
Detecting Various Types of Malicious Users at One Sitting
in Online Social Networks

by

Guanyi Mou

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

June 2019

APPROVED:

Professor Kyumin Lee, Major Thesis Advisor

Professor Mohamed Y. Eltabakh, Thesis Reader

Abstract

Online social networks (OSNs) have long been suffering from various types

of malicious users such as spammers and bots. Over several years, researchers

proposed multiple approaches to identify different types of them toward low-

ering their impact into the OSNs. However, their strategies mostly focused

on some specific types of malicious users (e.g., spammers, bots), or they less

paid attention to newly emerging malicious users. To overcome the limitation

of the prior work, in this study, we proposed a novel method to detect various

types of malicious users at one sitting. In particular, we (i) combine publicly

available Twitter user datasets and categorize these accounts into two groups

(e.g., legitimate account, and malicious account); and (ii) propose a robust

deep learning framework which jointly learns various features and detects

malicious accounts. Our experimental results show that our proposed mod-

els outperform stat-of-the-art baselines, effectively detecting various types of

malicious users at one sitting. Under the training data reduction scenario,

our models consistently achieve high accuracy. Our source code and dataset

are available at an anonymized URL.

i

Contents

1 Introduction 1

2 Related Work 2

2.1 Malicious Users . 2

2.2 Attention Mechanisms . 4

2.3 Convolutional Neural Networks . 4

3 Dataset 5

4 Our Framework 7

4.1 Our C-IPT-CNN Network . 9

4.2 Our C-Text-CNN . 11

5 Features 12

5.1 Traditional Features . 13

5.2 LIWC Related Personality Features 14

5.3 CNN Related Features . 14

5.4 Malicious Accounts vs. Legitimate Accounts in Traditional Features . 14

6 Experiment 16

6.1 Experimental Setting . 16

6.2 Experimental Results . 18

6.3 Case Study: Examples of Misclassified Accounts 21

7 Conclusion 24

ii

List of Figures

1 Overall framework. 8

2 Our C-IPT-CNN network structure. 11

3 Our C-Text-CNN network structure. 12

4 Histograms displaying malicious accounts and legitimate accounts in

terms of traditional features. The full name of each histogram name

is described in Table 4. 15

5 Performance of our models against CNN1 when training data reduc-

tion happened. 20

6 Example of a misclassified legitimate account’s profile and tweets. . . 22

7 Example of a misclassified malicious account’s profile and tweets. . . 23

List of Tables

1 Statistics of three datasets. 5

2 Statistics of the combined dataset. 5

3 Current status of malicious accounts. 7

4 Features and their notations. 13

5 Experimental dataset. 16

6 Experimental result for the binary classification. 17

7 Experiment result for the ternary classification. 18

8 Experimental results for Joint learning vs. separate learning. 18

9 Detailed classification results (actual vs. predicted). 19

10 The original groups of misclassified accounts. 20

iii

1 Introduction

Online social networks (OSNs) such as Twitter, Facebook, and Weibo have long been

suffering from various types of malicious users (e.g., spammers, crowdturfers, fake

followers, and social spambots). These malicious users have misused the power of

OSNs, acted as content polluters, continuously caused significant disturbance to the

overall online social environment, and shaped unhealthy trends, bias and misbelief

in societies. Their accounts1 have made severe impact and damage to the OSNs by

causing inconveniences, intensifying contradictions and aggravating prejudices.

In the recent years, OSN service providers established policies for warning, block-

ing, and even suspending malicious users2. Researchers have proposed approaches

to detect specific types of malicious users [7, 8, 12, 19, 22, 28, 35, 43]. Even though

their proposed approaches identified some of these malicious accounts well, we are

still facing new challenges by new malicious accounts such as hashtag promoters,

social spambots especially political bots and even extremists such as ISIS recruiters.

According to our study (which will be described in the following sections), some of

these malicious accounts are still alive for years without any further punishment or

proper treatment. These new types of malicious users should be banned out. There

are also accounts intentionally disseminating hate speeches and rumors/fake news

[25, 42, 51]. In addition, researchers rarely studied various types of these malicious

users altogether.

To fill this gap, in this thesis, we are interested in studying various types of

malicious users at one sitting. However, there are a few challenges. First, how to

collect information of various types of malicious accounts? If we collect some of

malicious accounts in different timing, it may be hard to detect them (e.g., collect

1We use terms user and account, interchangeably.
2An example: https://help.twitter.com/en/rules-and-policies/twitter-rules

1

https://help.twitter.com/en/rules-and-policies/twitter-rules

information of some users 2 years ago and collect information of the other users

today). Can we propose a unified framework which can effectively detect all types

of malicious accounts at one sitting?

By keeping these challenges in mind, in this thesis, we combine publicly available

multiple Twitter datasets, which contain accounts of content polluters, fake follow-

ers, traditional spambots, social spambots and legitimate users. We categorize these

accounts to malicious accounts and legitimate accounts, and then compare how they

are similar or different. Finally, we propose a unified framework based on various

features to distinguish between malicious accounts and legitimate accounts.

In this thesis, we make the following contributions:

• We propose a novel joint learning framework that is capable of identifying var-

ious types of malicious accounts at one sitting. It combines profile and activity

features, LIWC-based personality features, and two CNN model based features

in order to jointly learn various types of user perspectives together.

• Our proposed models outperform 8 state-of-the-art baselines.

• Our study show that our proposed framework is robust even with less sufficient

data and still outperform the state-of-the-art baselines.

2 Related Work

In this section, we summarize some of the prior works related to malicious accounts

in OSNs, attention mechanisms and convolutional neural networks(CNNs).

2.1 Malicious Users

Researchers focused on analyzing and detecting content polluters and spammers in

OSNs [4, 9, 24, 40]. They investigated and analyzed these users, and then proposed

2

various methods to detect them. Lee et al. [35] did a long-term study of content

polluters, and further proposed a well-built classifier for detecting content polluters.

Other researchers studied how to detect bots, especially malicious spambots,

from different perspectives, including classifications based on temporal patterns of

behaviors [11, 12], sentiment analysis [23], networks [8] and many other methods

[24, 33, 41]. DARPA held a twitter bot challenge [44] for better understanding and

detecting bots. Davis et al. [22] proposed a framework “BotOrNot” which was

trained on a dataset of malicious users. Their model produced an output called

“Botness-score” between 0 and 1 to determine whether an account is a malicious

bot with a confidence rate. Adewole et al. [1] made a thorough review of 65 bot

detection papers. By doing comparisons and contradictions, it concluded with many

useful observations, including techniques and features.

Alfifi et al. [2, 3] studied the behavior of long-lived eventually suspended ac-

counts in social media (especially ISIS related accounts) through a comprehensive

investigation of Arabic Twitter. They were granted full access to Arabic Twitter

accounts, even including data of those suspended accounts from Twitter. They

then researched on those long-lived, short-lived, legitimate users and pro-ISIS users.

Benigni et al. [7] also tried to fight against extremists such as ISIS by building frame-

works to detect their supporting community. Recently there is also a rising trend

in fake news detection and rumor detection. There have been traditional models

[16, 39, 45] as well models made use of deep learning frameworks [28, 38, 43].

Cresci et al. [18, 19, 20, 21] proposed a DNA inspired model which produced

a relatively good result without much detailed information from users. Lee et al.

[36] built an unsupervised machine learning model and used a hierarchical design

to detect malicious users. They gathered their ground truth by using user account

status (i.e., suspended by Twitter or not). Therefore, they might overlook many

3

malicious users who were not yet(or even never) suspended by Twitter. Viswanath

et al. [48] also tried to identify malicious users. They focused on building a model to

detect “attacks” which are generated by workers in black markets. Although many

papers focused on different types of users and relied on various OSN platforms, there

is little work on identifying various types of malicious users altogether by extracting

their common characteristics.

2.2 Attention Mechanisms

Recently there is a rising trend in applying attention mechanisms in many different

research domains. Born to resolve problems in remembering long term memory

in neural machine translation(NMT) of natural language processing (NLP) domain

[5], it soon became popular in other domains such as computer vision(CV) [50].

Many researchers also explored deeply in many variations of attention mechanisms

[10, 37, 47]. In this thesis, we apply soft self-attention [14] which uses dot product

to improve performance of our model and make our model less complicated.

2.3 Convolutional Neural Networks

Traditionally, Convolutional Neural Networks(CNNs) were well applied in research

domains such as image processing [32] and computer vision [34]. Many researchers

have shown quite satisfying results in these areas. Recently, it has also been applied

to Natural Language Processing(NLP) problems such as sentence modeling [29],

classification [30] and prediction [15]. For example, Kim [30] proposed a CNN for

sentence classification. They used word level embedding to transfer text content

into a matrix which fed to the CNN framework for classification tasks. Kalchbrenner

et al. [29] explored CNN’s performance and tried different adjustments on many

datasets. Wang et al. [49] built an event adversarial neural network for multi-modal

4

Table 1: Statistics of three datasets.
Dataset User Type Size UserId Profile Tweet Network Label

Honeypot
Dataset

Content Polluter(CP) 22,223 3 3 3 3 3

Legitimate User(LU) 19,276 3 3 3 3 3

DNA
Inspired
Dataset

Fake Follower (FF) 3351 3 3 3 7 3

Normal User(NU) 3,474 3 3 3 7 3

Social Spambot1(SSB1) 991 3 3 3 7 3

Social Spambot2(SSB2) 3,457 3 3 3 7 3

Social Spambot3(SSB3) 464 3 3 3 7 3

Traditional Spambot1(TSB1) 1,000 3 3 3 7 3

Traditional Spambot2(TSB2) 100 3 3 7 7 3

Traditional Spambot3(TSB3) 403 3 3 7 7 3

Traditional Spambot4(TSB4) 1,128 3 3 7 7 3

BotOrNot
Dataset

Bots(BoNB) 826 3 7 7 7 3

Human(BoNH) 1,747 3 7 7 7 3

Table 2: Statistics of the combined dataset.
Dataset Total Size Type Cur. Status Anal. & Exp.

MA 33,943

CP 3 3

FF 3 3

SSB1 3 3

SSB2 3 3

SSB3 3 3

TSB1 3 3

TSB2 3 7

TSB3 3 7

TSB4 3 7

BoNB 3 7

LA 24,497
LU 3 3

NU 3 3

BoNH 3 7

fake news detection, which also used a Text-CNN structure. Chavoshi et al. [13]

proposed another CNN model which made use of the inter-posting timestamps(IPT)

rather than the text content themselves.

3 Dataset

We were interested in collecting various types of malicious accounts so that we could

learn their common characteristics which are different from legitimate accounts. In-

5

stead of collecting data from Twitter by ourselves, we decided to download publicly

available Twitter datasets in order to avoid two problems: (1) we may collect bi-

ased sample data which was collected at the same time via the same method; and

(2) labeling each type of malicious accounts would be time-consuming and getting

objective labels are still challenging.

In particular, we downloaded the following three Twitter datasets: HoneyPot

Dataset [35], DNA Inspired Dataset [19], and BotOrNot Dataset [46]. We describe

the general information about datasets in Table 1. We treat the content polluters,

fake followers, social spam bots 1,2,3, traditional spam bots 1,2,3,4, BotOrNot

dataset’s bot group, as malicious accounts/users (MA), and those legitimate users,

BotOrNot dataset’s human group, together with normal users as legitimate ac-

counts/users (LA).

After downloading these datasets, we faced another problem that these datasets

were not consistent with each other in terms of available information of users in

each dataset. We had to make our choice of either selecting part of features or part

of these dataset users.

As shown in Table 2, we used all the datasets consisting of 33,943 malicious

accounts and 24,497 legitimate accounts to check a current status of each account

via Twitter API, which only requires the user’s Twitter ID and his/her label. In the

stage of analysis and experiment, we used datasets containing user profiles, tweets,

and labels (i.e., we excluded TSB2, TSB3, TSB4, BoNB and BoNH).

Current Status of the Malicious Accounts. In July, 2018, we checked a cur-

rent status of each malicious account via Twitter API to understand whether the

account has been suspended, deleted, protected or alive. Table 3 presents proportion

of deleted, protected, suspended and alive accounts in each type. Overall, 81.5%

malicious accounts were deleted or suspended. However, the remaining 18.5% ac-

6

Table 3: Current status of malicious accounts.
Types Deleted Protected Suspended Alive

CP 20,452 (92.0%) 254 (1.1%) 71 (0.3%) 1,446 (6.5%)
FF 2,140 (63.9%) 184 (5.5%) 35 (1.0%) 991 (29.6%)

SSB1 834 (84.2%) 20 (2.0%) 6 (0.6%) 131 (13.2%)
SSB2 906 (26.2%) 393 (11.4%) 172 (5.0%) 1,986 (57.5%)
SSB3 375 (80.8%) 15 (3.2%) 3 (0.7%) 71 (15.3%)
TSB1 925 (92.5%) 10 (1.0%) 5 (0.5%) 60 (6.0%)
TSB2 27 (27.0%) 12 (12.0%) 4 (4.0%) 57 (57.0%)
TSB3 192 (47.6%) 36 (8.9%) 14 (3.5%) 161 (40.0%)
TSB4 1,019 (90.3%) 16 (1.4%) 6 (0.5%) 87 (7.7%)
BoNB 448 (54.2%) 49 (5.9%) 20 (2.4%) 309 (37.4%)
Overall 27,318 (80.5%) 989 (2.9%) 336 (1.0%) 5,299 (15.6%)

counts are either alive for a few years or changed their profiles in a protected mode.

It indicates we need a better detection method to identified those alive and protected

malicious accounts.

4 Our Framework

In this section, we describe our proposed framework, which aims to detect various

types of malicious accounts at one sitting. Our framework in Figure 1 consists of

three parts: data integration, data grouping, and model training.

The data integration module is in charge of combining datasets from different

sources, extracting their shared features, and transforming various expressions into

unified ones. During these procedures, some accounts were filtered out as they failed

to satisfy some essential criteria such as missing some important data/features. In

the figure, Filter1 filters out those broken data and inconsistent data, and Filter2

filters out overlapped data and features that are not important to our model.

In the data grouping part, we split those remaining users into two groups: legit-

imate accounts, and malicious accounts.

7

Figure 1: Overall framework.

After the datasets are thoroughly cleaned and grouped, we feed each type of

different features to their corresponding neural network structures. Then, we com-

bine their intermediate results to form a new fully connected layer. We try to take

the advantages of these different features together with their structures by jointly

learning them through feed forwards and back propagations altogether rather than

learn them individually and then combine their results.

In the training part, we combine four types of features: (i) traditional features

(i.e., profile features and activity features); (ii) LIWC features generated from each

user’s tweet content to understand the user’s personality; (iii) Temporal behavior

related features generated by our customized inter-posting-time CNN (C-IPT-CNN);

and (iv) Text/content related features generated by our customized Text-CNN (C-

Text-CNN). We will describe the four types of features in detail in the following

section. After the layer concatenation, these features will be mapped to target

classes through either classical multi-layer perceptrons (MLP, shown in the overall

8

framework as an example) or soft self-attention layer.

A CNN consists of an ordered sequence of layers. Types of these layers are

usually Convolutional layers, Pooling layers, and Fully Connected layers. In most of

cases, the results generated by Convolution layers and Pooling layers are treated as

independent dimensions/perspectives of an original graph. Then, Fully Connected

layers show up as the last several layers, mapping those independent features to

target/expected results. The number of layers, types of layers, output size of layers

are up to the designer of the CNN framework. A matrix as the input layer is fed

to the CNN framework and the final output usually represents what researchers

need from that matrix. For example, in classification problems, the output layer

could constitute CNN’s final prediction of input matrix/instance. Thus the size

of the output is exactly the size of the classes. In the following subsections, we

describe detailed information regarding our proposed two CNN networks to generate

independent dimensions/features.

4.1 Our C-IPT-CNN Network

Inspired from Chavoshi et al. [13], who designed the original IPT-CNN, we propose

customized IPT-CNN (C-IPT-CNN) as shown in Figure 2.

Input matrix of C-IPT-CNN. Given all timestamps of tweets posted by a user,

we sort them in the ascending order and represent them as follows:

ti, 1 ≤ i ≤ n (1)

where n is the total number of tweets posted by the user.

Then, we calculate the time difference (i.e., inter-posting time) between a pair

of timestamps with respect of time lag, and apply the log function to decrease its

9

range as follows:

pi =


log10(ti+lag − ti) + 1, ti+lag > ti

0, otherwise

(2)

where pi is the time difference in terms of the second as a unit, and lag is the number

of hops to choose following timestamp. For example, if lag = 1, we will measure pi

based on ti and ti+1. Similarly, if lag = 2, we will measure pi based on ti and ti+2

pair. In this study, we choose lag as 1, 2, and 3.

Now, we have three sequences of tuples each of which was generated by each

lag value that we chose. Each tuple in a sequence contains two consecutive time

difference: (pi, pi+1). Given each tuple in a sequence, we map it to a 2D plane,

considering pi as a value of x-axis and pi+1 as a value of y-axis. In this thesis, we

set up the boundaries of x-axis and y-axis as min = 0 and max = 10. All possible

extreme values that were initially out of the boundary is forced to map to their

closest limit. Then we manually divide the chosen area into 32*32 grids. Since

there are three sequences (again, we chose three lag values), we have 3*32*32 grids.

Thus, we have a 3× 32× 32 matrix, where each element is the proportion of counts

in the plane. Such a matrix is the input matrix of C-IPT-CNN. Notice that our

expression is different from the original one as we handle time difference differently,

and we also incorporate a smoothing constant 1 in Eq. 2.

Design of C-IPT-CNN. The input matrix will go through four convolution layers

and three pooling layers. We flatten the result of the last pooling layer, and exclude

all fully connected layers of the original IPT-CNN design. Then, the result will be

concatenated with other network results to form a more extended fully connected

layer to do the joint learning as we described in the overall framework. The weights

10

Figure 2: Our C-IPT-CNN network structure.

of each layer will be updated by the back propagation method.

4.2 Our C-Text-CNN

Input matrix of C-Text-CNN. Inspired from the original Text-CNN [30] and

Kalchbrenner et al. [29], we propose customized Text-CNN (C-Text-CNN) presented

in Figure 3. First, we process our tweets by tokenizing them, filtering out useless

characters and meaningless words, and lowercasing remaining words. Second, we

pad two unique words “TWEETSTART” and “TWEETEND” to each non-trivial

tweet. Then, we concatenate all the tweets together for each user. Now each user is

represented as a long paragraph. The next step is to translate/convert the paragraph

into meaningful embedding vectors. In particular, we used a pre-trained word to

vector (W2V) model on Twitter3 to translate the paragraphs into matrices. Notice

that to let the embedding make sense for unrecognized words, “TWEETSTART”

and “TWEETEND”, three extra dimensions were expanded to the original embed-

ding vector. It made the length of each word’s embedding vector to be changed

from 400 to 403. We did extra padding for those matrices to make sure all users’

3https://fredericgodin.com/software/

11

https://fredericgodin.com/software/

Figure 3: Our C-Text-CNN network structure.

embedding matrices have the same height (i.e., the same number of words), which

will fit into our C-Text-CNN model well.

Design of C-Text-CNN. Our C-Text-CNN contains one Convolutional layer, and

one Pooling layer. Similar to C-IPT-CNN, the result of the pooling layer is flat-

tened, and then is concatenated with other features for the joint learning framework.

Instead of using other pre-trained models such as Google’s “negative-300”, we used

a domain specified W2V model which was trained on a Twitter dataset to represent

each word correctly in the Twitter domain.

5 Features

In this section, first we describe a list of features that our framework extracts and

uses. Then, we analyze whether the traditional features can clearly distinguish

between malicious accounts and legitimate accounts. Table 4 presents the list of our

features.

12

Table 4: Features and their notations.
Feature Type Notation Description

Traditional
Features

t/d |Average tweets posted per day|
dd |days since account creation|
ut/t Unique tweet ratio
h/t |hashtags posted per tweet|
uh/t |unique hashtags posted per tweet|
m/t |mentions posted per tweet|
um/t |unique mentions posted per tweet|
l/t |links (URLs) posted per tweet|
ul/t |unique links (URLs) posted per tweet|

len(sn) Length of screen name
len(des) Length of description
fing/d |new followings per day|
fer/d |new followers per day|
ff Following follower ratio
cr tweet compression ratio

LIWC features - 64 LIWC features
CNN features - C-IPT-CNN and C-Text-CNN features

5.1 Traditional Features

We first extracted 15 traditional features like profile features and activity features

from each user’s profile and tweets. Many baseline models made use of these features

and claimed that they achieved rather satisfying results. We concatenate these

features with other features generated from different perspectives and apply joint

learning methods in our framework. For unique tweets, we first translate all links

to the same word “URL” and then count the number of unique tweets based on

these transformed data. For compression ratio of user tweets, we used Python’s zip

package with its default zip setting.

13

5.2 LIWC Related Personality Features

LIWC4 is a well-known dictionary for text analysis and personality analysis. It cat-

egorizes words into each meaningful types/groups. For each account in our dataset,

we concatenate their tweets, count the number of meaningful words, and then cal-

culate the occurrence of words belonging to each category. We naturally treat the

proportion of these occurrences as features. Thus, the number of features we extract

from LIWC equals to the number of categories of LIWC. We extracted 64 features

by using the LIWC 2007 dictionary.

5.3 CNN Related Features

We build two CNN models (i.e., C-IPT-CNN and C-Text-CNN) and extract CNN

related features to capture different characteristics of Twitter users. The number

of features to be extracted depends on a result of hyper-parameter tuning for each

CNN.

5.4 Malicious Accounts vs. Legitimate Accounts in Tradi-

tional Features

We turn to compare malicious accounts and legitimate in terms of traditional fea-

tures. Do they have different characteristics? Can the traditional features distin-

guish between them? If all the traditional features are already good enough in

separating different groups of users, then it may not be necessary to add additional

feature into our framework. To answer these questions, we visualize traditional fea-

ture test results in the form of histograms in Figure 4. For better comprehensive

visualization, the actual scope of the y-axis is compressed in the log of the actual

4http://liwc.wpengine.com/

14

http://liwc.wpengine.com/

Figure 4: Histograms displaying malicious accounts and legitimate accounts in terms
of traditional features. The full name of each histogram name is described in Table 4.

number of users. There is also a long tail on the original histograms where only

a small proportion of users are distributed in a rather long range of domain. We

intentionally keep 99% of the users’ data in the graph by removing 1% tail users in

the histograms to see clear macro-scale views. As the exact x-axis value does not

matter much, we hide them in the histograms.

We observe that some traditional features can partially tell some difference be-

tween groups of accounts; however, there is still much overlap among them. Espe-

cially, length of screen name (len(des)), the number of average tweets posted per

day (t/d), the number of mentions posted per tweet (m/t), and the number of

unique mentions posted per tweet (um/t) are less effective to distinguish between

malicious accounts and legitimate accounts. This result indicates that our approach

to combine various features makes sense.

15

Table 5: Experimental dataset.
Type Size
Malicious Accounts (MA) 25,543
Legitimate Accounts (LA) 19,652

6 Experiment

6.1 Experimental Setting

Given 33,943 malicious accounts and 24,497 legitimate accounts, we conducted data

filtering described in Section 4. In particular, we filtered out accounts each of which

posted less than 5 tweets, and the number of aggregated words in the tweets is

less than 10. Finally, 25,543 malicious accounts and 19,652 legitimate accounts

remained as shown in Table 5. We randomly split the dataset with 80% training,

10% validation, and 10% testing.

We choose the following state-of-the-art baselines based on various features: (i)

logistic regression(LG), decision tree(DT), support vector machine(SVM) [17] based

on traditional and LIWC features; (ii) Bagging methods, such as random forest(RF)

[6, 27] and boosting techniques such as AdaBoost(AdaB) [26] based on traditional

and LIWC features; (iii) Original Text-CNN (CNN1) [29, 30] to model tweet in-

formation; (iv) Original IPT-CNN (CNN2) [13] to model a user’s temporal posting

behavior patterns; and (v) Multilayer perceptron (MLP) based on traditional and

LIWC features.

We implement our proposed framework in two variations called Co1 and Co2.

Co1 is a joint learning model attached with one single soft self-attention. Co2 is

another joint learning model attached with a MLP of 3 hidden layers (as shown in

Figure 1), and the dropout rate is applied to prevent over-fitting. Cross entropy is

applied as the default loss function for all the models.

16

Table 6: Experimental result for the binary classification.
LA MA Overall

Model Pre. Rec. F1 Pre. Rec. F1 Acc.

LR 0.837 0.851 0.844 0.884 0.873 0.878 0.863
DT 0.884 0.874 0.879 0.904 0.912 0.908 0.896
RF 0.928 0.911 0.920 0.933 0.946 0.939 0.931

AdaB 0.902 0.915 0.909 0.934 0.924 0.929 0.920
SVM 0.873 0.887 0.880 0.912 0.901 0.907 0.895
MLP 0.863 0.891 0.877 0.914 0.891 0.902 0.891
CNN2 0.826 0.800 0.813 0.850 0.871 0.860 0.840
CNN1 0.912 0.923 0.918 0.940 0.932 0.936 0.928

Co1 0.939 0.917 0.928 0.937 0.954 0.946 0.938
Co2 0.935 0.925 0.930 0.943 0.951 0.947 0.940

We conducted a thorough grid search for all possible hyper-parameters/options of

all models, and used the validation set to verify and pick those best combinations.

We measure Precision (Pre), Recall (Rec), F1 and Accuracy (Acc) as evaluation

metrics.

Q1: Baselines vs. Our Models?

We compared our models against 8 baselines. Table 6 present the experimental

results. The best result of each column is marked in bold red and the second best is

marked in bold black. Both of our models outperformed the baselines, and achieved

the highest F1 in both legitimate accounts and malicious accounts. It indicates our

framework is stable in both types. Overall, our Co2 performed the best, achieving

0.940 accuracy. This promising result confirms that it is possible to detect various

types of malicious accounts at one sitting with a high accuracy. Our framework also

performed better than Twitter security system which only identified 81.5% malicious

accounts correctly as presented in Section 3.

We also conducted an additional experiment called a ternary classification task

to show that our models can handle multi-class classification tasks. In particular,

in the ternary classification task, we treat all social spambot accounts as newly

17

Table 7: Experiment result for the ternary classification.
3class LA TM NM Overall

Measure Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 ACC.

LR 0.846 0.840 0.843 0.853 0.829 0.841 0.863 0.986 0.921 0.851
DT 0.899 0.889 0.894 0.897 0.907 0.902 0.982 0.984 0.983 0.908
RF 0.920 0.914 0.917 0.917 0.927 0.922 1 0.982 0.991 0.927

AdaB 0.910 0.911 0.911 0.916 0.916 0.916 0.990 0.990 0.990 0.922
SVM 0.882 0.873 0.878 0.881 0.890 0.885 0.994 0.990 0.992 0.894
MLP 0.875 0.880 0.878 0.887 0.882 0.884 0.990 0.992 0.991 0.893
CNN2 0.835 0.806 0.820 0.821 0.849 0.835 0.996 0.988 0.992 0.846
CNN1 0.913 0.925 0.919 0.926 0.916 0.921 0.996 0.988 0.992 0.928

Co1 0.936 0.915 0.926 0.921 0.942 0.931 0.994 0.992 0.993 0.936
Co2 0.929 0.939 0.934 0.942 0.932 0.937 0.998 0.992 0.995 0.942

Table 8: Experimental results for Joint learning vs. separate learning.
LA MA Overall

Model Pre. Rec. F1 Pre. Rec. F1 Acc.

Se+LR 0.921 0.921 0.921 0.939 0.939 0.939 0.931
Co1 0.939 0.917 0.928 0.937 0.954 0.946 0.938
Co2 0.935 0.925 0.930 0.943 0.951 0.947 0.940

emerging and evolving malicious group (NM), the rest of the malicious accounts as

traditional malicious group (TM), and keep the same legitimate accounts as LA.

Table 7 shows prediction results. Our models still achieved the highest F1 in all

groups, and our Co2 performed even better, achieving 0.942 accuracy.

6.2 Experimental Results

In this section, we describe experimental results in a Q&A style as follows:

Q2: How does our joint learning framework perform differently from

separate learning?

To answer this question, we did another experiment by training on each feature

model separately rather than joint learning them together. Then, we applied straight

forward “voting” to predict the final result of the separate learning method (Se+LR).

In particular, The C-Text-CNN on content/Tweets, the C-IPT-CNN on temporal

18

Table 9: Detailed classification results (actual vs. predicted).

Model
Actual vs.
Predicted LA MA

Co1
LA 1,801 (91.7%) 163(8.3%)
MA 117(4.6%) 2,439 (95.4%)

Co2
LA 1847 (94.0%) 117(6.0%)
MA 156 (6.1%) 2400 (93.9%)

behaviors, the MLP on traditional and LIWC features are independently well-tuned.

Then, their prediction vector(the last result layer) was concatenated into one. Then,

we ensembled the predictions together through classic machine learning methods.

We used logistic regression to generate the final prediction (actually RF, SVM, MLP,

DT, and AdaB were all tested, but we only report the best model’s result here).

The results are shown in Table 8. We observe that joint learning methods performed

better than separate learning model. It may mean that ensemble methods in the

separate learning naturally only focused on groups of features separately and easily

overlooked the possible hidden correlations/dependencies between different types

of features, whereas the joint learning took care of a variety of different groups of

features and the correlations of features altogether.

Q3: What is the distribution of users that our models misclassified?

We present the detailed prediction results in Table 9. Each row is the original

label, and each column is the predicted label. We observe that each of Co1 and

Co2 have their own advantage over the other. Co1 did better in terms of correctly

identifying malicious users, whereas Co2 did better in terms of correctly identifying

legitimate users. There might be some chance of further improving the classification

performance by combining the two models.

Q4: What is the original groups that those misclassified accounts belong

to?

Table 10 shows the original groups of misclassified accounts. In this analysis, we

19

Table 10: The original groups of misclassified accounts.
Group CP TSB SSB FF LA

Co1 Mistake 42(47.19%) 0(0%) 3(3.37%) 5(5.62%) 39(43.82%)
Co2 Mistake 55(58.51%) 2(2.13%) 3(3.19%) 6(6.38%) 28(29.79%)

focused on 5 account groups: social spambots (SSB), traditional spambots (TSB),

content polluters (CP), fake followers (FF), and all legitimate accounts (LA). Each

row represents all accounts that were mislabeled by a particular model, and each col-

umn represents the original group those accounts belong to. CP and LA contributed

to the dominating part of mistakes as they were harder to detect compared with

two types of malicious bots. Intuitively speaking, this might be due to the reason

that bots behave in a fixed pattern and other malicious users are more flexible.

Figure 5: Performance of our models against CNN1 when training data reduction
happened.

Q5:How robust is our framework?

We specially designed another experiment to show the robustness of our mod-

els. We randomly dropped out some accounts of the training data and checked

performance of the models. For comparison, we chose CNN1 as a baseline model

20

as it achieved a good performance in the previous experiment. We kept all hyper-

parameters learned from the previous experiment (using full training data), and

gradually decreased a size of the training data with a step size of 5%. Figure 5

shows the experimental results related to training data reduction. We observe that

regardless of the training data reduction, our Co2 consistently achieved the highest

accuracy and was robust. It significantly outperformed CNN1 even when the num-

ber of training accounts reduced to 50%. The Co1 seems to rely on more training

data, but still outperformed CNN1 until up to 40% training data reduction.

Q6: Is there any other room to further improve?

In this study, our combined dataset does not contain social network information.

If each user’s social network information is available, we could potentially apply

network embedding technique such as Graph Convolutional Network (GCN) [31] to

learn distinguishing patterns between malicious accounts and legitimate accounts.

In addition, since our framework is flexible, other researchers can try more advanced

attention mechanisms such as multi-head attention.

6.3 Case Study: Examples of Misclassified Accounts

Overall, our Co1 and Co2 models commonly misclassified 190 accounts: actually

100 legitimate accounts and 90 malicious accounts. Most of those malicious ac-

counts are still alive, and most of those legitimate users are already deleted by the

users. Now, we conduct a micro-scale case study to understand why our models

misclassified some users/accounts. In particular, we analyze one example of mis-

classified legitimate account and one example of misclassified malicious account. To

protect the privacy of the accounts/users, we intentionally blurred/blocked some

information.

Legitimate user. Figure 6 shows an example of the misclassified legitimate ac-

21

Figure 6: Example of a misclassified legitimate account’s profile and tweets.

count. There are several reasons why our models were not able to correctly identify

its true label:

• This user mainly wrote tweets in French rather than English. However, the

dominating part of our training data was written in English, and thus the pre-

trained W2V model may not be working well on the contents it posted. This

problem could be solved by introducing/applying better embedding models that

incorporate multiple languages.

• Although the user is a person, the user is also a manager of a company. Thus the

22

profile and tweets/retweets are mostly related to the company. The user does

not have a personalized profile photo but rather the scene of buildings. The user

also posted more tweets than the average of legitimate users. So there is some

chance that our models treated the account as a malicious one.

Figure 7: Example of a misclassified malicious account’s profile and tweets.

Malicious user. We show an example of the mislabeled malicious account in

Figure 7. Although this user has an extremely unbalanced following/follower ratio

and embedded URLs in almost every tweet, there are some reasons that such a user

escaped our detection:

23

• This fake account typed in many words before the URLs and the contents he/she

posted involved in many different topics. This may make our models got con-

fused. A better way would be to incorporate linked content as well to expand

information regarding which page the user referred to.

• This account filled in almost all profile information including fake location infor-

mation. Social network related features may help correctly identifying the user’s

true label.

7 Conclusion

In this thesis, we aimed to detect various types of malicious accounts at one sitting.

In particular, we combined publicly available three Twitter datasets, which con-

sisted of various types of malicious accounts and legitimate accounts. We grouped

accounts into two classes (malicious and legitimate). Then, we proposed a novel

joint learning framework based on traditional features, LIWC-based features, C-

IPT-CNN features and C-Text-CNN features toward detecting malicious accounts.

Experimental results showed that Our framework outperforms all baselines, achiev-

ing 0.94 accuracy. We further analyzed why our models performed well and showed

how robust our model is under the training data reduction scenario. In the future,

we are interested in extending our framework by incorporating network embedding

features (e.g., GCN) and advanced attention mechanism (e.g., multi-head attention)

to further improve the performance of our models.

24

References

[1] Kayode Sakariyah Adewole, Nor Badrul Anuar, Amirrudin Kamsin, Kas-
turi Dewi Varathan, and Syed Abdul Razak. 2017. Malicious accounts: dark of
the social networks. Journal of Network and Computer Applications 79 (2017),
41–67.

[2] Majid Alfifi and James Caverlee. 2017. Badly Evolved? Exploring Long-
Surviving Suspicious Users on Twitter. In International Conference on Social
Informatics. Springer, 218–233.

[3] Majid Alfifi, Parisa Kaghazgaran, James Caverlee, and Fred Morstatter. 2018.
Measuring the Impact of ISIS Social Media Strategy.

[4] Abdullah Almaatouq, Erez Shmueli, Mariam Nouh, Ahmad Alabdulkareem,
Vivek K Singh, Mansour Alsaleh, Abdulrahman Alarifi, Anas Alfaris, et al.
2016. If it looks like a spammer and behaves like a spammer, it must be a
spammer: analysis and detection of microblogging spam accounts. International
Journal of Information Security 15, 5 (2016), 475–491.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Iñigo Barandiaran. 1998. The random subspace method for constructing deci-
sion forests. IEEE transactions on pattern analysis and machine intelligence
20, 8 (1998).

[7] Matthew C Benigni, Kenneth Joseph, and Kathleen M Carley. 2017. Online
extremism and the communities that sustain it: Detecting the ISIS supporting
community on Twitter. PloS one 12, 12 (2017), e0181405.

[8] David M Beskow and Kathleen M Carley. 2018. Bot conversations are different:
leveraging network metrics for bot detection in twitter. In 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 825–832.

[9] Sajid Yousuf Bhat and Muhammad Abulaish. 2013. Community-based fea-
tures for identifying spammers in online social networks. In Advances in Social
Networks Analysis and Mining (ASONAM), 2013 IEEE/ACM International
Conference on. IEEE, 100–107.

[10] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. 2017. Mas-
sive exploration of neural machine translation architectures. arXiv preprint
arXiv:1703.03906 (2017).

25

[11] Nikan Chavoshi, Hossein Hamooni, and Abdullah Mueen. 2016. DeBot: Twitter
Bot Detection via Warped Correlation.. In ICDM. 817–822.

[12] Nikan Chavoshi, Hossein Hamooni, and Abdullah Mueen. 2017. Temporal
patterns in bot activities. In Proceedings of the 26th International Conference
on World Wide Web Companion. International World Wide Web Conferences
Steering Committee, 1601–1606.

[13] Nikan Chavoshi and Abdullah Mueen. 2018. Model Bots, not Humans on Social
Media. 178–185. https://doi.org/10.1109/ASONAM.2018.8508279

[14] Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016. Long short-term memory-
networks for machine reading. arXiv preprint arXiv:1601.06733 (2016).

[15] Ronan Collobert and Jason Weston. 2008. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine learning. ACM, 160–167.

[16] Niall J Conroy, Victoria L Rubin, and Yimin Chen. 2015. Automatic deception
detection: Methods for finding fake news. In Proceedings of the 78th ASIS&T
Annual Meeting: Information Science with Impact: Research in and for the
Community. American Society for Information Science, 82.

[17] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[18] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and
Maurizio Tesconi. 2016. DNA-inspired online behavioral modeling and its ap-
plication to spambot detection. IEEE Intelligent Systems 31, 5 (2016), 58–64.

[19] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and
Maurizio Tesconi. 2017. The paradigm-shift of social spambots: Evidence,
theories, and tools for the arms race. In Proceedings of the 26th International
Conference on World Wide Web Companion. International World Wide Web
Conferences Steering Committee, 963–972.

[20] Stefano Cresci, Roberto Di Pietro, Marinella Petrocchi, Angelo Spognardi, and
Maurizio Tesconi. 2017. Social fingerprinting: detection of spambot groups
through DNA-inspired behavioral modeling. IEEE Transactions on Dependable
and Secure Computing 15, 4 (2017), 561–576.

[21] Stefano Cresci, Marinella Petrocchi, Angelo Spognardi, and Stefano Tognazzi.
2019. Better Safe Than Sorry: An Adversarial Approach to Improve Social Bot
Detection. arXiv preprint arXiv:1904.05132 (2019).

26

https://doi.org/10.1109/ASONAM.2018.8508279

[22] Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini, and
Filippo Menczer. 2016. Botornot: A system to evaluate social bots. In Pro-
ceedings of the 25th International Conference Companion on World Wide Web.
International World Wide Web Conferences Steering Committee, 273–274.

[23] John P Dickerson, Vadim Kagan, and VS Subrahmanian. 2014. Using senti-
ment to detect bots on twitter: Are humans more opinionated than bots?. In
Proceedings of the 2014 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining. IEEE Press, 620–627.

[24] Emilio Ferrara. 2018. Measuring social spam and the effect of bots on infor-
mation diffusion in social media. In Complex Spreading Phenomena in Social
Systems. Springer, 229–255.

[25] William Ferreira and Andreas Vlachos. 2016. Emergent: a novel data-set for
stance classification. In Proceedings of the 2016 conference of the North Amer-
ican chapter of the association for computational linguistics: Human language
technologies. 1163–1168.

[26] Yoav Freund, Robert E Schapire, et al. 1996. Experiments with a new boosting
algorithm. In icml, Vol. 96. Citeseer, 148–156.

[27] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[28] Zhiwei Jin, Juan Cao, Han Guo, Yongdong Zhang, and Jiebo Luo. 2017. Multi-
modal fusion with recurrent neural networks for rumor detection on microblogs.
In Proceedings of the 2017 ACM on Multimedia Conference. ACM, 795–816.

[29] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A convolu-
tional neural network for modelling sentences. arXiv preprint arXiv:1404.2188
(2014).

[30] Yoon Kim. 2014. Convolutional neural networks for sentence classification.
arXiv preprint arXiv:1408.5882 (2014).

[31] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet clas-
sification with deep convolutional neural networks. In Advances in neural in-
formation processing systems. 1097–1105.

[33] Sneha Kudugunta and Emilio Ferrara. 2018. Deep Neural Networks for Bot
Detection. CoRR abs/1802.04289 (2018). arXiv:1802.04289 http://arxiv.

org/abs/1802.04289

27

http://arxiv.org/abs/1802.04289
http://arxiv.org/abs/1802.04289

[34] Yann LeCun, Yoshua Bengio, et al. 1995. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks
3361, 10 (1995), 1995.

[35] Kyumin Lee, Brian David Eoff, and James Caverlee. 2011. Seven Months with
the Devils: A Long-Term Study of Content Polluters on Twitter.. In ICWSM.
185–192.

[36] Sangho Lee and Jong Kim. 2014. Early filtering of ephemeral malicious accounts
on Twitter. Computer Communications 54 (2014), 48–57.

[37] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[38] Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon, Bernard J Jansen, Kam-
Fai Wong, and Meeyoung Cha. 2016. Detecting Rumors from Microblogs with
Recurrent Neural Networks.. In IJCAI. 3818–3824.

[39] Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and Kam-Fai Wong. 2015. De-
tect rumors using time series of social context information on microblogging
websites. In Proceedings of the 24th ACM International on Conference on In-
formation and Knowledge Management. ACM, 1751–1754.

[40] Zachary Miller, Brian Dickinson, William Deitrick, Wei Hu, and Alex Hai
Wang. 2014. Twitter spammer detection using data stream clustering. In-
formation Sciences 260 (2014), 64–73.

[41] Fred Morstatter, Liang Wu, Tahora H Nazer, Kathleen M Carley, and Huan Liu.
2016. A new approach to bot detection: striking the balance between precision
and recall. In Proceedings of the 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. IEEE Press, 533–540.

[42] Julio CS Reis, André Correia, Fabŕıcio Murai, Adriano Veloso, Fabŕıcio Ben-
evenuto, and Erik Cambria. 2019. Supervised Learning for Fake News Detec-
tion. IEEE Intelligent Systems 34, 2 (2019), 76–81.

[43] Natali Ruchansky, Sungyong Seo, and Yan Liu. 2017. Csi: A hybrid deep
model for fake news detection. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management. ACM, 797–806.

[44] VS Subrahmanian, Amos Azaria, Skylar Durst, Vadim Kagan, Aram Galstyan,
Kristina Lerman, Linhong Zhu, Emilio Ferrara, Alessandro Flammini, and Fil-
ippo Menczer. 2016. The DARPA Twitter bot challenge. Computer 49, 6
(2016), 38–46.

28

[45] Eugenio Tacchini, Gabriele Ballarin, Marco L Della Vedova, Stefano Moret,
and Luca de Alfaro. 2017. Some like it hoax: Automated fake news detection
in social networks. arXiv preprint arXiv:1704.07506 (2017).

[46] Onur Varol, Emilio Ferrara, Clayton A Davis, Filippo Menczer, and Alessandro
Flammini. 2017. Online human-bot interactions: Detection, estimation, and
characterization. In Eleventh international AAAI conference on web and social
media.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[48] Bimal Viswanath, Muhammad Ahmad Bashir, Mark Crovella, Saikat Guha,
Krishna P Gummadi, Balachander Krishnamurthy, and Alan Mislove. 2014.
Towards Detecting Anomalous User Behavior in Online Social Networks.. In
USENIX Security Symposium. 223–238.

[49] Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha,
Lu Su, and Jing Gao. 2018. EANN: Event Adversarial Neural Networks for
Multi-Modal Fake News Detection. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 849–
857.

[50] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Rus-
lan Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual attention. In International
conference on machine learning. 2048–2057.

[51] Zen Yoshida and Masayoshi Aritsugi. 2019. Rumor Detection in Twitter with
Social Graph Structures. In Third International Congress on Information and
Communication Technology. Springer, 589–598.

29

	Introduction
	Related Work
	Malicious Users
	Attention Mechanisms
	Convolutional Neural Networks

	Dataset
	Our Framework
	Our C-IPT-CNN Network
	Our C-Text-CNN

	Features
	Traditional Features
	LIWC Related Personality Features
	CNN Related Features
	Malicious Accounts vs. Legitimate Accounts in Traditional Features

	Experiment
	Experimental Setting
	Experimental Results
	Case Study: Examples of Misclassified Accounts

	Conclusion

