must take into account the grid system in the background of a Level, the selection

sprites surrounding the selected GameObject, as seen in Figure 3.18, and must allow users

to customize various rendering features in real time.

49

FIGURE 3.18. A close up of the WhiseyControl, displaying gridlines, and a selection box around the sprite

The other vital difference between the Core and the WhiskeyControl is the way they

actually draw to the screen. The Core uses MonoGame directly to draw content to a

window. The WhiskeyControl cannot generate a separate window for each Level, and so it

has to secure a Graphics pane to render to inside of WinForms.

3.3 Game Data Life Cycle

Every game made with Whiskey2D goes through the same data stages. While the

designer is developing the game, most of the data exists inside the .gamedata file in the

project directory. When the designer builds or tests the game, the data in the .gamedata file

is compiled into a usable DLL, which is then loaded and executed by an executable called

Launcher. Figure 3.19 below visualizes this creation.

50

FIGURE 3.19. A process diagram, showing that the .game file becomes the gameData.dll

3.3.1 Editor Serializations

The first stage of a game’s data life is the .gamedata file. The .gamedata file is a

binary formatted serialization of the Editor’s FileManager. Every FileDescriptor that is being

tracked by the FileManager will be serialized and stored inside the .gamedata file. When the

Editor loads a project, it deserializes the data from the .gamedata file, and uses it to

repopulate the FileManager.

3.3.2 GameData.dll

The next state of a game’s data cycle is the gameData DLL file. When the designer

builds the game, the contents of the .gamedata are deserialized, and the resulting

CodeDescriptors are used to generate source code. The Editor then compiles all of the

generated source code into a single DLL, this is the gameData DLL.

The DLL contains actual compiled type information that the CodeDescriptors were

modelling. The type information can be loaded into the Editor, and used to convert each

InstanceDescriptor in every Level into a usable GameObject. Each new GameObject will be

of the appropriate type, and will have all of the properties of the InstanceDescriptor. Each

Level’s InstanceDescriptors will undergo the conversion, and the resultant GameObjects will

51

be serialized into GameLevel files. In Figure 3.20, you can see Instance Descriptors that

exist in the editor being converted to GameObject instances in the game.

FIGURE 3.20. A process diagram showing that instance descriptors are mapped to GameObject instantiations

The last stage of the compilation process is to build the output game directory in full.

A subdirectory called build is created inside the project directory. All of the required library

files, including gameData.dll are put in the build directory, along with all the necessary

media files to run the game. The level files and a configuration file are all put in the build

directory as well. Finally, a copy of Launcher.exe is created, renamed to the game’s title,

and copied into the build directory.

3.3.3 Launcher.exe & Target Platforms

Every game made with Whiskey2D will use the Launcher.exe utility. The executable

is programmed to search for a local DLL called gameData.dll, and load its types into

memory. Then the program will search for a configuration file that tells it what level to load

from the local levels directory. Launcher.exe is nothing but a host executable for the Core to

52

take over and start the Game Loop with the designer’s data. The executable immediately

passes all control to the Core. Using a standard executable like Launcher.exe helps

strengthen the idea that a designer’s game is nothing more than media, levels, and a

gameData.dll. All of the backend code is always the same, including the actual .exe itself.

53

Chapter 4 - Example Game: Mechanical Plunge
In order to demonstrate the capabilities of Whiskey2D, we created a side-scrolling

platformer game called Mechanical Plunge (Figure 4.1). The game was created in the final

stages of Whiskey2D’s development to prove that the software could be used effectively to

create nontrivial games. We partnered with Pat Gallagher and Bryce Rabideau for artistic

and musical assistance.

FIGURE 4.1. The logo and title for Mechanical Plunge

Mechanical Plunge is a shooterplatformer game. The game follows a robot, who is

trying to escape an abandoned science laboratory, located deep underground. Throughout

the game, the robot must overcome jump puzzles, battle cave dwelling monsters, and solve

simple riddles to open new paths forward.

To play Mechanical Plunge, as seen in Figure 4.2, launch the MechanicalPlunge.exe

inside the samples/showcase2/build directory of the Git repository. The character moves

54

with the W, A, and D keys, and aims and shoots with the mouse. Pressing A or D will move

the character sideways, and pressing W, will cause the character to jump. Moving the

mouse will change the character’s aim, as denoted by a red reticle. Pressing the Left Mouse

button will make the character shoot his pistol. The objective of the game is escaping the

cave. To do this, you must open the two blast doors located at the end of the level.

FIGURE 4.2. A screenshot from Mechanical Plunge. The player can be seen shooting towards the right.

Our primary goal in creating Mechanical Plunge was for it to showcase the

capabilities of Whiskey2D. As such, we built the game to take advantage of as many

Whiskey2D features as possible. Notably, we made use of the built in collision, camera, and

rendering systems. We also used several of the shared GameObjects, provided with every

Whiskey2D project.

The character in Mechanical Plunge is a culmination of the collision system, and the

sprite sheet animation system. The character is controlled by a simple bounding box that is

55

moved around the screen by a PlayerMovement Script. The Script uses Whiskey2D’s

collision system to collide with the level geometry, and keep the player from passing

through objects. Some of the collision code can be seen in the code snippet (Figure 4.3).

Collisions<Wall> wallColls = Gob.currentCollisions<Wall>(); // get all collisions with walls
bool surface = Vector.Zero;
foreach (Collision<Wall> c in wallColls) { // for all wall collisions

Gob.Position -= c.MTV; //subtract the min translation vector

// update the velocity, according the normal of the collision
Gob.Velocity = c.Normal.Perpendicular * c.Normal.Perpendicular.dot(Gob.Velocity);
surface = c.Normal;

if (c.Normal.Y > .8f) { // is the player back on the ground?

jumping = false;
}

}

FIGURE 4.3. Code snippet showing how the collision system works

The bounding box is invisible, and the character’s visuals come from the sprite sheet

animation system. There is a second Script, PlayerAnimator, that updates the visual

appearance of the character. PlayerAnimator observes the current acceleration and velocity

values of the player to decide which animation segment to play. A snippet of the animation

Script (Figure 4.4) can be seen below. Due to the changes in perceived player width during

a standing pose, and a running pose, the PlayerMovement Script will change the size of the

bounding box used for collisions, depending upon the acceleration and velocity of the

player.

56

public override void onStart() {

// initialize runLeft, and runRight from the sprite sheet
runLeft = vis.Sprite.createAnimation(8, 15, 7, true);
runRight = vis.Sprite.createAnimation(0, 7, 7, true);

}

public override void onUpdate() {

if (Gob.Acceleration.X > 0 || Gob.Velocity.X > 2f) { // is the player going right?

runRight.advanceFrame();
runRight.Speed = 8 - (int) Math.Abs(Gob.Velocity.X) / 3;

} else if (Gob.Acceleration.X < 0 || Gob.Velocity.X < -2f) { // or left?

runLeft.advanceFrame();
runLeft.Speed = 8 - (int)Math.Abs(Gob.Velocity.X)/3;

}
}

FIGURE 4.4. Code snippet showing how animations may be used and created

In addition to the character movement and animation, the built-in Whiskey2D camera

was set to track the character in interesting ways. Camera Zones were placed around the

level that will specify how the camera tracks the player. Normally, the camera will center on

the character. However, the camera is bound by the camera zones, so when the player

approaches the edge of a camera zone, the character will be allowed to move out of center

screen, as the camera cannot follow them. The placement of camera zones is quite simple,

and can be seen in the figure (Figure 4.5) below.

57

FIGURE 4.5. A shot showing the placement of CamZones. The CamZones are the green boxes, stretched between
the walls of the level.

Camera Zones are an example of a shared GameObject. Other shared

GameObjects include Sound Zones, and SpriteEffects. A SoundZone can be configured to

play sounds when the character is entering or exiting the zone. These are used in

Mechanical Plunge to trigger the level’s audio, as well as various environmental sounds

specific to different level areas. The SpriteEffect is another shared GameObject, that is

used to play an animated sprite sheet on the fly. This GameObject is used extensively in

our game. Examples of the SpriteEffect in Mechanical Plunge are the muzzle flash of the

character’s pistol, the smoke plume when he jumps. The SpriteEffect is invoked from Script,

and a can be seen in the code snippet (Figure 4.6) below.

58

if (Input.isNewKeyDown(Keys.W)) { // is the up key being pushed ?
if (surface.Y > .8f) { // is the player on the ground?

// set logic for jumping
jumping = true;
jumpCounter = 40;
Gob.Acceleration -= gravity * 12;
doubleJumped = false;

 //create jump effect

SpriteEffect fx = new SpriteEffect(Level);
fx.Position = Gob.Position + Vector.UnitY*Gob.Bounds.Size.Y /4;
fx.Effect = "smokeJump";
fx.Frames = Vector.One * 4;
fx.Sprite.Scale *= .3f;
fx.Speed = 4;

}
}

 FIGURE 4.6. A code snippet showing a SpriteEffect might be used for a jump effect

Another strong feature of Whiskey2D is its ability to allow for custom rendering. As

mentioned in previous Chapters, each GameObject can override its rendering behavior, on

both the image pass, and the lighting pass. In Mechanical Plunge, the laser effect that

occurs when the character shoots takes advantage of custom rendering. The laser

overrides the lighting pass to render its image onto the lighting mask, which creates an

elongated light emitter, instead of the default gradient light image.

The other way that Whiskey2D supports custom rendering is its layering system.

Each layer can provide its own shader, and postshader. The water in Mechanical Plunge is

on its own layer, and has a postshader running that makes the water droplets blend

together. The water is also overriding the default rendering behavior, and using primitives to

draw, instead of sprites. The water’s rendering components can be seen in the figure

(Figure 4.7) below.

59

FIGURE 4.7. A screenshot of the water in Mechanical Plunge. The body of water is drawn as quadrilateral
primitives, and the water droplets are drawn as metaballs.

60

Chapter 5 - Developing Whiskey2D
Building Whiskey2D was a challenge. We adhered to a disciplined software

engineering process that enabled us quickly build powerful code. Throughout our entire

development time, from late July to early March, we built our code iteratively and through

rapid prototyping. We used a wealth of tools to support our team, mainly including Visual

Studio and Google Docs. At key points in Whiskey2D’s development, we paused to hold

usability testing sessions. In this Chapter, we will discuss the history of Whiskey2D, our

team’s style, and how we conducted usability tests.

5.1 Development History

Officially, we began our project on August 28th, the first day of Aterm. However, we

had been planning the initial designs of Whiskey2D since late July. Over the next 30 weeks,

we brought Whiskey2D from a blank project, to a nearprofessional quality piece of

software. Whiskey2D underwent multiple of improvements, revisions, and refactorizations

along the way. Figure 5.1 gives a visual representation of when we were working on certain

aspects of the project and for how long.

61

FIGURE 5.1. This is a Gantt chart, showing where our efforts were spent each week of development.

5.1.1 Timeline and Narrative

The following is a chronological development history of our major checkpoints and

progress indicators, taken from our notes at the time, our meeting agendas, and our Git

repository.

7 / 27 / 2014 (proposal created) - 9 / 9 / 2014 (first meeting)
Initial Planning

FIGURE 5.2. Our first concept sketch for the UI of Whiskey2D

62

As summer comes to an end we meet a few times to begin writing up and finalizing

the proposal for what later became Whiskey2D. After receiving word that our MQP proposal

was accepted, we begin researching other similar game engine products on the market. At

this time we also start designing concepts for our UI as well as the structure for our engine

(Figure 5.2).

At this time we also start documenting an initial class diagram and class structure for

Whiskey2D’s Core.

9 / 13 / 2014
Whiskey Core

Whiskey2D’s Core is up and running! The engine is able to run simple games which

we created as a proof of concept (see in Figure 4.3). Our initial games are built with the very

same philosophy as Whiskey2D currently employs. The current system of GameObjects

and their Scripts controlling each of their behaviors are present. The Core contains most of

the Managers that currently exist in Whiskey2D, and work functionally the same.

FIGURE 5.3. The first game ever created with the Whiskey2D core.

63

Sample games are able to process keyboard input from a user. We employed a

rudimentary system for collision detection. Most of the games were side scrolling

platformers, where all shapes were squares and circles.

9 / 15 / 2014
Rudimentary GUI for Compilation

An initial GUI is created in WinForms to facilitate the compilation of a game’s data,

seen in Figure 5.4. The GUI is able to facilitate creation of new GameObject type files and

Script files. The GUI does not provide any way to edit files. In order to create interesting

GameObject types or Scripts, the files can be edited in an external text editor. The compiler

GUI can then compile the source code files to individual DLLs. There is no way to run these

DLLs in a game at this point from the GUI, but this paves the way for future compilations of

full Whiskey2D games.

FIGURE 5.4. The first UI that would compile source code to class files.

64

9 / 20 / 2014

Log and Replay Feature

Log and replay system is created, which allows Users and designers to replay

Sections of a level from a log file. Input sources are abstracted which allow input from

sources other than the keyboard, including the mouse. A game is created that uses Log and

Replay, as seen in Figure 5.5.

FIGURE 5.5. A game created that exemplified log and replay

9 / 23 / 2014
Monogame and WinForm Integration

A Monogame control is created, which allows Monogame to be inside WinForms.

This can be seen in Figure 5.6. This is a first step to getting rendering and level editing into

our UI, and the start of our GUI becoming an editor.

65

Figure 5.6. Screenshot of the first time the MonoGame Graphics could be rendered inside WinForms.

10 / 15 / 2014

First Full GUI

The first version of the Editor that can create a game level from start to finish is

created (see Figure 5.7). This was the first time we were able to create a GameObject type,

instance of it in a Level, a Script, and attach the Script to the GameObject. We were also

able to build the Level, and play the resultant game. Several bugs exist in this editor, but it

is a major milestone for the end of A term, and serves as a strong prototype for later

versions.

66

FIGURE 5.7. A screenshot of the UI as it stood at the time.

11 / 9 / 2014
Usability Testing Round 1

We conduct our first round of usability testing with the current Editor. The users are

not able to create a game, due to the weakness and instability of the Editor. This eventually

leads us to understand that a major frontend and backend refactor is required. (See

Section 5.4 for details.)

11 / 15 / 2014 -- 12 / 16 / 2014
Refactored GUI

The large refactor that we started on 11/15, after the first usability test, is now

complete. The Editor has been completely redone, both on the backend and the frontend.

The new front end can be seen in Figure 5.8. There is no longer any need for Dynamic

Type management, described in Chapter 4 and 6, and the UI is professional and stable.

67

Figure 5.8. The UI after a long refactor

12 / 11 / 2014
Usability Testing Round 2

We conduct our second round of usability testing with a completely reworked piece

of software. The users are able to create the shell of a game. User performance on this

round of testing has vastly improved from the previous test, due to the new Editor. (See

Section 5.4 for details.)

1 / 4 / 2015
Improved Media Support

Media support for Whiskey2D is greatly improved. Sprites can now support

animations and Sounds can be loaded and played. Our first animated Sprite can be seen in

Figure 5.9. In addition, a Level is no longer bound to exist in screen coordinates. Camera

68

support is added so that Level size can be near arbitrary, bounded only by floating point

limitations.

FIGURE 5.9. The first spritesheet we were able to import and use in Whiskey2D. (forum.unity3d.com)

2 / 2 / 2015

Improved Engine Features

Two major new features are completed. The existing collision algorithm is replaced

by the Separating Axis Theorem (SAT). SAT supports Sprite rotation, as well as complex

geometry. The collision system is greatly improved and simplified, giving designers access

to collision Normals and Minimum Translation Vectors (MTV).

In addition, light and shadow support is added, as seen in Figure 5.10. The inclusion

of dynamic lighting sees several improvements to Whiskey2D’s rendering pipeline.

69

FIGURE 5.10. A screenshot showing the 2D lighting and shadowing system

2 / 24 / 2015
Usability Testing Round 3

We conduct our final round of usability testing with a near complete Whiskey2D. The

users are able to complete the test and create a game. The users spend time tweaking and

making their game fun to play. This is a huge success for Whiskey2D. (See Section 5.4 for

details.)

3 / 11 / 2015
Whiskey2D

Development on Whiskey2D officially concludes. Minor edits to paperwork continue

until 3/27, but Whiskey2D is complete.

70

3 / 26 / 2015
Showcase Game

Mechanical Plunge is completed, and demonstrates that Whiskey2D can be used to

create complicated and entertaining 2D video games.

5.2 Development Environments and Tools

There were many tools that we used along the way when creating Whiskey2D. This

includes many helpful pieces of software that helped us organize our documents and data,

technology that helped facilitate communication, as well as tools for creation of media and

source code.

Whiskey2D was written using Visual Studio1, Microsoft’s C# IDE. We also used

Sublime Text2, a text editor, for further source code creation, when writing some of our early

game object scripts and for website code.

We utilized Git3 for source control, which allowed us to keep our code up to date

between each other, as well as allowing us to experiment with new features before we put

them into our codebase. Along with Git, we utilized SourceTree4, to help visualize and

manage our Git repository.

In terms of media creation, we used GIMP5 and Paint.NET6. These are both image

editors, both similar in features to Adobe Photoshop. GIMP was, almost exclusively, used to

1 More information for Visual Studio can be found at https://www.visualstudio.com/
2 More information for Sublime Text can be found at http://www.sublimetext.com/2
3 More information for Git can be found at http://git-scm.com/
4 More information for Source Tree can be found at http://www.sourcetreeapp.com/
5 More information for GIMP can be found at http://www.gimp.org/
6 More information for Paint.NET can be found at http://www.getpaint.net/index.html

71

https://www.visualstudio.com/
http://www.sublimetext.com/2
http://git-scm.com/
http://www.sourcetreeapp.com/
http://www.gimp.org/
http://www.getpaint.net/index.html

create various icons used within the editor. We used Paint.NET to create our many figures

used in our weekly agendas, as well as many of the sprites we created for games created

early on in development.

To manage all of our organizational materials and documents related to Whiskey2D,

we created and shared a folder on Google Drive1. This service allowed us to save and store

important files that we both needed to access. This is where our agendas, writeups,

usertesting files, and various taskmanagement documents existed. We also created a

website which hosted Whiskey2D information and information about our API.

The use of Facebook’s2 messaging service, helped facilitate communication. We

were able to send text back and forth to settle on meeting times, as well as send

screenshots and images to show progress or problems. We used this as our main source of

communication throughout the development process. Another tool that helped with

communication was the whiteboard located in our work area. This helped us express our

thoughts to each other when describing concepts and ideas.

Finally, we used Doxygen3 to help create documentation for Whiskey2D. With

Doxygen, we were able to produce the files needed for a website. With this we were able to

create a clean and userfriendly way to view Whiskey2D’s structure and codebase for

designers. In addition to the codebase documentation, we also created a few instructional

videos for Whiskey2D using Camtasia Studio4.

1 More information for Google Drive can be found at https://www.google.com/drive/
2 More information for Facebook can be found at https://www.facebook.com/
3 More information for Doxygen can be found at http://www.stack.nl/~dimitri/doxygen/
4 More information for Camtasia Studio can be found at http://www.techsmith.com/camtasia.html

72

https://www.google.com/drive/
https://www.facebook.com/
http://www.stack.nl/%7Edimitri/doxygen/
http://www.techsmith.com/camtasia.html

5.3 Development Style

Lately, there have been many new software development styles emerging. Agile

development is the most well-known among these modern styles, promoting practices like

rapid prototyping, iterative development, scrum, and more. These new styles are meant to

improve code quality and work productivity. We didn’t rigidly subscribe to any one particular

development style, but instead pulled the concepts we liked from styles such as Agile or

Rup.

We focused on following a few key development practices. The two biggest practices

we followed were rapid prototyping and iterative development. The two theories go hand in

hand with each other, promoting quick cyclic design. When we first started developing the

Whiskey2D engine, we built the bare minimum to get a game up and running as quickly as

possible. We were able to have a simple platformer game working through Whiskey2D’s

engine within the first few weeks of development. Afterwards, we focused on strengthening

our engine, and produced a new platformer in the following weeks. Developing the engine

with an iterative approach allowed us to build the code out in a maintainable way. Once the

basic engine was up and running, we shifted gears and started working on the editor

backend code, as well as the editor’s UI. Developing the UI took place over several

iterations, each one improving greatly over the previous. Finally, after we had a reliable

editor, we went back to improving the engine’s feature set. We took a breadth first approach

to building Whiskey2D that let us build up each part of the entire project piece by piece. If

instead, we had focused solely on one aspect of development until it was complete, we

never would have finished Whiskey2D to the point where it is now.

73

5.3.1 Meeting Flow

Whiskey2D was built by two people in about half a year. In order to finish the project,

we met four to five times a week, on average. Our meetings were well structured and

productive, allowing us to use our time efficiently.

Each week followed a rough development cycle. The first meeting of each cycle was

spent mostly brainstorming. We would start by identifying a problem or feature that we

needed to solve. Then we drew out diagrams and sketches for potential solutions. The

brainstorming process was mostly done on a whiteboard that was in our work area. Since

our work area was in one of our apartments, we were able to leave brainstorming sessions

up on the whiteboard for the entire week. In many cases, we left large to-do lists up on the

wall for many weeks.

After the brainstorming, the next part of our weekly design cycle was to write code.

We used Peer Programming extensively, completing about 80% of our code together. Peer

Programming is a recognized technique in software development where two people sit

together, while one person does the typing, and the other monitors. The idea behind Peer

Programming is that it forces each person to think hard about the code being written. The

code has to make sense to both people as it is written down, so that the typist always has to

stop and explain why they are doing what they are doing. As we were Peer Programming,

we often realized that our original designs and ideas could be improved upon. Programming

together helped keep a lot of hack solutions out of the code base, and encouraged strong

implementations.

Finally, the last part of the weekly cycle was to meet with our project advisor,

Professor Rich. The night prior to meetings, we created an agenda to guide our discussions

for the following day. The agendas usually had a Section for a product demonstration, new

74

feature technology and diagrams, weekly challenges, and finally what we intended to do in

the following week. Agendas were sent to our advisor before each meeting so that he could

be prepared to give us critical feedback on our progress. The weekly meetings helped us

structure the challenges and goals for the next week. When the next week began, we

started our process over again, starting with brainstorming on how to solve the problems

discussed in the meeting.

5.4 Usability Testing

Ensuring that users can understand and use software is a critical aspect of software

development. We held usability testing sessions to observe how people used Whiskey2D’s

editor. Primarily, we wanted to know how intuitive the editor was, and how easy it was to

understand the basic game creation process. In order to answer our questions, we held

three batches of usability testing.

5.4.1 Usability Testing Phase 1

The first session of usability testing happened early, around 7 weeks into

development. In the first test, we asked our users to create a very simple game, where the

player could control a smiley face around the screen, collecting stars. This can be seen in

Figure 5.11. We created a website with simple instructions on how to create the game. In

addition, we also created a simple API document that detailed all of the functions the user

might need to use. All of the usability testing instructions can be found in Appendix B.

75

FIGURE 5.11. The first thing we asked users to create.

While we were excited to get feedback so early, our UI was not ready for users. We

had only completed the first draft of a UI, and it was too buggy to be used in a usability test.

Although we knew that a UI refactor was necessary, we weren’t aware how

important it was. The main lesson we learned from the first phase of usability testing was

that our UI was a deal breaker for users. It impeded the entire game creation process.

5.4.2 Usability Testing Phase 2

Several weeks later, we were able to completely redo the UI. After we had put

enough functionality back into the editor, we began our second phase of usability testing.

The goal of this usability test was to have users create a simplistic game of Breakout, as

seen in Figure 5.12. This version of Breakout wouldn’t have any blocks to hit, but it would

support walls, collisions, simple physics, and player movement.

76

FIGURE 5.12. The first breakout game we asked users to create with Whiskey2D.

Instead of giving the users detailed instructions on how to create the game, we

provided materials that explained how to use Whiskey2D in general, gave the users a

prompt, and then asked them to complete it in a forty minute time period. These materials

can be found in Appendix B. Additionally, instead of giving the users a wall of text to read,

we created video explanations of Whiskey2D and of the game we wanted them to create.

We began the usability test by asking users to watch a short YouTube video walkthrough1

of how to use Whiskey2D. After that, we asked users to read a few paragraphs briefly

explaining the core concepts discussed in Chapter 2. Finally, we showed them a video2 of

the game we wanted them to build. The videos were well received by the users, and they

1 The instructional video we gave to our users can be viewed at
https://www.youtube.com/watch?v=ubnPrt9-3Ng .
2 The video prompt we gave the users can be viewed at
https://www.youtube.com/watch?v=lb1TQsFKgaY

77

https://www.youtube.com/watch?v=ubnPrt9-3Ng
https://www.youtube.com/watch?v=lb1TQsFKgaY

referred back to them often for guidance on how to achieve a particular task. Since we

didn’t give the users a rigid set of steps to create the game, we were able to observe how

they approached creating a game in Whiskey2D.

The improved UI was appreciated by our users, and they were able to focus on

creating the Breakout level. However, the users expected common software features to

exist, such as grid snap, copy and paste, along with a large collection of others. Each time a

user tried to do something that wasn’t supported, they became irritated. However, these

users were eventually able to create the Breakout level.

The users were confused when it came time for them to write the physics portion of

the code. The user group we had did not match our designer profile discussed in Chapter 1.

Instead of being amateur or hobbyist game developers, our users were complete beginners

and had not written in C# at all. It is understandable that they struggled trying to write game

logic code, but was disappointing because it prevented them from finishing the game. The

main lessons we learned from the second usability test was that we needed to build out our

editor more and make it more user friendly. We also learned that API documentation was

going to be extremely important for designers.

5.4.3 Usability Testing Phase 3

For our last phase of usability testing, we were able to find people who had been

making games with Unity, and were comfortable with game creation. We did our last

usability testing at the end of our development time, within the last few weeks. The goal of

our last usability test was to see if the changes we made from the previous test were

78

effective. Like in the previous phase, we gave our users an instructional video to watch1. To

our delight, the final usability test was a huge success. We asked the users to create an

updated Breakout2 game, seen in Figure 5.13. This time, the users were able to build the

game. In fact, the users’ Breakout game were better than our original demonstration game

in the test instructions! The users were very impressed with Whiskey2D.

FIGURE 5.13. The second game of breakout made for usability testing

Despite the success of the test, users still requested additional features, such as

group selection, undo/redo, and better code editing. As we were at the end of our

development time, we weren’t able to implement any of the features.

1 The second instructional video we gave to our users can be viewed at
https://www.youtube.com/watch?v=sVJHYpwkpFI
2 The second video prompt we gave to our users can be viewed at
https://www.youtube.com/watch?v=OwDXRLvwrjA

79

https://www.youtube.com/watch?v=sVJHYpwkpFI
https://www.youtube.com/watch?v=OwDXRLvwrjA

5.4.4 Usability Testing Results

We learned many valuable lessons through our usability tests. In our first phase, we

saw that our UI was too weak. We had intentionally asked users to create a very simple

game, but no matter how simple the task, our UI would have stood in the way. Our UI could

not convey any of the core concepts to the users. This led us to a realization that our whole

UI needed to be replaced.

In the second phase, we saw that our improved UI was able to convey core game

creation concepts to the users. Users were finally able the use the UI. The new UI allowed

users to learn more about GameObjects and Scripts, instead of how to simply use the

editor. All of this led to users being able to identify specific feature requests such as grid

snap and screen sizing. Our users did not fit the target audience profile, and this made the

test more challenging. We were not aware that users out of the profile would have such a

hard time.

In the final phase, we saw that Whiskey2D was usable! However, it was the first time

we deployed Whiskey2D to nondevelopment machines. Previously, we had only run

Whiskey2D on our machines, and in this test, we ran it on WPI machines. The new

machines caused new errors to appear in Whiskey2D that we had not seen before.

However, the errors were not severe enough to deter the users from completing the test.

Despite the errors, the users really enjoyed the Whiskey2D experience!

Each phase of the usability testing was useful. The tests gave us insights into

Whiskey2D that we did not expect and might have overlooked. The results of each phase

gave us direction for future development.

80

5.5 Showcase Game Design Process

Our showcase game, Mechanical Plunge, had a process of its own. We started by

brainstorming ideas which we wanted to include in our game. This was important as we

wanted to showcase the possibilities of our engine, and make sure that everything we put in

was chosen to show a different aspect of the functionality included within Whiskey2D.

We met with an artist, Pat Gallagher, to brainstorm a simple, yet fun, game design.

We sketched out many ideas on a white board, eventually settling on a platformer-shooter

game. After our meeting with Pat, we developed some simple level designs on paper, and

then worked to bring them to life inside Whiskey2D. Our first level designs can be seen in

Figure 5.14, below.

FIGURE 5.14. A picture of our original level design, done on grid paper.

81

Many hours were spent fine tuning game mechanics, and making sure that the

game’s shooting and jump mechanisms felt right.

Pat Gallagher was able to assist us in art development. He created a sprite sheet for

the main character of Mechanical Plunge. Another friend of ours, Bryce Rabideau was kind

enough to compose an original game score. We communicated with our artists on a regular

basis, and kept them up to date on the progress of the game.

82

Chapter 6 - Conclusion
Whiskey2D is in a stable working state1. Building Whiskey2D gave us terrific

experience in creating software. We learned how to set technical goals, and achieve them.

We learned about software engineering processes and how they’re beneficial. We practiced

our programming skills and improved our problem solving skills. However, all of this learning

didn’t come for free. We will shed light onto the greatest challenges we faced, both

technical, and in our usability testing. We are also aware of at least two major limitations in

Whiskey2D, both of which will be discussed in this Chapter. Finally, we will explain where

we think Whiskey2D could be headed and what kind of work could be done in the future.

6.1 Challenges

As mentioned, developing Whiskey2D was no easy task. Many challenges were

faced along the way both on the technical and on the process side of development. In this

Section, we will discuss the largest technical challenges we faced, as well the challenges

we faced during usability testing. A majority of the challenges we faced were overcome

within a short amount of time and are not worth mentioning here. However, there were a

few roadblocks that required a great amount of time and effort to circumvent.

1 Whiskey2D can be downloaded from http://cdhanna.com/whiskey.

83

6.1.1 Technical

Dynamic Type Management

Perhaps the most troublesome dilemma we encountered during Whiskey2D’s

development was dynamic type management. A fundamental feature of Whiskey2D’s editor

was to support visual editing of GameObjects. As explained in Chapter 3, when a

TypeDescriptor is dragged into the Level view, an InstanceDescriptor is created. The

InstanceDescriptor describes an instance of the dragged TypeDescriptor. Using the

InstanceDescriptor allowed us to modify properties of the Type without having to compile

anything. All of the properties were represented by our data structures, instead of compiled

class definitions. When the designer changed information about the Type, the system was

able to pass those changes to all instances of the Type. The ability to change the Type

definition and have all instances of the Type be updated is what we call dynamic type

management.

The Descriptor system was not our first attempt at dynamic type management.

Originally, when a Type was created or edited, it was immediately compiled to a C# class

definition. The most recent Type compilation was then being used to instantiate a real

instance of the Type. This technique gave us an incredible amount of power, because it

meant that what the designer saw was exactly what the designer was going to get in the

compiled game. If the designer went to the Type definition, and overrode the rendering

function, then the instances of that Type would actually show the new rendering code

running. However, using this approach spawned an incredible amount of complexity into our

project.

One large problem with creating actual Instances of a Type was what to do when the

Type definition changed. When a Type was edited, all of the Instances would have to be

84

updated to reflect the change in the Type. For example, if the designer added a property to

the Type, then all of the Instances of the Type would suddenly need to have the new

property. Conceptually, all that needs to be done is to recreate every Instance using the

newly compiled Type, sync the values of the new Instances to the old Instances, and then

remove all of the old Instances. This process worked, but was ultimately ruined by the need

for recompiling (see Figure 6.1)

FIGURE 6.1. A process diagram showing the stages of syncing all instances to their modified type.

Recompiling the Type definition caused two major problems. Firstly, it was too slow.

Changing the name of a property, its default value, or adding or removing a property took

around two seconds to compile the change. Two seconds for every edit is far too long, even

if it was put on a separate thread in the background.

The second problem with the compilation was how to load in the newly compiled

Type information. The new Type information would be compiled to a DLL file. The DLL file

would then be loaded into the editor’s program memory so that it be used to create

instances of the new Type. This worked, but had one serious flaw. Once a C# program

loads Type information, the Type information cannot be unloaded. To be more specific,

every C# program consists of at least one AppDomain. An AppDomain is a collection of

Assemblies. An Assembly is collection of Type information. When a DLL is loaded, it comes

in the form of an Assembly. Figure 6.2 shows this hierarchy of type management in C#

below.

85

FIGURE 6.2. A breakdown chart showing the hierarchy of type management in a C# program.

Once the Assembly is loaded into an AppDomain, it cannot be unloaded from the

AppDomain. This also means that the DLL file that actually contains the Type information

cannot be deleted while the program is running, because the program has a lock on the

DLL. If the DLL cannot be deleted, then when the designer makes an edit to a Type, and a

new DLL needs to be compiled, it cannot overwrite the previous DLL. We generated new

DLLs with version numbers appended them, and loaded each one into our program

memory, without ever being able to unload the previous versions.

This caused a serious memory leak in our program. To correct for the leak, we

created a system where a new AppDomain was created for each DLL. Every time we

loaded a new DLL, we put it in a new AppDomain, and unloaded the previous AppDomain.

This system worked, but it was incredibly slow. In addition, the infrastructure needed to

pass data between AppDomains added too much complexity to our program.

In the end, we decided to reject the idea of using compiled Type information for our

Instances. We spent weeks trying to make it work, and were reasonably close to a solution.

However, to make the system run quickly enough to be usable was going to take too much

86

time. Instead, we made the decision to delete week’s worth of work in low level C#

architecture design, and implement our Descriptor system instead. Our Descriptor system is

almost as powerful, and works wonderfully.

User Interface, and Property Grid

Our other major technical challenge was working with Winforms, and specifically the

built in PropertyGrid control. We started building our User Interface (UI) about a third of the

way into our project. The UI was poorly designed and implemented. We combined too much

of Whiskey2D’s operating logic into the UI controls. The code was hard to manage, and not

clean. Eventually, we realized that what we had for a UI was not good enough, and we

began the UI refactor discussed in Chapter 5. Our second attempt at a UI was far better

than our first.

However, in both versions of the UI, we struggled with WinForm’s PropertyGrid

control. The PropertyGrid has a rich set of features, and be customized in many different

ways. We were unversed in the PropertyGrid, and it took us a long time to grasp how to

leverage the control’s full power. The PropertyGrid is the main control behind the Property

View, and is central to Whiskey2D’s editing experience. We were able to make the control

behave like we wanted it to, but doing so took a major amount of our development time.

6.1.2 Usability Testing

Besides the large amount of technical challenges we overcame, we also

encountered challenges associated with our usability testing. Our usability testing was done

informally with friends and other students at Worcester Polytechnic Institute (WPI). As

87

described in Chapter 5, we did three main passes of usability testing, spread through the

development period of Whiskey2D.

When we first started showing Whiskey2D to our users, we showed them the original

UI. As mentioned earlier, the original UI was poorly designed from the start. The only

feedback we got from the testing were concerns about the quality of the UI. We tested too

early, and didn’t learn much from our test. In addition, our test instructions consisted of only

text and pictures. Later, we found that videos worked much better.

In our second round of testing, our users didn’t fit our designer profile, discussed in

Chapter 1. The users didn’t understand basic game programming logic, and spent too much

time thinking about how to solve basic collision problems, instead of being able to focus on

the substance of the Whiskey2D Editor. We weren’t able to secure users that fit our

designer profile until the end of development. Throughout the entire usability testing

process, we struggled with our level of involvement with the users. In order to see how

intuitive and usable Whiskey2D was, we tried to refrain from giving any hints to the users.

However, in many cases, especially in the first phases of usability testing, we often helped

users through the test scenarios.

6.2 Design Choice Limitations

In order to bring Whiskey2D to a state where it is stable and usable, we had to make

some design decisions that brought limitations to the program. None of these limitations

made the program unusable, though they are items that designers should be aware of.

88

Multiple Whiskey2D Instances

Firstly, only one instance of Whiskey2D may be running at a time. To be clear, when

you are using your computer, you can open two copies of NotePad at once, and they are

treated as separate instances. Whiskey2D only supports one running instance at a time.

Technically, multiple instances could be run at once, but it would cause unpredictable

behavior. Every Whiskey2D Project has its own file directory, but it also shares files from

the main Whiskey2D editor directory. For example, when a designer loads Media into their

project, the media must be copied into the Whiskey2D editor directory. If two instances of

Whiskey2D were open with different Projects, media handling would become erratic, and

files could potentially be overwritten. Running multiple instances of Whiskey2D should be

avoided.

File Manipulation from Windows

The second major limitation Whiskey2D imposes is how files are to be manipulated.

Our rule is that resource files for a Whiskey2D Project may only be manipulated from

Whiskey2D’s editor, and not from the Windows File Explorer. A designer can edit a source

file with a text editor if they desire, but they cannot add files, remove files, or change file

names. Whiskey2D keeps file information stored in a serialized state file. If the file system

were to become out of sync with the state file, unpredictable behavior can occur, potentially

resulting in a corrupted Project.

6.3 Future Development

There is still a lot of work to be done in Whiskey2D. We spent the majority of our

development time building the core components of the engine and the editor. We weren’t

89

able to complete as many of the features as we wanted to. There are several algorithms

that could be added, or be improved on, both in the core engine, and in the editor.

6.3.1 Engine Development

In order to complete the Whiskey2D engine, we took prioritized functionality over

efficiency. Many of the algorithms use naive approaches, and could be reimplemented with

better data structures and logic. For example, the ObjectManager uses a few lists to

manage all GameObjects. The ObjectManager could have a dictionary of lists to make

GameObject access faster. The collision system could use a spatial partitioning system

such as quadtree, instead of using the worst case nsquared time algorithm it uses now.

Despite rapid development, there are still many features we’d like to see in

Whiskey2D. There are several features common to most editors that are missing from

Whiskey2D. The features can be added in one at time. For example, a particle system

would be excellent to have built into the engine. Another incredibly useful feature would be

built in collision response and physics. These features can be implemented by the designer,

but it would be nice to have them supported by the engine.

6.3.2 Editor Development

In addition to adding more engine features, the Whiskey2D editor has much of room

for improvement. There are many features that could be added, such as multiple object

selection, object grouping, list editing, and more file manipulation such as renaming and

movement. The code editor would be greatly improved by code completion. Finally, a better

export feature that supported multiplatform game exporting would be fantastic.

90

We have mentioned a few features that we think would greatly improve Whiskey2D.

There are clearly countless other features that would help build Whiskey2D into a

professional tool. However, the core components of Whiskey2D have been implemented

well, and are reliable. It is a tool that can produce nontrivial 2D games. Whiskey2D has a

strong and robust back end that leaves the door open for future development.

91

Works Cited

[Statista 2015] "Annual Revenue of the U.S. Video Game Industry by Segment 2014 |

Statistic." Statista. N.p., n.d. Web. 21 Mar. 2015.

<http://www.statista.com/statistics/249996/annual-revenue-of-the-us-video-game-

industry-by-segment/>.

[static2.scierra.net] Construct2 Screenshot. Digital image. Static2.scirra.net. Scirra, n.d.

Web. 21 Mar. 2015.

<https://static2.scirra.net/images/fresh/c2/gallery/fullsize/jpg/start-page-01.jpg>.

[i.solidfiles.net] GameMaker Screenshot. Digital image. I.solidfiles.net. YoYo Games,

n.d. Web. 21 Mar. 2015. <http://i.solidfiles.net/cbc8a374e9.png>.

[forum.unity3d.com] Link Spritesheet. Digital image. Forum.Unity3D. Unity3D, n.d. Web.

21 Mar. 2015. <http://forum.unity3d.com/threads/2d-animation-issues.220428/>.

[video.ch9.ms] Unity Screenshot. Digital image. Video.ch9.ms. Unity, n.d. Web. 21 Mar.

2015. <http://video.ch9.ms/ch9/05b7/838999fc-16d4-4f59-9bda-

9586a1bd05b7/Unity2013EndtoEnd_Custom.jpg>.

92

Appendix A: Whiskey2D Designers’ Guide
All of the links below can be navigated to from Whiskey2D’s home page, at

http://cdhanna.com/whiskey/ .

Getting Whiskey2D Setup

To set up your Whiskey2D development environment, you’ll need to download the latest

release from http://cdhanna.com/whiskey/. If you’d like to develop Whiskey2D, or need to debug
it, you’ll need the complete source code. This can be cloned from Github, at
https://github.com/cdhanna/whiskey2d. To make sure the solution builds correctly, follow the
steps on the Github readme page.

Designer API Documentation

There are several built in features for you to use when writing Scripts in Whiskey2D.
These features are documented at http://cdhanna.com/whiskey/docs/api/doxyapi/. The main
features include the GameManager, the ObjectManager, and the InputManager. Other features
include Rand, LogManager, and Sounds. For example usages of all features, download the
sample showcase game, Mechanical Plunge, at
https://github.com/cdhanna/whiskey2d/tree/master/samples/Showcase2

Shared Objects Listing

There are many built in GameObjects, provided with every Whiskey2D project. These

are documented at http://cdhanna.com/whiskey/docs/sharedobjects/

93

http://cdhanna.com/whiskey/

Appendix B: Usability Testing Instructions

Whiskey2D User Test 1
Please follow the steps in this simple tutorial to the best of your ability.
Refer to the included manual as needed.

1. Create a new GameObject type called Smile. Set Smile’s sprite to use the smile.png
image, located in the /media directory. Instantiate a Smile in the game space.

2. Create a new GameObject type called Star. Set Star’s sprite to use the star.png image,
located in the /media directory. Instantiate a Star in the game space.

Your gamespace should look like this…

94

3. Create a new Script called Move. Move is made to work with Smile objects.
The Move script will allow the Smile object to move via the arrow keys. The code
snippet below will move a GameObject to the right, when the right arrow key is
pressed.

 if (GameManager.Input.isKeyDown(Keys.Right))
 {
 Gob.X += 1;
 }

Using the above code, make the Move script allow for motion in all four directions.
Add the Move script to the Smile instance.

4. Create a new Script called Collision. The onUpdate() code for Collision is below. Add
Collision to the Star instance.

 public override void onUpdate()
 {

 Smile smileObj =
GameManager.Objects.getAllObjectsOfType<Smile>()[0];

//this will be cleaner in future versions
 if ((smileObj.Position - Gob.Position).Length()

 < Gob.Sprite.ImageSize.X * .5f){

 //code for step 4. Feel free to change this later, if you
want to
 Gob.X = Rand.getInstance().Next(100, 500);
 Gob.Y = Rand.getInstance().Next(100, 500);

 //todo: add Smile Code here (from step 6)

 }
 }

5. Hit the playTest button in the bottom-left of the screen, and go run your game. The exe
will be generated in the /build directory.

95

Whiskey2D User Test 2
Thank you for helping us test Whiskey2D. The project has seen a lot of changes over
the past few weeks, but we are still looking for critical design feedback. Our goal is to
get your feedback on the Whiskey2D editor interface, and the usability of the
Whiskey2D script API.

• First, take your seats and buckle up.

• Second, watch this video that details the basics of the Whiskey2D editor

• Now that you’ve seen the editor, its time to look at some of the core API
components. Having a general idea of the API will help you solve the
WHISKEY CHALLENGE that you’ll be asked to complete in the end of this test.

o GameObjects and Scripts

The first thing to know about the Whiskey2D API, is what a GameObject
is. As seen in the video, a GameObject is something you can place into
a level. Everytime you drag in a GameObject, the system is creating a
new instance of that GameObject.

Scripts, on the other hand, are what control GameObjects.
GameObjects hold a set of these. In the video, the GameObject just had
some data inside of it, such as an (X, Y) position. The Script is what
actually moved the GameObject, by modifying the (X, Y) location.

So, GameObjects hold data, and Scripts update data. A Script accesses
the GameObject’s data by calling code that looks like this… (this is code
in the Script itself, and Gob is a field in Script)

this.Gob.X += 1; //increment the GameObject’s property, X

96

https://www.youtube.com/watch?v=ubnPrt9-3Ng

You can define your own properties in your GameObjects, but every
GameObject has an X, Y, Sprite, and a Bounding box (we’ll talk about
this later)

Every Script has two methods in it, an onStart() and an onUpdate().
The onStart()method is called at the very beginning of the game, and
the onUpdate() method is called once every tick. Most of the logic in
Scripts get implemented in theonUpdate() method.

o GameManager services

The GameManager provides a set of services that can be used from
Scripts to aid in general game coding. For now, we are only going to
discuss the Input service. The Input service provides a set of functions
to check various states of keyboard and mouse input. In the video, you
saw how to check if the ‘Right’ key was down. To check other keys, use
a similar approach…

if (GameManager.Input.isKeyDown(Keys.Left)){
 //the left key is being pressed!
}

o Collisions

To check if two GameObjects are colliding, there is a handy function
calledcurrentCollisions . Calling this function from a script will get all of
the other GameObjects that something is colliding with.

List< Thing > collidingThings = Gob.currentCollisions< Thing >();

The above code will get all of the Things that the Gob is colliding with.
(remember that Thing was the type from the video) This will be very
helpful for the upcoming WHISKEY CHALLENGE!!!!

• Whiskey Challenge

97

Thanks for sticking with us through all that text.
Now, we want you to build a game that looks like this…

For a (almost) full documentation set, go here
Here are some hints to help you get started…

You’ll need a Level

When we built this, we used 3 GameObject types, and 2 Scripts
The 3 GameObjects were

* Player
* Wall
* Ball

The 2 Scripts were

* PlayerScript< Player >
* BallScript< Ball >

Start simple, build the player and wall collisions first. Then move onto
the ball.

When things start colliding with Walls, you may find it very helpful to add a

property to the Wall GameObject, called ‘Name’, and use that to figure out

WHICH wall is being collided with.

Feel free to ask us any questions!
Thanks again!!!

98

http://youtu.be/lb1TQsFKgaY
http://cdhanna.com/whiskey/docs/api

Whiskey2D User Test 3
Thank you for helping us test Whiskey2D. The project has seen a lot of changes over
the past term, but we are still looking for critical design feedback. Our goal is to get
your feedback on the Whiskey2D editor interface, and the usability of the Whiskey2D
script API.

• First, take your seats and buckle up.

• Second, watch this video that details the basics of the Whiskey2D editor

• Now that you’ve seen the editor, its time to look at some of the core API
components. Having a general idea of the API will help you solve the
WHISKEY CHALLENGE that you’ll be asked to complete in the end of this test.

o GameObjects and Scripts

The first thing to know about the Whiskey2D API, is what a GameObject
is. As seen in the video, a GameObject is something you can place into
a level. Everytime you drag in a GameObject, the system is creating a
new instance of that GameObject.

Scripts, on the other hand, are what control GameObjects.
GameObjects hold a set of these. In the video, the GameObject just had
some data inside of it, such as an (X, Y) position. The Script is what
actually moved the GameObject, by modifying the (X, Y) location.

So, GameObjects hold data, and Scripts update data. A Script accesses
the GameObject’s data by calling code that looks like this… (this is code
in the Script itself, and Gob is a field in Script)

this.Gob.X += 1; //increment the GameObject’s property, X

You can define your own properties in your GameObjects, but every
GameObject has an X, Y, Sprite, and a Bounding box.

99

https://www.youtube.com/watch?v=sVJHYpwkpFI&hd=1

Every Script has three methods in it, an onStart() , an onUpdate(), and
an onClose(). The onStart() method is called at the very beginning of the
game, and theonUpdate() method is called once every tick. Most of the
logic in Scripts get implemented in the onUpdate() method.

o GameManager services

The GameManager provides a set of services that can be used from
Scripts to aid in general game coding. For now, we are only going to
discuss the Input service. The Input service provides a set of functions
to check various states of keyboard and mouse input. In the video, you
saw how to check if the ‘Right’ key was down. To check other keys, use
a similar approach…

if (GameManager.Input.isKeyDown(Keys.Left)){
 //the left key is being pressed!
}

If (GameManager.Input.isKeyDown(Keys.Right)){
 //the right key is being pressed!
}

o Collisions

To check if two GameObjects are colliding, there is a handy function
calledcurrentCollisions . Calling this function from a script will get all of
the other GameObjects that something is colliding with.

Collisions< Wall > collidingWalls = Gob.currentCollisions< Wall >();

The above code will get all of the Things that the Gob is colliding with.
(remember that Wall was the type from the video) This will be very
helpful for the upcoming WHISKEY CHALLENGE!!!!
Like in the video, the result of Gob.currentCollisions< Wall >() is a
collection of objects. Usually, a good way to handle collisions is to
iterate through all of them like the code segment below.

foreach (Collision<Wall> c in collidingWalls){
 //process collision, c
}

100

Notice that the word, Collision is used in the foreach statement, and not
the collection type, Collisions.

• Whiskey Challenge

Thanks for sticking with us through all that text.
Now, we want you to build a game that looks like this…

For a (almost) full documentation set, go here
Here are some hints to help you get started… We do not expect you to create
all of the bricks, so just having the ball moving around the level and colliding
with walls and the player is good enough.

You’ll need a Level

Start simple, build the player and wall collisions first. Then move onto the

ball.

Remeber to use the Vector’s reflect function. Check the API!

Feel free to ask us any questions!
Thanks again!!!

101

https://www.youtube.com/watch?v=OwDXRLvwrjA
http://cdhanna.com/whiskey/docs/api

Appendix C: Development Videos
We created several videos throughout the development of Whiskey2D to demonstrate

various features to each other, and to friends. All of our development videos were posted to
YouTube, and can be found below.

• Usability Test Phase 2, Video Prompt
https://www.youtube.com/watch?v=lb1TQsFKgaY
The video prompt we gave our users in the second usability test.

• Usability Test Phase 2, Video Instructions
https://www.youtube.com/watch?v=ubnPrt9-3Ng
The instructional video we asked users to view in second test.

• Simple Image Support
https://www.youtube.com/watch?v=1WLdY2aHSJY
A video showing off image support for Sprites.

• Scaling and Shaders
https://www.youtube.com/watch?v=swtz7DCJPT4
A video showing off new ways to edit GameObjects visually, as well shader controls
for a Level.

• Level Creation Time-lapse 1
https://www.youtube.com/watch?v=Z0NVxQd5BuQ
A time-lapse of a simple Whiskey2D level being created.

• Level Creation Time-lapse 2
https://www.youtube.com/watch?v=uHfr5CUPL24
A time-lapse of a simple Whiskey2D level being created, now with lighting!

• Usability Test Phase 3, Video Prompt
https://www.youtube.com/watch?v=OwDXRLvwrjA
The video prompt we gave our users in the third usability test.

• Usability Test Phase 3, Video Instructions
https://www.youtube.com/watch?v=sVJHYpwkpFI
The instructional video we asked our users to view in the third test.

102

https://www.youtube.com/watch?v=lb1TQsFKgaY
https://www.youtube.com/watch?v=ubnPrt9-3Ng
https://www.youtube.com/watch?v=1WLdY2aHSJY
https://www.youtube.com/watch?v=swtz7DCJPT4
https://www.youtube.com/watch?v=Z0NVxQd5BuQ
https://www.youtube.com/watch?v=uHfr5CUPL24
https://www.youtube.com/watch?v=OwDXRLvwrjA
https://www.youtube.com/watch?v=sVJHYpwkpFI

• Camera Testing
https://www.youtube.com/watch?v=eIbLrQLqGFM
A video demonstrating the CameraMaster tracking a GameObject through
CamZones.

• Mechanical Plunge Simple Platforming
https://www.youtube.com/watch?v=Pf1GxxLAyw4
A video showing the basic layout of our initial Level design.

• Mechanical Plunge Shooting Example
https://www.youtube.com/watch?v=AMCTx-5ydtM&feature=youtu.be
A video showing the shooting effect for the character.

• Mechanical Plunge Character Animation
https://www.youtube.com/watch?v=sCdRPE_y0BU
A video showing the animation system for the character.

• Mechanical Plunge Water Physics
https://www.youtube.com/watch?v=haUMoFetAcs
A video showing water inside our game.

• Mechanical Plunge Water Physics 2
https://www.youtube.com/watch?v=dPIWke2MlxI
A video showing some water refinements.

• Mechanical Plunge Game Events
https://www.youtube.com/watch?v=4KgDZxSmLW8
A video showing how a button can control various things in a Level.

103

https://www.youtube.com/watch?v=eIbLrQLqGFM
https://www.youtube.com/watch?v=Pf1GxxLAyw4
https://www.youtube.com/watch?v=AMCTx-5ydtM&feature=youtu.be
https://www.youtube.com/watch?v=sCdRPE_y0BU
https://www.youtube.com/watch?v=haUMoFetAcs
https://www.youtube.com/watch?v=dPIWke2MlxI
https://www.youtube.com/watch?v=4KgDZxSmLW8

	Table of Contents
	Chapter 1 ­ Introduction
	1.1 Project Goals
	1.2 Target Audience
	1.3 Related Work
	1.3.1 Related Work Summaries
	GameMaker
	Unity
	Construct 2

	1.3.2 Related Work Comparisons
	1.3.3 MonoGame

	1.4 Roadmap

	Chapter 2 ­ Functionality of Whiskey2D
	2.1 Core Concepts
	2.1.1 Levels
	2.1.2 GameObjects
	Shared Objects

	2.1.3 Scripts
	Shared Scripts

	2.1.4 Designer API
	2.1.5 Media Support
	Sound
	Images

	2.1.6 Custom Rendering

	2.2 Editor Concepts
	2.2.1 Using the Editor

	2.3 Input, Logging, and Replay

	Chapter 3 ­ Architecture of Whiskey2D
	3.1 Core
	3.1.1 Game Manager
	3.1.2 Game Services
	Input and InputSource Service
	Logging and Replay Service
	Console Service
	Object and Levels Services
	Rendering

	3.2 Editor
	3.2.1 File System
	Project directory
	Editor Directory

	3.2.2 Descriptors
	FileDescriptor and the FileManager
	CodeDescriptor
	Level Descriptor
	InstanceDescriptor

	3.2.3 User Interface
	Library View
	Documents and Properties
	WhiskeyControl

	3.3 Game Data Life Cycle
	3.3.1 Editor Serializations
	3.3.2 GameData.dll

	3.3.3 Launcher.exe & Target Platforms

	Chapter 4 ­ Example Game: Mechanical Plunge
	Chapter 5 ­ Developing Whiskey2D
	5.1 Development History
	5.1.1 Timeline and Narrative
	Whiskey Core
	Rudimentary GUI for Compilation
	Log and Replay Feature
	Monogame and WinForm Integration
	First Full GUI
	Usability Testing Round 1
	Refactored GUI
	Usability Testing Round 2
	Improved Media Support
	Improved Engine Features
	Usability Testing Round 3
	Whiskey2D
	Showcase Game

	5.2 Development Environments and Tools
	5.3 Development Style
	5.3.1 Meeting Flow

	5.4 Usability Testing
	5.4.1 Usability Testing Phase 1
	5.4.2 Usability Testing Phase 2
	5.4.3 Usability Testing Phase 3
	5.4.4 Usability Testing Results

	5.5 Showcase Game Design Process

	Chapter 6 ­ Conclusion
	6.1 Challenges
	6.1.1 Technical
	Dynamic Type Management
	User Interface, and Property Grid

	6.1.2 Usability Testing

	6.2 Design Choice Limitations
	Multiple Whiskey2D Instances
	File Manipulation from Windows

	6.3 Future Development
	6.3.1 Engine Development
	6.3.2 Editor Development

	Works Cited
	Appendix A: Whiskey2D Designers’ Guide
	Getting Whiskey2D Setup
	Designer API Documentation
	Shared Objects Listing

	Appendix B: Usability Testing Instructions
	Whiskey2D User Test 1
	Whiskey2D User Test 2
	Whiskey2D User Test 3
	Appendix C: Development Videos

