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Abstract

Data from the 1995 National Health Interview Survey (NHIS) indicate that, due to chronic

conditions, the onset of activity limitation typically occurs between age 40-70 years (i.e., the

proportion of young adults with activity limitation is small and roughly constant with age and

then it starts to change, roughly increasing). We use a Bayesian hierarchical model to detect

the change point of a positive activity limitation status (ALS) across twelve domains based on

race, gender, and education.

We have two types of data: weighted and unweighted. We obtain weighted binomial counts

using a regression analysis with the sample weights. Given the proportion of individuals in the

population with positive ALS, we assume that the number of individuals with positive ALS

at each age group has a binomial probability mass function. The proportions across age are

different, and have the same beta distribution up to the change point (unknown), and the

proportions after the change point have a different beta distribution.

We consider two different analyses. The first considers each domain individually in its own

model and the second considers the twelve domains simultaneously in a single model to “borrow

strength” as in small area estimation. It is reasonable to assume that each domain has its own

onset.In the first analysis, we use the Gibbs sampler to fit the model, and a computation of the

marginal likelihoods, using an output analysis from the Gibbs sampler, provides the posterior

distribution of the change point. We note that a reversible jump sampler fails in this analysis

because it tends to get stuck either age 40 or age 70. In the second analysis, we use the Gibbs

sampler to fit only the joint posterior distribution of the twelve change points. This is a difficult

problem because the joint density requires the numerical computation of a triple integral at

each iteration. The other parameters of the process are obtained using data augmentation by

a Metropolis sampler and a Rao-Blackwellization.

We found that overall the age of onset is about 50 to 60 years.



Acknowledgements

I extend my sincere gratitude and appreciation to many people who made this masters thesis

possible. First of all, I am highly indebted to my advisor, Dr. Balgobin Nandram, for his

great help, guidiance, patience, and understanding. It is an exciting and rewarding experience

to work with such a knowledgeable and kind professor to catch up with his endless ideas and

creativity.

Thanks are due to Dr. Jai W. Choi of the National Center for Health Statistics (NCHS)

for his encouragement and assistance throughout the whole project. I am also grateful to Mr.

Douglas Williams, who helped me to get an internship at NCHS during summer 2004.

A special thank you to my parents and dear husband, for their forever love and support.

1



Chapter 1

Introduction

The National Health Interview Survey (NHIS) is an important source of imformation on the

health of the U.S. population. One of the variables in NHIS is activity limitation status (ALS).

Activity limitation among adults due to chronic conditions is a major health problem in United

States. It may influence the quality of an individual’s life, and it can cause socio-economic prob-

lems. We believe that the activity limitation status changes at certain age, probably between

40 and 70 (see Figure 1). The main issue we want to address in this study is to find the onset

of activity limitation among adults.

1.1 National Health Interview Survey

The National Health Interview Survey (NHIS) has been conducted every year since 1957 by

the National Center for Health Statistics (NCHS) to measure an aspect of health status of the

U.S. population [1]. Through this sample survey, NCHS conducts surveys on chronic and acute

conditions, doctor visits, hospital episodes, disability, household and personal information, and

other special aspects of health of the U.S. population.

The questionnaire is divided up into two major sections, core and supplemental. The core

section includes items on household and personal information, basic health questions on condi-

tions, doctor visit, hospital discharge and other supplemental information. The supplemental

section includes questions about selected interests from the general public, encompassing a wide

range of topics such as prescription medicine, hypertension, diabetes, high blood pressure, and
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HIV. The core section is administered annually and the supplemental section is administered

as its need arises.

1.2 Activity Limitation Status

Respondents in NHIS were asked to provide their activity limitation status during the interview.

The degree of activity limitation is divided in four categories: 1. Unable to perform major

activity. 2. Limited in kind/amount of major activity. 3. Limited in other activities. 4. Not

limited (includes unknowns). Here, major activity refers to activities like going to work, going

to school, keeping house, etc.

Loss of activities of daily living will lead to disability. After the onset of disability, an

individual’s life may be influenced both physically and psychologically [2]. Because of the

disability, they may encounter changes in paid and unpaid work, and therefore, have lower

income and less benefit. On the other hand, they will need more help in their daily living

and the cost of living will increase. These will result in higher risk of poverty. While they

are having all these economical difficulties, they may also have social problems. Disability may

prevent people from normal social life and make them socially excluded. Disability is assessed

using a longitudinal study. The main issue in this study is activity limitation, which is different

from disability. However, knowing what impact of disability would make the onset of activity

limitation meaningful. Doctors can give patients suggestions when they are near the onset of

activity limitation, therefore patients can prevent the activity limitation or be prepared for the

impact of it.

1.3 Description of Data

The data we used for this study is 1995 National Health Interview Survey. The interviewed

sample was has 41,824 households containing 102,467 persons. The range of age is from 0 to

99. Since we are only interested in the onset of activity limitation among adults with chronic

conditions, we only use the data from those whose age is from 30 to 80. The variable Activity

Limitation Status (ALS) has 4 levels, and we recoded it into 2 levels in 2 ways. In the first case,
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we group the first two levels together and give it value 1, which indicate that the individual

have some major activity limitation; and level 3 and 4 are also grouped together and given the

value 0, which means the individual have almost no activity limitation. In the second case, we

group level 2, 3, 4 together, and give it value 0, which indicate that the individual has no severe

major activity limitation; and we leave level 1 as it is and give it value 1, which indicates that

the individual has major activity limitation.

Previous studies indicate that characteristics such as race, gender, and socioeconomic sta-

tus influence the probability of having functional disorders [10]. Socioeconomic status include

factors such as education and income. Education is determined early in life and influence psy-

chosocial mechanisms throughout life. It is highly correlated with income. However, education

is more strongly predictive of onset of functional health problem such as activity limitation,

while income is more predictive of course or progression. Activity limitation in our study is

a chronic health problem of adulthood, and is the outcome of a long process of development

as a function of exposure to a wide range of social, psychological, and biomedical risk factors.

Education indexes both the socio-economic position of individuals early in adulthood and a

stock of human capital available to them from that time on. All these influence long-term pat-

terns of exposure to and experience of major psychosocial and biomedical risk factors that cause

activity limitation. Income, on the other hand, is usually measured in year, and thus reflects

socioeconomic position and resources closer to the time of assessment of activity limitation.

It is more strongly related to the resources available for the treatment or management of the

health problem. Therefore, income more relates to the severity of the problem while educa-

tion more strongly relates to the onset or existence of the health problem. So in our study,

we also include variables like race, gender, and education. There are two levels of race, white

and nonwhite. Gender also have two levels, male and female. In the original data, there are 7

levels of education. To fit our model, it is recoded in to 3 levels, 1. pre-college, 2. college, and

3. post-college. Each combination of race, gender, and education is considered as a domain,

therefore, the dataset is divided into 12 domains and one can expect different onset for each

domain. All data combined is considered as the 13th domain. The boxplots of the proportions

of positive ALS for the 12 domains by age are presented in Figure 1 & 2. One can notice that
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there is a sudden drop of proportions of ALS around age 70. We believe that this is because

many people with positive ALS are of poor health, and they pass away around age 70, therefore,

the proportion of positive ALS drops.

Since the NHIS uses a multistage sample designed to sample the population of the United

States, it is necessary to utilise the person’s basic weight for proper analysis of the data. The

weight for each sample person is the product of four component weights:

1. Probability of selection. The basic weight for each person is obtained by multiplying

the reciprocals of the probabilities of selection at each step in the design: PSU, segment, and

household.

2. Household nonresponse adjustment within segment. In the NHIS, interviews

are completed in about 94 percent of all eligible households. Because of household nonre-

sponse, a weighting adjustment is required. The nonresponse adjustment weight is a ratio

of the within-segment weighted number of sample households divided by the within- segment

weighted number of actually interviewed households, both numbers exclusive of households

with unknown black/Hispanic status. For segments with nonresponding households of unknown

black/Hispanic status, the previously mentioned factor was multiplied by the ratio of the num-

ber of segment households divided by the number of known status households. This adjustment

reduces bias in an estimate to the extent that persons in the noninterviewed households have

the same characteristics as the persons in the interviewed households in the same segment.

3. First-stage ratio adjustment. The weight for persons in the nonself-representing

PSU’s is ratio adjusted to the 1990 population within four race-residence classes of the nonself-

representing strata within each geographic region.

4. Poststratification by age-sex-race-ethnicity. Within each of 88 age-sex-race-ethnicity

cells, a weight is constructed each quarter to ratio adjust the first-stage population estimate

based on the NHIS to an independent estimate of the population of each cell. These independent

estimates are prepared by the U.S. Bureau of the Census and are updated quarterly.

In addition to the design and ratio adjustments included in the person basic weight, the

person weight is further modified depending on the variable selected, the length of the recall

period, and the period of time for which the estimate is to be made. For a review of weighting
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methods, see Kalton and Florence-Cervantes [8]. To construct the weighted data, first let yijl

denote the value of ALS for the lth individual in ith domain and j years old, and let wijl be the

weight of ALS for the lth individual in ith domain and j years old, then we define p̂ij as the

following,

p̂ij =

∑
l∈Dij

wijlyijl∑
l∈Dij

wijl
i = 1, . . . , 12, j = 30, . . . , 80, (1)

where Dij are domains formed by race, sex, and education. Then we fit a logistic regression

based on these p̂ij ,

log
[

p̂ij

1 − p̂ij

]
= X

˜
′
ijβ

˜
+ εij . (2)

Using a first-order Taylor expansion, we get the variance,

V ar

(
log

[
p̂ij

1 − p̂ij

])
≈ 1 − pij

pij

1 − pij + pij

(1 − pij)2
=

V ar(p̂ij)
[pij(1 − pij)]2

, (3)

where

V ar(p̂ij) =

∑
l∈Dij

w2
ijlpij(1 − pij)(∑

l∈Dij
wijl

)2 =
pij(1 − pij)

∑
l∈Dij

w2
ijl(∑

l∈Dij
wijl

)2 . (4)

Xij
˜

is a vector that contains an intercept and the value of sex, race, and eduation for each

domain and each age group.

Now substituting (4) into (3) we get,

V ar

(
log

[
p̂ij

1 − p̂ij

])
≈

∑
l∈Dij

w2
ijl

p̂ij(1 − p̂ij)
(∑

l∈Dij
wijl

)2 =
1

Wij
. (5)

Then the least square estimate for β
˜

becomes

β̂
˜

=




∑
i

∑
j

WijX
˜

ijX
˜
′
ij




−1 ∑
i

∑
j

Wij log
[

p̂ij

1 − p̂ij

]
X
˜

ij . (6)

In the case in which p̂ij = 0 or 1, we add 1/2nij to both p̂ij and 1 − p̂ij . This is similar to the

adjustment in Cox [4] for the empirical logistic transform. Thus, we construct the new weighted
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binomial data

yij = [
nije

X
˜

′
ijβ̂
˜

1 + eX˜
′
ij β̂

˜

], (7)

where [] is the nearest integer, yij = 0, 1, . . . , nij .

The number of individuals with ALS using the unweighted, simple weighted, and logistic

weighted data for each race, gender, and education domain is presented in Tables 1 and 2,

together with the proportions of positive ALS for each case. We observe that the simple weighted

data is similar with the unweighted data, so in our analysis, we will use both the unweighted

and logistic weighted data. The boxplots for the proportion of adults with positive ALS using

the logistic weighted data are presented in Figures 3-4. We notice that the plots are smoother

than those using the unweighted data and the sudden drop around age 70 is removed.

Domain Total Observed Obs per Simple wt Sw per Logistic wt Lw per
1 1361 329 .242 369 .271 360 .265
2 263 96 .365 96 .365 82 .312
3 1503 366 .244 403 .268 398 .265
4 322 119 .370 120 .373 108 .335
5 5814 854 .147 856 .147 894 .154
6 1129 229 .203 227 .201 230 .204
7 7023 999 .142 998 .142 1117 .159
8 1538 304 .198 302 .196 316 .205
9 6012 463 .077 461 .077 522 .087

10 934 89 .095 87 .093 99 .106
11 5969 519 .087 526 .088 489 .082
12 1236 116 .094 115 .093 128 .104

Table 1.1: Observed ALS, Simple weight ALS, Logistic Weight ALS, and their proportions,
where only “Limited in major activity” is considered as positive ALS.

To have some rough idea about where the change point is, we can use the Expectation Max-

imization algorithm [5] to compute the distribution for change point k. Consider the following

simple approximate model for each domain,

p̂j
iid∼ Normal(µ1,

p̂j(1−p̂j)
nj

) j = 30, . . . , k

p̂j
iid∼ Normal(µ2,

p̂j(1−p̂j)
nj

) j = k + 1, . . . , 80,
(8)

where p̂j is the proportion of people with positive ALS who are j years old. Before the change

point, p̂j ’s are independently and identically normally distributed with mean µ1 and variance
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Domain Total Observed Obs per Simple wt Sw per Logistic wt Lw per
1 1361 242 .178 280 .206 257 .189
2 263 76 .289 77 .293 67 .255
3 1503 206 .137 218 .145 235 .156
4 322 67 .208 65 .202 72 .224
5 5814 494 .085 491 .084 559 .096
6 1129 162 .143 158 .140 167 .148
7 7023 450 .064 447 .064 577 .082
8 1538 163 .106 162 .105 195 .127
9 6012 203 .034 203 .034 277 .046

10 934 48 .051 51 .055 63 .067
11 5969 236 .040 240 .040 211 .035
12 1236 57 .046 58 .047 61 .049

Table 1.2: Observed ALS, Simple weight ALS, Logistic Weight ALS, and their proportions,
where both “Limited in major activity” and “Limited in kind/amount of major activity” are
considered as positive ALS.

p̂j(1 − p̂j)/nj , where nj is total number of individuals who are j years old. After the change

point, p̂j ’s follow the same distributions as before, except that the mean is µ2.

Now we can apply the EM algorithm to find the distribution of k,

E(k|µ̂1, µ̂2, p̂
˜
) =

∑70
k=40 k

∏80
j=30

[
nj

2πp̂j(1−p̂j)

] 1
2
e
− 1

2

( Pk
j=30 nj(p̂j−µ̂1)2

p̂j(1−p̂j)
+

P80
j=k+1 nj(p̂j−µ̂2)2

p̂j(1−p̂j)

)

∑70
k=40

∏80
j=30

[
nj

2πp̂j(1−p̂j)

] 1
2
e
− 1

2

( Pk
j=30

nj(p̂j−µ̂1)2

p̂j(1−p̂j)
+

P80
j=k+1

nj(p̂j−µ̂2)2

p̂j(1−p̂j)

) (9)

=
∑70

k=40 ke
− 1

2

( Pk
j=30 nj(p̂j−µ̂1)2

p̂j(1−p̂j)
+

P80
j=k+1 nj(p̂j−µ̂2)2

p̂j(1−p̂j)

)

∑70
k=40 e

− 1
2

( Pk
j=30

nj(p̂j−µ̂1)2

p̂j(1−p̂j)
+

P80
j=k+1

nj(p̂j−µ̂2)2

p̂j(1−p̂j)

) . (10)

Then the distribution of k will be

P (k|µ̂1, µ̂2, p̂
˜
) =

e
− 1

2

( Pk
j=30 nj(p̂j−µ̂1)2

p̂j(1−p̂j)
+

P80
j=k+1 nj(p̂j−µ̂2)2

p̂j(1−p̂j)

)

∑70
k=40 e

− 1
2

( Pk
j=30

nj(p̂j−µ̂1)2

p̂j(1−p̂j)
+

P80
j=k+1

nj(p̂j−µ̂2)2

p̂j(1−p̂j)

) , (11)

where

µ̂1 =

∑k
j=30 nj p̂j∑k
j=30 nj

µ̂2 =

∑80
j=k+1 nj p̂j∑80
j=k+1 nj

(12)
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The results are presented in Tables 1.2 to 1.6. These are only rough and approximate

estimates for the distributions for k, and we note that the distributions are quite concentrated.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

40 .237 .000 .001 .035 .228 .012 .204 .000 .000 .000 .000 .000 .000
41 .150 .000 .005 .024 .095 .002 .046 .000 .000 .000 .000 .000 .000
42 .118 .000 .001 .024 .292 .174 .066 .000 .000 .000 .664 .000 .000
43 .148 .000 .016 .024 .144 .363 .418 .000 .000 .000 .074 .000 .000
44 .098 .000 .763 .024 .106 .259 .089 .000 .000 .000 .003 .000 .000
45 .092 .000 .146 .034 .073 .062 .131 .000 .003 .000 .240 .000 .009
46 .092 .000 .043 .034 .028 .040 .019 .000 .000 .000 .008 .000 .000
47 .046 .000 .018 .034 .015 .023 .008 .000 .158 .000 .009 .000 .006
48 .014 .000 .006 .019 .011 .044 .005 .012 .565 .000 .001 .000 .957
49 .003 .000 .002 .029 .005 .003 .010 .607 .140 .003 .000 .000 .028
50 .000 .000 .001 .029 .002 .003 .003 .318 .025 .017 .001 .000 .000
51 .000 .000 .000 .039 .001 .008 .000 .048 .080 .017 .000 .001 .000
52 .000 .001 .000 .048 .001 .003 .000 .012 .018 .017 .000 .000 .000
53 .000 .000 .000 .056 .000 .001 .000 .002 .004 .119 .000 .000 .000
54 .000 .001 .000 .051 .000 .001 .000 .001 .003 .117 .000 .000 .000
55 .000 .001 .000 .057 .000 .001 .000 .000 .002 .103 .000 .032 .000
56 .000 .001 .000 .073 .000 .001 .000 .000 .002 .103 .000 .023 .000
57 .000 .003 .000 .083 .000 .000 .000 .000 .000 .103 .000 .156 .000
58 .000 .001 .000 .046 .000 .000 .000 .000 .000 .060 .000 .156 .000
59 .000 .001 .000 .046 .000 .000 .000 .000 .000 .066 .000 .156 .000
60 .000 .001 .000 .054 .000 .000 .000 .000 .000 .037 .000 .141 .000
61 .000 .001 .000 .062 .000 .000 .000 .000 .000 .037 .000 .100 .000
62 .000 .001 .000 .005 .000 .000 .000 .000 .000 .037 .000 .100 .000
63 .000 .001 .000 .002 .000 .000 .000 .000 .000 .046 .000 .029 .000
64 .000 .020 .000 .004 .000 .000 .000 .000 .000 .035 .000 .029 .000
65 .000 .018 .000 .008 .000 .000 .000 .000 .000 .027 .000 .020 .000
66 .000 .045 .000 .005 .000 .000 .000 .000 .000 .011 .000 .016 .000
67 .000 .060 .000 .007 .000 .000 .000 .000 .000 .011 .000 .015 .000
68 .000 .110 .000 .014 .000 .000 .000 .000 .000 .011 .000 .015 .000
69 .000 .366 .000 .017 .000 .000 .000 .000 .000 .011 .000 .004 .000
70 .000 .366 .000 .017 .000 .000 .000 .000 .000 .011 .000 .004 .000

Table 1.3: Simple estimates for the change point using the EM algorithm, where only “Limited
in major activity” is considered as positive ALS and the data is unweighted.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .239 .028 .000 .042 .043 .025 .995 .000 .000 .000 .000 .885 .000
41 .142 .026 .000 .052 .014 .002 .004 .000 .000 .000 .000 .093 .000
42 .176 .026 .000 .063 .259 .211 .000 .000 .000 .000 .002 .017 .000
43 .098 .026 .409 .048 .454 .349 .001 .000 .000 .000 .000 .003 .000
44 .139 .031 .409 .048 .165 .295 .000 .000 .004 .000 .000 .000 .000
45 .150 .031 .160 .028 .047 .071 .000 .000 .982 .000 .972 .000 .000
46 .043 .031 .019 .028 .011 .030 .000 .003 .006 .001 .018 .001 .000
47 .010 .031 .003 .024 .006 .009 .000 .004 .008 .007 .006 .000 .100
48 .001 .031 .000 .128 .001 .005 .000 .902 .000 .007 .001 .000 .483
49 .000 .030 .001 .080 .000 .000 .000 .059 .000 .001 .000 .000 .416
50 .000 .030 .000 .061 .000 .000 .000 .028 .000 .002 .000 .000 .000
51 .000 .031 .000 .024 .000 .002 .000 .004 .000 .017 .000 .000 .000
52 .000 .032 .000 .025 .000 .000 .000 .000 .000 .017 .000 .000 .000
53 .000 .029 .000 .021 .000 .000 .000 .000 .000 .672 .000 .000 .000
54 .000 .031 .000 .034 .000 .000 .000 .000 .000 .117 .000 .000 .000
55 .000 .027 .000 .034 .000 .000 .000 .000 .000 .013 .000 .000 .000
56 .000 .030 .000 .019 .000 .000 .000 .000 .000 .027 .000 .000 .000
57 .000 .035 .000 .023 .000 .000 .000 .000 .000 .027 .000 .000 .000
58 .000 .029 .000 .035 .000 .000 .000 .000 .000 .016 .000 .000 .000
59 .000 .029 .000 .043 .000 .000 .000 .000 .000 .026 .000 .000 .000
60 .000 .029 .000 .038 .000 .000 .000 .000 .000 .009 .000 .000 .000
61 .000 .029 .000 .029 .000 .000 .000 .000 .000 .005 .000 .000 .000
62 .000 .030 .000 .026 .000 .000 .000 .000 .000 .006 .000 .000 .000
63 .000 .033 .000 .031 .000 .000 .000 .000 .000 .013 .000 .000 .000
64 .000 .039 .000 .008 .000 .000 .000 .000 .000 .006 .000 .000 .000
65 .000 .039 .000 .003 .000 .000 .000 .000 .000 .003 .000 .000 .000
66 .000 .040 .000 .001 .000 .000 .000 .000 .000 .001 .000 .000 .000
67 .000 .039 .000 .001 .000 .000 .000 .000 .000 .001 .000 .000 .000
68 .000 .040 .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000
69 .000 .043 .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000
70 .000 .043 .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 .000

Table 1.4: Simple estimates for the change point using the EM algorithm, where both “Limited
in major activity” and “Limited in kind/amount of major activity” are considered as positive
ALS and the data is unweighted.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

40 .000 .004 .000 .006 .000 .010 .000 .001 .006 .008 .000 .001 .000
41 .001 .005 .000 .010 .000 .012 .000 .002 .011 .009 .000 .003 .000
42 .001 .005 .000 .010 .000 .014 .000 .004 .021 .015 .001 .003 .000
43 .002 .005 .000 .010 .000 .022 .000 .007 .041 .025 .001 .004 .000
44 .005 .005 .000 .011 .000 .028 .000 .012 .064 .024 .003 .007 .000
45 .008 .005 .000 .027 .001 .027 .000 .016 .091 .022 .008 .010 .000
46 .012 .006 .000 .027 .004 .035 .000 .028 .096 .028 .011 .009 .000
47 .018 .006 .001 .027 .008 .039 .001 .037 .101 .025 .020 .010 .000
48 .021 .006 .002 .067 .025 .041 .002 .040 .107 .025 .032 .011 .000
49 .032 .007 .005 .067 .039 .044 .005 .045 .083 .024 .033 .014 .000
50 .060 .007 .007 .061 .083 .056 .013 .054 .066 .038 .039 .026 .000
51 .104 .013 .008 .055 .132 .069 .024 .058 .062 .045 .055 .027 .000
52 .098 .013 .016 .073 .133 .060 .049 .058 .050 .071 .058 .035 .000
53 .086 .015 .033 .073 .156 .058 .096 .062 .047 .061 .058 .035 .005
54 .080 .026 .054 .079 .117 .057 .135 .061 .034 .052 .066 .033 .084
55 .074 .044 .061 .079 .118 .047 .121 .059 .024 .043 .056 .052 .131
56 .092 .047 .077 .084 .075 .055 .123 .049 .021 .042 .066 .052 .446
57 .077 .062 .077 .060 .046 .050 .122 .046 .018 .041 .065 .054 .268
58 .068 .059 .094 .049 .025 .041 .115 .047 .015 .041 .066 .051 .035
59 .057 .067 .140 .044 .014 .040 .098 .056 .012 .039 .072 .051 .030
60 .043 .088 .137 .028 .012 .027 .052 .049 .008 .036 .057 .051 .000
61 .025 .073 .109 .020 .006 .028 .028 .054 .006 .033 .046 .051 .000
62 .014 .083 .064 .010 .003 .026 .009 .045 .005 .030 .035 .051 .000
63 .010 .088 .043 .006 .002 .018 .003 .031 .003 .030 .027 .051 .000
64 .007 .068 .031 .006 .001 .019 .001 .027 .002 .030 .029 .045 .000
65 .003 .046 .017 .004 .000 .017 .000 .019 .002 .030 .028 .045 .000
66 .001 .038 .012 .003 .000 .014 .000 .016 .001 .030 .023 .045 .000
67 .000 .032 .008 .003 .000 .014 .000 .009 .001 .030 .017 .045 .000
68 .000 .034 .004 .002 .000 .012 .000 .005 .001 .026 .012 .045 .000
69 .000 .024 .002 .001 .000 .010 .000 .003 .000 .026 .009 .040 .000
70 .000 .018 .001 .001 .000 .008 .000 .002 .000 .023 .006 .040 .000

Table 1.5: Simple estimates for the change point using the EM algorithm, where only “Limited
in major activity” is considered as positive ALS and the data is weighted.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

40 .000 .003 .000 .001 .000 .002 .000 .001 .000 .035 .000 .010 .000
41 .000 .005 .000 .001 .000 .004 .000 .005 .000 .045 .000 .010 .000
42 .000 .005 .000 .001 .000 .008 .000 .008 .000 .043 .000 .015 .000
43 .000 .005 .000 .001 .000 .012 .000 .013 .000 .042 .000 .021 .000
44 .000 .008 .000 .003 .000 .014 .000 .027 .000 .039 .000 .031 .000
45 .000 .008 .001 .005 .001 .021 .000 .042 .002 .038 .001 .039 .000
46 .001 .010 .002 .006 .002 .031 .000 .064 .006 .043 .003 .040 .000
47 .002 .015 .005 .006 .008 .049 .000 .068 .022 .042 .010 .039 .000
48 .004 .015 .008 .011 .025 .058 .001 .074 .044 .040 .024 .034 .000
49 .006 .018 .015 .011 .048 .062 .005 .081 .066 .036 .044 .036 .000
50 .009 .023 .025 .015 .107 .079 .023 .077 .110 .040 .082 .036 .000
51 .017 .022 .060 .020 .201 .072 .061 .075 .162 .037 .108 .035 .000
52 .025 .027 .073 .020 .196 .071 .106 .085 .156 .041 .152 .041 .000
53 .050 .041 .089 .020 .149 .055 .184 .082 .134 .034 .114 .038 .000
54 .078 .039 .135 .039 .113 .059 .190 .057 .098 .028 .097 .051 .002
55 .120 .037 .120 .039 .063 .053 .145 .050 .066 .023 .098 .047 .008
56 .103 .046 .126 .076 .045 .060 .150 .041 .047 .027 .076 .043 .166
57 .125 .079 .094 .098 .024 .073 .078 .033 .034 .031 .068 .042 .794
58 .122 .093 .075 .077 .010 .054 .037 .037 .023 .027 .041 .037 .024
59 .154 .071 .064 .102 .004 .038 .016 .031 .014 .029 .028 .034 .005
60 .085 .056 .037 .078 .002 .027 .004 .018 .007 .030 .023 .033 .000
61 .053 .054 .029 .101 .001 .025 .001 .014 .004 .032 .012 .031 .000
62 .023 .041 .019 .077 .000 .021 .000 .007 .002 .033 .009 .031 .000
63 .011 .051 .011 .048 .000 .014 .000 .004 .001 .028 .005 .029 .000
64 .008 .047 .007 .047 .000 .013 .000 .003 .000 .027 .003 .032 .000
65 .003 .036 .002 .036 .000 .008 .000 .002 .000 .025 .001 .032 .000
66 .001 .035 .001 .023 .000 .006 .000 .001 .000 .023 .001 .030 .000
67 .000 .033 .000 .018 .000 .005 .000 .000 .000 .022 .000 .030 .000
68 .000 .041 .000 .011 .000 .004 .000 .000 .000 .021 .000 .028 .000
69 .000 .021 .000 .005 .000 .003 .000 .000 .000 .021 .000 .023 .000
70 .000 .016 .000 .004 .000 .002 .000 .000 .000 .020 .000 .021 .000

Table 1.6: Simple estimates for the change point using the EM algorithm, where both “Limited
in major activity” and “Limited in kind/amount of major activity” are considered as positive
ALS and the data is weighted.

1.4 Literature Review

A sequence of random variables, y = (y1, . . . , yn) is said to have a single change-point at k if

their distribution function is Fθ1(y) for i ≤ k and Fθ2(y) for i > k, where Fθ1(y) and Fθ2(y) are

different and unknown distributions belonging to the same parametric family. The problem of
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estimating the location of the change-point k has been extensively studied for the past several

decades. Smith [9] proposed a Bayesian approach to the inferences about the change-point based

on the posterior probabilities of the possible change-points. Assuming the density function is

p1(x | θ1) and p2(x | θ2), the joint distribution of x1, . . . , xn conditional on θ1, θ2 and the

change-point k(1 ≤ k ≤ n) is given by

p(x1, . . . , xn | k, θ1, θ2) = p1(x1, . . . , xk | θ1)p2(xk−1, . . . , xn | θ2) =
k∏

i=1

p1(xi | θ1)
n∏

i=k+1

p2(xi | θ2).

With θ1 and θ2 unknown, assuming a prior distribution of k over the set of possible change-point

p0(k)(1 ≤ k ≤ n) such that p0(1)+p0(2)+ · · ·+p0(n) = 1 and a prior density of θ1, θ2, p0(θ1, θ2),

Smith [9] obtained

pn(k) ∝ p(x1, . . . , xn | k)p0(k),

where

p(x1, . . . , xn | k) =
∫

Θ1,2

p(x1, . . . , xn | k, θ1, θ2)p0(θ1, θ2)dθ1dθ2.

Then inference about θ1 and θ2 can be made based on

pn(θ1, θ2) =
∑

k

pn(θ1, θ2 | k)pn(k),

where

pn(θ1, θ2 | k) ∝ p(x1, . . . , xn | k, θ1, θ2)p0(θ1, θ2).

Assuming uniform priors, the joint posterior that gives the posterior moments of k̂, θ̂1,k̂, θ̂2,k̂,

where k̂ maximizes

p1(x1, . . . , xk | θ̂1,k)p2(xk−1, . . . , xn | θ̂2,k),

and θ̂1,k maximizes p(x1, . . . , xk | θ1). This general approach is applied to binomial and normal

distributions and other situations such as θ1 and θ2 known are also discussed.
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A later study [3] further explored the change-point problem using hierarchical Bayesian

models. The desired marginal posterior densities are obtained utilizing the Gibbs sampler,

a Markov chain Monte Carlo method. Suppose we have a collection of p random variables

U1, . . . , Up whose full conditional probability denoted by f(Us|Ur, r �= s), s = 1, . . . , p are avail-

able for sampling. Under mild conditions, these full conditional distributions uniquely determine

the full joint distribution f(U1, . . . , Up), and hence all marginal distributions f(Us), s = 1, . . . , p.

The Gibbs sampler generates samples from the joint distribution as follows. Given an arbitrary

starting set of values U
(0)
1 , . . . , U

(0)
p , we draw U

(1)
1 from f(U1|U (0)

2 , . . . , U
(0)
p ), then U

(1)
2 from

f(U2|U (0)
1 , U

(0)
3 , . . . , U

(0)
p ), and so on up to U

(1)
p from f(Up|U (0)

1 , . . . , U
(0)
p−1). Under mild con-

ditions, this p-tuple converges in distribution to a random observation from f(U1, . . . , Up) as

t → ∞. Replicate this process a large number of times and the samples then can be used

for estimation of any of the marginal densities that we desire. The Gibbs sampler algorithm

avoids sophisticated analytic and numerical high dimensional integration procedures, which

makes some previously inaccessible problems doable. This approach can be applied to changing

regressions, changing Poisson processes and changing Markov chains.

The study by [6] is an application of the approach. They used a Bayesian multinomial

change-point analysis to determine the authorship of a book. A multinomial sequence of con-

ditionally independent ordered random variables y = (y1, . . . , yn) is assumed for the number

of words of different length in each chapter of the book. Different parameters, θa and θb are

defined for the models before and after the change point respectively, each following a conjugate

Dirichlet prior distribution. Then Bayesian hierachical models are fit and the posterior distribu-

tion of the change point can be obtained. Using the Gibbs sampler algorithm, inferences about

the location of the change point and the multinomial parameters can be made. A Bayesian

cluster analysis has also been applied and it confirms the existance of the changpoint. All these

models assume that there is only one change-point, and there is only one parameter before the

change-point and one parameter after the change-point.

However, the Markov chain Monte Carlo methods for Bayesian computation are restricted

to problems where the joint distribution of all variables has a density with respect to some

fixed standard underlying measure. They are not available for applications to Bayesian model
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determination, where the dimensionality of the parameter vector is not fixed. To solve this

problem, Green [7] proposed a new framework for the construction of reversible Markov chain

samplers that jump between parameter subspaces of differing dimensionality, which is flexible

and entirely constructive. When there are many competing models with different parameter

spaces (e.g., dimensions), there is uncertainty about the model itself. A parameter can be

created to index the models. All models are then fitted simultaneously, and the reversible jump

sampler jumps over models.

1.5 A Brief Outline of the Theis

The rest of the thesis is as follows.

In Chapter 2 we show how to use a Bayesian model to estimate the change point for each

domain seperately. This procedure is computationally intensive. So we consider an alternative

procedure in Chapter 3, which uses the reversible jump sampler. Unfortunately, that procedure

gets stuck at the boundaries of the parameter space, and therefore we cannot rely on it. For

many of the domains, the change point is very different. Thus, we attempt to “borrow strength”

across the domain. This procedure, in Chapter 4, is similar to the one in Chapter 2, but it

is slightely more complex, because we need to integrate out all parameters to form a Gibbs

sampler of the change points. Chapter 5 has some comparisons and diagnostics.
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Figure 1.1: Boxplot of the proportions of positive ALS for the 12 domains by age using un-
weighted data, where only “Limited in major activity” is considered as positive ALS.

Figure 1.2: Boxplot of the proportions of positive ALS for the 12 domains by age using un-
weighted data, where both “Limited in major activity” and “Limited in kind/amount of major
activity” are considered as positive ALS.
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Figure 1.3: Boxplot of the proportions of positive ALS for the 12 domains by age using logistic
weighted data, where only “Limited in major activity” is considered as positive ALS.

Figure 1.4: Boxplot of the proportions of positive ALS for the 12 domains by age using logistic
weighted data, where both “Limited in major activity” and “Limited in kind/amount of major
activity” are considered as positive ALS.

18



Chapter 2

Bayesian Hierarchical Model for

Change point: Individual Domains

Here we build a simple model to find the change point for each of the 12 domains and all the

domains combined into one domain (i.e., 13 domains). Let yj denote the number of adults with

positive ALS who are j years old, and let nj denote the total number of adults that are j years

old. Thus,

yj | θj
ind∼ Binomial(nj , θj), j = 30, . . . , 80, (1)

where θj is the probability of positive ALS. Since we are interested in ALS among adults, we

only use the data from people whose ages are between 30 and 80. From Figures 1 & 2, we

observe that the θj ’s are similar for the early age groups, and then there is a point of onset, k,

where θj ’s tend to get larger. Thus, we can assume that the prior distributions for all θj are

conjugate Beta distributions, but those before the onset and those after the onset have different

parameters. Thus,

θj | µ1, τ
iid∼ Beta(µ1τ, (1 − µ1)τ) j = 30, . . . , k

θj | µ2, τ
iid∼ Beta(µ2τ, (1 − µ2)τ) j = k + 1, . . . , 80.

(2)

We believe that the change point occurs between the ages 40 and 70, so the range for k is from

40 to 70. A uniform prior distribution is assumed on k, such that
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P (k = ar) = wr, r = 40, . . . , 70, ar = r, wr =
1

70 − 40 + 1
=

1
31

. (3)

Then non-informative priors are set to the hyperparameters µ and τ ,

µ1, µ2
iid∼ Uniform(0, 1)

P (τ) = 1
(1+τ)2

, τ ≥ 0.
(4)

All prior distributions must be proper in this analysis.

Then, using Bayes theorem, the joint posterior density of θ, µ, τ , and k is

P (θ
˜
, µ
˜
, τ, k|y

˜
) ∝ 1

31
1

(1 + τ)2

80∏
j=30

(
nj

yj

)
θ

yj

j (1 − θj)nj−yj (5)

k∏
j=30

θµ1τ−1
j (1 − θj)(1−µ1)τ−1

B(µ1τ, (1 − µ1)τ)

80∏
j=k+1

θµ2τ−1
j (1 − θj)(1−µ2)τ−1

B(µ2τ, (1 − µ2)τ)
. (6)

It turns out to be convenient to collapse over θ, thus we can obtain the joint posterior of µ
˜

and

τ given k as

P (µ1, µ2, τ | y
˜
, k = ar) ∝ 1

(1 + τ)2

k∏
j=30

[
B (yj + µ1τ, (nj − yj) + (1 − µ1)τ)

B (µ1τ, (1 − µ1)τ)

]
(7)

80∏
j=k+1

[
B (yj + µ2τ, (nj − yj) + (1 − µ2)τ)

B (µ2τ, (1 − µ2)τ)

]
. (8)

A griddy Gibbs sampler is used to draw samples (µ(h)
1 , τ (h)) and (µ(h)

2 , τ (h)) from this distri-

bution, where h = 1, . . . , M, M ≈ 1000. We use a grid of 50 on (0,1) for µ1 and µ2, and a grid

of 100 on (0,1) for τ . We run 1000 iterations and “burn in” the first 100. Based on these, the

conditional density of θ can be obtained.

θj | µ1, τ, y
˜
, k = ar

iid∼ Beta (yj + µ1τ, (nj − yj) + (1 − µ1)τ) , j = 30, . . . , k

θj | µ, τ, y
˜
, k = ar

iid∼ Beta (yj + µ2τ, (nj − yj) + (1 − µ2)τ) , j = k + 1, . . . , 80.
(9)
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Then we can construct θ(h) and make inference about it corresponds to (µ(h), τ (h)) that are

drawn from the griddy Gibbs sampler.

The posterior distribution of k is

P (k = ar | y) =
P (k = ar)P (y | k = ar)∑70

s=40 P (k = as)P (y | k = as)
=

P (y | k = ar)∑70
s=40 P (y | k = as)

, r = 40, . . . , 70, (10)

where

P (y
˜
| k = ar) =

80∏
j=30

(
nj

yj

) ∫
µ
˜

∫
τ

1
(1 + τ)2

(11)

k∏
j=30

[
B (yj + µ1τ, (nj − yj) + (1 − µ1)τ)

B (µ1τ, (1 − µ1)τ)

]
(12)

80∏
j=k+1

[
B (yj + µ2τ, (nj − yj) + (1 − µ2)τ)

B (µ2τ, (1 − µ2)τ)

]
dµ
˜
dτ. (13)

Thus we need to compute P (y
˜
| k = ar) for each ar. The Monte Carlo integration is applied

to realize this computation. To compute the integration of a complicated function, we can

multiply it with its density function on both the numerator and the denominator. Then the

integration can be estimated based on samples drawn from the distribution, which is also called

the importance function.

∫
g(µ, τ)dµdτ =

∫
g(µ, τ)
f(µ, τ)

f(µ, τ)dµdτ ≈ 1
M

M∑
h=1

g(µ, τ)
f(µ, τ)

. (14)

For our model,

g(µ
˜
, τ) =

80∏
j=30

(
nj

yj

)
1

(1 + τ)2

k∏
j=30

[
B (yj + µ1τ, (nj − yj) + (1 − µ1)τ)

B (µ1τ, (1 − µ1)τ)

]
(15)

80∏
j=k+1

[
B (yj + µ2τ, (nj − yj) + (1 − µ2)τ)

B (µ2τ, (1 − µ2)τ)

]
. (16)

Beta distributions for µ
˜
, and Gamma distributions for τ are used as importance functions.
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µi
iid∼ Beta(νiφi, (1 − νi)φi) i = 1, 2 (17)

τ ∼ Gamma(α, β), (18)

and so,

f(µ
˜
, τ) =

2∏
i=1

µνiφi−1
i (1 − µi)(1−νi)φi−1

B(νiφi, (1 − νi)φi)
βατα−1e−βτ

Γ(α)
. (19)

Since

E(µi) = νi, V ar(µi) =
νi(1 − νi)

1 + φi
, (20)

then we can solve for νi and φi,

νi =
1
M

M∑
h=1

µ
(h)
i , φi =

νi(1 − νi)
1

M−1

∑M
h=1(µ

(h)
i − 1

M

∑M
h=1 µ

(h)
i )2

. (21)

Similarly, for τ , since

E(τ) =
α

β
, V ar(τ) =

α

β2
, (22)

we can solve for α and β,

α = β
1
M

M∑
h=1

τ (h) (23)

β =
1
M

∑M
h=1 τ (h)

1
M−1

∑M
h=1(τ (h) − 1

M

∑M
h=1 τ (h))2

. (24)

(µ(h)
i , τ (h)), h = 1, . . . , M, M ≈ 1000 are obtained from the Gibbs sampler.

Now we can get inferences about the change point k. Results for each domain are presented

in Tables 2.1 to 2.4. Domain 13 is using the overall data. From the table we can see that, for

the unweighted data, the onset for the overall population occurs around 47 to 50, most likely

to be 48 and 49 for case 1 and case 2 respectively, where in case 1 we only inculde “Limited in

major activity” as positive ALS and in case 2, both “Limited in major activity” and “Limited

in kind/amount of major activity” are considered as positive ALS. For the weighted data, the

onset for the overall population occurs around 56 to 59, and age 59 is most likely to be the onset
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for both case. For each individual domains, including the condition “limited in kind/amount of

major activity” does not necessarily produce a later onset. For most domains, especially when

the weighted data are used, the distributions for k spread out the whole range from 40 to 70.

For Table 2.1, the onset probably occurs between 40 to 58, though domains 1, 2, and 4 have

a later onset around age 69. For Table 2.2, the onset probably occurs between age 40 to 56,

though domains 2 and 12 have later onsets around 69 and 62 respectively. For the weighted

data as presented in Tables 2.2 and 2.3, the onset probably occurs between age 45 to 60, though

domains 10 and 12 have a later onset around 70. After a reexamination of the data, we find

that this may be due to the lack of data for domains associated with race for low and high

education.

Based on the distribution of k, we can make inferences about the parameter θ
˜
. Since

P (θ
˜
, µ1, µ2, τ, k|y

˜
) = P (θ

˜
|µ1, µ2, τ, k, y

˜
)P (µ1, µ2, τ |k, y

˜
)P (k|y

˜
), (25)

we can first draw k from P (k|y
˜
), and for each given k, draw µ1, µ2, τ from P (µ1, µ2, τ |k, y

˜
).

Repeat this process for 1000 times, then we can draw θ
˜

based on these.

θj | µ1, τ, k, y
˜

iid∼ Beta (yj + µ1τ, nj − yj + (1 − µ1)τ) j = 30, . . . , k

θj | µ2, τ, k, y
˜

iid∼ Beta (yj + µ2τ, nj − yj + (1 − µ2)τ) j = k + 1, . . . , 80.
(26)

Figures 2.1 to 2.4 are plots for the posterior mean and 95% pointwise credible bands for θ
˜

with observed data for each domain. Generally speaking, the weighted data are much smoother

than the unweighted data. Compared with the case where only “Limited in major activity” is

considered as positive ALS, θ
˜
s are higher when both “Limited in major activity” and “Limited

in king/amound of major activity” are considered as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .038 .003 .102 .028 .058 .074 .037 .001 .001 .043 .013 .007 .009
41 .034 .003 .317 .027 .038 .021 .023 .003 .002 .027 .031 .004 .011
42 .039 .005 .022 .028 .140 .073 .035 .005 .003 .022 .526 .003 .030
43 .060 .004 .080 .031 .099 .115 .096 .002 .006 .020 .142 .003 .050
44 .070 .009 .377 .040 .116 .108 .061 .001 .012 .015 .015 .004 .042
45 .092 .006 .052 .028 .136 .066 .111 .002 .069 .034 .117 .008 .104
46 .131 .004 .023 .034 .066 .069 .057 .005 .019 .028 .007 .024 .067
47 .112 .003 .014 .039 .060 .064 .058 .011 .122 .018 .015 .013 .103
48 .050 .003 .005 .043 .082 .110 .073 .096 .273 .014 .010 .014 .170
49 .019 .003 .003 .029 .055 .019 .178 .491 .148 .016 .008 .044 .152
50 .010 .002 .002 .035 .028 .023 .142 .336 .044 .017 .028 .135 .118
51 .012 .003 .001 .027 .017 .047 .083 .029 .119 .028 .018 .118 .075
52 .012 .003 .000 .023 .030 .037 .014 .010 .043 .059 .015 .038 .032
53 .006 .003 .001 .022 .010 .022 .008 .003 .021 .069 .008 .081 .014
54 .006 .004 .000 .022 .010 .038 .010 .001 .024 .045 .023 .034 .012
55 .004 .003 .000 .021 .007 .051 .003 .001 .030 .029 .013 .042 .005
56 .004 .004 .000 .021 .009 .037 .005 .000 .063 .051 .008 .021 .004
57 .002 .006 .000 .022 .002 .011 .002 .000 .001 .098 .001 .020 .001
58 .002 .004 .000 .021 .001 .003 .001 .000 .000 .044 .002 .042 .000
59 .002 .004 .000 .021 .001 .001 .000 .000 .000 .038 .000 .113 .000
60 .001 .004 .000 .020 .001 .001 .000 .000 .000 .018 .001 .072 .000
61 .001 .004 .000 .021 .000 .000 .000 .000 .000 .029 .000 .035 .000
62 .001 .004 .000 .021 .000 .000 .000 .000 .000 .052 .000 .052 .000
63 .002 .005 .000 .023 .000 .000 .000 .000 .000 .050 .000 .010 .000
64 .002 .015 .000 .021 .000 .000 .000 .000 .000 .033 .000 .019 .000
65 .004 .015 .000 .028 .000 .000 .000 .000 .000 .023 .000 .011 .000
66 .013 .033 .000 .026 .001 .001 .000 .000 .000 .011 .000 .008 .000
67 .013 .047 .000 .033 .002 .001 .000 .000 .000 .012 .000 .006 .000
68 .023 .106 .000 .074 .007 .001 .000 .000 .000 .015 .000 .009 .000
69 .178 .533 .000 .115 .016 .004 .000 .000 .000 .017 .000 .004 .000
70 .057 .157 .000 .056 .005 .002 .000 .001 .000 .026 .000 .005 .000

Table 2.1: Distributions for the change k for the 13 domains using the unweighted data, where
only “Limited in major activity” is considered as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .073 .032 .040 .037 .053 .030 .267 .002 .000 .003 .040 .063 .002
41 .065 .035 .586 .040 .037 .013 .056 .006 .001 .004 .020 .015 .003
42 .089 .027 .005 .045 .126 .043 .041 .010 .004 .004 .080 .008 .007
43 .095 .026 .127 .031 .209 .071 .078 .017 .003 .007 .025 .005 .015
44 .155 .030 .124 .075 .149 .090 .031 .004 .053 .008 .016 .002 .015
45 .220 .026 .073 .036 .104 .084 .050 .006 .534 .034 .259 .013 .085
46 .135 .024 .023 .074 .066 .090 .028 .038 .045 .033 .064 .022 .067
47 .092 .023 .009 .060 .077 .072 .045 .053 .093 .048 .074 .016 .135
48 .041 .023 .002 .152 .046 .076 .043 .685 .024 .037 .064 .016 .174
49 .009 .023 .005 .081 .026 .026 .203 .087 .034 .009 .090 .022 .221
50 .003 .029 .004 .056 .021 .020 .083 .070 .037 .010 .102 .034 .147
51 .004 .025 .001 .027 .013 .064 .038 .017 .124 .018 .041 .030 .076
52 .004 .023 .000 .027 .038 .042 .007 .002 .030 .120 .033 .006 .027
53 .002 .024 .000 .024 .014 .034 .004 .001 .012 .427 .010 .019 .012
54 .002 .022 .000 .032 .007 .058 .006 .001 .003 .061 .033 .004 .008
55 .001 .024 .000 .016 .006 .091 .002 .001 .002 .007 .029 .009 .004
56 .001 .021 .000 .011 .003 .067 .009 .000 .002 .010 .007 .008 .002
57 .001 .020 .000 .013 .001 .013 .003 .000 .000 .035 .002 .005 .000
58 .001 .020 .000 .016 .001 .005 .004 .000 .000 .025 .003 .017 .000
59 .000 .020 .000 .018 .000 .002 .001 .000 .000 .039 .001 .087 .000
60 .000 .020 .000 .018 .000 .001 .001 .000 .000 .011 .005 .095 .000
61 .000 .020 .000 .016 .000 .001 .000 .000 .000 .007 .002 .105 .000
62 .000 .020 .000 .017 .000 .001 .000 .000 .000 .009 .000 .248 .000
63 .000 .023 .000 .021 .000 .001 .000 .000 .000 .019 .000 .045 .000
64 .000 .035 .000 .011 .000 .000 .000 .000 .000 .007 .000 .071 .000
65 .000 .037 .000 .008 .000 .000 .000 .000 .000 .003 .000 .011 .000
66 .000 .049 .000 .007 .000 .001 .000 .000 .000 .001 .000 .006 .000
67 .000 .049 .000 .007 .000 .001 .000 .000 .000 .002 .000 .003 .000
68 .000 .063 .000 .007 .000 .001 .000 .000 .000 .002 .000 .008 .000
69 .002 .130 .000 .008 .000 .003 .000 .000 .000 .001 .000 .003 .000
70 .002 .059 .000 .008 .000 .002 .000 .000 .000 .004 .000 .003 .000

Table 2.2: Distributions for the change point k for the 13 domains using the unweighted data,
where both “Limited in major activity” and “Limited in kind/amount of major activity” are
considered as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .008 .027 .001 .002 .001 .032 .000 .011 .015 .029 .014 .023 .000
41 .010 .021 .001 .002 .002 .030 .001 .013 .018 .027 .017 .023 .000
42 .011 .040 .002 .005 .003 .028 .001 .018 .021 .028 .019 .021 .000
43 .013 .082 .003 .011 .005 .032 .002 .022 .026 .030 .020 .020 .000
44 .018 .038 .004 .008 .008 .034 .005 .025 .031 .028 .023 .021 .000
45 .020 .060 .006 .011 .013 .029 .008 .026 .040 .025 .028 .021 .000
46 .025 .043 .008 .025 .018 .033 .012 .033 .048 .026 .029 .020 .000
47 .029 .027 .013 .038 .021 .034 .018 .037 .055 .024 .034 .020 .000
48 .029 .042 .019 .055 .031 .034 .023 .036 .061 .024 .038 .021 .000
49 .036 .034 .028 .110 .035 .036 .028 .036 .056 .023 .035 .021 .002
50 .051 .029 .027 .069 .051 .042 .033 .040 .052 .025 .033 .022 .005
51 .073 .036 .023 .046 .071 .049 .036 .042 .053 .027 .036 .022 .012
52 .065 .031 .032 .049 .076 .043 .045 .040 .049 .030 .035 .023 .024
53 .056 .026 .046 .077 .091 .043 .065 .043 .051 .028 .032 .024 .053
54 .053 .034 .058 .068 .081 .044 .079 .043 .043 .026 .036 .025 .080
55 .050 .047 .057 .135 .094 .038 .077 .043 .036 .026 .033 .026 .079
56 .064 .044 .062 .122 .076 .045 .084 .036 .038 .026 .040 .028 .125
57 .061 .051 .059 .057 .063 .041 .093 .036 .040 .027 .043 .031 .152
58 .061 .039 .066 .036 .050 .034 .106 .038 .041 .028 .050 .035 .135
59 .057 .037 .090 .029 .041 .037 .098 .047 .040 .028 .062 .042 .234
60 .054 .045 .091 .015 .047 .026 .079 .046 .028 .030 .051 .038 .067
61 .038 .031 .078 .009 .034 .028 .053 .055 .029 .032 .044 .047 .026
62 .028 .032 .054 .005 .027 .029 .026 .051 .028 .036 .032 .043 .005
63 .026 .033 .041 .003 .024 .022 .013 .041 .021 .041 .023 .040 .001
64 .025 .022 .036 .003 .015 .024 .007 .042 .018 .039 .027 .054 .000
65 .015 .012 .024 .002 .010 .024 .004 .031 .016 .039 .029 .050 .000
66 .008 .010 .023 .002 .006 .022 .003 .027 .012 .041 .028 .046 .000
67 .006 .008 .019 .002 .003 .023 .001 .017 .009 .048 .029 .043 .000
68 .005 .009 .014 .001 .001 .023 .001 .011 .009 .049 .026 .043 .000
69 .003 .006 .011 .001 .001 .021 .000 .007 .008 .053 .026 .055 .000
70 .002 .005 .005 .001 .000 .019 .000 .007 .006 .058 .028 .053 .000

Table 2.3: Distributions for the change point k for the 13 domains using the logistic weighted
data, where only “Limited in major activity” is considered as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .001 .007 .001 .009 .000 .018 .000 .015 .004 .037 .004 .034 .000
41 .002 .007 .001 .007 .000 .022 .000 .021 .006 .040 .006 .031 .000
42 .003 .015 .002 .007 .001 .028 .000 .024 .009 .036 .009 .032 .000
43 .005 .034 .003 .007 .002 .027 .000 .028 .013 .033 .011 .032 .000
44 .007 .027 .006 .010 .005 .025 .001 .037 .019 .030 .017 .034 .000
45 .010 .046 .009 .011 .010 .027 .002 .043 .024 .029 .021 .035 .000
46 .015 .043 .013 .012 .016 .031 .004 .052 .030 .031 .028 .033 .000
47 .016 .040 .020 .020 .023 .040 .008 .050 .040 .030 .036 .031 .000
48 .023 .068 .025 .025 .033 .044 .016 .049 .042 .029 .045 .027 .000
49 .025 .068 .032 .022 .043 .045 .029 .051 .041 .028 .047 .027 .000
50 .025 .068 .035 .025 .065 .054 .049 .048 .050 .030 .060 .027 .001
51 .034 .045 .056 .028 .096 .049 .066 .048 .062 .029 .065 .026 .003
52 .037 .047 .059 .023 .098 .049 .079 .055 .062 .032 .073 .028 .008
53 .053 .055 .065 .039 .096 .040 .104 .057 .062 .028 .056 .027 .023
54 .069 .041 .086 .058 .093 .044 .111 .045 .060 .025 .051 .029 .057
55 .091 .032 .076 .053 .081 .042 .102 .047 .057 .023 .055 .028 .060
56 .075 .036 .081 .083 .081 .051 .131 .044 .059 .025 .051 .028 .142
57 .087 .052 .066 .093 .071 .065 .096 .040 .067 .028 .054 .028 .304
58 .087 .055 .061 .061 .055 .050 .071 .051 .069 .026 .044 .027 .168
59 .113 .034 .060 .075 .044 .038 .052 .050 .059 .028 .043 .028 .187
60 .073 .024 .045 .052 .036 .032 .032 .036 .042 .030 .046 .029 .031
61 .055 .022 .045 .065 .020 .033 .021 .032 .036 .033 .035 .030 .013
62 .032 .015 .043 .050 .012 .031 .013 .021 .029 .036 .037 .031 .002
63 .021 .019 .035 .032 .009 .023 .006 .015 .020 .034 .029 .032 .000
64 .019 .018 .034 .035 .005 .024 .004 .013 .012 .034 .025 .034 .000
65 .011 .014 .018 .031 .002 .016 .002 .010 .008 .034 .016 .036 .000
66 .006 .014 .011 .022 .001 .012 .001 .008 .006 .034 .013 .037 .000
67 .003 .015 .006 .019 .000 .012 .000 .004 .005 .036 .008 .039 .000
68 .002 .020 .003 .014 .000 .011 .000 .003 .004 .040 .007 .040 .000
69 .001 .011 .002 .007 .000 .010 .000 .001 .002 .043 .005 .045 .000
70 .001 .010 .001 .007 .000 .008 .000 .001 .001 .048 .004 .054 .000

Table 2.4: Distributions for the change point k for the 13 domains using the logistic weighted
data, where both “Limited in major activity” and “Limited in kind/amount of major activity”
are considered as positive ALS.
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Figure 2.1: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where only “Limited in major activity ” is considered as positive ALS.
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Figure 2.2: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where both “Limited in major activity” and “Limited in kind/amount
of major activity ” are considered as positive ALS.
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Figure 2.3: Plots for posterior mean and 95% credible bands with observed data for each domain
using logistic weighted data, where only “Limited in major activity ” is considered as positive
ALS.
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Figure 2.4: Plots for posterior mean and 95% credible bands with observed data for each
domain using logistic weighted data, where both “Limited in major activity” and “Limited in
kind/amount of major activity ” are considered as positive ALS.
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Chapter 3

Reversible Jump Model

The procedure described in Chapter 2 is computational intensive, so we wonder how to reduce

the computation effort.Also, when there are many competing models with different parameter

spaces (e.g., dimensions), there is uncertainty about the model itself creating a parameter which

indexes the model. To solve this problem, Green [7] proposed a reversible Markov chain samplers

that jump between parameter subspaces of differing dimensionality.

There are four components for this process. In our problem, first, there should be individual

models of yj given parameters θk and priors p(k = ar), where ar = 40, . . . , 70 for the 31 distinct

models. The individual model is

yj | θj , k
ind∼ Binomial(nj , θj), j = 30, . . . , 80

θj | µ1, τ
iid∼ Beta(µ1τ, (1 − µ1)τ) j = 30, . . . , k

θj | µ2, τ
iid∼ Beta(µ2τ, (1 − µ2)τ) j = k + 1, . . . , 80.

(1)

Second, we should have prior probabilities for k, a discrete uniform distribution on [40,70].

p(k = ar) = war =
1
31

, ar = 40, . . . , 70. (2)

Then the posterior density for k can be written as

p(k | y
˜
) =

wk=arπ(θ
˜

k=ar | k = ar)f(y
˜
| θ
˜

k=ar , k = ar)∑70
k=40 wk

∫
π(θ

˜
k | k)f(y

˜
| θ
˜

k, k)dθ
˜

k

, ar = 40, . . . , 70, (3)
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where

π(θ
˜

k | k)f(y
˜
| θ
˜

k, k) =
1
31

1
(1 + τ)2

80∏
j=30

(
nj

yj

)
θ

yj

j (1 − θj)nj−yj (4)

k∏
j=30

θµ1τ−1
j (1 − θj)(1−µ1)τ−1

B(µ1τ, (1 − µ1)τ)

80∏
j=k+1

θµ2τ−1
j (1 − θj)(1−µ2)τ−1

B(µ2τ, (1 − µ2)τ)
, (5)

and the selected model is,

p(k = a∗r | y
˜
) = max

ar=40,...,70
p(k = ar | y

˜
). (6)

To predict y
˜
(p), we can use

π(y
˜
(p) | y

˜
) =

70∑
k=40

π(y(p) | y, k)p(k | y
˜
). (7)

Third, there should be transition probabilities between consecutive models. These are not

a part of the model specifications, but are chosen to provide good moves. The range for the

change point is between 40 and 70. We define a birth as the change point increases by 1, and

a death as the change point decreases by 1. At age 40, only a birth is allowed, and at age 70,

only death is allowed. At all other points, it can either have a birth or a death, or stay where

it is. We assign the transition probabilities as follows,

π40,41 = 0.99 π40,40 = 0.01 (8)

π70,69 = 0.99 π70,70 = 0.01 (9)

πar,ar+1 = 0.45 πar,ar = 0.10 π40,41 = 0.99πar,ar−1 = 0.45. (10)

Finally, we need some dimension-matching condition. Since dim(θ
˜

ar+1) > dim(θ
˜

ar), we intro-

duce one latent variables into model k = ar to match the dimension of the model k = ar + 1,

say u. Then we need a bijection:

θ
˜

ar+1 = A

(
θ
˜

ar

u

)
;

(
θ
˜

ar

u

)
= A−1θ

˜
ar+1. (11)
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In our problem, the Jacobian of the bijection is 1.

Now we can use the griddy sampler as that in Chapter 2, and draw samples for µ1, µ2, and

τ . Using these, we can obtain the joint posterior distribution for θ
˜

and k

p(θar
˜

, µ
˜
, τ, k = ar | y

˜
) =

1
31

1
(1 + τ)2

80∏
j=30

(
nj

yj

)
θ

yj

j (1 − θj)nj−yj (12)

k∏
j=30

θµ1τ−1
j (1 − θj)(1−µ1)τ−1

B(µ1τ, (1 − µ1)τ)

80∏
j=k+1

θµ2τ−1
j (1 − θj)(1−µ2)τ−1

B(µ2τ, (1 − µ2)τ)
. (13)

Based on these posterior densities when k = ar and k = ar + 1, we can compute the

acceptance probability of moving from model k = ar to the model k = ar + 1.

R =
p(θ

˜
ar+1, µ

˜
, τ, k = ar + 1 | y

˜
)πar+1,arq(u)

p(θ
˜

ar , µ
˜
, τ, k = ar | y

˜
)πar,ar+1

∣∣∣∣d(θ
˜

ar+1, u)
dθ
˜

ar

∣∣∣∣ . (14)

The acceptance probability for the move of the change point k from ar to ar +1 is min(1, R).

We draw a random number from 0 and 1. If this number is smaller than the acceptance

probability, then change point increases by 1 and k moves from ar to ar +1. So we have a birth.

Similarly, we also compute the posterior density when the change point occurs at ar − 1, and

R−1 =
p(θ

˜
ar−1, µ

˜
, τ, k = ar − 1 | y

˜
)πar−1,arq(u)

p(θ
˜

ar , µ
˜
, τ, k = ar | y

˜
)πar,ar−1

∣∣∣∣d(θ
˜

ar−1, u)
dθ
˜

ar

∣∣∣∣ . (15)

The acceptance probability for the move from ar to ar − 1 is min(1, R−1). Draw a random

number from 0 and 1, if it is smaller than the acceptance probability, we have a death and k

moves from ar to ar − 1. The change point decreases by 1.

Thus the change point k jumps between 40 and 70. The distributions for k are presented

in Tables 3.1 to 3.4. Inferences about θ
˜

can also be obtained and the posterior mean and 95%

credible bands are ploted with observed data in Figures 3.1 to 3.4.

Compared with Tables 2.1 to 2.4, the distributions for k using the reversible jump model. For

the onset of the overall population, the unweighted data produce different result for case 1 and

case 2. The onset when only “Limited in major activity” is considered as positive ALS occurs

around 69, while the onset for case 2 where “Limited in kind/amount of activity limitation” is

also considered as ALS, the onset occurs around 49, which is similar to the result in Chapter
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2. For the weighted data, case 1 and case 2 have similar results. The onset occurs between 54

to 59, and 56 is most likely to be the onset. This also corresponds to the results in Chapter 2.

Comparing Table 3.1 to Table 2.1, the distributions of k using the reversible jump model center

around age 68 to 70. Domains 2, 4, 6, 10, and 12 have probability 1 at age 70. Domains 9 and

11 are more spread out. For Table 3.2, onsets are also around 68 to 70. Domains 2, 10, and

12 have probability 1 at age 70. Tables 3.3 and 3.4 using the weighted data is more spread out

than the previous 2 tables using the unweighted data. However, the onsets are still later than

those in Chapter 2, and domains 10 and 12 have probability 1 at age 70. This means that the

reversible jump model gets stuck at the border line, which will interfere with inference.

Thus, in future, we would not use the reversible jump sampler for the change point problem.

Simply, it gets stuck at the boundaries of the parameter space, making inference difficult or

impossible.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .013
41 .017
42 .015
43 .011
44 .024
45 .021
46 .016
47 .048
48 .047 .004
49 .035 .001
50 .046 .014
51 .075 .007
52 .055 .007
53 .045 .005
54 .074 .006
55 .143 .008
56 .141 .004
57 .036 .002
58 .024 .003
59 .028 .007
60 .009 .007
61 .012 .003
62 .007 .009
63 .007 .005
64 .003 .051
65 .009 .077 .001
66 .010 .002 .007 .078 .003
67 .001 .022 .001 .006 .001 .011 .170 .020
68 .107 .280 .225 .187 .112 .010 .221 .276
69 .639 .350 .570 .415 .226 .008 .174 .402
70 .253 1.00 .338 1.00 .204 1.00 .390 .661 .003 1.00 .137 1.00 .298

Table 3.1: Distributions for the change point k for the 13 domains using the reversible jump
model and unweighted data, where only “Limited in major activity” is considered as positive
ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40 .001
41 .011
42 .001 .002
43 .066 .003
44 .059 .055 .001
45 .035 .086 .005
46 .010 .041 .016
47 .009 .056 .057
48 .006 .037 .140
49 .006 .047 .231
50 .005 .091 .178
51 .002 .113 .121
52 .001 .061 .065
53 .013 .030 .046
54 .007 .026 .002 .055
55 .004 .001 .024 .003 .040
56 .000 .006 .017 .001 .029
57 .004 .005 .005 .002 .011
58 .002 .008 .000 .002 .005
59 .002 .004 .003 .016
60 .000 .019 .000 .065
61 .000 .011 .001 .057
62 .000 .001 .020 .001 .016
63 .002 .001 .011 .002 .030
64 .001 .002 .019 .002 .002 .041
65 .001 .002 .011 .004 .004 .071
66 .030 .013 .011 .011 .015 .045
67 .001 .097 .048 .003 .003 .048 .020 .052 .128
68 .136 .257 .317 .157 .166 .298 .302 .091 .245
69 .486 .211 .327 .439 .534 .288 .349 .079 .154
70 .377 1.00 .157 .289 .401 .297 .240 .312 .056 1.00 .122 1.00

Table 3.2: Distributions for the change point k for the 13 domains using the reversible
jump model and unweighted data, where both “Limited in major activity” and “Limited in
kind/amout of major activity” are considered as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40
41
42
43
44
45
46 .001 .001 .001
47 .001 .000 .002 .000
48 .000 .006 .002 .006 .000
49 .001 .003 .002 .022 .001
50 .000 .001 .001 .009 .001 .007
51 .001 .004 .000 .009 .004 .002 .013
52 .003 .008 .001 .008 .004 .005 .030
53 .000 .006 .005 .027 .007 .001 .074
54 .010 .017 .005 .033 .008 .012 .131
55 .003 .023 .010 .112 .008 .013 .134
56 .009 .021 .017 .097 .005 .032 .183
57 .025 .037 .025 .052 .015 .063 .001 .161
58 .024 .018 .030 .044 .014 .086 .000 .096
59 .037 .036 .060 .036 .029 .124 .002 .002 .111
60 .059 .035 .073 .043 .033 .129 .003 .007 .039
61 .051 .032 .078 .031 .057 .115 .005 .002 .005 .014
62 .072 .049 .055 .028 .055 .001 .112 .008 .003 .008 .005
63 .075 .077 .064 .027 .100 .001 .088 .014 .001 .027 .000
64 .112 .066 .073 .041 .107 .006 .047 .039 .008 .054 .002
65 .072 .058 .076 .030 .129 .005 .051 .039 .026 .077
66 .079 .079 .101 .047 .135 .026 .039 .088 .051 .128
67 .102 .086 .118 .080 .106 .087 .038 .166 .101 .168
68 .125 .170 .110 .108 .111 .325 .017 .261 .336 .259
69 .091 .104 .073 .067 .048 .303 .018 .206 .283 .154
70 .048 .063 .021 .040 .022 .246 .008 .169 .189 1.00 .110 1.00

Table 3.3: Distributions for the change point k for the 13 domains using the reversible jump
model and logistic weighted data, where only “Limited in major activity” is considered as
positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13
40
41
42
43 .001 .002
44 .000 .002 .001
45 .001 .001 .001
46 .001 .001 .002 .000
47 .000 .001 .000 .001 .000
48 .001 .002 .007 .002 .004 .001
49 .000 .001 .006 .004 .009 .006
50 .000 .002 .003 .001 .003 .016 .008
51 .003 .000 .005 .000 .009 .022 .001 .017
52 .003 .003 .010 .002 .010 .031 .001 .002 .002 .048
53 .007 .001 .014 .003 .013 .046 .000 .000 .002 .074
54 .017 .005 .021 .005 .014 .001 .042 .000 .001 .001 .099
55 .026 .002 .028 .016 .029 .000 .045 .001 .002 .002 .106
56 .031 .000 .035 .032 .050 .001 .088 .003 .003 .002 .162
57 .067 .012 .042 .042 .069 .000 .075 .002 .008 .005 .155
58 .066 .005 .041 .033 .058 .001 .085 .002 .004 .004 .117
59 .111 .008 .064 .048 .079 .003 .090 .004 .009 .014 .118
60 .093 .010 .063 .053 .064 .001 .068 .006 .013 .021 .054
61 .094 .011 .089 .068 .068 .002 .084 .020 .027 .025 .024
62 .089 .015 .089 .054 .085 .009 .066 .025 .038 .035 .004
63 .054 .042 .115 .051 .101 .012 .049 .035 .038 .028 .005
64 .073 .038 .118 .077 .072 .025 .062 .063 .050 .055 .001 .001
65 .073 .039 .071 .083 .084 .031 .043 .086 .094 .084 .002 .000
66 .062 .090 .061 .084 .086 .040 .026 .137 .097 .105 .002 .001
67 .045 .172 .047 .128 .057 .128 .017 .158 .178 .137 .010
68 .036 .301 .034 .115 .025 .289 .021 .225 .234 .221 .105
69 .034 .157 .021 .055 .014 .263 .006 .148 .130 .164 .185
70 .014 .080 .009 .050 .003 .194 .003 .084 .072 1.00 .092 .695

Table 3.4: Distributions for the change point k for the 13 domains using the reversible jump
model and logistic weighted data, where both “Limited in major activity” and “Limited in
kind/amount of major activity” are considered as positive ALS.
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Figure 3.1: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where only “Limited in major activity ” is considered as positive ALS.
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Figure 3.2: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where both “Limited in major activity” and “Limited in kind/amount
of major activity ” are considered as positive ALS.
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Figure 3.3: Plots for posterior mean and 95% credible bands with observed data for each domain
using logistic weighted data, where only “Limited in major activity” is considered as positive
ALS.
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Figure 3.4: Plots for posterior mean and 95% credible bands with observed data for each
domain using logistic weighted data, where both “Limited in major activity” and “Limited in
kind/amount of major activity” are considered as positive ALS.
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Chapter 4

Bayesian Hierarchical Model:

Pooling the Domains

In this chapter we model heterogeneity among the 12 domains. We assume that the parameters

of the Binomial distribution follow a common stochastic process.This allows us to pool the

domains adaptively (i.e., according to the sample size). This comes naturally under small arear

estimation. This chapter has two parts. In the first part, we assume that all domains have

the same change point (an unrealistic situation), and in the second part we eliminate this

assumption to have different change points for the domains, a more realistic approach. The

procedure used in the first part is also used in the second part.

4.1 A single change point for all domains

In Chapter 2, we only computed the distributions of the change point k for each domain sep-

arately. The results indicate that the distributions are quite spread out and may not be very

accurate. In this chapter, we build another Bayesian hierachical model based on the model in

Chapter 2, using not only the data from one domain, but from all domains and still maintaining

the domains’ identity. So we will have a single model containing all the domains. This model

involves two steps. In the first step, we build a single model containing all the domains and

same as the model in Chapter 2, we assume that the change point k is the same for all domains.

In this step, we will obtain 1) the posterior distributions for k using all the data, 2) samples of
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µ1, µ2 and τ from the posterior distribution for each k, and 3) posterior distribution of θ
˜
.

Like the previous models, yij ’s, the number of adults with positive ALS who are j years old

and in the ith domain, follow a Binomial distribution with parameters nij and θij . θij ’s have

Beta distributions, but the parameters are different for those before the change point and those

after the change point.

yij |θij
ind∼ Binomial(nij , θij) i = 1, . . . , 12, j = 30, . . . , 80 (1)

θij | µ1, τ
iid∼ Beta(µ1τ, (1 − µ1)τ) j = 30, . . . , k (2)

θij | µ2, τ
iid∼ Beta(µ2τ, (1 − µ2)τ) j = k + 1, . . . , 80, i = 1, . . . , 12. (3)

Set Uniform prior distributions on µ1 and µ2, and noninformative prior distribution on τ ,

we have

µ1, µ2
iid∼ Uniform(0, 1) (4)

p(τ) =
1

(1 + τ)2
. (5)

Also, the prior distribution for k is also uniform on (40, 70),

p(k) =
1
31

, k = 40, . . . , 70. (6)

Then the joint posterior distribution for all the parameters will be

p(θ
˜
, µ1, µ2, τ, k|y

˜
) =

1
31

1
(1 + τ)2

12∏
i=1

80∏
j=30

{(
nij

yij

)
θ

yij

ij (1 − θij)nij−yij

}

12∏
i=1




k∏
j=30

θµ1τ−1
ij (1 − θij)(1−µ1)τ−1

B(µ1τ, (1 − µ1)τ)

80∏
j=k+1

θµ2τ−1
ij (1 − θij)(1−µ2)τ−1

B(µ2τ, (1 − µ2)τ)


 , (7)
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and

p(y
˜
|k) =

1
31

12∏
i=1

80∏
j=30

(
nij

yij

) ∫ ∞

0

∫ 1

0

∫ 1

0

1
(1 + τ)2

(8)

12∏
i=1




k∏
j=30

B(yij + µ1τ, nij − yij + (1 − µ1)τ)
B(µ1τ, (1 − µ1)τ)

(9)

80∏
j=k+1

B(yij + µ2τ, nij − yij + (1 − µ2)τ)
B(µ2τ, (1 − µ2)τ)


 dµ1dµ2dτ (10)

Following the same procedure we presented in Chapter 2, we can use the Monto Carlo

integration and results from the Gibbs sampler to compute the posterior distribution for k

using all the data.

The posterior distribution for k is

p(k|y
˜
) =

P (k = ar)P (y | k = ar)∑70
s=40 P (k = as)P (y | k = as)

=
P (y | k = ar)∑70

as=40 P (y | k = as)
, ar = 40, . . . , 70. (11)

Once we obtain the distribution of k, we can make inferences about θ
˜
. We can first draw k

from P (k|y
˜
), and for each given k, draw µ1, µ2, τ from P (µ1, µ2, τ |k, y

˜
). Then θ

˜
can be drawn

from the following distributions,

θij | µ1, τ, k, y
˜

ind∼ Beta (yij + µ1τ, nij − yij + (1 − µ1)τ) j = 30, . . . , k

θij | µ2, τ, k, y
˜

ind∼ Beta (yij + µ2τ, nij − yij + (1 − µ2)τ) j = k + 1, . . . , 80, i = 1, . . . , 12.

(12)

As presented in Table 4.1, we can observe that the change point for the unweighted data

occurs around age 48. For the weighted data, the change point is about age 57. Figures 4.1 to

4.4 are plots for posterior mean and the 95% credible bands for θij ’s and the observed points.
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Figure 4.1: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where only “Limited in major activity ” is considered as positive ALS.
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k case 1 unwt case 2 unwt case 1 logwt case 2 logwt
40 0.00041 0.00005 0 0
41 0.00027 0.00005 0 0
42 0.00154 0.00014 0 0
43 0.00669 0.00127 0 0
44 0.00281 0.0004 0 0
45 0.06627 0.1383 0 0
46 0.10483 0.28211 0 0
47 0.13151 0.21517 0 0
48 0.34779 0.32333 0.00001 0
49 0.11675 0.02941 0.00009 0.00001
50 0.19466 0.00892 0.00074 0.00008
51 0.02574 0.00083 0.00363 0.0004
52 0.00069 0.00002 0.01208 0.00269
53 0.00004 0 0.04859 0.01273
54 0.00001 0 0.08612 0.0458
55 0 0 0.09549 0.03993
56 0 0 0.21706 0.15509
57 0 0 0.23726 0.54696
58 0 0 0.09808 0.10208
59 0 0 0.18147 0.09097
60 0 0 0.01651 0.00261
61 0 0 0.00276 0.00062
62 0 0 0.00011 0.00002
63 0 0 0.00001 0
64 0 0 0 0
65 0 0 0 0
66 0 0 0 0
67 0 0 0 0
68 0 0 0 0
69 0 0 0 0
70 0 0 0 0

Table 4.1: Distributions for the change point k for case 1 and case 2, using both unweighted and
logistic weighted data, and assuming the same k for different domains. Case 1: Only “Limited
in major activity” is considered as positive ALS. Case 2: Both “Limited in major activity” and
“Limited in kind/amount of major activity” are considered as positive ALS.
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Figure 4.2: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where both “Limited in major activity” and “Limited in kind/amount
of major activity ” are considered as positive ALS.
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Figure 4.3: Plots for posterior mean and 95% credible bands with observed data for each domain
using logistic weighted data, where only “Limited in major activity” is considered as positive
ALS.
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Figure 4.4: Plots for posterior mean and 95% credible bands with observed data for each
domain using logistic weighted data, where both “Limited in major activity” and “Limited in
kind/amount of major activity” are considered as positive ALS.

4.2 Different change points for the domains

In the second step, we assume that each domain has a different change point.So we will have a

single model containing all the domains with different change points. Let k
˜

= (k1, k2, . . . , k12)

denote the vector of change points, where ki, i = 1, . . . , 12 denote the change point for the ith
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domain and k
˜

(i) denotes the vector of change points for all the domains except the ith domain.

In addition to part 1, we are assuming that the ki are identical and independently distributed.

Then the joint posterior distribution for θ
˜
, µ1, µ2, and τ can be written as

p(θ
˜
, µ1, µ2, τ |y

˜
, k
˜
) ∝ 1

(1 + τ)2

(
1
31

)12 12∏
i=1




80∏
j=30

(
nij

yij

)
θ

yij

ij (1 − θij)nij−yij

ki∏
j=30

[
θµ1τ−1
ij (1 − θij)(1−µ1)τ−1

B(µ1τ, (1 − µ1)τ)

]
80∏

j=ki+1

[
θµ2τ−1
ij (1 − θij)(1−µ2)τ−1

B(µ2τ, (1 − µ2)τ)

]
(1)

and integrate over θ
˜

we can get

p(µ1, µ2, τ |y
˜
, k
˜
) ∝ 1

(1 + τ)2

(
1
31

)12 12∏
i=1




80∏
j=30

(
nij

yij

)

ki∏
j=30

[
B(yij + µ1τ, nij − yij + (1 − µ1)τ)

B(µ1τ, (1 − µ1)τ)

]

80∏
j=ki+1

[
B(yij + µ2τ, nij − yij + (1 − µ2)τ)

B(µ2τ, (1 − µ2)τ)

]
 , (2)

Now we want to compute the posterior distribution for k
˜
. However, this is a difficult prob-

lem. The procedure described in Chapter 2 is impractical here, because the computation is

enormous. This is true because we have to, a) run 3112 Gibbs samplers, b) compute 3112

marginal likelihoods, and c) as we see in Chapter 3 the reversible jump sampler does not work.

Clearly, the computation is prohibitively expensive. To solve this problem, we can draw

p(k
˜
|y
˜
) using a Gibbs sampler by drawing from p(ki|k

˜
(i), y

˜
), where k

˜
(i) is the vector of the

change points for each domain except the ith domain.
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p(ki|y
˜
, k
˜

(i)) ∝
∫ ∞

0

∫ 1

0

∫ 1

0

12∏
i=1




ki∏
j=30

B(yij + µ1τ, nij − yij + (1 − µ1)τ)
B(µ1τ, (1 − µ1)τ)

80∏
j=ki+1

B(yij + µ2τ, nij − yij + (1 − µ2)τ)
B(µ2τ, (1 − µ2)τ)




p(µ1, µ2, τ |k)
(1 + τ)2p(µ1, µ2, τ |k)

dµ1dµ2dτ (3)

This can also be written as

p(ki|y
˜
, k
˜

(i)) ∝
∫ ∞

0

∫ 1

0

∫ 1

0

ki∏
j=30

B(yij + µ1τ, nij − yij + (1 − µ1)τ)
B(µ1τ, (1 − µ1)τ)

80∏
j=ki+1

B(yij + µ2τ, nij − yij + (1 − µ2)τ)
B(µ2τ, (1 − µ2)τ)

∏
l �=i




ki∏
j=30

B(ylj + µ1τ, nlj − ylj + (1 − µ1)τ)
B(µ1τ, (1 − µ1)τ)

80∏
j=kl+1

B(ylj + µ2τ, nlj − ylj + (1 − µ2)τ)
B(µ2τ, (1 − µ2)τ)




p(µ1, µ2, τ |k)
(1 + τ)2p(µ1, µ2, τ |k)

dµ1dµ2dτ (4)

Frist, set k
˜

(1) to the starting value which we obtained from the first part. Using the im-

portance function that we obtained in part 1, we can compute p(k1|k
˜

(1), y
˜
) by Monte Carlo

integration and Gibbs sampler for each k1 = 40, . . . , 70. Once we get this conditional posterior

‘density’ of k1|k
˜

(1), y
˜
, we can draw a random value from it and fix the k1 in k

˜
(2) at this value.

So in k
˜

(2), k1 will be the sample drawn from p(k1|k
˜

(1), y
˜
) and k3, . . . , k12 will still be the starting

value we obtained from part 1. Now for the fixed k1 and k
˜

(1), perform the Gibbs sample on

p(θ
˜
, µ1, µ2, τ |k1, k

˜
(1)) at each value of k2. At this point, k2 is the starting value as we obtained in

part 1. Obtain p(k2|k
˜

(2), y
˜
) as in the previous step, and draw a value for k2|k

˜
(2), y

˜
. Now we have

updated k1, k2. We continue the process to update k3, k4, . . . , k12 in the same manner. Repeat

the entire process until we get a large sample k
˜

(1), . . . , k
˜

(M). This is the posterior density of
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p(k
˜
, y
˜
). Now we can construct 95% credible interval for each component k1, . . . , k12.

The next step is to make inference about θ
˜
’s. The posterior density of p(θ

˜
|µ1, µ2, τ, k

˜
, y
˜
) is

straight forwad to obtain.

p(θ
˜
, µ1, µ2, τ, k

˜
|y
˜
) = p(θ

˜
|µ1, µ2, τ, k

˜
, y
˜
)p(µ1, µ2, τ |k

˜
, y
˜
)p(k

˜
|y
˜
) (5)

Note that p(µ1, µ2, τ |k
˜
, y
˜
) is not in close form. We can draw θ

˜
, µ1, µ2, τ |k

˜
, y
˜

in two steps.

First, use the Metropolis sampler to draw µ1, µ2, τ |k
˜
, y
˜

at each value of k
˜
, (i.e., k

˜
(1), . . . , k

˜
(M)).

Assume Beta distributions for µ
˜
, and Gamma distributions for τ as candicate generating den-

sities, we have the candidate generating density pa(µ1, µ2, τ |k
˜
, y
˜
),

µi
iid∼ Beta(νiφi, (1 − νi)φi) i = 1, 2 (6)

τ ∼ Gamma(α, β), (7)

where,

νi =
1
M

M∑
h=1

µ
(h)
i (8)

φi =
νi(1 − νi)

1
M−1

∑M
h=1(µ

(h)
i − 1

M

∑M
h=1 µ

(h)
i )2

(9)

α = β
1
M

M∑
h=1

τ (h) (10)

β =
1
M

∑M
h=1 τ (h)

1
M−1

∑M
h=1(τ (h) − 1

M

∑M
h=1 τ (h))2

, (11)

and (µ(h)
i , τ (h)), h = 1, . . . , M, M ≈ 1000 are obtained from the Gibbs sampler.

Let Ω denote (µ1, µ2, τ), and draw samples Ω0, Ω1 from the above distributions. Then we

compute the M-H sampler
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α(Ω0, Ω1) = min
{

1,
π(Ω1)
π(Ω0)

}
, (12)

where

π(Ω) =
p(µ1, µ2, τ |k, y

˜
)

pa(µ1, µ2, τ |k
˜
, y
˜
)
. (13)

Draw a random number from Uniform(0,1) distribution. If this number is smaller than or equal

to α(Ω0, Ω1), then we take Ω1, other wise we stay at Ω0. Repeat this whole process and we can

obtain samples of µ
(h)
1 , µ

(h)
2 , τ (h)|k

˜
, y
˜
, h = 1, . . . , M .

After we have samples of µ
(h)
1 , µ

(h)
2 , τ (h), and k(h), we can fill in the θ

˜
’s from Beta distributions

as we have done before.

θij | µ1, τ, k, y
˜

ind∼ Beta (yij + µ1τ, nij − yij + (1 − µ1)τ) j = 30, . . . , k

θij | µ2, τ, k, y
˜

ind∼ Beta (yij + µ2τ, nij − yij + (1 − µ2)τ) j = k + 1, . . . , 80, i = 1, . . . , 12.

(14)

The posterior distributions for k are presented in Tables 4.2-4.5. For the unweighted data,

the distributions for the change points center around age 40 for the first 4 domain, which

corresponds to adults with low education level. The change points for domains 5-8 occur around

age 40 to 45, which is later than the first 4 domains. These domains corresponds to adults with

median education levels. The last four domains, which are adults with high education, have

much later onsets around age 50 to 60. This shows that the onset of activity limitation is

sensitive to adults’ education levels, which is the same to the conclusion we have obtained

in the previous chapters. For the logistic weighted data, the trend is the same. The first four

domains (low education) have early onsets around age 40. Domains 5-8 (median education) have

later onsets around 40 to 60. The onsets for the last four domains (high education) occur around

age 70. The definition of positive ALS, whether to include “Limited in kind/amount of major

activity limitation” does not make a large difference here. Comparing with the distributions

for k obtained in Chapter 2, these distributions are more concentrated, and therefore, more

accurate.
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For each case, the plots for the mean and 95% credible bands together with observed data

are presented in Figures 4.5-4.8. Most observed data points fall between the credible bands,

which indicates that this is not a bad fit. And as before, the plots with logistic weighted data

is more smooth than the plots using the unweighted data.

The apparent increase of change point with education needs to be explored further. We

observe that many of the cell counts for black females for low and high education are zeros. So

these results are suspectible. One might need to collapse over race for low and high education

to see if these results prevail.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
40 0.334 0.375 0.25 0.133 0.222 0.385 0.055 0.182 0 0.022 0.003 0.001
41 0.21 0.288 0.262 0.085 0.154 0.175 0.071 0.174 0 0.024 0.001 0.001
42 0.156 0.126 0.112 0.086 0.179 0.156 0.066 0.176 0 0.014 0.011 0.002
43 0.102 0.067 0.112 0.142 0.105 0.122 0.078 0.102 0 0.012 0.007 0.006
44 0.068 0.027 0.131 0.142 0.091 0.07 0.081 0.05 0.001 0.011 0.008 0.007
45 0.054 0.022 0.055 0.067 0.075 0.035 0.08 0.046 0.004 0.027 0.015 0.007
46 0.04 0.03 0.031 0.058 0.067 0.019 0.046 0.046 0.006 0.029 0.009 0.022
47 0.018 0.006 0.018 0.083 0.025 0.014 0.073 0.044 0.011 0.028 0.023 0.012
48 0.009 0.021 0.015 0.071 0.034 0.013 0.074 0.051 0.019 0.02 0.021 0.023
49 0.002 0.012 0.004 0.037 0.015 0.007 0.091 0.061 0.038 0.029 0.039 0.042
50 0.001 0.014 0.004 0.046 0.012 0.001 0.095 0.033 0.032 0.022 0.042 0.099
51 0.001 0.008 0.002 0.019 0.004 0 0.069 0.019 0.038 0.047 0.06 0.082
52 0.003 0.002 0.001 0.009 0.005 0.001 0.031 0.011 0.046 0.061 0.055 0.049
53 0 0.001 0.002 0.006 0.006 0 0.017 0.003 0.043 0.065 0.043 0.07
54 0 0.001 0 0.009 0.004 0 0.019 0.001 0.074 0.047 0.063 0.041
55 0.002 0 0 0.004 0 0 0.016 0 0.082 0.034 0.08 0.064
56 0 0 0 0 0.001 0.001 0.014 0.001 0.125 0.041 0.072 0.038
57 0 0 0.001 0.001 0.001 0.001 0.01 0 0.07 0.073 0.043 0.036
58 0 0 0 0.002 0 0 0.002 0 0.05 0.054 0.057 0.047
59 0 0 0 0 0 0 0.004 0 0.082 0.046 0.047 0.064
60 0 0 0 0 0 0 0.005 0 0.041 0.024 0.066 0.058
61 0 0 0 0 0 0 0.001 0 0.045 0.033 0.044 0.043
62 0 0 0 0 0 0 0.002 0 0.034 0.048 0.037 0.04
63 0 0 0 0 0 0 0 0 0.035 0.035 0.029 0.019
64 0 0 0 0 0 0 0 0 0.014 0.034 0.02 0.037
65 0 0 0 0 0 0 0 0 0.024 0.04 0.034 0.019
66 0 0 0 0 0 0 0 0 0.029 0.013 0.034 0.018
67 0 0 0 0 0 0 0 0 0.022 0.014 0.019 0.011
68 0 0 0 0 0 0 0 0 0.009 0.011 0.01 0.017
69 0 0 0 0 0 0 0 0 0.011 0.019 0.006 0.016
70 0 0 0 0 0 0 0 0 0.015 0.023 0.002 0.009

Table 4.2: Distributions for the change point k for the 12 domains using the revised Bayesian
hierachical model and unweighted data, where both “Limited in major activity” and “Limited
in kind/amount of major activity” are considered as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
40 0.235 0.42 0.166 0.303 0.038 0.231 0.012 0.136 0 0 0 0
41 0.158 0.391 0.331 0.214 0.027 0.083 0.01 0.183 0 0 0 0
42 0.169 0.078 0.06 0.148 0.071 0.168 0.01 0.171 0 0 0 0
43 0.126 0.051 0.183 0.044 0.081 0.156 0.024 0.162 0 0.001 0 0
44 0.116 0.004 0.127 0.117 0.076 0.133 0.016 0.059 0 0.001 0 0
45 0.105 0.01 0.07 0.034 0.079 0.092 0.024 0.046 0 0.002 0 0
46 0.057 0.019 0.029 0.05 0.077 0.062 0.021 0.069 0 0 0.001 0
47 0.02 0.001 0.021 0.037 0.093 0.03 0.069 0.038 0 0.002 0.002 0.001
48 0.008 0.009 0.002 0.032 0.069 0.02 0.055 0.09 0 0.003 0.001 0.002
49 0.003 0.003 0.005 0.014 0.059 0.008 0.168 0.024 0.001 0.003 0.003 0.006
50 0.001 0.011 0.004 0.005 0.063 0.005 0.116 0.018 0.001 0.002 0.002 0.009
51 0 0.002 0.001 0.002 0.043 0.008 0.1 0.003 0.007 0.014 0.001 0.005
52 0.002 0.001 0 0 0.087 0.001 0.045 0.001 0.012 0.037 0.001 0.004
53 0 0 0 0 0.053 0 0.026 0 0.015 0.109 0.003 0.012
54 0 0 0.001 0 0.032 0.001 0.054 0 0.012 0.054 0.011 0.002
55 0 0 0 0 0.026 0 0.029 0 0.036 0.016 0.019 0.01
56 0 0 0 0 0.012 0.001 0.105 0 0.086 0.032 0.012 0.013
57 0 0 0 0 0.004 0.001 0.035 0 0.044 0.094 0.015 0.007
58 0 0 0 0 0.008 0 0.045 0 0.036 0.08 0.029 0.025
59 0 0 0 0 0 0 0.012 0 0.056 0.1 0.039 0.115
60 0 0 0 0 0.002 0 0.011 0 0.04 0.058 0.178 0.124
61 0 0 0 0 0 0 0.007 0 0.031 0.046 0.158 0.13
62 0 0 0 0 0 0 0.006 0 0.025 0.072 0.078 0.216
63 0 0 0 0 0 0 0 0 0.041 0.088 0.072 0.082
64 0 0 0 0 0 0 0 0 0.013 0.052 0.063 0.111
65 0 0 0 0 0 0 0 0 0.037 0.034 0.146 0.037
66 0 0 0 0 0 0 0 0 0.093 0.013 0.037 0.016
67 0 0 0 0 0 0 0 0 0.09 0.019 0.027 0.019
68 0 0 0 0 0 0 0 0 0.107 0.024 0.062 0.023
69 0 0 0 0 0 0 0 0 0.054 0.008 0.018 0.019
70 0 0 0 0 0 0 0 0 0.163 0.036 0.022 0.012

Table 4.3: Distributions for the change point k for the 12 domains using the revised Bayesian
hierachical model and unweighted data, where only “Limited in major activity” is considered
as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
40 0.579 0.17 0.252 0.067 0 0.644 0 0.288 0 0 0 0
41 0.269 0.131 0.183 0.064 0 0.222 0 0.174 0 0 0 0
42 0.107 0.178 0.164 0.07 0.002 0.082 0 0.195 0 0 0 0
43 0.026 0.223 0.112 0.083 0.005 0.029 0 0.147 0 0.002 0 0
44 0.008 0.086 0.084 0.063 0.007 0.02 0 0.079 0 0 0 0
45 0.004 0.084 0.072 0.066 0.011 0.001 0 0.048 0 0 0 0
46 0.002 0.054 0.032 0.084 0.032 0 0 0.029 0 0 0 0
47 0.003 0.014 0.037 0.091 0.05 0 0 0.021 0 0 0 0
48 0 0.025 0.026 0.079 0.071 0 0 0.014 0 0 0 0
49 0.001 0.015 0.025 0.086 0.092 0.002 0 0.003 0 0 0 0
50 0.001 0.008 0.007 0.057 0.11 0 0 0.001 0 0.004 0 0
51 0 0.006 0.002 0.048 0.16 0 0 0 0 0.006 0 0
52 0 0.004 0.001 0.031 0.12 0 0.001 0.001 0 0.012 0 0
53 0 0.001 0.002 0.026 0.125 0 0.003 0 0 0.016 0 0
54 0 0.001 0 0.032 0.077 0 0.004 0 0 0.012 0 0
55 0 0 0.001 0.028 0.068 0 0.01 0 0 0.005 0 0
56 0 0 0 0.018 0.033 0 0.025 0 0 0.009 0 0.001
57 0 0 0 0.005 0.02 0 0.049 0 0 0.011 0 0
58 0 0 0 0.002 0.005 0 0.102 0 0 0.011 0 0.001
59 0 0 0 0 0.009 0 0.133 0 0 0.01 0 0.002
60 0 0 0 0 0.001 0 0.132 0 0 0.019 0 0.007
61 0 0 0 0 0.002 0 0.147 0 0 0.017 0 0.008
62 0 0 0 0 0 0 0.132 0 0 0.017 0 0.01
63 0 0 0 0 0 0 0.119 0 0 0.018 0 0.019
64 0 0 0 0 0 0 0.057 0 0 0.039 0 0.012
65 0 0 0 0 0 0 0.032 0 0 0.057 0 0.036
66 0 0 0 0 0 0 0.034 0 0.008 0.102 0.003 0.059
67 0 0 0 0 0 0 0.01 0 0.02 0.147 0.015 0.126
68 0 0 0 0 0 0 0.006 0 0.083 0.141 0.044 0.215
69 0 0 0 0 0 0 0.004 0 0.223 0.179 0.225 0.195
70 0 0 0 0 0 0 0 0 0.666 0.166 0.713 0.309

Table 4.4: Distributions for the change point k for the 12 domains using the revised Bayesian hi-
erachical model and logistic weighted data, where only “Limited in major activity” is considered
as positive ALS.
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Age D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12
40 0.432 0.076 0.566 0.318 0 0.357 0 0.426 0 0 0 0
41 0.306 0.051 0.212 0.182 0 0.27 0 0.262 0 0 0 0
42 0.163 0.11 0.103 0.119 0 0.216 0 0.152 0 0 0 0
43 0.06 0.183 0.055 0.076 0 0.09 0 0.084 0 0 0 0
44 0.015 0.1 0.036 0.083 0 0.036 0 0.038 0 0 0 0
45 0.01 0.129 0.017 0.044 0.001 0.011 0 0.022 0 0 0 0
46 0.007 0.105 0.006 0.038 0.004 0.011 0 0.013 0 0 0 0
47 0.002 0.061 0.002 0.048 0.007 0.006 0.001 0.002 0 0 0 0
48 0.003 0.068 0.002 0.034 0.013 0 0.005 0.001 0 0 0 0
49 0.001 0.05 0.001 0.019 0.031 0.001 0.013 0 0 0 0 0
50 0.001 0.028 0 0.01 0.065 0 0.039 0 0 0.002 0 0
51 0 0.018 0 0.008 0.108 0 0.089 0 0 0 0 0
52 0 0.01 0 0.003 0.14 0.002 0.109 0 0 0 0 0
53 0 0.007 0 0.008 0.153 0 0.152 0 0 0 0 0
54 0 0.002 0 0.006 0.128 0 0.137 0 0 0 0 0
55 0 0.001 0 0.001 0.105 0 0.14 0 0 0 0 0.001
56 0 0.001 0 0.003 0.108 0 0.161 0 0 0.003 0 0.001
57 0 0 0 0 0.068 0 0.076 0 0 0.01 0 0.006
58 0 0 0 0 0.037 0 0.045 0 0 0.007 0 0.005
59 0 0 0 0 0.016 0 0.02 0 0 0.015 0 0.006
60 0 0 0 0 0.013 0 0.009 0 0 0.022 0 0.007
61 0 0 0 0 0.002 0 0.004 0 0 0.029 0 0.01
62 0 0 0 0 0.001 0 0 0 0 0.065 0 0.022
63 0 0 0 0 0 0 0 0 0 0.076 0 0.032
64 0 0 0 0 0 0 0 0 0 0.082 0 0.046
65 0 0 0 0 0 0 0 0 0 0.072 0 0.128
66 0 0 0 0 0 0 0 0 0.002 0.07 0.003 0.132
67 0 0 0 0 0 0 0 0 0.024 0.066 0.005 0.171
68 0 0 0 0 0 0 0 0 0.091 0.104 0.042 0.171
69 0 0 0 0 0 0 0 0 0.255 0.171 0.204 0.132
70 0 0 0 0 0 0 0 0 0.628 0.206 0.746 0.13

Table 4.5: Distributions for the change point k for the 12 domains using the revised Bayesian
hierachical model and logistic weighted data, where both “Limited in major activity” and
“Limited in kind/amount of major activity” are considered as positive ALS.
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Figure 4.5: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where only “Limited in major activity ” is considered as positive ALS.
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Figure 4.6: Plots for posterior mean and 95% credible bands with observed data for each domain
using unweighted data, where both “Limited in major activity” and “Limited in kind/amount
of major activity ” are considered as positive ALS.
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Figure 4.7: Plots for posterior mean and 95% credible bands with observed data for each domain
using logistic weighted data, where only “Limited in major activity” is considered as positive
ALS.
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Figure 4.8: Plots for posterior mean and 95% credible bands with observed data for each
domain using logistic weighted data, where both “Limited in major activity” and “Limited in
kind/amount of major activity” are considered as positive ALS.
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Chapter 5

Diagnostics of the Models

We have developed three models in the previous chapters. The reversible jump model has

already been proved to be deficient in Chapter 3. To compare the models in Chapter 2 and

Chapter 4, we use the diagnostic method called conditional predictive ordinate (CPO).

5.1 Cross valitaton deleted residuals

We first look at the cross validation deleted residuals, which are defined as

cross validation deleted residual =
E(yij |y

˜
(ij)) − yij√

V ar(yij |y
˜
(ij))

(1)

where y
˜
(ij) is the vector of all the y’s excluding the ijth observation. We plot the cross validation

deleted residuals against the observed probabilities and examine the outliers. The plots for the

two models and different cases are presented in Figures 5.1 and 5.2. We notice that the models

using the logistic weighted data fit better than the models using the unweighted data because

the deleted residuals are more close to 0. The two vertical streaks in each of the four graphs in

Figure 5.2 is due to many close predicted values. When we blou them up, these steaks disappear.
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Figure 5.1: Plots of cross validation deleted residuals against the predicted θ
˜
’s for the model in

Chapter 2. Top panel: unweighted data; bottom panel: logistic weighted data.
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Figure 5.2: Plots of cross validation deleted residuals against the predicted θ
˜
’s for the model in

Chapter 4. Top panel: unweighted data; bottom panel: logistic weighted data.

5.2 Conditional predictive ordinates

The other criterion we look at is the conditional predictive ordinate (CPO). Let p(yij |y
˜
(ij)),

also known as the conditional predictive density, denote the probability of yij conditional on

y
˜
(ij). If yij is a single outlier, the probability to predice yij given the rest of the sample is very

low. Figure 5.3 and 5.4 are plots of the CPO for the two models. The plots indicate the second

Bayesian hierarchical model is better than the first model because there are fewer outliers at

extremely low values. Also, the models using the logistic data are better than those using the

unweighted data. The averages of the logarithm CPO for each model are presented in Table
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5.1. It appears that the first model is slightly better than the second model. However, the first

model does not take care of the heterogeneity among the domains. Also, the models using the

logistic weighted data fit much better than those using the unweighted data.

Model Unweighted Unweighted Weighted Weighted
Case I Case II Case I Case II

Model 1 -2.17 -2.42 -1.84 -2.01
Model 2 -2.24 -2.53 -1.85 -2.06

Table 5.1: Averages of CPO’s for each model.
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Figure 5.3: Plots of cross validation deleted residuals against the observed θ
˜
’s for the model in

Chapter 2. Top panel: unweighted data; bottom panel: logistic weighted data.
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Figure 5.4: Plots of cross validation deleted residuals against the observed θ
˜
’s for the model in

Chapter 4. Top panel: unweighted data; bottom panel: logistic weighted data.

5.3 Collapsing

The results in the previous chapters indicate that the onset of ALS occurs around age 40

for adults with lower education, and occurs around age 70 for adults with higher education.

There is a huge difference between these two groups and they are both near the border lines.

Therefore, this might not be a very accurate reflection of the real onset of ALS. After a further

examination of our data, we found that for some domains (e.g., 2, 4, 10, 12) the data are

very sparse and there are even zero counts for population size. Therefore, the results of the

relationship between change point and education level is suspect. To further explore this, we
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collapse over race and sex to obtain the results based on 3 domains by education (low, median,

high). The posterior distributions for the change point k using the Bayesian model pooling over

domains and collapsed over race and sex are presented in Tables 7.2-7.5. We notice that the

onsets for the unweighted data are early, around ages 40 to 50. The models using the logistic

weighted data produce later onsets, which are around age 50 to 60. The difference among

education levels is not large and we do not have the previous conclusion about the relationship

between onset and education.
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5.4 Conclusion

Based on the previous analysis, we can conclude that although the models for individuals

domains perform slightly better than the single model assuming different change points for

different domains, they do not take care of the herterogeneity among the domains. So we still

prefer the single model assuming different change points for different domains. The models using

the logistic weighted data perform better than those using the unweighted data. The different

definitions of positive ALS do not make a large difference in terms of detection of onset. We

believe that the onset of activity limitation for adults is most likely to occur between ages 50

and 60.
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Age Education
Low Median High

40 0.043 0.415 0.023
41 0.053 0.322 0.066
42 0.053 0.084 0.019
43 0.101 0.057 0.08
44 0.119 0.011 0.249
45 0.146 0.007 0.12
46 0.187 0.021 0.092
47 0.193 0.011 0.079
48 0.064 0.019 0.031
49 0.014 0.017 0.037
50 0.009 0.019 0.026
51 0.004 0.013 0.024
52 0.011 0.002 0.022
53 0 0.002 0.03
54 0.001 0 0.018
55 0.001 0 0.009
56 0 0 0.011
57 0 0 0.013
58 0 0 0.025
59 0 0 0.016
60 0 0 0.004
61 0 0 0.004
62 0 0 0.001
63 0 0 0
64 0.001 0 0
65 0 0 0
66 0 0 0
67 0 0 0
68 0 0 0
69 0 0 0
70 0 0 0.001

Table 5.2: Distributions for the change point k for the 3 domains using the revised Bayesian
hierachical model and unweighted data, where only “Limited in major activity” is considered
as positive ALS.
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Age Education
Low Median High

40 0.007 0.448 0.007
41 0.011 0.442 0.125
42 0.028 0.054 0.003
43 0.057 0.041 0.152
44 0.186 0.001 0.232
45 0.314 0.001 0.227
46 0.226 0.003 0.1
47 0.147 0.002 0.049
48 0.023 0.001 0.017
49 0 0.003 0.036
50 0 0.004 0.04
51 0 0 0.009
52 0 0 0.001
53 0 0 0.001
54 0.001 0 0
55 0 0 0.001
56 0 0 0
57 0 0 0
58 0 0 0
59 0 0 0
60 0 0 0
61 0 0 0
62 0 0 0
63 0 0 0
64 0 0 0
65 0 0 0
66 0 0 0
67 0 0 0
68 0 0 0
69 0 0 0
70 0 0 0

Table 5.3: Distributions for the change point k for the 3 domains using the revised Bayesian
hierachical model and unweighted data, where both “Limited in major activity” and “Limited
in kind/amount of major activity” are considered as positive ALS.
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Age Education
Low Median High

40 0.01 0.069 0
41 0.02 0.061 0
42 0.02 0.069 0
43 0.029 0.138 0
44 0.042 0.084 0
45 0.055 0.104 0
46 0.058 0.072 0
47 0.069 0.048 0
48 0.066 0.061 0
49 0.066 0.056 0.002
50 0.09 0.036 0.002
51 0.109 0.043 0.002
52 0.088 0.024 0.012
53 0.064 0.016 0.013
54 0.048 0.029 0.029
55 0.05 0.015 0.027
56 0.036 0.026 0.038
57 0.029 0.023 0.06
58 0.024 0.01 0.073
59 0.009 0.002 0.106
60 0.009 0.009 0.14
61 0.005 0.003 0.128
62 0.003 0.001 0.087
63 0 0.001 0.068
64 0 0 0.047
65 0 0 0.049
66 0 0 0.037
67 0 0 0.027
68 0.001 0 0.022
69 0 0 0.023
70 0 0 0.008

Table 5.4: Distributions for the change point k for the 3 domains using the revised Bayesian hi-
erachical model and logistic weighted data, where only “Limited in major activity” is considered
as positive ALS.
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Age Education
Low Median High

40 0.001 0.018 0
41 0 0.023 0
42 0.002 0.024 0.003
43 0.004 0.034 0
44 0.005 0.045 0.005
45 0.013 0.046 0.011
46 0.013 0.056 0.013
47 0.026 0.059 0.03
48 0.036 0.082 0.032
49 0.04 0.082 0.042
50 0.058 0.065 0.059
51 0.055 0.059 0.082
52 0.059 0.051 0.09
53 0.082 0.065 0.096
54 0.091 0.047 0.119
55 0.094 0.04 0.09
56 0.087 0.036 0.094
57 0.082 0.045 0.052
58 0.089 0.036 0.046
59 0.082 0.023 0.046
60 0.05 0.021 0.023
61 0.013 0.017 0.023
62 0.01 0.009 0.014
63 0.006 0.004 0.016
64 0.001 0.004 0.01
65 0 0.005 0.003
66 0 0.003 0
67 0 0 0
68 0 0.001 0.001
69 0.001 0 0
70 0 0 0

Table 5.5: Distributions for the change point k for the 3 domains using the revised Bayesian
hierachical model and logistic weighted data, where both “Limited in major activity” and
“Limited in kind/amount of major activity” are considered as positive ALS.
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