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Abstract 
  

The search for exotic Higgs decay has been an active area of research since the discovery 

of a Higgs Boson in 2012 at the ATLAS and CMS detectors at the Large Hadron Collider (LHC) 

at CERN. These searches use the large number of Higgs Bosons produced in the LHC to 

investigate beyond the Standard Model physics. Naturally, this is a major area of research and 

various theories have been proposed and are being investigated. This project focuses on the 

possibility of a new particle (represented by “𝑎” here), which would be similar to the Higgs Boson 

particle and would be produced in the decay of the Higgs boson found in 2012. The Higgs would 

then decay into two 𝑎 bosons that would subsequently decay into four b quarks (𝐻 → 𝑎𝑎 → 𝑏𝑏𝑏%𝑏%). 

Searching for this decay in the events recorded by the ATLAS detector is a difficult process as this 

decay is expected to be very rare, while the production of four 𝑏 quarks is very common. The goals 

of this project include understanding the kinematics behind signal and background events (ie. 

Collisions that produce four 𝑏 quarks but do not come from an exotic Higgs decay), creating a 

Binary Decision Tree (BDT) to classify events, and analyzing the effectiveness of the BDT to 

separate the signal from background. This work aims to provide a well-established algorithm that 

can be run over the Run 2 data of the LHC to determine if these signal events exist. 
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Chapter 1: Project Motivation and Background 
  

 The Standard Model of Elementary Particles (SM) is the culmination of over 50 years of 

theory and experimentation in the second half of the 20th century and is a model of all the 

elementary particles that have been observed in the laboratory (Figure 1). This model is the product 

of physicists’ efforts to combine three1 out of the four fundamental forces (the weak force, the 

strong force, electromagnetic force) into a single theory along with the elementary particles. From 

these efforts one unified theory existing as the Standard Model emerged [1]. Since then, there has 

been much experimentation and validation of the Model through the construction of high energy 

particle accelerators, most notably the Large Hadron Collider (LHC) at CERN (European Council 

for Nuclear Research) in Geneva, Switzerland, thus proving the model’s accuracy. The one particle 

predicted by the Standard Model but not experimentally proven to exist at the time of the 

construction of the LHC was the Higgs Boson, a spin-less boson responsible for the Higgs 

Mechanism. Without the Higgs Mechanism, fundamental particles would be massless. In 2012, 

the LHC successfully detected a Higgs Boson. Since then, new theories of various types of Higgs 

particles have been developed that could explain several observations that still evade an 

explanation using the SM, such as the existence of dark matter in the universe. My project aims to 

create a method by which one of these new particle like the Higgs Boson can be searched for at 

the LHC. 

 

 

 

 
 
1 The force of gravity is excluded from this model as it is governed under the theory of general relativity which had 
emerged before the understanding and formulation of the Standard Model. 
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Figure 1: The Standard Model 

This diagram describes the Standard Model in its totality, where quarks and leptons are devised into 6 different types 
of particles and the bosons are described as force particles, all of which come because of interacting with the Higgs 

Field and Higgs Boson.  
 

 

1.1 The Higgs Boson and Its Significance 

  

The Higgs Boson was theorized by multiple research groups around the same time 

searching for why certain particles have mass [2, 3, 4]. As the Standard Model was being 

formulated, one large problem that arose was finding an appropriate theory connecting the 

electromagnetic and the weak forces. The question was, “how does the photon remain massless, 

giving the electromagnetic force an infinite range, whilst the W and Z Bosons acquire a seemingly 

large mass, explaining the short-range of the weak nuclear force” [5]. Thus, people began looking 

for a solution to this problem to understand where and how particles obtain mass. The mechanism, 

proposed in those papers, would eventually become known as the Higgs Mechanism. Their 

research became central to bringing together the theories of the Standard Model [5]. The Higgs 

field is an invisible field that stretches across the entire universe and when interacted with gives 

fundamental particles their mass [6]. The Higgs Field creates a “spontaneous symmetry breaking 

of the local gauge symmetry, through the field’s non-zero vacuum expectation value” which thus 

leads to the fundamental particles gaining their mass [5]. The physical particle associated with this 

field is the Higgs Boson, a spin zero, positive parity boson [5, 6]. However, without proof of the 
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existence of the Higgs Boson particle as described by the mechanism, it remained the one theory 

within the Standard Model to be experimentally proven. This was one of the biggest questions in 

particle physics that prompted the development of the LHC. 

 

  The first potential proof of this theory was presented in 2012, when both the ATLAS (A 

Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) detectors at the LHC announced 

the discovery of a new particle, possibly the Higgs Boson [7, 8]. It was a huge triumph in the realm 

of particle physics and Standard Model research as well as the detectors themselves. Through 

further investigation of the data, it was uncovered that the discovered particle does follow predicted 

theory surrounding the Standard Model Higgs predictions. This included the results that the 

detected Higgs had a mass of around 125 GeV, had spin 0, and positive parity, giving validation 

to the Higgs Mechanism [9]. 

 

1.2 The Search for the 𝒂 Particle 

 

  Every measurement of the Higgs boson so far agrees with the predictions of the Higgs 

Mechanism in the Standard Model. However, the measurements performed to date have limited 

precision and it is possible that deviations to the predicted behavior can be observed. It is possible 

that other particles similar to the Higgs Boson particle may exist, which could help shed light on 

the nature of dark matter. These potential particles would also be bosons with spin zero but would 

have different masses and a different role in the Higgs Mechanism. While there are many different 

theories being investigated, this paper focuses on the idea that there exists a lower mass particle 

similar to the Higgs boson that is pair-produced in exotic decays of the Higgs boson. This new 

light particle is referred to here as the “𝑎” particle. It is studied by many research groups working 

with ATLAS, including my collaborators at the ATLAS group at University of Massachusetts – 

Amherst (UMass Amherst). The present method of searching for the “𝑎” particle involves 

analyzing the current data that researchers have from the LHC’s Run 2. However, this search is a 

challenge and first requires a discussion of the inner workings of the detector.  

 

The ATLAS detector, shown in Figure 2, utilizes several magnets and consists of three major 

parts: an inner detector, an outer muon spectrometer, and a thick calorimeter [5, 10-12]. Each of 
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these elements work together to record data that is interpreted by algorithms that yield the specific 

information such as momentum and energy of each particle created in the collision. The inner 

detector consists of extensive granular pixel and microstrip silicon semiconductor detectors, and 

transition radiation detectors which are used to detect charged particles coming out of the collisions 

and to retrace their trajectories [5]. Surrounding the inner detector is a solenoid magnet and, 

downstream of the magnet, the calorimeters that measure the energy of almost all particle coming 

from the collision point [13, 14]. Finally, the muon spectrometer, located on the outer part of the 

detector, captures muons typically unseen by the inner detector and calorimeter, mainly muons. 

An additional toroidal magnet is present in the muon spectrometer. Neutrinos interact too weakly 

to be detected and are not registered by the ATLAS detector [15]. Since neutrinos carry energy 

and momentum, we can determine where and when they exist through an imbalance of linear 

momentum in the plane transverse to the beam pipe.  

 
Figure 2: Cross Section of the ATLAS Detector 

Shown here is a schematic of the ATLAS Detector with all the different parts labelled. While the types of 
equipment have remained the same since its construction, the detector has undergone multiple upgrades and will be 

upgraded shortly for the High-Luminosity Run 
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Particles collide at the center of the ATLAS detector and scatter in all directions. From 

there, the inner detector detects, through electrical signals, the particles that pass through. Using 

vertex reconstruction techniques, computers recreate the collision or decay center. While traveling 

through the Inner Detector, the solenoid magnets exert a magnetic force on them, bending the 

particles at various degrees based on the particle’s momentum and charge. Finally, the particles 

interact with the calorimeter, which collects the energy of the particle. Using this data, the ATLAS 

detector calculates a particle’s trajectory, collision point, momentum, charge, and energy. If the 

ATLAS detector can gain all of this information for a single particle, why can it not detect this 

potential 𝑎 particle? 

 

The lifetime of the Standard Model Higgs Boson is 10-23 s [5]. Because of this extremely 

small timeframe, no modern detectors can physically detect a Higgs Boson. They can only detect 

its decay products. In fact, this is true for many of the Standard Model particles, including the W 

boson, the Z boson, and the top quark. The theory currently being investigated by the ATLAS 

group at UMass Amherst suggests the existence of an 𝑎 particle as a Higgs-like particle that decays 

from the known Higgs Boson (𝐻 → 𝑎𝑎). In some scenarios, the 𝑎 boson would have a similarly 

short decay rate, making it impossible to be seen by any detector. In order for us to search for this 

𝑎” particle, we must first determine the decay products that would be seen by the detector. While 

the known Higgs has numerous decay patterns, the most common decay pattern is the decay to 𝑏 

(bottom) quarks, which makes up 58% of all detected decays [16, 17]. The new 𝑎 boson would 

have a similar preference for decays to 𝑏-quarks. Thus the signal decay pattern can be written as 

𝐻 → 𝑎𝑎 → 𝑏𝑏𝑏%𝑏%. The search performed by the UMass ATLAS group requires the Higgs boson to 

be produced in association with a Z boson. With this pattern, the end products calculated from the 

detectors are two leptons 𝑙 and four 𝑏 quarks. 
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Figure 3: Decay Pattern of Signal Events 

Shown here is the Feynman diagram of the signal process from collision to final decay products and can be written 
out as 𝑞𝑞 → 𝑍 → 𝑍𝐻, 𝑍 → 𝑙𝑙,̅ 𝐻 → 𝑎𝑎 → 𝑏𝑏𝑏*𝑏*. For clarification the following variables are defined: 𝑞 – proton, Z 

– Z Boson, H – 125GeV Higgs Boson, 𝑎 – the new particle, 𝑙 – lepton, 𝑙–̅ anti-lepton, 𝑏 – bottom quark, 𝑏*– anti-
bottom quark 

 

 These end decay products are not unique to this signal process, which is the main problem 

in searching for the 𝑎 particle. There are many known processes that end with this set of particles, 

two of which are shown in Figure 4. Because the detector only detects the final products, it is 

challenging to distinguish this signal event from other events, which we will collectively call 

background events. For the purposes of this project, we looked at seven different background 

processes: production of single Z bosons, top-quark pair production (ttbar), production of two W 

and Z bosons (diboson), single top-quark events, and other rarer processes. All of these events end 

in the aforementioned six detected particles. The top-quark pair (ttbar) background also includes 

the presence of neutrinos which are seen in Figure 4 (right), however, as mentioned previously, 

the detector does not capture neutrinos, making it appear the same as the signal event. 
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Figure 4: Example Background Decay Patterns 
These Feynman diagrams represent the two most important types of backgrounds processes used in this project: to 

the left is the Z-jets background and to the right is the ttbar background. For clarification the following variables are 
defined: 𝑞 – proton, Z – Z Boson, W – W Boson, 𝑔 – gluon, 𝑙 – lepton, 𝑙 ̅– anti-lepton, 𝑏 – bottom quark, 𝑏* – anti-

bottom quark, 𝑡 – top quark, 𝑡̅ – anti-top quark,	ν  – neutrino, ν* – anti-neutrino  
 

 

1.3 Project goals 

 

 To determine if the 𝑎 particle does exist, we need to identify specific events consistent with 

the decay 𝐻 → 𝑎𝑎 → 𝑏𝑏𝑏%𝑏%. Since we need to narrow down the very large dataset of collected 

events to those with the potential to contain evidence of the 𝑎 particle, we will utilize machine 

learning algorithms. Machine learning is a promising analysis technique because these types of 

algorithms can adapt to data overtime, making them more efficient than other programs. Machine 

learning for data analysis is further described in Chapter 3: Creating a BDT.  

 

The goals of this project were to:  

 

1. Understand the kinematics variables in the 𝐻 → 𝑎𝑎 → 𝑏𝑏𝑏%𝑏% decay 

2. Create a set of parameters to distinguish signal events from background events 

3. Create a binary decision tree (BDT) to separate the signal and background events  
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Chapter 2: Distinguishing Signal and Background Events 
 

 The first challenge in the search for the 𝑎 particle is to distinguish between background 

and the signal events using the information present in the data collected by ATLAS. As discussed 

in section 1.2 The Search for the 𝒂 Particle, the difficulty to finding these potential events is that 

multiple processes produce the same particles. To accurately distinguish between signal and 

background events, we must uncover differences to separate these decay patterns. There are several 

variables that we can use to differentiate the number of events of interest.  

 

2.1 Mass 

 

 The first, most obvious candidate for differentiating between events is the mass of the 

related decay particles. The mass can be reconstructed from the momentum and the energy of the 

particle using Equation 1. The ATLAS detector is able to collect the final momentum and energy 

of the end decay particles. Using this, we can determine the mass of the parent decay particles 

moving backwards up the decay pattern to the collision vertex. In terms of separating out given 

signal and background, the first variable that we define is that the mass of the Higgs boson equals 

approximately 125 GeV.  

 

 
 

Equation 1: The Energy-Momentum Relation with energy E, momentum p, rest mass m!, and speed of light c. 

  

Additionally, since the 𝑎 particle has never been observed, we do not know the value of its 

mass. With the decay pattern we are looking at, its mass must be less than or equal to half of the 

mass of the Higgs to maintain conservation of energy and momentum in a decaying process. In a 

general sense, this adds one more variable, the mass of the 𝑎 particle, as a discriminating variable. 

This will be further discussed in Chapter 3: Creating a BDT. 
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2.2 Missing Transverse Momentum 
 

 The next distinguishing variable involves the conservation of momentum. As discussed in 

section 1.2 The Search for the 𝒂 Particle, the background from top-quark pairs has neutrinos in the 

final state, small fundamental particles that are not detected by ATLAS. In ATLAS, their existence 

is accounted for through noting an imbalance of linear momentum in the transverse plane. Thus, 

the second variable which we can use is labeled MET and accounts for the presence of missing 

transverse momentum. If this missing transverse momentum exists, then the process is a 

background event. 

 

2.3 Spin and Parity 

 

The last avenue for telling the difference between signal and background is from the spin 

zero nature of the Higgs boson. While the end products seen by the ATLAS detector are the same, 

the spin of the final state is only a pure spin zero state when the Higgs boson is present. This 

subject has been studied heavily when searching for other types of events and is used in many 

different differentiating algorithms. This project uses the techniques of Bolognesi et al, which is 

described in brief below [18]. 

 

The direction of particles produced in a decay depends on the spin and parity of the unstable 

particle. Figure 5 shows a diagram of the production of a single unstable particle in a collision and 

the decay sequence of this unstable particle (𝑋) into other bosons (represented by the directions 𝑞! 

and 𝑞"). Each of these two bosons further decay into two particles (represented by the directions 

𝑞!!, 𝑞!", 𝑞"!,	and	𝑞""). The angles in the diagram fully characterize these directions. As shown in 

Ref. [18], the distributions of these angles in data depend on the spin and parity of the particle 𝑋. 

Therefore, each of these angles can be used to distinguish background from signal. The cosine cos	

𝜃∗ (Equation 2) is particularly sensitive to the spin of 𝑋 and therefore can be used to discriminate 

signal events with a Higgs, which has spin 0, from background processes with a signal Z, which 

has spin 1. 
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Figure 5: Diagram of a Decay Sequence 

This diagram describes all angles present in a generic decay sequence  𝑔(𝑞*)𝑔(𝑞) → 𝑋 → 𝑉"(𝑞")𝑉#(𝑞#) where 𝑉" →
𝑓(𝑞"")𝑓̅(𝑞"#), 	𝑉# → 𝑓(𝑞#")𝑓(̅𝑞##).  Each of these variables can be calculated using the momentum components of 

the final decay outputs. Full calculations can be found in the appendix of Bolognesi et al. [18] 
 

 

𝑞3$ = (sin𝜃∗cos𝛷∗, sin𝜃∗ sin𝛷∗, 	cos𝜃∗) 

 
Equation 2: Formula for cos𝜃∗ 

Shown here is the formula as written by Bolognesi et al. which describes the cos𝜃∗	variable within the decay 
sequence shown in Figure 5 [18]. The angle is found using the momentum vector 𝑞6% where i is a stand in for the 2 

momenta of the two parent particles 
 

  

2.4 Final Variables 

 

 Bringing together all the variables discussed in the previous sections, there are a total of 

seven discriminating variables. We also include an eighth variable, namely the event 

reconstruction quality, a measurement of how well the four 𝑏-quarks were identified in the 

detector. Therefore in total we have eight different variables with which we will use to separate 

these events: MET, Higgs mass (𝑚%), Higgs momentum (𝑝&%), Z Boson production 

direction	cos	𝜃'(ℓℓ, 𝑎 boson mass (𝑚*
(!)), 𝑎 boson mass (𝑚*

(")), Higgs cos𝜃∗, and Event Quality. 
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The distribution of each of these variables and their correlation are taken into account in the 

machine learning algorithm and will be discussed further in the next section.  
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Chapter 3: Creating a BDT 
 

 For this project, a binary decision tree was used as the method of machine learning and was 

carried out using the Python programming languages. Before going into the specifics of the BDT 

created as a part of the research, a brief discussion of how a BDT works is given. 

 

3.1 The Binary Decision Tree 

  

 A binary decision tree is one of the simpler types of machine learning algorithms and uses 

a series of splittings to reduce a set of events. Taking into account the “significance” of different 

variables, it randomly selects an input variable and a threshold which are used to divide the data 

into two sets. It then repeats the process, splitting the data into smaller and smaller subsets that can 

have a significant larger fraction of signal events than the original dataset. Once this process is 

complete, the BDT can then create a file with the information of which splittings were most 

successful to select more signal than background. For this process to work, a BDT must be trained 

using simulated data where each event is labelled as signal or background. By running the BDT 

over simulated data, it goes through its splitting process and then evaluates at the end which groups 

contain mostly signal data. It is important to note that when creating a BDT to search for signal 

data, one can possibly overtrain or undertrain the algorithm. If too little data is used or the number 

of variables looked at is too high, there is the possibility that the program becomes overtrained and 

will miss valuable events when running over actual data. Similarly, if there is too much data and 

there are too few variables looked at, then too many events may pass as signal events. To avoid 

this, it is crucial that the BDT be tested using various total amounts of data as well as different 

numbers of variables to ensure that no signal event is missed while also narrowing down the data 

set.  

 

 The BDT for this project was assembled in Python with the functions in the TMVA ROOT 

library made available to Python via the PyROOT package as well as the XGBoost package. 

Python is a user-friendly programming language which is widely used for the purposes of machine 

learning. ROOT, an open-source language established by CERN for the purposes of high energy 

physics, is optimized for large data sets and has built-in machine learning functions. Both reasons 
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made the choice of programing languages simple. In addition, with the large amount of open-

source tutorials on ROOT and its integration with Python, much of this project was able to base 

its code off of written tutorials [19]. These tutorials made the project good smoother and allow for 

faster basic structure creation. 

 

3.2 The Coding of the BDT 

  

 As stated in the previous section, a BDT must go through a training process before working 

through experimental data. Thus, before the code was written, specific simulation data had to be 

chosen with which to train the BDT with. Dedicated simulation data was prepared with the decay 

of Higgs boson to 𝑎 boson. The ATLAS collaboration provided standard simulation of all 

background processes. One single 𝑎 boson mass hypothesis was chosen for the BDT in this work 

We choose to work with the hypothesis of the 𝑎 boson mass equaling 30 GeV. The simulated 

events provided by the ATLAS collaboration were skimmed into smaller TTrees containing only 

the variables that we discussed in section 2.4 Final Variables (see Appendix A: Get m30 Events 

Code). After the skimming, a total of 1,566,900 events (Table 1) among signal and background 

were available for training. Using the pre-selected data, a training program and testing program 

(detailed in  
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Appendix B: Binary Decision Tree Creation Code) were written based on given tutorials in 

References [20] and [21].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Event Name Number of Events 

signal 75,100 

single-top 2,127 

Z-jets 570,022 

ttbar 490,769 

ttH 67,050 

ttV 297,752 

rare 12,331 

diboson 51,749 
 

Table 1: Table of Simulated Events 
The above table lists all eight different types of events used in training the BDT program and the number of events 

present for each type of event. As can be calculated, the signal represented roughly 4.7% of all events used. 
 

 The algorithms written and shown in   
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Appendix B: Binary Decision Tree Creation Code, facilitate both the training and testing of the 

BDT. Using the python program NumPy and ROOT RDataFrames, the training program defines 

a load data function which combines the signal and all of the background data into two arrays. 

From there the function then splits these arrays into smaller ones separating for each variable that 

we defined previously. Lastly, using a variable defined as “weight”, the load data function places 

probabilistic quantities to both signal and background to give significance to the signal events. 

Once complete, the load data function returns arrays of all the variables for signal and background. 

Then the training code invokes the XGBClassifier function from xgboost2 which takes in a max 

depth, or how many variables the BDT goes through, and creates the BDT function. Finally, it fits 

the data given in the load data function and saves the model as a BDT. By running this program 

over all background and signal, a full model is created which can be used to test and eventually 

run over experimental data.  

 

The purpose of the second script, the testing script, is to allow the user to test different sets 

of data to understand the BDT model and its optimal max depth. It calls the load data function 

from the training program and runs it over the established model. Finally, using the roc function 

from another python package, sklearn, a graph is created indicating the efficiency of the trained 

model. The graph plots the true positive rate (tpr) against the false positive rate (fpr) to understand 

the quality of the model and its predictions. For this project’s roc graphs, tpr is labelled on the y-

axis as “Signal Efficiency” and fpr is labelled on the x-axis as “Background Efficiency”. The script 

also calculates the Area Under the Curve (AUC) which is a numerical indicator of the BDT’s 

performance. An AUC equal to one represents perfect performance where an AUC of zero 

represents a chance performance. With both the training and testing scripts written, the next step 

was to create the BDT model.  

  

3.3 The Preliminary Results 

 

 As part of the training process, a BDT model was created using only one type of 

background event and then another using all types of background events. For the first trained 

 
 
2 Documentation on the functions within xgboost are given in reference [22]. 
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model, the training program was run using the data from the signal events and from the Z-jets 

background event (the largest of the background events) and a max depth of 3 variables. From this, 

the testing script created the graph shown in Figure 6, which had an AUC of 0.90. While still being 

the largest background, this model only represented one of the seven possible background events 

making it not practical for use on real data. Despite that, this result proved a large step in the overall 

project progress and was used as a baseline for how it could be made better. 

 

 
Figure 6: BDT Efficiency of Signal vs. Z-jets Background 

Shown here is the ROC curve for the BDT model trained with only signal and Z-jets background. As shown in the 
title, the AUC of this model was 0.90, a fairly good number considering the smaller amount of data and max depth. 

The y-axis represents the signal efficiency, and the x-axis represents the background efficiency, with both being 
rates. 

 

 

 Given the baseline of the previous model, a new model was created using all the potential 

backgrounds described in Section 1.2 The Search for the 𝒂 Particle and in Table 1 and again a max 

depth of three. Once created, the model was tested over all pre-selected background and signal 

events, yielding the graph in Figure 7. The AUC is equal to 0.99, which is much closer to one and 

thus a closer approximation of correctly chosen signal events. It is worth mentioning that this graph 
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does encounter more noise, seen by the rougher curvature of the roc. This is most likely caused by 

the addition of multiple types of background events that were not present in Figure 6. Figure 7 

represents a vastly more accurate model than the previous model as it incorporates all possible 

backgrounds known and signal, making it able to discern more background out of the final events 

of interest.  

 

Figure 7: BDT Efficiency Signal vs. All Background 
Shown here is the ROC curve for the BDT model trained with signal and all possible background events. As shown 

in the title, the AUC of this model was 0.99, an almost perfect signal distinction. The y-axis represents the signal 
efficiency, and the x-axis represents the background efficiency, with both being rates. As can be seen, this graph 

does not have as smooth of a curve as the previous one, due most likely to the addition of multiple types of 
background events. 

  

 

3.4 Testing the BDT 
 
 It is important to recognize that while an AUC equal to 0.99 indicates an almost perfect 

distinction, it must be tested to ensure that this is not an indicator of overtraining. In the end, this 

model was created based on simulation data which carries with it uncertainty. This uncertainty 

comes from the uncertainty of the statistics behind which the simulation data is curated. Because 
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of this, it is important to confirm that this model is not specified to the given data set and produces 

similar results for different sized data sets. With this in mind, the last step of this project was to 

test for overtraining by running the trained model over a subset of the simulation data and creating 

comparison histograms. These comparison histograms combine the histogram of the signal and 

background from the trained model with a scatter plot of the test including error bars. If the plotted 

test aligns with the histogram, then a BDT is confirmed to work on other datasets. Once verified 

to work for different amounts of data, a BDT can then be further refined to bring the AUC closer 

to one. 

 

 To test the BDT created in this project, the testing code was modified to include functions 

that randomly selected a designated percentage of the data and produce the histograms mentioned 

in the previous paragraph as well as the roc curves (Appendix C: Testing BDT Code). The model 

was then tested using first 30% of the simulated data and then 70% (Test size equal to 0.3 and 0.7). 

From these parameters, graphs of the roc curves as well as the test histograms and comparison 

histograms were created and are detailed in (Figure 8). Focusing on the comparison histograms, 

the scatter plot successfully lines up in both the 70% and the 30% cases with the trained model. 

With this result, we are confident that the AUC of 0.99 is an almost perfectly trained model that is 

not overtrained or specific to one set of data. 
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Figure 8: BDT Testing Comparison Histograms 

Shown here are the comparison histograms created in two testing rounds of the trained BDT (left – 30% of the 
simulation data, right – 70% of the simulation data). These graphs were created using the code detailed in Appendix 

C: Testing BDT Code. Here, red marks the background events while blue marks the signal events. The 
histograms created detail the actual signal and background events where the dots represent the tested data. The 

markers for both test align with the histograms, validating proper training of the BDT.   
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Chapter 4: Conclusion and Next Steps 
 

The goals of this research project were to: 

 

1. Understand the kinematics behind Higgs Boson decay 

2. Create a set of parameters to distinguish signal events from background events 

3. Create a binary decision tree (BDT) to separate the signal and background events 

 

Through efforts made in both literature research and programming, a full understanding of 

the defining variables distinguishing was established and a Binary Decision Tree was produced. 

This BDT is the basis code which successfully can distinguish signal and background events in 

simulated data with high accuracy and precision. As with any research, there is more work to be 

done. While this BDT is functional, it still requires more testing and refining which is left to future 

researchers. This includes possible changes to the max depth which can enhance the accuracy 

further. In addition to this, the author suggests that research into other machine learning algorithms, 

like a neural network, be done and compared with the established BDT. While the BDT is an 

appreciable machine learning method, it does carry with it certain limitations from its cut process. 

Other algorithms, such as neural networks, could provide an even stronger model for 

distinguishing background and signal. By completing a comparison, the most effective method can 

be used to separate LHC Run 2 data and further the search for the 𝑎 boson.  
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Appendices 
 

Appendix A: Get m30 Events Code 
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Appendix B: Binary Decision Tree Creation Code 
Training Code 
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Testing Code 
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Appendix C: Testing BDT Code 
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