
Neural Neural Network
Major Qualifying Project

Advisors:

XIANGNAN KONG
TIAN GUO

Written By:

RYAN K. RACINE
KARSTEN H. ROBERTS

ISAAC W. WOODS

A Major Qualifying Project
WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the Worcester Polytechnic
Institute in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science.

AUGUST 2018 - MARCH 2019

i

ABSTRACT

FMRI is a modern technique employed to help diagnose internal brain injuries. Analyzing
the resulting data from them is currently facilitated by medical professionals. Having these
professionals involved can increase the inherent cost of this process with regards to time and
monetary value. For our project we aimed to address this problem by creating a neural network
that can analyze unprocessed fMRI data and identify brain injuries. The result of this was a
model that could predict whether a given fMRI contained a concussion with 70% accuracy.

ACKNOWLEDGEMENTS

We would like to thank our advisor, Professor Xiangnan Kong, for all his help throughout this
project. We would also like to thank our Co-Advisor Tian Guo for her advice and contributions
throughout the project. Additionally we would like to thank the team managing the ACE machines
on campus for their help finding us the resources we needed to run a neural network.

ii

TABLE OF CONTENTS

Page

Abstract ii

List of Figures iv

1 Introduction 1

2 Background 2
2.1 History . 2

2.2 Techniques . 5

2.3 fMRI Applications . 10

2.3.1 Data Pre-processing . 11

3 Methodology 12
3.1 The Opportunity . 12

3.2 Techniques . 13

4 Results 16

5 Conclusions and Future Work 17

A Appendix A: Result Graphs 18

B Appendix B: Concussion Scan Information 20

Bibliography 21

iii

LIST OF FIGURES

FIGURE Page

1.1 Slicing a four dimensional fMRI scan into set of three dimensional slices, each repre-

senting a cross-section over time. 1

2.1 A simple logical neuron . 2

2.2 Frank Rosenblatt’s perceptron . 3

2.3 A multi-layer neural network . 4

2.4 Convolutional and Fully Connected neural layers . 6

2.5 Common loss functions . 6

2.6 Two common activation functions . 7

2.7 An example of max pooling . 8

2.8 An illustration of the symptoms of over- and under-fitting 8

2.9 An example of cross validation . 9

3.1 Example of concussion fMRI scan . 13

3.2 A diagram of our model . 14

3.3 A graph of the training accuracy of the model . 15

3.4 A graph of the test accuracy of the model . 15

4.1 A visual representation of the final model structure . 16

iv

INTRODUCTION

FMRI is a technique that is used to measure blood oxygenation to determine regions of neural

activity within a patient’s brain[1]. Patients get one generally when there is suspicion of an

unseen traumatic brain injury. Data from fMRIs can be analyzed to determine whether a patient

has a particular brain injury and the effect of the injury on the brain’s function.

Currently analyzing the fMRI data to diagnose injuries is left to medical professionals, usually

a radiologist. After a patient gets an fMRI, the fMRI data is sent to a professional who performs

analysis on it and gets results. These results are then sent back to the physician or doctor who

conveys the diagnosis to the patient. While a computer may aid in the analysis process, the

process itself still requires professionals to facilitate it[2]. This creates a promising opportunity

to create a fully automated systems that can analyze the fMRI data, which is a growing area of

interest [3].

There are several downsides to having medical professionals involved in this process. There

is an inherent overhead cost that is incurred by having the medical professional involved. It is

an added time and financial cost for patients that could be reduced with the help of emerging

computational techniques. On top of this the process itself can still be quite slow. This can be a

major issue, especially if it is a critical injury.

For this project we created a convolutional neural network that can analyze unprocessed

four dimensional fMRI data in order to aid doctors in determining whether a patient has a brain

injury. It looked at 4 dimensional data (fMRI images over time) and made a decision on whether

there is an injury or not. We focused specifically on concussions for this project, though the idea

and potentially the model could be adjusted to detect other injuries.

Our final model showed promising results. It managed to correctly predict concussions with

approximately a 70% accuracy. It used two convolutional layers with maxpooling in between

them and then two linear layers followed by softmax. It worked on 4 dimensional fMRI data by

looking at slices of the brain over time. While this may not be accurate enough to fully replace

the current medical process, it does indicate that something can be done towards this goal.

Figure 1.1: Slicing a four dimensional fMRI scan into set of three dimensional slices, each
representing a cross-section over time.

1

SECTION 2. BACKGROUND

BACKGROUND

Over the past century, the idea of a neural network capable of transcribing human writing has

gone from a dream to becoming an almost trivial task. Neural networks started out as just a

mathematical concept, not something that could be done with the technology level of the time,

but over time the ideas grew and the technology finally caught up[4].

2.1 History

Figure 2.1: A simple logical neuron

The progenitor of all modern neural network

models was the neuron structure proposed

by the neuroscientist Warren McCulloch and

mathematician Walter Pitts in 1943. While

simple in idea, it was capable of modelling

linear separable systems, such as logical oper-

ators AND, OR, and NOT. The neuron would

be given a list of boolean inputs (either 0 or 1),

sum them, and then pass the sum to a thresh-

old function that would return 1 if the sum ex-

ceeded the threshold and 0 if it failed to. Each

input could be either excitatory or inhibitory.

An excitatory input would be one which affects the output together with the state of other inputs,

whereas an inhibitory input would be one whose state can determine the output on its own[5].

Figure 2.1 is an example of how a neuron would be set up to compute x1 AND!x2. By making

!x2 an inhibitory input, there are only two possible cases: x1 = 0 and x2 = 0, and x1 = 1 and x2 = 0.

Clearly the expression only evaluates to true if x1 = 1, and so case 2 is the only valid one. In

order to reflect this, we set a threshold of 1. The sum of case 1 is 0, which fails the threshold

and returns 0. However, the sum of case 2 is 1, which passes, and the neuron outputs one. While

innovative, there were several limitations the McCulloch-Pitts neuron. Inputs were limited to 0’s

and 1’s, every neuron’s threshold had to be coded independently, the input values were all equally

weighted during aggregation, and non-linearly separable functions (i.e. XOR) were impossible to

model limiting the neurons applications. However, in 1958, the psychologist Frank Rosenblatt

improved upon this model by addressing several of these limitations[5].

Frank Rosenblatt’s model, known as a perceptron, was the first neuron model specifically

proposed with the purpose of building a computer that could learn (Figure 2.2). The idea of the

perceptron is very similar to that of McCulloch-Pitts neuron. The perceptron took a list of binary

2

2.1. HISTORY

Figure 2.2: Frank Rosenblatt’s perceptron

inputs, aggregated them, and then passed the aggregation to a threshold activation function that

output either 0 or 1. However, there was a key difference[6].

Rather than the inputs being passed directly to the aggregator, they were each multiplied by a

scalar called a weight. Each input had its own weight, which was initialized as a random positive

number. With this modification, each input could now be weighted independently in proportion to

the inputs relative importance to the decision. On top of the inputs given by the user, one other

input-weight pair was added known as the bias. The input was always one, but the weight could

be modified. This allowed for a constant offset to be applied to the aggregation, increasing the

versatility of the perceptron. These modifications allowed for a new concept: training a computer

neuron[6].

The process of training the perceptron was fairly simple. First, a training dataset needed to

be created. This consisted of a set of sample input sets from the problem domain, known as the

training set, and the expected output for each input known as a label. To begin with, all weights

are randomized. Then, the first input set would be sent to the neuron and the output would be

calculated. If the output was 1 but should have been 0, the weights of inputs with value 0 would

be increased. If the output was 0 but should have been 1, the weights of inputs with value 1

would be increased. Then the next input set in the training set would be sent, and the weights

modified again. By repeating this process until the neuron always output the correct number, the

neuron would eventually be trained[6].

While a single perceptron can only output 0 or 1 and thus distinguish between two states, n

parallel perceptrons could distinguish between n states. These parallel perceptrons are called

a layer in a network. Each input would be sent to all perceptrons, and their outputs would be

compared to a label the same as with a single perceptron. However, this label would be a list n

3

SECTION 2. BACKGROUND

Figure 2.3: A multi-layer neural network

long consisting of all zeros except for a one indicating which perceptron represented the correct

output. With this method, a network could be trained to distinguish between shapes in 2D images.

Although much more powerful than the McCulloch-Pitts neuron, not all limitations had been

addressed[6].

The most critical limitation remaining was the fact that perceptrons were still unable to

model any problem that was not linearly separable. Thanks to research by M. Minsky and S. A.

Papert[7], it was determined to be impossible to model non-linearly separable problems without

the use of multiple layers of neurons, or “hidden” layers. Up until this point, models had had

a single layer, the output layer, with all inputs being sent directly to every output in the layer.

Figure 2.3 illustrates how the new hidden layer would work. According to A. Kurenkov[6],

“The reason hidden layers are good, in basic terms, is that the hidden layers can

find features within the data and allow following layers to operate on those features

rather than the noisy and large raw data”.

Without this noise reduction, perceptrons would be a dead end. Perceptrons were unable to be

used in multi-layer models because it modified the weights based on the end output of of the

whole model. This worked fine when there was a single layer, since there was only one set of

weights for each perceptron, and they were the sole modifiers of the input. However, with a second

layer, there were suddenly multiple weights modifying each other that affected the output. There

was no way to know the outputs of the hidden layer in order to modify those weights each run,

and so it couldn’t be trained [6].

It took seventeen years before this barrier was finally overcome in 1986 as described in the

paper "Learning representations by back-propagatiog errors" by D. E. Rumelhart, G. E. Hinton,

4

2.2. TECHNIQUES

and R. J. Williams [8]. In it, the researchers outline a method for setting weights in hidden layers

called backpropagation. “The key realization was that if the neural net neurons were not quite

perceptrons, but were made to compute the output with an activation function that was still

nonlinear but also differentiable . . . not only could the derivative be used to adjust the weight to

minimize error, but the chain rule could also be used to compute the derivative for all the neurons

in a prior layer and thus the way to adjust their weights would also be known”[6]. The concept of

backpropagation opened the way for the development of what is today known as fully-connected

and convolutional neural networks that are capable of surpassing human performance at certain

tasks.

2.2 Techniques

There are many modern techniques used in current neural networks ranging from types of neural

layers, to ways of adjusting the model over time. Each of these techniques have strengths and

weaknesses making them optimal for different applications.

One of these techniques is the recurrent neural layer which takes into consideration things

previously seen by the model essentially giving it a short term “memory”. This “memory” allows it

to perform sequence recognition. A model without memory that looks at the numbers 1, 2, 3, 4 and

5 would have no idea what the next number would be because it would not be able to recognize

the order or pattern in the inputs. A recurrent neural layer, however, would know what the last

few numbers it looked at were, and from that can try to identify the next based on patterns it

has previously analyzed. For this reason recurrent neural networks are used heavily in problems

involving text or speech data and often performs some sort of prediction or generation task[9].

Another common technique in neural networks is the fully connected layer, which is often

used at the end of networks which are focused on types of problems like classification. They are

used to convert the number of output channels from the layer before it to the number of output

channels needed to classify (1 output channel for each choice). One benefit of fully connected

layers is that they give the model a lot of flexibility because each bit of input data can directly

have an effect on each bit of output. However, this means that the model must have the number

of inputs multiplied by the number of outputs connections for that layer. When the input data is

large, calculating and maintaining a weight for each of these can have a high time and space cost.

A more resource efficient option for dealing with data on a larger scale is the convolutional neural

layer. A convolutional layer will relate bits that are close to each other in the input by outputting

one bit per input grouping. These groupings can be any size but are generally consistent across

the model. For example, in the convolutional layer in Figure 2.4 the kernel size is three so the

first three input bits (1, 2 & 3) are the sole input to the first output bit, the next three input bits

(2, 3 & 4) are the sole input to the second output bit and so on. This significantly reduces the

number of connections in the layer compared to a fully connected layer. The number of outputs

5

SECTION 2. BACKGROUND

Figure 2.4: Convolutional and Fully Connected neural layers

multiplied by the kernel size is better than the number of outputs multiplied by the input size

because a reasonable kernel will be smaller than the number of inputs. The larger the kernel

size, the less focus on each individual bit in the area and more focused on the general kernel area

as a whole it becomes. Making use of this method enables convolutional neural layers to reduce

the size of the data in a productive way that avoids losing to much information.

Another technique integral to neural networks is the loss function. Loss functions calculate a

loss from the predicted value and the actual value. They are critical to any neural network as

they influence training through backpropagation. Backpropagation determines how much the

model’s weights should change based on the predicted and actual values. Figure 2.5 shows the

formulas for a few of the more common loss functions. Mean Squared Error (MSE) penalizes the

model heavily for larger differences in the predicted and actual values. There is a logarithmic

version of this (Mean Squared Logarithmic Error) that can be used in cases where you want to

avoid penalizing it too much for huge differences. Mean Absolute Error (MAE) is more generous

to outliers as well since it does not square the difference between the predicted and actual values

at all. Both MSE and MAE are used most commonly in predictive modeling. Cross Entropy loss

is commonly used in classification problems (the equations shown in figure 2.5 is for binary

classification, there is also a multi-class version). Negative Log Likelihood is similar to Cross

Entropy mathematically and is a very widely used loss function.

Activation functions are a technique used between layers to convert the outputs, which could

be anywhere between negative and positive infinity, into more applicable ranges like -1 to 1, 0 to

Mean Squared Error Loss =
1
n

∑n
i=1(yi − ŷi)2

Mean Absolute Error Loss =
1
n

∑n
i=1 |yi − ŷi|

Cross Entropy Loss = −1
n

∑n
i=1[yi · log(ŷi)+ (1− yi) · log(1− ŷi)]

Negative Log Likelihood Loss = −1
n

∑n
i=1 log(ŷi)

Figure 2.5: Common loss functions

6

2.2. TECHNIQUES

0

2

4

6

8

10

-10 -5 0 5

ReLU Activation Function

(a) R(z)= max(0, z)

0

0.25

0.5

0.75

1

-8 -6 -4 -2 0 2 4 6 8

Sigmoid Activation Function

(b) σ(z)= 1
1+ e−z

Figure 2.6: Two common activation functions

1, or 0 to infinity. They can also be used to perform some other conversions on the data. Sigmoid

will convert all negative numbers into a 0 to 0.5 range and all positive numbers into a 0.5 to 1

range (as seen in figure 2.6). Tanh, another commonly used activation function, is very similar to

sigmoid except its range is -1 to 1 instead of 0 to 1. ReLU is a commonly used activation function;

it converts all negative values into zero. This can cause an issue called neuron death. Neuron

death happens when the output of the neuron starts being less than zero consistently. When

this happens the entire neuron will output zero and will have a hard time recovering from this

state since the gradient for any value less than zero in the ReLU function is 0. To address this

issue there is another activation function called Leaky ReLU that multiples all negative values

by a factor between 0 and 1 essentially reducing the influence of the negatives without fully

eliminating it.

A common technique to reduce the size of the data, and thus performance, is pooling. Maxpool

in 2 dimensions works as shown on the right in Figure 2.7. The filter size and the stride tells

it which sections to look at and for each section it simplifies it into just one output that is the

largest value from the whole section. This helps preserve as much of the data as possible while

still reducing the size of the data that the model has to process. This technique is commonly used

in between layers to keep reducing the size of the data.

Hyperparameters are used to tune a model to successfully learn from training data[10].

Hyperparameters like learning rate can sometimes be hard to optimize. Often a particular

learning rate can enable the model to approach a certain level of accuracy, but cannot continue to

improve without lowering the learning rate. However, if you begin with a low learning rate the

model will take significantly longer to train. So to help the model train faster while still allowing

it to improve later a technique called learning rate decay is used.

A problem that some neural networks can have is overfitting, especially those with small

datasets[10]. Overfitting is when the model latches onto some patterns in the data that allow it

to make accurate predictions for the training set, but do not necessarily hold true for the testing

7

SECTION 2. BACKGROUND

Figure 2.7: An example of max pooling

Figure 2.8: An illustration of the symptoms of

over- and under-fitting

set or the problem domain as a whole. An ex-

ample of this is if training a fruit classifier

with a training set consisting of an apple, an

apple, and a banana. When it encounters a

strawberry the model will probably think the

strawberry is an apple because it is red and

all red things it has seen so far are apples. In

this case the neural network has identified a

particular pattern that is all it cares about.

This pattern allows it to correctly predict ev-

erything in the test set so it believes that it is

accurate all the time. However, we know that

this pattern does not hold true when applied to

the whole set, or at least when applied to a test

set that includes a strawberry. So in general,

overfitting increases test accuracy while severely decreasing test accuracy and therefore should

be avoided.

There are several techniques to address this problem. The simplest of them is just training

on a more diverse dataset. Another technique is to stop training the model when you notice the

test accuracy no longer decreases. The model reaches a certain point where most of the patterns

left to consider that increase the accuracy on the training set are not generalizable to the set as a

whole. Unfortunately this is hard to locate or predict as the first thing it decides to look at could

be specific to the training data and all the model knows is it is accurate on the training data

which is all it cares about. The third technique for preventing overfitting is called regularization.

The idea behind it is to tell the model that the higher its internal weights are, the worse the

accuracy is. If the model is blindly focusing on a single input bit, the weights along the path from

the bit to the outcome will be extremely high. Regularization forces the model to try to spread the

8

2.2. TECHNIQUES

Figure 2.9: An example of cross validation

weight across more of the input bits meaning the model takes more features into consideration,

which tends to make it less likely to fixate on a particular piece that will lead to overfitting.

Regularization influences the model by calculating a loss value based on the weight values, which

it factors into the regular loss while training.There are two main types of regularization loss

that are commonly used: L1 loss and L2 loss. L1 loss calculates the loss from the weights in a

linear way while L2 squares it. Because of this L2 attributes more loss to large weights helping

to quickly reduce these weights. This can help to reduce overfitting by preventing the model from

fixating on any patterns.

When there is not a sufficient amount of data for the model to test or train on, it is difficult to

ensure that the testing and training sets do not have any bias. For example, if the set used to

train has half bananas and half apples and then you test with only pears the results will probably

be different than if both the training and test sets each consist of an even distribution of apples,

pears, and bananas. One technique that attempts to address this is cross validation[10, 11]. The

idea behind cross validation is that you can run the model multiple times on multiple sections,

called folds, of the data provided to reduce chances for picking a split that has bias in any

direction. For example, pretend there is a dataset of 4000 images. If we want the test data to

be 25% of it we can split it into 4 folds as seen on the right in figure 2.9. How the data is split

or grouped could be changed but the general idea behind it is the same; every image is in the

test set for one run and the training set for the others. Doing multiple runs with different sets

provides proof that the model works without a biased testing set.

There are many vastly different problems and tasks that neural networks aim to solve, all

with varying types and complexities of data. However, simple data does not inherently mean a

simple model. For example, one application of a convolutional neural network to one dimensional

9

SECTION 2. BACKGROUND

data is text understanding. Human languages, particularly idiomatic ones like English, are full

of meaning that cannot be understood by explicitly reading the text, making it an extremely

difficult thing for a network to interpret. The network cannot simply look at each character one

by one, it must look at all characters together to build a context from which to understand what

is written.

On the other side of the spectrum is using a convolutional network to analyze four dimensional

data. The most common examples are three dimensional images in a time series, in other words

a three dimensional video such as an MRI. However, as T. Wang[12] discusses, four dimensional

data by nature is extremely difficult to model, as CNN architectures have not yet been developed

for four-dimensional data. With added complexity comes more noise and more computation

requiring more preprocessing and training to successfully train a model. T. Wang[12] discusses

several methods of circumventing these issues, one of which we used in our own project. In order

to reduce their four dimensional data he and his team averaged their data across a dimension,

allowing pre-existing CNN architectures to be used.

2.3 fMRI Applications

Brain injuries and diseases, such as concussions or dementia, are conditions that can be both

debilitating and difficult to diagnose. These specific examples are also widespread and affect

people of all ages, which in turn affects those around them[13][14]. For example. dementia

affects an estimated 24 million people worldwide and yet it is often undiagnosed in private

practice settings, especially when it is at an early stage[15][16]. For another example, this article

[17] reported that 300,000 concussions occur per year, but estimates that the real number of

occurrences is 3.4 million. Early detection and intervention for these diseases is important, but

often difficult. Cases of concussions and other brain injuries, unlike brain diseases, are easier to

detect immediately but become more difficult to detect the later the diagnostic is done. One review

of three widely used computerized tests for detecting sport-related concussions found that their

sensitivity of detection peaked when applied within 24 hours of the injury, with a maximum rate

of 67.8%. However, if administered after more than eight days, their sensitivity had diminished

nearly to their false positive rates. Despite this, these computerized neurocognitive tests are

currently the most reliable method of detecting a sport-related concussion[18].

Systems and methods that allow us to analyze the brain directly could give us a better ability

to detect these conditions. Functional magnetic resonance imaging (fMRI) is a technique that

allows us to record and monitor the activity, or function, that is happening in a brain. Magnetic

resonance imaging (MRI) works by detecting the changes in the magnetic resonance (MR) of the

body, which can be applied to the brain to map its structure. In order to detect the activity of

the brain, fMRI machines monitor fluctuations in the MR signal in the brain, which correlate

with fluctuations in its activity. The correlation between these factors is not direct; in fact MR

10

2.3. FMRI APPLICATIONS

signal actually correlates directly to the level the of blood-oxygenation which in turn correlates

to brain activity[1]. This technique of detecting brain activity can be used to investigate and

diagnose conditions which affect the functionality of the brain, instead of just the structure. This

can be particularly useful for conditions such as concussions, which are believed to affect only the

function of the brain and not its structure[19]. There is also evidence that concussions, and other

traumatic brain injuries, create a detectable change the in the functionality of the brain. This

change in functionality can be detected even if there is no longer any noticeable change in task

performance of the individual, which is the standard method of diagnosis[20].

The information acquired from MRI and fMRI can be analyzed to determine the health and

functionality of a brain, but this analysis can be difficult. The data produced by an fMRI can

be very difficult to interpret due to its high resolution and noise. Interpreting the data from an

fMRI and making a reliable diagnosis from it requires years of experience. Finding automated

ways to perform this diagnosis would be valuable for situations where an expert is unavailable

or too costly. Until recent years, the issue of resolution and noise made it difficult to develop a

computerized solution. However, the improvement and growth of machine learning techniques

has allowed us to deal with these issues. One study used support vector machines, an alternate

method of supervised machine learning, to classify sporadic Alzheimer’s disease using data from

MRI. They found that it could classify sporadic Alzheimer’s disease in 93% of cases. This compared

to radiologist’s with different levels of experience, who had rates ranging 80% to 90%[20]. While

this does not prove that an expert will always be out-done by a computerized system, it does show

that there is an opportunity for computerized analysis of data from MRI and fMRI.

2.3.1 Data Pre-processing

When working with high complexity data, such as that from fMRI and MRI, a common tool to

improve results is preprocessing the data before giving it to the model. This preprocessing is

intended to reduce the noise, variability, and complexity in the data. One research team[21]

preprocessed MRI data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database. They reduced noise by removing non-relevant parts of the body that were in the scan,

such as the skull and cerebellum, normalizing the intensity, and smoothing the data with a

Gaussian kernel. They reduced complexity by using positron emission tomography (PET) images

to align the MRI images (when available), segmenting the MRI data and only using the gray

matter map, and downsampling the final images. To reduce the variability, they also normalized

the spatial component of the grey matter map into what they called a template space. Another

team[22] used a four step process to preprocess fMRI scans. They began by correcting the phase

shifts of the signal in a given scan, followed by correcting for the motion of the subject. Their

next step were to normalize the spatial dimensions to reduce differences between subjects, and

the last was to smooth the spatial dimension, again using a Gaussian kernel. The first and third

steps were to reduce variability between subjects and scans, while second and fourth steps were

11

to reduce the noise in the data. A third research team[23] used resting state fMRI data which had

been already preprocessed by the “connecttome” project, which included segmenting the brain

into 90 regions, which reduced the complexity of the data by adding meta-data. However, these

methods, while improving the quality of the data that the neural network is given, also require

an overhead cost to implement.

METHODOLOGY

3.1 The Opportunity

MRI and fMRI techniques, in combination with the advancement of machine learning, introduce

a promising opportunity to create automated system that can analyze the data they produce. As

discussed in the previous section, exploration into this area has already begun. The goal of this

exploration is to build systems that can help analyze and diagnose conditions in a more timely,

accurate, and cost efficient way. In this project, we aspired to contribute to this exploration. Our

initial plan was to build a neural network that could directly analyze fMRI scans of a brain and

detect an injury or disease, without any pre-processing of the data. The specific type of network

and condition was initially undefined, so the neural network model we built evolved over time.

The data set we ultimately used consisted of scans from 29 athletes in a resting state, with

14 of them confirmed to have a concussions, and 15 without. Their ages ranged from 18 to 22,

and they were of both sexes. The sports that the athletes participated in also varied. The time

between the concussion occurring and the fMRI scan ranged from 6 days to 180 days. The scans

were provided in the NIfTI-1 data format, which was created by the Neuroimaging Informatics

Technology Initiative (NIfTI). More information about the scans can be found in appendix B. An

example of a scan can be seen in 3.1.

For this project, we used Python as a base language due to the existence of several high

quality, domain specific libraries available for it such as TensorFlow, PyTorch, and Nilearn. Both

PyTorch and TensorFlow are powerful libraries that provide tools for building custom neural

networks while abstracting much of their complexity. We decided to use PyTorch over TensorFlow

because it allowed us to build a more flexible model, which enabled us to easily experiment with

different ideas of how the model should be built while we were building it. Another library that we

used significantly was Tensorboard, which is a visualizer tool for neural networks. This allowed

for graphing of any set of metrics in real time while the network wastraining, which enabled us

to monitor the model. This gave us the ability to catch errors, or a mis-behaving model, much

earlier. It also allowed us to have graphical representations of how the training went. This made

12

3.2. TECHNIQUES

Figure 3.1: Example of concussion fMRI scan

reviewing and evaluating different versions of the model both quicker and more in depth, because

it allowed us to compare more than just the final result. While it was originally designed to work

with TensorFlow, we found the library TensorboardX that allowed us to integrate Tensorboard

with PyTorch.

The hardware that we used for training our model was the WPI ACE computer cluster. These

machines are provided for students to use for long term computations and simulations, which was

a valuable resource for training a neural network model. Each node in the cluster has 128 GB of

memory, and a minimum of 32 CPUs. The system has 24 NVIDIA K20 GPUs total. It uses the

Slurm Workload Manager to manage jobs. The batch manager limits the time that a computation

can run for to 12 hours, and limits the number of CPUs a job can use to 40 and the number of

GPUs to 2.

3.2 Techniques

The initial network that we designed was a simple fully connected model with two layers. The

model processed the four dimensional fMRI image by starting with a large number of inputs,

one for each voxel, and reducing it to 1000 outputs which was then further reduced to 2. Each

final output represented either a positive or negative concussion diagnosis. The loss function

we used was NLLLoss, which is similar to cross entropy loss except it doesn’t perform softmax

on the output. We included a ReLU activation function in between the fully connected layers,

and a softmax function on the final outputs. While this was a good place to start it gave us

poor results. These results were due to several problems. The two layer rapid reduction of

the data was unlikely to get good results because it did not give the model enough room to

extract features. Additionally, the data was so large that the number of outputs of the first

layer could not be much more than 1000 without the model being too big to load into memory.

This meant that we could not add more layers or increase the layer sizing to fix the problem.

13

SECTION 3. METHODOLOGY

Figure 3.2: A diagram of our model

In order to resolve this we tried reducing the data in a

meaningful way by averaging out the fourth dimension,

time. We reasoned that the image’s change over time

would be the least significant dimension for a diagnosis.

We had to make a sacrifice in the quantity of data to

reduce the model size, and averaging gave each time

slice an influence on the resulting data. This reduced the

number of inputs from 71,884,800 to a much smaller size

of 460,800. This allowed us to increase the complexity of

the model. However, the model still used fully connected

layers which treat the problem linearly and ignore the

locality of the data.

To address this we decided to add two convolutional

neural layers to the beginning of the model to help it

break down the data while considering locality. The first

convolutional layer takes in one input channel with all

the data, applies a 2x2x2 kernel to it and outputs 11

channels. ReLU was then applied to each output, and

maxpool was used with a 2x2x2 kernel size to reduce

the data further. The next convolutional layer received the 11 output channels from the previous

layer, applied a 2x2x2 kernel to each, and output 30 channels. After applying the same ReLU and

max pooling to the outputs, they were then passed into the linear layers which now had less data

to deal with. The diagram for this model can be seen in Figure 3.2.

One issue the model still had was it was having trouble learning from such a small dataset.

One paper found that even 350 samples were not sufficient for a high difficulty problem when

using whole brain MRI scans[24]. Small datasets can be biased both in the data they contain and

in how they are split into test and training sets. Splitting the dataset into test and training sets

in such a way that at least one of them is uneven leads to bias. For example, if there are only

9 images in a binary classification problem’s training set then it is guaranteed to see one label

more than the other.

Our method of addressing this problem for our small dataset was to implement cross valida-

tion. This allowed us to test various configurations of the testing and training data split, which

helped reduce the chance of bias in the splitting of the dataset. Different configurations, or folds,

produced varying results which we could then average to get a relatively unbiased result. While

this reduced bias, it did not significantly improve the models performance.

At this point, the main issue was that the model could not perform better than random,

even after 60 epochs of training. Because of our small dataset, we expected our model to overfit

quickly. Instead we found the accuracy of the model to be 51% at best. We noticed that the loss

14

3.2. TECHNIQUES

Steps

Tr
ai

ni
ng

 A
cc

ur
ac

y

0

0.25

0.5

0.75

1

12 14 16 18 20 22 24

Overfitting in Training Accuracy

Figure 3.3: A graph of the training accuracy of
the model

Steps

Te
st

 A
cc

ur
ac

y

0

0.25

0.5

0.75

1

250 500 750 1000 1250

100,000 10,000

Comparison of Regularization Weights

Figure 3.4: A graph of the test accuracy of the
model

during training was extremely chaotic, leading us to believe the learning rate was too high.

To minimize the length it took to overfit while still having a small enough learning rate, we

implemented learning rate decay. In order to improve our understanding of how the model was

training, we also integrated tensorboard at this time. This allowed us to better understand how

the hyperparameters we were testing affected training performance. Eventually we found a set of

parameters that enabled the model to overfit within 20 epochs (Figure 3.3). In order to compare

training runs to each other, we set the random seed of the program. This meant that if one ran

two runs with exactly the same parameters at two different times, the model training should

match exactly. This allowed us to determine which set of hyperparameters was best for any set of

runs. The next step was to prevent overfitting in order to increase our test accuracy, which was

still chaotic at this point.

The method we used to reduce overfitting was L2 weight regularization. We experimented

with different magnitudes of this hyperparameter, from 10−8 up to 100,000 and found that

larger values performed much better. Figure 3.4 shows the test accuracy of two identical runs

over 1,400 steps, except that orange has a regularization weight of 1000 and green has a

regularization weight of 100,000. As you can see, while neither reached optimal accuracy, the

higher regularization weight significantly improved the test accuracy. However, we needed some

way to increase test accuracy further.

In the end, we elected to manipulate the input data in a unique way. Instead of averaging

each input over the time dimension to get a 3D input, we generated a series of independent slices

of each fMRI across the x-axis. This converted each 4D input into a series of 3D inputs, with each

3D input representing a 2D slice over time. We hoped that by more closely associating a slice

with its change in state over time the model would be able to better see patterns in brain activity.

At the same time, since we now had fifty times as many inputs, we removed cross validation and

instead randomly distributed 30% of slices from each scan to the test set and the remaining to

the training set by random sampling.

However, the downside of having much more input data is that it took significantly longer to

15

train. We found that the limit of 12 hours set by ACE was not nearly enough to complete a full

training run, meaning we needed to find a way to restart our model from a saved state. To do

this, we used PyTorch’s built-in model exporting functionality. Every five minutes we saved the

state of the model, as well as the current epoch and step. When a run was terminated, we could

restart the run and it would automatically load the state of the model from the previously saved

checkpoint. This enabled us to train our model until the accuracy was no longer meaningfully

increasing, allowing it to reach higher test accuracy.

RESULTS

After considerable experimentation with the model (Figure 4.1), we found that it performed best

with a learning rate of 10−10 and a regularization weight of 1000. After roughly 70 hours of

training, which consisted of 400 epochs, the model reached a test accuracy of 70% and a training

accuracy of 74%. While not more accurate than a human doctor, it represents a significant step in

computer-aided healthcare. In order to reach this level of accuracy, we compared the performance

of our model using several different hyperparameters.

First, we selected a regularization weight. From previous experiments we knew it would

need to be large, so we compared four values to the model without weight regularization: 1,000;

10,000; 50,000; and 100,000. The learning rate for all five runs was 10−9, as we had found that to

work well in the past. The best performing hyperparameters were 100,000 and 1,000 with 68%

test accuracy and 73% training accuracy, so we selected 1,000. (Appendix A page 1). Second, we

selected a learning rate. We knew that 10−9 worked well, and so centered our hyperparameter

testing around it. We tested learning rates of 10−7, 10−8, 10−9, 10−10, and 10−11. Of these five,

10−10 by far performed the best, with a test accuracy of 70% and a training accuracy of 74%. This

can be seen in Appendix A page 2.

Figure 4.1: A visual representation of the final model structure

16

Having found what we believed to be the optimal hyperparameters for our model on this

data, we compared it to two versions of our previous design which averaged across the data, one

using a fully connected network and the other using a convolutional neural network. As can be

seen in Appendix A. Each model was run for 400 epochs, allowing each to reach its maximum

potential test accuracy. As can be seen in Appendix A page 3, our final model, the Slicing CNN,

far outperformed the other two, which never made it above random.

CONCLUSIONS AND FUTURE WORK

The results of this model are promising. A neural network that can detect and diagnose conditions

similar to a doctor could help in the medical industry by diagnosing patients faster and for a

lower cost. This in turn could make good healthcare more affordable for lower income families

and increase their quality of life.

This being said, our model still has room for expansion. The model is currently limited by the

number of fMRIs it has to analyze. 30 pieces of data is extremely small for any neural network,

not to mention one that works with such complex data. If the neural network could train on more

data it would certainly result in a significant improvement in its overall accuracy, potentially

exceeding the current 70% diagnosis accuracy. Our data was also taken at varying times after

the concussion was potentially received. If all the fMRI scans were done at similar times after

the concussion, this would improve the consistency of the data. This allows the model to see

patterns that occur in the scan around one particular time and not be confused by patterns that

appear and disappear at various times. Another limitation in the model is the fact that it has

no preprocessing. The model currently looks at only the raw image voxels but preprocessing

could be a valuable tool for expanding the models power, especially if more data is acquired.

Preprocessing also requires an in-depth knowledge of the domain, in this case brain function and

other related fields, which unfortunately our group did not possess. With preprocessing, more

complex model structures can be applied. This is due to the fact that preprocessing removes noise

and helps the model focus in on particular aspects of the data, reducing its complexity. Our model

was also limited by the computational power of the computers it trained on. Training it for 400

epochs took roughly 70 hours on the machines we used and so the model could make use of more

computational power to train longer and faster, especially if the data was expanded. Despite

being beyond the scope of this project, these could improve the models performance and make it

a more feasible solution. Ultimately, this project’s results show that some application of neural

networks to data in this area is well within reach with modern techniques.

17

APPENDIX A: RESULT GRAPHS

Steps

Te
st

 A
cc

ur
ac

y

0.4

0.6

0.8

1

2000 4000 6000 8000 10000

0 1,000 10,000 50,000 100,000

Regularization Weight Comparison

Steps

Te
st

 A
cc

ur
ac

y

0.4

0.6

0.8

1

2000 4000 6000 8000 10000

lr-1e-07 lr-1e-08 lr-1e-09 lr-1e-10 lr-1e-11

Learning Rate Comparison

18

Epoch

Te
st

 A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

100 200 300 400

Average FCN Average CNN Slicing CNN

Model Comparison

19

APPENDIX B: CONCUSSION SCAN INFORMATION

Subject ID Sport Concussed?

Days

Post-concussion

31 P

Days

Post-concussion

GABA

Age at

Enrollment Gender Handedness Height (cm) Weight(kg)

TBI001 Lacrosse No N.A. N.A. 21 1 0 181 88

TBI002 Lacrosse No N.A. N.A. 22 1 0 173 73

TBI003 Swimming No N.A. N.A. 20 1 0 177 76

TBI004 Lacrosse Yes 27 44 22 1 0 173 76

TBI005 Track No N.A. N.A. 19 0 0 156 65

TBI006 Lacrosse Yes 180 180 19 1 0 172 82

TBI007 Lacrosse No N.A. N.A. 21 0 0 161 59

TBI008 Football No N.A. N.A. 22 1 0 190 129

TBI009 Softball Yes 76 76 20 0 0 162 68.5

TBI010 Field Hockey No N.A. N.A. 20 0 0 169 68

TBI011 Football Yes 77 77 20 1 1 180 101

TBI012 Volleyball No N.A. N.A. 19 0 0 170 104

TBI013 Lacrosse Yes 89 89 22 1 1 177 71

TBI014 Football No N.A. N.A. 18 1 0 186 110

TBI015 Basketball Yes 23 23 21 0 0 182 82

TBI016 Ice Hockey Yes 166 166 20 0 N.A. 158 59

TBI017 Gymnastics No N.A. N.A. 18 1 0 163 62

TBI018 Ice Hockey Yes 185 185 19 1 0 170 68

TBI019 Ice Hockey Yes 184 184 20 1 0 172 86

TBI020 Field Hockey No N.A. N.A. 19 0 0 159 53

TBI021 Ice Hockey No N.A. N.A. 21 0 0 170 65

TBI022 Basketball No N.A. N.A. 19 0 0 160 52

TBI023 Volleyball Yes 21 21 19 1 0 168 86

TBI024 Soccer No N.A. N.A. 22 1 0 178 75

TBI025 Football Yes 6 6 20 1 0 173 79

TBI026 Field Hockey No N.A. N.A. 19 0 0 160 60

TBI027 Ice Hockey Yes 13 13 19 1 0 183 77

TBI028 Basketball Yes 9 9 19 1 0 178 73

TBI029 Skiing Yes 14 14 21 0 0 170 76

20

BIBLIOGRAPHY

[1] S. A. Huettel, A. W. Song, G. McCarthy et al., Functional magnetic resonance imaging.

Sinauer Associates Sunderland, MA, 2004.

[2] T. Madhyastha, M. Peverill, N. Koh, C. McCabe, J. Flournoy, K. Mills, K. King, J. Pfeifer,

and K. A. McLaughlin, “Current methods and limitations for longitudinal fmri analysis

across development,” Developmental Cognitive Neuroscience, vol. 33, pp. 118 – 128, 2018.

[3] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, “Beyond mind-reading: multi-voxel

pattern analysis of fmri data,” Trends in Cognitive Sciences, vol. 10, no. 9, pp. 424 – 430,

2006.

[4] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,”

Science, vol. 349, no. 6245, pp. 255–260, 2015.

[5] A. C. Lagandula. (2018) Mcculloch-pitts neuron - mankind’s first mathematical model of a

biological neuron. Accessed: 2019-02-7.

[6] A. Kurenkov. (2015) A ’brief ’ history of neural nets and deep learning. Accessed: 2019-02-7.

[7] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational geometry. MIT

press, 2017.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, no. 9, pp. 533–536, 1986.

[9] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regularization,” Com-

puter Research Repository, vol. abs/1409.2329, 2014.

[10] S. Lemm, B. Blankertz, T. Dickhaus, and K.-R. Müller, “Introduction to machine learning for

brain imaging,” NeuroImage, vol. 56, no. 2, pp. 387 – 399, 2011, multivariate Decoding

and Brain Reading.

[11] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation and

model selection,” in International Joint Conference on Artificial Intelligence, vol. 14, no. 2,

1995, pp. 1137–1145.

21

BIBLIOGRAPHY

[12] T.-C. Wang, J.-Y. Zhu, E. Hiroaki, M. Chandraker, A. A. Efros, and R. Ramamoorthi, “A

4d light-field dataset and cnn architectures for material recognition,” in European

Conference on Computer Vision, 2016, pp. 121–138.

[13] M. Wortmann, “Dementia: a global health priority - highlights from an adi and world health

organization report,” Alzheimer’s Research & Therapy, vol. 4, no. 5, p. 40, 2012.

[14] R. S. Moser, “The growing public health concern of sports concussion: The new psychology

practice frontier,” Professional Psychology: Research and Practice, vol. 38, no. 6, pp.

699–704, 2007.

[15] C. P. Ferri, M. Prince, C. Brayne, H. Brodaty, L. Fratiglioni, M. Ganguli, K. Hall,

K. Hasegawa, H. Hendrie, Y. Huang, A. Jorm, C. Mathers, P. R. Menezes, E. Rim-

mer, and M. Scazufca, “Global prevalence of dementia: a delphi consensus study,” The

Lancet, vol. 366, no. 17, pp. 2112–2117, 2005.

[16] V. G. Valcour, K. H. Masaki, J. D. Curb, and P. L. Blanchette, “The detection of dementia in

the primary care setting,” Archives of Internal Medicine, vol. 160, no. 19, pp. 2964–2968,

2000.

[17] M. E. Halstead, K. D. Walter, and , “Sport-related concussion in children and adolescents,”

Pediatrics, vol. 126, no. 3, pp. 597–615, 2010.

[18] L. D. Nelson, A. A. LaRoche, A. Y. Pfaller, E. B. Lerner, T. A. Hammeke, C. Randolph,

W. B. Barr, K. Guskiewicz, and M. A. McCrea, “prospective, head-to-head study of three

computerized neurocognitive assessment tools (cnts): reliability and validity for the

assessment of sport-related concussion,” Journal of the International Neuropsychological

Society, vol. 22, no. 1, p. 24–37, 2016.

[19] A. Ptito, J.-K. Chen, and K. M. Johnston, “Contributions of functional magnetic resonance

imaging (fmri) to sport concussion evaluation,” NeuroRehabilitation, vol. 22, no. 3, pp.

217–227, 2007.

[20] T. McAllister, A. Saykin, L. Flashman, M. Sparling, S. Johnson, S. Guerin, A. Mamourian,

J. Weaver, and N. Yanofsky, “Brain activation during working memory 1 month after

mild traumatic brain injury,” Neurology, vol. 53, no. 6, pp. 1300–1300, 1999.

[21] R. Li, W. Zhang, H.-I. Suk, L. Wang, J. Li, D. Shen, and S. Ji, “Deep learning based imaging

data completion for improved brain disease diagnosis,” in Medical Image Computing

and Computer-Assisted Intervention, P. Golland, N. Hata, C. Barillot, J. Hornegger, and

R. Howe, Eds., 2014, pp. 305–312.

22

BIBLIOGRAPHY

[22] E. E. Tripoliti, D. I. Fotiadis, M. Argyropoulou, and G. Manis, “A six stage approach for

the diagnosis of the alzheimer’s disease based on fmri data,” Journal of Biomedical

Informatics, vol. 43, no. 2, pp. 307 – 320, 2010.

[23] A. Riaz, M. Asad, S. M. M. R. A. Arif, E. Alonso, D. Dima, P. Corr, and G. Slabaugh,

“Deep fmri: An end-to-end deep network for classification of fmri data,” in International

Symposium on Biomedical Imaging, 2018, pp. 1419–1422.

[24] C. Chu, A.-L. Hsu, K.-H. Chou, P. Bandettini, and C. Lin, “Does feature selection improve

classification accuracy? impact of sample size and feature selection on classification

using anatomical magnetic resonance images,” NeuroImage, vol. 60, no. 1, pp. 59 – 70,

2012.

23

	Abstract
	List of Figures
	Introduction
	Background
	History
	Techniques
	fMRI Applications
	Data Pre-processing

	Methodology
	The Opportunity
	Techniques

	Results
	Conclusions and Future Work
	Appendix A: Result Graphs
	Appendix B: Concussion Scan Information
	Bibliography

