
Traffic Sensitive Active Queue Management for Improved Quality of
Service

by

Vishal Phirke

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2002

APPROVED:

Professor Mark Claypool, Major Thesis Advisor

Professor Robert Kinicki, Major Thesis Advisor

Professor David Finkel, Thesis Reader

Professor Micha Hofri, Head of Department

Abstract

The Internet, traditionally FTP, e-mail and Web traffic, is increasingly supporting emerg-

ing applications such as IP telephony, video conferencing and online games. These new

genres of applications have different requirements in terms of throughput and delay than

traditional applications. For example, interactive multimedia applications, unlike tra-

ditional applications, have more stringent delay constraints and less stringent loss con-

straints. Unfortunately, the current Internet offers a monolithic best-effort service to all

applications without considering their specific requirements. Adaptive RED (ARED) is

an Active Queue Management (AQM) technique, which optimizes the router for through-

put. Throughput optimization provides acceptable QoS for traditional throughput sensi-

tive applications, but is unfair for these new delay sensitive applications. While previous

work has used different classes of QoS at the router to accommodate applications with

varying requirements, thus far all have provided just 2 or 3 classes of service for ap-

plications to choose from. We propose two AQM mechanisms to optimize router for

better overall QoS. Our first mechanism, RED-Worcester, is a simple extension to ARED

in order to tune ARED for better average QoS support. Our second mechanism, RED-

Boston, further extends RED-Worcester to improve the QoS for all flows. Unlike earlier

approaches, we do not predefine classes of service, but instead provide a continuum from

which applications can choose. We evaluate our approach using NS-2 and present results

showing the amount of improvement in QoS achieved by our mechanisms over ARED.

Acknowledgements

I thank Dr. Mark Claypool and Dr. Robert Kinicki, my advisors, for their continual

support and encouragement throughout this work. They always gave full consideration to

my ideas and guided me whenever I appeared lost in doubts. Without them, this thesis

would not have been possible.

I thank Dr. David Finkel for being the reader for my thesis and providing valuable

comments to improve this work. I would also like to extend special thanks to my friends,

Aditya, Anuj, Dipen and Mandar, for helping me in their own ways and making life easier

for me. I thank all my friends at WPI who have made my stay here a memorable thing in

my life.

I dedicate this work to my parents, whose unconditional love and moral support has

helped me throughout my life.

i

Contents

1 Introduction 1

2 Related Work 7

2.1 Simple AQM Approaches . 8

2.2 Throughput Fairness Approaches . 10

2.3 Class Based Approaches . 11

2.4 Integrated Services . 13

2.5 Queue Law . 14

3 RED-Worcester 16

3.1 Delay Hints . 17

3.2 Mechanism . 18

3.2.1 Moving Target . 18

3.3 Overhead . 18

3.4 Evaluation . 19

3.4.1 Simulation Setup . 19

3.4.2 Analysis . 22

4 RED-Boston 29

4.1 Delay Hints . 30

ii

4.2 Mechanism . 32

4.2.1 Delay Hint Based Drop Probability 32

4.2.2 Weighted Insert . 33

4.2.3 Algorithm . 33

4.3 Overhead . 34

4.4 Evaluation . 34

4.4.1 Simulation Set - 1 . 36

4.4.2 Simulation Set - 2 . 41

5 Conclusions 46

6 Future Work 48

iii

List of Figures

1.1 QoS Spectrum of Applications . 2

1.2 Approaches for QoS in Internet Routers 3

2.1 Adaptive RED . 9

2.2 Adaptive RED Algorithm for Adjusting Average Queue to the Target Queue 9

2.3 Queue Law . 15

3.1 RED-Worcester . 16

3.2 Network Topology . 20

3.3 Simulation RED-Worcester and ARED: Traffic Mix 22

3.4 RED-Worcester’s Moving Target . 23

3.5 ���� Analysis I . 24

3.6 ���� Analysis II . 24

3.7 Average queue size in RED-Worcester 25

3.8 Percent packet drops . 26

3.9 Normalized QoS for Throughput-Sensitive Flows 27

3.10 Normalized QoS for Delay-Sensitive Flows 28

4.1 Possible Hint Strategy for an Interactive Multimedia Application 31

4.2 RED-Boston Algorithm . 35

4.3 Simulation Set-1: Traffic Mix . 36

iv

4.4 Simulation Set-1: Average Queue Size 37

4.5 Simulation Set-1: Queuing Delays . 38

4.6 Simulation Set-1: Average Per Flow Percent of Packets Dropped 39

4.7 Simulation Set-1: Average Per Flow Throughput 39

4.8 Simulation Set-1: Normalized QoS for Throughput-Sensitive Flows . . . 40

4.9 Simulation Set-1: Normalized QoS for Delay Sensitive Flows 41

4.10 Simulation Set-2: Traffic Mix . 42

4.11 Simulation Set-2: Queuing Delays . 42

4.12 Simulation Set-2: Average Per Flow Percentage of Packets Dropped . . . 43

4.13 Simulation Set-2: Average Per Flow Throughput 43

4.14 Simulation Set-2: Normalized QoS . 44

v

List of Tables

4.1 Simulation Set-2: QoS Parameters . 44

vi

Chapter 1

Introduction

The Internet today carries traffic for applications with a wide range of delay and through-

put requirements as depicted in Figure 1.1. Traditional applications such as FTP and

E-mail are primarily concerned with throughput and hence, can withstand large queues

in Internet routers, which improves throughput. On the other hand, emerging appli-

cations such as IP telephony, video conferencing and networked games have different

requirements in terms of throughput and delay than these traditional applications. In

particular, interactive multimedia applications, unlike traditional applications, have more

stringent delay constraints than loss constraints. Moreover, with the use of repair tech-

niques [BFPT99, LC00, PCM00, PW99] packet losses can be partially or fully concealed,

enabling multimedia applications to operate over a wide range of losses, and leaving end-

to-end delays as the major impediment to acceptable quality. Thus, interactive multimedia

applications prefer smaller queues in Internet routers. Web traffic is moderately sensitive

to delay as well as throughput and hence, it falls in the middle of the spectrum and prefers

medium queues in Internet routers.

Unfortunately, current Internet routers are not able to provide a choice in Quality of

1

Delay Sensitivity

T
hr

ou
gh

pu
t S

en
si

tiv
ity

FTP, E-mail

Web
Applications

Interactive
Multimedia

(Large queues)

(Medium queues)

(Small queues)

Figure 1.1: QoS Spectrum of Applications

Service (QoS).1 Most of the current Active Queue Management (AQM) techniques focus

on providing higher throughput at the router without much consideration for queuing de-

lays. Current and proposed router queue mechanisms can be classified as in Figure 1.2

on the basis of the level of QoS support provided and the complexity of the router imple-

mentation.

Due to the simplicity of the FIFO queuing mechanism, drop-tail queues are the most

widely used queuing mechanism in Internet routers today. When drop-tail buffers over-

flow, newly arriving packets are dropped regardless of the application constraints for the

packet. To accommodate bursty traffic, drop-tail routers on the Internet backbone are

over-provisioned with large FIFO buffers. When faced with persistent congestion, these

drop-tail routers yield high delays for all flows passing through the bottlenecked router.

1Throughout this work, we use the term QoS to refer explicitly to delay and throughput provided by the
network.

2

Per flow
QoS

No
QoS QoS Support

Simple

C
om

pl
ex

it
y

Complex

DropTail

ARED

IntServ

RED-Boston

CSFQ

CBT
ABE

FRED

DiffServ

D-CBT

RED
RED-Worcester

Figure 1.2: Approaches for QoS in Internet Routers

This best-effort service provides no consideration for interactive multimedia flows or even

Web flows that can be severely affected by high delays. Clearly, drop-tail provides very

limited, if any, QoS support.

RED [FJ93], probably the best-known AQM mechanism, attempts to keep the average

queue size at the router low, while keeping throughput high. By detecting the onset of

congestion earlier than drop-tail, RED avoids the global synchronization of TCP flows

that hampers aggregate throughput. Adaptive RED (ARED) [FGS01] adjusts the RED

operating parameters to accommodate a wider range of traffic loads. However, both RED

and ARED provide equal treatment to incoming traffic and tend to be tuned for high

throughput without any consideration for the traversing application’s delay requirements.

Streaming multimedia applications avoid using TCP because TCP can suffer from

bursty data rates and because TCP retransmits data lost due to packet drops at the router.

This results in poorer quality multimedia due to increased delay and jitter. Instead, stream-

ing media applications often choose UDP as their transport protocol [WCZ01]. However,

UDP is unresponsive to packet drops that indicate congestion at the router. Flow Random

Early Drop (FRED) [LM97] and Core-Stateless Fair Queuing (CSFQ) [SSZ98] routers

are specifically designed to limit the bandwidth of unresponsive flows to achieve through-

3

put fairness among flows. While these strategies provide good QoS for flows highly

concerned about throughput, FRED and CSFQ ignore the willingness of interactive mul-

timedia applications to accept reduced throughput if accompanied by reduced delay.

Since unresponsive UDP flows can lead to network congestion collapse and because

UDP does not adjust its data rates when faced with network congestion, there is a strong

movement to make streaming multimedia traffic TCP-friendly [FF99]. In [FF99], a TCP-

friendly flow is defined as the flow whose arrival rate does not exceed the arrival rate of

a conformant TCP connection in the same circumstances. In the near future all multi-

media applications are likely to use TCP-friendly protocols that adjust their tranmission

rates smoothly, such as in [FHPW00, RHE99, TZ99] without actually using TCP. Hence,

this research assumes all flows, including multimedia flows, either use TCP or are TCP-

friendly flows that respond to packet drops as indicators of congestion.

ABE [HKBT01] provides a queue management mechanism for low delay traffic.

In ABE, delay-sensitive applications can sacrifice throughput for lower delays. How-

ever, ABE traffic classification is rigid in that applications are either delay-sensitive or

throughput-sensitive without the applications themselves being able to choose relative

degrees of sensitivity to throughput and delay.

CBT [PJS99] provides class-based treatment with guarantees on bandwidth limits

for different classes. However, these classes are pre-determined and fixed, while prac-

tically, even within the multimedia traffic class, interactive multimedia applications have

more stringent delay requirements than broadcast multimedia applications. DCBT with

ChIPS [CC00] extends CBT by providing dynamic thresholds and lower jitter for multi-

media traffic, but still limits all multimedia traffic to the same QoS.

DiffServ approaches, such as Assured Forwarding (AF) [HBWW99] and Expedited

Forwarding (EF) [JNP99], try to give differentiated service to traffic aggregates. However,

they require complicated mechanisms to negotiate service level agreements. In addition,

4

DiffServ architectures require traffic monitors, markers, traffic shapers, classifiers and

droppers and framework to enable components to work together.

IntServ provides the best possible per flow QoS guarantees. However, it requires

complex signaling and reservations via RSVP [Wro97] by all routers along a connection

on a per-flow basis, making scalability difficult for global deployment.

We present two new AQM techniques called, RED-Worcester2 and RED-Boston2, to

improve QoS support at the router. In our approach, applications mark each packet with

a suggested delay, referred to as a delay hint, indicating the relative importance of delay

versus throughput. Our first AQM mechanism, RED-Worcester, is a simple extension to

ARED and tries to meet the average performance requirements of incoming packets in

terms of throughput and delay, thus improving the overall QoS support at the router. Our

second AQM mechanism, RED-Boston, tries to meet the individual performance require-

ments of incoming packets, allowing them to choose lower throughput for lower delays

or higher delays for higher throughput. RED-Boston uses RED-Worcester to adjust the

average queue size as per traffic requirements and uses weighted insert and delay hint

based drop probability mechanisms to provide individual delay-throughput trade-off to

incoming packets. The service is still best-effort in that it requires no additional polic-

ing mechanisms, charging mechanisms or usage control. Under the proposed service,

RED-Worcester and RED-Boston routers operate equally well under scenarios with only

traditional traffic and operate better under scenarios with mixed or multimedia only traffic.

We evaluated RED-Worcester and RED-Boston via simulation under a variety of traf-

fic mixes and compared their performance with ARED. The results show that as traffic

mix changes from mostly throughput-sensitive to mostly delay-sensitive, RED-Worcester

improves the average QoS support at the router whereas RED-Boston improves the QoS

support for delay-sensitive as well as through-sensitive flows. We also evaluated RED-

2Similar to various versions of TCP, which are named after cities in Nevada, we have named our versions
of the RED active queue management technique after cities in Massachusetts.

5

Boston with a traffic mix consisting of applications with a range of delay and throughput

requirements and found that RED-Boston achieves a performance that is more suitable to

all applications than performance under ARED.

The remainder of this thesis is organized as follows: Chapter 2 describes the related

work; Chapter 3 presents implementation details of RED-Worcester and its evaluation;

Chapter 4 presents implementation details of RED-Boston and its evaluation; Chapter 5

summarizes our work with conclusions and Chapter 6 discusses the possible future work.

6

Chapter 2

Related Work

Queues are used in routers to absorb transient bursts in incoming packet rates, allow-

ing the router sufficient time for packet transmission. When the incoming packet rate is

consistently higher than the router’s outgoing packet rate, the queue size will increase,

eventually exceeding available buffer space. When the buffer is full, some packets must

be dropped. A simple solution is to drop the packets that are just arriving at the input

port, i.e., if a packet arrives and finds the queue full it is dropped. This policy is known as

drop-tail or tail-drop. Although drop-tail is simple to implement and has been in use in the

Internet for many years, it can lead to poor performance and can cause global synchroniza-

tion, lockouts, and full queues [Has89, FJ92]. Also, drop-tail gives uniform treatment to

all flows, without considering the individual needs of the applications supported by these

flows.

Different approaches have been proposed to address the performance problems of

drop-tail. Section 2.1 discusses simple active queue management approaches such as

RED and ARED. Section 2.2, explains active queue management approaches which try

to distribute router’s bandwidth fairly amongst all the competing flows. Section 2.3 cov-

ers class based approaches, which provides class based services to groups of flows. Sec-

7

tion 2.4 discusses the IntServ approach, which provides per flow QoS guarantees by doing

per flow reservations in the routers. Section 2.5 explains research on a queue law describ-

ing the relationship between average queue size and packet drop rates at the router.

2.1 Simple AQM Approaches

RED (Random Early Detection) [FJ93] is a proactive AQM technique that detects in-

cipient congestion and provides feedback to end hosts by dropping packets early. The

motivation behind RED is to keep the average queue size small, increase throughput, re-

duce bursty loss and global synchronization. RED operates based on an average queue

length that is calculated using an exponential weighted average of the instantaneous queue

length. RED drops packets with a probability depending on the average length of the

queue. The drop probability increases from 0 to a maximum drop probability ���� as the

average queue size increases from a minimum threshold ����� to the maximum threshold

�����. If the average queue size goes above the �����, all packets are dropped.

In RED, the average queue size varies with the level of congestion and with the param-

eter settings [MBDL99, OLW99]. [CJOS00] shows that RED provides no advantages over

traditional drop tail queuing for Web-only traffic. Using response time as a performance

metric, [CJOS00] showed that below ��� load, there is no significant improvement in

response times for Web traffic with RED over drop-tail.

Adaptive RED [FGS01] tries to perform better than RED over wider range of loads.

Adaptive RED provides a predictable average delay by restricting the average queue size

within a fixed target range. If the current average queue size goes above the target range,

packets are dropped more aggressively from the queue to bring the average down. On

the other hand, if the current average is below the target range, packets are dropped less

aggressively to increase the average queue.

8

minth maxth

Average queue

Drop
Probability

Fixed Target

maxp

adjustment

Figure 2.1: Adaptive RED

Every �����	�
 seconds: // 500ms, by default
if (���� � target and ����
 0.5) then

increase ����:
���� += � // about 0.1, by default

elseif (����
 target and ���� � 0.01) then
decrease ����:

���� �= � // 0.9, by default

Figure 2.2: Adaptive RED Algorithm for Adjusting Average Queue to the Target Queue

Thus, ARED keeps RED’s basic structure but adjusts ���� to keep the ���� within

a target range between ����� and ����� as shown in Figure 2.1. The default target is

centered halfway between ����� and ����� with a range of 0.1 on either side. The

ARED algorithm adjusts its target as depicted in Figure 2.2. In ARED, queue weight ��

used for calculating the average queue size is automatically set as a function of outgoing

link’s bandwidth. The maximum threshold ����� is set to three times �����. Thus, the

only parameter to choose is �����. [FGS01] reports that ����� can be selected based

on average queuing delay requirements at the router. However, pre-configured average

queuing delays will then be fixed for all types of traffic mix even if they have varying

9

QoS requirements.

The first mechanism proposed in this thesis, RED-Worcester, dynamically configures

the average queue size at the router to meet the average queuing delay requirements of

the incoming packets. The second mechanism, RED-Boston, tries to provide individ-

ual delay-throughput tradeoff to the incoming packets, thus providing better QoS to all

applications.

2.2 Throughput Fairness Approaches

Throughput fairness approches keep per flow states at the router in order to give a fair

share of the throughput to all flows. Flow Random Early Drop (FRED) [LM97] and

Core-Stateless Fair Queuing (CSFQ) [SSZ98] are two such approaches.

FRED is an extension to RED which tries to improve the throughput fairness between

heterogeneous flows. It maintains an estimate of the average per flow buffer count, and

favors the flows with fewer packets queued than the estimated average over the flows

having more packets queued than the average per flow estimate. FRED uses per flow state

variables, �
��	 indicating number of packets buffered for the flow and ������	 indicating

the number of times a particular flow uses more than its fair share, for each active flow in

the router. FRED penalizes flows with high strike values, i.e., unresponsive flows which

fail to respond to congestion notification. Due to the per-flow state required at each router,

FRED approach does not scale well.

CSFQ is a more scalable approach than FRED as it maintains per flow state only at the

edge routers. CSFQ views the Internet as islands of routers, where flows enter the island

through special routers called edge router and all the routers within the island are called

core routers. In CSFQ, edge routers compute the per flow rate estimate by keeping per

flow states and label the packets passing through them by inserting these estimates into

10

each packet header. The core routers do not have to keep any per flow state, and employ

a probabilistic dropping algorithm based on the flows arrival rate specified in the packet

labels and an estimate of the aggregate traffic maintained by the core routers. Since the

flow’s outgoing rate is the minimum of the incoming rate and its fair share at the core

routers, the core routers in CSFQ are capable of updating the labels in the packets with

the new rate estimate.

Both these approaches only deal with throughput fairness amongst the flows and do

not consider the relative importance of queuing delays to different applications repre-

sented by these flows. An interactive multimedia application would rather sacrifice some

throughput from its fair share to receive lower queuing delays, whereas a throughput-

sensitive application such as FTP would rather accept higher queuing delays than lower

throughput. Thus, if a router can allow the applications with different requirements to

trade throughput or delay with each other, then it can improve the overall performance of

all applications.

The two AQM mechanisms presented in this thesis, try to give equal importance

to throughput and delay requirements of an application. The first mechanism, RED-

Worcester, tries to meet the average requirements of the incoming packets in terms of

throughput and delay, whereas second mechanism, RED-Boston, tries to provide cus-

tomized delay-throughput service to all applications.

2.3 Class Based Approaches

Class based approaches do consider varying QoS requirements of applications and pro-

vide different classes of service from which applications can choose.

Alternate Best Effort (ABE) [HKBT01] provides two classes of service, blue for

throughput-sensitive applications and green for delay-sensitive applications. ABE uses

11

two queues, a lager queue for blue traffic and a smaller queue for green traffic and uses

a deadline based scheduler to serve the packets from these queues. Thus, ABE allows

delay-sensitive applications to sacrifice throughput for lower delays without affecting

throughput-sensitive applications. However, ABE provides just two classes of service,

thus restricting the applications to be either delay-sensitive or throughput-sensitive with-

out allowing them to choose their own delay-throughput tradeoff.

Class Based Thresholds (CBT) [PJS99] provides class-based treatment with gurantees

of bandwidth limits for different classes. For this, CBT tracks the queue occupancy for

each class as well as the overall queue occupancy. Whenever a packet associated with a

particular class arrives, the class’s average queue occupancy is updated. The class average

is then compared with the thresholds for the class and the drop decision is made as in RED.

Thus, in CBT, each class’s average queue occupancy does not exceed its allocated share

of the queue. However, these classes are pre-defined and are fixed, and do not allow the

applications to select their own delay-throughput tradeoffs. DCBT with ChIPs [CC00]

extends CBT by providing dynamic thresholds for classes and lower jitter for multimedia

traffic. But, DCBT also suffers from the same problem as of CBT, that is restricting the

applications to pre-defined classes. In addition, both CBT and DCBT provide only per

class differentiated throughput service and do not really provide any differentiated delay

service.

DiffServ approaches such as Assured Forwarding (AF) [HBWW99] and Expedited

Forwarding (EF) [JNP99] try to provide QoS within the current best effort Internet. Diff-

Serv combines flows with similar requirements into traffic aggregates and then provides

differentiated service to these traffic aggregates. In DiffServ, clients or organizations ne-

gotiate long term service agreements with their Internet Service Providers(ISPs) for spe-

cific classes of traffic and ISPs try to provision their networks for providing the requested

service as long as the traffic is within its profile as specified by the agreement. There

12

is no performance guarantee, but there are relative service guarantees between different

classes. Providing differentiated services is difficult when traffic travels across different

ISP domains as the ISPs also need to negotiate service agreements with each other. Diff-

Serv also requires traffic monitors, markers, traffic shapers, classifiers and droppers and

an overall framework which makes them work together. Due to the complicated process

of agreement negotiations and monitoring traffic, it is not easy to provide as many classes

as required by the large number of applications supported by the Internet without causing

additional overhead.

Our first AQM mechanism, RED-Worcester, is a simple extension to ARED and does

not provide any class based service. RED-Worcester provides the service corresponding

to average requirements of the incoming packets. Thus, it dynamically tunes the router

to provide better overall QoS than ARED. Our second AQM mechanism, RED-Boston,

provides a continuum of classes for applications to choose from. RED-Boston does not

confine applications to pre-defined classes and tries to meet their individual requirements.

RED-Boston is more scalable as it preserves the best effort service and does not require

traffic monitoring or shaping.

2.4 Integrated Services

The Integrated Services (IntServ) approach provides per flow QoS guarantees by explic-

itly reserving buffers and bandwidth at each router along the flow’s path. IntServ requires

an end-to-end signaling protocol such as RSVP [Wro97] for reserving resources before

the flow is admitted into the network. Each router in the flow’s path then applies an admis-

sion control algorithm to determine if there are sufficient resources to meet the requested

service without affecting the existing flows. The flow is admitted only if all the routers

along the flows path have sufficient resources to meet the flow’s service requirements.

13

Once a flow is admitted, each router is then responsible for ensuring that the flow receives

its requested service. For this it has to deviate from the best effort service and use a

complicated scheduler which uses per flow service information maintained at the routers

for scheduling packets. The IntServ architecture defines two major classes of service,

Guaranteed Service and Controlled-Load service. The Guaranteed Service provides firm

bounds on the service in terms of delays and throughput throughout the network. The

Controlled-Load service does not give any quantitative guarantees about performance.

However, it ensures that a flow will receive a quality of service closely approximating the

QoS that the same flow would receive from an unloaded network element.

The IntServ approach is not scalable and incremental deployment is not possible as all

the routers in the flow’s path have to implement integrated services to make it effective.

Also, the admission control process becomes very complicated in the presence of dynamic

routing changes, which is very common in the current Internet.

Similar to Controlled Load service, RED-Worcester and RED-Boston, do not provide

any absolute performance guarantee, but try to provide improved QoS support to applica-

tions within best effort Internet. As RED-Worcester and RED-Boston, do not require per

flow reservations at each router, they are more scalable than IntServ approaches.

2.5 Queue Law

Figure 2.3 depicts the queue law as explained in [FB00], assuming a single congested

router with uniform dropping probability. As the drop rate at the router increases the av-

erage queue size and hence, average queuing delays experienced by the incoming packets

decreases. However, an increase in drop rate also means reduced throughput. Thus, the

average queue size at the router decides the throughput and delay treatment given to flows

passing through it, and both throughput and delay can be controlled by changing drop

14

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

Drop Rate

Figure 2.3: Queue Law

rate. ARED tries to maintain fixed average queue size, thus providing predictable average

queuing delays by adapting drop rate. However, a fixed average queue size does not suit

all kinds of traffic mixes and hence, the two AQM mechanisms proposed in this thesis,

RED-Worcester and RED-Boston, adjust average queue size based on average require-

ments of the incoming traffic in order to provide better overall QoS at the router.

15

Chapter 3

RED-Worcester

This chapter explains the RED-Worcester mechanism and presents evaluation results with

analysis. RED-Worcester tries to improves the overall QoS support at the router.

MINth MAXth

Average queue

D
ro

p
Pr

ob
ab

ili
ty

Moving Target

MAXp
adaptation

Throughput-SensitiveDelay-Sensitive

Medium Delay and Medium Throughput sensitive

Figure 3.1: RED-Worcester

Unlike ARED’s fixed target queue size, RED-Worcester updates its target queue size

based on incoming traffic requirements as depicted in Figure 3.1. Thus, when incoming

traffic is mostly throughput-sensitive, RED-Worcester maintains a higher average queue to

improve the overall throughput. On the other hand, when incoming traffic is mostly delay-

sensitive, RED-Worcester lowers the average queue size to reduce the average queuing de-

16

lays. In case of medium throughput and medium delay sensitive traffic, RED-Worcester

maintains an average queue size which gives medium throughput and delay performance.

RED-Worcester uses delay hints as explained in Section 3.1 to determine the require-

ments of incoming traffic in terms of delay and throughput at the router. The RED-

Worcester router mechanism is described in Section 3.2. Section 3.3 discusses the over-

head involved in RED-Worcester mechanism and Section 3.4 presents the evaluation of

RED-Worcester with detail analysis of the results.

3.1 Delay Hints

In general, source hints are packet labels sent by end hosts or edge routers at the ingress

to a network that carry information about a flow such as round trip time, bandwidth used,

protocol type or other attributes. In RED-Worcester, application end-hosts indicate their

sensitivity to queuing delays as source hints that we refer to as delay hints. The delay hint

is not an absolute bound on queuing delay, but is rather a suggestion to Internet routers

as to the relative importance of delay versus throughput. If delay hints are put in packet

headers by edge routers, then existing applications can be easily supported without mod-

ification, where as if delay hints are inserted by the end hosts, then applications will have

more flexibility in choosing their own hints. For flows which do not provide delay hints,

RED-Worcester uses a default delay hint which corresponds to ARED’s target queue size.

RED-Worcester does not guarantee queuing delays based on the delay hint, but uses

the delay hint to calculate the average queuing requirements of incoming packets and

adjust the average queue accordingly.

17

3.2 Mechanism

RED-Worcester router mechanism is a simple extension to ARED mechanism. RED-

Worcester replaces the fixed target of ARED by a moving target as described in Sec-

tion 3.2.1

3.2.1 Moving Target

For each incoming packet at the RED-Worcester router, the target queue size that a packet

can tolerate is calculated based on the delay hint specified in the packet as shown below:

������ � � ���� (3.1)

where � is the link capacity in bps, � is the delay hint in seconds and � is the packet

size in bits. The moving target is calculated as the exponentially weighted average of the

tolerable target queue size for each incoming packet as shown below:

��	��� ������ � ��� ������	��� ������� �� � ������ (3.2)

where �� is the weight used for calculating the exponentially weighted moving average.

In our implementation, we used �� � ���	. Calculating the target in this way, ensures

that average queue size at RED-Worcester router reflects the average requirements of the

incoming packets.

3.3 Overhead

To use the QoS services provided by RED-Worcester, packets have to be labeled with

delay hints. Based on discussion in [SZ99], there are from 4 to 17 bits in the IP header

18

that may be available to carry source hints. Using milliseconds as the units for delay

hints, 10 bits covers queuing delays from 0 to 1023 ms. Since 10 ms granularity is more

than sufficient for most applications, the number of bits needed can be reduced to 7. The

labeling of delay hints itself can be done either by end hosts, most likely the applications,

or by edge routers at the ingress of a network. The RED-Worcester router has to read the

labels from the incoming packets, an overhead similar to that in other approaches such

as ABE [HKBT01], AF [HBWW99] and CBT [PJS99]. RED-Worcester calculates the

moving queue average target, a calculation similar to the average queue calculation in

ARED.

Thus, RED-Worcester adds a little complexity to ARED and in return improves the

overall QoS support at the router.

3.4 Evaluation

This section presents the evaluation results of RED-Worcester with detailed analysis. In

Section 3.4.1, the experimental setup and NS-2 [oCB] simulation details associated with

our comparison study of the performance of RED-Worcester versus ARED are described.

Section 3.4.2 presents our results and analysis.

3.4.1 Simulation Setup

This section describes the experimental setup and NS-2 simulation details associated with

our comparison study of the performance of RED-Worcester versus ARED. The NS-2

simulator provides the ability to simulate drop-tail, RED and ARED routers. Additionally,

NS-2 includes code to simulate both TCP protocols and TCP-friendly rate controlled

protocols such as TFRC [FHPW00]. RED-Worcester was simulated by extending the

ARED implementation and TCP NewReno and TFRC were modified to send delay hints.

19

.

.

.

.

.

.

R1 R2

S1

S2

SN-1

SN

D1

D2

DN-1

DN

20ms,5Mbps

15ms,20Mbps 15ms,20Mbps

80maxth

20minth

120 packetsQueue Size

ARED/QAQMAQM

Figure 3.2: Network Topology

The generic network topology used for all experiments is shown in Figure 3.2. S1-SN

are traffic sources and D1-DN are destinations. The S-D pairs were varied to provide

traffic mixes that included different combinations of TCP NewReno and TFRC flows,

where the TFRC flows are meant to represent TCP-friendly multimedia flows. All sources

send fixed-length 1000-byte packets. All links connecting sources to router R1 and all

links connecting destinations to router R2 have a 20 Mbps capacity and a 15 ms delay.

With the bandwidth and delay of the bottleneck link going from R1 to R2 set at 5 Mbps

and 20 ms respectively, this topology is such that packet drops only occur at R1, where

all measurements are made. For both RED-Worcester and ARED, the queue size at the

congested router is 120 packets and ����� and ����� are set to 20 packets and 80 packets,

respectively. All simulated flows start at time 0 sec and end at time 100 sec. Performance

measurements are taken during the stable interval between 20 sec and 80 sec to avoid

transient conditions from startup and stopping.

We first evaluate how RED-Worcester’s target adjusts to changing traffic require-

ments. We plot average queue size under different traffic mixes to see that it does reflect

the average requirements of the incoming flows and we also compare overall drop rates in

20

RED-Worcester with ARED. We measure queuing delays in milliseconds at the congested

router.

However, analyzing throughput and delay alone is not sufficient as application perfor-

mance realistically involves tradeoffs between throughput and delay. We propose a new

metric, QoS, that provides a quantitative performance metric designed to capture to some

degree the nature of the throughput-delay tradeoff. The correct choice of QoS function

depends upon the the application’s sensitivity to delay and throughput. An application

may dynamically adjust its delay hints to current network conditions in attempt to im-

prove its QoS. To include a wide spectrum of individual application types that can select

their own tailored QoS objective, we provide a QoS measure that is generic while per-

mitting customized combinations of delay and throughput measures for each individual

applications:

��� � �
��� (3.3)

where � is throughput in bps, � is queueing delay in seconds at the router and � � � �

�. While the choices of � and � depend upon the throughput and delay tolerances of

applications themselves, the expectation is that the relativity of the delay hints from RED-

Worcester enabled sources will vary accordingly. Note our new metric, QoS, is in fact a

traffic-sensitive variant of the power performance metric.

In the experiments discussed in this thesis, � � �, is used for throughput-sensitive

flows (such as Email or file transfer). Since these flows can tolerate delay, QoS for them

depends only upon throughput. We use � � ��
 and � � ��
 for delay-sensitive flows

(such as an interactive videoconference), since these flows require low delay, but also

moderate amounts of throughput. For medium throughput and medium delay-sensitive

flows (such as some HTTP flows for Web browsing), we use ��

 �
 � and �
 �

��
.

21

3.4.2 Analysis

This section presents the simulation results and their analysis for RED-Worcester and

ARED. The simulations evaluate performance under a traffic mix that varies from mostly

throughput-sensitive flows to mostly delay-sensitive flows. Figure 3.3 provides details on

the traffic mixes used for our simulations.

0ms 16ms 32ms 48ms 64ms 80ms 96ms 112ms

Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

1 19

5 15

10 10

15 5

19 1 20 flows

20 flows

20 flows

20 flows

20 flows

Delay hint

Total Flows

Figure 3.3: Simulation RED-Worcester and ARED: Traffic Mix

Each simulation in this set ran 20 flows using the network topology shown in Fig-

ure 3.2. Throughput-sensitive flows were represented by TCP flows carrying a delay hint

of 80 ms, which corresponds to a queue size of 50 packets at the bottlenecked router R1.

Delay-sensitive flows were represented by TFRC flows carrying a delay hint of 32 ms,

which corresponds to a queue size of 20 packets at R1. The X-axes for all the graphs in

this section indicate the changing traffic mix corresponding to the five different simula-

tions described in Figure 3.3.

Figure 3.4 shows RED-Worcester’s moving target as incoming traffic mix changes.

When most of the incoming flows are throughput-sensitive carrying a delay hint of 80

ms, i.e., queue size of 50 packets, RED-Worcester’s moving target settles at around 48

packets. As the number of delay-sensitive flows carrying a delay hint of 32 ms, i.e.,

queue size of 20 packets, increases, the moving target moves down linearly and finally

settles at around 22 packets, when most of the flows are delay sensitive. The bars show

the standard deviations in the moving target.

22

0

10

20

30

40

50

60

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 5 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

A
ve

ra
ge

 M
ov

in
g

T
ar

ge
t (

pa
ck

et
s)

Figure 3.4: RED-Worcester’s Moving Target

Figure 3.5 shows the ���� adaptation over time in RED-Worcester as the traffic mix

changes from throughput-sensitive (low drop probability) to delay-sensitive (high drop

probability). When most of the incoming flows are throughput-sensitive, ���� settles

to a comparatively lower value, allowing the average queue size to grow. This improves

the overall throughput performance of the RED-Worcester router, allowing it to serve

the throughput-sensitive flows in a better way. On the other hand, when most of the

incoming flows are delay-sensitive, ���� settles to a comparatively higher value, thus

forcing RED-Worcester router to maintain a smaller average queue size. This reduces the

average queuing delays in the router, thus allowing it to serve the delay-sensitive flows in

a better way. When the perce-

23

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Time(sec)

M
ax

im
u

m
 D

ro
p

 P
ro

b
ab

ili
ty

19 Throughput Sensitive - 1 Delay Sensitive
15 Throughput Sensitive - 5 Delay Sensitive
10 Throughput Sensitive - 10 Delay Sensitive
5 Throughput Sensitive - 15 Delay Sensitive
1 Throughput Sensitive - 19 Delay Sensitive

Figure 3.5: ���� Analysis I

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
Time(sec)

M
ax

im
u

m
 D

ro
p

 P
ro

b
ab

ili
ty

19 Throughput Sensitive - 1 Delay Sensitive

15 Throughput Sensitive - 5 Delay Sensitive

10 Throughput Sensitive - 10 Delay Sensitive

5 Throughput Sensitive - 15 Delay Sensitive

1 Throughput Sensitive - 19 Delay Sensitive

Figure 3.6: ���� Analysis II

ntages of throughput-sensitive and delay-sensitive flows in the incoming traffic are equal,

���� settles to a value such that the average queue size at the router will be of medium

24

size. Thus, the RED-Worcester router makes a compromise, when there are equal number

of throughput-sensitive and delay-sensitive flows and gives a medium delay and medium

throughput service. Figure 3.6 shows the ���� adaptation with initial value of ����

fixed to 1. Due to AIMD approach of ���� adaptation, reduction in ���� value is much

quicker than increase in ���� value.

A R E D
R E D -W orces ter

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 1 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

0

10

60

20

40

50

30

70

A
ve

ra
ge

 Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

Figure 3.7: Average queue size in RED-Worcester

Figure 3.7 shows the average queue size measured in packets for RED-Worcester and

ARED. ARED maintains a fixed average queue size half way between ����� and �����

irrespective of the incoming traffic mix. In our simulations, ����� is 20 packets and

����� is 80 packets, so ARED’s fixed target is at 50 packets. However, RED-Worcester,

owing to its moving target, adapts average queue size based on the incoming traffic re-

quirements. Thus, when the incoming traffic has higher fraction of throughput-sensitive

flows, RED-Worcester maintains a higher average queue size, and when the incoming

traffic has higher fraction of delay-sensitive flows, it maintains a lower average queue

size.

25

Pa
ck

et
 D

ro
ps

 (
%

)

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 5 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

0

1

2

3

4

5

6

AR ED

R ED -W orcester

Figure 3.8: Percent packet drops

Figure 3.8 shows the average per flow percent packet drops in RED-Worcester and

ARED. In case of RED-Worcester, the percent packet drop rate increases linearly as the

traffic mix changes from mostly throughput-sensitive traffic to mostly delay-sensitive traf-

fic. This is because of the RED-Worcester’s moving target which shifts to smaller average

queue sizes as the fraction of delay-sensitive flows increases in the incoming traffic mix,

thus causing ���� to adapt to higher values. Surprisingly, even in ARED, as the fraction

of delay-sensitive flows increases, the drop rate goes up. This suggests that when the total

number of flows is constant and TCP flows are replaced by TFRC flows, ARED has to

increase its dropping rate to maintain the same average queue size. This suggest’s that

TFRC flows are not exactly TCP friendly and may sometimes use more bandwidth than

TCP flows under the same situation.

Figure 3.9 shows the QoS performance of throughput-sensitive flows in RED-Worcester.

The QoS for throughput-sensitive flows is calculated as ��� � � ����, since throughput-

sensitive flows can tolerate queuing delays. The performance of throughput-sensitive

26

0.6

0.7

0.8

0.9

1

1.1

1.2

A R E D
R E D - W orces te r

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 5 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

N
or

m
al

iz
ed

Q

oS
(Q

oS
 =

)

T
 1

D
 0

Figure 3.9: Normalized QoS for Throughput-Sensitive Flows

flows suffers slightly in RED-Worcester as compared to ARED. The throughput-sensitive

flows in our simulations used a delay hint corresponding to a queue size of 50 packets,

which is also the ARED’s fixed target queue size. Since RED-Worcester adapts its tar-

get based on incoming traffic requirements, RED-Worcester’s target queue size is always

below ARED’s fixed target in the presence of delay-sensitive flows, thus giving lower

throughput performance. Note that if the throughput-sensitive flows had used higher de-

lay hints than ARED’s target queue size, then their QoS performance would have been

better in RED-Worcester than in ARED, when throughput-sensitive flows are in majority

in the incoming traffic mix. RED-Worcester does not favor any particular type of flows,

but instead tries to meet the average requirements of the incoming traffic. ARED, on the

other hand, due to its fixed target, gives comparativley better performance to throughput

sensitive flows than delay sensitive flows.

Figure 3.10 shows the normalized QoS for delay-sensitive flows in RED-Worcester

and ARED calculated as ��� � � ��������. QoS for delay-sensitive flows improves in

RED-Worcester as the fraction of delay-sensitive flows increases in the incoming traffic

mix. RED-Worcester’s moving target brings the average queue size down as the fraction

of delay-sensitive flows increases, reducing the overall average queuing delays. On the

27

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 5 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

A R E D
R E D -W orces te rN

or
m

al
iz

ed

Q
oS

(Q
oS

 =

)

T
 0.

5

D
 0.

5

Figure 3.10: Normalized QoS for Delay-Sensitive Flows

contrary, in ARED, delay-sensitive flows suffer as ARED maintains the average queue

size at fixed target of 50 packets irrespective of incoming traffic.

Our evaluation shows that RED-Worcester router has a capability of tuning itself to

meet the average throughput and delay requirements of the incoming flows, although it

cannot provide exact delay-throughput tradeoff to individual flows as per their require-

ments.

28

Chapter 4

RED-Boston

This chapter presents implementation details of RED-Boston along with its evaluation.

The goal of RED-Boston is to provide improved support for varying application delay-

throughput requirements while fitting in with the current best-effort Internet environment.

Applications specify their individual requirements and receive QoS more tailored to their

requirements, without requiring additional charges or policing mechanisms.

As in RED-Worcester, in RED-Boston applications mark each outgoing packet with

delay hints. However, with RED-Boston applications can derive much more benefit by

adapting delay hints as explained in Section 4.1. The router mechanism itself is explained

in Section 4.2. In RED-Boston, packets experience a drop probability based on their delay

hint and average drop probability, as explained in Section 4.2.1 while being inserted in the

outgoing queue based on their delay hint relative to the average delay hint, as explained

in Section 4.2.2. The overhead and complexity of the RED-Boston service is discussed in

Section 4.3 and Section 4.4 presents the results of our evaluation with detail analysis.

29

4.1 Delay Hints

Delay hints are explained in Section 3.1. This Section explains how applications can

adapt delay hints dynamically to receive improved performance from RED-Boston routers.

At the RED-Boston router, a relatively low delay hint indicates an application’s desire

for lower delay while a higher delay hint suggests the application prefers higher through-

put even if this implies higher delays. Applications can dynamically adapt their delay

hints based on observed throughput and latency. Thus applications can use delay hints to

provide significant input into the delay-throughput tradeoff decisions made at the router.

Applications such as FTP or Email that want to minimize overall transfer time with-

out significant concern over individual packet delays would choose a high delay hint.

Applications such as multimedia streaming that seek to minimize end-to-end delay could

choose a low delay hint. However, under congested network conditions these applications

may discover that the low delay hint also yields unacceptably low throughput. Appli-

cations could then raise their delay hints until measured throughput reached acceptable

levels. Thus, sources are able to vary their delay hints in any manner that increases their

perceived QoS. Packets that carry no delay hints are handled using a default delay hint

that corresponds to the router’s target queue size.

Figure 4.1 presents a simple illustration of how a delay-sensitive TCP-friendly appli-

cation might use delay hints. An interactive videoconference running over a company

T1 link competes with � TCP flows for the 1.5 Mbps of link bandwidth. The videocon-

ference requires a minimum data rate, �, of about 384 Kbps1 to insure acceptable video

quality. This rate is depicted by the horizontal dotted line in Figure 4.1. Under these con-

ditions, the videoconference is free to choose the delay hint. The curved dashed lines in

Figure 4.1 depict the approximate bandwidth an application would receive for delay hints

of 20 ms, 40 ms, 60 ms and 80 ms (reading left to right). The higher the delay hint, the

1A typical minimum data rate for an H.261 videoconference.

30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

M
bp

s

Average Number of Competing Flows (n)

Min Acceptable
Data Rate (R)

A B C D E20 ms

40 ms

60 ms

80 ms

Bandwidth Available
Per Hint

Actual Bandwidth
Used

Figure 4.1: Possible Hint Strategy for an Interactive Multimedia Application

more bandwidth the videoconference will receive, but the higher the delay. The lower the

delay hint, the less bandwidth the videoconference will receive, but the lower the delay.

The “best” delay hint for the application depends upon the perceived quality, ��, for each

throughput and delay combination. For this simplified example, we assume that �� is 0

when the data rate is less than � and increases inversely with the delay for �� � �. In

other words, once the videoconference obtains its minimum data rate, the greatest ben-

efit to perceived quality comes from lower delay. Under these conditions, the vertical

lines in Figure 4.1 indicate regions A, B, C, D and E where the videoconference would

dynamically adapt delay hints. In region A, the videoconference receives the required

minimum bandwidth by using the lowest delay hint, 20 ms. As the T1 link became more

congested, the videoconference would increase delay hints gradually from 20 ms to 40

ms in region B and from 40 ms to 60 ms in region C to maintain the minimum acceptable

data rate. In region D, as the level of congestion increases, the videoconference is forced

to increase the delay hints further upto 80 ms, to obtain the minimum bandwidth. This is

the same delay hint as is likely used by the competing TCP flows. In region E, even with

31

a large delay hint, the available bandwidth drops below the minimum acceptable rate, in

which case the videoconference user would probably terminate the connection. Note that

this example is greatly simplified and we would expect perceived quality functions that

trade-off throughput and latency in a more sophisticated manner would be used.

4.2 Mechanism

The RED-Boston router mechanism directly extends RED-Worcester. Arriving delay

hints affect three aspects of the RED-Boston router mechanism. First, since it uses RED-

Worcester, the target average queue size moves to adjust the average queue size as de-

scribed in Section 3.2.1. Second, the delay hint determines the drop probability, where

higher delay hints mean lower drop probabilities and vice versa, as explained in Sec-

tion 4.2.1. Third, the delay hint also determines where the incoming packet is placed in

the outgoing queue as described in Section 4.2.2.

4.2.1 Delay Hint Based Drop Probability

Since RED-Boston provides different queuing delays for different delay hints, the drop

probability must be adjusted based on delay hint. RED-Boston calculates the average

drop probability � based on the average queue size like ARED, but adjusts the per-packet

drop probability �� based on the delay hint and the average delay as follows:

�� � �� �
�!� �
�! "��� (4.1)

where �
�! is the queuing delay corresponding to the average queue size. The moving

target of RED-Worcester allows RED-Boston to maintain the average queue size at ap-

proximately the average of the aggregate traffic’s delay requirements, providing fairness

32

in the per-packet drop probability calculation. RED-Boston limits the drop probability to

be 0.5 or less, as we speculate there cannot be any meaningful QoS with drop rates higher

than 50%.

4.2.2 Weighted Insert

The RED-Boston outgoing queue is sorted based on packet weights. An incoming packet

is inserted in the sorted queue based on its weight which is computed as shown below:

����"� � ����	�
 ���� � �
�! "��� (4.2)

Arrival time is used as an aging mechanism in this calculation to avoid packet starva-

tion. Under normal conditions a flow’s delay hints will not vary and differences in arrival

times will prevent packet reordering. Since packets are served from the front of the sorted

queue, the packet with the lowest weight will be served first. Note the delay hint is not

an upper bound on queuing delay for the packet but rather a relative hint such that pack-

ets with lower delay hints experience lower delays than packets with higher delay hints.

However, our results show that on average, packets receive a queuing delay close to the

delay hint specified.

Thus, RED-Boston’s weighted insert provides delay-sensitive packets with a relatively

lower queuing delay. On the other hand, RED-Boston’s delay hint based drop probability

compensates by providing delay tolerant packets with a lower drop probability and hence

higher throughput.

4.2.3 Algorithm

Figure 4.2 summarizes the RED-Boston algorithm. Each packet contains a delay hint,

as described in Section 4.1. For each incoming packet, the target average queue size is

33

updated as in RED-Worcester. If there is extreme congestion, indicated by the queue

average being above �����, the packet is dropped. If there is congestion, as indicated by

the queue average being between ����� and �����, the drop probability for the packet is

computed based on the queue parameters, the �
�! "���, and the average queuing delay,

 �
�!, as described in Section 4.2.1. If the packet is not dropped, it is inserted in the queue

based on a weighting of its arrival time and delay hint, as described in Section 4.2.2.

4.3 Overhead

RED-Boston incurs all the overhead of RED-Worcester as discussed in Section 3.3. In

addition to this, RED-Boston’s weighted insert mechanism is slightly more complex than

ABE’s duplicate scheduling with deadlines mechanism, but provides much more flex-

ibility. The weighted insert mechanism can be implemented using a probabilistic data

structure such as skip lists [Pug90], giving complexity #�
������.

The overall complexity of RED-Boston is much less than IntServ approaches and is

comparable to class based approaches, while providing better QoS service than typical

class based approaches. Unlike DiffServ approaches, RED-Boston does not require ne-

gotiation of service level agreements and does not required traffic monitoring and shaping,

and integrates more easily into the current best-effort Internet environment.

4.4 Evaluation

For evaluating RED-Boston, we used the same simulation setup as that of RED-Worcester

evaluation, described in Section 3.4.1. This section presents results and analysis from two

sets of NS-2 simulations designed to compare RED-Boston’s performance against ARED.

Section 4.4.1 focuses on the first set of simulations consisting of different percentages of

34

on receiving packet ���:
// Calculate moving target
// (see Section 3.2.1)
������ = ��� ���������� + �� � �

���� �
�! "�����������$� � ��

if (�����������) then

dropPacket(���, 1)

elseif (�	��������) then

// Calc drop prob �, based on RED
// (see Section 2.1)
�=calcDropP(���� ,�����,�����,����)

//Calc delay hint based drop prob, ��

//(see Section 4.2.1)
��=��(�
�!/ �
�! "���)

if (NOT dropPacket(���,��)) then

// Insert in the queue based on weight
// (see Section 4.2.2)
����"�=����	�
 ����+���� �
�!
insertPacket(���,����"�)

Every interval seconds:
// Adjust ���� so ���� hits target
// (see Figure 2.2)
����= adaptMaxP(����,������,����)

Figure 4.2: RED-Boston Algorithm

delay-sensitive and throughput-sensitive flows in the incoming traffic mix. Section 4.4.2

focuses on the second set of simulations consisting of incoming traffic with a range of

throughput and delay requirements.

35

4.4.1 Simulation Set - 1

The objective of the first set of simulations is to evaluate RED-Boston’s robustness as

the incoming traffic mix at the router varies from mostly throughput-sensitive traffic to

mostly delay-sensitive traffic. Figure 4.3 provides details on the traffic mixes used for the

first five simulations.

0ms 16ms 32ms 48ms 64ms 80ms 96ms 112ms

Simulation 1

Simulation 2

Simulation 3

Simulation 4

Simulation 5

1 19

5 15

10 10

15 5

19 1 20 flows

20 flows

20 flows

20 flows

20 flows

Delay hint

Total Flows

Figure 4.3: Simulation Set-1: Traffic Mix

Each simulation in this set ran 20 flows using the network topology shown in Fig-

ure 3.2. Throughput-sensitive flows were represented by TCP flows carrying a delay hint

of 80 ms, which corresponds to a queue size of 50 packets at the bottlenecked router R1.

Delay-sensitive flows were represented by TFRC flows carrying a delay hint of 32 ms

which corresponds to a queue size of 20 packets at R1. The X-axis for all the graphs in

this section indicate the changing traffic mix corresponding to the five different simula-

tions described in Figure 4.3.

Figure 4.4 shows the average queue size in packets for RED-Boston and ARED as

the traffic mix varies. While the average queue size remains nearly constant across all

the ARED simulations, the moving target mechanism in RED-Boston allows the average

queue size to adjust to the delay hint distributions caused by changes in

36

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 1 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

0

10

20

30

40

50

60

70

R E D -B os ton
A R E DA

ve
ra

ge
 Q

ue
ue

 S
iz

e

(p
ac

ke
ts

)

Figure 4.4: Simulation Set-1: Average Queue Size

the incoming traffic’s QoS requirements. Thus, when traffic is mostly throughput-sensitive,

the average queue size is higher to increase the overall throughput. Correspondingly,

when traffic is mostly delay-sensitive, the average queue size becomes smaller to reduce

the overall queuing delays. The RED-Boston average queue sizes in these five experi-

ments reflects the average requirements of incoming traffic. On the other hand, Adaptive

RED’s target range is insensitive to incoming traffic’s requirements.

Figure 4.5 shows the queuing delays experienced by the throughput-sensitive and

the delay-sensitive flows in simulation set 1. For ARED, graphing only the average de-

lay curve is necessary because the throughput-sensitive and delay-sensitive flows receive

identical treatment from ARED despite having different QoS requirements. Figure 4.5 in-

dicates that RED-Boston gives lower queuing delays to delay-sensitive flows as compared

to throughput-sensitive flows. Moreover, when the delay-sensitive flows represent a small

percentage of the incoming traffic, the queuing delays experienced by the delay-sensitive

flows is close to the 32 ms delay hint. However, as the percentage of delay-sensitive

flows increases in the incoming traffic mix, the average queuing delay for these flows

increases slightly. This is caused by many delay-sensitive flows competing with each

37

Q
ue

ui
ng

 D
el

ay
(

m
s)

0

10
20

30

40
50

60

70

80
90

100

Av e ra ge - AR E D

D e la y S e ns itiv e - R E D -B o s to n

Thro ughput S e ns itiv e - R E D -B o s to n

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 1 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

Figure 4.5: Simulation Set-1: Queuing Delays

other for lower delays. Conversely, when most of the incoming flows are throughput-

sensitive, their average queuing delay is near the 80 ms delay hint. As the percentage

of delay-sensitive flows increases in the incoming traffic, the average queuing delay for

throughput-sensitive flows increases slightly. This increase happens because RED-Boston

lets the delay-sensitive flows cut in the queue ahead of throughput-sensitive flows to get

lower delays. However, from Figure 4.5, it is clear that the aging component of the RED-

Boston packet weight calculation prevents starvation of throughput-sensitive flows.

Figure 4.6 shows the average percentage of packets dropped per flow in RED-Boston

and ARED. Again only one curve is needed for ARED, since ARED treats all flows

equally regardless of the QoS requirements. For RED-Boston, Figure 4.6 does separate

out the average per flow percentage of packets dropped for throughput-sensitive flows and

delay-sensitive flows. The delay sensitive flow competing with 19 throughput-sensitive

flows has to pay a high drop rate for the low delay service it receives because it is inserted

far below the average queue size determined by the throughput sensitive flows. As the

fraction of delay-sensitive flows increases, the average per flow drop rates for the delay-

sensitive flows decreases. This is because as the number of delay sensitive flows increases,

38

P
ac

ke
t

D
ro

ps
(%

)

0

1

2

3

4

5

6

7

D elay Sens itive- R E D -Bos ton
Average - AR ED
Throughput Sens itive-R ED -Bos ton
Average - R ED -Bos ton

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 1 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

Figure 4.6: Simulation Set-1: Average Per Flow Percent of Packets Dropped

RED-Boston’s moving target brings the average queue size down to give a lower delay

service and the corresponding drop rate is shared equally by all the delay-sensitive flows.

For throughput-sensitive flows, the RED-Boston drop rate is consistently lower than that

of ARED and is almost constant for all simulations irrespective of the number of delay-

sensitive flows.

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 5 Delay
Sensitive

10Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

- 15 Delay
Sensitive

1Throughput
Sensitive

- 19 Delay
Sensitive

T
hr

ou
gh

pu
t

(b
ps

)

0

50000

100000

150000

200000

250000

300000

Average - AR ED

D elay Sens itive - R ED -Boston

Throughput Sens itive- R ed-
Boston

Figure 4.7: Simulation Set-1: Average Per Flow Throughput

Figure 4.7 shows the average per flow throughput for ARED and average per flow

throughput for throughput-sensitive flows and delay-sensitive flows for RED-Boston. The

ARED throughput is nearly constant for all simulations and is the same for all flows. In

39

RED-Boston, delay-sensitive flows get lower throughput than throughput-sensitive flows

in exchange for low delay service. When there are 19 throughput-sensitive and one delay-

sensitive flow, the delay-sensitive flow sacrifices some throughput for lower delay. This

additional throughput sacrificed by one delay-sensitive flow is equally shared by the 19

throughput-sensitive flows. However, as the number of delay-sensitive flows increases,

their throughput penalty decreases since the average queue size is reduced. The through-

put sacrificed by delay-sensitive flows is shared equally by the existing throughput-sensitive

flows in each case. In practice, as described in Section 4.1, if the reduced throughput

given to a delay-sensitive flow falls below an acceptable threshold for that flow, the flow

can send a larger delay hint if it is able to trade higher delay for higher throughput.

N
or

m
al

iz
ed

Q

oS

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
RED -Boston

ARED

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 1 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

(Q
oS

=
)

T
 1

D
 0

Figure 4.8: Simulation Set-1: Normalized QoS for Throughput-Sensitive Flows

Figure 4.8 presents the QoS for throughput-sensitive flows traversing a RED-Boston

router normalized with respect to the QoS for throughput-sensitive flows traversing an

ARED router. As described in Section 3.4.1, QoS for throughput-sensitive flows is de-

fined as ��� � � ����. The RED-Boston throughput-sensitive flows record consistently

higher QoS than the equivalent ARED flows. Furthermore, the RED-Boston QoS advan-

tage grows as the percentage of delay-sensitive flows in the traffic mix increases. When

delay-sensitive flows dominate the mix, more flows are willing to give up throughput for

40

lower delay and, as a result, the throughput sensitive flows experience higher QoS even

though they are in the minority.

N
or

m
al

iz
ed

Q

oS

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
A R E D
R E D -B os ton

19 Throughput
Sensitive

– 1 Delay
Sensitive

15 Throughput
Sensitive

– 1 Delay
Sensitive

10 Throughput
Sensitive

– 10 Delay
Sensitive

5 Throughput
Sensitive

– 15 Delay
Sensitive

1 Throughput
Sensitive

– 19 Delay
Sensitive

(Q
oS

=

)

T

 0.
5

D
0.

5

Figure 4.9: Simulation Set-1: Normalized QoS for Delay Sensitive Flows

Paralleling Figure 4.8, Figure 4.9 graphs the QoS for delay-sensitive flows in RED-

Boston normalized with respect to the QoS for delay-sensitive flows in ARED. As de-

scribed in Section 3.4.1, the specific QoS used for delay-sensitive flows is��� � � ��������.

Using this metric, RED-Boston yields a QoS improvement (on average) for delay-sensitive

flows more than 50 percent over delay-sensitive flows served by an Adaptive RED router.

The QoS for delay-sensitive flows in RED-Boston decreases as the number of delay-

sensitive flows increases, because they start competing with each other for low delay

service. The resulting improvement seen in the QoS for the delay sensitive flows cap-

tures the improvement in the quality that interactive multimedia applications using TFRC

would experience with RED-Boston routers.

4.4.2 Simulation Set - 2

The objective of the second set of simulations was to evaluate RED-Boston with a range

of throughput and delay requirements. Each simulation in this set ran 35 TCP flows

using the network topology shown in Figure 3.2. Delay hints for these TCP flows were

41

uniformly varied from 16 ms to 112 ms in 16 ms increments, as depicted in Figure 4.10.

0ms 16ms 32ms 48ms 64ms 80ms 96ms 112ms

35 flows

Delay hint

5 5 5 5 5 5 5Simulation

Total Flows

Figure 4.10: Simulation Set-2: Traffic Mix

This flow distribution was used for simulation of a congested RED-Boston router which

is compared against simulation with the same flow distribution for a congested Adaptive

RED router. The X-axis for all the graphs in this section indicate the flows with the 16 ms

to 112 ms hints described in Figure 4.10.

0

20

40

60

80

100

120

140

112 96 80 64 48 32 16
Delay Hints (ms)

R E D -B os ton
A R E D

Q
ue

ui
ng

 D
el

ay

(m

s)

Figure 4.11: Simulation Set-2: Queuing Delays

Figure 4.11 shows the queuing delays in milliseconds for ARED and RED-Boston.

While ARED provides an essentially identical average delay of 80 ms for all delay hint

flow groups, the average delay seen by flow groups served by RED-Boston linearly de-

creases as the delay-sensitivity of the flows increases. Moreover, RED-

Boston provides average queuing delays comparable to the delay hints specified by the

flows in each of the seven delay hint groups.

Figure 4.12 shows the differences in the percentage of packet drops for ARED and

42

0

2

4

6

8

10

12

14

16

112 96 80 64 48 32 16

A R E D
R E D -B os ton

Delay Hints (ms)

P
ac

ke
t

D
ro

ps
(%

)

Figure 4.12: Simulation Set-2: Average Per Flow Percentage of Packets Dropped

RED-Boston. ARED yields an average drop percentage near 5% for all the delay-hint

flow groups. However, in the RED-Boston simulation, the average packet drop percent-

age per delay-hint flow group increases as the delay sensitivity of the flows increases.

Delay sensitive flows, such as interactive audio, would typically incorporate repair tech-

niques [PHH98] to counter act the higher loss rates.

0
20
40
60
80

100
120
140
160
180
200

112 96 80 64 48 32 16
Delay Hints (ms)

A R E D
R E D -B os ton

T
hr

ou
gh

pu
t

(k
bp

s)

Figure 4.13: Simulation Set-2: Average Per Flow Throughput

Figure 4.13 shows the average per flow throughput for each flow group for ARED

and RED-Boston. For ARED, the throughput averages around 140 Kbps for all flow

43

groups. Contrastingly, for RED-Boston as the delay sensitivity increases the lower source

hints yield significantly decreased average throughput. This demonstrates clearly that

RED-Boston facilitates the trading of lower throughout for lower delay that interactive

multimedia flows would be willing to make.

To evaluate the impact of RED-Boston’s differentiated service to flows carrying differ-

ent delay hints, the QoS metric associated with the seven distinct delay-hint flow groups

in simulation set 2 is adjusted by linearly interpolating � and � in the QoS formula, as

shown in Table 4.1.

��� � �
���

Delay Hint (ms) � �

112 1 0
96 0.917 0.083
80 0.834 0.166
64 0.75 0.25
48 0.67 0.33
32 0.584 0.416
16 0.5 0.5

Table 4.1: Simulation Set-2: QoS Parameters

0.6

0.8

1.0

1.2

1.4

1.6

1.8

112 96 80 64 48 32 16
Delay Hints (ms)

A R E D
R E D -B os ton

N
or

m
al

iz
ed

Q

oS

Figure 4.14: Simulation Set-2: Normalized QoS

Figure 4.14 shows the average QoS results for the seven flow groups with different

44

delay hints in the set 2 simulations. The RED-Boston QoS values are normalized against

the ARED QoS values. This figure demonstrates that RED-Boston provides higher QoS

to all flows regardless of where a flow is on the delay-throughout sensitivity spectrum.

Thus, our evaluation of RED-Boston shows that RED-Boston is capable of providing

applications approximately their desired delay-throughput tradeoff with the current best

effort service architecture.

45

Chapter 5

Conclusions

Applications supported by the current Internet have varying requirements in terms of

throughput and delays. On one end, traditional applications such as FTP and E-mail

are throughput-sensitive and can tolerate considerable delays, whereas on the other hand

interactive multimedia applications such as online games are delay-sensitive and can sac-

rifice some throughput for low delay service. However, current Internet routers give equal

treatment to all flows without considering the applications specific or even aggregated re-

quirements. This can result in performance degradation of the applications, if routers are

not tuned properly to meet their requirements.

In this thesis, we have presented two active queue management approaches to im-

prove the quality of service support provided to the applications by the routers. In our

proposed approaches, applications indicate their relative delay-throughput sensitiveness

to the routers through delay hints and routers adjust their operating parameters to provide

better service to applications.

Our first mechanism, RED-Worcester, is a simple modification to Adaptive RED to

improve the overall QoS provided by the router. RED-Worcester maintains an expo-

nentially weighted moving average of the delay hints specified in the incoming pack-

46

ets to estimate the avrage queuing requirements of the flows passing through it. Based

on this information, RED-Worcester adjusts its average queue size to match the av-

erage delay requirements of the flows. Thus, when most of the incoming flows are

throughput-sensitive, RED-Worcester maintains a higher average queue size to provide

better throughput, whereas when most of the incoming flows are delay-sensitive, RED-

Worcester mainatins a lower average queue size to provide low delay service. When there

is no majority of any particular type of traffic, RED-Worcester maintains a average queue

size to meet average requirements of the flows. Our evaluation of RED-Worcester router

shows that it consistently adapts its average queue size under changing traffic conditions

to meet the average requirements of the flows.

Our second mechanism, RED-Boston, further extends RED-Worcester and tries to

meet the individual requirements of each incoming flow. RED-Boston uses weighted

insert to insert the incoming packet in the outbound queue based on its delay hint and ar-

rival time, and uses a delay hint based drop probability to apply higher dropping rates to

relatively delay-sensitive packets over throughput-sensitive packets. Thus, RED-Boston

provides low delay service to delay-sensitive flows in exchange for lower throughput and

high throughput service to throughput-sensitive flows in exchange for higher delays. The

applications can choose the exact delay-throughput tradeoff as the delay spectrum is con-

tinuous. Applications even have the flexibility of adapting their delay hints based on

observed performance. Our evaluation of RED-Boston shows that RED-Boston gives

better QoS to delay-sensitive as well as throughput-sensitive applications under varying

traffic mixes than does ARED under similar situations. When the incoming traffic mix

consists of applications with varying requirements, RED-Boston consistently gives better

QoS to all applications as compared to ARED.

Both the mechanisms discussed in this thesis preserve the best-effort nature of the

current Internet and do not require any traffic monitoring or charging mechanisms.

47

Chapter 6

Future Work

RED-Boston expects flows to be responsive to network congestion in a TCP-friendly fash-

ion. RED-Boston needs to be evaluated for more richer traffic mix including UDP flows.

Since RED-Boston provides delay hint based drop rate and queuing delays, unresponsive

flows should not gain more of a bandwidth advantage under RED-Boston than they do

under current Internet environments. Still, an extension to RED-Boston would be to en-

hance it with a rate based active queue management technique such as CSFQ [SSZ98],

as described in Section 2.2. When CSFQ support is added to RED-Boston, the dropping

probability can be calculated based on combination of a flow’s rate and its delay hint.

Thus, responsive flows can be protected from the unresponsive flows and flows with same

delay hint can be assured a similar bandwidth share.

Another extension to RED-Boston could be an interaction between cascaded RED-

Boston routers. Applications could provide queuing delay hints as explained in Sec-

tion 3.1 and each RED-Boston router could do an additional task of updating the cumula-

tive amount of time a packet has waited in router queues. Thus, down stream RED-Boston

routers would have additional information of total queuing delay experienced by a packet

and its relative delay hint, which can be used by the router to make better delay-throughput

48

tradeoff decisions.

Another possible future work is to develop applications that make use of RED-Boston

to improve their performance. Such applications can use perceived quality functions to

evaluate their own performance dynamically and adjust the delay hints accordingly.

49

Bibliography

[BFPT99] J-C. Bolot, S. Fosse-Parisis, and D. Towsley. Adaptive FEC-Based Error

Control for Internet Telephony. In Proceedings of IEEE INFOCOM, March

1999.

[CC00] Jae Chung and Mark Claypool. Dynamic-CBT and ChIPS - Router Support

for Improved Multimedia Performance on the Internet. In Proceedings of

the ACM Multimedia Conference, November 2000.

[CJOS00] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith. Tuning RED for Web

Traffic. In Proceedings of ACM SIGCOMM Conference, August 2000.

[FB00] V. Firoiu and M Borden. A study of active queue management for conges-

tion control. In In Proceedings of the Conference on Computer Communi-

cations (IEEE infocom), March 2000.

[FF99] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Congestion

Control in the Internet. IEEE/ACM Transactions on Networking, February

1999.

[FGS01] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive RED: An

Algorithm for Increasing the Robustness of RED’s Active Queue Manage-

ment. Under submission, http://www.icir.org/floyd/papers/adaptiveRed.pdf,

2001.

50

[FHPW00] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer. Equation-

Based Congestion Control for Unicast Applications. In Proceedings of ACM

SIGCOMM Conference, pages 45 – 58, 2000.

[FJ92] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet Switched

Gateways. Internetwroking:Research and Experience, V.3 N.3, 1992.

[FJ93] S. Floyd and V. Jacobson. Random Early Detection Gateways for Conges-

tion Avoidance. IEEE/ACM Transactions on Networking, August 1993.

[Has89] E. Hashem. Analysis of Random Drop for Gateway Congestion Control.

Technical Report Report LCS TR-465, Laboratory for Computer Science,

MIT, 1989.

[HBWW99] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding

PHB Group. IETF Request for Comments (RFC) 2597, June 1999.

[HKBT01] P. Hurley, M. Kara, J. Le Boudec, and P. Thiran. ABE: Providing a Low

Delay within Best Effort. IEEE Network Magazine, May/June 2001.

[JNP99] V. Jacobson, K. Nichols, and K. Poduri. Expedited Forwarding PHB Group.

IETF Request for Comments (RFC) 2598, June 1999.

[LC00] Yanlin Liu and Mark Claypool. Using Redundancy to Repair Video Dam-

aged by Network Data Loss. In Proceedings of IS&T/SPIE/ACM Multime-

dia Computing and Networking (MMCN), January25-27 2000.

[LM97] D. Lin and R. Morris. Dynamics of Random Early Detection. In Proceed-

ings of ACM SIGCOMM Conference, September 1997.

51

[MBDL99] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy red.

In Proc. of 7th International Workshop on Quality of Service(IWQoS’99),

pages 260–262, 1999.

[oCB] Universiy of California Berkeley. The Network Simulator - ns-2. Interent

site

http://www.isi.edu/nsnam/ns/.

[OLW99] T. Ott, T. Lakshman, and L. Wong. Sred:stabilized red. In Proceedings of

IEEE, infocomm, March 1999.

[PCM00] C. Padhye, K. Christensen, and W. Moreno. A New Adaptive FEC Loss

Control Algorithm for Voice Over IP Applications. In Proceedings of IEEE

International Performance, Computing and Communication Conference,

February 2000.

[PHH98] Carlos Perkins, Orlin Hodson, and Vicky Hardman. A Survey of Packet-

Loss Recovery Techniques for Streaming Audio. IEEE Network Magazine,

Sep/Oct 1998.

[PJS99] Mark Parris, Kevin Jeffay, and F. Smith. Lightweight Active Router-Queue

Management for Multimedia Networking. In Proceedings of Multimedia

Computing and Networking (MMCN), SPIE Proceedings Series, January

1999.

[Pug90] William Pugh. Skip Lists: A Probabilistic Alternative to Balalnced Trees.

Communications of the ACM, 33(6):668–676, June 1990.

[PW99] K. Park and W. Wang. QoS-Sensitive Transport of Real-Time MPEG Video

Using Adaptive Forward Error Correction. In Proceedings of IEEE Multi-

media Systems, pages 426 – 432, June 1999.

52

[RHE99] Rezza Rejaie, Mark Handley, and D. Estrin. RAP: An End-to-end Rate-

based Congestion Control Mechanism for Realtime Streams in the Internet.

In Proceedings of IEEE Infocom, 1999.

[SSZ98] Ion Stoica, Scott Shenker, and Hui Zhang. Core-Stateless Fair Queueing:

Achieving Approximately Fair Bandwidth Allocations in High Speed Net-

works. In Proceedings of ACM SIGCOMM Conference, September 1998.

[SZ99] Ion Stoica and Hui Zhang. Providing Guaranteed Services Without Per Flow

Management. In Proceedings of ACM SIGCOMM Conference, September

1999.

[TZ99] D. Tan and A. Zakhor. Real-time Internet Video Using Error Resilient Scal-

able Compression and TCP-friendly Transport Protocol. IEEE Transactions

on Multimedia, May 1999.

[WCZ01] Yubing Wang, Mark Claypool, and Zheng Zuo. An Empirical Study of

RealVideo Performance Across the Internet. In Proceedings of the ACM

SIGCOMM Internet Measurement Workshop, November 2001.

[Wro97] J. Wroclawski. The Use of RSVP with IETF Integrated Services. IETF

Request for Comments (RFC) 2210, September 1997.

53

