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Abstract: 

    This thesis addresses some practical issues that are similar to what a risk manager 

would be facing. To protect portfolio against unexpected turbulent drop, risk managers 

might use options to hedge the portfolio. Since the price of an option is not a linear 

function of the price of the underlying security or index, consequently option hedged 

portfolio’s value is a not linear combination of the market prices of the underlying 

securities, 

    Three Value-at-Risk (VaR) models, traditional estimate based Monte Carlo model, 

GARCH based Monte Carlo model, and resampling model, are developed to estimate risk 

of non-linear portfolios. The results from the models by setting different levels of 

hedging strategies are useful to evaluate and compare these strategies, and therefore may 

assist risk managers in making practical decisions in risk management.  
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Chapter 1  

1. Introduction  

1.1 Risk Management Based on Value-at-Risk 

       The objective of this project is to compare the cost and effectiveness of various 

hedging strategies from the perspective of the value-at-risk (VaR) risk measure. Three 

different quantitative computational methods are used to calculate VaR.  

       The portfolio to be considered is a diversified portfolio consisting of 20 securities 

with fixed allocations. The components of the portfolio are either mutual funds or 

equities of large companies. The portfolio has significant exposure to all major risk 

factors, including domestic U.S. stock market risk, interest rate risk, foreign exchange 

risk, and commodities risk.  

      To hedge against U.S. stock market risk, the manager of the portfolio is allowed to 

spend a small percentage of the total portfolio value every month to buy put option on the 

S&P500 index. In the model constructed, the strike price can be chosen, the fraction of 

the total portfolios value to be spent on options can also be chosen. Time assumptions of 

options are that the options are bought on the first day of every day at the market price, 

and the options expire on the last day of the same month.  

      An unhedged portfolio’s value is a weighted linear combination of the market prices 

of the underlying securities. But the price of an option is not a linear function of the price 

of the underlying security or index. Consequently the value of a protected, option hedged 

portfolio is a nonlinear function of the prices of the underlying securities and index.  
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      The quality of the risk protection offered by the hedging strategy will be measured by 

the 95% value-at-risk (VaR) metrics one month out in the future. This VaR is the dollar 

amount of the largest loss that can occur by the end of the month with a probability not 

greater than 5%. In other words, there is 95% probability that at the end of the month the 

portfolio value will be above the 95% VaR threshold. Put it in another way, in long-term 

average only once in every twenty months will the loss exceed the 95% VaR.  

      A successful manager shall produce high return while keeping tight control over the 

risks. For instance, he shall not incur loss exceeding the VaR limit more frequently than 

once in every 20 months. As an example to the contrary, a manager who turns in a large 

return at the end of the month 24 but who incurs loss exceeded the VaR limit four times 

during that period will not be considered reliable.  

      The value at risk needs to be assessed and communicated to the client at the 

beginning of every investment period. In the institutional world regulators require banks 

and insurance companies keep reserves proportional to their portfolio’s value-at-risk.  

      As a forward looking risk measure, VaR has to be calculated from observed past 

prices and applied to the future. In this project, three different methods are used to 

calculate VaR: 

1. Traditional estimate based Monte Carlo Simulation 

2. GARCH based Monte Carlo Simulation 

3. VaR estimation Based on resampling of historical data 

    Each of the three methods is implemented in Excel Visual Basic for applications 

(VBA). Then the VaR of various portfolios with different hedging strategies will be 

evaluated on a monthly basis over a two year sample interval between Jan 2000 and Dec 
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2001. This will enable us to compare the hedging strategies and also the VaR evaluation 

methods.  

1.2 Overview of VaR Modeling Approaches 

      In this section we give a concise overview of the three methods used to evaluate VaR. 

More details will follow in subsequent chapters where we describe the implementation of 

each method. 

      In the language of probability theory, the 95% VaR is the difference between the 

mean of the portfolio value and the lower 5% quantile of the probability distribution of 

the future portfolio value. Hence VaR evaluation is the estimation of the 5% quantile.  

      If daily security returns are assumed to be independent, normally distributed random 

variable and the portfolio value is a linear combination of the underlying security prices, 

then the portfolio value has a log-normal distribution, such that the VaR can be obtained 

from the known formula for the quantile of the log-normal distribution. We are not 

following this approach since it can’t be generalized to fat-tailed (non-normal) return 

distributions or to hedged portfolios containing options or other non-linear derivatives. 

      In all three of our approaches we simulate the future portfolio value distribution and 

estimate its 5% quantile by the value that separates the 5% smallest of the simulated 

values from the largest 95%. More precisely, we simulate the daily returns on the 

underlying securities (and index) and combine the returns into the portfolios value at the 

end of the month. The three methods differ in the way how the simulated daily returns are 

generated.  
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      In the two Monte Carlo approaches we model the daily returns on the 21 securities as 

a 21 dimensional joint-normally distributed random vector. Then we use a random 

number generator to draw pseudo-random deviates from this distribution. By simply 

changing the function in the random number generator, we would be able to generate 

other, e.g., fat-tailed return distribution.  

      To specify a multidimensional normal distribution we have to give its mean vector 

and its covariance matrix. In risk management the mean is usually assumed to be zero. 

We estimate the covariance matrix from a historical database of daily returns for the 

securities. In the Traditional estimate based Monte Carlo Simulation method we estimate 

the covariance matrix by the traditional sample covariance. In the GARCH based 

approach we use the recursive GARCH (1, 1) estimator. The parameters of the GARCH 

process are chosen to maximize the likelihood function.  

      The third VaR modeling approach considered in this project uses resampling instead 

of the Monte Carlo method. In this case, we are not making any assumption about the 

distribution of the daily returns and hence we don’t need to estimate its covariance 

matrix. Instead, we simulate the distribution of the daily returns by randomly resampling 

from the historical database of past daily returns.  

      In all three modeling approaches we base our simulated future values on the past 

three months of observations. We repeat this procedure on the first trading day of every 

month. The ultimate result is the VaR applicable to the last day of that month. We then 

compare the loss “predicted” by the VaR to the actual loss or gain realized over the 

month in question.  
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Chapter 2  

2. Background 

2.1 Risk Management and Risk Measures 

        Most investors wish to get the most returns at minimum risk. Risk is defined to be 
uncertainty of the future returns. There are five main categories of financial risks: 

• Market risk 
• Credit risk 
• Liquidity risk 
• Operational risk 
• Legal risk 

       Market risk is exposure to the uncertain market value of portfolio. Credit risk 

originates from the fact that counterparties may be unwilling or unable to fulfill their 

contractual obligations. Liquidity risk compounds both market risk and credit risk. 

Operational risk generally can be defined as arising from human and technical errors or 

accidents. Legal risk arises when a transaction proves unenforceable in law [1].  

2.2 What is Value at Risk 

        Value at Risk (VaR) is a category of risk measures,  unlike market risk metrics such 

as the Greeks, duration and convexity, or beta, which are applicable to only certain asset 

categories or certain sources of market risk, VaR can be applied to all asset categories 

and can cover all sources of market risk. Therefore VaR is very attractive to senior 

managers and thus is widely used by banks, security firms, commodity and energy 

merchants, and other trading organizations.  

 5
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       What is VaR? Value at Risk (VaR) summarizes the worst loss over a target horizon 

with a given level of confidence [1]. The most advantage of VaR is that it can summarize 

the maximum loss in a single dollar value.  

       For example, a risk manager may give the following statement:  “We are 90% certain 

that we will not lose more than $5000 next day.” This statement means that the loss level 

next day will not exceed $5000 with 90% probability under normal conditions. [7] 

       The following figure gives a visual illustration of the above statement.  

                     

 $5000 

Figure 2.1: VaR description 

2.3 How to Calculate VaR 

    To calculate Value at Risk measure we need two inputs, the portfolio’s holdings and 

historical market data. A transformation method will then be used to combine market data 

and portfolio holdings, and to get the daily returns on the portfolios. From these we can 

calculate the probability distribution of the portfolio value N days out in the future. The 

VaR is the x% quantile of this probability distribution. Steps of calculating VaR are: 

1. Calculate the current value of the portfolio by using the current assets prices and 

holdings 
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2. Set the time horizon 

3. Measure the variability of the risk factors 

4. Calculate the future value of the portfolio by using future assets prices and 

holdings 

5. Set the confidence interval 

6. Calculate the VaR value 

  The flow chart below gives visual interpretation of the procedures to calculate VaR.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Value of 
Future Assets

Value of Future Portfolio 
Value 

VaR 

Distribution of 
Future Returns 

Current Value of Portfolio 

Input Historical 
Price Data 

Input Portfolio 
Holdings 

 

Figure 2.2 Simple Overview of Calculation of VaR 

The crucial step is to obtain the probability distribution of the future portfolio value. 

There are mainly two methods to do this: 

• Historical Simulation Method 

• Model Based Method 
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In the Historical Simulation Method one observes how the portfolio would have 

performed in various past x-day periods in the market. Two important Model Based 

Methods are Monte Carlo simulation and resampling (Bootstrap).  

Inputs of Historical Data and Holdings 

    Two inputs for calculating VaR are original portfolio holdings 0  and historical prices ω

P  for market variables of the portfolio. The first input 0  indicates the number of initial 

shares of each asset held in the portfolio at the beginning, the second input 

ω

P  is a vector 

of the historical prices of each asset. P0 is price at time zero, Pt−  is price at t time 

periods back. From historical the prices P , we can calculate the historical returns vector 

R for the assets in the portfolio. 

Current portfolio Value  

Current portfolio value is easily to be got by  

         0  ∑
=

=
n

i
ii PV

1

0ω

Approaches to Get the Future Value of Portfolio 

      If changes of the market variable were assumed multivariate normality, then it is easy 

to estimate future prices of the market variables. Based on future prices of the market 

variables, we can estimate the volatility of the portfolio by a linear approximation from 

changes in the market variables. 

      However, if the portfolio includes options or mortgage based bonds, the portfolio 

changes are not linear from the changes of the market variables. For nonlinear portfolio, 

we often assume the joint normal distribution of risk factors and the returns. Denote the 
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current prices of assets P0 , and the future returns of the market variable R1 . Future returns 

of the assets can be given by
P

PPR 0

01 −
=1 . Then the future prices of assets can be got by  

       
P

PPPPP 0

01
00 −

+=1  

       RPP 100 *+=  

        =  )1( 10 RP +

Then to estimate the futures price of market variables is equivalent to estimate the future 

returns.  

        To estimate the future returns, four wildly used approaches are as follows:  

• Monte Carlo Simulation Method 

• Resampling Method 

• Quadratic Method 

• Historical Simulation 

      The first two methods are used in our project. The basic concept behind Monte Carlo 

approach is to simulate repeatedly a random process for the financial variables, covering 

a wide range of possible situations. In resampling method, the variables are randomly 

drawn from the historical sample pool with specified distribution.  

The Future Value of the Portfolio 

Denote the future prices of the market variables P1 , the future value of the portfolio1 , 

then     

V

        ∑
=

=
n

i
ii PV

1

111 ω
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Calculate VaR 

       VaR has two parameters, one is the time horizon N, which is measured in days, the 

other is X, the confidence interval. In VaR simulations, usually time period is set to the 

same as the time horizon, N days. The future value of the portfolio,1 , is the portfolio 

value after N days. Large amount of simulations is drawn, say, 2000 times. The 

difference between the mean value of 2000 simulations and the quantile value 

corresponding to the confidence interval is VaR. 

V
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Chapter 3  

3. Evaluation of VaR 
      This chapter illustrates in detail three models used to evaluate VaR.  

3.1 Variables Used in VaR Models 

 Notations and variables used in our VaR models are: 

i
t P−  represents historical price of the ith security on t time periods back in the past 

i
t P  represents future price of the ith security on t time periods forward in the future 

i
t R−  represents historical return of the ith security on t time periods back in the past  

iω
0  represents original holdings of the ith security in the portfolio 

in0  represents original shares of the ith security in the portfolio 

in1  represents future shares of the ith security in the portfolio 

V0  represents current value of the portfolio 

V1  represents future value of the portfolio 

3.2 Overview of the Evaluation Procedure 

     This project uses a scenario that is similar to what a risk manager would be facing. A 

portfolio was set up for a client beginning in January 2000 and ending in December 2001. 

The portfolio consists of twenty securities, most of which are mutual funds and S&P500 

companies. It will also consist of one put option of S&P500 index to protect against the 

risk of an unexpected market drop.  

 The risk manager will be supposed to implement VaR with a confidence level of 95% 

using one of three model-building methods. His choices are to leave the portfolio 
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unprotected, i.e. not to include the put option or to buy different levels of protection 

through the put option. He can choose the strike price of the option and the percentage of 

the total portfolio value that is spent on buying the option. The client wants the biggest 

profit at acceptable risk for the two-year investment. The proper risk management is 

considered to be that the VaR threshold is not breached more frequently than 5% of the 

times. 

 VaR measurement is calculated to tell the risk manager what loss level of the portfolio 

will be with a confidence degree of probability. Chapter 2 has stated procedures of 

calculating VaR in general. A slightly different practical procedure used in our project is 

given in the following flow chart.  

 

VaR 

Distribution of Future Portfolio Value 

Distribution of Future Assets returns 

Assumption of 
Returns and Monte 
Carlo

Resampling Estimate Covariance 
Matrix 

Historical Asset Returns 

Input Historical 
Price Data 

Input Portfolio 
Holdings 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3.1 Simple Overview of Evaluation of VaR 
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3.3 Historical Returns and Historical Volatilities 

     We collected historical price data of 20 securities from Mar 1990 to Nov 2003. The 

original portfolio holdings are known to be .   20
0

2
0

1
0 ,...,, ωωω

     Denote the historical prices of the market variables at t time periods back in the 

past Pt− . Denote Rt−  as the percentage price change, the returns, of the market variables 

between t and t-1 time periods back in the part.  

P
PPR t

tt
t

)1(

)1(

−−

−−−
− −

=  

      In VaR calculation, the returns are assumed to be statistically independent and 

normally distributed, and the mean of the returns is zero. 

      Denote the historical volatility during m time periods in the pastσ .  

∑
=

−=
m

i

i R
m 1

22 1σ  

      In calculating volatility, time period is usually set to be one day, σ calculated from 

the above equation is daily volatility. Assuming 252 trading days in a year, the 

annualized volatility will be σσ 16252 ≈ . 

3.4 Methods to Estimate Covariance Matrix 

3.4.1 Traditional Method 

      One approach to estimate the covariance matrix is to put equal weights on all 

historical returns. Assume the mean returns are zero, then the variance is given by 

∑
=

−=
m

i

i R
m 1

22 1σ  
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      The covariance of the historical returns of stock l and stock k is given by 

1
cov 1

−
=
∑
=

−−

m

rr
m

i
k

i
l

i

lk  

      The covariance matrix of n stocks is given by  























=

nn

n

RRR

RRR
RRRRR

COV

var...),cov(
.....
.....
...var),cov(

),cov(..),cov(var

1

212

1211

 

3.4.2 GARCH Method 

      A well-known method to estimate the volatilities is Generalized AutoRegressive 

Heteroskedastic (GARCH) Model. The GARCH model assumes that the variance of 

returns follows a predictable process. It assigns more weights on recent variance. The 

simplest model is GARCH (1, 1) model. The formula is as following: 

22)1(2)1( )()( σβαγσ tt
L

t RV −−−−− ++=  

      Where βαγ ,,  are positive constant weights that sum to one, 1=++ βαγ , and V  is 

long-run average variance rate. 

L

Estimating GARCH (1, 1) Parameters 

       We can estimate the βαγ ,,  by using maximum likelihood method from return data.  

Assume that the returns are R ….  that are normally distributed, and the 

mean of the returns are zero. Denote the variance by

,1 ,2R ,3R mR

ν . The likelihood of R  being 

observed is the value of the probability density function, given by 

i
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)
2

exp(
2
1 2

νπν
iR−

 

      The likelihood of the m observations occurring in the order in which they are 

observed is  

∏
=

−m

i

iR
1

2

)
2

exp(
2
1

νπν
 

      By maximum likelihood method, the best estimate of ν  is the value that maximizes 

the value of this expression. Since logarithm function is increasing function, maximizing 

a function is equivalent to maximizing the logarithm of it. Thus we want to maximize  

))ln((
1

2

∑
=

−−
m

i

iR
ν

ν    i.e.   ∑
=

−−
m

i

iR
m

1

2

)ln(
ν

ν  

      Optimization functions, such as Solver in Excel VBA, or MatLab toolbox, can be 

used to get optimal values of βα , . Then βαγ −−= 1 . 

Use GARCH (1, 1) to Get Historical Volatilities 

      Setting V to be the starting volatility at time zero, we can use L

22)1(2)1( )()( σβαγσ tt
L

t RV −−−−− ++=  

      to get the historical volatilities.  

Use GARCH (1, 1) to forecast Future Volatilities 

      Denote the long-term correlations of the historical returns as . Suppose the 

correlation between the returns will not be changed while time changes. Then the 

estimated covariance matrix can be got by 

Correl
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      Where COV is matrix 2020×

      Similarly the variance of the portfolio is given by 

∑∑∑
= <=

+=
20

1

20

1

2 ),(),(
i ij

ji
i

iip jiCOViiCOV ωωωωσ  

3.5 Monte Carlo Simulation 

      Based on two covariance estimations, Monte Carlo simulations will be used to 

simulate the distribution of future returns. The basic concept behind Monte Carlo 

approach is to simulate repeatedly a random process for variables based on specified 

distribution. The chart below is a flow chart of using Monte Carlo Simulation. 

  

Estimate Covariance 
by Traditional Way 

Estimate Covariance by 
GARCH method 

              
             Monte Carlo Simulation 

Value of the Assets 

Value of Portfolio 

Figure 3.2 Estimation Based Monte Carlo Simulation 

The simulation can be carried out by the following steps: 

 16



 

1. Assume the distribution of the returns 

2. Generate a pseudo random numbers, nεεεε ...,,, 321  from which the future prices 

of the assets are simulated  

3. Calculate the value of the assets(or portfolio) from data in step 2 

4. Repeat steps 2, 3 as many times as necessary, normally, more than 1000 times. 

 This process creates a sequence of the future value of the portfolio1 . 

We can sort the future values of the portfolio, and get the expected value and the 5% 

quantile of the smallest sorted values. The difference of the two numbers is VaR of the 

portfolio. 

1000
1

2
1

1 ,....,, VVV

Generating Normal Random Number 

      A critical part of Monte Carlo simulation is the generation of the standard random 

variables. Firstly random numbers are generated from a uniform distribution over the 

interval [0, 1]. More properly speaking, these numbers are “pseudo” random because they 

are generated from an algorithm using a predefined rule. Then these random numbers are 

used to generate random returns from the normal distribution of returns through the 

inverse cumulative probability distribution function.  

Multidimensional Normal Random Deviates with Given Covariance Matrix: 

    If returns are normally distribution vectors ),( ΣµnN , we can transform standard 

normal distribution to multidimensional normal random deviates.           

    If X is n dimensional standard normal random vector with independent corresponds, 
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the covariance matrix , , which is n independent standard 

normal deviates. 

Σ























==Σ

10.00
0....
....0
0..10
00.01

I

     We can construct ),( ΣµnN

][k

pseudorandom vector y  from previous 

pseudorandom vector x by setting , where k is the Cholesky 

matrix ofΣ . 

][k

)1,0(nN µ+= ][][ kk kxy

3.6 Resampling Model 

     In resampling model, random numbers are generated from uniform distribution, and 

then they are used to get sample with replacement from a pool of past historical returns. 

In this way, the distribution of historical returns is not necessary to be assumed as in the 

Monte Carlo simulation.  

     The steps to perform resampling are as followings: 

• Generate a random number N. N is between 1 to size the past three month’s 

returns. We generate the future returns by randomly selecting one return at a 

time from the sample over the past three months with replacement. Define the 

index choice as , a number between 1 and 60, the selected return is . 1N
1NR

• Repeating the operation for total of 20 replications yields a total of 20 pseudo 

numbers for future returns. From these future returns, we can calculate the 

values of assets in the future.  

    The most important advantage of bootstrap method is that it doesn’t require the 

distribution of the selected variable. It can include fat tails for the returns. But bootstrap 

method has some limitations. For small sample sizes, the bootstrapped distribution is a 
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poor approximation to the actual one. Thus when I implemented bootstrap method, about 

180 days data were used.  

3.7 Calculate Protected Portfolio Value 

    In this section, we explain the method to calculate the value of the portfolio, protected 

and unprotected. If the total value of the protected portfolio value is lower than the 

unprotected portfolio, then the hedging is ineffective to protect the portfolio.  

3.7.1 Calculate the Value of Protected Portfolio 

      The protected portfolio is composed of 20 stocks and one put option on S&P 500 

index. The protected portfolio has nonlinear relationship with the changes of the returns. 

The left graph below shows relationship between the value of the protected portfolio and 

the returns, the right graph shows distribution of portfolio value.  

 

Figure 3.3 Nonlinear Portfolio 

      We divide calculation of nonlinear portfolio into two parts. First we calculate the 

linear part of the portfolio, and then we calculate the option value of the portfolio. The 

summation of the two parts is the total value of the portfolio.  

       The steps to get the value of the portfolio are as following: 

• Calculate the covariance matrix based on past three month returns  
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• Use this to get the portfolio value on the day at the end of the month. Nonlinear 

portfolio value equals the value of linear part of the portfolio and the value of the 

option.  

3.7.2 Apply Covariance Matrix to Get Values of Assets 

Denote the shares of ith stock as . Then a security price m days out in the future is given 

by 

in

               ∏
=

+=
m

i
i

m rPP
1

0 )1(  

Then we can get  

              P
P

P
P
P

P
PPP m

m

m
m == −12

3

1

2
0 ......  

For , we can use Taylor expansion to approximate the equation. Then ∏
=

+=
m

i
i

m rPP
1

0 )1(

               ∑∑
==

=+=
m

i
i

m

i
i

m rPrPP
1

0

1

0 )exp())1ln(exp(

The value of the security is  Pn m
i * .

3.7.3 Calculate Option Value 

    On the first day of each month, the risk manager can buy a put option on S&P 500 

index, which expires at closing on the last day of the same month. We do the following 

steps to calculate the price of the option on the first day of each month: 

1. Simulation S&P 500 index as the 21st securities of the portfolio 

2. Use covariance estimate to get the volatility of the S&P 500 index 

3. Set the proportion of money put into buying option 

4. Set the striking price of the option 
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5. Calculate price of the option at the beginning of the month, accordingly shares of 

the option and value of the option 

When we calculate the beginning price, we use Black-Scholes formula 

           )()( 102 dNSdNKep rT −−−= −

Where T is the expiration period for the put option on S&P500 index,  

            K is the strike price     

           is the beginning price of the underlying stock at time 0 0S

            r is risk free interest rate 

            σ  is the volatility of the underlying stock 

            
T

TrKS
d

σ
σ )2/()/ln( 2

0
1

++
=  

            Td
T

TrKS
d σ

σ
σ

−=
−+

= 1

2
0

2
)2/()/ln(

 

Suppose at the end of the month the S&P500 index price is , we can calculate the 

option price by 

TS

               )0,( TSKMax −

3.7.4 Method to Calculate the Value of Unprotected Portfolio Value   

    Since unprotected portfolio only contains stocks, it is a linear portfolio. We can use 
covariance matrix which is introduced in 3.8.2 to get the value of unprotected portfolio.  

The procedure to get the value of the portfolio is as following: 

• Calculate the covariance matrix based on past three month returns 

 21



 

• Use this to simulate the portfolio value on the day at the end of the month. Its value 

equals the summation of value of the securities.  
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Chapter 4  

4. Using VaR for Risk Management  

     In previous chapter, we built models to calculate the VaR of the portfolio. In this 

chapter, we show results from our models, we also compare the results from different 

hedging strategies.  

4.1 Two Year Return and Volatility 

    Returns are always the most important thing in investment. For the two years 

investment, we must calculate the two years returns. Suppose for the first year, the value 

of the portfolio isV , at the end of the two years the value of the portfolio isV .  0 24

Then the two-year returns are given by 
0

024
24 V

VV
R

−
=  

Two years volatility are given by ∑
=

=
24

1
24 24

1
i

iRσ  

Both parameters are calculated for the unprotected and protected portfolio.  

4.2 Application of VaR for Risk Management 

    Firstly, we put a small percent of money on option, 0.1% of the value of the portfolio 

in put option, and set the strike price to be 90% of the closing price of S&P500 index. 

This hedging strategy gives little effect of hedging even in the turbulent stock market 

from Jan 2000 to Dec 2001.  

    Then, we put 1% of the value of the portfolio in option, and set the strike price to be 

95% or 99% of the closing price S&P500 index. One thousand simulations are drawn.  
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Graph for Unprotected Portfolio
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Figure 4.1 Unprotected Portfolio 

with 1% invest on options, with option strike price is 95% of closing price 

 

Graph for Protected Portfolio
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Figure 4.2 Protected Portfolio 

with 1% invest on options, with option strike price is 95% of closing price 
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Graph for Protected Portfolio

$0.80

$0.85

$0.90

$0.95

$1.00

$1.05

$1.10

Jan-00 Jan-00 May-00 Jul-00 Sep-00 Nov-00 Jan-01 Mar-01 May-01 Jul-01 Sep-01 Nov-01

Real Portfolio Value
5% Quantile of the Portfolio Value

 

Figure 4.3 Protected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price 

Two strike prices, at 95%, or at 99% of the closing price of S&P500 index, are both 

effective for hedging purpose. Considering the cost of option, 95% strike price is more 

desirable, since the option price with 99% strike price is more expensive than the option 

price with 95% strike price.  

Further, we investigated whether the hedging will perform better if we put more money 

on option. The answer is yes. Results of putting 2% and 1% of total portfolio value on 

options with 99% strike price are shown below.  
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Graph for Protected Portfolio
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Figure 4.4 Protected Portfolio 

1% invest on options, with option strike price is 99% of closing price 

Graph for Protected Portfolio
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Figure 4.5 Protected Portfolio 

2% invest on options, with option strike price is 99% of closing price 

    It shows that if we invest more money on put option, we get better hedging effect when 

the stock market drops violently.  
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    Are these models work well in bull stock market? We tried the model from Jan 1993 to 

Dec 1994. It shows that put option hedging strategy is not good in those years, since the 

hedging is not working.  

4.3 Comparison of VaR for Three Models 
 

  We also found that three different models give similar results.  

      The first chart is for protected portfolio using traditional estimate based Monte Carlo 

simulation with 1% investment on option with strike price at 99% of closing price of 

S&P500 index (1000 simulations). 
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Figure 4.6 VaR chart of protected portfolio 

Using traditional estimate based Monte Carlo simulation 

    The second chart is results from using GARCH estimate based Monte Carlo 

simulation. 
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VaR of Unprotected and Protected Portfolio
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Figure 4.7 VaR chart of protected portfolio 

Using GARCH based Monte Carlo simulation 
 
The third chart is the results from using GARCH resampling method.  
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Chapter 5 

5. Findings 

      From the perspective of the value-at-risk (VaR) risk measures, we can compare the 

effectiveness of various hedging strategies. Our findings are generalized as follows: 

• Option based hedging strategy shows good hedging results from Jan 2000 to Dec 

2001 when the stock market has extreme drop.  

• In volatile market like 2000-2001 buying put option at strike price 95% of current 

closing price protects portfolio better. 

• Spending 2% of portfolio value on options given better returns than spending 1% 

in turbulent years like 2000-2001. 

• In bull market, for instance 1992-1994, put option hedging strategy is not 

working. 

      

 

 

 

 

 

 

 

 

 29



 

Appendix A 

A.1 Traditional Estimate Based and Monte Carlo Simulation 

    Unprotected Portfolio (1000simulations) 
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Figure A.1 Unprotected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price of S&P500 

 
Protected portfolio using Monte Carlo 1% investment on option with 99% of current 

closing price of S&P500 (1000 simulations) 

Graph for Protected Portfolio
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Figure A.2 Protected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price of S&P500 
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A.2 GARCH Based Monte Carlo Simulation 
Unprotected portfolio (1000 simulations) 

Graph for Unprotected Portfolio
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Figure A.3 Unprotected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price of S&P500 

        Protected portfolio using Monte Carlo method 1% investment on option with 99% of 

current closing price of S&P500 (1000 simulations) 

Protected Portfolio Value 

$0.8000

$0.8500

$0.9000

$0.9500

$1.0000

$1.0500

$1.1000

Jan-00 Mar-00 May-00 Jul-00 Sep-00 Nov-00 Jan-01 Mar-01 May-01 Jul-01 Sep-01 Nov-01

Real Portfolio Value
5% Quantile of the Portfolio Value

 

Figure A.4 Protected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price of S&P500 
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A.3 Resampling Results 

Unprotected portfolio figure (1000 replications) 

Graph for Unprotected Portfolio
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Figure A.5 Unprotected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price of S&P500 

    Protected portfolio using resampling 1% investment on option with 99% of closing 

price of S&P500 (1000 replications) 

Graph for Protected Portfolio
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Figure A.6 Protected Portfolio 

with 1% invest on options, with option strike price is 99% of closing price of S&P500 
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