
SmartCell: An Energy Efficient Reconfigurable
Architecture for Stream Processing

by
Cao Liang

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy
in

Electrical and Computer Engineering

April, 2009

Approved:

Prof. Xinming Huang
ECE Department, WPI
Dissertation Advisor

Prof. Fred J. Looft
ECE Department Head, WPI

Prof. Berk Sunar
ECE Department, WPI
Dissertation Committee

Prof. Russell Tessier
ECE Department, UMASS
Amherst
Dissertation Committee

Abstract

Data streaming applications, such as signal processing, multimedia applications, often

require high computing capacity, yet also have stringent power constraints, especially

in portable devices. General purpose processors can no longer meet these requirements

due to their sequential software execution. Although fixed logic ASICs are usually able to

achieve the best performance and energy efficiency, ASIC solutions are expensive to design

and their lack of flexibility makes them unable to accommodate functional changes or

new system requirements. Reconfigurable systems have long been proposed to bridge the

gap between the flexibility of software processors and performance of hardware circuits.

Unfortunately, mainstream reconfigurable FPGA designs suffer from high cost of area,

power consumption and speed due to the routing area overhead and timing penalty of

their bit-level fine granularity.

In this dissertation, we present an architecture design, application mapping and perfor-

mance evaluation of a novel coarse-grained reconfigurable architecture, named SmartCell,

for data streaming applications. The system tiles a large number of computing cell units in

a 2D mesh structure, with four coarse-grained processing elements developed inside each

cell to form a quad structure. Based on this structure, a hierarchical reconfigurable net-

work is developed to provide flexible on-chip communication among computing resources:

including fully connected crossbar, nearest neighbor connection and clustered mesh net-

work. SmartCell can be configured to operate in various computing modes, including

SIMD, MIMD and systolic array styles to fit for different application requirements. The

coarse-grained SmartCell has the potential to improve the power and energy efficiency

compared with fine-grained FPGAs. It is also able to provide high performance compara-

ble to the fixed function ASICs through deep pipelining and large amount of computing

parallelism. Dynamic reconfiguration is also addressed in this dissertation.

To evaluate its performance, a set of benchmark applications has been successfully

mapped onto the SmartCell system, ranging from signal processing, multimedia applica-

tions to scientific computing and data encryption. A 4 by 4 SmartCell prototype system

was initially designed in CMOS standard cell ASIC with 0.13 µm process. The chip occu-

pies 8.2 mm2 and dissipates 1.6 mW/MHz under fully operation. The results show that

i

the SmartCell can bridge the performance and flexibility gap between logic specific ASICs

and reconfigurable FPGAs. SmartCell is also about 8% and 69% more energy efficient

and achieves 4x and 2x throughput gains compared with Montium and RaPiD CGRAs.

Based on our first SmartCell prototype experiences, an improved SmartCell-II archi-

tecture was developed, which includes distributed data memory, segmented instruction

format and improved dynamic configuration schemes. A novel parallel FFT algorithm

with balanced workloads and optimized data flow was also proposed and successfully

mapped onto SmartCell-II for performance evaluations. A 4 by 4 SmartCell-II prototype

was then synthesized into standard cell ASICs with 90 nm process. The results show that

SmartCell-II consists of 2.0 million gates and is fully functional at up to 295 MHz with

3.1 mW/MHz power consumption. SmartCell-II is about 3.6 and 28.9 times more energy

efficient than Xilinx FPGA and TI’s high performance DSPs, respectively. It is concluded

that the SmartCell is able to provide a promising solution to achieve high performance

and energy efficiency for future data streaming applications.

ii

Acknowledgements

This work would not have been possible without the support and help of many people.

First of all, I want to thank my advisor Prof. Xinming Huang, whose support and

guidance over the last a few years has been invaluable for this work. He was always ready

to provide me with inspiring ideas and advices, and guided me to the right direction. His

devotion and enthusiasm on research will affect me strongly in my future career. I would

also like to thank my dissertation committee members, Prof. Fred J. Looft, Prof. Berk

Sunar and Prof. Russell Tessier for their valuable time and suggestions, which significantly

improved this dissertation.

I am grateful to my fellow graduate students in the Embedded Computing Lab, Wenx-

uan Guo, Kai Zhang, Yanjie Peng, Chen Shen, Hongkui Zhu for their friendship and

supports. It was with them that made my Ph.D. a rich and enjoyable experience. I’ll

remember the many inspiring discussions we had that improved this project.

I would also like to acknowledge Defense Advanced Research Projects Agency (under

DARPA grant W911NF-07-1-0191-P00001) and National Science Foundation (under NSF

grant ECS-0725522) for the financial support.

I would like to take this opportunity to thank all my teachers and professors who kept

me inspired and motivated, and broadened my perspective. Many thanks go to Robert

Brown, Manager of Computational Facilities at ECE department, who helped us setup

the Synopsys design tools on the server and kept them reliable and accessible all the time.

I also would like to thank the administrative assistants Catherine Emmerton, Colleen

Sweeney and Brenda McDonald for their kind assistance and coordinations.

At last, and most of all, I would like to express my deepest gratitude to my parents

Xingwu Liang and Yarong Liu, my wife Wenxin Zhou for their love, support and continuous

encouragement. My little son Eric always makes my life happy and enjoyable. I would

like to say thanks to all of my family members and friends who have helped me over the

years.

iii

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Dissertation Statement . 5
1.4 Outline . 5

2 Background 7
2.1 Data Streaming Applications . 7

2.1.1 Computing Intensity . 8
2.1.2 Parallelism . 8
2.1.3 Data Locality . 9
2.1.4 Regular and Deterministic Data Flow 9

2.2 Computing Models for Stream Processing 10
2.2.1 Microprocessor . 10
2.2.2 Digital Signal Processor . 11
2.2.3 FPGAs . 11
2.2.4 Systolic Arrays . 13
2.2.5 Multiple Processors on a Chip . 13
2.2.6 Graphics Processing Unit . 14

2.3 Coarse-Grained Reconfigurable Architecture 15
2.4 Summary . 17

3 SmartCell Architecture 18
3.1 Architecture Overview . 18
3.2 Key Features . 20
3.3 Cell Unit and Processing Element Design 23
3.4 Configuration Scheme . 25
3.5 Interconnection Design . 28

3.5.1 Hierarchical on-chip Connection . 28
3.5.2 Propose of a Dynamic Routing Scheme: Adaptive First Routing . . 32

3.6 Related Work . 39
3.6.1 Existing CGRA Designs . 39
3.6.2 Architectural Comparison With other CGRAs 45

iv

3.7 Summary . 47

4 SmartCell Experimental Results and Evaluations 49
4.1 Design and Evaluation Methodology . 50
4.2 Verification Methodology . 50
4.3 Application Mapping . 51

4.3.1 Finite Impulse Response (FIR) Filter 53
4.3.2 Infinite Impulse Response (IIR) Filter 54
4.3.3 2D Discrete Cosine Transform (DCT) 56
4.3.4 RC5 Data Encryption . 58
4.3.5 Matrix-Matrix Multiplication (MMM) 59
4.3.6 Polynomial Evaluation (PoE) . 61
4.3.7 Motion Estimation (ME) . 61

4.4 Design Environment and Comparison Scheme 63
4.5 Synthesis Results . 64
4.6 Comparison with FPGA and ASICs . 67
4.7 Comparison with other CGRAs . 69
4.8 Summary . 71

5 Design of SmartCell-II 73
5.1 New Features Developed in SmartCell-II . 73
5.2 Design Details . 76

5.2.1 Design of On-Chip Data Memory . 76
5.2.2 Design of Segmented Instruction Format 78
5.2.3 Design of Two Mode Dynamic Reconfiguration 79

5.3 Propose of Smart C Software Environment 81
5.4 Summary . 83

6 Matrix Multiplication and FFT on SmartCell-II 84
6.1 Mapping of Sub-Block Matrix Multiplication onto SmartCell-II 84

6.1.1 Mapping Scheme . 85
6.1.2 Performance Analysis . 87

6.2 Parallel FFT Algorithm . 88
6.2.1 Two-Stage Parallel FFT Algorithm 88
6.2.2 Data Transfer Pattern . 91
6.2.3 FFT Mapping and Performance Analysis 92

6.3 Summary . 95

7 SmartCell-II Experimental Results and Evaluations 96
7.1 Synthesis Results . 97
7.2 Comparison with FPGA . 98
7.3 Comparison with DSP . 100
7.4 Comparison with other Parallel FFT Platforms 101
7.5 Summary . 103

v

8 Conclusions and Future Work 104
8.1 Conclusions . 104
8.2 Future Work . 106

8.2.1 Design of a Complete SmartCell System 106
8.2.2 Software Support for SmartCell . 107
8.2.3 Scalability . 109

vi

List of Figures

1.1 Targeted design objectives for the proposed architecture. 4

3.1 Overview of the SmartCell architecture. The SmartCell architecture is fea-
tured in a 2D tiled structure that consists of cell units, layered interconnec-
tion networks and high speed global data I/O. 19

3.2 Key features and potential benefits of SmartCell architecture. 20
3.3 Processing element architecture. The PE component can be configured to

perform 16-bit basic arithmetic operations, including logic, shift, adder,
multiplier, and etc. An instruction controller is designed for the cyclic
configuration of the computational units and data flows. 24

3.4 Cell unit structure. Each cell consists of 4 PEs and 4 instruction memories
in pairs. A configurable crossbar is designed for intra-cell data exchange.
The SPI structure is designed for instruction loading and dynamic recon-
figuration. 26

3.5 Instruction format of SmartCell architecture. 28
3.6 Illustration of dynamic reconfiguration in SmartCell. 28
3.7 Diagram of configuration controller architecture. The control signals for

the PE functionality and the data communications are decoded based on
the current instruction code stored in the instruction register. The SPI
links the instruction memory in ripple array style for instruction loading
and updating. 29

3.8 Reconfigurable hierarchical CMesh network: (a) Modified CMesh Architec-
ture; (b) Switch fabrics of the CMesh network 33

3.9 West first turn model for dynamic routing [41] 34
3.10 Example of Adaptive First routing . 35
3.11 Buffer dependency graph for two types of deadlocks: (a) acyclic deadlock;

(b) cyclic deadlock. 36
3.12 Hierarchical routing structure to avoid deadlock in AF routing. 37
3.13 Package delivery rate versus different percentages of congested nodes . . . 38
3.14 Network coverage range versus different percentages of congested nodes . . 39
3.15 Category of different computing systems based on the degree of homogeneity

and granularity [27]. 40

vii

3.16 Diagram of related CGRA systems. (a) RAW 2D mesh structure [83]; (b)
MATRIX 2D mesh structure [69]; (c) RaPiD 1D array structure [40]; (d)
PipeRench 1D stripe architecture [79]; (e) TRIPS 2D mesh structure [76];
(f) ADRES 2D mesh Structure [28]; (g) MorphoSys 2D mesh structure [80];
(h) Montium 1D array structure [81]. 41

4.1 Physical design flow and evaluation methodology involved in SmartCell
research. 51

4.2 SmartCell prototype verification methodology. 52
4.3 Mapping of a 4-tap FIR-filter onto 4 PEs in systolic array structure. 53
4.4 Comparison of hardware and MatLab software simulation results of FIR

filter design. 54
4.5 Mapping of Biquad IIR-filter onto 4 PEs for cascaded IIR design. 55
4.6 Comparison of hardware and MatLab software simulation results of IIR

filter design. 56
4.7 2D DCT mapping and re-scheduling scheme: (a) Hardware mapping struc-

ture. (b) Fully pipelined implementation of the 2D DCT through two 1D
DCTs with input retiming scheme. 57

4.8 Mapping of half round RC5 onto 1 cell unit. 59
4.9 Systolic array mapping of 2 by 2 matrix multiplication onto SmartCell . . . 60
4.10 Linear array mapping of a 4th order polynomial evaluation onto a cell unit. 62
4.11 Area and average power consumption of a 4 by 4 SmartCell prototype

system: (a) Area breakdown. (b) Average power consumption breakdown
at 100 MHz. 65

4.12 Diagram of power comparisons among SmartCell, FPGA and ASICs, nor-
malized to ASIC results . 68

4.13 Diagram of power and energy efficiency comparisons among SmartCell,
FPGA and ASICs, normalized to FPGA result. 68

4.14 Diagram of energy consumption and throughput comparison among Mon-
tium, SmartCell and RapiD, normalized to SmartCell results. 71

4.15 Diagram of throughput comparison among Montium, SmartCell and RapiD. 72

5.1 PE structure and local data memory connections in SmartCell-II. (a) PE
structure with 1K data memory. (b) Inter cell PE and data memory con-
nection. 77

5.2 Segmented instruction format in SmartCell-II 79
5.3 Diagram of dynamic reconfigurations in SmartCell-II. (a) ID-based fine-

grained configuration. (b) Cell broadcasting coarse-grained configuration.
A global select signal is developed for memory partitioning. 80

5.4 Software design flow and application mapping environment for SmartCell.
(a) Proposed Smart C software Environment. (b) Example of operation
and datapath context generation from assembly code. 81

6.1 Illustration of sub-block matrix multiplication algorithm with timing infor-
mation. 86

6.2 Mapping of sub-block matrix multiplication algorithm onto SmartCell-II. . 86

viii

6.3 Pipelined computations for one sub-block result of matrix C. The data in
red circle denotes the external inputs during each time step. 87

6.4 An example of Radix-2 8-point FFT butterfly structure with data flows. . . 93
6.5 Data transfer pattern for 8-point FFT. (a) Traditional communication pat-

tern. (b) Optimized fixed data flow in the proposed FFT alrogithm. 94
6.6 Mapping of butterfly operation onto two PEs in one cell. 95

7.1 Area and average power consumption of the SmartCell-II prototype. (a)
Area breakdown (b) Average power consumption breakdown at 100 MHz. . 97

7.2 Processing time comparison between SmartCell-II and FPGA for the eval-
uated FFT benchmarks. 99

7.3 Energy consumption comparison between SmartCell-II and FPGA. 100
7.4 Processing time comparison between SmartCell-II and TI DSPs for the

evaluated FFT benchmarks. 101
7.5 Energy consumption comparison between SmartCell-II and TI DSPs. 102

8.1 Propose of an integration structure for SmartCell system with high speed
I/O designs for future research directions. (a) Integration of SmartCell
core, microcontroller and data memory into the same system. (b) High
speed I/O design for off-chip data transmission and system configurations. . 108

ix

List of Tables

2.1 List of the key features of some existing computing models 10

3.1 List of basic operations supported by SmartCell processors 23
3.2 Frame format of the instruction code . 25
3.3 Comparison of targeted application and key features among selected CGRAs. 46
3.4 Comparison of homogeneity and interconnection scheme among selected

CGRAs. 46
3.5 Comparison of chip implementation results among selected CGRAs. 47

4.1 Application domain and test benches mapped onto the SmartCell prototype
system. 52

4.2 System design environment and simulation parameters. 63
4.3 SmartCell power consumption and energy efficiency of different benchmarks

at 100 MHz . 66
4.4 SmartCell power consumption and energy efficiency of different benchmarks

at 100 MHz . 69
4.5 Power and Energy Comparison Among the Evaluated CGRA Systems . . . 70

5.1 Two access modes of data memory addressing in SmartCell-II. 78

7.1 Comparison of two SmartCell prototype systems. 98
7.2 Cycle counts comparison among different parallel FFT platforms. 102

x

Chapter 1

Introduction

1.1 Motivation

Data streaming applications, such as signal processing, multimedia applications and data

encryptions, are the dominant workload in many electronic systems. The real time con-

straints of these applications are that these devices often require relatively high perfor-

mance with stringent power budget, especially for portable devices. Many other military

applications, including real time synthetic aperture radar imaging, automatic target recog-

nition, surveillance video processing, optical inspection, and cognitive radio systems, have

similar needs and constraints. General purpose solutions, such as programmable digital

signal processors (DSPs), are widely used in conventional data-path oriented applications

due to their flexibility and ease of use. However, they can not meet the increasing re-

quirements on performance, cost and energy in the data streaming application domains

due to their sequential software execution. The application specific integrated circuits

(ASICs) become inevitable a customized solution to meet these ever increasing demands

for highly repetitive parallel computations. It is reported that they are potentially two to

three orders of magnitude more efficient than the processors in terms of combined perfor-

mances of computational power, energy consumption and cost [54]. Although ASIC can

1

provide the best performance for specific applications, it is not desirable for all circuitry

designs. ASICs generally have fixed data flow with predefined functionalities that makes

them unable to accommodate new system requirements or changes in standards. The long

design cycle and high Non-Recurring Engineering (NRE) cost also become an obstacle to

meet stringent cost and time-to-market requirements.

Reconfigurable architectures (RAs) have been proposed as a way to achieve a balance

between flexibility and ease of use of processors, and cost/performance efficiency of ASICs.

The hardware based RA implementation is able to exploit the spatial feature of the com-

puting tasks involved in the targeted applications. It also avoids the instruction fetching,

decoding, executing overhead of the software implementations, which results in a power

efficiency and performance gain over general purpose processors. On the other hand, RAs

maintain the post fabric flexibility to be configured, either off-line or in the real time, to

accommodate new system requirements or protocol updates that is not feasible in ASIC

implementations. Also, the flexibility provided by RAs can improve the fault tolerance

and reliability of the designs. Design bugs can be easily fixed by loading new configura-

tion bits, and malfunctioned circuitry can be excluded from other parts to achieve system

recovery and prolong a product’s lifetime.

Nowadays, field programmable gate arrays (FPGAs) are still the dominating semicon-

ductor technology in the reconfigurable computing area. The most common SRAM-based

FPGAs decompose complex logic functions into smaller ones and map them onto Lookup

Tables (LUTs) or other on-chip embedded resources, such as multipliers and block mem-

ories. The island-style routing fabrics can be configured to form any desired application

datapath. The bit-level fine granularity is suited to implement a large variety of functions

directly onto its rich hardware resources. However, this flexibility comes at a significant

cost in terms of device area, power consumption and speed, due to its huge routing area

overhead and timing penalty. Furthermore, due to the fine-grained nature of most FPGAs,

the compilation and configuration of FPGAs takes much longer time than those in general

purpose processors. As a result, the FPGAs are mainly adopted in system prototyping

2

and high-end communication market, where power consumption is less of a concern.

Recognizing of these issues, several projects over the past decade have introduced

more coarse-grained reconfigurable operators as the basis for reconfigurable computing

architectures as summarized in [44]. Benefiting from reduced computing and routing

overhead, these coarse-grained reconfigurable architectures (CGRAs) have the potential

to improve FPGA area, power and energy efficiency, while maintaining high performance

and flexibility.

1.2 Contributions

Fig. 1.1 shows the design objectives. In our research, we aimed at developing a com-

puting architecture that is able to pride high performance, low power and flexibility at

the same time. We proposed SmartCell as a novel CGRA system targeting applications

with inherent high data-parallelism, high computing and communication regularities that

are usually found in data streaming applications. Toward this end, SmartCell integrates

a large number of tiny processor cores (cells) onto the same chip. The cells are intercon-

nected with three levels of programmable switching fabrics and can be reconfigured to

operate in various modes, such as SIMD, MIMD and systolic array styles. A prototype

SmartCell system with 64 processing elements is designed in standard cell ASICs and is

evaluated based on a set of various benchmark applications.

This dissertation makes several contributions outlined as follows:

• We present SmartCell as a successful CGRA design. The proposed architecture is

discussed in detail, including the design of processing element, cell structure, on-chip

interconnections, and system control and configuration schemes. Dynamic recon-

figurability is also developed in two modes: coarse-grained cell broadcasting and

fine-grained ID based configurations to adapt to different datapath control require-

ments. SmartCell is aimed to provide high steam processing capacity to achieve high

performance and energy efficiency meanwhile maintaining efficient reconfigurability.

3

Low power

High
Performance

Flexibility

ASIC

DSP

FPGA

Proposed
Architecture

Low power

High
Performance

Flexibility

ASIC

DSP

FPGA

Proposed
Architecture

Figure 1.1: Targeted design objectives for the proposed architecture.

• A set of application benchmarks are designed and mapped onto the SmartCell pro-

totype system. These benchmarks represent a wide range of real-time applica-

tions from signal processing, multimedia applications to scientific computing and

data encryption, which also exploit the temporal and spatial parallelism achieved in

SmartCell architecture. The benchmarks are simulated in hardware and are verified

through software simulations. A software developing environment, named Smart C,

is proposed to help generate the configuration contexts based on application de-

scription and hardware configuration.

• This dissertation provides SmartCell performance evaluations with respect to area,

power consumption, system throughput and energy efficiency. The same bench-

marks are also implemented and evaluated on other computing platforms, including

commercial FPGAs, DSPs, ASICs, and other CGRAs for performance comparison.

To the best of our knowledge, only limited performance comparisons are available

in the literature for the existing CGRA designs to exploit their architectural ad-

vantages. Our results demonstrate that SmartCell has the potential to bridge the

performance and energy efficiency gap between FPGA and ASICs. For the tested

benchmarks, SmartCell also shows favorable performance advantages over RaPiD

and Montium CGRA designs.

4

• The dissertation also presents a novel parallel FFT algorithm that distributes the

transform task onto multiple processor environment for parallel computing to re-

duce the processing time. The proposed algorithm achieves balanced workload and

fixed data flow pattern across all processing units, which improves the scalability

and reduces the communication overhead. The proposed algorithm can be scaled

to implement FFT of any size as long as the on-chip memory fits. This parallel

FFT algorithm is further mapped onto the prototype SmartCell system and eval-

uated against other implementations, including DSP, FPGA, NoC and MorphoSys

platforms.

1.3 Dissertation Statement

The dissertation addresses the design of SmartCell for a research implementation and

evaluation of an efficient CGRA system. SmartCell exploits both temporal and spatial

parallelisms involved in the computing tasks and can be configured into different oper-

ation modes for different system requirements. The dissertation also presents detailed

performance evaluations and comparisons that demonstrates the potential advantages the

coarse-grained architecture could offer to bridge the performance efficiency gap between

fine-grained FPGA and fixed function ASICs.

1.4 Outline

The dissertation is organized as follows. Chapter 2 presents an overview of the general

characteristics of the targeted application domain. It also reviews the existing comput-

ing models for data streaming applications and introduces the concept of coarse-grained

reconfigurable architecture. Chapter 3 presents the design details of the SmartCell sys-

tem, including processing unit, cell structure, instruction format, switching fabrics, and

configuration schemes. It also distinguishes SmartCell from other CGRA systems through

5

architectural comparisons. Chapter 4 presents the design and verification methodology

in our research and evaluates SmartCell performance based on a set of benchmark ap-

plications. Although experiments show favorable results for SmartCell system, they also

expose some design limitations. Chapter 5 presents the major modifications being made

to the second generation SmartCell, called SmartCell-II, along with the proposed software

developing environment Smart C. The design and mapping of matrix multiplication and

FFT benchmarks onto SmartCell-II is presented in Chapter 6. Chapter 7 discusses the

SmartCell-II synthesis results and compares its performance with some other computing

platforms. At last, we draw the conclusions and future work in Chapter 8.

6

Chapter 2

Background

In this chapter, the general characteristics of stream processing are described. After that,

we talk about the existing computing models for stream processing applications. Finally,

the concept of coarse-grained reconfigurable architecture is discussed as a mechanism to

achieve better performance while improving high energy efficiency.

2.1 Data Streaming Applications

In data streaming applications, a set of data inputs is streamed into the computational

units to perform a series operations, called kernel functions. Typically, one kernel func-

tion is applied to all elements in the data stream, which is called uniform streaming.

Example application domains include digital signal processing, multimedia applications,

scientific computing, and data encryptions. Each of these applications shares important

characteristics[74]: computing intensity, parallelism and data locality, which can be ex-

plorted to improve data processing speeds. In real time, the workload involved in data

streaming applications often require high computational performance, low power consump-

tion and high energy efficiency, which build the key goals for stream processing architecture

designs. Each of these characteristics will be briefly explained below.

7

2.1.1 Computing Intensity

The computing intensity refers to the fact that data streaming applications require a

larger number of arithmetic operations for each memory reference when compered with

traditional general purpose applications. In [74], Rixner studied the computing intensity

for data streaming applications, including stereo depth extractor, video encoder/decoder,

polygon renderer and matrix QR decomposition. The computing intensity factors are

ranging from 58 to 473 arithmetic operations per memory reference for these applications.

On the other hand, it is studied in [58] that for traditional desktop applications defined

by SPEC2000 benchmark, memory accessing accounts for up to 80% of total processing

time, which leads to a computing intensity factor of less than 2 operations per memory

reference. This data demonstrate that the traditional general purpose processor (GPP)

will likely not meet the computing intensity requirements of data streaming applications

from the fundamental architecture point of view.

2.1.2 Parallelism

Another important characteristic for data streaming applications is computing parallelism,

which means the computational task has the potential to be distributed across multiple

processing components. In general, computing parallelism can be classified into two cate-

gories: temporal parallelism and spatial parallelism. In temporal parallelism, the pipeline

technology is adopted at either the instruction level or at the task level, in which the

instruction code or computing task is separated into multiple stages. Several instructions

or tasks are overlapped in the same pipeline at different stages to improve system through-

put. On the other hand, spatial parallelism distributes the data and tasks onto different

computational nodes to process in parallel. In data streaming applications, data-level

parallelism (DLP) can often be exploited since there are no data dependencies between

different input data blocks. In this case, single instruction multiple data (SIMD) compu-

tational style is widely used to apply the same kernel functions to different data elements.

8

Similarly, task-level parallelism (TLP) are usually exploited to execute different applica-

tion threads in data streaming applications. In many cases, the computing task involved in

stream processing can be decomposed into multiple stages. These stages can be overlapped

into multiple computing resources to concurrently process different data sets through the

pipeline. Given plentiful parallelism, it is a key requirement that the computing architec-

ture design for data streaming applications should be able to efficiently exploit and map

the parallelism onto available hardware resources.

2.1.3 Data Locality

Data locality usually refers to the fact that the input data and coefficients can be shared or

reused among multiple processing components. The intermediate results calculated in one

processor can be passed directly into the next processing element through tightly coupled

interconnection fabrics, which do not require frequent processor-memory communications

compared to the traditional single processor Von Neumann architectures [87]. Similarly,

the input data can be propagated and reused temporally among multiple kernel functions.

Data locality reduces the on-chip memory utilization and requirements, which in turn has

the potential to improve the system performance, chip area efficiency and energy efficiency.

2.1.4 Regular and Deterministic Data Flow

The last characteristic of data streaming applications is regular and deterministic data flow

[20]. For most data streaming applications, the datapath involved in the kernel functions

follows specific regular pattern, which makes it possible to use a relatively simple on-chip

communication scheme to achieve high area and energy efficiency. Also, data streaming

applications often have deterministic computation and communication throughout the

entire processing stage that can be scheduled at the compilation time. This alleviates the

stress of dynamic control and data routing requirements.

9

2.2 Computing Models for Stream Processing

After discussing the characteristics, proper computing models are needed to be designed

to provide high performance and, more importantly, energy efficiency for the targeted

application domain. Currently, how to achieve high performance while maintaining energy

efficiency has become the key challenges in this field. Innovative computer architecture

designs are necessary to be address for these challenges. This section reviews the existing

computing models that could be potentially used in stream processing. A summary of key

features for some major computing models is listed in Table 2.1. Each of these generic

models (processor, DSP, FPGA, GPU) will be discussed below.

Type Product Architecture Frequency Word width
CMP AMD Athlon 64X2 Deep pipeline 2.4 GHz 64-bit
DSP TI C64X 8-way VLIW 0.5∼1 GHz 32-bit

FPGA Xilinx Virtex 4 Mix Granularity ∼500 MHz 4-bit LUT, 18-bit DSP
GPU NVIDIA GTX280 SIMD 1.2 GHz 32 or 64-bit

Table 2.1: List of the key features of some existing computing models

2.2.1 Microprocessor

Microprocessors are targeted at high performance, memory intensive general purpose ap-

plications and are widely used in desktop and laptop computers. Traditionally, deep

pipeline and process shrinking are the key techniques to improve system performance, but

have become more and more challenging nowadays. As the inserted Flip-Flop delay is com-

parable to the combinational logic delay, the benefits from deep instruction level pipeline

(ILP) becomes less and less significant for frequency improvement. Process shrinking is an

efficient way to reduce the transistor size for both performance and integration capacity

improvement. However, it is predicted that process shrinking will meet its limitation in

the near future either due to the physical limits when the transistor size approaches the

size of an atom or due to fabrication process limits. The high power dissipation is another

constraint for microprocessor to be used in data streaming applications. The thermal

10

design power for modern CPUs are normally ranging from tens of Watts to hundreds of

Watts [1].

2.2.2 Digital Signal Processor

Programmable digital signal processors (DSPs) are designed to provide high computation

performance for digital signal applications. Compared with microprocessors, DSPs usually

provide more dedicated computing resources, such as multipliers and accumulators, and

higher memory access bandwidth. More recently, some new features are also introduced

to DSP architecture, which include very long instruction word (VLIW) structure and

hierarchical cache memories to improve computing capacity. For example, TI’s 8-way

VLIW TMS320C64X DSPs [19] can achieve up to 8k mega instructions per second (MIPS)

performance at a power budget of 6 W.

DSPs provide an energy efficiency gain compared with microprocessors due to shorter

pipeline length, less communication overhead and more parallel favorable architectures.

However, the VLIW DSP shares the control structure and uses a global register file for

data sharing among different processing units, which makes it hard to be scaled to include

a large number of processing units. Besides ILP, DSPs can only exploit limited amount

of DLP, similar to microprocessors. It is studied in [54] that they are potentially two to

three orders of magnitude less efficient than application specific circuits in terms of area

and energy consumption.

2.2.3 FPGAs

Traditional FPGA architectures use static streams to configure the functional units and

routing resources to perform user specifications. The data parallelism and flexible on-chip

communications are essential to meet the high performance requirements of the com-

putations being performed. Due to direct mapping of application tasks onto hardware

resources, FPGAs are able to complete one operation in a single clock cycle, which avoids

11

the instruction fetching, decoding, executing overhead as of in the software processors.

The most common SRAM-based FPGAs decompose complex logic functions into smaller

ones and map them onto the Lookup Tables (LUTs) or other on-chip embedded resources.

Most FPGAs use the island-style routing fabrics for on-chip data communication. The

bit-level fine granularity is suited to implement a large variety of functions directly onto

its rich hardware resources. However, this flexibility comes at a significant cost in terms

of area, power consumption and speed, due to its huge routing area overhead and timing

penalty. Furthermore, due to the fine-grained nature, the compilation and configuration

of FPGAs takes much longer than those in general purpose processors.

In recognition of these problems, commercial FPGA vendors have introduced more

coarse-grained components in addition to the fine-grained LUTs in their newly developed

FPGAs. These components include dedicated logics for arithmetic multiply-add func-

tions and some on-chip memory blocks. For example, the Virtex-4 and 5 series [2, 3]

are among the latest Xilinx FPGAs, which have a mixed granularity of basic logic cells

with coarse-grained DSP slices (DSP48) to enhance the signal processing capacity and

power consumption performance. Similar features can be also found in Altera’s Stratix

II FPGAs [4]. In addition, 6-input and 8-input LUTs are also introduced to the Virtex

5 and Stratix II FPGAs, respectively, as the substitute for the traditional 4-input LUT.

These features help to reduce routing overhead and ease the configuration process. But

the SRAM-based FPGAs have some fundamental limits that hamper them becoming the

mainstream computing media for data streaming applications. The system configuration

SRAM cells are power and area intense. The rich on-chip programmable interconnection

provides flexible routing ability at a cost of high power consumption and large die area.

It is studied in [62, 85] that the programmable interconnection account for up to 60%

to 70% total power consumption of FPGA. These FPGAs also consume about 14 times

more dynamic power and is about 35 times larger than equivalent ASICs on average when

only logic elements are used [60, 61]. Furthermore, FPGAs do not support instruction se-

quencing. As a result, it is difficult or very costly to make configuration changes on the fly.

12

In reality, FPGAs are mainly used for system prototyping and high-end communication

markets, where power consumption is less of a concern.

2.2.4 Systolic Arrays

Another approach to data streaming processing is to use systolic array architectures [23],

in which the data processing units (DPUs) are arranged in an array structure with local

connectivity. The operations of DPUs are scheduled by regular data flows in a pipelined

manner. The input/output pipeline and the concurrent data execution supports extremely

high throughput. Systolic arrays also provide high system scalability due to their regular

structure. However, systolic arrays have some drawbacks. For example, due to the fixed

configurations, the cost of introducing new pipeline patterns in traditional systolic arrays

is very high. In addition, the process synchronization may be very complicated in both

hardware and software in a systolic array implementation.

2.2.5 Multiple Processors on a Chip

Chip multi-processor (CMP) has been proposed as a general purpose processor archi-

tecture design to achieve higher performance with even lower frequency through parallel

computing. Introduced first by AMD’s Athlon 64 2X [16], CMP integrates a relatively

small number of microprocessors onto the same chip. With a lower operating frequency

and supply voltage, CMP is able to provide higher energy efficiency compared with sin-

gle processor systems. However, traditional CMPs require extensive control logic and

large global memories for even general purpose applications, which in turn results in poor

scalability. Furthermore, existing microprocessor architectures cannot take advantage of

the computing intensity and parallelism inherent with stream processing, since they are

primarily optimized for ILP and have limited computing capacity for parallel processing.

More recently, several multi-core systems have been developed that integrate a large

number of simplified processor cores onto a single chip, which are targeted at comput-

13

ing intensive applications, such as video/image processing, gaming, super computing and

network applications. Compared with CMP, multi-core system usually involves more pro-

cessing units with a specific communication structure among them. For example, Intel

80-core system [86] integrates 80 tiles in a 10 by 8 2D mesh structure, with each tile

contains one computing element and a 5 port router unit. A dynamic message passing

protocol is implemented to provide high speed and robust Network-On-a-Chip data com-

munications, which is much more scalable than today’s CMP interconnect. It is reported

that Intel’s 80-core can achieve a peak performance of 1.28 tera floating point operations

per second (TFLOPS) at 181 Watts. Other multi-core systems include Stream Processor’s

Storm-1 [55], IBM/Sony/Toshiba’s CELL [73], Mathstar’s FPOA [9], and RAPPORT’s

KC256 [12]. Multi-core structure is a promising solution to achieve high computing capac-

ity for data streaming applications. But based on the processor structure, the multi-core

systems often have high power consumption, which usually can not meet the stringent

power consumption requirement especially for portable devices.

2.2.6 Graphics Processing Unit

The graphics Processing Units (GPUs) were originally designed to provide a dedicated

graphics rendering device for personal computers and game consoles. A GPU integrates a

number of graphic primitive operations, such as interpolation, rasterization, shader pro-

cessing, and texture mapping. Because most of these computations involve matrix and

vector operations, researchers are adapting computationally intensive general-purpose al-

gorithms to run on GPUs, which forms the idea of general purpose GPU (GPGPU). The

applications that achieve the best performance on GPU are typically those with high arith-

metic intensity and relatively low memory access requirements. Modern GPUs feature a

large number of tightly integrated streaming processors to achieve high computing capac-

ity. For example, NVIDIA’s GeForce 8800 GTX [5] has 128 on-chip streaming processors

with a peak performance of 518 GFLOPS with about 185 Watts power consumption.

14

Advances in the programming model and tools has become a key challenge for GPGPU

to balance high level program flexibility and low level hardware access. Although various

computing engine tools have been developed by GPU vendors to provide both low level

and higher level APIs, including NVIDIA’s CUDA [17] and AMD’s BROOK+ [10], these

tools can not be easily used for stream computing without expertise knowledge. AMD

proposed another aggressive architecture, called FUSION [6], to combine the CPU and

GPU onto a single chip, with the CPU responsible for the sequential tasks and system

controls and GPU for the parallel computing tasks. In the FUSION processor (available

in 2011), the applications can be specified in general programming languages and a unified

compiler can be used to partition the workload into the CPU or GPU either statically or

on the fly. Despite these advantages, similar to multi-core systems, the power consumption

of GPUs still remains a concern if they are for the adoption in data streaming applications

and meet stringent energy efficiency requirements.

Some other models are also available for high performance computing, such as vector

processor [75, 59], and SIMD processor [72]. However, the power efficiency and system

flexibility are still open issues when applied to data streaming applications. On the other

hand, the logic specific ASICs matches well to the stream processing characteristics, but

the high performance and energy efficiency is achieved at a cost of non post-fabrication

flexibility. As a result, there is an urgent demand to exploit an innovative computing

architecture to bridge the performance efficiency gap between fixed function logics and

programmable processors.

2.3 Coarse-Grained Reconfigurable Architecture

Reconfigurable computing architectures have been proposed as a way to bridge the per-

formance gap between ASICs and GPPs, while maintaining the flexibility and ease of use

of processors. Nowadays, the FPGAs are still the dominating semiconductor technology

in the reconfigurable computing area. But as discussed before, the bit level fine-grained

15

FPGA architecture results in a significant cost in terms of area, power and speed due to

its huge routing area overhead, poor routability and timing penalty [37].

On the other hand, coarse-grained reconfigurable architecture includes word-level (16-

bit) or double word-level (32-bit) components as the basic computational and communica-

tion units [40, 69, 79, 80, 83, 68]. Benefiting from much lower computational and routing

overhead, coarse-grained reconfigurable architectures (CGRAs) have the potential to im-

prove upon FPPGA power and energy efficiency while providing high system performance.

CGRAs take advantage of the fact that many computing tasks operate on multi-bit data

with intensive computation requirements. The involved computing component does not

need to be as complex and powerful as microprocessors. The simplified functional blocks

can usually achieve higher area and power efficiency and can improve system scalability.

Based on the on-chip hardware resources, CGRAs can also be categorized into het-

erogenous system and homogenous system. Heterogenous CGRAs integrate a mixture of

computing blocks (ALU, multiplier, specific functions, and etc.) and memories onto the

same chip. Homogenous CGRA use the same computing blocks and unified communica-

tion structure throughout the entire chip. The computing and communication regularity

of the homogenous CGRA has the potential to improve system scalability and to ease the

design and testing efforts. This partially explains the trend in CGRA research to move

away from heterogeneity to homogeneous architectures [61].

Within the context of a houmogeneous CGRA, this dissertation presents SmartCell

as a novel CGRA system, which integrates a large number of tiny processor cores (cells)

onto a single chip. A three level hierarchical interconnection network is developed for data

exchange among the cell units. It can be configured to operate in various computing styles

such as SIMD, MIMD, and systolic array fashions, which is well suited for the targeting

data streaming applications. Based on evaluated benchmarks, the SmartCell performance

is analyzied and compared with other computing architectures, including ASICs, FPGAs,

DSPs and some other CGRA systems.

16

2.4 Summary

In this chapter, we presented the characteristics of the targeted data streaming applica-

tion domain for our research. Existing computing models were then reviewed with their

possibilities and limitations relate to stream processing. At last, we briefly discussed the

CGRA concept and its potential to achieve high computing capacity and energy efficiency.

17

Chapter 3

SmartCell Architecture

A novel coarse-grained reconfigurable architecture, called SmartCell [64], is proposed and

designed in our work, mainly targeted at applications with inherent data-parallelism, and

high computing and communication regularities. SmartCell integrates a large number of

processing units on the same chip, along with configurable interconnection fabrics. The

computing tasks can be distributed across different processing elements (PEs) to achieve

task/data level parallelism for high performance.

In this chapter, we extract the key features of the proposed SmartCell system, fol-

lowed by the architecture design details, including processing element design, on-chip in-

terconnection design and configuration schemes. The comparison with some other CGRA

systems is also presented in this chapter.

3.1 Architecture Overview

Fig. 3.1 depicts the components and organization of the integrated SmartCell architec-

ture. In a typical SmartCell architecture, a set of cell units is organized in a tiled structure.

Each cell block consists of four processing elements (PEs) along with the functional con-

trol and data switching fabrics. The PE can be configured to perform basic logic, shift

and arithmetic functions with 16-bit granularity. Multiple PEs can be chained together

18

G
lo

b
al

 I/
O

PE6

CBP
E

5

P
E

7

PE8

PE2

CBP
E

1

P
E

3

PE4

PE14

CB

P
E

13

P
E

15
PE16

PE18

CB

P
E

17

P
E

19

PE20

PE42

CB

P
E

41

P
E

43

PE44

PE38

CB

P
E

37

P
E

39
PE40

PE54

CB

P
E

53

P
E

55

PE56

PE50

CB

P
E

49

P
E

51
PE52

PE62

CB

P
E

61

P
E

63

PE64

Cell

PE10

CBP
E

9

P
E

11

PE12

PE22

CB

P
E

21

P
E

23

PE24

PE58

CB

P
E

57

P
E

59

PE60

PE30

CB

P
E

29

P
E

31

PE32

PE26

CB

P
E

25

P
E

27
PE28

PE46

CB

P
E

45

P
E

47

PE48

PE34

CB

P
E

33

P
E

35

PE36

G
lo

b
al

 I/
O

PE6

CBP
E

5

P
E

7

PE8

PE6

CBP
E

5

P
E

7

PE8

PE2

CBP
E

1

P
E

3

PE4

PE2

CBP
E

1

P
E

3

PE4

PE14

CB

P
E

13

P
E

15
PE16

PE14

CB

P
E

13

P
E

15
PE16

PE18

CB

P
E

17

P
E

19

PE20

PE18

CB

P
E

17

P
E

19

PE20

PE42

CB

P
E

41

P
E

43

PE44

PE42

CB

P
E

41

P
E

43

PE44

PE38

CB

P
E

37

P
E

39
PE40

PE38

CB

P
E

37

P
E

39
PE40

PE54

CB

P
E

53

P
E

55

PE56

PE54

CB

P
E

53

P
E

55

PE56

PE50

CB

P
E

49

P
E

51
PE52

PE50

CB

P
E

49

P
E

51
PE52

PE62

CB

P
E

61

P
E

63

PE64

PE62

CB

P
E

61

P
E

63

PE64

Cell

PE10

CBP
E

9

P
E

11

PE12

PE10

CBP
E

9

P
E

11

PE12

PE22

CB

P
E

21

P
E

23

PE24

PE22

CB

P
E

21

P
E

23

PE24

PE58

CB

P
E

57

P
E

59

PE60

PE58

CB

P
E

57

P
E

59

PE60

PE30

CB

P
E

29

P
E

31

PE32

PE30

CB

P
E

29

P
E

31

PE32

PE26

CB

P
E

25

P
E

27
PE28

PE26

CB

P
E

25

P
E

27
PE28

PE46

CB

P
E

45

P
E

47

PE48

PE46

CB

P
E

45

P
E

47

PE48

PE34

CB

P
E

33

P
E

35

PE36

PE34

CB

P
E

33

P
E

35

PE36

Figure 3.1: Overview of the SmartCell architecture. The SmartCell architecture is
featured in a 2D tiled structure that consists of cell units, layered interconnection
networks and high speed global data I/O.

for more complex tasks. A three-level layered interconnection network is designed for the

on-chip processer communications, which includes fully connected crossbar unit in each

cell, nearest neighbor connection among adjacent cells and a hierarchical concentrated

mesh (CMesh) network for non-adjacent cells. Distributed instruction memories are also

designed for each PE to store the configuration contexts for both computing and communi-

cation. A serial peripheral interface (SPI) is designed that chains the instruction memories

in a linear array fashion to efficiently load instruction contexts into active processing units.

These design aspects will be discussed in details in the following sections.

19

3.2 Key Features

Several key features distinguish SmartCell from other reconfigurable architecture designs.

Fig. 3.2 shows the SmartCell key features and their expected benefits, which serves as

our initial design considerations.

Key Features Potential benefits

Energy efficient

High performance

Scalability

Coarse-grained
multi-processor on-chip

Distributed instruction/data
memory

Hierarchical interconnection

Flexibility &
Unified addressing

Figure 3.2: Key features and potential benefits of SmartCell architecture.

Some important features of the SmartCell architecture are summarized as follows:

• Coarse-grained multi-processor on-chip:

Integrating multiple processors on the same chip has the potential to partition tasks

onto different on-chip computing resources and to process them in parallel for high

system performance. The temporary results from one processor can be forwarded

directly to the next one through tightly coupled interconnections, which reduces

the on-chip memory utilization and requirements. The coarse-grained computing

and communication components are designed in SmartCell to avoid high execution

overhead compared with fine-grained architecture. Thus SmartCell has the potential

to achieve high performance and high energy efficiency.

• Hierarchical interconnections:

As CMOS technology scales down, interconnect has become an increasingly impor-

tant issue for circuit design due to its increased impact on system delay and power

20

consumption. Shared bus connections with high bandwidth are usually adopted in

modern multicore CPU designs. But the lack of scalability and high power con-

sumption make it not favorable for data streaming applications. In our design, we

limit the communication flexibility based on different data locality levels. Each PE

has the full visibility of the temporary results from all PEs in the same cell. On

the other hand, cells are grouped into clusters with shared switching components to

provide limited connection among non-adjacent cell units. This hierarchical inter-

connection efficiently alleviates the long wire delay impacts meanwhile maintaining

good scalability for different system dimensions.

• Distributed instruction and data memories:

To fully expand the on-chip resource utilizations, distributed instruction memory is

attached to each PE for both computing and communication configurations. In our

experiments, a relatively small number of instructions in a memory was found to be

enough for most targeting DSP and data streaming applications due to their regular

control and data flow characteristics. Besides the instruction memory, it is studied

in [18] and [71] that the on-chip memory can easily contribute to more than 60% of

the total chip area for modern processor designs. Thus the area, performance and

energy efficiency can be improved significantly if the utilization of the on-chip data

memory can be minimized. In our design, limited register banks or data memories

(in SmartCell-II) are distributed into each processor. This is well suited to our

targeted stream processing applications, characterized with continuous data flow

from one processor to another without much data feedback and reutilization. The

distributed memory structure is adopted in our design to provide unified addressing

space and high scalability.

• Deep pipeline and parallelism:

Two levels of pipeline are exploited by SmartCell - the instruction level pipeline

(ILP) in processing element and the task level pipeline (TLP). Data parallelism is

21

also achieved in SmartCell to concurrently execute multiple data streams, which in

combination ensures a high computing capacity.

• Flexibility:

Due to the rich computing and communication resources, numerous computing ar-

chitectures can be mapped onto the SmartCell architecture, including SIMD, MIMD,

and 1D or 2D systolic array structures. This also expands the range of applications

that can be implemented by SmartCell.

• Dynamic reconfiguration:

By loading new instruction codes into the configuration memory through the SPI

structure, new operations can be executed on the desired PEs without interrupting

other PEs. The number of PEs involved in the application is also adjustable for

different system requirements.

• Fault tolerance:

Fault tolerance is an important feature to improve production yields and to extend

device lifetime. In the SmartCell system, defective cells, caused by manufactur-

ing fault or malfunctioned circuits, can be easily turned off and isolated from the

functional ones to achieve good fault tolerance.

• Hardware virtualization:

In our design, distributed context memories are used to store the configuration

signals for each PE. The cycle by cycle instruction execution supports hardware vir-

tualization that is able to map large applications onto limited computing resources,

which is not feasible in traditional fixed context systems.

• Explicit synchronization:

A program counter (PC) is designed to schedule instruction execution time for each

PE on the fly. Variant delays are also available for input/output signals inside each

22

PE. Therefore, the SmartCell can provide explicit synchronization that eases the

exploration of computing parallelisms.

3.3 Cell Unit and Processing Element Design

The reconfigurable cell units build the key components of SmartCell system, which are

aligned in a 2D mesh structure as shown in Fig. 3.1. Each cell consists of four identical

PEs. The PE is composed of an arithmetic unit and logic unit, I/O muxes, instruction

controller, local data registers and instruction memories, as shown in Fig. 3.3. It can

be configured to perform basic logic, shift and arithmetic functions. The arithmetic unit

takes two 16-bit vectors as inputs for basic mathematic functions to generate a 36-bit

output without loss of precision during multiply-accumulate operations. It also includes

some logic and shift operators, usually found in targeted data streaming applications. The

basic operations supported by SmartCell processor are listed in Table 3.1. Multiple PEs

can be chained together through the programmable on-chip connections to implement

more complex algorithms.

Basic operations
Arithmetic Unit add, sub, mult, MAC, abs sum

Logic Unit and, or, not, xor, nand, compare, etc.
Shift Unit shift right, shift left, circular shift

Table 3.1: List of basic operations supported by SmartCell processors

An up to 4-stage pipeline structure is developed in each processor, as denoted in

different colors in Fig. 3.3. The Src select stage inputs data from the on-chip connection

calculated by other PEs or itself and stores the data into its local register banks. The

execution stages (Exe 1 and Exe 2) occupies two clock cycles for basic multiply-add and

other logic operations. The Des select stage selects the output result and sends it back to

the on-chip interconnections. Unlike traditional pipelined processor design, the pipeline

stages are not fixed in SmartCell. The bypass path can be selected in every stage except

23

Instr.
MEM

Logic
Unit

Arithmetic
Unit

PE Architecture

On-Chip connection

Mux A Mux B

Mux Out

Instr
Controller

Regs Regs

Src
select

Exe1

Exe2

Des
select

Instr.
MEM

Logic
Unit

Arithmetic
Unit

PE Architecture

On-Chip connection

Mux A Mux B

Mux Out

Instr
Controller

RegsRegs RegsRegs

Src
select

Exe1

Exe2

Des
select

Figure 3.3: Processing element architecture. The PE component can be configured
to perform 16-bit basic arithmetic operations, including logic, shift, adder, multi-
plier, and etc. An instruction controller is designed for the cyclic configuration of
the computational units and data flows.

for Src select to allow fast passing through of input data or intermediate results to the next

operating unit to reduce unnecessary processing delays. The traditional decoding stage is

replaced by an instruction controller, which generates all control and scheduling signals

in parallel with the 4 pipeline stages. An instruction code, pre-stored into the instruction

memory, is loaded into the instruction controller on a cycle by cycle basis to provide both

functionality and datapath control for a specific algorithm. Additionally, the instruction

code can be dynamically reconfigured in various modes to adapt to different application

requirements. Therefore, SmartCell is able to provide comparable energy efficiency as an

ASIC while maintaining dynamic programmability as a DSP.

The instruction code is designed in a 64-bit frame format, as listed in Table 3.2. A

9-bit program counter control (PC control) section is used to indicate execution time of

the current opcode, next instruction address and valid memory ranges for active instruc-

24

64 bits/instruction code
of bits 9 20 7 10 11 7
Format PC Datapath I/O Operation NoC RESV

Control Control Delay Control Control

Table 3.2: Frame format of the instruction code

tion codes. The datapath and operation control signals specify the configuration of data

flow and computing units, while the I/O delays are used for synchronization scheduling

among multiple computing units. An 11-bit Network-on-Chip (NoC) control signal is

designed to configure the on-chip communication network. A 7-bit undefined section is

reserved for future functional extension. New instructions are able to be input to the com-

puting processor in pipeline with current ones. The instructions are accessed in a cyclic

manner that supports periodical execution of a set of operations. In our first SmartCell

implementation, a 20 by 64-bit instruction memory block is attached to each PE.

In a cell unit, four PEs placed in the east, west, south and north directions form a quad

structure with a fully connected crossbar switch box located at the center, as shown in

Fig. 3.4. The crossbar network supports arbitrary non-blocking connections among PEs

in the same cell. Instruction memories are attached to each PE and are chained in a linear

array fashion by serial peripheral interface (SPI) for configurations. The data exchange

controls are stored in the instruction memory and are changed only upon loading of new

instruction context.

3.4 Configuration Scheme

As discussed in previous section, the instruction code determines what operation each PE

performs and how data is routed among multiple PEs. The initial instructions are loaded

to the memory at compile time and can be updated to accommodate new applications or

performance requirements at run time. A serial peripheral interface (SPI) is designed to

configure the instruction memories, as shown in Fig. 3.4. In this structure, the instruction

25

Data

Data

D
at

a

South PE

Instr MEM

CrossBar

D
ata

SPI instruction
loading

Instr in

Instr out

North PE

Instr MEM
W

es
t

P
E

In
st

r
M

E
M E

ast P
E

Instr
M

E
M

Cell Unit

Data

Data

D
at

a

South PE

Instr MEM

CrossBar

D
ata

SPI instruction
loading

Instr in

Instr out

North PE

Instr MEM
W

es
t

P
E

In
st

r
M

E
M E

ast P
E

Instr
M

E
M

Cell Unit

Figure 3.4: Cell unit structure. Each cell consists of 4 PEs and 4 instruction mem-
ories in pairs. A configurable crossbar is designed for intra-cell data exchange. The
SPI structure is designed for instruction loading and dynamic reconfiguration.

26

memories are linked in a ripple array fashion with the inputs and outputs chained one to

another. At cell level, each cell is able to receive one instruction code from the previous

cell and forward it to the next cell after local propagation. By this means, only one

unified configuration port is exposed to the outside world, which eliminates a large amount

of global configuring wires to provide better performance and scalability. In the second

generation of our SmartCell (SmartCell-II), we introduce two dynamic configuration modes

to mitigate the unbalanced configuration delay, which will be discussed in greater details

in Chapter 5.

The initial configuration procedure is depicted in Fig. 3.5. The instruction contexts

are loaded into the first PE’s instruction memory and is then shifted down to the second

one and so on. This procedure stops after the last active PE is configured. The run time

reconfiguration can be achieved by the same SPI structure, as shown in Fig. 3.6. The new

instruction code and the ID of the PE to be configured are sent into the SPI instruction

memory chain. The PE bypasses the information to the next one if the transmitted ID

doesn’t match its own ID. This procedure continues until it reaches the desired PE. By this

means, only the execution of the reconfigured PE is temporarily suspended. The other PEs

remain unaffected and keep operating during the reconfiguration procedure. A potential

limit for this reconfiguration scheme is the unbalanced configuration delay of the PEs along

the SPI chain: the nearer to the input port, the faster can the configuration be done. A

variety delay ranging from 1 to 64 clock cycles is observed to load a new instruction code

into a PE for a 4 by 4 SmartCell system. In SmartCell-II, a cell broadcasting and memory

partitioning scheme is proposed and implemented to overcome this limit. For the sake of

simplicity and proof-of-work, these features were not implemented in the first version of

SmartCell implementation.

Fig. 3.7 depicts the dynamic control flow for a processing unit. At run time, a con-

figuration context is loaded into the instruction register and is then partitioned into inter-

connection and functionality controls. In general, each instruction selects two operands

from local register banks or network inputs. The basic arithmetic, logic and shift opera-

27

Instr. MEM Instr. MEM Instr. MEM Instr. MEM
Instruction

loading

Figure 3.5: Instruction format of SmartCell architecture.

Instruction
updating

Instr. MEM

ID_1

Instr. MEM

ID_2

Instr. MEM

ID_n

Instr. MEM

ID_N

Figure 3.6: Illustration of dynamic reconfiguration in SmartCell.

tions are then executed concurrently on these operands. Finally, one result is selected and

forwarded to the destination. Cyclic data flows can be configured through the looping of

instructions in the memory.

3.5 Interconnection Design

3.5.1 Hierarchical on-chip Connection

As the CMOS technology scaling down, interconnect has become an increasingly important

issue for integrated circuit design. In many signal processing applications, the system

throughput is significantly affected by communication costs. The design of efficient data

exchange scheme has become a key feature for high performance systems. Shared bus

connections with high bandwidth are usually adopted in modern multicore CPU designs.

The bus topology is simple, but the lack of scalability and high power consumption and

timing penalty make it not attractive in our design. Other solutions are available for on-

chip switch topology, such as fully connect crossbar and island-style mesh networks. The

cross-bar network provides the flexibility to connect any components in the network with

limited transfer delays. Despite these advantages, crossbars suffer from high silicon area

28

Instr Reg

Decoder

Connection
Ctrl Signal

Function
Ctrl Signal

SPI input

SPI output Communication
Network

PE Config

Instr MEM

Instr Reg

Decoder

Connection
Ctrl Signal

Function
Ctrl Signal

SPI input

SPI output Communication
Network

PE Config

Instr MEM

Figure 3.7: Diagram of configuration controller architecture. The control signals for
the PE functionality and the data communications are decoded based on the current
instruction code stored in the instruction register. The SPI links the instruction
memory in ripple array style for instruction loading and updating.

29

costs, high power consumption and low scalability. On the other hand, island-style mesh

networks are often used in FPGAs, in which each computing unit is attached with its own

switch fabrics to transmit/receive data or to relay data to adjacent nodes. The tile-based

mesh network offers regular structure and is easy to scale. It is widely adopted by many

other reconfigurable architecture designs, including RAW [83], Trips [53], and AsAP [91].

However, intermediate relays are necessary for data transfers with larger than one hop

distance in these systems, which involves longer delays and relatively complex control

and synchronization logics. The proper application mapping scheme to reduce long data

switching has become a crucial aspect in mesh only systems, which in turn also reduces

system flexibility. In realizing of these facts, a mixed hierarchical routing structure with

three-level networks is designed in SmartCell: the fully connected crossbar unit for intra-

cell data exchange, the static nearest neighbor connection for inter-cell communications,

and the reconfigurable modified CMesh network for concurrent data communication among

non-adjacent cell units.

Crossbar Inter Cell Connection

Initially, a centralized shared register memory (SRM) block were designed for the intra-cell

communications. But it was abandoned due to its high area and power costs and complex

memory access controls. In the current design, the PEs and instruction memories are

placed at the four edges in a cell. A fully connected crossbar unit is able to provide an

efficient non-blocking connection for data exchanging. Compared to the SRM implemen-

tation, the control logics are substantially simplified in the crossbar connection, which in

turn results in better timing and area performance.

Intra Cell Nearest Neighbor Connection

In our system, the homogeneous cell units are tiled in a 2D mesh structure. Thus the

adjacent cells can be connected directly through short wires. Since four PEs in a cell

are placed at four edges, each PE can be directly linked to the nearest PE located in the

30

adjacent cell, as shown in Fig. 3.1. This static network supports single cycle bi-directional

data transmission of 2 16-bit and 1 36-bit signals between connected PEs. These signals

are aligned with the cell’s internal signals and are later sent out to the PE’s inputs. Thus

no extra synchronization process is involved. This low latency and self synchronization

feature is critical to exploit the task level parallelism among cell units in many multimedia

and signal processing applications.

Hierarchical CMesh Network

Besides local connections, it was realized that some applications also require dynamic data

exchanges between nonadjacent cells, such as Radix-2 FFT, 2D DCT. After examining

the major existing on-chip interconnection techniques, a modified CMesh network was

adopted in our SmartCell architecture. It is studied in [22] that the CMesh network has

the potential to provide the best performance in terms of average latency and network

efficiency among other NoCs, including Mesh, Torus, and FTree. As shown in Fig. 3.8(a),

the modified CMesh segments the network into clusters, with 4 cell units sharing the same

switching component. The switch architecture, depicted in Fig. 3.8(b), is designed to

connect four local cells with adjacent cluster networks. Each cell in the same cluster can

input(output) a 36-bit signal from(to) the switch fabric to form a local I/O interface. The

switch component also receives two sets of 4 36-bit inputs from horizontal and vertical

directions, and outputs the same amount of data in these two directions. A routing

arbitrator component is designed to dictate the proper data transmission that can be

configured by the NoC control bits in the instruction code. A simple Dimension Order

Routing (DOR) is implemented to route data firstly in one direction and then in another for

multi-hop data transmissions. Because no closed loop can be generated, the DOR scheme

guarantees no traffic contention exists. Instead of arranging the routers in a ring style as in

traditional CMesh network, high level routers that connect four local routers are designed

and chained together to form another CMesh network. It is so called hierarchical CMesh

network. This hierarchical CMesh network reduces the number of long wires compared

31

with traditional CMesh. Also, the same routing components can be easily added to or

reduced from the SmartCell architecture for system scalability. In our design, each cell

can receive a 36-bit signal through the CMesh network every clock cycle, which achieves

a single hop system throughput of 57.6 Gbits/s for a 4 by 4 SmartCell operating at 100

MHz.

3.5.2 Propose of a Dynamic Routing Scheme: Adaptive

First Routing

The routing protocols for on-chip data communications can be divided into two categories:

Static Routing and Dynamic Routing. The data flow for static routing is decided at

compilation time with only one path available from source to destination. On the other

hand, dynamic routing supports multiple paths from source to destination. The actual

data path in use is decided at run time based on network conditions. The key advantage of

the static routing is that for applications with predictable traffic, it can provide an efficient

solution with low redundancy and small area and communication delays. Static routing

are suited for most DSP and data streaming applications. In our current SmartCell design,

static routing is adopted for the data path scheduling of the hierarchical on-chip network.

As the system size increases and more complex applications are to be mapped, the static

configuration can no longer satisfy the communication requirements or is too complicated

to schedule. Dynamic routing becomes inevitable. In this section, we discuss a fully

adaptive routing protocol for a store-and-forward computing network [42] that could be

adopted in our future design. More details can be found in [63].

Adaptive First Routing

Turn model [41] is a well known dynamic routing scheme that offers partial adaptivity

with simple circuitry controls. The basic idea of this scheme is to prohibit the minimum

number of turns that break all of the cycles in the channel dependency graph. Thus both

32

Cell

Switch

CellCellCell

Switch

(a)

Routing and
Arbitration

L
o

ca
l I

n
p

u
t

Switch

Cell11_in
Cell12_in
Cell21_in
Cell22_in

Cell11_out
Cell12_out
Cell21_out
Cell22_out

Horizontal_in Horizontal_out

Vertical_in

Vertical_out

L
o

ca
l O

u
tp

u
t

4

4

4

4

Routing and
Arbitration

L
o

ca
l I

n
p

u
t

Switch

Cell11_in
Cell12_in
Cell21_in
Cell22_in

Cell11_out
Cell12_out
Cell21_out
Cell22_out

Horizontal_in Horizontal_out

Vertical_in

Vertical_out

L
o

ca
l O

u
tp

u
t

4

4

4

4

(b)

Figure 3.8: Reconfigurable hierarchical CMesh network: (a) Modified CMesh Ar-
chitecture; (b) Switch fabrics of the CMesh network

33

deadlock and live lock can be avoided. The allowable turns are shown in Fig. 3.9 for the

west first (WF) turn model. Two turns to the west direction are prohibited. Unfortunately

the degree of adaptivity provided by turn models is highly uneven. For instance, in the

WF turn model, if the destination is located towards the west of the source, only one

path is available between source and destination, while full adaptivity is achieved if the

destination is at east of source node. In 2000, Chiu proposed the odd-even routing scheme

[33], which extends the WF turn model to provide more balanced adaptivity at a cost of

more complex control rules.

Figure 3.9: West first turn model for dynamic routing [41]

Motivated by these turn model schemes, an Adaptive First (AF) routing is proposed

to achieve full adaptivity for all source-destination pairs. Similar to WF routing, three

other routing schemes, named east first (EF), north first (NF) and south first (NF), are

developed and can be assigned to different packets, based on source-destination location.

A specific routing scheme is chosen for a packet at the source node based on the location of

the destination. Let S(Sx, Sy) and D(Dx, Dy) be the location of the source and destination

nodes respectively. Also we denote ∆x = |Sx −Dx| and ∆y = |Sy −Dy|. Routing scheme

from S to D is chosen according to Algorithm 1.

The principle idea for the AF routing is to independently choose the routing scheme

with least restrictions for each packet based on source/destination locations to achieve

maximal adaptivity. Fig. 3.10 shows two routing path examples generated by AF routing.

34

Algorithm 1 Adaptive First Routing

1: if ∆x ≤ Deltay then
2:
3: if Sy ≤ Dy then
4: Choose West First routing
5: else
6: Choose East First routing
7: end if
8: else
9:

10: if Sx ≤ Dx then
11: Choose North First routing
12: else
13: Choose South First routing
14: end if
15: end if

S1

D1 D2

S2

S1

D1 D2

S2

Functional node

Congested node

Figure 3.10: Example of Adaptive First routing

Analysis of Livelock and deadlock in AF routing

Livelock and deadlock are the two major problems that need to be addressed in adaptive

routing. Livelock occurs when a packet is forwarded endlessly in the network without

arriving at its destination. With AF algorithm, a turn model based routing scheme is

assigned to each packet. Two turns are prohibited for each scheme, which prevents forming

a closed circle path for each packet. Thus it is impossible for a packet to be routed endlessly

in a finite dimension mesh network, which guarantees no livelock exists.

35

On the other hand, deadlock is caused by cyclic waiting for the resources in different

nodes. Thus no packet is able to be forwarded anymore. Because a combination of multiple

routing schemes are used in AF routing to achieve maximal adaptivity, deadlock-free is

not inherited from the turn models. A buffer dependency graph (BDG) is usually used

to analyze the deadlock conditions. Two types of deadlocks are observed in a 2D mesh

network: one is called acyclic deadlock where multiple nodes are waiting for each other in

an acyclic manner; the other is called cyclic deadlock where deadlock is caused by multiple

nodes waiting in a circle. Then the deadlock necessary conditions is summarized as: (i)

there is at least one node that has only 1 or 2 directions to forward all packets in it; (ii) if 2

directions are available, they are in 90 degree phase angle as shown in Fig. 3.11(b), which

is called connected directions. In our design, a hierarchy routing structure is proposed to

facilitate deadlock freedom, which can break the deadlock necessary conditions.

(a) (b)(a) (b)

Figure 3.11: Buffer dependency graph for two types of deadlocks: (a) acyclic dead-
lock; (b) cyclic deadlock.

The hierarchy routing structure for each node is shown in Fig. 3.12. The packets

following the AF routing algorithm are stored in the central buffers. When an output

channel is available, a packet is chosen by the output controller and is directly transferred

to next node’s central buffer. We assume a new packet can be only generated in a free

central buffer. The network defined by the central buffers is considered as the primary

network, which is fully adaptive. Besides the central buffer queue, up to four edge buffers

are introduced in every node, with one for each output channel. When the central buffer

queue of a node is filled up and the packets satisfy the deadlock necessary conditions, a

closest packet to its destination is put into the edge buffer to perform the DOR, such

as XY routing [48]. Once a packet enters the edge buffer, it is required to be routed

36

Central buffer
queue

Output

controller

Edge
buffer

Edge
buffer

Edge
buffer

Edge
buffer

West output
channel

East output
channel

North output
channel

South output
channel

Figure 3.12: Hierarchical routing structure to avoid deadlock in AF routing.

within the edge buffers by DOR scheme. The network defined by the edge buffers is called

the secondary network. It is well known that the DOR algorithm is deadlock free by

prohibiting a turn from the one dimension to the other dimension. By introducing the

hierarchy routing structure, the deadlock necessary conditions are always broken in the

primary network and the secondary network is guaranteed deadlock free. Also the packets

are routed independently to their destinations in the primary and secondary networks.

Thus the deadlock freedom is achieved in this hierarchy routing structure.

Simulation results of AF routing

Although the Adaptive First routing is not included in our current SmartCell design, it

has been intensively simulated in software to evaluate its performance. A 10 by 10 mesh

network with uniform data traffic pattern is modelled in MatLab with different routing

schemes, including Adaptive First routing, West First routing and XY routing. The

package delivery rate and network coverage are compared among these routing schemes

with randomly selected congested nodes at the beginning of each packet delivery. We

assume the congested nodes are not able to participate into any package transfer for the

entire delivery process.

Fig. 3.13 shows the packet delivery rate among evaluated routing schemes. The

results indicates that the AF algorithm always outperforms the WF and XY routing

37

algorithms with the presence of congested nodes in the network. At high congestion ratio,

the successful delivery rate in AF routing is more than 20% and 30% of those in the WF

and XY routing, respectively. This is because the AF algorithm provides full routing

adaptivity from source to destination, which maximizes the probability for a packet to be

successfully delivered.

0 5 10 15 20 25
20

30

40

50

60

70

80

90

100

P
ac

ka
g

e
D

el
iv

er
y

R
at

e
(%

)

Percentage of Congested nodes

Adaptive First Routing
West First Routing
XY Routing

Figure 3.13: Package delivery rate versus different percentages of congested nodes

The network coverage range is used to evaluate the average accessible range in a

network as calculated in Eq. 3.1.

Coverage =

∑

delivered

(|Sx −Dx|+ |Sy −Dy|)

N
(3.1)

where the numerator is the summation of the one-norm distance from sources to desti-

nations for all delivered packets. N is the number of delivered packets. The simulation

results is shown in Fig. 3.14. For AF algorithm, the degradation of network coverage

is within 1 hop range even at high network congestion rate. Comparing to the much

lower coverage range achieved in WF and XY routing, this is mainly benefited from full

adaptivity achieved by AF routing.

38

0 5 10 15 20 25
1

2

3

4

5

6

7

N
et

w
o

rk
 C

o
ve

ra
g

e
R

an
g

e
(H

o
p

s)

Percentage of Congested nodes

Adaptive First Routing
West First Routing
XY Routing

Figure 3.14: Network coverage range versus different percentages of congested nodes

3.6 Related Work

Fig. 3.15 depicts one possible computing system taxonomy, based on homogeneity and

granularity. Since SmartCell falls into the category of coarse-grained reconfigurable ar-

chitecture, it is important and meaningful to compare it with other CGRAs. The related

work is discussed and an architectural level comparison is given to distinguish SmartCell

from others.

3.6.1 Existing CGRA Designs

Researches has been focused on exploring of efficient CGRA designs as summarized in

[44]. In this section, some modern CGRA systems will be briefly discussed. These ar-

chitectures, as shown in Fig. 3.16, organize a large number of coarse-grained computing

units and configurable interconnection fabrics into a 2D mesh or 1D linear array structure.

They share the same features of configurability, coarse granularity, scalability, targeting

for computing intensive applications, and etc. But they also differ in many fundamen-

tal basics. In this section, we also differentiate SmartCell with other CGRAs from the

architecture point of view.

39

Figure 3.15: Category of different computing systems based on the degree of homo-
geneity and granularity [27].

40

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16: Diagram of related CGRA systems. (a) RAW 2D mesh structure
[83]; (b) MATRIX 2D mesh structure [69]; (c) RaPiD 1D array structure [40];
(d) PipeRench 1D stripe architecture [79]; (e) TRIPS 2D mesh structure [76]; (f)
ADRES 2D mesh Structure [28]; (g) MorphoSys 2D mesh structure [80]; (h) Mon-
tium 1D array structure [81].

41

RAW [83] was designed at MIT in the late 90’s. It incorporates 16 simplified 32-bit

MIPS processors in a 2D mesh structure to provide high parallel computing capacities.

Besides the data parallel applications, it can also be configured to perform irregular or

general purpose tasks. The static and dynamic mesh networks are designed to exchange

data among processors. Due to distributed instruction memories, the RAW system can be

organized in a MIMD manner that has the ability to perform multiple processing streams

simultaneously. However, the 6-stage ALU components exhibit a processor execution style

involving instruction fetching, decoding, and execution process. A 4 by 4 RAW system

was implemented and evaluated in IBM 180 nm CMOS technology. In [84], it is reported

that the RAW prototype occupies 331 mm2 with an average core power consumption of

18.2W at 425 MHz. However, RAW is not able to provide dynamic reconfiguration. This

makes it inflexible to adapt to any changes on the fly.

RaPiD [40] was developed at University of Washington in the early 2000’s. It links

hundreds of heterogenous components in a 1D linear array, including ALUs, multipliers,

and RAMs. The potential applications for RaPiD are those of a linear systolic nature

or applications that can be easily pipelined among the computational units. Functional

specific components can also be involved for application specific designs. In RaPiD, several

parallel segmented buses are designed that can be dynamically changed for different data

communications. A program sequencer is involved to control the processing units in VLIW

fashion. Unlike the RAW processor, the RaPiD uses a combination of static and dynamic

control logics, but the dynamic control is very expensive in timing and chip area. It is

studied in [80] that the linear array nature exemplifies provision of datapath parallelism in

the temporal domain, and also makes it not very appropriate for block based applications,

such as 2D systolic array applications.

PipeRench [79] was developed at CMU in the early 2000’s. In the PipeRench system,

several reconfigurable pipeline stripes are offered as an accelerator for data streaming

applications. Each stripe consists of multiple computing units organized in a 1D array

structure. Limited configurable interconnection fabrics are developed, including a lo-

42

cal network inside a stripe, unidirectional nearest neighbor connection between stripes

and some global buses. The motivation of PipeRench is to dynamically reconfigure the

data path of the targeted application for efficient calculations. A pipeline reconfigura-

tion scheme [78] was developed to achieve the hardware virtualization that relies on fast

partial dynamic configuration and run time scheduling of configuration contexts and data

paths. By this means, an application that is not physically fit on the hardware can still

be executed on PipeRench. This dynamic configuration is built on a cycle by cycle basis

that allows the configuration of a pipeline stage in every clock cycle. However, similar to

the RaPiD system, the linear array structure makes PipeRench inefficient for the block

based applications (for example, 2-D signal processing tasks). Additionally, with limited

interconnection between stripes, the PipeRench system does not support computation of

feedback loops, and it may waste available parallelism when squeezing wide graphs into a

linear sequence of stripes [31]. A prototype PipeRench was fabricated in 180 nm CMOS

technology with about 55 mm2 die size. In FIR filter test benches, the chip consumes 519

mW without virtualization and 675 mW with virtualization operating at 33 MHz.

The MIT MATRIX [69] incorporates a large number of Basic Functional Units (BFUs)

in a 2D mesh structure. An 8-bit ALU module is designed inside the BFU to generate

coarse-grained computing resources. The routing fabrics provide 3 levels of 8-bit bus con-

nections among the BFUs, and may be configured to perform in SIMD, MIMD, or VLIW

fashion. A novel concept of dynamic instruction generation as data signals is introduced by

MATRIX for dynamic system reconfiguration. This allows the MATRIX system to source

some configuration context statically, while maintaining others dynamically over the rout-

ing structure within the computing components. However, the 3-level hierarchical data

switching network involves variable interconnection delays, which could become a limiting

factor for the scheduling of stream processing among multiple BFUs. Furthermore, the

8-bit granularity may not be sufficient for today’s computational applications. Multiple

BFUs are needed to support wider operations, which in turn increases the computing and

communication overhead and results in relatively complex control logic.

43

TRIPS [76] was developed at UT Austin in early 2000’s. Similar to the RAW system,

TRIPS adopts large processing cores targeting to provid high performance across a wide

range of applications. Based on different application features, three level parallelism of

ILP, TLP and DLP can be configured in TRIPS to achieve high performance. A prototype

TRIPS system was fabricated in 130 nm technology in 2007 [77]. The chip contains two

cores and a separate on-chip network and occupies 336 mm2. It can operate at 366 MHz

and consumes about 36 W power. This high power consumption is mostly related to the

non-negligible overhead introduced by the large core and complex configuration scheme

designed to support general purpose applications.

MorphoSys [80] was developed at UC Irvine in early 2000’s. It is an integrated and

configurable system-on-chip, targeted for high throughput and parallel data applications.

It incorporates a reconfigurable processing array, a modified RISC processor, and an effi-

cient memory interface unit on the same chip. The main component of MorphoSys is an

8 by 8 reconfigurable array (RA). The RA is clustered into four 4 by 4 mesh structures

with bus connections of variable widths. Two sets of Frame Buffer (FB) are provided to

minimize data I/O overhead by overlapping data load and store with computations. The

RISC processor with extended instruction set is adopted as the system controller that is

responsible for the RA configurations and dynamic context memory updating. The con-

figuration words are broadcast to the RA in either column-wise or row-wise mode. This

constrains the computing components in the same column (or row) to perform the same

operations. Thus the MorphoSys system is designed to be operated in the SIMD style.

Power consumption is another important aspect of reconfigurable architecture designs.

More recently, some other CGRA systems have also been developed to provide ultra

low power consumption, such as ADRES [28] and Montium [81] with limited computing

resources. The ADRES architecture introduces two functional views, which includes a

VLIW processor to execute the non-kernel code with ILP and the reconfigurable matrix

to accelerate the parallel kernels. It is reported in [29] that a 4 by 4 ADRES can achieve a

power efficiency of 0.24mW/MHz. On the other hand, the Montium tile processor links 5

44

identical ALUs in a linear array style to communicate through 10 local SRAM memories.

A hardware sequencer is designed to dynamically reconfigured the ALUs in VLIW mode.

Montium achieves a power consumption of 0.58 mW/MHz in FFT [45].

Several other reconfigurable architectures have been implemented with various tech-

nologies [24, 38, 57]. Most of them have been focused on the exploring of computational

models or efficient design with respect to area and performance. For example, Processor-

In-Memory (PIM) based systems [92, 39] integrate the processing logic and memories into

the same chip and try to perform the computations directly in memory, which greatly

reduces data transfer overhead between CPU and main memory.

3.6.2 Architectural Comparison With other CGRAs

A quantitative comparison of the SmartCell system with other evaluated systems is diffi-

cult due to the differences in implementation technology, application details, system setup,

and so forth. Furthermore, the performance details for the implemented benchmarks are

not disclosed in the literature for most designs, which makes it impossible to compared

with.

Table 3.3 summarized the targeted applications and objectives of a few CGRA sys-

tems, along with their key features. RAW and TRIPS are aimed to develop a universal

system as flexible and configurable as possible to fit a wide range of applications, which

involves complex connection and large core components. On the other hand, the other sys-

tems are targeted at domain specific applications, such as signal processing and multimedia

applications. They take advantage of more specific architectures and datapath controls to

reduce overhead and achieve better efficiency in the targeted application domains.

Table 3.4 lists the homogeneity, processing style and interconnection networks among

the compared reconfigurable systems. Most designs involves homogeneous resources.

RaPiD adopts the heterogenous style which links the processor, memories and specific

function units in a linear array to make it efficient for certain applications, but it results

45

Targets/Objectives Key features
RAW[83] General purpose application complex static/dynamic route
RaPiD[40] pipeline application reconfigurable pipelined datapath

PipeRench[79] DSP application dynamically configurable datapath
MATRIX[69] systolic array processing layered connection
TRIPS[76] general purpose application complex configurable cores

MorphoSys[80] DSP application SoC structure
Imagine[54] multimedia application stream architecture
Montium[45] multimedia application 1D array & low power consumption
SmartCell Data streaming applications hierarchical connection

Table 3.3: Comparison of targeted application and key features among selected
CGRAs.

Homogeneity Processing style Interconnection
RAW[83] homogeneous MIMD static/dynamic 2-D mesh
RaPiD[40] heterogeneous VLIW 1-D pipelined datapath

PipeRench[79] homogeneous SIMD 1-D linear array
MATRIX[69] homogeneous MIMD hierarchical buses
TRIPS[76] heterogeneous EDGE dynamic routed network

MorphoSys[80] homogeneous SIMD row/column connection
Imagine[54] homogeneous VLIW global/local switches
Montium[45] homogeneous MIMD communication unit
SmartCell homogeneous MIMD 3-level hierarchical routing

Table 3.4: Comparison of homogeneity and interconnection scheme among selected
CGRAs.

in an irregular layout and poor scalability.

Processing style can be generally categorized into three types - SIMD, MIMD and

VLIW. SIMD uses data level parallelism (DLP) to accelerate computing process. Besides

DLP, task level parallelism (TLP) is also available in MIMD systems. VLIW uses long in-

struction code to control multiple on-chip processors. In TRIPS [76], the EDGE structure

uses instruction blocks for system configuration. The interconnection design also varies

greatly, ranging from bus connections, 1D array structure, row/column broadcasting to

2D mesh structure.

Finally, the system prototyping results are listed in Table 3.5, including process tech-

nology, maximum frequency, chip area and reported power consumption. A direct com-

46

Process Max. freq. Area Power
(nm) (MHz) (mm2) (mW/MHz)

RAW[83] 180 425 331 428
RaPiD[40] 500 100 5.07 N/A

PipeRench[79] 180 120 55.5 20.5
MATRIX[69] 500 100 1.8/element N/A
TRIPS[76] 130 366 336 98

Montium[45] 130 100 1.83 0.5
SmartCell 130 123 8.2 1.6

SmartCell-II 90 295 5.0 3.1

Table 3.5: Comparison of chip implementation results among selected CGRAs.

parison of these metrics may not be very meaningful due to different on-chip resources,

implementation process, evaluation benchmark, and system setup. Furthermore, perfor-

mance details are not disclosed in most designs. For this reason, we will take the system

throughput and energy efficiency as the evaluation metrics in Chapter 4 when comparing

SmartCell with other systems, including FPGA, ASIC, RaPiD and Montium.

SmartCell integrates some prominent features in previous systems. The 16-bit granu-

larity of the basic operations is efficient for the data parallelism exploration, while keeping

the cost of computing and communications low. It can be configured to operate in SIMD,

MIMD and systolic array styles due to the distributed contexts and hierarchical on-chip

connections with uniform delays to ease the scheduling of the stream processing among

multiple cell units. In combination of these features, we say that the SmartCell system is

a unique approach in the CGRA family.

3.7 Summary

In this chapter, we presented the SmartCell architecture as a novel CGRA system targeting

stream processing domain. The architecture design, including cell structure, processing el-

ement, control logics, on-chip interconnection and dynamic configurations, were presented

in details. A dynamic routing algorithm was also proposed to provide a fully adaptive

routing protocol for future system expansion. At last, several related CGRA systems

47

were discussed and reviewed. These CGRAs were also compared with SmartCell from the

architecture point of view.

48

Chapter 4

SmartCell Experimental Results

and Evaluations

In this chapter, a prototype SmartCell with 64 processing elements was designed in CMOS

standard cell ASICs with TSMC 0.13 µm technology. The design and verification method-

ology used in our research is briefly discussed. We then present the mapping structure of a

set of benchmark applications onto the SmartCell system. The power/energy consumption

and system throughput results are then compared with other computing platforms, includ-

ing FPGA and standard cell ASICs. Finally, we compare the energy efficiency and system

throughput performance with other CGRA systems, including RaPiD [35] and Montium

[45]. The reason to choose RaPiD is that it shares similar hardware resources with our

design and the interested performance for a common set of benchmarks are disclosed in

details. Montium is among several recently developed ultra low power CGRA systems.

The system throughput and energy consumption is compared among these CGRAs.

49

4.1 Design and Evaluation Methodology

Typically, standard cell ASIC design methodology is best suited for a small design team

and short time-to-market cycle in contrast to full-custom design methodology that could

lead to optimized timing and performance. It is studied in [36, 32] that full custom design

could result in more than 3 times improvement in both area and timing performance

compared with standard cell design. But due to the small design team and proof-of-

concept purpose, we are restrict to follow the CMOS standard cell ASIC design flow.

The design flow and evaluation methodology is depicted in Fig. 4.1. After the ar-

chitectural design is finalized, a functional register transfer level (RTL) model is written

in hardware description language (VHDL or Verilog) and the behavior simulation is per-

formed in MentorGraphics ModelSim for functionality verification. The RTL model is

then translated and mapped into the standard cell library using Synopsys logic synthesis

tool DesignCompiler. The timing performance is analyzed by Synopsys PrimeTime. Any

timing violations are fixed by incremental resynthesizing with new timing constraints or

by restructuring the logic design. After synthesis, a netlist file is generated and simulated

at the gate level with proper wire load modes. ModelSim monitors the signal switch-

ing activity and creates a value-change-dump (vcd) file that can be used by Synopsys

PrimePower for power consumption evaluations of the major component on the chip.

4.2 Verification Methodology

Functional verification methodology is drawn in Fig. 4.2. For the evaluated benchmarks,

the input signals are generated in MatLab based on application specs. These inputs are

then quantized and scaled to provide hardware stimulus signals. The chip level simulations

are then performed using the input file and manually generated test bench configurations.

The same application is emulated in MatLab to mimic data flow paths as in hardware

simulations. The end-to-end hardware/software outputs are compared within certain tol-

50

System
Spec

RTL
Design

Standard Cell
Synthesis

Timing
Analysis

Netlist
Generation

Power
Evaluation

Output

Structural
RTL design

Standard Cell
Netlist Design

and Evaluation

RTL Behavior
Simulation

Gate Level
Simulation

Switching
Annotation(vcd)

SimulationsSystem
Spec

RTL
Design

Standard Cell
Synthesis

Timing
Analysis

Netlist
Generation

Power
Evaluation

Output

Structural
RTL design

Standard Cell
Netlist Design

and Evaluation

RTL Behavior
Simulation

Gate Level
Simulation

Switching
Annotation(vcd)

Simulations

Figure 4.1: Physical design flow and evaluation methodology involved in SmartCell
research.

erance range. When mismatch happens, we trace along the data path back to the first

module with unnegligible mismatches between hardware and software simulations. The

subblock input can then be extracted from software emulation to provide isolated block

level stimulus for hardware debugging. Furthermore, both RTL behavior and netlist gate

level simulations are performed and compared against each other to make sure no synthesis

errors or timing violations are introduced during synthesis.

4.3 Application Mapping

The eight benchmark applications listed in Table 4.1 have been manually mapped onto

the SmartCell system. These benchmarks represent a wide range of real-time applications

from signal/image processing to scientific computing. The application mapping structure

is described in this section.

51

Application
Spec

MatLab
Stimulus Input

Comparison

Quantization
& Scaling

Hardware
Simulation

Hardware
Output

RTL Behavior
Simulation

Netlist Gate
Simulation

Hardware
Simulation

MatLab
Simulation

MatLab
Output

Software
Emulation

Application
Spec

MatLab
Stimulus Input

Comparison

Quantization
& Scaling

Hardware
Simulation

Hardware
Output

RTL Behavior
Simulation

Netlist Gate
Simulation

Hardware
Simulation

MatLab
Simulation

MatLab
Output

Software
Emulation

Figure 4.2: SmartCell prototype verification methodology.

Application domain Test Benches
Signal processing 1. 64-tap FIR

2. 32-tap IIR
3. 64-point FFT

Multimedia 4. 8 by 8 2D-DCT
and image processing 5. 8 by 8 Motion Estimation(ME) in 24 by 24 area
Scientific computing 6. 128 by 128 MMM

7. 64thorder Polynomial Evaluation(PoE)
Data encryption 8. RC5

Table 4.1: Application domain and test benches mapped onto the SmartCell proto-
type system.

52

4.3.1 Finite Impulse Response (FIR) Filter

Linear-phase digital filters are frequently used in communication, image processing, and

speech processing algorithms. The output of a general N -tap FIR-filter is calculated as:

y[n] =
N−1∑

i=0

(x[n− i]× h[i]) (4.1)

where x and h are the input signals and the filter coefficients, respectively. The systolic

array structure is considered the most efficient solution for parallel FIR-filter designs. The

structure of a 4-tap FIR-filter is shown in Fig. 4.3, which is able to be mapped onto four

PEs in the same cell unit. The input data is propagated through the cascaded data buffers

between PEs. The multiply-accumulate (MAC) operation is executed in every PE. Higher

order FIR-filters can be implemented by chaining multiple cell units in a linear array

fashion. A fully pipelined FIR-filter implementation can be mapped onto the SmartCell

architecture by loading a unified MAC configuration code to the instruction memories of

all active PEs. The filter coefficients can be preloaded into an on-chip memory and can

be dynamically changed upon request. The prototyping of the pipelined FIR-filter leads

to a system throughput of one output per clock cycle after initial setup.

x

×

+

h0

PE1

0

×

+

h1

PE2

×

+

h2

PE3

×

+

h3

PE4

y

x

××

++

h0

PE1

0

××

++

h1

PE2

××

++

h2

PE3

××

++

h3

PE4

y

Figure 4.3: Mapping of a 4-tap FIR-filter onto 4 PEs in systolic array structure.

The hardware and software simulation results for a 64-tap FIR-filter are compared in

53

Fig. 4.4, with the output index number in x axis and magnitude in y axis. The input

signals, scaled by a factor of 212, and the filter coefficients are generated in MatLab and

are then read into the hardware test bench in ModelSim. Software simulation results are

computed by MatLab built-in functions. The differences between the fixed point hardware

results and the floating point software results are all within 10−3 range, which proves the

correct functionality of the SmartCell prototype.

Figure 4.4: Comparison of hardware and MatLab software simulation results of FIR
filter design.

4.3.2 Infinite Impulse Response (IIR) Filter

The IIR-filter is another primary class of digital filters with feedback loops. It can achieve

a much steeper frequency response with fewer stages compared with the FIR-filter. The

output for an N th order IIR-filter is calculated as:

y[n] =
N∑

i=1

(aiy[n− i]) +
M∑

i=0

(bix[n− i]) (4.2)

where a and b are the coefficients for the output feedback signal y and the input signal x,

respectively. In general, the feedback order N is no less than the input order M . Due to

54

its internal feedback feature, the IIR-filter is much more susceptible to the intermediate

computing and round off errors than the FIR-filter, especially in high order filter designs.

It is well known that the high order IIR system can be factored into a cascade of multiple

second-order subsystems, called Biquad sections. Such that its system response function

can be rewritten as:

H(z) =
k∏

i=1

Hi(z), where Hi(z) =
1 + bi2z−1 + bi3z−2

1 + ai2z−1 + ai3z−2
(4.3)

The hardware structure for the basic Biquad section core can be implemented in one

cell unit as illustrated in Fig. 4.5. Similar to the FIR-filter design, every PE unit primarily

performs the MAC operation. Due to the fixed point mapping onto the SmartCell system,

a shift-right scaling operator is necessary for PE3 and PE4 to scale down the products of

the feedback output and the feedback coefficient. By cascading multiple Biquad sections

along the adjacent cell units, higher order of IIR-filters can be designed efficiently. The

filter coefficients are loaded directly into the hardware registers and can be updated at

run time. The shift-right operation is performed in PE3 and PE4 due to the scaling factor

involved in the fixed point implementation, as shown in Fig. 4.5.

x

b2

D

D +

D

D D D

×

y

b3

a3 a2

× ××

+++
PE1 PE2 PE3 PE4

x

b2

DD

DD ++

DD

DD DD DD

××

y

b3

a3 a2

×× ××××

++++++
PE1 PE2 PE3 PE4

Figure 4.5: Mapping of Biquad IIR-filter onto 4 PEs for cascaded IIR design.

The hardware and software simulation results for a 32-tap IIR-filter are compared in

Fig. 4.6. The random signals (with a scaling factor 212) and the filter coefficients are

55

generated in MatLab and are then fed into ModelSim for hardware simulations. The

simulation shows that the hardware results matches well with the software simulation

(within 10−2 difference range), which validates the IIR-filter design on the SmartCell

system.

Figure 4.6: Comparison of hardware and MatLab software simulation results of IIR
filter design.

4.3.3 2D Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is an important mathematic algorithm that has

been used in many real-time applications from audio filters to video compression hardware.

2D DCT is one of the core functions for JPEG image compressor. The calculation of an

N by N 2D DCT can be calculated as:

Xi,j = aibj

N−1∑

k=0

N−1∑

l=0

xk,lcos[
(k + 1/2)iπ

N
]cos[

cos(k + 1/2)jπ
N

], where 0 ≤ i, j < N (4.4)

where xk,l is the matrix element located at ith row and jth column. a and b are the

normalization and scale factors.

Due to the high degree of computational complexity involved in the 2D DCT, directly

56

mapping of the 2D computation is not efficient for hardware implementations. Benefitting

from the separability property, the calculation can be greatly simplified by separating the

2D DCT into two 1D DCTs that involves only convolution operations, as shown in Fig.

4.7(b). The first 1D DCT is performed row-wise on the input matrix and the second one

is performed column-wise on the outputs of the first 1D DCT. This decomposition scheme

reduces the complexity of the calculation by a factor of four [26]. Fig. 4.7(a) shows the

hardware mapping and data flow of a 4 by 4 DCT system on the SmartCell architecture.

Row1 PE1

PE2

PE3

PE4PE1PE1

PE2PE2

PE3PE3

PE4PE4

Output

PE1

PE2

PE3

PE4PE1PE1

PE2PE2

PE3PE3

PE4PE4

PE1

PE2

PE3

PE4PE1PE1

PE2PE2

PE3PE3

PE4PE4PE1

PE2

PE3

PE4PE1PE1

PE2PE2

PE3PE3

PE4PE4

Row2

Row4
Row3

(a)

Row1

Row2

Row3

Row4

t1t2t3t4
Row-wise

Four
1-D DCTs with

dynamic
coefficients

Column-wise

Four
1-D DCTs with

fixed
coefficientsC

o
lu

m
n
1

t1’

C
o

lu
m

n
2

C
o

lu
m

n
3

C
o

lu
m

n
4

Output

FIFO buffer

t2’t3’t4’
Row1

Row2

Row3

Row4

t1t2t3t4
Row-wise

Four
1-D DCTs with

dynamic
coefficients

Column-wise

Four
1-D DCTs with

fixed
coefficientsC

o
lu

m
n
1

t1’

C
o

lu
m

n
2

C
o

lu
m

n
3

C
o

lu
m

n
4

Output

FIFO buffer

t2’t3’t4’

(b)

Figure 4.7: 2D DCT mapping and re-scheduling scheme: (a) Hardware mapping
structure. (b) Fully pipelined implementation of the 2D DCT through two 1D
DCTs with input retiming scheme.

57

Because the same hardware resources are used to calculate both DCT operations, the

design of a proper scheduling for the input signals are essential to exploit the computing

pipelines and improve system throughput. In our design, we column-wisely input the

initial matrix into the first DCT. In this case, the first column of the matrix is input

at t1 and second column is input at t2, as shown in Fig. 4.7(b). By this means, it is

guaranteed that the corresponding DCT values for the row elements of the original matrix

will be output at the same time spets, as denoted at time t1′, t2′, t3′ and t4′. These vectors

can be immediately input to the second stage DCT without waiting for the completion

of the first one. Thus a fully pipelined structure can be achieved between the first and

second DCTs. A system throughput increase of about 22% is achieved from this input

retiming scheme. A 16-bit 8 by 8 2D DCT has been mapped onto the SmartCell system.

The simulation results show that 64 clock cycles are required to complete the transform

of one image block in pipelined execution.

4.3.4 RC5 Data Encryption

Nowadays, the computing capacity has become a limit factor for many data encryption

designs. The coding/decoding process usually demands a huge computing bandwidth to

achieve the security and performance requirements. As a case study, we mapped the RC5

[30] algorithm onto the SmartCell system to exploit its capability and performance in the

data encryption domain. RC5 is a block cipher notable for its simplicity and flexibility. It

only involves basic logic and shift operations and can take a variety of input block sizes.

In our design, four PEs in a cell unit are used to implement half round of RC5 as shown

in Fig. 4.8. Each PE performs specific operation as illustrated in the figure. The same

calculations are performed in the next cell unit to compute one round RC5 operation. The

data dependent rotation inside a single round is the key feature for the RC5 algorithm.

The encryption process continues until the completion of the last round. Multiple rounds

of the RC5 can be easily cascaded to generate a pipelined structure. Therefore, the blocks

58

of the plaintexts are able to be continuously fed into this pipe structure to improve the

system throughput. The number of involved cells can also be dynamically changed to

adapt to different security requirements.

A

MODB

PE1 PE2 PE3 PE4

XOR Circular shift Add Mod

Half round

Key

A’

B’

Cell unit

A

MODB

PE1 PE2 PE3 PE4

XOR Circular shift Add Mod

Half round

Key

A’

B’

Cell unit

Figure 4.8: Mapping of half round RC5 onto 1 cell unit.

A fully pipelined 8-round RC5 coder/decoder machine has been mapped onto the

SmartCell system that occupies 16 cell units. 128 cycles are needed to finish the encryp-

tion or decryption process for each block. In the pipelined structure, one output can be

generated every 2 clock cycles. The hardware simulations are verified by the MatLab

software simulations.

4.3.5 Matrix-Matrix Multiplication (MMM)

Matrix operation algorithms are often used in scientific computing applications. The

matrix-matrix multiplication (MMM) is chosen to be mapped on the SmartCell archi-

tecture. As of other benchmarks, there are several mapping schemes available. The 2D

systolic array is designed to implement the MMM application. For demonstration pur-

pose, a simple 2 by 2 matrix multiplication is developed and mapped onto 4 cell units as

illustrated in Fig. 4.9. The notations used in the figure are indicated in the following Eq.

4.5. Five time steps are needed to complete the 2 by 2 MMM operations as shown in Fig.

59

4.9.

c11 c12

c21 c22

 =

a11 a12

a21 a22

×

b11 b12

b21 b22

 (4.5)

b11

a11

b21

a21

b12

a12 c11

a22

b22

a12a11

b11
b21 b12

a21

c11 c12

c21

b12

a21

c11 c12

c21 c22

T1 T2 T3 T4 T5

b11

a11

b21

a21

b12

a12 c11

a22

b22

a12a11

b11
b21 b12

a21

c11 c12

c21

b12

a21

c11 c12

c21 c22

T1 T2 T3 T4 T5

Figure 4.9: Systolic array mapping of 2 by 2 matrix multiplication onto SmartCell

A 16-bit 4 by 4 matrix multiplication is developed and mapped onto the SmartCell

architecture. The simulation shows that 24 clock cycles are needed to generate the product

result of two matrices. While through full pipeline, only 4 cycles are needed to produce

one output result. The hardware results are validated with the software simulations.

In this systolic array structure, the scalability becomes the system bottleneck, since

the number of processing units increases quadratically with the matrix dimension. For

example, 64 cells are required for the direct mapping of an 8 by 8 MMM applications.

To address the scaling issue, a block recursive partitioning algorithm can be used to

decompose large matrix multiplication into several smaller ones. Thus the N by N matrix

multiplication can be decomposed as:

C11 C12

C21 C22

 =

A11 A12

A21 A22

×

B11 B12

B21 B22

 (4.6)

where each element in Eq. 4.6 represents a N/2 by N/2 matrix. By this means, the

product of large dimensional matrices can be calculated by the products of several smaller

one. In our design, a 4 by 4 2D systolic array is generated with each cell to be a single

operation unit. A more efficient mapping scheme is introduced in SmartCell-II when

60

on-chip data memory is provided.

4.3.6 Polynomial Evaluation (PoE)

Polynomial evaluation is often used as a primitive operation in the scientific computing and

data encryption applications. Eq. 4.7 calculates the nth order expression of a polynomial

evaluation. By providing a set of coefficients a, the output y can be calculated as the

system response with respect to the input signal x. The direct calculation involves a

computing complexity of O(n2) for expensive multiplications, and error may accumulate

to degrade the precision of final results. Fortunately, there exists an alternative way to

calculate the polynomial evaluation in a reduced computing complexity of O(n), as shown

in Eq. 4.8.

y = anxn + an−1x
n−1 + ... + a1x + a0 (4.7)

y = (((anx + an−1)x + an−2)x + ... + a1)x + a0 (4.8)

The modified equation is also very efficient for hardware implementations. Fig. 4.10

depicts the mapping of a 4th order polynomial evaluation onto one cell unit. This structure

is very similar to the FIR filter design, except that the MAC output from the previous PE

is connected to the multiplication operator instead of the addition operator in the next

PE. Similarly, one output can be generated every clock cycle after certain initial setup

time.

4.3.7 Motion Estimation (ME)

The last but not least bench mark being implemented on the SmartCell system is the

motion estimation. The motion estimation plays an important role in video compression

algorithms to remove temporal redundancies between successive image frames. It usu-

ally requires a high computing capacity. The block-matching algorithms are the most

popular methods for the motion estimations because of their simplicity in hardware im-

61

x

×

+

a4 ×

+

×

+

×

+
a3 a2 a1

a0

y
PE1 PE2 PE3 PE4

x

××

++

a4 ××

++

××

++

××

++
a3 a2 a1

a0

y
PE1 PE2 PE3 PE4

Figure 4.10: Linear array mapping of a 4th order polynomial evaluation onto a cell
unit.

plementations. The full search block matching (FSBM) [46] is able to achieve an optimal

performance by evaluating all possible displaced candidate blocks in the search area. But

it also involves the maximum computing cost. The mean absolute difference (MAD) is

usually adopted as the criterion in FSBM that can be calculated as:

MAD(u, v) =
n∑

i=1

n∑

j=1

|S(i + u, j + v)−R(i, j)|, where − p ≤ u, v ≤ p (4.9)

R and S are the reference and candidate blocks of size n by n. (u, v) represents the

candidate’s displacement vector with a maximum displacement value of p. The FSBM

algorithm calculates the MAD values of all possible candidate (2p+1)2 blocks and selects

the one with the minimum MAD value as the best match in the motion estimation.

The FSBM calculation can be mapped onto the 4 cell units in a 1D array style. The

reference and candidate blocks are fed into the 1D array to start the matching process.

The partial results are accumulated from cell to cell. Different delays are scheduled for

the input data among different cell units, which is scheduled during test bench design.

In a pipeline style, a MAD value can be generated every 4 clock cycles. Furthermore,

4 pipelines can be concurrently executed in a 4 by 4 SmartCell system that achieves an

average throughput of 1 output per cycle for a 4 by 4 block matching. Based on this

mapping scheme, a more realistic system with an 8 by 8 reference block and a 24 by 24

62

System dimension 4 by 4
Design tools ModelSim, Synopsys CAD tools

Library TSMC 0.13 µm process
Synthesis Environment Worst case condition

Voltage 1 V
Simulation frequency 100 MHz

Table 4.2: System design environment and simulation parameters.

search area is implemented on the SmartCell architecture.

4.4 Design Environment and Comparison Scheme

The prototype SmartCell was developed and synthesized with standard CAD tools. A

functional RTL model was first designed in HDL hardware description language and was

then synthesized in Synopsys DesignCompiler to generate the CMOS standard cell ASICs

using TSMC 0.13 µm technology. No custom optimization was applied during this process.

The area and timing results were also generated by DesignCompiler using worst case

condition. The synthesized design was then annotated via a set of benchmark simulations

for power consumption estimation in Synopsys PrimePower. The energy efficiency was

evaluated as the number of operations executed per second per watt (GOPS/W). Some

experimental setup is listed in Table 4.2.

For power consumption and system throughput evaluations, all benchmarks are sim-

ulated at the same operating frequency of 100 MHz. The same simulation frequency was

also used by RaPiD for its power consumption analysis. Because the RaPiD was designed

in 0.5 µm process and was operated at 3.3 V, a fair comparison requires scaling down its

power consumption by a reasonable factor. In our study, full scaling [51] is performed

that scales down the power consumption from 3.3 V to 1 V by a factor of 3.32. By this

means, the process dimension is also scaled down to 0.15 µm. To compensate the effect of

dimension scaling, constant voltage scaling [51] is then performed to scale up the power

consumption by a factor of 1.7. Therefore, the RaPiD power consumption is scaled down

63

by an overall factor of 9.34.

The same benchmarks are also directly implemented on the FPGA platform to provide

performance comparison. The Altera’s Stratix II FPGA with 90 nm process technology

is selected as the benchmark platform. In particular, an EP2S30 FPGA device is used,

since it is the smallest Stratix II FPGA that contains the same number of multipliers as

in the SmartCell system. The benchmarks are designed in Altera’s Quartus II 6.1 CAD

tool and simulated at 100 MHz in ModelSim. The PowerPlay Analyzer is used to evaluate

the power consumption based on the switching annotation generated from the gate level

simulations. For fair comparison, only the core power consumption is recorded in the

FPGA implementation, since the I/O and aux power is not included in others.

The ASIC implement is also generated for every test bench using the same HDL code

in the FPGA designs. It is expected to provide the best power/energy performance at

a cost of non-flexibility. We use the same 0.13 µm process technology as in the Smart-

Cell. Due to the large set of benchmarks under test, standard cell circuits are generated

automatically by the Synopsys CAD tools without custom optimizations. We estimate

the power consumption of the ASICs based on the gate level simulations at 100 MHz.

Similarly, only the logic core power is recorded.

4.5 Synthesis Results

The area of the SmartCell system according to the synthesis tool is about 8.2 mm2,

which is about 1.6 million gates. The system area, separated into PE, on-chip memory

and registers, and interconnection, is shown in Fig. 4.11(a). The area of processing

elements are further decomposed into arithmetic and logic units. The interconnection

area is calculated by subtracting the area of the processing units and on-chip memories

from the total area. The synthesis results indicate that the processing units contribute

to about 45% of the total area, with 36% for arithmetic units and 9% for logic units.

The on-chip memory and register together comprise about 41% of the area, mainly due to

64

Arithmetic units 36% Logic units 9%

Interconnection 14%

On−Chip memory and register 41%

Total area is about 8.2 mm 2

Processing Element 45%

Arithmetic Units 33% Logic units 8%

Static power 6%

Interconnection & memory 53%

Total power is 158 mW

Processing Elelment 41%

(a) (b)

Figure 4.11: Area and average power consumption of a 4 by 4 SmartCell prototype
system: (a) Area breakdown. (b) Average power consumption breakdown at 100
MHz.

the long instruction format and intensive controlling requirements. Furthermore, custom

optimizations or library components are likely to reduce the on-chip memory size. The

three-level hierarchical on-chip interconnections roughly take 14% of the total area.

The SmartCell can operate at a maximum frequency of about 123 MHz. Further

investigation reveals that the single cycle MAC unit inside the arithmetic component

takes about 5.5 ns of the total critical path delay, with 3.2 ns for the 18-bit multiplier

and 2.3 ns for the 36-bit adder. Again, custom optimization can be performed to improve

the timing result, such as pipelined multiplier and carry lookahead adder. In SmartCell

prototype system, the full chip configuration can be completed within 13 microseconds at

100 MHz, which is much faster compared with the fine-grained FPGA configurations.

The power consumption of the SmartCell for different benchmarks is estimated in

PrimePower based on netlist annotation from gate level simulations. Table 4.3 lists

the power consumption (dynamic power PDyn and total core power PCore) and energy

efficiency (EEff) performance for eight benchmark applications. All figures are generated

65

FIR IIR MMM 2D DCT ME FFT PoE RC5
PDyn (mW) 143 180 135 156 142 165 141 132
PCore (mW) 152 189 143 165 151 174 150 140

EEff (GOPS/W) 42.1 33.9 11.2 38.8 44.1 18.3 42.7 45.7

Table 4.3: SmartCell power consumption and energy efficiency of different bench-
marks at 100 MHz

at 100 MHz. Clock gating is automatically added by synthesis tool to dynamically turn

off the clock for unused registers. This requires an enable signal, indicating whether the

register is in use or not, to be attached to each register during the design stage. Fig.

4.11(b) shows the power dissipation for different components of the SmartCell system.

The processing units consume about 41% of total power, with 33% for ALUs and 8% for

logic components. The on-chip memories and interconnections consume another 53% of

total power. On average, the SmartCell consumes about 158 mW at 100 MHz.

Finally, the energy efficiency, evaluated by the total number of operations per second

per watt, is also calculated, as shown in Table 4.3. A peek performance of 45.7 GOPS/W

is achieved in the RC5 data encryption application. SmartCell provides an average 34.6

GOPS/W energy efficiency from all benchmarks under test. The matrix multiplication

shows only 11.2 GOPS/W energy efficiency. This is because the systolic array mapping

scheme only uses 1/4 of the on-chip computing resources, while the other PEs still con-

sumes power to bypass data. Another mapping scheme is studied to decompose the matrix

multiplication into smaller row-column sub-blocks to be processed independently. It has

the potential to improve the performance and energy efficiency. However, a closer look

reveals that on-chip data memory is needed for the data reuse and propagation among the

parallel computing. The mapping of sub-block matrix multiplication will be discussed in

SmartCell-II in Chapter 6.

66

4.6 Comparison with FPGA and ASICs

In this section, we compare the SmartCell power and energy consumption performance

with other computing platforms, including FPGA and ASIC. Table 4.4 gives the power

consumption and system throughput of each benchmark, all generated at 100 MHz. Due

to similar algorithm mapping structures and the same simulating frequency, the evaluated

platforms can achieve the same system throughput for all benchmarks except 64-point

FFT. Pipelined FFT is developed in both FPGA and ASIC implementations, which com-

pute the 64-point FFT through 6 pipeline stages and generate 1 output per clock cycle

after system initialization. While in our design, a parallel structure is mapped onto the

SmartCell system, with 32 butterfly units running concurrently. Consequently, 60 clock

cycles are required in the SmartCell to complete 1 block of 64-point FFT, which yields

a throughput of 107 MS/s. Fig. 4.12 compares the power consumption results of these

three platforms, which has been normalized to the results of ASIC implementations. As

expected, the ASIC implementations outperform both SmartCell and FPGA. SmartCell

is about 2.7 ∼ 15.6 less power efficient than ASICs. The maximum gap is observed in the

RC5 application, which is mainly because only logic and addition operators are involved

in ASIC implementation while multipliers are enabled in SmartCell even the results are

not used. On the other hand, SmartCell outperforms FPGA by a factor of 2.7 ∼ 4.8 in

terms of power consumption.

A more meaningful figure is depicted in Fig. 4.13 that compares the average energy

efficiency (GOPS/W) among the evaluated platforms, normalized to FPGA result. As

expected, the ASICs are the most energy efficient among the evaluated platforms. It

provides an average 26.1x energy efficiency gain compared with FPGA results. However,

this performance gain is achieved at a cost of no post fabrication flexibility and high

engineering design cost. The energy efficiency of SmartCell falls somewhere in between.

It is about 4.1x more energy efficient than FPGA but about 6.4x less than the ASIC

implementations. The result demonstrates that the coarse-grained architecture is able to

67

FIR IIR MMM 2D DCT ME FFT PoE RC5
0

10

20

30

40

50

60

70

N
o

rm
a
li
z
e
d

 P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n

ASIC
SmartCell
FPGA

Figure 4.12: Diagram of power comparisons among SmartCell, FPGA and ASICs,
normalized to ASIC results

fill the energy efficiency gap between the fine-grained FPGAs and logic specific ASICs.

FPGA SmartCell ASIC
0

5

10

15

20

25

30

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 E

ff
ic

ie
n

c
y

1

4.1

26.1

Figure 4.13: Diagram of power and energy efficiency comparisons among SmartCell,
FPGA and ASICs, normalized to FPGA result.

68

SmartCell FPGA ASIC
Power Throughput Power Throughput Power Throughput
(mW) (mW) (mW)

FIR 152 100 MS/s 725 100 MS/s 31 100 MS/s
IIR 189 100 MS/s 896 100 MS/s 45 100 MS/s

MMM 143 763 Metrics/s 445 763 Metrics/s 36 763 Metrics/s
2D-DCT 165 2.8 MBlocks/s 795 2.8 MBlocks/s 60 2.8 Mblocks/s

ME 145 3.5 MBlocks/s 573 3.5 MBlocks/s 27 3.5 Mblocks/s
FFT 174 107 MS/s 475 100 MS/s 32 100 MS/s
PoE 150 100 Ms/s 628 100 MS/s 55 100 MS/s
RC5 140 50 MBlocks/s 553 50 MBlocks/s 9 50 MBlocks/s

Table 4.4: SmartCell power consumption and energy efficiency of different bench-
marks at 100 MHz

4.7 Comparison with other CGRAs

In this section, we compare SmartCell with some other CGRA systems, including Mon-

tium and RaPiD. Montium [45] occupies about 1.8 mm2 silicon area with the same 0.13

µm technology as in SmartCell, while RaPiD [35] consumes about 5.7 mm2 in 0.5 µm tech-

nology. The power consumption (PW in mW/MHz) of different benchmarks is given in

Table 4.5. On average, Montium consumes 3.2x and 7.5x less power than SmartCell and

RaPiD, respectively. However, direct comparison of power consumption does not mean

much, due to different system configurations, hardware resources, computing precision,

memory sizes, and etc. For the same reason, the amount of actual operations per second

can not be easily generated to compare the energy efficiency as calculated in Section 4.6.

Instead, a more realistic way is to compare the total energy consumption for the same

amount of tasks. It provides a fair comparison of the relative energy efficiency among

evaluated systems. The system throughput is also calculated and compared based on the

number of clock cycles required to compute the same task.

As listed in Table 4.5, five benchmarks have been mapped onto the SmartCell system.

Three of them are shared by the RaPiD and Montium, individually. Montium achieves

the best power consumption performance, since only 5 ALUs are provided as on-chip

computing resources. The cycle column (Cyc) in the table denotes the number of clock

69

SmartCell RaPiD[35] Montium[45, 81]
PW1 Cyc2 EN3 PW Cyc EN PW Cyc EN

2D DCT 1.65 36 59 4.29 64 275 0.5 96 48
ME 1.46 1156 1688 2.35 1156 2717 - - -
FFT 1.74 60 104 - - - 0.541 192 104

MMM 1.46 33K 48K 4.28 131K 561K - - -
20-tap FIR 1.47 341 501 - - - 0.42 2057 864

Table 4.5: Power and Energy Comparison Among the Evaluated CGRA Systems

cycles needed to compute one data block, except for the FIR filter design. In the 20-

tap FIR benchmark, 2 blocks of 512 samples are used to generate the cycle and energy

figures, as done in [45]. The results demonstrate that in most applications, the SmartCell

requires less clock cycles to finish the same amount of task comparing with the RaPiD and

Montium implementations. This is benefitted from more processing parallelism provided

by SmartCell with reduced computational and configuration complexity. For example, in

SmartCell, three data pipes can be created to process the 20-tap FIR filter in parallel.

On the other hand, a recursive processing scheme was adopted in Montium, since at most

5-tap FIR can be calculated at the same time. This recursive scheme also involves extra

control and data exchange overhead. The energy consumption (EN in nJ) is also compared

in Table 4.5, which is computed as the product of average power consumption and the

processing time calculated by the cycle counts.

The normalized energy consumption is depicted in Fig. 4.14. When Montium is

compared, SmartCell dissipates the same amount of energy in the 64-point FFT and con-

sumes about 18.6% more energy in the 8 by 8 2D DCT. For the 20-tap FIR benchmark,

42.0% energy saving is observed in the SmartCell implementation. On the other hand,

SmartCell always outperforms RaPiD with respect to energy consumption. A maximum

11.7x energy efficiency gain is achieved in the 128 by 128 matrix multiplication. On aver-

age, SmartCell is about 7.8% and 69.3% more energy efficient than Montium and RaPiD,

respectively, for evaluated benchmarks. RaPiD integrated heterogenous computing and

data storage components, in which case the power consumption may not be well balanced

70

among different modules. Its segmented interconnections and single control decoder may

also involve high power consumption and low energy efficiency.

2D DCT ME FFT 128 MMM 20−tap FIR
0

2

4

6

8

10

12

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
fo

r
S

am
e

A
m

ou
nt

 o
f T

as
k

Montium
SmartCell
RaPid

Figure 4.14: Diagram of energy consumption and throughput comparison among
Montium, SmartCell and RapiD, normalized to SmartCell results.

Fig. 4.15 compares the normalized system throughput of different platforms. Smart-

Cell and RaPiD provide same throughput in motion estimation application, due to similar

algorithm mapping structures. SmartCell outperforms both Montium and RaPiD in all

other benchmarks regarding to system throughput. In the FIR application, SmartCell

is about 6x faster than Montium system. SmartCell also shows a maximum throughput

gain of 4.2x over RaPiD system in the matrix multiplication implementations. Averagely,

SmartCell provides about 4.0x and 2.2x throughput gains against the Montium and RaPiD

implementations, respectively.

4.8 Summary

This chapter presented the synthesis results and performance evaluations of the first

SmartCell design. A prototype system with 64 PEs was implemented with TSMC 0.13

71

2D DCT ME FFT MMM 20−tap FIR
0

1

2

3

4

5

6

7

N
o

rm
a

liz
e

d
 S

y
s
te

m
 T

h
ro

u
g

h
p

u
t

Montium
SmartCell
RaPid

Figure 4.15: Diagram of throughput comparison among Montium, SmartCell and
RapiD.

µm technology. It consisted of about 1.6 million gates with an average power consumption

of 1.6 mW/MHz for the evaluated benchmarks. The results showed that the SmartCell is

able to bridge the energy efficiency gap between the fine-grained FGPAs and customized

ASICs. SmartCell achieves 4x and 2x throughput gains and is about 8% and 69% more

energy efficient than Montium and RaPiD, respectively. The results demonstrate that

SmartCell is a promising reconfigurable and energy efficient platform for stream process-

ing.

72

Chapter 5

Design of SmartCell-II

The design of the first SmartCell prototype system with various application mapping

experiences and performance evaluations demonstrates the powerful computing capacity

and flexibility achieved in SmartCell. However, the design experience also reveals some

architecture limitations. For example, lack of on-chip data memory makes it difficult and

not efficient to map large applications directly onto SmartCell, which require memory

storage of intermediate results. Also, the dynamic reconfiguration is not fully studied

in our first SmartCell prototype. Based on these experiences, some modifications have

been made in our second SmartCell design, called SmartCell-II. In this chapter, we firstly

summarize these new features developed in SmartCell-II. The design details are presented

thereafter.

5.1 New Features Developed in SmartCell-II

The initial motivation of SmartCell project is to design a reconfigurable architecture tar-

geting high performance and energy efficient steam processing domain with high data par-

allelism and communication regularity. Although numerous mapping experiences showed

that SmartCell is able to provide a promising solution for the targeted stream processing

domain, some limitations were observed during our design, which hamper the exploration

73

of full capability of SmartCell. The on-chip data memory is not included in the first pro-

totype, based on the fact that in data streaming applications, the intermediate results can

generally be passed directly to next processing unit without local storage requirement.

However, our experience shows that totally eliminating on-chip memory may become an

obstacle for efficient application mapping or for implementation of large size applications.

One example is found in matrix multiplication design. Due to no data memory available,

a 2D systolic array structure is adopted that maps matrix multiplication onto a 4 by 4

systolic array structure. In this case, only 1 out of 4 PEs in the same cell is contributing

to the real computation, while other PEs are bypassing data to the next cell. This systolic

array structure does not take full advantage of the spatial computing ability provided by

SmartCell and results in poor energy efficiency compared with other benchmarks.

The initial FFT mapping showed another example of the limitation without data

memory. 32 Radix-2 butterfly units can be generated in the 4 by 4 SmartCell system to

compute 64-point FFT in parallel. But due to lack of on-chip memories, for larger size

FFTs, the intermediate results have to be output to the off-chip memories (test bench in

our simulation) at the end of each processing stage and to be read back from memories at

the beginning of the next stage. This structure greatly reduces the FFT scalability and

degrades its performance. Besides the on-chip memory requirement, dynamic configura-

tion is not fully studied and evaluated in our first SmartCell implementation. These issues

are addressed in SmartCell-II.

The new features developed in SmartCell-II is summarized as follows:

• Distributed on-chip data memory:

The targeted stream processing has a noticeable characteristic of limited memory re-

quirement compared with traditional general tasks. The temporary results are con-

sumed among processing units and do not need to be frequently exchanged through

external memories. In SmartCell-II, each PE incorporates a 1K bits SRAM data

memory, which can be addressed as 64 16-bit memory locations. Distributed data

74

memory structure is adopted to provide unified memory addressing modes and high

scalability.

• Restructure of instruction format into sections:

A new field is added to existing instruction code to handle the data memory

read/write and address generation. As the control logic getting more complicated,

the instruction format is breakdown into four sections: operation control, on-chip

network control, program control and data memory control. Due to the control

intensive nature, a prototype software compiler, named Smart C, is proposed to

facilitate the generation of configuration contexts. Since multiple components may

share one or more instruction fields, different configuration fields can be separately

generated in Smart C. These fields can then be selected and combined together to

form the entire instruction code for each PE.

• Two reconfiguration modes with memory partitioning for dynamic configuration:

The dynamic reconfiguration is an important feature in CGRA designs. SmartCell-II

revisits this issue and develops two configuration modes: coarse-grained cell broad-

casting mode for SIMD operation and fine-grained ID based configuration for fine

control of each processor in MIMD style. To further alleviate the unbalanced config-

uration delay along the SPI chain, a memory partitioning scheme is also developed

to load new configuration contexts into unused instruction memories without inter-

ruption of current execution. A global select signal is then used to switch between

different configurations in one clock cycle.

75

5.2 Design Details

5.2.1 Design of On-Chip Data Memory

In SmartCell-II, a limited 1Kb data memory is attached to each PE for data storage,

since the processing data are generally resided and consumed locally for the targeted

application domain. As shown in Fig. 5.1(a), the data memory is controlled by the same

configuration context reading from the local instruction memory. The input and output

of the data memory are connected to the on-chip connection. To be more specific, the PE

and memory connection is depicted in Fig. 5.1(b). Each PE has full control of writing and

reading of its own data memory. Moreover, the data read from a memory can be shared

by up to two PEs to provide more data flow flexibility. A two-to-one mux is used to select

one memory data as the PE’s input, based on a 1-bit memory input control from the

instruction code. The synchronous dual-port static RAM (DW ram r w s dff), generated

by Synopsys DesignWare library [13], is adopted to reduce area and power consumption

of the on-chip memory blocks.

Multiple memory addressing modes are developed, as listed in Table 5.1. Four modes

are supported to address the data memory. The direct memory addressing uses the 6-

bit instruction address input (addr) to access the memory location, while the indirect

memory addressing adds an reference address (addr ref) to addr input. The immediate

addressing mode adds addr ref to the current memory location (current addr). At last,

an immediate swap addressing mode is developed to switch memory accesses between

lower and higher sub-blocks with an offset of half memory size. These memory accessing

modes provide a flexible memory control scheme, which in turn improves the instruction

code efficiency and helps to reduce the instruction memory size.

76

Instr.
MEM

Logic
Unit

Arithmetic
Unit

PE Architecture w Data MEM

On-Chip connection

Mux A Mux B

Mux Out

Data
MEM

Instr
Controller

(a)

Data
MEM1

Data
MEM2

Data
MEM3

Data
MEM4

West PE

East PE

North PE

South PE

T
o

 o
u

t-cell n
etw

o
rk

Inter cell PE MEM connection

(b)

Figure 5.1: PE structure and local data memory connections in SmartCell-II. (a)
PE structure with 1K data memory. (b) Inter cell PE and data memory connection.

77

Addressing mode Control code Memory address
Direct 00 addr

Indirect 01 addr + addr ref
Immediate 10 current addr + addr ref

Immediate Swap 11 current addr + addr ref + mem size/2

Table 5.1: Two access modes of data memory addressing in SmartCell-II.

5.2.2 Design of Segmented Instruction Format

As the control logic gets more complex in SmartCell-II, a 98-bit instruction code is designed

with 4 separated configuration fields as shown in Fig. 5.2. The operation and datapath

field controls the functional units, the dataflow and I/O scheduling at PE level. An

12-bit CMesh control field is developed for the on-chip CMesh network configurations,

which include enable signal, switch fabric control, network input/output selection and PE

selection. The PE selection indicates which PE(s) in the same cell is to send/receive data

to/from the CMesh network. A 21-bit program control field is developed for instruction

code scheduling, which provide the min and max active memory address, program counter

(PC max) and loop information. The PC max provides the execution cycle count for

current instruction code. In SmartCell-II, instruction loop is also supported to cyclically

execute multiple contexts specified in the Min/Max address range. The Loop number and

Loop EN fields indicate the iteration number and whether enabled or not. At last, a 25-bit

memory control section is used to provide data memory configurations, with read/write

addresses and accessing modes. The instruction loop and various data addressing modes in

combination greatly improves the efficiency of the instruction code utilization and largely

reduces the instruction memory size even for relatively large applications. Experience

shows that 20 instruction codes are enough for 1024-point FFT mapping.

Partition of instruction code into sections leads to an intuitive insight that for software

compiler design, it is possible to generate the configuration code for each field separately.

These sub-fields can be then properly assembled to build the 98-bit instruction code. This

might ease the configuration process and improve the code sharing capability.

78

0

WEWr_addrRd_addrWr_addr_refRd_addr_refWr_addr_modeRd_addr_mode

1 067121316172021222324

Data memory control (25-bit)

Min_addr

2530 293435

Max_addrPC_maxLoop_mumberLoop_EN

3839444545

Program control (21-bit)

Sel_in_noc

4648 47

Sel_out_nocSwitch_cntrlPE_selCMesh_EN

4953 5054565757

CMesh Control (12-bit)

Input_delay

5860 59

Crossbar_selAdd_cntrLogic/Shift_cntr Output_delayData_flow_cntrData_mem_sel

63 6267 6669 688081959697

Operation and datapath control (40-bit)

0

WEWr_addrRd_addrWr_addr_refRd_addr_refWr_addr_modeRd_addr_mode

1 067121316172021222324

Data memory control (25-bit)

Min_addr

2530 293435

Max_addrPC_maxLoop_mumberLoop_EN

3839444545

Program control (21-bit)

Sel_in_noc

4648 47

Sel_out_nocSwitch_cntrlPE_selCMesh_EN

4953 5054565757

CMesh Control (12-bit)

Input_delay

5860 59

Crossbar_selAdd_cntrLogic/Shift_cntr Output_delayData_flow_cntrData_mem_sel

63 6267 6669 688081959697

Operation and datapath control (40-bit)

Figure 5.2: Segmented instruction format in SmartCell-II

5.2.3 Design of Two Mode Dynamic Reconfiguration

The dynamic configuration was not fully studied and evaluated in our first SmartCell

architecture. In SmartCell-II, we designed a two-mode reconfiguration method in addition

with a memory partitioning scheme to improve the on-line configuration performance.

As discussed in Section 3.4, the on-chip instruction memories are chained from one to

another through the SPI chain. The SPI structure is used for both instruction loading

and updating.

In SmartCell-II, two reconfiguration modes are developed for fine-grained and coarse-

grained configurations, as shown in Fig. 5.3(a) and (b). Some applications require fine

control of individual PE to perform in MIMD style. The ID-based fine-grained configura-

tion is used in this case. The new instruction code and the ID of the PE to be configured

are sent into the SPI chain. PE bypasses the information to the next one until it reaches

the desired PE. On the other hand, a group of PEs is configured to perform the same

operation in the SIMD style for many other applications. To reduce latency, a cell broad-

79

Instruction &
PE_ID ID_1

Instr. MEM

ID_2

Instr. MEM

ID_n

Instr. MEM

ID_N

Instr. MEM Instr. MEM Instr. MEM Instr. MEM

Section select

Instruction &
PE_ID ID_1

Instr. MEM

ID_2

Instr. MEM

ID_n

Instr. MEM

ID_N

Instr. MEM Instr. MEM Instr. MEM Instr. MEM

Section select

(a)
Instruction &

Cell_ID Cell_ID

Instr. MEM Instr. MEM Instr. MEM
PE1

Instr. MEM
PE2

Instr. MEM
PE3

Instr. MEM
PE4

Instr. MEM

Section select

Output to next
cell

Cell

Instruction &
Cell_ID Cell_ID

Instr. MEM Instr. MEM Instr. MEM
PE1

Instr. MEM
PE2

Instr. MEM
PE3

Instr. MEM
PE4

Instr. MEM

Section select

Output to next
cell

Cell

(b)

Figure 5.3: Diagram of dynamic reconfigurations in SmartCell-II. (a) ID-based fine-
grained configuration. (b) Cell broadcasting coarse-grained configuration. A global
select signal is developed for memory partitioning.

casting coarse-grained configuration is designed to concurrently write the reconfiguration

contexts into all instruction memories in the same cell, based on the input Cell ID. In a

4 by 4 SmartCell system, 32 and 8 clock cycles are needed on average for an instruction

code to reach the desired component in fine-grained and coarse-grained modes, respec-

tively. However, the configuring propagation latency is not the same for different PE/Cell

units along the SPI chain: the nearer to the input port, the faster can the configuration

be done. To compromise this unbalanced configuration latency, a memory partitioning

scheme is developed in our design. In this scheme, new instruction codes can be loaded

into the unused context memories while the PEs are still operating in the current con-

texts. Once the new contexts are fully loaded, a global select signal is used to indicate the

change of operation code. The configuration latency is effectively hidden by this means.

Furthermore, multiple applications can be swapped within one clock cycle.

80

5.3 Propose of Smart C Software Environment

Another important aspect in our research is to develop a software programming environ-

ment to assist automatic application mapping onto the SmartCell system. Enlightened

by several existing compiler designs, including AppMapper [65] and SUIF [88], a software

compiler, named Smart C, is proposed to facilitate the configuration context generation in

the targeted application domain. Fig. 5.4(a) represents the general application mapping

flow of the Smart C environment.

App. profiling
& analysis

Parallel exploration
& App. partition

High level App.
description

HW description
& system requirements

Control signal
generation

Context generation

App. mapping

Offline config. Online config.

Config. difference
generation

App. update

Phase II
App. Mapping

Phase I
Profile Analysis

Assembly Code

Config file

(a) (b)

Figure 5.4: Software design flow and application mapping environment for Smart-
Cell. (a) Proposed Smart C software Environment. (b) Example of operation and
datapath context generation from assembly code.

Two phases are included in this design flow: application and architecture analysis

phase (Phase I) and application mapping phase (Phase II). During Phase I, a high level

application description file (preferably in C language) is input into the Smart C environ-

ment. An application abstraction step is performed to parse the input application file

and to extract the work loads from the input application. All candidate loops are broken

81

into linear sequences and the data dependencies among them are also analyzed during this

step. On the other hand, a hardware description and system requirement file is also loaded

into Smart C to generate the hardware abstract, which specifies the computing resources

and IO connections among them. At last, the parallelism/pipeline exploration and parti-

tioning are performed to create task scheduling code based on the hardware and software

abstracts. The communication datapath among active PEs are also scheduled here. The

second application mapping phase transforms the scheduling code into configuring con-

texts that can be directly loaded into the instruction memories. At first, the control signals

are determined for every computing and communication component to form the desired

application datapath. Two modes are provided for offline and online configurations. In

the offline configuration, the context file can be directly downloaded into the instruction

memories for all active PEs. On the other hand, if the online configuration is performed,

the differences between the current context and the generated one are examined. Only

the PEs observing different contexts are needed to be updated.

In our current stage, the application mapping environment (Phase II) has been studied

to generate the configuration contexts from an input assembly code. The four fields in-

volved in a single instruction are generated separately based on the configuration library,

which specifies the available computing operations and I/O models. Fig. 5.4(b) shows an

example to generate the operation and datapath configurations from an assembly code.

Given an application, the designer is responsible to properly partition the kernel opera-

tions onto the PE components and to exploit the data flows among them. After that,

an application assembly code can be created to represent the computing and I/O models

specified in the assembly libraries. According to these models, the context generator is

able to automatically extract the control signals for the computing components from the

input assembly file. Similarly, other fields can be generated based on the communication,

data accessing and program scheduling requirements. These fields are then concatenated

together to create the entire instruction code. The following steps remain the same as de-

scribed earlier for both offline and online configurations. By this means, the configuration

82

overhead can be greatly reduced. The development of the system analysis phase (phase

I) involves lots of experiences on system and task level profiling, workload analysis, task

partitioning and redundancy optimization as usually found in complex compiler designs.

Currently, the Smart C software compiler is still in the initial stage, which points to an

interesting direction in our future research.

5.4 Summary

In recognition of some system limitations from our first SmartCell prototype, this chap-

ter presented SmartCell-II as an improved architecture design with several new features,

including distributed data memory with various addressing modes, segmented instruc-

tion format and improved dynamic configuration schemes. A software compiler, named

Smart C, was also proposed to facilitate the automation of application mapping onto the

SmartCell system.

83

Chapter 6

Matrix Multiplication and FFT on

SmartCell-II

In this chapter, we present the mapping of matrix multiplication and FFT applications

onto the SmartCell-II architecture. The mapping of other applications studied in Section

4.3 remains the same in SmartCell-II, since these applications do not require local data

storage. A sub-block matrix multiplication scheme is adopted with both data-level paral-

lelism and inner cell pipeline structure. For FFT application, a novel parallel algorithm is

presented with optimized data flow pattern and high scalability. The performance analysis

is also presented for these two applications.

6.1 Mapping of Sub-Block Matrix Multiplication

onto SmartCell-II

A broad range of complex scientific and multimedia applications strongly depend on the

performance of matrix-matrix multiplication. In this section, a new mapping scheme of

matrix multiplication is applied on SmartCell-II, based on which the performance analysis

is also provided.

84

Various methods have been proposed in the literature for high performance matrix

multiplication designs, such as Cannon’s algorithm [30], Strassen’s algorithm [82], and

more recently systolic algorithms using special systolic arrays. A sub-block matrix mul-

tiplication scheme is adopted in our design. In this scheme, the operand matrices are

partitioned into smaller sub-matrices, each of which is then processed separately by dif-

ferent hardware resources in parallel. The result matrix is generated into sub-blocks of

regular density matrix. This scheme can be efficiently mapped onto our SmartCell-II

system to exploit both spatial and temporal parallelism to deliver higher computing per-

formance compared with the systolic array structure mapping onto the first SmartCell

prototype. At the same time, it achieves good data reusability among hardware resources,

which avoids high bandwidth external memory requirement.

In our design, the operand matrices A and B are partitioned into sub blocks of 4 rows

and 4 columns respectively, as shown in Fig. 6.1. They are then fed to the computational

resources in column-major and row-major order, respectively, with the timing sequences

from T1 to T4 denoted in the same figure. The independent 4 by 4 sub block results can be

potentially calculated in parallel by different computing resources. Given the SmartCell

architecture, each 4-row and column pair can be efficiently mapped onto the 4 PEs in the

same cell unit.

6.1.1 Mapping Scheme

Mapping of the sub-block matrix multiplication onto a 4 by 4 SmartCell-II system is

illustrated in Fig. 6.2. In this scheme, eight sub blocks of matrix A are concurrently

input to the cell units and each sub block is shared between two vertically placed cells.

Two sub blocks from B matrix are simultaneously broadcast to the rows of cells with one

block shared by two rows. By this means, 16 sub blocks of the result matrix C can be

computed in parallel.

For further performance optimization, inner cell pipeline structure is also exploited.

85

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�	�����	�����	�����	�����

�
�����
�����
�����
�����

�������������������������

��

��

������������������������

�

�

���������������������	���
����

���������������������	���
����

���������������������	���
����

���������������������	���
����

� � � � � � � �

�� ��

�

�������

���

��

��

�

���

�����

���

�����

���

�����

���

�����

�

�

� �	

�

�

�������������������������

�������������������������

�������������������������

�������������������������

�������������������������

�	�����	�����	�����	�����

�
�����
�����
�����
�����

�������������������������

��

��

������������������������

�

�

���������������������	���
����

���������������������	���
����

���������������������	���
����

���������������������	���
����

� � � � � � � �

�� ��

�

�������

���

��

��

�

���

�����

���

�����

���

�����

���

�����

�

�

� �	

�

�

Figure 6.1: Illustration of sub-block matrix multiplication algorithm with timing
information.

������ ������ ������ ������

������ ������ ������ ������

������ ������ ������ ������

������ ������ ������ ������

��

��

��
��
��
��

��
��
�	
�

������ ������ ������ ������

������ ������ ������ ������

������ ������ ������ ������

������ ������ ������ ������

��

��

��
��
��
��

��
��
�	
�

Figure 6.2: Mapping of sub-block matrix multiplication algorithm onto SmartCell-
II.

86

The pipeline structure of one sub block result is illustrated in Fig. 6.3. Initially, element

pair (a11, b11) is loaded into PE1 and generates partial result of c11. The calculated result

is stored in local data memory that can be read back and accumulated during the next loop.

After that, the second pair (a21, b12) is loaded into PE1 and PE2 along with previous

stored input data for the computation of c21 and c12, respectively. The calculations of

4 rows in the result matrix are carried out in 4 pipes. Data used by the previous pipe is

shared by the next pipe during the following time step through the crossbar unit. After

4 time steps, all pipes are filled up with computing data and are able to operate at full

rate. In order to maintain full operation, this scheme only requires input of two external

data in each step as highlighted in red circles in Fig. 6.3.

��� �� ����	

�� ���

������������������������������������

�� ����������

�� ���������������������������������������

	��������	����������	�����������	��������������������������� ���	�����	�������

�������������������������������� 	�������	�����������	��������������������������������� ��������	�����	�������

�� 	��������	�����������	����������������	�����	�������

�������� ��� 	�������		����	������	

���������	����������	����������	��� ������������������������������		���	�������������

�������������������� �	��������!����"�������

�������

�������

#

��� �� ����	

�� ���

������������������������������������

�� ����������

�� ���������������������������������������

	��������	����������	�����������	��������������������������� ���	�����	�������

�������������������������������� 	�������	�����������	��������������������������������� ��������	�����	�������

�� 	��������	�����������	����������������	�����	�������

�������� ��� 	�������		����	������	

���������	����������	����������	��� ������������������������������		���	�������������

�������������������� �	��������!����"�������

�������

�������

#

Figure 6.3: Pipelined computations for one sub-block result of matrix C. The data
in red circle denotes the external inputs during each time step.

6.1.2 Performance Analysis

To evaluate its performance, a 128 by 128 square matrix multiplication is mapped onto

a 4 by 4 SmartCell-II system. In general, each final element requires 128 clock cycles to

finish the 128 MAC operations involved in it. Due to the fully pipelined structure, a 4 by

87

4 sub block result can be calculated in a single cell within 512 clock cycles. The final 128

by 128 matrix C is decomposed into 1024 independent 4 by 4 sub blocks, which can be

calculated by the available 16 cells in parallel. Thus a total number of 32768 clock cycles

is needed to compute a single 128 by 128 matrix multiplication, which leads to a system

throughput of 12.2 KMatrices/s running at 100 MHz. This is 16 times faster than the 763

Matrices/s achieved by the systolic array mapping described in Section 4.3.

6.2 Parallel FFT Algorithm

Discrete Fourier Transform (DFT) is one of the most important digital signal processing

algorithms in many communication and multimedia applications. An N -point DFT is

defined in Eq. 6.1.

X(k) =
N−1∑

n=0

x(n)Wnk
N (6.1)

where x(n) and X(k) are the complex input and output, and the twiddle factor WN =

e−2πi/N . Fast Fourier Transform (FFT) is a fast DFT algorithm that reduces the com-

puting complexity from O(N2) to O(Nlog2(N)). However, the intensive computations are

still the bottleneck for large-size FFT/IFFT designs. Recently, several approaches have

been proposed to compute the FFT in parallel on multi-processor architecture [21, 93, 56,

50, 66]. In this section, we propose a novel parallel FFT algorithm with evenly distributed

computation tasks and optimized data transfer pattern among the processing units. It

can be efficiently mapped onto SmartCell-II and be easily configured for different size of

FFT applications.

6.2.1 Two-Stage Parallel FFT Algorithm

The Decimation-in-Time (DIT) Radix-2 Cooley-Tukey FFT [34] is chosen to be mapped

onto the SmartCell-II architecture. Radix-2 FFT partitions the calculation of N -point

DFT into log2(N) stages, each of which consists of a group of N/2 2-point DFTs, also called

88

butterfly units (BUs). The complex number butterfly calculation is the basic operation

involved in Radix-2 FFT. Comparing with the Decimation-in-Frequency (DIF) FFT, the

DIT FFT achieves a more balanced computing load between the two branches in the

butterfly operation, which makes it more popular in parallel FFT designs. Although

Radix-4 and Radix-8 FFTs are available and require fewer computing stages, they are not

adopted in our design due to higher configuration and communication complexities.

Two steps are developed in the proposed algorithm to compute the FFT transformation

in parallel: local sequential execution and cross parallel execution. Before the transform

begins, the N points input data are evenly distributed to the P butterfly processing

units, with N/P points stored in each BU. During the local sequential execution, the first

log2(N/2P) stages are computed sequentially in each BU operating on N/P locally stored

data. Since each butterfly operation consumes 2 points at a time, we assume both N

and P are power of 2 and satisfy N ≥ 2P and P > 1, without loss of generality. After

the sequential step, a cross parallel execution is performed for the rest log2(2P) stages of

N -point FFT. Cross communication among different BUs are necessary to exchange data

that are more than N/P apart.

Algorithm 2 demonstrates the operations involved in the local sequential execution for

each BU. Before the transform starts, the N -point signals are bit reversed and partitioned

into P sub-blocks. Each N/P sub-block data are fed into one butterfly unit sequentially,

denoted as c[0] to c[N/P − 1] in the algorithm. After the data are completely loaded, the

first log2(N/2P) stages of the original N -point FFT is computed locally inside each BU.

The butterfly function f(c1, c2, w) is defined in Eq. 6.2, where c1 and c2 are two input

branches, and w is the twiddle factor. Two input data are read from two consecutive

memory locations and are written back into two memory locations that are N/2P apart

after processing. All calculations are completely isolated with pure local data accessing.

Thus no cross BU communications are needed during the sequential step. Data level

parallelism is achieved by computing P sub-blocks concurrently in different BUs.

89

f(c1, c2, w) = c1 + w × c2 (6.2)

Algorithm 2 : Local sequential log2(N/2P) Stages

1: Input: c = c[0], c[1],..., c[N/P − 1]
2: Output: c = c[0], c[1],..., c[N/P − 1]
3: for i ← 0 to log2(N/2P)− 1 do
4: for j ← 0 to N/2P − 1 do
5: get w1, w2 based on i, j
6: c[j] = f(c[2j], c[2j + 1], w1)
7: c[j + N/2P] = f(c[2j], c[2j + 1], w2)
8: end for
9: end for

The cross parallel step calculates the remaining log2(2P) stages of the original N -point

FFT, as shown in Algorithm 3. During this step, the intermediate butterfly results need

to be transferred among BUs. We use BU ID to represent the index number of current

BU ranging from 0 to P −1. Two cases are developed based on the number of FFT points

N and the number of butterfly units P . When N is equal to 2P , each BU only processes

two points involved in the butterfly operation. No sequential step is necessary in this case.

The computing and data transfer pattern are listed in Line 25 to 35 in Algorithm 3. On

the other hand, when N is greater than 2P , more than 2 points are stored and processed

by each BU, which requires both sequential and parallel steps. The related cross parallel

execution is listed in Line 6 to 23. The initial iteration(i == 0) calculates the last stage of

the local N/P -point FFT. After that, the data fetching pattern is changed to read from

two memory locations that are N/2P apart due to cross BU communications. In general,

during the cross parallel execution, each BU calculates the butterfly results from its local

data and then forwards the results to two BUs based on its own BU ID.

90

Algorithm 3 : Cross Parallel log2(2P) Stages

1: Input: c = c[0], c[1],..., c[N/P − 1]
2: Output: c = c[0], c[1],..., c[N/P − 1]
3: for i ← 0 to log2(2P)− 1 do
4: for j ← 0 to N/2P − 1 do
5: if (N > 2P) then
6: if (i == 0) then
7: t1 = c[2j]
8: t2 = c[2j + 1]
9: else

10: t1 = c[j]
11: t2 = c[j + N/2P]
12: end if
13: get w1, w2 based on i, j and BU ID
14: k = BU ID
15: r1 = f(t1, t2, w1)
16: r1 = f(t1, t2, w2)
17: if (k mod 2 == 0) then
18: send r1 → c[j] of (k/2)th BU
19: send r2 → c[j] of (k/2 + P/2)th BU
20: else
21: send r1 → c[j + N/2P] of ((k − 1)/2)th BU
22: send r2 → c[j + N/2P] of ((k − 1)/2 + P/2)th BU
23: end if
24: else
25: get w1, w2 from i and BU ID
26: k = BU ID
27: r1 = f(c[0], c[1], w1)
28: r1 = f(c[0], c[1], w2)
29: if (k mod 2 == 0) then
30: send r1 → c[0] of (k/2)th BU
31: send r2 → c[0] of (k/2 + P/2)th BU
32: else
33: send r1 → c[1] of ((k − 1)/2)th BU
34: send r2 → c[1] of ((k − 1)/2 + P/2)th BU
35: end if
36: end if
37: end for
38: end for

6.2.2 Data Transfer Pattern

Besides the computational tasks, data transfer is another important consideration for high

performance parallel FFT design. Efficient data transfer plays a key role in reducing com-91

munication delay and overhead, which in turn improves the overall system throughput.

In this section, we analyze the data transfer pattern during the cross parallel execution.

No cross BU communications are involved in the sequential execution step, since all com-

putations only involve data stored in the local data memory.

The data transfer is described in Line 17 to 23 and Line 29 to 35 in Algorithm 3.

Given the total number of points N and butterfly units P , the destination BUs are only

determined by the current ID k, while the destination memory locations are determined

by the ID k and the iteration number j. The destination BUs and memory locations are

independent on the current FFT stage i. Thus the proposed FFT algorithm achieves a

fixed data transfer pattern at all FFT stages. Fig. 6.4 depicts a data flow example of

8-point FFT with 4 butterfly units. Each BU stores two input data in bit reversed order.

According to the algorithm, BU0 calculates the butterfly results from its local data and

sends them to memory 0 of BU0 and BU2. The same data flow is repeated during stage 2

and 3. Other BUs follow similar fixed data transfer pattern as depicted in the figure. The

two-line crossings in the same color represent the butterfly operations executed by the

same BU. The traditional data transfer pattern for 8-point Radix-2 FFT is drawn in Fig.

6.5(a). In this case, the computing tasks are horizontally partitioned among the BUs,

as highlighted in gray boxes in Fig. 6.4. From stage 1 to stage 2, data are transferred

between (BU0, BU1) and (BU2, BU3) pairs. The pattern changes to (BU0, BU2) and

(BU1, BU3) pairs during the transition from stage 2 to stage 3. On the other hand, a

fixed data transfer pattern is achieved for all transform stages in the proposed parallel

FFT algorithm, as shown in Fig. 6.5(b). The optimized transfer pattern reduces both

communication and configuration overhead, especially for large size FFTs.

6.2.3 FFT Mapping and Performance Analysis

The Radix-2 FFT butterfly calculation is formulated in Eq. 6.3. The complex number

operation can be optimized into four real multiplications and six real additions. In our

92

-1w8
0

x(0)

w8
0

w8
0

w8
0

w8
0

w8
2

w8
0

w8
2

-1

-1

-1 -1

-1

-1

-1

w8
0

w8
1

w8
2

w8
3

-1

-1

-1

-1

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

BU0_0 x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

BU0_1

BU1_0

BU1_1

BU2_0

BU2_1

BU3_0

BU3_1

BU0_0

BU0_1

BU1_0

BU1_1

BU2_0

BU2_1

BU3_0

BU3_1

BU0_0

BU2_0

BU0_1

BU2_1

BU1_0

BU3_0

BU1_1

BU3_1

BU0_0

BU1_0

BU2_0

BU3_0

BU0_1

BU1_1

BU2_1

BU3_1

Stage1 Stage2 Stage3

BU0

BU1

BU2

BU3

BU0

BU1

BU2

BU3

-1w8
0

x(0)

w8
0

w8
0

w8
0

w8
0

w8
2

w8
0

w8
2

-1

-1

-1 -1

-1

-1

-1

w8
0

w8
1

w8
2

w8
3

-1

-1

-1

-1

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

BU0_0 x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

BU0_1

BU1_0

BU1_1

BU2_0

BU2_1

BU3_0

BU3_1

BU0_0

BU0_1

BU1_0

BU1_1

BU2_0

BU2_1

BU3_0

BU3_1

BU0_0

BU2_0

BU0_1

BU2_1

BU1_0

BU3_0

BU1_1

BU3_1

BU0_0

BU1_0

BU2_0

BU3_0

BU0_1

BU1_1

BU2_1

BU3_1

Stage1 Stage2 Stage3

BU0

BU1

BU2

BU3

BU0

BU1

BU2

BU3

-1w8
0

x(0)

w8
0

w8
0

w8
0

w8
0

w8
2

w8
0

w8
2

-1

-1

-1 -1

-1

-1

-1

w8
0

w8
1

w8
2

w8
3

-1

-1

-1

-1

x(4)

x(2)

x(6)

x(1)

x(3)

x(5)

x(7)

BU0_0 x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

BU0_1

BU1_0

BU1_1

BU2_0

BU2_1

BU3_0

BU3_1

BU0_0

BU0_1

BU1_0

BU1_1

BU2_0

BU2_1

BU3_0

BU3_1

BU0_0

BU2_0

BU0_1

BU2_1

BU1_0

BU3_0

BU1_1

BU3_1

BU0_0

BU1_0

BU2_0

BU3_0

BU0_1

BU1_1

BU2_1

BU3_1

Stage1 Stage2 Stage3

BU0

BU1

BU2

BU3

BU0

BU1

BU2

BU3

Figure 6.4: An example of Radix-2 8-point FFT butterfly structure with data flows.

design, two PEs are used to calculate the butterfly results in a sequential manner. Fig. 6.6

depicts one possible implementation with data flow scheduling. The real and imaginary

parts of the output signals can be processed in parallel. The intermediate results are shared

between these two PEs through the inner cell crossbar unit. In this way, two butterfly

units can be mapped onto the 4 PEs in the same cell. To perform FFT on SmartCell-II

architecture, the input data are partitioned into consecutive chunks, each of which is then

loaded into the data memories of two PEs performing the same butterfly operation. The

sequential execution starts after the input data are fully loaded. Since the data processing

is isolated inside the local PEs, no cross cell communications are involved during this

step. After the local sequential step is finished, the FFT butterfly needs to transfer data

between PEs in multiple cells. Due to the fixed communication pattern, the intermediate

results can be efficiently exchanged through either nearest neighbor connection or CMesh

network within 1 hop distance. No extra communication and configuration overhead are

involved.

93

BF0 BF1

BF2 BF3

BU0 BU1

BU2 BF3

BF0 BF1

BF2 BU3

Stage1-2 Stage2-3

BU0 BU1

BU2 BF3

BF0 BF1

BF2 BU3

Stage1-2 Stage2-3

(a) (b)

Figure 6.5: Data transfer pattern for 8-point FFT. (a) Traditional communication
pattern. (b) Optimized fixed data flow in the proposed FFT alrogithm.

RA′ = RA + RBRW − IBIW

IA′ = IA + IBRW + RBIW

RB′ = RA −RBRW + IBIW

IB′ = IA − IBRW −RBIW

(6.3)

Scalability is an important performance criterium for FFT designs. For the proposed

parallel FFT algorithm, SmartCell-II is able to implement FFT of any sizes as long as

the input data can be fully stored into the on-chip data memories. Larger size FFTs are

able to be implemented with the help of additional external memories and control logic.

By changing several loop control parameters, SmartCell-II can be easily reconfigured to

compute a different size FFT. To analyze its performance, a 1024-pt FFT is mapped onto

a 4 by 4 SmartCell with 1K data memory attached to each PE. In this case, 32 butterfly

units are available to compute the FFT in parallel. The first 4 stages of the 1024 FFT

are carried out locally in each cell with 6 cycles for a single butterfly operation. During

the cross parallel execution, the butterfly operation still takes 6 cycles to finish since all

communication is within one hop distance in the CMesh network. Simulation results show

that a block of 1024-pt FFT can be finished in 992 clock cycles, which leads to a system

throughput of 101 KBlocks/s operating at 100 MHz.

94

RBTime step RW

t1

RA

×
D

×
D

−
D

−
D

+
D

RA’ RB’

I B RW

×
D

×
D

D

IA

+
D

I A’

−
D

I B’

PE1 PE2

I w

t2

t3

t4

t5

+

RBTime step RW

t1

RA

××
DD

××
DD

−−
DD

−−
DD

++
DD

RA’ RB’

I B RW

××
DD

××
DD

DD

IA

++
DD

I A’

−−
DD

I B’

PE1 PE2

I w

t2

t3

t4

t5

++

Figure 6.6: Mapping of butterfly operation onto two PEs in one cell.

6.3 Summary

This chapter presented the mapping of two computing intensive applications onto SmartCell-

II system, including matrix multiplication and FFT. The sub-block matrix multiplication

algorithm was adopted to exploit both temporal and spatial parallelism on SmartCell.

The new matrix multiplication mapping achieved a 16x throughput gain, compared with

the first SmartCell prototype results. For FFT application, a two-stage parallel algorithm

was proposed to provide balanced workload among processing units with fixed data flow

pattern among different processing stages. The mapping of proposed FFT algorithm onto

SmartCell-II was also discussed in details.

95

Chapter 7

SmartCell-II Experimental

Results and Evaluations

A 4 by 4 SmartCell-II system was developed and synthesized in standard cell ASICs, with

similar design and verification methodologies described in Section 4.1 and 4.2. The

area and timing performance was provided based on the synthesis reports. The proposed

parallel FFT algorithm was manually mapped onto the prototype system for performance

evaluations. Up to 1024-pt FFT can be directly implemented in our current design. We

also compared the system throughput with some other FFT implementations, including

FPGA, DSP, NoC [21] and MorphoSys [50] platforms. The reason to choose NoC and

MorphoSys FFTs is that both of them present parallel FFT implementations with the

same amount of processing elements as used in the SmartCell system. At last, the energy

efficiency was compared among SmartCell, Xilinx Virtex II Pro FPGA [89] and TI’s C6x

DSPs [47] based on these FFT benchmarks.

96

7.1 Synthesis Results

SmartCell-II was developed and synthesized with standard CAD tools. A functional RTL

model was firstly designed in hardware description language (HDL) and was then syn-

thesized in Synopsys DesignCompiler to generate the CMOS standard cell ASICs using

TSMC 90 nm technology. The area and timing results were generated by DesignCompiler

using worst case conditions.

According to the synthesis results, the prototype SmartCell-II occupies about 5.0 mm2,

which is about 2.0 million gates. The system area, separated into PE, on-chip memory

and interconnections, is shown in Fig. 7.1(a). About half of the total area is consumed

by the on-chip data and instruction memories. The processing units and the hierarchical

interconnection networks roughly consist of 43% and 9% in the total area, respectively.

Experiments showed that the FFT benchmarks were able to fully operate at up to 295

MHz. In terms of dynamic reconfiguration, SmartCell-II can be reconfigured to a different

size FFT in 90 clock cycles, which is within 1 µs running at 100 MHz.

Processing unit 43%

Interconnection 9%

On−chip instruction and
data memory 48%

Total area is 5.0 mm 2

Processing unit 32%

 On−chip instruction and
 data memory 37%

Interconnection 16%

Static power 15%

Total power is 3.1 mW/MHz

(a) (b)

Figure 7.1: Area and average power consumption of the SmartCell-II prototype. (a)
Area breakdown (b) Average power consumption breakdown at 100 MHz.

97

The power consumption of SmartCell-II for the evaluated FFT benchmarks is esti-

mated in Synopsys PrimePower based on the netlist annotation from gate level simula-

tions. Fig. 7.1(b) shows the processing units consume about 32% of total power, while the

on-chip memories consume about 37% of the total power. Due to technology shrink, the

static power increased from 6% to 15% compared with our first implementation described

in Section 4.5. On average, SmartCell-II consumes 3.1 mW/MHz for the evaluated FFT

benchmarks.

Table 7.1 compares the synthesis results between the two SmartCell prototype sys-

tems. In SmartCell-II, the gate count has increased from 1.6 million to 2.0 million mainly

caused by the on-chip data memory increases. For the same reason, more power is con-

sumed by SmartCell-II. The maximum frequency achieved in SmartCell-II is about 2.4

times higher than the first implementation because of design optimizations and process

shrinking. The dynamic configuration of SmartCell-II is also 10 times faster than before

benefitting from the fine and coarse-grained configuration schemes.

SmartCell SmartCell-II
Process 130 nm 90 nm

Dimension 4 by 4 4 by 4 with 64K data memory
Gate Count 1.6 Million 2.0 Million

Power 1.6 mW/MHz 3.1 mW/MHz
Max Freq. 123 MHz 295 MHz

Dyn. Config @ 100MHz ∼10 µs ∼1 µs

Table 7.1: Comparison of two SmartCell prototype systems.

7.2 Comparison with FPGA

In this section, we compare the system throughput and energy efficiency results between

SmartCell-II and FPGAs. The Xilinx’s Virtex II Pro XC2VP20 FPGA [89] was selected

as the benchmark platform. The FFT of different sizes was generated from CoreGen in

Xilinx’s ISE 10.1 CAD tool [11]. Pipelined FFT architecture was adopted in the FPGA

98

implementations with log2(N) butterfly stages chained in a pipeline structure. Synthesis

results showed that a maximum frequency of 256 MHz can be achieved by FPGA for the

evaluated FFT benchmarks.

Fig. 7.2 compares the per-block FFT processing time between FFT and SmartCell-II.

SmartCell-II is able to compute a 64-pt FFT in 38 cycles, while 64 cycles are needed in

FPGAs. With both running at maximum frequencies, SmartCell-II achieves a maximum

throughput gain of 1.9 compared with FPGA. On average, SmartCell-II is about 1.5 times

faster than FPGA implementations for the evaluated benchmarks. Moreover, due to its

unbalanced memory loads and intensive control requirements, the pipelined FFT is not

suited for reconfigurable architectures especially when the number of points needs to be

changed on the fly.

64−pt 128−pt 256−pt 512−pt 1024−pt
0

2

4

6

8

10

12

P
ro

c
e

s
s
in

g
 T

im
e

 f
o

r
O

n
e

 D
a

ta
 B

lo
c
k
(

µ
s
e

c
)

SmartCell−II @295 MHz
SmartCell−II @100 MHz
Xilinx VirtexII Pro @256MHz
Xilinx VirtexII Pro @100MHz

Figure 7.2: Processing time comparison between SmartCell-II and FPGA for the
evaluated FFT benchmarks.

Fig. 7.3 compares the FFT energy consumption for one data block between SmartCell-

II and FPGA operating at 100 MHz. The Xilinx XPower Analyzer was used to evaluate the

FPGA power consumption based on the switching annotation from gate level simulations.

Only the core power consumption was recorded in FPGA designs for fair comparison.

99

In 64-pt FFT, SmartCell-II consumes 77.3% less energy than FPGA, since limited data

memories are used in SmartCell-II for this case. On average, SmartCell-II is about 3.6

times more energy efficient than the fine-grained FPGA. Results show that SmartCell-II

achieves an average energy efficiency of about 20.6 GOPS/W for all benchmarks under

test.

64−pt 128−pt 256−pt 512−pt 1024−pt
0

2000

4000

6000

8000

10000

12000

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 f

o
r

O
n

e
 D

a
ta

 B
lo

c
k
(

µ
J
/B

lo
c
k
)

SmartCell−II
Xilinx VirtexII Pro FPGA

Figure 7.3: Energy consumption comparison between SmartCell-II and FPGA.

7.3 Comparison with DSP

The system throughput and energy efficiency for the FFT benchmarks were also com-

pared between SmartCell-II and general purpose DSPs, including TI’s TMS320C6203TM

and TMS320C6713TM [47]. The reason to choose these two DSPs to compare with was

that they are targeted at high performance signal processing applications through the ad-

vanced VLIW architecture and the Radix-2 FFT benchmark results are provided by the

vendor [14, 15]. The 8-way VLIW structure includes 8 data processing units that can be

configured to perform 8 MAC operations at the same time. Fig. 7.4 compares the FFT

processing time for one data block between SmartCell-II and DSPs. We assume the DSP is

100

operating at the highest frequency of 300 MHz specified in the data sheet. In terms of cycle

counts, TMS320C6713 needs 20522 cycles to compute 1024-pt FFT, while SmartCell-II

only requires 992 cycles. When the maximum frequency is used, SmartCell-II is about

20.8 times faster than the DSP based implementations. According to datasheet, the typi-

cal core power consumption for TMS320C6203 and TMS320C6713 is about 5.3 mW/MHz

and 4.3 mW/MHz, respectively. Fig. 7.5 compares the per-block energy consumption

between SmartCell-II and DSPs. The results showed that, on average, SmartCell-II is

about 36.8 and 28.9 times more energy efficient than TMS320C6203 and TMS320C6713

DSPs, respectively.

64−pt 128−pt 256−pt 512−pt 1024−pt
0

10

20

30

40

50

60

70

P
ro

c
e

s
s
in

g
 T

im
e

 P
e

r
B

lo
c
k
 (

µ
s
e

c
)

SmartCell−II @295 MHz
SmartCell−II @100 MHz
TMS320C6713 @300MHz
TMS320C6203 @300MHz

Figure 7.4: Processing time comparison between SmartCell-II and TI DSPs for the
evaluated FFT benchmarks.

7.4 Comparison with other Parallel FFT Platforms

At last, we compared the system throughput of SmartCell-II with other parallel FFT im-

plementations, including NoC [21] and MorphoSys [50] platforms. Due to different operat-

ing frequencies, the number of clock cycles required to finish one data block was compared.

101

64−pt 128−pt 256−pt 512−pt 1024−pt
0

2

4

6

8

10

12
x 10

4

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 P

e
r

B
lo

c
k
(

µ
J
/B

lo
c
k
)

SmartCell−II
TMS320C6713
TMS320C6203

Figure 7.5: Energy consumption comparison between SmartCell-II and TI DSPs.

Table 7.2 lists the system throughput among different FFT platforms. SmartCell-II out-

performs both NoC and MorphoSys platforms in all benchmark FFTs regarding to system

throughput. SmartCell-II achieves a maximum 24.1 times throughput gain than the NoC

implementation in 256-pt FFT. On average, SmartCell-II is about 2.7x faster comparing

with the coarse-grained MorphoSys implementation. These performance gains are mainly

benefited from reduced communication and configuration overhead by the proposed par-

allel FFT algorithm.

FFT SmartCell-II MorphoSys [50] NoC [21]
Size
64 38 111 -
128 88 225 -
256 200 520 4827
512 448 1222 5702
1024 992 2613 7726

Table 7.2: Cycle counts comparison among different parallel FFT platforms.

102

7.5 Summary

In this chapter, we presented the prototype results of the SmartCell-II system with 64 PEs

implemented in standard cell ASICs with TSMC 90 nm technology. The proposed FFT

algorithm with different sizes were mapped onto the prototype SmartCell-II device. For

the evaluated FFT benchmarks, SmartCell-II dissipates about 310 mW power operating

at 100 MHz achieving an energy efficiency of 20.6 GOPS/W. Comparing with other FFT

implementations, SmartCell-II is about 14.9 and 2.7 times faster than the parallel FFT

implementations in NoC and MorphoSys, respectively. SmartCell-II is also about 3.6 and

28.9 times more energy efficient than the FPGA and DSP based implementations. The

results again demonstrate that SmartCell is a promising reconfigurable and energy efficient

computing platform for data streaming applications.

103

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This dissertation presents the SmartCell architecture design, application mapping, perfor-

mance analysis and evaluation of a coarse-grained reconfigurable architecture for stream

processing applications.

SmartCell integrates a large number of homogenous cell units onto the same chip in

a 2D mesh structure. In each core, four processing units are placed at the four edges, at-

tached with their own instruction and data memories. Benefiting from this unique system

structure, a hierarchical configurable network has been developed in SmartCell, which

includes three level of interconnections: fully connected crossbar inside a cell, nearest

neighbor connection among adjacent cells and clustered mesh network for non-adjacent

cell units. The cell broadcasting and ID-based configurations were also developed for dy-

namic reconfiguration to address various control requirements. SmartCell are flexible to

exploit deep pipeline and large amount of parallelism with various operation modes. In

combination of these features, SmartCell is able to achieve high energy efficiency while

maintaining high computational performance, which is well suited for the computing in-

tensive data streaming applications with stringent power budget.

104

In our research, a set of benchmark applications has been successfully designed and

mapped onto the SmartCell system, representing a wide range of real-time applications

from signal processing, multimedia application to scientific computing and data encryp-

tion. To achieve best performance, SmartCell was designed to operate under various

modes in these benchmarks, including pipelined structure, SIMD mode, 1D or 2D systolic

array structures, which demonstrates the flexibility provided by SmartCell through the

resource reorganization and hierarchical on-chip networks. A novel two-step parallel FFT

algorithm has also been proposed in this dissertation that distributes the transform task

onto multi-core systems for parallel computing. The proposed algorithm achieves balanced

workload and fixed data flow throughout different FFT stages. Analysis showed that the

proposed algorithm is able to improve the scalability and greatly reduce the communica-

tion and configuration overhead. This algorithm has been successfully mapped onto the

SmartCell-II system.

A prototype SmartCell system with 64 PEs was initially developed in standard cell

ASICs with TSMC 0.13 µm technology. The chip consists of 1.6 million gates with an

average power consumption of 1.6 mW/MHz for the applications under test. SmartCell

achieves a peak performance of 45.7 GOPS/W. Furthermore, it is about 4.1x more energy

efficient than the fine-grained FPGA and is about 6.4x less efficient than the fixed function

ASICs. When compared with other CGRAs, SmartCell achieves 4x and 2x throughput

gains and is about 8% and 69% more energy efficient than Montium and RaPiD CGRAs,

respectively. These results showed that SmartCell is able to provide a promising solution

in the stream processing domain to achieve the high performance and energy efficiency

requirements.

Despite the performance advantages, some limitations were also observed from the ex-

periences of the first SmartCell implementation. For example, eliminating of on-chip data

memory makes it difficult to map large size application onto SmartCell. During dynamic

configuration, unbalanced delays were observed for different PEs along the SPI chain.

To address these issues, we developed SmartCell-II, the second generation of SmartCell,

105

with distributed data memory, segmented instruction formats and various configuration

schemes for dynamic reconfiguration. Four data addressing modes were developed for

flexible data memory accessing. New instruction loop logics were also designed to improve

the efficiency of the instruction code utilization, which in turn reduces the instruction

memory requirements.

A 4 by 4 SmartCell-II prototype system was implemented in standard cell ASICs with

TSMC 90 nm technology. The proposed FFT algorithm with different sizes were mapped

onto the prototype SmartCell-II device. The synthesis results showed that SmartCell-II

dissipates about 3.1 mW/MHz power and can be operated at up to 295 MHz. It is about

5.0 mm2 with roughly 2.0 million gates. Compared with other FFT implementations,

SmartCell-II is about 14.9 and 2.7 times faster than the parallel FFTs implemented by

NoC and MorphoSys, respectively. SmartCell-II is also about 3.6 and 28.9 times more

energy efficient than FPGA and DSP based implementations.

8.2 Future Work

There are quite a few interesting research topics led by this work that are worthwhile for

future investigations.

8.2.1 Design of a Complete SmartCell System

This dissertation presented the architecture design of SmartCell core module and evalu-

ated its performance based on synthesis results. One important area of future work would

be a complete system design and integration. For the SmartCell core processors, the syn-

thesized front end netlist file can be imported into the back end design CAD tools, such as

Cadence Encounter [7] or Synopsys Astro [8], for automatic logic optimization (both tim-

ing and power), floorplanning, placing, clock tree insertion, routing, chip I/O packaging,

and etc. Several power management schemes can be applied during the back end design

to further improve the power and energy efficiency. At system level, dynamic power man-

106

agement (DPM) can be developed to selectively turn on and off system components based

on workload requirement, such as voltage scaling, multiple voltage supplies and software

power management [25, 67]. On the other hand, several logic level techniques can be

adopted to reduce power consumption, such as memory block structuring, pre-computing

[43, 70]. The results from the back end design can be then sent to foundry company for

taping out.

Besides the physical design and implementation of the core processor module, another

important area of future work would be to integrate the SmartCell core with other con-

troller and memory modules to build a complete system. Fig. 8.1(a) depicts one possible

solution. An ARM or MIPS processor can be used to handle the control and configu-

ration of SmartCell. The control processor can also be used to execute some sequential

application tasks that are not suited for parallel computing. An external memory block

will be integrated into the system to provide off-chip data storage. The memory can be

connected to the SmartCell core through a Direct Memory Accessing (DMA) controller to

build high-bandwidth memory interface. Given the nature of the targeted applications, a

high speed I/O design is essential to provide high data communication bandwidth. Fig.

8.1(b) proposes an I/O structure design, which tries to shed light on the high speed I/O

designs for stream processing. This I/O structure includes high speed low power PCI-E

interface [52], two channel DDR2 memory interface and other on-chip configuration ports.

Limited parallel I/Os will also be included to selectively route the critical internal signals

to the chip I/O pads for real-time system monitoring.

8.2.2 Software Support for SmartCell

The development of the software programming environment is another interesting direc-

tion for our future work. In Section 5.3, Smart C software compiler is proposed to assist

the automation of application mapping onto the SmartCell system. Two phases are in-

volved in the software design flow, with application and architecture analysis phase to

107

Control
Processor

SmartCell

Memory

Contr

Data

D
M

A

SmartCell

DDR2 DIMM

DDR2 DIMM

PCI-E

High speed
Input/output

Config Interface

Parallel I/O

133

133

98

n n

SmartCell

DDR2 DIMM

DDR2 DIMM

PCI-E

High speed
Input/output

Config Interface

Parallel I/O

133

133

98

n n

(a) (b)

Figure 8.1: Propose of an integration structure for SmartCell system with high
speed I/O designs for future research directions. (a) Integration of SmartCell core,
microcontroller and data memory into the same system. (b) High speed I/O design
for off-chip data transmission and system configurations.

parse the workload onto different hardware resources and a second application mapping

phase to generate the configuration contexts that can be directly loaded into the Smart-

Cell instruction memories. Due to the reconfigurable nature, hardware description library

needs to be developed to describe different resource primitives, probably including the

computing configuration, communication configuration, data memory configuration and

program control configuration. A compiler algorithm needs to be developed that takes a

hardware configuration file and a software construct file (preferably in C) as inputs and

generates a run-time scheduling file to be mapped onto the predefined resource libraries.

Benefitting from the regular tile structure and uniformed control logic, SmartCell can be

configured to accommodate different system requirements of high performance or ultra

low power consumption. The compiler needs to be robust enough to take advantage of

this hardware flexibility. One solution would be that the compiler reads in a system con-

straint file, specifying the system requirements, available hardware resources and targeted

frequency, based on which the configuration contexts are generated to satisfy these system

requirements. Hardware virtualization also needs to be handled by the compiler to sep-

arate large computational tasks into smaller ones that can fit on the hardware resources

and be processed individually. The optimization of task partitioning and scheduling needs

108

to be addressed to exploit both spatial and temporal parallelism offered by SmartCell.

Other issues, such as loop breaking, redundancy optimization and task partitioning, also

need to be addressed in the future Smart C compiler design.

8.2.3 Scalability

The last but not least area of future work involves the investigation of the scalability of

SmartCell. The 2D tiled architecture is able to provide good scalability. The distributed

on-chip memory is also much more flexible to be scaled up or down to fit different storage

requirements compared with shared memory scheme with centralized control structure.

But some other issues are needed to be considered. As the system scales up, the clock

distribution becomes more and more complex in synchronized architecture, which becomes

an obstacle for performance improvement and energy efficiency. To address this issue, some

asynchronous architectures [90, 49] has been proposed to separate the processing blocks

such that each block is locally synchronized by an independent clock domain. This scheme

eliminates the global clock distribution and has the potential to achieve better scalability

and performance efficiency. This is an interesting direction for future SmartCell research.

Currently, the static routing is designed in SmartCell to deterministically route data

packages from one component to another to build an efficient interconnection with small

latency and area cost. But as the system scales up, the static routing may become more

and more challenging for the compiler to generate the routing controls for each individual

component. The dynamic routing may provide an alternative solution to dynamically

generate the data path based on local traffic information. By this means, only the source

and destination locations need to be specified to initialize a data transfer, which greatly

releases the configuration stress and improves system flexibility. However, dynamic routing

introduces non-negligible overhead in terms of circuitry area and communication delays

that need to be fully studied in the future work.

109

Bibliography

[1] CPU power consumption: http://en.wikipedia.org/wiki/CPU power dissipation.

[2] http://www.xilinx.com/products/silicon solutions/fpgas/virtex/virtex4.

[3] http://www.xilinx.com/products/silicon solutions/fpgas/virtex/virtex5.

[4] http://www.altera.com/products/devices/stratix2/st2-index.jsp.

[5] NVIDIA Inc. http://www.nvidia.com/page/geforce 8800.html.

[6] AMD Inc. http://www.amd.com/us/fusion/Pages/index.aspx.

[7] http://www.cadence.com/products/di/soc encounter/pages/default.aspx.

[8] http://solvnet.synopsys.com/dow retrieve/C-2009.03/ni/psyn.html#Astro.

[9] “Arrix family product brief,” Mathstar Inc. http://www.mathstar.com/.

[10] “ATI Stream developer forum,” AMD Inc. http://www.amd.com/streamdevforum.

[11] “ISE Design Suite 10.1 guide,” Xilinx Inc. http://www.xilinx.com/support/software manuals.htm.

[12] “KC256 technical overview,” Rapport Inc. http://www.rapportincorporated.com/.

[13] “Synopsys Inc. DsignWare Datasheet, version A2007.12DWDoc0803.”

[14] “TMS320C62x DSPs C62x core benchmarks from texas instruments,” Texas Instru-

ments Inc. http://www.ti.com.

110

[15] “TMS320C67x floating point DSPs C67x core benchmarks,” Texas Instruments Inc.

http://www.ti.com.

[16] “AMD Athlon 64 X2 Dual-Core Processor Product Data Sheet,” 2005.

[17] “NVIDIA Inc. NVIDIA CUDA programming guide 2.0,” 2008.

[18] S. Agarwala, T. Anderson, A. Hill, M. D. Ales, R. Damodaran, P. Wiley, S. Mullinnix,

J. Leach, A. Lell, M. Gill, A. Rajagopal, A. Chachad, M. Agarwala, J. Apostol,

M. Krishnan, D. Bui, Q. An, N. S. Nagaraj, T. Wolf, and T. T. Elappuparackal, “A

600-MHz VLIW DSP,” IEEE Journal of Solid-State Circuits, pp. 1532–1544, 2002.

[19] S. Agarwala and etc., “A 65nm c64x+ multi-core DSP platform for communication

infrastructure,” In procedding of IEEE International Solid-State Circuits Conference,

2007.

[20] J. H. Ahn, W. J. Dally, B. Khailany, U. J. Kapasi, and A. Das, “Evaluating the

imagine stream architecture,” In procedding of International Symposium on Computer

Architecture, 2004.

[21] J. Bahn, J. Yang, and N. Bagherzadeh, “Parallel FFT Algorithms on Network-on-

Chips,” In Proceedings of IEEE Fifth International Conference on Information Tech-

nology, pp. 1087–1093, 2008.

[22] J. Balfour and W. Dally, “Design tradeoffs for tiled CMP on-chip networks,” In

Proceedings of the 20th annual international conference on Supercomputing, pp. 187–

198, 2006.

[23] M. Bayoumi and N. Ling, “Specification and verification of systolic arrays,” World

Scientific Publishing Singapore, 1999.

[24] J. Becker and M. Vorbach, “Architecture, memory and interface technology integra-

tion of an industrial/academic configurable system-on-chip (CSoC),” In Proceedings

of the IEEE Computer Society Annual Symposium on VLSI, pp. 107–112, 2003.

111

[25] L. Benini, A. Bogliolo, and G. D. micheli, “A survey of design techniques for system-

level dynamic power management,” in Proceedings of IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, pp. 299–316, 2000.

[26] V. Bhaskaran and K. Konstantinides, “Image and Video Compression Standards

algorithms and architecture - Second Edition,” Kluwer Academic Publishers, 1999.

[27] T. Bjerregarrd and S. Mahadevan, “A survey fo research and practices of Network-

on-Chip,” ACM Computing Surveys, 2006.

[28] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architecture explo-

ration of the ADRES coarse-grained reconfigurable array,” Springer Reconfigurable

Computing: Architectures, Tools and Applications, pp. 1–13, 2007.

[29] F. Bouwens, M. Berekovic, B. Sutter, and G. Gaydadjiev, “Architecture Enhance-

ments for the ADRES Coarse-Grained Reconfigurable Array,” Springer: Lecture

Notes in Computer Science, pp. 61–61, 2008.

[30] L. Cannon, “A cellular computer to implement the kalman filter algorithm,” Technical

report, Ph.D. Thesis, Montana State University, 1969.

[31] E. Caspi, M. Chu, R. Huang, J. Yeh, Y. Markovskiy, J. Wawrzynek, and A. DeHon,

“Stream computations organized for reconfigurable execution (SCORE): Introduction

and tutorial,” Web resourse: Extended version of Stream Computations Organized for

Reconfigurable Execution (SCORE): Extended Abstract, in FPL 2000, 2000.

[32] D. Chinnery and K. Keutzer, “Closing the gap between ASIC and custom: An ASIC

perspective,” In Proceedings of 37th Design Automation Conference, pp. 637–641,

2000.

[33] G. Chiu, “The odd-even trun model for adaptive routing,” IEEE Transactions on

Parallel and Distributed Sysmtems, pp. 729–738, 2000.

112

[34] J. Cooley and J. Tukey, “An algorithm for the machine calculation of complex Fourier

series,” Math. Comput, pp. 297–301, 1965.

[35] D. Cronquist, C. fisher, M. Figueroa, P. Franklin, and C. Ebeling, “Architecture

design of reconfigurable pipelined datapaths,” In Proceedings of the 20th Anniversary

Conference on Advanced Research in VLSI, pp. 23–40, 1999.

[36] W. J. Dally and A. Chang, “The role of custom designs in ASIC chips,” In Proceedings

of 37th Design Automation Conference, pp. 643–647, 2000.

[37] A. DeHon, “Reconfigurable Achitectures for General Purpose Computing,” MIT AI

Lab Report no. AR 1586, 1996.

[38] A. DeHon, Y. Markovsky, E. Caspi, M. Chu, R. Huang, S. Perissakis, L. Pozzi, J. Yeh,

and J. Wawrzynek, “Stream computations organized for reconfigurable execution,”

Elsevier Microprocessors and Microsystems, vol. 30, no. 6, pp. 334–354, 2006.

[39] J. Draper, J. Sondeen, S. Mediratta, and I. Kim, “Implementation of a 32-bit RISC

processor for the data-intensive architecture processing-in-memory chip,” In Proceed-

ings of the IEEE Low Power Electronics and Design, pp. 161–166, 2005.

[40] C. Fisher, K. Rennie, G. Xing, S. Berg, K. Bolding, J. Naegle, D. Parshall, D. Port-

nov, A. Sulejmanpasic, and C. Ebeling, “Emulator for exploring RaPiD configurable

computing architectures,” In Proceedings of the 11th International Conference on

Field-Programmable Logic and Applications, pp. 17–26, 2001.

[41] C. Glass and L. Ni, “The turn model for adaptive routing,” In proceedings of the 19th

annual international symposium on Computer architecture, pp. 278–287, 1992.

[42] I. Gopal, “Prevention of store-and-forward deadlock in computer networks,” IEEE

Transaction on Communications, pp. 1258–1264, 2007.

[43] S. Hanson, B. Zhai, D. Blaauw, and D. Sylvester, “Energy-Optimal Circuit Design,”

in Proceedings of IEEE International Symposium on System-on-Chip, pp. 1–4, 2007.

113

[44] R. Hartenstein, “A decade of reconfigurable computing: a visionary retrospective,”

In Proceedings of IEEE Conference and Exhibition on Design, Automation and Test

in Europe, pp. 642–649, 2001.

[45] P. Heysters, G. Smit, and E. Molenkamp, “Energy-efficiency of the Montium reconfig-

urable tile processor,” In Proceedings of the International Conference on Engineering

of Reconfigurable Systems and Algorithms (ERSA), pp. 38–44, 2004.

[46] C. Hsieh and T. Lin, “VLSI architecture for block-matching motion estimation al-

gorithm,” IEEE Transactions on Circuits and Systems for Video Technology, pp.

169–175, 1999.

[47] http://focus.ti.com/dsp/docs/dsphome.tsp?sectionId=46.

[48] Intel, “Paragon XP/S Product overiew.”

[49] X. Jia and R. Vemuri, “Studying a GALS FPGA architecture using a parameter-

ized automatic design flow,” in Proceedings of the 2006 IEEE/ACM International

Conference on Computer-Aided Design, pp. 688–693, 2006.

[50] A. Kamalizad, C. Pan, and N. Bagherzadeh, “Fast parallel FFT on a reconfigurable

computation platform,” In Proceedings of IEEE 15th Symposium on Computer Ar-

chitecture and High Performance Computing, pp. 254–259, 2003.

[51] S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design,

the Third Edition. Published by McGraw-Hill, 2002.

[52] A. Kazmi, “Minimizing PCI Express Power Consumption,” 2007,

http://www.pcisig.com.

[53] S. W. Keckler, D. Burger, C. R. Moore, R. Nagarajan, K. Sankaralingam, V. Agar-

wal, M. S. Hrishikesh, N. Ranganathan, and P. Shivakumar, “A wire-delay scalable

microprocessor architecture for high performance systems,” In Proceedings of IEEE

International Solid-State Circuits Conference, pp. 168–169, 2003.

114

[54] B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens, B. Towles,

A. Chang, and S. Rixner, “Imagine: media processing with streams,” IEEE Micro,

vol. 21, no. 2, pp. 35–46, 2001.

[55] B. Khailany, T. Williams, J. Lin, E. Long, M. Rygh, D. Tovey, and W. Dally, “A

programmable 512 GOPS Stream Processor for Signal, Image, and Video Processing,”

IEEE Journal of Solid-State Circuits, pp. 202–213, 2008.

[56] D. Kim, M. Kim, and G. Sobelman, “Parallel FFT computation with a CDMA-based

network-on-chip,” In Proceedings of IEEE International Symposium on Circuits and

Systems, pp. 1138–1141, 2005.

[57] Y. Kim, M. Kiemb, C. Park, J. Jung, and K. Choi, “Resource sharing and pipelining

in coarse-grained reconfigurable architecture for domain-specific optimization,” In

Proceedings of the IEEE Design, Automation and Test in Europe, pp. 12–17, 2005.

[58] A. KleinOsowski, J. Flynn, N. Meares, and D. J. Lilja, “Adapting the SPEC 2000

benchmark suite for simulation-based computer architecture research,” Workload

characterization of emerging computer applications, pp. 83–100, 2001.

[59] C. Kozyrakis, “Scalable vector media-processors for embedded systems,” PhD thesis,

Unitersity of California at Berkeley, 2002.

[60] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE Trans-

actions on Computer-Aided Design of Integerated Circuits and Systems, vol. 26, no. 2,

pp. 203–215, 2007.

[61] I. Kuon, R. Tessier, and J. Rose, “FPGA Architecture: Survey and challenges,” in

Foundations and Trends in Electronic Design Automation, pp. 135–253, 2008.

[62] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling and characteristics of

field programmable gate arrays,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pp. 1712–1724, 2005.

115

[63] C. Liang and X. Huang, “A Fault-Tolerant Fully Adaptive Routing Algorithm for

Collaborative Computing in Mesh Networks,” in Proceedings of SPIE, 2007.

[64] ——, “SmartCell: A power-efficient reconfigurable architecture for data stream-

ing applications,” In Proceedings of IEEE Workshop on Signal Processing Systems

(SiPS’08), pp. 257–262, 2008.

[65] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An Architecture and Compiler

for Scalable On-Chip Communication,” in IEEE Transactions on VLSI Systems, pp.

711–726, 2004.

[66] Y. Lin and C. Lee, “Design of an FFT/IFFT Processor for MIMO OFDM Systems,”

In Proceedings of IEEE Transactions on Circuits and Systems I, pp. 807–815, 2007.

[67] J. Lorch and A. Smith, “Software strategies for portable computer energy manage-

ment,” in Proceedings of IEEE Personal Commun., pp. 60–73, 1998.

[68] T. Marshall, L. Stansfield, J. Vuillemin, and B. Hutchings, “A reconfigurable arith-

metic array for multimedia applications,” In Proceedings of the 1999 ACM/SIGDA

seventh international symposium on Field Programmable Gate Arrays, pp. 135–143,

1999.

[69] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable computing architecture with

configurable instruction distribution and deployable resources,” Proceedings of the

IEEE Symposium on FPGAs for Custom Computing Machines, pp. 157–166, 1996.

[70] J. Monteiro, “Techniques for power management at the logic level,” in Proceedings of

IEEE International Conference on Electronics, Circuits and Systems, pp. 181–184,

1998.

[71] S. Naffziger, T. Grutkowski, and B. Stackhouse, “The implementation of a 2-core

multithreaded Itanium family processor,” In Proceedings of IEEE International Solid-

State Circuits Conference, pp. 182–183, 2005.

116

[72] A. Peleg, S. Wilkie, and U. Weiser, “Intel mmx for multimedia pcs,” Communications

of the ACM, pp. 24–38, 1997.

[73] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,

A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,

M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa, “The

design and implementation of a first-generation CELL processor,” in Proceedings of

IEEE International Solid-State Circuits Conference, pp. 184–185, 2005.

[74] S. Rixner, “Stream Processor Architecture,” Kluwer Academic Publishers.

[75] R. Russell, “The Cray-1 computer system,” Communications of the ACM, 1978.

[76] K. Sankaralingam, R. Nagarajan, H. Liu, J. Huh, C. Kim, D. Burger, S. Keckler,

and C. Moore, “Exploiting ILP, TLP, and DLP using polymorphism in the TRIPS

architecture,” In International Symposium on Computer Architecture, pp. 422–433,

2003.

[77] M. Saravana, S. Govindan, D. Burger, and S. Keckler, “TRIPS: A distributed explicit

data graph execution microprocessor,” HotChips, 2007.

[78] H. Schmit, “Incremental reconfiguration for pipelined applications,” In Proceedings

of IEEE Workshop on FPGAs for Custom Computing Machines, pp. 47–55, 1997.

[79] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Taylor, “PipeRench:

A virtualized programmable datapath in 0.18 micron technology,” In Proceedings of

the IEEE Custom Integrated Circuits Conference, pp. 63–66, 2002.

[80] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. C. Filho, “MorphoSys:

an integrated reconfigurable system for data-parallel and computation-intensive ap-

plications,” IEEE Transactions on Computers, vol. 49, no. 5, pp. 465–481, 2000.

[81] L. Smit, G. Rauwerda, A. Molderink, P. Wolkotte, and G. Smit, “Implementation of

a 2-D 8x8 IDCT on the reconfigurable Montium core,” In Proceedings of the 2007

117

International Conference on Field Programmable Logic and Applications (FPL’07),

pp. 562–566, 2007.

[82] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math. 13, pp. 354–356,

1969.

[83] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-

man, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,

V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal, “The RAW micropro-

cessor: a computational fabric for software circuits and general-purpose programs,”

IEEE Micro, vol. 22, no. 2, pp. 25–35, 2002.

[84] M. Taylor, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe,

A. Agarwal, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann,

P. Johnson, and J. Kim, “Evaluation of the RAW microprocessor: an exposed-wire-

delay architecture for ilp and streams,” In Proceedings of the IEEE 31st Annual

International Symposium on Computer Architecture, pp. 2–13, 2004.

[85] T. Tuan and B. Lai, “Leakage power analysis of a 90 nm FPGA,” in Proceedings of

the IEEE Custom Integrated Circuits Conference, pp. 57–60, 2003.

[86] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Lyer,

A. Singh, T. Jacb, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-tile

1.28 TFLOPS network-on-chip in 65nm CMOS,” in Proceedings of IEEE Interna-

tional Solid-State Circuits Conference, pp. 98–99, 2007.

[87] J. von Neumann, “First draft of a report on the EDVAC,” Reprinted (in part) in Ran-

dell, Brian. 1982. Origins of Digital Computers: Selected Papers, Springer-Verlag,

Berlin Heidelberg, June 1945., 1945.

[88] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjing, S. Liao,

C. W. Tseng, M. Hall, M. Lam, and J. Hennessy, “SUIF: An infrastructure for re-

118

search on parallelizing and optimizing compilers,” ACM SIGPLAN Notices, pp. 31–

37, 1994.

[89] www.xilinx.com/support/mysupport.htm/Virtex II

[90] Z. Yu, “High performance and energy efficient multi-core systems for dsp applica-

tions,” PhD thesis, Unitersity of California at Davis, 2007.

[91] Z. Yu, M. J. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. W. Work,

D. Truong, T. Mohsenin, and B. M. Baas, “AsAP: an Asynchronous Array of Simple

Processors,” IEEE Journal of Solid-State Circuits, pp. 695–705, 2008.

[92] J. Zawodny and P. Kogge, “Cache-In-Memory,” Innovative Architecture for Future

Generation High-Performance Processors and Systems, pp. 3–11, 2001.

[93] Q. Zhang, A. Kokkeler, and G. Smit, “An Efficient FFT for OFDM Based Cogni-

tive Radio on a Reconfigurable Architecture,” In Proceedings of IEEE International

Conference on Communications, pp. 6522–6526, 2007.

119

