
Project Number:1234

Flexible Infrastructure Supporting Machine Learning for
Anomaly Detection in Big Data

A Major Qualifying Project Report

submitted to the faculty of the WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science by:

Erin Esco

Alexander Huot

Yihong Zhou

Ziyan Ding

Date: 03 March 2017

Approved By:

Professor Elke Rundensteiner

Assistant Professor Jian (Frank) Zou

 Processor Eugene Eberbach

Table Of Contents
Table Of Contents 1

Abstract 4

Acknowledgements 5

Introduction 6

2. Background 8
2.1 Context 8

2.1.1 Fraud 8
2.1.1.1 State of Fraud 8
2.1.1.2 General Problems 9

2.1.2 Machine Learning for Fraud and Current Applications 9
2.1.2.1 Managing Risk through Simple Neural Networks 10
2.1.2.2 Combining Models 10
2.1.2.3 Fraud Detection Service 10

2.2 Technical Background 10
2.2.1 Hadoop 10
2.2.2 Spark 11
2.2.3 Hive 12
2.2.4 MongoDB 12
2.2.5 Machine Learning Libraries 12

2.3 Machine Learning Algorithms 13
2.3.1 Artificial Neural Network 13
2.3.2 Decisions Tree 14
2.3.3 Random Forest 14

3. System Requirements 16

4. Overview of Chronos Architecture 19
4.1 Architecture Overview 19
4.2 User Interface 19
4.3 Model Metadata Storage 19
4.4 REST API 20
4.5 Model Generator 20
4.6 Feature and Transaction Storage 20

1

4.7 Scoring Engine 20

5. Methodology and Implementation 21
5.1 Chronos Infrastructure 21
5.2 User Interface 25

5.2.1 Iterations 25
5.2.2 Final Design 31

5.3 Model Metadata Storage 36
5.3.1 Iterations 36
5.3.2 Final Design 38

5.4 REST API 41
5.4.1 Iterations 41
5.4.2 Final Design 44

5.5 Model Generator 49
5.5.1 Iterations 49
5.5.2 Final Design 50

5.6 Feature and Transaction Storage 53
5.6.1 Iterations 53

5.6.1.1 Storage Tool 53
5.6.1.2 Hive Tables 55

5.6.2 Final Design 56
5.6.2.1 Transaction Storage 56
5.6.2.2 Feature Storage 57

5.7 Scoring Engine 59
5.7.1 Iterations 60
5.7.2 Final Design 60

5.8 Putting It All Together: The Chronos Pipeline Workflow 62

6. Evaluation 65
6.1 Chronos Overall 65

6.1.1 Assessment of the User’s Ability to Complete Tasks 65
6.1.2 Ease of Plugging in New Technologies 65

6.2 Chronos User Interface 66
6.2.1 Evaluated against Human Computer Interaction Principles 66
6.2.2 Examining Fault Tolerance through Sanitizing Bad User Input 67

6.3 REST API 68
6.3.1 Assessing Fault Tolerance through Input Sanitization 68
6.3.2 Behavior when Handling Simultaneous Requests 68

2

6.3.2 Speed Testing Results 68
6.4 Model Generator 69
6.5 Chronos Backend Infrastructure 72

6.5.1 Accuracy of Chronos Backend Infrastructure Calculations 72
6.5.2 Speed of Chronos Backend Infrastructure Calculations and Processing 73
6.5.3 Fault Tolerance 74

6.6 Feature and Transaction Storage 75
6.6.1 Speed of Feature and Transaction Storage 75
6.6.2 Storage Space Required 75
6.6.3 Ease of Replacement 76

6.7 Scoring Engine 76
6.7.1 Speed of Scoring Engine 76
6.7.2 Scalability Assessment through Speed Tests 77

7. Conclusions and Future Work 78
7.1 Conclusions 78
7.2 What We Learned 79
7.3 Future Work 80

Citations 81

Appendix 86
Appendix A: User Guide 87

Chronos Backend Infrastructure 88
Hadoop 88
Spark 88
Hadoop and Spark Configuration 89

Model Generator 89
Feature and Transaction Storage 90
Scoring Engine 90
Creating a Model 91
Viewing a Model 92

Appendix B: Comparison of Algorithms 92
Appendix C: Notes from User Interface Review 95

3

Abstract
The ever-changing landscape of both machine learning and the fields to which they apply

make traditional model building methods insufficient for creating models that reflect the current
state of the world. Automated model generation and deployment is quickly becoming the
standard in financial technology. We designed and implemented a pipeline that supports the
continuous creation, training, and deployment of models to reduce a six month process to a one
hour task. We utilized Spark, Hadoop, and Hive to create a fault tolerant and scalable pipeline as
a backend supported by a web application as the interface. The final architecture of our pipeline,
the process of its implementation, and the evaluation of the Chronos Pipeline are described.

4

Acknowledgements
We would like to thank our advisors, Professor Rundensteiner, Professor Zou and

Professor Eberbach, and ACI Worldwide for their continued guidance and support throughout
the duration of this project. Additionally, we would like to thank our company sponsor, ACI
Worldwide, and our mentor Eric Gieseke for the opportunity to work on this project and
supporting us through its entirety. We greatly appreciate the time taken by Professor Brown to
provide feedback on our pipeline as well as recommending reading to support our development.
Finally, we would like to thank those who have provided feedback on our project both at ACI
Worldwide and Worcester Polytechnic Institute.

5

1. Introduction
ACI Worldwide is a company responsible for more than $14 trillion in payments and

securities daily. Their software offers the delivery of real-time immediate payment capabilities
for their customers (ACI Worldwide, n.d.). Although a small fraction, some of these transactions
are fraudulent. It is easy for fraudulent transactions to go unnoticed due to how fast transactions
get processed. A large part of the fraud detection system is dictated by millions of hard coded
rules, which is computationally expensive. Furthermore, it is extremely rigid, and thus does not
adapt to the ever changing behaviors of people who commit fraud. This is problematic since
fraud occurs in a variety of ways, such as credit card fraud or check fraud, and each type of fraud
is committed in constantly changing ways.

A common approach is to generate machine learning models that are able to identify a
transaction as fraudulent. Machine learning models are capable of taking labeled data of both
fraudulent and non-fraudulent transactions and using them as input to a variety of algorithms to
produce models that can classify future transactions (Mitchell, 1999). While these models are
useful, creating just one model takes several months, when this has to be done manually. By the
time the model is created, the rules they derived to determine if a transaction is fraudulent or not
may no longer be applicable. In order to detect fraud, these models need to be produced faster
and updated more often.

This problem is not specific to ACI Worldwide, as companies around the world are
implementing machine learning in different ways to solve this problem. Paypal currently uses an
800 node hadoop cluster to experiment with and optimize their neural network for fraud
detection. Additionally, Fair, Isaac and Company (Fico) offers a complete software system for
companies to use that
automates the machine
learning and fraud
detection process (Fico,
2017). In the race to fully
automated systems, some
fraud detection companies
acknowledge the advantage
of human input. Forter
distinguishes itself through
its combination of machine
learning with human
creativity by incorporating
a human expert's opinion
into the process without

6

delaying the final output (Forter, 2017).
In this project, we also acknowledge the value added by including the ability to specify

tuning parameters, among other customizations, without sacrificing the efficiency or speed. Our
project explored the possibility of a system that would allow user input regarding the algorithms,
tuning parameters, and features that define a model while fully automating (through a pipeline)
the process following the initial user interaction. In order to create a system that accomplishes
those two goals, we followed an iterative processes that began with ensuring individual
components met their minimum requirements and then combed the pieces to produce a simple,
viable product. From there, we continuously improved the system by soliciting feedback from
our sponsors and advisors and ensuring that we always had a working system. Our solution
allows users to define metadata for machine learning models without worrying about the
deployment or training process. This automated training and deployment will reduce the current
standard of a single monolithic model being carefully designed for six months to a pipeline that
is only limited by the resources of the system. The pipeline created (hereinafter, “Chronos”) 1

combines state of the art machine learning technologies and a component based architecture to
produce a prototype that is modular, flexible, and scalable.

The pipeline boasts a user interface that serves as the interaction point between the user
and the system. Here, users can create, view, and modify their models and the state of the
system. Following the submission of a model to be created, the model metadata is stored through
a Representation State Transfer Application Program Interface (REST API) that handles the
communication between different interfaces (Rouse, Hannan, & Wilson, 2016), which is also the
channel through which the Model Generator accesses the model metadata. The Model Generator
uses the Spark ML Pipeline library and calculated features from a feature storage table in Hive , 2

which is a framework for accessing data stored on a HDFS through SQL-like queries (Apache,
2017b). These capabilities make it an ideal candidate for our pipeline to store the data used to
train and test the models before storing the models back into the model metadata storage. From
here, the Scoring Engine can access the models ready for deployment and use them to produce
an output indicating if a transaction is fraudulent, which is stored back to a Hive table. If desired,
these results can be sent out of Hive in order for the next steps, such as inspection by fraud
analysts. For more information about Hive, see Section 2.2.3.

The Chronos Pipeline is a sufficient proof of concept for a pipeline that combines user
input and automated machine learning. Our testing indicates that it is a efficient and fault tolerant
solution. The modularity of the pipeline makes it easy to plug in and out technologies to meet the
needs of those who will be building models using this pipeline. This adds business value by both
eliminating the need and financial cost of manually creating models as well as saving the

1 Named after the Greek personification of time, as this pipeline is meant to greatly reduce the time taken for training
models
2 For more information about Hive, see Section 2.2.3.

7

company money by being current with trends in fraud through continuous and automated
retraining and deployment of models.

This paper is organized as follows: Section 2 Background contextualizes the current state
of fraud and gives insight on some of the technical background and related algorithms used in
this project; Section 3 System Requirements explains the requirements outlined for this project;
Section 4 describes the overall architecture, individual components and relationship between the
Chronos pipeline elements; Section 5 details the infrastructure of Chronos and the chronological
implementations of each pipeline component; Section 6 evaluates the performance of the overall
and individual parts of the Chronos pipeline; Section 7 presents our conclusions and suggests
possible future work in this space.

8

2. Background

2.1 Context

2.1.1 Fraud

2.1.1.1 State of Fraud

Public concern for fraud has risen dramatically over the past few years as a result of data
breaches plaguing news headline. The 2015 Identity Fraud Study (Javelin Strategy, 2015)
revealed that people who committed identity fraud bilked $16 billion from 12.7 million U.S.
consumers during the previous year. Card fraud is one of the most prevalent malicious
technological schemes. In 2014, card fraud accounted for a worldwide loss amounting to $16.31
billion on a total card sales volume of $28.844 trillion (PYMNTS, 2015). The United States
alone hosts 47 percent of the worlds’ card fraud and 31.8 million U.S. consumers had their credit
card breached in 2014 (Holmes, 2016). Fraud continues to be an issue as technological
advancements are always one step behind those who commit crimes.

The standard for transactions has recently migrated to cards that uses computer chips to
authenticate chip-card transactions. Companies such as Europay, Mastercard, and Visa (EMV)
support these technologies and have become the global standards as these chips decrease
counterfeit card frauds. The chip-based system uses advanced cryptography to generate a unique
code for each transaction. Authorization performed by dynamic data provides better security of
account information than by the traditional static data stored in magnetic stripe cards. However,
it isn’t enough to counter the growing trend in electronic payments fraud (transactions where the
card is not physically present) which accounted for 45 percent of credit card fraud in 2014
(Holmes, 2016) .

2.1.1.2 General Problems

Organizations lose 5 percent on average of their annual revenues to fraud, driving
companies to enhance their anti-fraud techniques (Warin, 2013). One widely used fraud
detection method is having business analysts set up specific criteria to flag transactions.
Examples of those hard coded rules include multiple purchases in rapid succession, seemingly
random large purchases, and online charges. All of these behaviors are likely to flag a transaction
as fraudulent (Warnick, 2016). Moreover, companies monitor customers spending behavior to
establish individual profiles. Once the customer deviates from their typical behavior, the
company is notified to further investigate the situation. Some companies give the power to
customers to set up their own preference or alert notification such as “sending me a text message
if any purchase exceed $1000”. Complaints and reporting from individuals also trigger the

9

investigation of a potentially fraudulent transaction. Companies track fraud occurrences
geographically to identify fraud “hot spots” and notify surrounding retailers and customers.
(Palmer, 2013)

Data analysis is the norm in the current state of fraud detection, including clustering for
modeling behaviors or transactions and classification for classifying people or transactions as
fraudulent. (Zitter, 2016) Traditional data analysis has grown into big-data analytics, where
engineers use cloud computing and machine learning to detect anomalies. (Zitter, 2016) These
efforts have decreased the prevalence of successful fraud and more techniques are being
developed to further the field of fraud detection.

2.1.2 Machine Learning for Fraud and Current Applications
Machine learning can extract meaningful insight from data by creating algorithms and

models that reflect trends and behavior. It has been widely applied to the financial, healthcare,
marketing and transportation industries as well as the government. In the financial sector,
machine learning provides the advantages of investigating time series data or going through
customer profiles and constructing models that are able to be retrained to fit user needs. Other
interested stakeholders are banks, card companies and payment organizations who are equally
invested in mitigating the prevalence of fraud.

More than 100 papers about using machine learning on fraud detection have been
published worldwide in major conferences and major science magazines over last 20 years
before 2013 (Mizes, 2013). Academic studies initiated the quantitative models and frameworks
applied to multi-features transaction data and thus, assisted in pioneering the development of
anti-fraud system in payment companies with data mining techniques and artificial intelligence
supports.

2.1.2.1 Managing Risk through Simple Neural Networks

Paypal, the world's largest online payment company, is making its best effort to fight
against online fraud. Rather than treating fraud as a legal problem like banks and government,
Paypal views it as risk management problem. The company is currently adapting deep learning
on its accumulating transaction data. Building upon a simple neural network, one of the most
popular and easy to use machine learning models, Paypal extends it to a complex multi-layer
model. Based on the experiment video the company published on 2014, the company tested a
model that utilized R, H20 and a distributed file system on Hadoop with 2,4,6 and 8 layers and
1500 features. This model was able to achieve above 80% accuracy (Ramanathan, 2014). In
addition to developing models, Paypal allows users to set advanced fraud management filters by
themselves. The filter can monitor the live transactions to protect customers’ capital.

10

2.1.2.2 Combining Models

Visa, an institute focusing on payment productions, is also developing its fraud detection
system using machine learning models. The system is called Visa Advanced Authorization
(VAA). According to the assertion of Rajat Taneja, the Executive Vice President of Technology
and Operation in Visa, the VAA combined both a neural network and gradient boosting
algorithm for a decision tree to make prediction on fraud. With more than 500 attributes to be
considered for each transaction, the deployed model calculates the transaction score (which
translates to the transaction’s likelihood of being fraudulent) within less than one millisecond.
Monitoring the real-time data, the system runs 56,000 transactions per second (Taneja, 2015).

2.1.2.3 Fraud Detection Service

Another example is FICO, providing analytical service for half of top 100 banks
worldwide and famous for FICO® Score, a standard measurement of consumer credit risk. (Fico,
2017) It provides a fraud detection package called FICO® Falcon® Fraud Manager running on
FICO® Falcon® Platform. Falcon® also runs on neural network based system. However, it not
only runs real-time transaction data, but also can consider customer profiles so that models learn
the customer's behaviors and their spending patterns, and thus, can become more accurate in
detection fraudulent transactions.

2.2 Technical Background

2.2.1 Hadoop
Apache Hadoop is a software framework for both distributed storage and processing large

datasets (Apache, 2017e). Hadoop is capable of storage through Hadoop Distributed File System
(HDFS) and processing through MapReduce. On the top of Hadoop, YARN is the resource
manager, controlling data storage on HDFS and application scheduling (Apache, 2017f). It can
combine with additional software packages alongside Hadoop to build a developing ecosystem,
such as Apache Spark, Apache Hive, Apache Hbase and Apache ZooKeeper(Bandugula, 2015；
Apache, 2017b；Apache, 2017b；Apache, 2017d；Apache, 2017g).

All processes are orchestrated by the Namenode, which controls all Datanodes.

Datanodes are responsible for storing data to blocks and duplicating data to prevent disk data
failure. Advantages of HDFS include the robustness of cluster rebalancing and data integrity. It
allows large data sets to be distributed over several machines using Namenodes to track the data
trunks split between the Data Nodes on multiple servers.

For the MapReduce engine, JobTracker and TaskTracker are the core for monitoring
cluster nodes. JobTracker farms out MapReduce tasks to specific nodes in the cluster and locates

11

TaskTracker nodes with available slots. (Apache, 2010) The TaskTracker spawns a separate java
virtual machine process to do the actual computation work. (Apache, 2009)

2.2.2 Spark
Apache Spark is a data processing platform that is used for analytics on large data sets.

(Bandugula, 2015) Apache Spark must be coupled with a way to manage clusters and distributed
files. Examples of technologies for the former requirement include Spark’s standalone cluster
mode, Apache YARN, and Apache Mesos. These allow for a driver program to send tasks to
worker nodes to handle tasks in parallel. Furthermore, distributing the data across nodes allows it
to be processed in parallel. Resilient Distributed Dataset (RDD) is the core doing this job. It
helps immutable collections of objects spread across a cluster. A few technologies that combine
with RDD to handle distributed data are: Hive, Cassandra and Hbase. These aforementioned
technologies work as data storage, but they can also assist Spark in processing distributed data in
parallel quickly by building RDDs, avoiding putting data in disks and keeping them in memory.
A notable downside of Spark is that by keeping data in memory, it runs the risk of losing any
progress or data if it were shut off while performing computations.

Apache Spark is one of many cluster computing platforms alongside Apache Storm,
Hadoop, and Apex. Apache Spark is different from Apache Storm in the way that it processes
data. Apache Storm allows for streaming one event at a time (Apache, 2015a). Conversely,
Apache Spark gets close to streaming by sending micro batches of events continuously to
simulate a queue (Apache, 2015b). Apache Storm’s streamed data is stateless and will process at
least once. Conversely, Apache Spark processes events exactly once (Apache, 2015a).
Additionally, Hadoop’s MapReduce differs in how it is performed, but the notable distinction is
that Hadoop’s MapReduce uses more read and write operations which greatly impacts the time it
takes to execute a given event (Bharadwaj, 2016). Finally, Apex combines stream and batch
processing to support similar messaging and file systems, but graduated from the Apache
Software Foundation on April 20th, 2016, so it hasn’t been implemented in many large scale
companies (Apache, 2017a; Apache, 2016).

2.2.3 Hive
Apache Hive is a framework for accessing data stored on a HDFS through SQL-like

queries (Apache, 2017b). It allows data to be stored with more structure, mimicking a relational
database by storing data in smaller components which combine to form larger components
(Apache, 2017c). From smallest to largest granularity, the components are buckets, partitions and
tables (Apache, 2017c). Each table is serialized and then stored in a directory in the file system
and capitalizes on Hadoop’s in-memory caching, offering sub-second query times as Hadoop’s

12

only SQL interface (Apache, 2017c). Its community and ongoing development make it the
standard for storing relational data in Hadoop.

2.2.4 MongoDB
MongoDB stores JSON-like objects as records in its database. MongoDB is horizontally

scalable through its use of sharding which is sharing data across machine clusters (MongoDB,
2017a). MongoDB uses Create, Read, Update and Delete (CRUD) functions for accessing and
altering data (MongoDB, 2017b). Additionally, it is able to support schemas to ensure all
relevant information about a document is present. A common use case for MongoDB is metadata
management, which is relevant to storing information about machine learning models
(MongoDB, 2017c). There is a MongoDB to Apache Spark connector which is able to locate
RDDs to improve speed and performance.

2.2.5 Machine Learning Libraries
The MLlib is a package for a RDD based API. The algorithms supported by this package

allow for consuming vectors, matrices, and distributed matrices (Apache, n.d.). There are a
number of advantages to using this package. One of these advantages is that the package is user
friendly. A new user could easily learn through the examples provided by the package how to
run the various algorithms. This package is also scalable, allowing for the potential to grow the
system. The main issue is that there are fewer classification algorithms capable of handling
multi-class classification methods than other available packages, which are vital for fraud
detection. The other issue is that this package is soon to be deprecated. At some point,
improvements to a system using this package will be restricted simply due to the fact that Spark
will no longer support it.

The ML is a package for a DataFrame based API (Apache, n.d.). The package is built on
top of DataFrames which are Datasets organized by named columns, similar to a table in a
relational database (Apache, n.d.). There are some interesting new uses supported in this
package. For example, this package allows for sequentially combining machine learning
algorithms. This means that one algorithm feeds its output directly into another algorithm’s
input, which has the potential to be redesigned to change transaction scoring. This package also
provides a more user-friendly API than the MLlib package because of the use of DataFrames
over RDDs. Due to these features as well as the fact that the MLlib package is soon to be
depreciated, the ML package was chosen for this project.

13

2.3 Machine Learning Algorithms

2.3.1 Artificial Neural Network
Artificial Neural Network (ANN) is

an algorithm inspired by the brain nervous
system (Burger, n.d.). The network contains
an input layer consisting of input nodes,
hidden layer(s) for processing data from the
input nodes, and an output layer for
computing the final result (Burger, n.d.).
When numerical information comes through
a node in the input layer, there is an
activation number associated with that node
and undergoes a transition function which,
combined with the relative strengths of the
nodes, determines the output number from
the node and the input to the next node. This
explanation is linear, but in fact many nodes
are combining to produce input values for
one node and so on (Sayad, 2017).This
method is good to use when the data set at
hand is diverse and when trying to identify
common regularities, or similarities between data points in the dataset. ANNs are also good at
identifying and representing complex relationships where the relationships between data might
be vague or difficult to understand (Burger, n.d.). The drawbacks of this algorithm include its
complexity, the “black box” aspect of the hidden layer, and its tendency to overfit the model to
the training data. ANNs are a popular choice for anomaly detection as they have been shown to
have a low false positive rate, but a higher number of missed true positives, which is appropriate
for some applications (Pradhan, 2012) . Artificial Neural Networks have become a popular
choice in the fraud detection space (Patidar, 2011).

2.3.2 Decisions Tree
Decision trees are a method of classification which generates sequences of choices to

categorize data where each branch is a decision point learned from the training data and each leaf
node is the classification of the data (Introduction to Data Mining, 2015). Decision trees aim to
provide a process of how the classifications are made, where, starting from the top of the tree,
each node represents a step in classifying the data, and the leaf nodes are the class that this data

14

belongs to. Decision trees are simple to understand and interpret (Apache, n.d.). They are useful
for determining the worst, best and expected values for different scenarios and can even be
combined with other decision techniques.

 One drawback is that this method tends to be biased in favor of attributes that are better

defined in the tree, meaning that there are more nodes in the branch of the tree used to define
these attributes. Complex calculations can also occur if many values are uncertain or if many
outcomes are linked together. Such calculation is not ideal because the decision tree will not
accurately reflect the actual distribution of records.

2.3.3 Random Forest
Random Forest is an ensemble of decision trees. This method combines many decision

trees together in order to reduce the risk of overfitting (Apache, n.d.). The decision trees are
created by training each tree separately and providing some randomness to the training process
by choosing only subsets of the training set
data (Introduction to Data Mining, 2015).
The output of a random forest model is a
combination of the predictions of each
decision tree. The decision trees used in this
algorithm are created based on a random
sample of the training set. The predictions
are created by taking a majority vote of the
predictions made by each decision tree.
This method is a great way to use decision
trees while also avoiding issues of

15

overfitting. The performance of this method improves monotonically with the number of
decision trees used and runs efficiently for large datasets. In comparison to the decision tree
method mentioned above, the same functionality is provided, but random forest runs faster
because each tree is trained in parallel and on a subset of the training data. This method also
includes the same drawbacks as decision trees, and can potentially overfit with noisy
classification tasks. The Random Forest algorithm performs very well compared to many other
classification algorithms, including the ANN algorithm.

16

3. System Requirements
We were tasked with building a pipeline that could generate , train and deploy machine 3 4 5

learning models. These models would be automatically retrained to ensure that the models
responsible for scoring incoming data reflect the current state of the world. This pipeline needed
to have a user interface as the person generating models should be able to use the pipeline
without a technical background. The pipeline was required to support multiple machine learning
algorithms and models and use technologies that are scalable. Furthermore, it was imperative
that the pipeline was comprised of microservices to allow for a modular architecture to be 6

flexible for future development.
The pipeline is available for customizing models and data. The user can add new machine

learning algorithms to the pipeline with changeable tuning parameters. Data set also can be
adjust with more or less features and attributes. Although these changes are adjusted behind the
scene, they strongly impact model performance. Our pipeline needed to support a variety of
different machine learning models, we identified the three best algorithms as: Decision Tree,
Random Forest, Artificial Neural Network. The work supporting these choices can be found in
Appendix B.

The iterative nature of our pipeline meant that requirements arose throughout
development as opposed to being gathered prior to beginning the implementation. Given these
tasks, we identified major requirements that needed to be upheld. The overarching purpose of the
pipeline is to allow users to create models with parameters they define, so we knew that model
flexibility was a requirement to be considered throughout the project (Requirement 1: Model
Flexibility). When users create models, the process should be intuitive in order to avoid the user
wasting their time or losing trust in the system (Requirement 2: Intuitive User Interaction).
Additionally, the pipeline needed to be scalable to accommodate the incredibly frequent
incoming transactions to ACI worldwide (Requirement 3: Scalable). Given this influx of data
combined with the variability of user and system behavior and resources, the pipeline should not
be easily susceptible to breaking (Requirement 4: Fault Tolerant). This pipeline serves as a
prototype and the future implementation may need to use different technologies for a variety of
reasons, so the pipeline needs to decouple technologies as much as possible to reduce the amount
of time it would take to swap any component out (Requirement 5: Modular). If Requirement 5 is
met, it will be easy to exchange technologies, but our pipeline should still utilize technologies
that are most appropriate for the task at hand (Requirement 6: Appropriate Technologies).

3 Create the model data using a set of input parameters (see Section 5).
4 Create the model by running labeled data (data with the desired results already determined) through a Spark
function
5 To make the trained model ready for use in the Scoring Engine (see Section 5).
6 Components of the pipeline that, while are not vital to the overall pipeline, allow for a simpler method of
modifying any part of the pipeline. An example would be the REST API (see Section 5).

17

Finally, the pipeline supports building and deploying models from the beginning to the end. So
Chronos needs to be flexible in terms of being able to support many models and it should
produce accurate models (Requirement 7: Machine Learning). Table 3.1 is a summary table of
these main requirements we identified:

Number Label Description

1 Model Attribute
Flexibility

Models are flexible in their tuning parameters and defining
characteristics

2 Intuitive User
Interaction

It is clear to the user how to create and interact with models

3 Scalable The pipeline is able to scale without extraneous effort or
resources

4 Fault Tolerance The pipeline is tolerant against invalid submissions and can
handle errors in way that doesn’t cause the system to go
down

5 Modular Pipeline is comprised of components that can be easily
interchangeable

6 Appropriate
Technologies

Despite ensuring each component is able to be easily
swapped out, technologies should be the best fit for the job

7 Machine Learning
Model Building
Ability

Pipeline is able to support a variety of models and produce
accurate output

Table 3.1.Pipeline requirements overview

In order to achieve these high level requirements in Table 3.1, we considered each

component and broke down what the requirements were for that component to ensure all the
requirements were satisfied. In Table 3.2, features of the pipeline will be labeled as an indication
of where these requirements are met by the pipeline and specifically which of the requirements
were met in that section. This table refers to the requirements in the context of whoever is
interfacing with the pipeline as defined through gathering requirements. The “user” encompasses
the person generating the models: a data scientist, a fraud analyst, or any other individual with
access to the pipeline.

Component Requirement

User Interface ● Allowed user to complete the following tasks (Requirement 2)

18

○ Creating a model
○ Viewing all models
○ Viewing the queue of models

● Interface design makes the process of creating models intuitive
(Requirement 2)

● No errors are introduced to the system by the user interface
(Requirement 4)

● Interact with REST API

Model Metadata
Storage

● Scalable (Requirement 3)
● Able to hold all information needed for a model (Requirement 6)
● Allow REST API to read and write to

REST API ● Handle CRUD operations for the connection to Model Metadata
Storage (Requirement 6)

● Implement a management system for model training order and
distinguishing others (Requirements 5, 6)

Model Generator ● Machine learning model generated from user input (Requirement
7)

● Handle potential failure from training and allow multiple (but
limited) attempts (Requirement 4)

● Interact with REST API to get and update new models
● Interact with Data Storage in order to get transaction data for

training

Data Storage ● Support for all rows and column types in the attribute and feature
tables (Requirement 6)

● Preparation of data and tables (Requirement 6)
● Support write operations for data that needs to be added

Scoring Engine ● Allow scoring using multiple models (Requirements 3, 6)
● Allow for models to use a different set of features (Requirement

1)
● Score transactions and classify based on the probability that they

are fraud (Requirement 7)
● Interact with REST API to get deployed models
● Interact with Data Storage in order to get transaction data for

scoring
Table 3.2. Requirements of the pipeline per component

These requirements were considered and we continuously altered our pipeline to ensure

they were met. The following sections expand on the requirement elicitation process of these
requirements from either our sponsors or identified through technological need. The system

19

requirements gathering process was tightly coupled with our implementation, so the iterative
nature of our pipeline came naturally.

4. Overview of Chronos Architecture

4.1 Architecture Overview

Figure 4.1. Final pipeline high level architecture overview.

The Chronos pipeline gives users the ability to define metadata surrounding models, train

them, and deploy them. Additionally, this pipeline supports automated retraining to ensure that
models are up to date. The user interacts with a user interface to create and view models whose
metadata is stored in a database. The Model Generator takes the model metadata and features as
input to create machine learning models where the parameters are defined by the user and
generated using current data. Once a model is created, it can be deployed to the Scoring Engine
which takes new transactions as input to produce a score for the transactions based on the desired
output.

4.2 User Interface
The User Interface serves as the visual representation and interaction point between the

user and the pipeline. It gives the user the ability to create models where they define the
algorithm, output, and tuning parameters. Additionally, users can view the models they have
created at a high level and also at a more detailed view which allows them to see the specifics of
the model. Users can search for a model using any of the parameters displayed in the table as the
search term. Finally, users can see the queue of models ready to be trained which allows for the
state of the system and its models to be transparent to the user. The interface is flexible and
offers a minimal design to ensure creating models is intuitive and there are no unnecessary
distractions.

4.3 Model Metadata Storage
Our model metadata storage is a MongoDB database where each model record is stored

as a JSON-like object. Each model has the same schema allowing both the User Interface to help

20

define models so that other components of the pipeline can rely on these consistent attributes.
Notably, our system is horizontally scalable due to the nature of MongoDB.

4.4 REST API
The REST API’s main responsibility is to serve as a central connection to MongoDB for

the User Interface (UI), Model Generator, and Scoring Engine. It supports the User Interface by
providing functions that interface with the model metadata storage allowing the tasks of creating,
viewing, updating, and deleting the models. For the Model Generator, the REST API has the
ability to retrieve the next model for the Model Generator to train. This is performed by taking
the first model from a priority queue which sorts the models based on their next train or retrain
date. Finally, for the Scoring Engine, this API can return a set of models to be used for scoring
by the Scoring Engine. Having this central coordinator is imperative in ensuring the system
remains modular and component-based.

4.5 Model Generator
The Model Generator plays an essential role by producing the machine learning models.

It gets the model information necessary to create the model from the REST API and uses it to
construct a machine learning model trained on the data from Hive. The performance of
constructed models after fitting data will be evaluated and users can see the evaluation results on
User Interface. The retrain process is the same as first-time train and a new model with the same
name but different id will be produced. Model Generator also allows models that fail to deploy
during the training process to try multiple times and thus guarantees the resilience of broken or
failed model manufacturing.

4.6 Feature and Transaction Storage
The Hive Database holds the data necessary to support the Model Generator and Scoring

Engine. It provides both raw transaction data and calculated features for the system and
maintains all newly created tables while the pipeline is running. An initial set of data and tables
are already stored in Hive before the Model Generator and Scoring Engine start. This initial data
is preprocessed so that the data can be ingested as features, but this is hidden from the users.

4.7 Scoring Engine
The Scoring Engine handles the scoring of incoming transactions using a set of deployed

models. Using the provided models, a set of predictions for the transactions are created. These
predictions are then combined by multiplying the predicted value with the corresponding
model’s normalized accuracy, and then added together. This total is used as a probability of

21

fraud, in order to determine whether or not a transaction is fraud. Once the result has been
determined, the Scoring Engine stores the results in Hive.

5. Methodology and Implementation
The initial stages of designing the pipeline were done individually, where each

component was developed independently to perform the functions needed to have a minimum
viable product. This meant that the Chronos pipeline simply needed to train and deploy a single
model. Once each component was functional, we combined them to produce a pipeline that could
support a single model through the workflow. All components were initially inflexible and had
few features. We iterated on our initial design to produce a more flexible and scalable pipeline.
The User Interface was developed through a continuous process of gathering requirements,
producing a new version and soliciting feedback. The Model Generator and Scoring Engine grew
more flexible to meet the needs (and future needs) of the employee building models. New
components arose as tasks became more complex to decouple technologies. Once each
component’s, and thus the pipeline’s, requirements were met the team shifted focus to testing.

5.1 Chronos Infrastructure
In initial discussions with our sponsor, we acknowledged to main tasks that pertained to

the models: generating and deploying. The first design delegated these tasks to two separate
pipelines as shown below:

Figure 5.1. First pipeline design

22

Upon further investigation of the functional differences of these two and at the beginning
of implementing this design we noticed that they aren’t in parallel, but one after the other. It
made sense to combine these into a single pipeline where the first half handles the training and
generation of the models and upon completion sends it to the scoring engine where it is deployed
to handle scoring incoming transactions. In order to ensure that the process of model generation
was shared equally among models waiting to be trained, we created a scheduling system that, by
looking at a priority queue, considers the retrain date of the model when deciding which model
should be trained next. This queue manager sits alongside the REST API as a javascript file. We
abstracted out many of the pipeline’s connections by developing a REST API that served as a
service to the Scoring Engine, User Interface, and Model Generator. Our final pipeline with the
aforementioned improvements is shown below.

Figure 5.2. Pipeline diagram with connections labeled.

Each of these components have relationships with one or many other components. Each

relationship is labeled and explained below.

1. User Interface and Node Server

When the node server is running and a call is made to view the main page, it serves up
the relevant HTML, CSS, and JavaScript files. When the user interacts with buttons or forms on
the user interface, the client-side javascript makes a request to the server side javascript on the
node server which makes the appropriate API call.

23

2. Node Server and REST API
The node server makes calls to the REST API by making calls dependent on the task at

hand. Below is a list of the action done by the user and the resulting REST API call.

Action REST Call Function Prototype

Create model /createmodel?key=value&key=value&...
(see REST API Section for full list of
required key-value pairs)

Update Model (User
side)

/updatemodelInfo?name=value&deployed=value&ena
bled=value&nname=value

Delete Model /deletemodel?name=value

Retrieve models /getmodel
Table 5.1. Pipeline diagram with connections labeled.

3. REST API and MongoDB

Using JavaScript, the REST API forms a connection to MongoDB and then performs the
MongoDB function calls needed. It does this through the Node.JS MonogoDB driver which
abstracts the two technologies interfacing.

4. REST API and Queue

The REST API calls the queue through functions for dequeue, enqueue, and looking at
the first element in the queue. When the current time is at or past the next model’s train time, it
is given as input to the model generator to be trained.

5. REST API and Model Generator

The Model Generator imports the module from rest.py. The rest.py will make the proper
request to the REST API and return the response to Model Generator.

6. Model Generator and Spark

The pre-built Spark 2.0.2 package is required. The Model Generator imports the PySpark
package to access the Python API. The Spark application runs using bin/spark-submit script in
the package. It will load the libraries and submit the application to the cluster.

7. Model Generator and Database

The Model Generator gets data from the Features table in the Hive database. Based on the
features requested by the user interface, the new model selects corresponding features from the
AllFeaturesTable table which will be used as input during training.

24

8. Feature and Transaction Storage and Hive

The database is constructed by Hive, which runs on yarn and HDFS. Real data is stored
in HDFS and can be accessed in table form through Hive. Table schemas and metadata of Hive
database are kept on the servers’ physical directories.

9. REST API and Scoring Engine

The Scoring Engine calls a function in the imported module, rest.py, which will make the
appropriate request to the REST API. See section 5.4.2 for all of the function calls, their
parameters, and what they return.

10. Scoring Engine and Model Generator

The scoring engine requires a few spark libraries in order to run. The imported libraries
include all of the libraries for each machine learning algorithm used as well as the library for
SparkContext, MLUtils, and Vectors.

11. Scoring Engine and Feature and Transaction Storage

The Scoring Engine creates a SparkContext which connects the Scoring Engine to Hive.
The data to be scored is retrieved as a DataFrame and then mapped to a RDD. When the Scoring
Engine is done scoring these transactions, a DataFrame containing the results is sent back to the
Hive database.

12. Chronos Backend Infrastructure: Spark, Hive, Hadoop/Yarn

Spark and Hive run on an existing hadoop cluster. It connects to YARN for resource
management and writes to HDFS by changing the Spark environment configuration in the
downloaded Spark directory. Spark is started by executing ./sbin/start-all.sh before deployment.
There are two deploy modes, cluster and client, to launch the spark application on YARN,
which are distinguished by the parameter in the script which is used to submit the application. To
launch it in cluster mode, the script is “./bin/spark-submit --master yarn --deploy-mode cluster”.

To expand on the above reference to our solution and shed light on the technologies used

and each component’s purpose a summary of the pipeline’s components are listed below.

Component Technology Responsibility

User Interface HTML, CSS,
JavaScript,
Bootstrap, Dragula,
NodeJS, Express

Allows users to create and view the state and
performance of models

25

Model Metadata
Storage

MongoDB Persists model metadata, accessed through

REST API NodeJS, Express Stores, updates, retrieves model metadata and
manages the scheduling queue

Model Generator Spark, Hadoop Generates models using the user defined tuning
parameters as input. Checks the scheduler to see
if any models are ready to run. Retry multiple
times before model deployment fail.

Data Storage Hive, Hadoop Holding Raw Transaction Data, Calculated
Features

Scoring Engine Spark, Hadoop Where deployed models live, scores incoming
transaction using current models in engine

Table 5.2. Pipeline components

We built a modular pipeline that is capable of continuously training and retraining

models. These models are defined by the user to ensure the user has the final say in the
algorithm and tuning parameters that go into creating the model. As long as a model is enabled
inside the pipeline, the model will continue to be added to the queue after updating, and
therefore, will continue to be retrained. The models are retrained based on the the retrain
frequency chosen by the user. These models will also be continuously selected and deployed to
the Scoring Engine. This pipeline ensures that models never get old and no longer reflect the real
world the automated retraining allows users to not even consider models once they have defined
them.

5.2 User Interface

5.2.1 Iterations
In order to determine what the user interface needed to display, the main responsibilities

of the pipeline and their intersection needed to be identified. These responsibilities were
determined through conversations with our sponsor. The overall final results of these for the user
interface conversations can be found in Table 3.2 in the User Interface section. At a high level,
the pipeline is responsible for: training, storing and deploying models. A user is responsible for
creating and monitoring their models. Those two responsibilities spawned the first to views:
Create and View. The Create view is responsible for giving the user enough flexibility to create
the models they want that still adhere to the specifications of the input to the pipeline
(Requirements 1, 2). The View view is responsible for allowing users to see the models they

26

created, their metadata, and their results. In the first version of the User Interface, these two
views were developed. The User Interface generated and received requests to and from the
model metadata storage through a REST API developed as a part of the pipeline.

To accommodate the user’s ability to generate models, in our first implementation the
user submitted a model by filling out fields specified through gathering requirements during
meetings with our sponsor which are listed below. Because of the nature of this interaction, a
form was used as the interface for users to create models. The form contained input validation to
ensure that only valid information is passed to the REST API. It was built using HTML, CSS,
JavaScript, Dragula and sat on top of a local NodeJS server which sent and received requests
using the express library.

Technology Use

HTML Language for creating web pages

CSS Stylizing web pages

JavaScript Populating tables with model information, handling click
events for submitting and receiving information.

Bootstrap Create responsive web page with interactive modals.

Dragula Used to enhance user experience when choosing which
features to include.

Table 5.3. Technologies used in front end.

Our pipeline doesn’t use multiple data sets because the application is scoring transactions

which come from a single data set. The primary concern with this new system is ensuring the
models are trained on recent data, so the “data date range” parameter was added which refers to
the date range over which the data is sampled from for input to the model. Additionally, the
retrain frequency was added which indicates how often the model should be retrained. The
automated retraining is an essential part of this pipeline and sets it apart from other pipelines
where retraining is done manually. Giving the end user the opportunity to choose the date range
of data gives them agency over the specificity of the data and is an advantage of the system. At
this state and in future implementations, the drawback of the Chronos system is not giving the
user the ability to choose the dataset that the model is trained on, but that can be implemented at
a later date and isn’t imperative to the needs of our current users.

Based on the initial requirements gathered through conversations with the customer, the
first user interface contained the following fields: name, author, algorithm, output, features, data
date range, and train frequency.

27

The justifications for why each parameter was included are listed below:

Parameter Justification

Name To allow users to identify the model in addition to its ID.

Author To show who is responsible for the model. In future
versions, users can see the models they created and others
created.

Algorithm The machine learning algorithm generating the model.
Gives users a say in how the model is created.

Output Allows users to decide what they want to be the output of
the algorithm.

Features Users generating models can add features they believe to be
pertinent to the problem or subproblem they are solving.

Data date range Changes with users’ perception of the problem and allows
them to choose between more historical vs. recent patterns.

Re-train frequency To allow the users to determine how often the model is
retrained on the newest data within the aforementioned data
date range.

Table 5.4. Justification for parameters chosen by user.

Skytree is a comparable system to ours and we wanted to ensure that our system had

advantages that Skytree didn’t offer. In the View view, users can view detailed attributes about a
given model. Listed below are the attributes in the Skytree API model object versus those
included in our model (Skytree, 2017).

Field Skytree Chronos Model

ID X X

Name X X

Dataset X

Data date range X

Creation date X X

Updated date X X

28

Algorithm specific configuration X X

Algorithm X X

Performance measure X X

Retrain frequency X

Accuracy measures X X
Table 5.5. Comparison of Skytree parameters vs. Our parameters.

These parameters, as well as conversations with our sponsor, were considered when

creating the first version of the interface. The parameters would translate as input fields for the
user to enter values. These fields were implemented as input in the create view which is featured
below in the first version of the interface.

Figure 5.3. Create view for generating models.

29

On this page, users can enter values for the name, author, algorithm, output, features, data
date range, and re-train frequency. The goal of this view was to create an easy to navigate form
where the purpose of the parameters is clear. It achieves that goal by having a clean interface and
logically ordered inputs. The parameters are displayed in an order that mirrors Skytree’s order
where it first handles high level metadata, then required and defining parameters followed by
additional information.

Following the form to enter the model’s metadata is a button to train a model on that
information. The next view allows users to see the collection of models in a table where the
columns represent the basic attributes of a model (name, author, algorithm, output) and each row
is a model. The output indicates the output of the algorithm: fraud or not fraud, customer type,
etc. There is a search functionality that searches all table columns for a match.

Figure 5.4. All models general view.

Users can click on a row to see more information about a model. This includes the

models’ features, creation date, last train date, accuracy, precision, recall, f1 score, and false
positive rate. The purpose of this view is to allow a user to see many models at once and to be
able to easily navigate to the model they are interested in further investigating. It achieves that
goal by making each model’s metadata clear and easy to follow across a row with a clearly
defined search bar. This page is laid in such a way that users can quickly visually navigate to the
information they are seeking. When a user clicks on one of the models, a modal appears
containing detailed information about the model. The purpose of the detailed model view was to
give users an opportunity to see the finer details of a model, edit the metadata, and see how it
performed in terms of accuracy during testing. This view fulfills that purpose by grouping

30

similar information together into components and using intuitive buttons. The detailed model
view is shown below.

Figure 5.5. Detailed model view with basic and detailed information, features, and accuracy measures.

Each labeled section of the first version of the user interface is supported following the

image.

Label Item Description

A Basic
Information

Basic, high level data used to identify the model.
Author,algorithm, output of model, creation date

B Detailed
Information

More detailed information about the model that is
more of an attribute and less of a defining
characteristic. Data date range, training frequency,

C Feature List List of features as input to the model

D Accuracy
Measures

Precision, accuracy, recall, f1 score and false
positive rate of model, populated after model has
been created and tested

Table 5.6. Components of the detail view and their descriptions.

31

We continued to expand on the user interface and added a drag and drop feature for the
features because it was difficult to scroll through and select in such a small window. Following
this first iteration, we conducted a critique of the interface from a Human Computer Interaction
Expert. Following a review of the interface, Professor David Brown made the following
comments:

● The blue dialogue box is an odd placement, particularly
because the “close” symbol is so far

● The title should be aligned to the left
● Ensure all things are lined up if related/equivalent
● Group items that are closely related
● Ensure that pre-filled boxes aren’t redundant of their labels
● Keep drop down arrows near their labels
● Standardize error messages
● Ensure error messages pop up as early as possible

Table 5.7. Comments about improvements for the UI

A more detailed version of these comments can be found in Appendix C. Further

conversations revealed that allowing the selection (and display later) of tuning parameters would
make the pipeline more appealing to use, given the motivation of allowing users to fully
customize their models. Additionally, as we developed a way of abstracting the order that models
were trained in, our sponsor indicated it was important for the customer to see the queue of the
models. Utilizing the new requirements and feedback, a second interface was developed that
grouped similar items, better aligned equivalent items, and featured a navigation bar on the side.
This feedback was implemented to generate the final solution which can be found in the
following section where we show our final solution.

5.2.2 Final Design
The final User Interface is a web interface using HTML, CSS, JavaScript along with the

Bootstrap and Dragula libraries for the client side rendering and page interactions. It runs on a
node server which uses the express library to handle sending and receiving HTTP requests.
Below are images of the final User Interface. This interface is the product of the above iterations
that improved the ease of use through considering human computer interaction principles and
fault tolerance through input validation (Requirements 2, 4) The first view is the create view
where users can enter values surrounding the tuning parameters and other metadata of a model.

32

Figure 5.6. The final create view for the system.

The tabs on the left separate the three main views to make it easy for the user to identify

how to accomplish a task (Requirement 2). The next tab brings the user to the view tab which
displays a searchable list of all models in the system. In this tab, the users can see some
identifying information about each model including its name, author, and algorithm. This page
can search for a model based on any of the four displayed values per model.

33

Figure 5.7. The final general view for the system.

The third and final tab displays the queue which represents the order in which models
will be trained or retrained. This was important in ensuring transparency between the system and
the user. It contains the same four fields as the general view tab, but adds a retrain date, so it is
evident when each model will train. At first glance, the queue view may appear to be very
similar to the general view, but the queue view represents a subset of models included in the
general view. It represents those models that are waiting to be trained and are therefore enabled.
When the system scales up, this view will become more important to see which models are about
to be trained and to track the system status in general.

34

Figure 5.8. The final queue view for the system.

The next three images show the result of clicking on any model in either the “view” view
or the queue view. They differ in their algorithms and therefore their tuning parameters, so they
each have a slightly varied display (Requirement 1). In this first view, a Decision Tree algorithm
is shown, which has no tuning parameters, so it shows only the basic information about the
model.

Figure 5.9. The final Decision Tree detailed view for the system.

35

Next, this view displays the results of clicking on a Random Forest model. This model

only has the number of trees as its parameter in addition to the other general attributes whose
values are displayed here. Notably, here you can see that the user has the option to delete a
model or save an updated author name, deployed status, or enabled status.

Figure 5.10. The final Random Forest detailed view for the system.

Finally, this view shows the algorithm with the most tuning parameters: the Artificial
Neural Network. This view shows the following tuning parameters: maximum iterations, block
size, and number of layers. The only relevant tuning parameter that is hidden is the number of
nodes per hidden layer, but we intentionally excluded that out of fear of bloating the user
interface.

36

Figure 5.11. The final Artificial Neural Network detailed view for the system.

Figures 5.6 to 5.11 represent the final views for the user interface. This interface contains

all the requirements and parameters identified as necessary to allow the user to create models for
the pipeline. The create view was the one that changed the most throughout the iterations
because it was the one we felt was most important to be intuitive to ensure we got buy in from
the potential users. The detail views show their ability to adapt its view based on the model at
hand. In addition to displaying the system, we added input validation to ensure no faulty data
could enter the pipeline from the User Interface (Requirement 4). An in-depth evaluation of the
user interface can be found in Section 6.2.

5.3 Model Metadata Storage

5.3.1 Iterations
When deciding the schema of our objects for MongoDB, we wanted to ensure that we

were capturing all the information without bloating the model. The model had to support the
user interface among other components, but the attributes were derived from the conversations

37

about the user interface as those directly translated to what attributes a model should contain.
Our initial model metadata in MongoDB is shown here:
{
"_id" : ObjectId,
"task" : String,
"name" : String,
"author" : String,
"dateNum" : int,
"dateSpan" : String,
"dateFrequencyNum" : int,
"dateFrequencySpan" : String,
"algorithm" : String,
"output" : String,
"features : String[],
"file_location": String,
"created" : Date,
"last_trained" : Date,
"deployed" : String,
"enabled" : String,
}

Following this implementation, the User Interface requirements grew to include showing
tuning parameters and performance metrics. Additionally, we added attributes for fault tolerance
purposes to keep better track of the state of the model that the metadata defined. Our iterations
proved that the following additional attributes were necessary through conversations with our
sponsor and ensuring our models could support the User Interface design principles we were
aiming to achieve.

Attribute Reasoning

Accuracy Performance metric

Precision Performance metric

Recall Performance metric

F1 Performance metric

FPR Performance metric

inTraining Indicates if that model is currently in training to avoid
collisions

numTrees Random forest only ,indicates number of trees for the random
forest

38

blockSize Artificial neural net only, indicates block size for the
algorithm

maxIter Artificial neural net only, indicates maximum iterations

layerNum Artificial neural net only, indicates number of layers

layerNumN
odes

Artificial neural net only, array indicating how many nodes
per layer
Table 5.8. List of attributes that were added in the second implementation

The final MongoDB object used to hold this metadata is a combination of the old

attributes and the ones above identified throughout the implementation. A final view and
description of all attributes can be found in the final design section.

5.3.2 Final Design
Metadata about models is stored per object as a record in MongoDB. Below is the

schema for the metadata of a model and an explanation of the attributes:

Figure 5.12. Schema for metadata of model

In the following table, each attribute is described in more detail. This shows how the
attributes appear, for use when writing queries, as will be discussed in the REST API section.

39

Attribute Type Description Example

task string The task being performed on
the model

Default:
“create”

name string The name of the model “model1”

author string The name of the user who
created the model

“Brian”

dateNum int The number of unit of time
measurements in dateSpan to
use for training data

30

dateSpan int The unit of measurement used
for time in training data

“days”

dateFrequencyNum int The number of units of time
measurements in
dateFrequencySpan for how
often model is retrained

30

dateFrequencySpan int The unit of measurement for
time training frequency

“days”

algorithm string The algorithm used to generate
the model

“decision tree”

output string The desired output from the
model

Fraud, Customer
segment

features array The features used for creating
the model

[feature1,feature
2]

file_location string The location of where the
model is stored, in order to get
the model later

“/home/store”

numTrees int The number of trees in a
Random Forest model

5
Required only
for Random
Forest algorithm

maxIter int The maximum number of
iterations made in an ANN
model

100
Required only
for ANN
algorithm

40

blockSize int The size for stacking input
data in matrices in an ANN
model

128
Required only
for ANN
algorithm

numLayers int The number of hidden layers
in an ANN model

3
Required only
for ANN
algorithm

layerNodeNums array Contains the number of nodes
at each hidden layer in an
ANN model

[1,2,3]
Required only
for ANN
algorithm

created date The date when the user created
the model information

By default, the
date is created
when
CreateModel is
called

last_trained date The date that the model was
last trained on

Default: null

retrain_date date The date that the model is
ready for training or retraining

By default, the
retrain date is
the created date

deployed string Tells whether or not the model
is deployed

Default: false
(values can only
be true or false,
as a string)

enabled string Tells whether or not the model
is enabled

Default: true
(values can only
be true or false,
as a string)

accuracy int The accuracy of the model,
written as a decimal

Default: null

precision int The precision of the model,
written as a decimal

Default: null

recall int The percentage of all instances
of “not fraud” labeled

Default: null

41

correctly, written as a decimal

f1 int The mean value of precision
and recall, written as a decimal

Default: null

fpr int The percentage of all instances
of “fraud” labeled correctly,
written as a decimal

Default: null

inTraining string Tells whether or not the model
is being trained

Default: false
(values can only
be true or false,
as a string)

Table 5.9. All model attributes.

The values of these attributes change over time depending on the state of the model and
vary between models per their user-specified parameters. MongoDB remained the technology of
choice for the duration of the model metadata storage development due to its ability to scale
horizontally and hold all relevant model information (Requirements 3, 6).

5.4 REST API

5.4.1 Iterations
The first implementation of the REST API contained the basic CRUD operations (Create,

Read, Update, Delete). For the CreateModel function, a model was created using parameters
provided by the query parameters (Requirement 1). The list of attributes belonging to a model
are listed in the table below. For Read operations, the REST API supported GetNewModel and
GetModel. GetNewModel was used to get a new model for training. This function would first
check to see if there were any new models ready to be trained. If so, that model was returned.
Otherwise, GetNewModel checked to see if there were any models ready for retraining. If there
are, the chosen model is disabled and a new model is created with the same initial parameters,
then this new model is returned. If no models are ready for retraining, GetNewModel returned
“false”. GetModel got at most five deployed models and returned those models as an array for
the Scoring Engine (Requirement 3). The next function was UpdateModel, which updated a
model with the given model name with the provided accuracy and file location. This function
also updated the deploy status to “true”. Finally, the REST API had DeleteModel. This function
deleted the model from MongoDB with the specified model name.

Attribute Type Description Example

42

task string The task being performed on the
model

Default: “create”

name string The name of the model “model1”

author string The name of the user who created
the model

“Brian”

dateNum int The number of unit of time
measurements in dateSpan to use
for training data

30

dateSpan int The unit of measurement used for
time in training data

“days”

dateFrequencyNum int The number of unit of time
measurements in
dateFrequencySpan for how often
model is retrained

30

dateFrequencySpan int The unit of measurement for time
training frequency

“days”

algorithm string The algorithm used to generate the
model

“decision tree”

output string The desired output from the model Fraud, Customer
segment

features array The features used for creating the
model

[feature1,feature2]

file_location string The location of where the model is
stored, in order to get the model
later

“/home/store”

created date The date when the user created the
model information

By default, the
date is created
when CreateModel
is called

last_trained date The date that the model was last
trained on

Default: null

deployed string Tells whether or not the model is
deployed

Default: false
(values can only be
true or false, as a

43

string)

enabled string Tells whether or not the model is
enabled

Default: true
(values can only be
true or false, as a
string)

accuracy int The accuracy of the model, written
as a decimal

Default: null

inTraining string Tells whether or not the model is
being trained

Default: false
(values can only be
true or false, as a
string)

Table 5.10. Original set of parameters in model metadata

In the next iteration, two new functions were added called GetAll and UpdateModelInfo

to support actions identified as requirements in the user interface: viewing all models and
updating them. GetAll returned every model in MongoDB, including the disabled models.
UpdateModelInfo allowed for updating a model’s name, author, deploy and enable status when
also provided the chosen model’s name (Requirement 1). As for other improvements, models
included the statistical parameters: precision, recall, f1, fpr. At this point, it was noted our
current system for grabbing the next model was insufficient and would favor new models. The
solution to this problem was implementing a scheduling queue where the items are the enabled
models waiting to be trained. GetNewModel used this queue in order to determine which model
to attempt to train or retrain. The queue allowed for every model to have a chance to be called
next for training or retraining, rather than waiting for all of the new models to be trained first.
We discussed the possibility of a system where a user sees their own models to represent how the
system would behave once scaled. A new file called authors.txt was also added that stored all of
the authors of models so that GetModel could get the array of models for a specific author.

The method of using a model’s name for identifying models in these functions were
replaced by the _id parameter generated by MongoDB. This change was made because a model
name does not necessarily have to be unique. Models were also given new parameters that were
used to allow the user to control the algorithm parameters for training a model. Unlike previous
implementations, the model data will not necessarily have all of these parameters listed but
rather just the parameters necessary for the specified algorithm (Requirement 1). Another
parameter called retrain_date was also added to hold the date for when a model needs to be
trained or retrained. The queue became a priority queue, which sorts the models based on the
retain_date. GetNewModel was modified to just check the first model in the queue. This
function will try to train or retrain the model only if current date is or past the retrain date.
UpdateModelInfo was improved to also update the queue and authors.txt as necessary if a

44

model’s information is updated. A few new functions were also added. Two of the functions,
ModelStatus and UpdateTraining, are designed to help with the CRON Job running for the
Model Generator. ModelStatus returns the deployment status of the specified model and
UpdateTraining is meant for if the ModelGenerator fails, in which case, the function changes the
deployment status to “failed”. Our sponsor indicated it would be valuable for the queue to
display on the user interface so the third function, GetQueue, returns the queue as an array. For
more information about the completed REST API, see the Final Design section.

5.4.2 Final Design
Many of the components of this project are interconnected via a REST API. This API

handles receiving and sending information between the user interface, queue, and model
generator. Table 5.9 shows all of the attributes for a model. Any attribute not given a default in
the table is an attribute specified when creating a model.

The following table is an overview of all of the functions. This table shows an example
of how to run each of the functions, as well as what the result is from running the function. Any
alternate or optional parameters that could be used in the URL can be found in the previous
tables.

CreateModel

URL Example /CreateModel?name=m1&author=Ben&dateNum=30&dateSpan
=days&dateFrequencyNum=30&dateFrequencySpan=days&al
gorithm=Random Forest&output=fraud&features=[f1,f2]

Result This function does not return anything, but adds an entry to mongoDB with
the provided model information and all other attributes for a model set to
their default values.

UpdateModel

URL Example /UpdateModel?idi=23aff3124e&file_location=/home/sto
re&accuracy=0.5

Result This function does not return anything, but updates the enabled entry in
mongoDB with the matching model ID as the one provided in the function
call. In this case, the file location and statistics are updated using the
information from the query.

UpdateModelInfo

45

URL Example /UpdateModelInfo?id=23aff3124e&deployed=false&enabl
ed=false&nname=model1

Result This function does not return anything, but updates the enabled entry in
mongoDB with the matching model ID as the one provided in the function
call. In this case, the model is disabled (enable set to “false”) and the model
is no longer deployed. Also, in the case of this example, the name of the
model will be changed to “model1”

DeleteModel

URL Example /DeleteModel?id=23aff3124e

Result This function does not return anything, but deletes every model in
mongoDB with the matching model ID as the one provided in the function
call.

GetModel

URL Example /GetModel

Result This function returns an array of model entries from mongoDB. Each entry
is a dictionary object. Only the enabled models for a single user are
returned, determined by the server-side list of authors stored in authors.txt.

GetNewModel

URL Example /GetNewModel

Result This function returns one model entry for training or retraining. The model
entry is a dictionary object. Returns “false” if there is no model in
MongoDB or if there are no models ready to be trained or retrained.

GetAll

URL Example /getall

Result This function returns every model entry in MongoDB.

ModelStatus

URL Example /modelstatus?id=23aff3124e

Result This function returns the deployment status of the specified model

UpdateTraining

URL Example /updatetraining?id=23aff3124e

46

Result This function updates the inTraining parameter of the specified model to
“fail”

GetQueue

URL Example /getqueue

Result This function returns the queue
Table 5.11. Table of function call examples and their results.

Below is the table of the parameters used for the CreateModel function. Every attribute

listed is required for the function. This function takes all of the parameters specified by the user
and enters them into MongoDB as a new set of model data (Requirement 1).

Attribute Type Description Example

name string The name of the model “model1”

author string The name of the user who
created the model

“Brian”

dateNum int The number of unit of time
measurements in dateSpan to
use for training data

30

dateSpan int The unit of measurement used
for time in training data

“days”

dateFrequencyNum int The number of units of time
measurements in
dateFrequencySpan for how
often model is retrained

30

dateFrequencySpan int The unit of measurement for
time training frequency

“days”

algorithm string The algorithm used to generate
the model

“decision tree”

output string The desired output from the
model

Fraud, Customer
segment

features array The features used for creating
the model

[feature1,feature2]

47

numTrees int The number of trees in a
Random Forest model

5
Required only for
Random Forest
algorithm

maxIter int The maximum number of
iterations made in an ANN
model

100
Required only for
ANN algorithm

blockSize int The size for stacking input data
in matrices in an ANN model

128
Required only for
ANN algorithm

numLayers int The number of hidden layers in
an ANN model

3
Required only for
ANN algorithm

layerNodeNums array Contains the number of nodes at
each hidden layer in an ANN
model

[1,2,3]
Required only for
ANN algorithm

Table 5.12. Table of required attributes for CreateModel.

Below is the table of the parameters used for the UpdateModel function. Every attribute

listed is required for the function. This function updates the model that has just been trained or
retrained by updating the information about where the model is stored, the statistics of the model,
the last date trained and the retrain date.

Attribute Type Description Example

_id string The id of a model
(this value is generated automatically by
MongoDB)

“23aff3124e”

file_location string The location of where the model is stored, in order
to get the model later

“/home/store”

accuracy int The accuracy of the model, written as a decimal 0.5

precision int The precision of the model, written as a decimal Default: null

recall int The percentage of all instances of “not fraud”
labeled correctly, written as a decimal

Default: null

f1 int The mean value of precision and recall, written as
a decimal

Default: null

48

fpr int The percentage of all instances of “fraud” labeled
correctly, written as a decimal

Default: null

Table 5.13. Table of required attributes for UpdateModel

Below is the table of the attributes used for the UpdateModelInfo function. Every

attribute listed is required for the function. This function is intended for use on the user side, and
allows for the information stored for the model to be changed (Requirements 1 and 2).

Attribute Type Description Example

_id string The id of a model
(this value is generated
automatically by MongoDB)

“23aff3124e”

deployed string Tells whether or not the model is
deployed

Default: false
(values can only be true or false,
as a string)

enabled string Tells whether or not the model is
enabled

Default: true
(values can only be true or false,
as a string)

nname string (optional) The new name for the
model

“newmodel1”

nauthor string (optional) The new name for the
model author

“Brian”

Table 5.14. Table of required attributes for UpdateModelInfo.

Below is the table of the attributes used for the DeleteModel function. Every attribute

listed is required for the function. This function searches for the specified model by the ID of the
model, and deletes the model information from MongoDB.

Attribute Type Description Example

_id string The id of a model
(this value is generated automatically by MongoDB)

“23aff3124e”

Table 5.15. Table of required attributes for DeleteModel.

Below is the table of the attributes used for the ModelStatus function. Every attribute

listed is required for the function. This function searches for the specified model by the ID of the
model, and returns the deployment status of that model.

49

Attribute Type Description Example

_id string The id of a model
(this value is generated automatically by MongoDB)

“23aff3124e”

Table 5.16. Table of required attributes for ModelStatus.

Below is the table of the attributes used for the UpdateTraining function. Every attribute

listed is required for the function. This function searches for the specified model by the ID of the
model, and updates the inTraining status of the model to “failed".

Attribute Type Description Example

_id string The id of a model
(this value is generated automatically by MongoDB)

“23aff3124e”

Table 5.17. Table of required attributes for UpdateTraining.

5.5 Model Generator

5.5.1 Iterations
The original technology considered for producing models was Skytree. Skytree is a

compact integral machine learning pipeline itself, so we decided it was redundant to integrate it
into our pipeline. It runs on the self designed HDFS and Spark as a complete commercial
product. Skytree runs independently on a virtual machine and web application in a server which
requires a lot of storage. Skytree is similar in nature to the entirety of our project, so we didn’t
include it as a component.

Later on in the development, we added more algorithms to support a variety of models,
which were identified as important by our sponsor (Requirement 7). The next algorithms to be
supported were Artificial Neural Network and Random Forest. Additionally, the Model
Generator was altered to take in the tuning parameters for each of these algorithms as specified
in the user interface.The code structure was changed to separate files in order to easily add new
algorithms (Requirement 2). The code for each algorithm is now stored in a separate file.
Additionally, extracting the model information from the UI and the data preparation were
separated from the algorithm training part of the code. They were also in an independent file to
work as a dispatcher that can choose corresponding algorithm from an algorithm pool and send it
user’s parameters.

50

Finally, in order to prevent application failure during train or retrain, a script is written to
rerun the spark submission command (Requirement 4). The user can determine the number of
times a model will attempt to train. This improved the robustness of whole pipeline.

5.5.2 Final Design
The Model Generator generates a model with user-specified parameters, running on top

of a hadoop cluster with YARN as the resource manager. It interacts with mongoDB through the
RESTful API to extract the model metadata defined by a user and utilizes the dataset from the
Hive database to train a model using the user-specified machine learning algorithm.

A cron job runs every X hours to check if there is a model that needs to be trained. Cron
is a daemon that only needs to be started once and it remains dormant while not in use. The cron
job doesn’t occupy memory while dormant and will start up on the next defined time even if the
previous execution fails. The model generator will be activated to train a model if a new model’s
metadata is returned through REST API.

The returned object contains the desired algorithm’s name, feature names, the date range
and the model’s output. The model Generator is flexible in that the output is not limited to a
predetermined value, but can be used to predict any column in the transaction data. The model’s
output indicates the column that user wants to predict. The Model Generator ingests the data
from Hive using Spark SQL. It selects the column whose name matches the feature names and
output specified by the user and stores them in a Spark DataFrame structure.

For further data preparation, the Spark transformation operation was used to combine the
list of feature columns into a single vector column and change the name of the column user
wants to predict to ‘label’. The returned DataFrame is split into a training dataset and a test
dataset with predefined proportions. Model Generator then implements user-selected algorithm
to train the model on the training dataset. The generated model is then tested on the testing
dataset and a python object Evaluator is designed to measure the model’s predictive accuracy.

51

Figure 5.13. Notation Clarification

Five most commonly used statistically matrices are selected for the measurement and

notation and their calculations are stated as above (Requirement 7). TP is predicting positive and
label is positive; FP is predicting positive but label is negative; FN is predicting negative and
label is negative; TN is predicting negative but label is positive. TP and FN represent correct
label whereas FN and FP show errors.

Name Equation Description

Accuracy

The fraction of correct prediction
over the total number of predictions.

Precision

The fraction of actual positive
among those predicted as positive,
which measures the rate that
retrieved instances are relevant.

Recall

Also known as true positive rate or
sensitivity, the fraction of actual
positive among those labeled as

52

positive, which measure the rate of
relevant instances that are retrieved.

False Positive
Rate

The fraction of those falsely
predicted positive instances among
those label as negative.

F1-Measure

The harmonic mean of recall and
precision.

Area Under
Receiver
Operating
Characteristic
(ROC) Curve

(Apache, n.d.)

A ROC curve plots (recall, false
positive rate) points at different
threshold settings (Apache, n.d.).

Area Under
Precision-Rec
all Curve (Apache, n.d.)

A P-R curve plots (precision, recall)
points at different threshold values
(Apache, n.d.).

Table 5.18. Binary Classification Evaluation Matrices

The trained model is associated with the file address at which it is stored and

performance metrics are written back to mongoDB through the REST API.
The Model Generator is also responsible for trying multiple times to train a model if it

fails. Spark servers could be interrupts at any point in the model’s training, so the Model
Generator allows multiple attempts to rerun the model (Requirement 4). If it has attempted to
train more times than allowed then the InTraining attribute on the model will be change to

53

“failed”.

Figure 5.14. Model deployed Failure

5.6 Feature and Transaction Storage

5.6.1 Iterations

5.6.1.1 Storage Tool

Here is a table comparison based on the features our project supports prior to finalizing
the required functionality (Requirement 6).

 Hive HBase Cassandra

Description Data warehouse software
for querying and managing
large distributed datasets

Built based on the
concept of BigTable.
Has cell-level access
labels and a server-side
programming
mechanism

Built based on the
idea of BigTable and
DynamoDB.

Database
model

Relational DB Wide column storage Wide column
storage

54

SQL SQL-like(HQL) Master-Slave NoSQL
databases

NoSQL databases

Advantage ● Good for batch
processes, running
periodically (maybe
in terms of hours or
days).

● Analytical queries
● Mainly used for ETL

and data
warehousing
purpose.

● Can present
Cassandra and
HBase as a "table"
that can be "queried"
via Hive's language

● Support low
latency calls.

● Good for Heavy
reads and less
Write
applications

● Linear
Scalability for
large tables and
range scans

● Fast lookup and
random access

● Real-time
querying

● Supports low
latency calls.

● Good for
single-row
queries or
selecting
multiple
rows based
on a
Column-Val
ue index

Disadvantages ● Not as popular as
other two engines

● Loss all the goods of
real-time processing

● All the disadvantage
of relation DB

Not good for Classic
transactional
applications or even
relational analytics and
the data that need to be
aggregated, rolled up,
analyzed cross rows

Not good for
transactional
operations
(Rollback, Commit)
and relational data
Range-scan is not as
good as Hbase

Example Facebook messenger Twitter, Travel
portal

Table 5.19. Comparison of different storage tools.

Hbase and Hive support the functionality we need for this project. After comparing the

two technologies, we decided to choose Hive. Below are the justifications for choosing Hive:
1. Hive is good to use in non real-time situations. Our project does not involve real-time

querying. Though the Scoring Engine would run better if it could stream transactions in
real-time, we are more focused on the proof of concept that the Scoring Engine can score
transaction data. In this project, all data comes from a database and no new data feeds
into the Scoring Engine.

2. Hive is good for batch processing. This project does not require fast lookup and random
access. Our goal is simply to preprocess data and feed it to the Model Generator in
batches. Hive is good for data storage that doesn’t update too often, which is the case for
our pipeline.

55

3. ACI is uses a relational database for their transactions. Hive is relational database. Hbase
is not a relational database and it uses wide column storage. Hbase is also not good for
classic transaction application or even relational analytics where these are Hive’s
strength.

4. Hive can map to HBase and Cassandra (Requirement 3). Using Hive’s language can
query Hbase and Cassandra as “table”. If this project wants to further expand to using
other database or getting information from table using HBase or Cassandra, Hive is a
good spring board.

5. Hive is enough for this project. The pipeline we are creating does not require many write
operations. Only batch modification when clearing data is required and this is done
before running Model Generator.

5.6.1.2 Hive Tables

When considering the layout of our tables, one table which we can extract all information
user needed for model training from would be the best to reduce bloat. Also, there is not enough
variation or relationships to justify an additional table. The original design for Hive storage only
contains the Transaction Table and Dimensional Table. The transaction table stores all the raw
transaction data, with features calculated based on single transactions.

There were two initial prototypes for the dimension table. The first version uses a sparse
table and treats the Dimension type as the primary key so that different instances can be
aggregated based on Dimension types. Some of the instances have attributes that other instances
don’t have and this will make most of the table contain “NULL” cell entries. Additionally, the
sparse table is not good for batch operations and for training. Hive needs to spend time
examining each “NULL” space and the Model Generator has to deal with meaningless “NULL”
values in each column. The second version is more complicated. The type of each instance forms
a table and there is a large table to sum up all instance types. It is good for an individual instance
as the targeted table allows free design for each instance and avoids filling missing values with
“NULL”. Though with better storage efficiency, this version has a drawback of sophisticated
data manipulation. To get the information of an instance requires user to jump between multiple
tables.

After beginning the implementation, the team emphasized the purpose of a Dimension
table and how to make the Dimension more efficient at data storage and at the same time can be
quickly manipulated by the Model Generator.

After discussing the roles and responsibilities of the tables, we decided the Dimension
table should play a role of helping to calculate the features for the Transaction table, rather than
be a data source for Model Generator. The Dimension table’s job is to calculate the average, sum
and standard deviation of multiple time intervals. These statistics are going to help with
computing the difference between population and sample values for a single transaction in the

56

Transaction table. In conclusion, all features and attributes are going to be in the Transaction
table and it will be the final table from which users select features sent into the Model Generator.

Our advisors suggested that there is no need to calculate the difference between the
overall performance and single performance of each transaction. As long as there is a difference
between the transaction rows, the machine learning model can distinguish them. Therefore, The
information provided by Dimension table as a features table and Transaction table without
features are enough.

While implementing both tables, the team focused on cleaning up data. The sample data
set has around 3800 data and 495 attributes. Not all 495 attributes are important and some of
them are missing data. Additionally, because machine learning algorithms only accept data in
doubles and in a feature vector form, all strings had to be converted to categorical doubles, even
numeric columns in types of int, float and bigint had to convert to doubles and then add the user
features into a vector form.

In this process, 2 more tables are constructed for each converting step. A new
AllFeaturesTable Table is the final version before selecting user features for training. During this
time we changed strings to categorical doubles and cleaned up unhelpful columns, delete rows
with “NULL” is the first idea. However, deleting rows with “NULL” cuts off most of the data set
and feeding such a data set to machine learning algorithms is meaningless, so filling “-999” was
an idea to maintain diversity of the dataset, though it may weigh too much while training and
impact the training accuracy.

Hive also stores the result of the model’s scoring from the Scoring Engine. The Scoring
Engine result was originally added to the Transaction table. However, there is no need to append
a new column as scoring result column and modify every slot when new results come in because
it takes long time to do the modification in Hive and users cares more about overall transaction
and the Scoring Engine score. So transaction id and its corresponding score, without features and
attributes, will be left in result table of Scoring Engine.

5.6.2 Final Design
Both the transaction and feature data are stored in a Hive database, which runs on top of

HDFS. HDFS is able to store large files across multiple machines. Orchestrated by the
Namenode and Datanodes, HDFS is a favourable place for data storage. Spark SQL can access
data stored in HDFS through Hive to get both raw transaction attributes and calculated features.
Combining Spark with HDFS, both new data and old data, both attributes and features could be
sustained, manipulated with ease.

5.6.2.1 Transaction Storage

The transaction table’s real data is stored in HDFS with its Hive database metadata in
physical space. All the transaction data was historical data provided by ACI worldwide, Inc.

57

With 495 attributes, including name, address, transaction id, date, time, chargeback and manual
fraud labels, transaction data are all raw data stored in transaction table. The data quantity can be
easily increased or decreased for the user needs.

After the scoring engine scores the corresponding transactions, it produces a new table
called “SEresults” for the usage of score checking. The new table needed is to reduce the
inconsistency of data on the same table while getting data from old feature table, providing data
for Model Generator, and writing and updating new score results.

Attributes from raw transaction…..
OID, Customer Name, Address, Merchants, Date, Time….. Chargeback, manual fraud label

…. Total 495 attributes here
Table 5.20. Transaction table structure.

f_oid Predictions for
Model 1

Predictions for
Model 2

... Predictions for
Model n

Probability Scoring Engine
Results

…. “fraud”

…. “not fraud”
Table 5.21. SEresults table structure.

5.6.2.2 Feature Storage

All features that can be ingested in the table are stored in dimension tables and feature
tables in Hive.

Dimension tables are constructed based on the user selected time interval to compute the
average, sum, and standard deviation of transaction amounts and the number of transactions.
Four dimension tables are created using Spark SQL and stored in Hive. The sum, average,
standard deviation of transaction amounts and number of transactions are calculated over one,
seven, thirty, and ninety days. For example, in the dimension table with time span set as seven
days, for each card number, it computes the sum , average, standard deviation of transaction
amounts and number of transactions happens in past seven days, which consists of today and the
previous six days.

Feature tables store the features derived directly from the transaction data’s attributes. It
converts different types of attributes such as strings and missing values to numerical values that
can be ingested in the model using StringIndexer provided by the Pyspark library. Spark SQL is
used to read the transaction data into a Spark DataFrame. To ensure the data isn’t too sparse, a
percentage is set to determine if the columns in the DataFrame containing enough information.
This percentage represents the amount of data the frame contains . The default percentage is 0.5
meaning that fifty percent or more of the data must not be empty.

58

A new DataFrame will be constructed by selecting only attributes in the transaction data
DataFrame where the percentage of the not null data is larger than the valid data percentage.
Then in this new DataFrame, the null value in the string column will be filled by ‘NA’. A series
of computations converts all string columns in this DataFrame to numeric features and carries
over the original numeric columns. The numeric features’ columns’ name is same as the original
attribute columns’ name plus ‘f_’ in front. For example, a string column in transaction data
DataFrame named “Report” will be converted to “f_Report” with datatype double. After multiple
DataFrame transformations, it yields a DataFrame containing both attributes and numeric
features. Then the numeric features, which must include “f_OIDDateYYMMDD”, and
HashCardNo, will be selected to form a DataFrame and this DataFrame is then written back to
Hive and is stored as a Hive table as FeaturesTable. All columns’ types in FeaturesTable are
numeric except HashCardNo which is the same as the one in transaction data DataFrame. The
HashCardNo and “f_OIDDateYYMMDD”, which represents date, are selected because they are
used to outer joining dimensional tables and FeaturesTable.

Figure 5.15. Data clearing manipulation

The AllFeaturesTable is constructed by executing a left outer joining one feature

table(FeaturesTable) and dimension table(DimensionOneDay, DimensionSevenDay,
DimensionThirtyDay, DimensionNinetyDay) where they have equivalent hash code number and
same transaction date. This table will store all the features that could be used during training. The
null value in columns in the DataFrame after outer joining are filled by 0. An additional empty
column “manualFraudLabel”, which is used for the business analysts manual label indicating
whether the transaction is fraudulent, is then appended to the AllFeaturesTable.

59

Figure 5.16. Creating AllFeaturesTable

The Figure 5.17. is the summary of preprocessing data through all calculation or

formatting steps. Started from reading raw data into a table, the preprocessing calculated
features, cleaned and formatted datas and gathered all information into one table. The right side
are the corresponding code files.

Figure 5.17. Data Preprocessing workflow

60

5.7 Scoring Engine

5.7.1 Iterations
The Scoring Engine initially worked only for very small datasets, but failed when using

the pipeline test datasets. The error that occurred while using Spark’s foreach function which
loops through every row in an RDD and performs an operation on the row. The issue was
caused due to a memory issue. The code required a function to run on each line of the RDD,
which can quickly overload the VM’s call stack, causing the error. This was an unforeseen
limitation and required us to change the design of the Scoring Engine.

The Scoring Engine was rewritten to use DataFrames instead. Spark is designed to
handle operations on DataFrames more efficiently, so the Scoring Engine can run with large data
sets. This also allowed for better interaction with Hive, as the transaction data is retrieved in the
form of a DataFrame. The general method of the Scoring Engine remained relatively the same
as the original RDD design, except for a few changes. Rather than loading all of the model
information first and then creating a set of predictions, the set of predictions were generated one
at a time. The information needed to create the predictions for one model is collected and then
used to create that model’s predictions, with this process repeating for each model. This reduced
the need for arrays as storage. The only data stored in an array are the accuracies and the
predictions. The accuracies are stored in order to normalize them, so that for larger numbers of
models in the Scoring Engine, there will always be a probability of fraud that is out of 100%
(Requirement 3). The predictions are still combined, but use Spark DataFrame operations
instead. Likewise, creating the probability of fraud uses DataFrame operations to perform the
calculation on each row. Finally, the results are based only on the weighted voting method. The
first check to see the majority vote was dropped due to the chance that multiple models with low
accuracies could all incorrectly vote fraud, in which case the Scoring Engine would produce in
incorrect result for that transaction.

61

5.7.2 Final Design

The Scoring Engine populates itself with models by
calling GetModel() from the REST API. The scoring engine is
currently designed to use five models at most, but could allow for
more models, as discussed in section 6.1.1 (Requirement 3). If
no models are available, the scoring engine terminates and logs
with a system message saying that there are no models. When
models are available, for each model, the needed information is
collected, including the algorithm, file location and accuracy.
The accuracy is stored in an array for use at a later step. Next,
the model is loaded from storage. The features and data are also
loaded using the current model’s features list. Then, the
predictions that the model makes are generated and stored as a
DataFrame in a local variable array called dfpredictions where
each entry corresponds to a prediction (Requirement 7). These
steps are repeated for each model retrieved. Once each model
has created a set of predictions, the accuracies are normalized by
taking each accuracy as a fraction of the sum of all accuracies.

Array Purpose Example Use

ac[] Stores the accuracy of
each model

ac[0] corresponds to the
accuracy for the first
model taken from
mongoDB

Needed for
calculating the score
for each model

dfpredictions[] Stores the predictions of
each model (an DataFrame
containing the prediction
for each transaction)

dfpredictions[0]
corresponds the set of
predictions for the first
model

Needed for
generating the score
for each transactions
using all models

Table 5.22. Arrays used in scoring engine.

The next step that the scoring engine takes is to group all of the predictions together. To

do this, each set of predictions are joined together into a single dataframe using the transaction’s
order ID to validate that the corresponding predictions line up. Then, the Scoring engine
calculates the probability of fraud. This is done by using a weighted voting calculation. Each
prediction is multiplied by the corresponding model’s accuracy and then all of the predictions are
added together. This total is then subtracted from one, since “fraud” is associated with a value of

62

zero by the models created in the Model Generator, in order to get the probability of fraud for
each transaction, as a percent.

Finally, the scoring engine evaluates the transaction. For a transaction with a probability
greater than or equal to 0.5, the Scoring Engine determines that the transaction is “fraud”. All
other transactions are then determined to be “not fraud”. These results are added as a new
column to the DataFrame and the results are. These results are then recorded in Hive.

5.8 Putting It All Together: The Chronos Pipeline Workflow

Figure 5.19. Flow of Chronos pipeline

To contextualize the above detailed technical solutions of each component, in this section

we will give an overview of the workflow of the pipeline. The figure above shows the
components the model passes through on the top and the technology that helps support them on
the bottom. Starting at the UI, a user creates a new model. The user will specify the set of
requirements for the model through a form, and then submit the model. The REST API receives
the request to create this new model, and adds the model metadata to MongoDB and the model
training queue. The Model Generator continuously queries the queue for a new model to be
trained. The REST API finds the next model ready to be trained or retrained and returns that
model to the Model Generator. Once it is the submitted model’s turn in the queue, the Model
Generator uses the parameters specified by the user as input to define the data to gather for
training, the features that will be used, and the algorithm and its respective tuning parameters.
From here, the model will be deployed to the Scoring Engine where it will be waiting for
incoming transactions to score them based on the output defined by the user (our main
motivation is fraud). The user can view this model’s state in the system through the user
interface and update or delete it as well as create additional models.

Our Chronos pipeline meets all of our pipeline requirements. The models generated by
our pipeline have a wide variety of parameters, many of which can be altered, allowing for
flexible models. Through reviews with others including a HCI expert, we created a User

63

Interface that is intuitive for any user with some understanding of the process of creating a
model. For scalability, Hive is capable of mapping to Hbase or Cassandra, allowing for the
expansion of storing data. In addition, the pipeline can be modified to allow any number of
models to be used while running the Scoring Engine. This pipeline has also incorporated fault
tolerance in a number of ways. The User Interface is designed to expect certain inputs and will
prompt the user to make any necessary changes to the input. To avoid issues with multiple calls
to the REST API and thus, the query (which is capable of breaking, see section 6.3.1), try-catch
statements were added. Also, when running the Model Generator, there is a test to make sure
that a model’s inTraining status is updated in case the Model Generator fails. For modularity, in
the event that any section, such as the UI, Scoring Engine or Model Generator need to be
swapped out for something else, the REST API allows for this without affecting the other
portions of the pipeline. Through research, we determined that using MongoDB and Hive were
the most appropriate technologies for our pipeline and using web technologies that supported
JSON like models was the best fit to increase the cohesion between components. Finally, our
pipeline is capable of supporting models using our chosen algorithms, and could easily be
updated to include more algorithms. A summary table of the requirements and how they were
met is shown below.

Number Label How Requirement is met

1 Model Flexibility ● Multiple parameters for customizing models
● Ability to modify many of the model parameters later

2 Intuitive User
Interaction

● Easy to use
● Multiple ways to interact with models

3 Scalable ● Hive can map to HBase and Cassandra (allowing for
expansion of storing data)

● Can allow for any number of models in the Scoring
Engine

4 Fault tolerance ● UI checks for valid inputs
● REST API uses try-catch statements to handle

multiple calls without causing errors
● Model Generator updates inTraining in case it fails

with model still inside

5 Modular ● Can replace UI, Model Generator or Scoring Engine
without affecting the rest of the pipeline

6 Appropriate
Technologies

● Through research, decided to use MongoDB and Hive

64

7 Machine Learning ● Supports models being generated using our chosen
algorithms, and can be made to easily support more

○ Can create models from user input
○ Can score transactions using these models

Table 5.22. How we met the system requirements

65

6. Evaluation
In this section, we discuss the results of our work. Overall, we were able to implement a

pipeline that met all of the requirements that arose prior to and during our implementation. Next,
we wanted to test our pipeline to identify shortcomings and areas for improvement. The tests
varied on the component given their different responsibilities; the user interface can’t be
evaluated in the same way as the database. We looked at the pipeline not only at its technologies’
limitations, but the pipeline’s ease of use and the ability to easily extend its capabilities as those
less quantitative results are just as important to the evaluation of our pipeline.

6.1 Chronos Overall

6.1.1 Assessment of the User’s Ability to Complete Tasks
In our context, flexibility is defined as giving the user all the capabilities the need to

accomplish a reasonable task. Currently, Chronos’ biggest limitation is the limitation of the
number of models deployed. In order to increase the number of models that can potentially be
sent to the Scoring Engine, GetNewModel in the REST API would need to be updated. In order
to do this, at line 581, the line shown in the figure below needs to be updated by changing the
number in limit() to the desired number of models. Alternatively, limit() can be removed from
this line to allow any number of models by one author to be used in the Scoring Engine.

Figure 6.1. The line of code that determines how many models can be sent to the Scoring Engine

6.1.2 Ease of Plugging in New Technologies
It was important throughout our development to be considerate of the fact that some

technologies may need to be swapped out in the future, so we needed to consider the time
associated with those tasks and the technical difficulty. The User Interface can be altered in any
way as long as it is able to connect to the REST API. In order to change From MongoDB to
another database, the REST API needs to be updated. At the beginning of the REST API code,
the code used for setting up the connection to MongoDB would have to be replaced by the
connection setup for the new database. At the end of the code, the listeners would have to be
updated to connect to the new database. Finally, in each of the main functions (those described
in the final design section), the code used to access the model data in MongoDB would need to
be updated to access the model data in the new database. Although this switch could be time
intensive, it is localized to this one part of the code because the REST API serves to abstract the
database connection.

66

If a section of the back-end of the pipeline needed to be changed, such as changing the
Model Generator or Scoring Engine, then only the connection to the REST API needs to be
updated. The new code needs to import rest.py in order to use the functions from the REST API.
In the case where these functions need to produce a different output, such as expecting only one
model in the new Scoring Engine, then the corresponding functions need to be updated as well.
In these cases, the corresponding functions need to update the line using collection.find() to use
or not use the limit() argument (see Figure 6.1 above for details). Our REST API really lends
itself well to ensuring that we don’t overly couple our components.

6.2 Chronos User Interface
The User Interface was evaluated on two broad areas: the core principles of human

computer interaction and its fault tolerance. For the latter, the fault tolerance was more focused
on the grand scheme of the pipeline as opposed to human computer interaction and alerting the
user of any errors. There, we evaluate the potential for the user interface to submit invalid
information that could negatively impact the pipeline.

6.2.1 Evaluated against Human Computer Interaction Principles
The final User Interface was analyzed against these ten core principles of Human

Computer Interaction (Nielsen, 1995; Nielsen, 1994). We listed both the benefits and drawbacks
to ensure the analysis was fair and unbiased. This analysis also considered the feedback from the
Human Computer Interaction expert we met with, Professor David Brown.

Principle Benefits Drawbacks

Visibility of
system status

● Queue shows order of
models to be trained

● Model shows in training,
enabled, deployed

● No comprehensive list of
what is deployed/enabled

Match between
system and the real
world

● After refinement,
terminology matches real
world vernacular

User control and
freedom

● User is able to customize
models within reason

● User is pretty confined to
defined model creation
procedure

Consistency and
standards

● Same words, layout,
terminology used throughout

● Error handling is a bit
inconsistent

67

Error prevention ● Error handling for reasonable
use cases such as user
inputting wrong type or
empty data

● Error messages aren’t
immediately visible
(usually until form is
submitted)

Recognition rather
than recall

● Views all visible from every
page

● Have to go to model
detail to delete

Flexibility and
efficiency of use

● Input is limited by system
availability (algorithms,
output, features)

● Creating a model only
asks for required
information

Aesthetic and
minimalist design

● No extraneous information ● Detailed model view is a
bit busy

Help users
recognize,
diagnose, and
recover from
errors

● Error messages appear
following a submitted error

● Error messages could
appear earlier

 Table 6.1. Core principles of a UI

6.2.2 Examining Fault Tolerance through Sanitizing Bad User Input
When considering a User Interface, the fault tolerance is embodied by the user’s ability to

input invalid information. When the user has too much control, they are able to submit input that
will not result in valid output at best or could cause the pipeline to break at worst. Below is a
table listing every interaction between the user and the models and an analysis of the flexibility
versus the input’s ability to prevent invalid inputs.

 Flexibility Avoiding Errors

Field: Model
Name

● Input type is text (any text) ● Rejects empty box

Field: Author
Name

● Input type is text (any text) ● Rejects empty box

Field:
Algorithm

● Limited to algorithms available ● Dropdown box limits
input

Field: Output ● Limited to output available
(currently only fraud)

● Dropdown box limits
input

68

Field: Features ● Choose as few or as many
features as desire

● Drag and drop limits
input

Field: Data
Date Range

● User has choice over the amount
of time, but is somewhat limited

● Input limited to number
input and drop down

Field: Train
Frequency

● User has choice over the amount
of time, but is somewhat limited

● Input limited to number
input and drop down

Submit (Train)
Button

 ● Only submits when input
fields are valid

Edit Author ● Any text ● Limited to text field (to
add: not empty)

Save Edited
Model

● Any text ● Need to add: input
validation on edit author
(to add: not empty)

Delete Model ● Delete model when in detail
view, delete any model

● Handles deletion using ID

Table 6.2. Analysis of interactions between user and models.

The interface fields give the user the flexibility to enter a range of information while

ensuring the information is valid to avoid putting the pipeline in an error state. By including the
input validation so early on the pipeline, we avoid more costly mistakes and give the user more
time to correct their mistakes.

6.3 REST API

6.3.1 Assessing Fault Tolerance through Input Sanitization
The first set of tests involved making sure that every function worked as expected. This

included testing the handling of bad inputs. If a required field is missing, the field is filled in
with null. For other inputs, there are no errors. However, the REST API does not evaluate the
parameters, so the API assumes that the parameters have been entered in correctly and will
proceed as usual. The expectation is that the other parts of the pipeline, such as the UI, are
responsible for evaluating the input parameters.

6.3.2 Behavior when Handling Simultaneous Requests
This API is capable of running multiple requests at once. The test for this included four

calls to the REST API to create models, where each call was made immediately after the

69

previous call. While running the test for the first time, the test failed, meaning that an error
occurred. The error was due to having multiple requests try to load and save the queue at the
same time. For the second test, try-catch arguments were added to the functions pertaining to the
queue. The API successfully created all four models, as well as added the author’s name to
authors.txt and added the model to the queue.

6.3.2 Speed Testing Results
The next set of tests involved testing the speed of the functions in the REST API that are

called from other sources. This test involved taking the average running time of three instances
of each function. For all of the functions, there was only one model in the database. The
exception was CreateModel(), in which the database was empty while testing. The results are
shown in the table below.

CreateModel GetNewModel

Speed 49.33 milliseconds Speed 6.33 milliseconds

UpdateModel GetAll

Speed 10.66 milliseconds Speed 5.66 milliseconds

UpdateModelInfo ModelStatus

Speed 12.66 milliseconds Speed 3.66 milliseconds

DeleteModel UpdateTraining

Speed 11.66 milliseconds Speed 7.66 milliseconds

GetModel GetQueue

Speed 4.66 milliseconds Speed 1.66 milliseconds
Table 6.3. Result of testing the speed of the functions in the REST API

6.4 Model Generator
Recording a Baseline and the Impact of Different Algorithms and their Parameters on Training
Times

To see the performance of Model Generator, models with a variety of algorithms were
constructed and random but reasonable parameters settings were chosen to do test them on their

70

speed and accuracy. Fitting different data sets also affected model performance so in the
following scenario and with 20 plus features, models were set up:

Algorithm Data set size Attributes

Decision Tree 3864 data
(4 years +1 months date range)

Random Forest(1) 3864 data
(4 years +1 months date range)

numOfTree: 7

Artificial Neural Network(1) 3864 data
(4 years +1 months date range)

Max Iteration: 2
Block size: 128
Num of Hidden layer: 2
Hidden layer 1 node: 47
Hidden layer 1 node: 27

Random Forest(2) 3864 data
(4 years +1 months date range)

numOfTree: 37

Artificial Neural Network(2) 3864 data
(4 years +1 months date range)

Max Iteration: 2
Block size: 128
Num of Hidden layer: 1
Hidden layer 1 node: 100

Table 6.4. Models used for testing

In first set of models were created to fit whole sample dataset with four years and one

month data range. Decision Tree, Random Forest and Artificial Neural Network were all the list.
Because Decision Tree algorithm did have parameter to alter, only one model for this algorithm
is enough. Random Forest and Artificial Neural Network each had two models with different
parameters. For Random Forest, one of numOfTree variable is smaller than features number
selected by the user and one variable is greater than features number selected. For Artificial
Neural Network, one is with 2 hidden layers using random prime numbers as layer nodes and the
other one is 1 layer using 100 nodes. We are expecting different results from Neural Network
with different layers and different nodes numbers.

Algorithm Data set size Attributes

Decision Tree 220 data(5 months data)

Random Forest(1) 220 data(5 months data) numOfTree: 7

Artificial Neural Network(1) 220 data(5 months data) Max Iteration: 5

71

Block size: 128
Num of Hidden layer: 2
Hidden layer 1 node: 47
Hidden layer 1 node: 27

Random Forest(2) 220 data(5 months data) numOfTree: 2

Artificial Neural Network(2) 220 data(5 months data) Max Iteration: 5
Block size: 128
Num of Hidden layer: 1
Hidden layer 1 node: 47

Table 6.5. Second set of models used for testing

In second set of models were created to fit whole sample dataset with five months data

range. Decision Tree still maintained same setting. One of Random Forest kept old tree number.
Another Random Forest model shrunk to smaller number to see the accuracy performance. For
Artificial Neural Network, Max iteration increased to get better accuracy. One layer Neural
Network reduced the 47 nodes was expected to see the reduce impact on accuracy.

The accuracy and speed of testing result in the first test cases are following:

Algorithm Train Duration Accuracy

Decision Tree 2 minutes 55 seconds 0.941558

Random Forest(1) 2 minutes 24 seconds 0.943548

Artificial Neural Network(1) 1 minutes 57 seconds 0.946138

Random Forest(2) 2 minutes 23 seconds 0.931848

Artificial Neural Network(2) 2 minutes 13 seconds 0.939471
Table 6.6. Test results of first test set

The accuracy and speed of testing result in the second test cases are following:

Algorithm Train Duration Accuracy

Decision Tree 2 minutes 04 seconds 0.988636

Random Forest(1) 2 minutes 05 seconds 0.980392

Artificial Neural Network(1) 2 minutes 03 seconds 0.987314

72

Random Forest(2) 2 minutes 03 seconds 0.978261

Artificial Neural Network(2) 2 minutes 26 seconds 0.990825
Table 6.7. Test results of second test set

In first table, train durations were overall longer than the train duration in second table.

While datasize increased more than 17 times, the pipeline train time only increased about 30
seconds. The second test set was small so accuracy was higher but may overfit. There were not
much difference between parameter settings and even three algorithms. The accuracy was greatly
affected by datasize. However, we still can see Artificial Neural Neural Network perform a little
better than Random Forest generally.

6.5 Chronos Backend Infrastructure
The Chronos Backend Infrastructure is built on Hadoop and Spark. Hadoop performance is hard
to test but can be partially reflected from the performance of Model Generator and Feature and
Transaction Storage. However, Spark performance is more easily testable is our implementation.
We wanted to evaluate its performance to see its accuracy, speed, and fault tolerance in the
context of our pipeline. Below is our list of tests:

1. Test date range calculation correctness using testDate.py
2. Test efficiency of calculating using Dimension.py
3. Test efficiency of converting categorical string to double using constructFeature.py
4. Test efficiency of constructing whole table using constructFeature.py
5. Test cluster node go down
6. Test the amount of times spark will try to rerun a model on failure
7. Test incorrectly formatted data
8. Test number of requests before resources are used up

6.5.1 Accuracy of Chronos Backend Infrastructure Calculations
1.Test date range calculation correctness using testDate.py

Our pipeline uses date ranges to gather a subset of data, so this test explores the accuracy
of the date ranges it actually gathers. Date.py contains all functions calculating data ranges for
computing features and selecting customized dataset. The functions includes calculating the date
of previous N days or after N days. The test cases used 5 dates with different data ranges
involving spanning days, months and years for each function.

The data for the test cases is below:
Start date of 160527, spanning 10 days
Start date of 160527, spanning 30 days (span a month)

73

Start date of 160527, spanning 100 days (span multiple months)
Start date of 160527, spanning 300 days (span a year and multiple months)
Start date of 160527, spanning 1400 days(span multiple year and multiple months)

All of the test results of each function are correct and they are the same with manually
calculated results.

6.5.2 Speed of Chronos Backend Infrastructure Calculations and Processing
2. Test: efficiency of calculating using dimension.py

Dimension.py calculates all the features from the transaction table with various date
ranges. The program produces 4 tables: one day feature, seven day feature, thirty day feature and
ninety day feature.

When first running dimension.py, all tables need to be constructed. But after running for
the first time, it is available more quickly for later runs. The old tables are saved and new
features are inserted into old tables which saves running time. The first run requires about 44
minutes to construct all tables, even though there is only 220 transactions data in the table. The
following runs could be as quick as 1 minute for inserting new calculations. If running all data in
the sample data set, it still takes about 1 minute and 22 seconds to process based on the old table.

3. Test efficiency of converting categorical values using constructFeature.py

Converting categorical string to numerical values (double) is an important step for data
cleaning. The data sent to Model Generator must be a double. Converting speed heavily is
correlated with the size of dataset.

Data set size Time to construct table

220 data 32 minutes

640 data 41 minutes and 52 seconds

1927 data 55 minutes and 13 seconds

3846 data 1 hour 4 minutes and 10 seconds
Table 6.8. Conversion efficiency test with different data size

4.Test efficiency of integrate all features and attributes use constructFeature.py, join_all_features
function

Our pipeline constructs a feature table which isu used for training. Below are the times it
took to construct that table with varying dataset sizes.

74

Data set size Time to construct table

220 data 1 minutes 13 seconds

640 data 1 minutes 20 seconds

1927 data 1 minutes 29 seconds

3846 data 1 minutes 42 seconds
Table 6.9. Join efficiency test with different data size

The select and join performance for this final features table isn’t linearly related to the

data set size, though it the time does increase negligibly with dataset size. The average speed for
the join_all_features function, no matter the size of data set, is about 1 minute and 30 seconds.
There is pretty uniform and stable result for a function.

6.5.3 Fault Tolerance
5. Testing Cluster Behavior when a Node Goes Down

In the cluster, there is only one node running. If the node goes down, the cluster is unable
to be used. Hadoop and Spark need to be restarted. The specific command used for restarting
hadoop and spark is in User Guide. Given the fault tolerance of Spark, a cluster with more than
one node would not face this shortcoming as the tasks would be rerun on a different node.

6. Test the amount of times spark will try to rerun a model on failure

To ensure a constantly failing model doesn’t monopolize the system, there is the
RERUNMAX variable to determine how many times a model that failed to be trained can try to
train again. Currently, the default RERUNMAX is set to retry 3 times. One chance for formal
run and three chances are for retrials. This can be changed to other numbers. If model
deployment is unsuccessful, the spark-submission command will rerun until model is deployed
or reaches RERUNMAX. The tests go through from changing RERUNMAX from 0 to 5. The
running result is the same as the expectation:

RERUNMAX Model deployment success
Total run needed

Model deployment fail
Total run needed

0 1 1 (no retry chance)

1 <= 2 2 (1 retry chance)

2 <=3 3 (2 retry chance)

75

3 <=4 4 (3 retry chance)

4 <=5 5 (4 retry chance)

5 <=6 6 (5 retry chance)
Table 6.10. Testing the maximum number of times a model can attempt to be deployed

7. Testing Incorrectly Formatted Data

The pre-processing of the data is done before starting the Model Generator. The
incorrectly formatted data would be sent as “NULL” when reading into the Transaction table.
When running construct Feature.py to clear and format the dataset, “NULL” columns would be
automatically dropped. This is not going to affect overall model performance. Due to this check,
there is no worry of encountering incorrectly formatted data.

8. Test number of requests before resources are used up

With the current configuration, the size of the tmp directory limits how many spark
submissions can be processed. The average is about 24 spark submission requests that could be
done. At the 25th try, YARN can no longer find the resources for Spark and loops at the
“Accept” status. When encountering this situation, YARN needs to restart. The specific
command used for restart YARN is in User Guide.

6.6 Feature and Transaction Storage
These three tests of the Hive database evaluate the efficiency, storage required and the

ease of plugging in a new database technology. The speed test was conducted by running a script
that moves data to a hive table. The storage used by Hive and the number of tables in Hive is
calculated and checked on the HDFS. Easy plugin and plugout with Hive were also analysed in
this section.

6.6.1 Speed of Feature and Transaction Storage
The team ran spark.py to test the speed of reading data to a table. This program only

involved reading data from a csv file to a Hive table with 495 fixed columns. Started from
submitting spark application, the whole process, including launch task executors and cleaning
block memories, took about 1 minutes to finish. The dataset is not big, with 3846 data points and
495 features.

76

6.6.2 Storage Space Required
There are eight tables right now on HDFS in total size of 10.8 MB. Each table with

average of about 1 MB size. Because the team used a sample dataset of 3846 with 495 features,
this space usage is reasonable. The space in HDFS still has about 23TB free space.

The data types of transaction data are defined to form a table. If data type are wrong
when coming into table, the whole column will be seen as “NULL” and will be dropped in the
data clearing step.

6.6.3 Ease of Replacement
Hive can be easily replaced by any other HDFS based database. Because Mongodb is not

running on HDFS, Mongodb cannot take advantage of data and file distribution. Hive can map to
Hbase so Hbase wide column tables can be construct by Hive. HBaseStorageHandler is the tool
to register Hbase tables to Hive metastore and to do the column mapping. This tool also allows
Hive to use HQL(Hive query language) to access and manipulate data in Hbase. Cassandra
handler also released for Hive and maintained by Datastax. Its function is similar to
HBaseStorage for map from Hive.

6.7 Scoring Engine

6.7.1 Speed of Scoring Engine
Testing the speed of the scoring engine was done in two ways. The first set of tests

involved evaluating the speed of the scoring engine with only one model. A model was sent to
the scoring engine three times in order to get an average running time. This was done for the
ANN, Random Forest, and Decision Tree algorithms. The second test involved a similar
process, except that in this test, five models were used instead of one to determine the
performance of the Scoring Engine with multiple models. These models were two Decision Tree
models, two ANN models and one Random Forest model. In both tests, only the code created
for the Scoring Engine was evaluated. While running the code involved extra time for starting
up Spark and saving the results table to Hive, these tests are already covered in the previous
results sections. For more information about the models and data, see Table 6.6. The results are
shown in the table below. These tests suggests that each algorithm requires about the same
amount of running time and, as suggested by the five model test, do not greatly affect the overall
runtime when more models are added.

Decision Tree

77

https://github.com/apache/hive/blob/release-0.11.0/hbase-handler/src/java/org/apache/hadoop/hive/hbase/HBaseStorageHandler.java

Speed 43.81 seconds

Random Forest

Speed 40.70 seconds

ANN

Speed 39.37 seconds

Five Models

Speed 69.26 seconds
Table 6.11. Result of testing the speed of the Scoring Engine on individual models and a set of five models

6.7.2 Scalability Assessment through Speed Tests
In order to test the scalability of the Scoring Engine, the average speed of each model

was determined for a four month dataset and a four year dataset. For each test, the model was
used for scoring three times, and then the average speed was calculated. This scalability test was
also applied to a set of five models. As with the previous test involving five models, the models
chosen were two Decision Tree models, two ANN models and one Random Forest model. Just
like in the previous test, only the code specifically created for the Scoring Engine was evaluated.
For more information about the models and data, see Tables 6.6 and 6.7. The results are shown
in the table below. While there is a noticeable increase in time, considering the difference
between the number of transactions in each set, this is not that large of an increase in running
time.

Decision Tree

Speed (5 Month Set) 43.81 seconds

Speed (4 Year + 1
Month Set)

78.45 seconds

Random Forest

Speed (5 Month Set) 40.70 seconds

Speed (4 Year + 1
Month Set)

76.27 Seconds

ANN

Speed (5 Month Set) 39.37 seconds

78

Speed (4 Year + 1
Month Set)

74.13 seconds

Five Models

Speed (5 Month Set) 69.26 seconds

Speed (4 Year + 1
Month Set)

193.67 seconds

Table 6.12. Result of testing the speed of the Scoring Engine on a four month dataset and a four year dataset.

79

7. Conclusions and Future Work

7.1 Conclusions
The goal of this project was to build a pipeline that would automate the process of

training, storing, and deploying machine learning models while still giving the tuning power to
the user specifying the model’s parameter. The pipeline created for this project meets all of the
criteria. A user can connect to the UI and design a model using a wide set of parameters,
including the tuning parameters for their specific model algorithm. The models created or
automatically trained, retrained and scored by the pipeline.

This UI allows the user to have significant control over the process. As already
mentioned, there are a wide selection of parameters that the user can select in order to better
control the creation and deployment of the model, such as the algorithm used, the amount of data
to train on, and how frequent retraining should be. In addition, the user is provided control over
a model’s enabled status and deployed status. A user can even easily delete the model if they do
not want it anymore. The UI also shows users the statistics of trained models as well as the
training status of the model. This flexibility allows for ease of use, which will be appealing to
potential users.

The Model Generator is capable of efficiently training models. The CronJob that
continuously calls the Model Generator was designed to handle Spark crashing, in order to make
the code more fault tolerant. The only issue is that the models seem to have to high of an
accuracy. No matter how the models were modified, including changing the number of features
or tuning parameters, the models always had an accuracy above 90%. This could possibly be
because the test data was mostly fraud rather than closer to a fifty-fifty mix of fraud and not
fraud transactions.

The Scoring Engine is capable of efficiently scoring transactions using multiple models.
The Scoring Engine runs on the same CronJob as the Model Generator, and will not affect the
pipeline in case it crashes. Currently, the scoring engine uses a weighted voting system for
scoring each transaction, where the predictions for each transaction are multiplied by the
corresponding model’s accuracy and then added together. The accuracies are normalized, which
is a potential issue for scoring using one model, since this would mean that the model is treated
as being 100% accurate. This might possibly be undesired if the pipeline is intended to be used
by only having one model at a time.

Overall, this pipeline will be a useful tool for ACI. Due to the constant need of models
for detecting fraud, as well as the need to consistently update the models, this pipeline will help
by automating the process. This will allow for the focus to shift away from always working on
the next version of the model and just allowing this pipeline to handle the job of detection of

80

fraud. In conclusion, this pipeline served as an adequate proof of concept and met all of its
requirements.

7.2 What We Learned
Throughout the duration of this project, we have learned lessons we hope to share on best

practices we have identified for pipeline development. Regarding the actual process of
development, we found our pair-per-component development to be incredibly valuable. This
model assigns each component a main programmer and a support, so that no one monopolizes
the programming or knowledge of a single component. Later on as testing and debugging
became more prevalent, having a second expert on any given component ensured that no one
person would be blocked.

In terms of development, the biggest takeaway is the amount of planning that we should
have spent more time on when considering what our system would look like. We kept our
requirements colloquial and never formerly defined them, which made it difficult to develop a
pipeline off of a conversation. Had we formalized our meetings and requirements gathering, our
end goal would have become more apparent earlier on. Additionally, when building a pipeline
like this there is a certain amount of technical preparations that need to be made for machines to
support the operations. We were unaware of this and in turn the size of our hadoop cluster was
hindered and we met occasional hiccups due to lack of storage. In addition to technical planning,
planning by ensuring we had a comprehensive understanding of the material would have helped
us avoid some incorrect assumptions or picked more appropriate technologies.

Any project considering using a variety of technologies needs to prioritize not only the
technologies’ capabilities but also their ease of integration with other existing parts of the
system. Initially, we considered technologies solely because of how they added up on a
advantages and disadvantages list and didn’t consider the technical requirement to implement
them into our system. For example, the MongoDB / JSON Objects / JavaScript pipeline felt very
intuitive and even though some things felt easier to do with other technologies, the
implementation time ended up making them less appealing options.

7.3 Future Work
When running the pipeline, we mainly used only one of our virtual machines. We were

unable to get the fully distributed hadoop cluster setup due to various issues with the virtual
machines, including some of the virtual machines crashing. As a result, we never got to test
using Spark on a true distributed cluster. Therefore, we recommend that the pipeline gets tested
on a fully distributed hadoop cluster in order to test the performance of the pipeline. We believe
that using such hadoop cluster will improve the performance and efficiency of the pipeline, as
Spark has better performance on such cluster. We also recommend switching the pipeline to

81

work for streaming transactions instead, as this is the most likely format ACI Worldwide would
be dealing with the data.

As for individual sections of the pipeline, we have some recommendations for them as
well. For the UI, we recommend that more machine learning classification algorithms and their
corresponding tuning parameters get added to the pipeline. This will allow for the user to have a
larger variety of algorithms to choose from. To make these changes, the REST API, Model
Generator and Scoring Engine will need to be updated in addition to the UI. For the Model
Generator, we recommend conducting tests on how to train the models in order to get an
appropriate accuracy. Our tests data contains mostly fraudulent transactions, and it is possible
that there is not enough information to accurately predict the “not fraud” cases which are less
common. Due to the fact that fraud is rare, it is possible that the current pipeline would only
detect cases where the transactions are not fraud. The tests need to make sure that the models are
capable of detecting both cases, rather than just fraud or not fraud. Finally, for the Scoring
Engine, we recommend making a determination in how you would like the pipeline to work. If
the intention is for multiple models to be used in the pipeline, than the current system works.
However, allowing only one model to be in the Scoring Engine at a time will result in the
accuracy of that model being set to 100%. In this case, the code for normalizing the accuracies
would need to be modified.

82

Citations

ABOUT US | FICO®. (2017, February 12). Retrieved February 26, 2017, from
http://www.fico.com/en/about-us#at_glance

ACI Worldwide. About ACI. Retrieved February 26, 2017, from
https://www.aciworldwide.com/about-aci

Apache. Classification and regression. Retrieved February 26, 2017, from
http://spark.apache.org/docs/latest/ml-classification-regression.html

Apache. Data Types - RDD-Based API. Retrieved February 26, 2017, from
http://spark.apache.org/docs/latest/mllib-data-types.html

Apache. Evaluation Metrics - RDD-based API. Retrieved February 26, 2017, from
http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html

Apache. Machine Learning Library (MLlib) Guide. Retrieved February 26, 2017, from
http://spark.apache.org/docs/latest/ml-guide.html

Apache. Spark SQL, DataFrames and Datasets Guide. Retrieved February 26, 2017, from
http://spark.apache.org/docs/latest/mllib-data-types.html

Apache. (2009, September 20). TaskTracker. Retrieved February 26, 2017, from
https://wiki.apache.org/hadoop/TaskTracker

Apache. (2010, June 30). JobTracker. Retrieved February 26, 2017, from
https://wiki.apache.org/hadoop/JobTracker

Apache. (2016, April 20). Apex Incubation Status. Retrieved February 26, 2017, from
http://incubator.apache.org/projects/apex.html

Apache. (2015a). Apache Storm. Retrieved February 26, 2017, from http://storm.apache.org/

Apache. (2015b, March 19). 5 reasons why Spark Streaming's batch processing of data streams is
not stream processing -. Retrieved February 26, 2017, from

83

http://spark.apache.org/docs/latest/mllib-data-types.html
http://spark.apache.org/docs/latest/ml-guide.html
https://www.aciworldwide.com/about-aci
http://incubator.apache.org/projects/apex.html
https://wiki.apache.org/hadoop/TaskTracker
http://www.fico.com/en/about-us#at_glance
https://wiki.apache.org/hadoop/JobTracker
http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html
http://spark.apache.org/docs/latest/ml-classification-regression.html
http://spark.apache.org/docs/latest/mllib-data-types.html
http://storm.apache.org/

http://sqlstream.com/2015/03/5-reasons-why-spark-streamings-batch-processing-of-data-streams
-is-not-stream-processing/

Apache. (2017a). Apache Apex Open Source Stream & Batch Processing Platform. Retrieved
February 26, 2017, from https://www.datatorrent.com/products-services/apache-apex/

Apache. (2017b, January 03). Home - Apache Hive - Apache Software Foundation. Retrieved
February 26, 2017, from https://cwiki.apache.org/confluence/display/Hive/Home

Apache. (2017c). Apache Hive. Retrieved February 26, 2017, from
https://hortonworks.com/apache/hive/
Apache. (2017d, February 17). Apache Hbase. Retrieved February 26, 2017, from
https://hbase.apache.org/

Apache. (2017e, January 26). Apache Hadoop. Retrieved February 26, 2017, from
http://hadoop.apache.org/

Apache. (2017f, January 20). Apache YARN. Retrieved February 26, 2017, from
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Apache.(2017g) . Apache Zookeeper. Retrieved February 26, 2017, from
https://zookeeper.apache.org/

Bandugula, N. (2015, June 23). The 5-Minute Guide to Understanding the Significance of
Apache Spark | MapR. Retrieved February 26, 2017, from
https://www.mapr.com/blog/5-minute-guide-understanding-significance-apache-spark

Bharadwaj, S. (2016, March 28). What is the difference between Apache Spark and Apache
Hadoop (Map-Reduce) ? Retrieved February 26, 2017, from
https://www.quora.com/What-is-the-difference-between-Apache-Spark-and-Apache-Hadoop-Ma
p-Reduce

Burger, J. A Basic Introduction to Neural Networks. Retrieved February 26, 2017, from
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html

Fico. (2017, February 27). FICO® Falcon® Fraud Manager | FICO®. Retrieved February 28,
2017, from http://www.fico.com/en/products/fico-falcon-fraud-manager

84

https://hortonworks.com/apache/hive/
https://hortonworks.com/apache/hive/
https://www.mapr.com/blog/5-minute-guide-understanding-significance-apache-spark
http://sqlstream.com/2015/03/5-reasons-why-spark-streamings-batch-processing-of-data-streams-is-not-stream-processing/
https://cwiki.apache.org/confluence/display/Hive/Home
https://hbase.apache.org/
https://www.datatorrent.com/products-services/apache-apex/
http://www.fico.com/en/products/fico-falcon-fraud-manager
https://hortonworks.com/apache/hive/
https://hortonworks.com/apache/hive/
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
http://hadoop.apache.org/
https://www.quora.com/What-is-the-difference-between-Apache-Spark-and-Apache-Hadoop-Map-Reduce
https://hortonworks.com/apache/hive/
http://sqlstream.com/2015/03/5-reasons-why-spark-streamings-batch-processing-of-data-streams-is-not-stream-processing/
https://www.quora.com/What-is-the-difference-between-Apache-Spark-and-Apache-Hadoop-Map-Reduce
https://hortonworks.com/apache/hive/
https://hortonworks.com/apache/hive/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Forter. (2017). Forter | Accurate Fraud Protection & Detection for E-Commerce Sites. Retrieved
February 28, 2017, from https://www.forter.com/

Holmes, T. E. (2016, February 02). Credit card fraud and ID theft statistics. Retrieved February
26, 2017, from
http://www.creditcards.com/credit-card-news/credit-card-security-id-theft-fraud-statistics-1276.p
hp

Javelin Strategy. (2015, May 3). $16 Billion Stolen from 12.7 Million Identity Fraud Victims in
2014, According to Javelin Strategy & Research [Press release]. Retrieved February 26, 2017,
from
https://www.javelinstrategy.com/press-release/16-billion-stolen-127-million-identity-fraud-victi
ms-2014-according-javelin-strategy

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3),
18-22. Retrieved February 26, 2017, from
http://ai2-s2-pdfs.s3.amazonaws.com/6e63/3b41d93051375ef9135102d54fa097dc8cf8.pdf

Mizes, H. (2013, December 3). Card Fraud. Retrieved February 26, 2017, from
http://www.cs.rochester.edu/~kshen/csc296-fall2013/lectures/Mizes_CardFraud.pdf

Mitchell, T. M. (1999). Machine learning and data mining. Communications of the ACM,
42(11), 30-36.

MongoDB. (2017a). Introduction to MongoDB. Retrieved February 26, 2017, from
https://docs.mongodb.com/manual/introduction/

MongoDB. (2017b). MongoDB CRUD Tutorial. Retrieved February 26, 2017, from
https://docs.mongodb.com/v3.0/applications/crud/

MongoDB. (2017c). Metadata and Asset Management. Retrieved February 26, 2017, from
https://docs.mongodb.com/ecosystem/use-cases/metadata-and-asset-management/

Nielsen, J. (1995, January 1). 10 Heuristics for User Interface Design: Article by Jakob Nielsen.
Retrieved February 27, 2017, from https://www.nngroup.com/articles/ten-usability-heuristics/

Nielsen, J. (1994, April). Enhancing the explanatory power of usability heuristics. In
Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 152-158).
ACM.

85

https://docs.mongodb.com/ecosystem/use-cases/metadata-and-asset-management/
https://docs.mongodb.com/manual/introduction/
http://www.cs.rochester.edu/~kshen/csc296-fall2013/lectures/Mizes_CardFraud.pdf
https://docs.mongodb.com/v3.0/applications/crud/
https://www.nngroup.com/articles/ten-usability-heuristics/
http://www.cs.rochester.edu/~kshen/csc296-fall2013/lectures/Mizes_CardFraud.pdf
http://ai2-s2-pdfs.s3.amazonaws.com/6e63/3b41d93051375ef9135102d54fa097dc8cf8.pdf
http://www.creditcards.com/credit-card-news/credit-card-security-id-theft-fraud-statistics-1276.php
https://www.javelinstrategy.com/press-release/16-billion-stolen-127-million-identity-fraud-victims-2014-according-javelin-strategy
http://www.creditcards.com/credit-card-news/credit-card-security-id-theft-fraud-statistics-1276.php
https://www.javelinstrategy.com/press-release/16-billion-stolen-127-million-identity-fraud-victims-2014-according-javelin-strategy

Palmer, K. (2013, July 10). How Credit Card Companies Spot Fraud Before You Do. Retrieved
February 26, 2017, from
http://money.usnews.com/money/personal-finance/articles/2013/07/10/how-credit-card-compani
es-spot-fraud-before-you-do

Patidar, R., & Sharma, L. (2011). Credit card fraud detection using neural network. International
Journal of Soft Computing and Engineering (IJSCE), 1(32-38).

Pradhan, M., Pradhan, S. K., & Sahu, S. K. (2012). Anomaly detection using artificial neural
network. International Journal of Engineering Sciences & Emerging Technologies, 2(1), 29-36.

PYMNTS. (2015, August 05). Global Card Fraud Damages Reach $16B. Retrieved February 26,
2017, from http://www.pymnts.com/news/2015/global-card-fraud-damages-reach-16b/

Ramanathan, V. (2014, December 02). Venkatesh Ramanathan, Paypal - Fraud Detection Using
H2O's Deep Learning. Retrieved February 26, 2017, from
https://www.youtube.com/watch?v=RqkheMI3Ciw

Rouse, M., Hannan, E., Wilson, S. (2016, December 08). RESTful API. Retrieved February 26,
2017, from http://searchcloudstorage.techtarget.com/definition/RESTful-API

Sayad, Dr. Saed (2017). Artificial Neural Networks. Retrieved February 26, 2017, from
http://chem-eng.utoronto.ca/~datamining/dmc/artificial_neural_network.htm

Skytree (2017). Skytree REST API. Retrieved February 26, 2017, from
http://pages.skytree.net/rs/855-VWM-226/images/SkytreeRESTAPI.pdf

Tan, P., Steinbach, M., & Kumar, V. (2015). Introduction to Data Mining. Dorling Kindersley:
Pearson.

Taneja, R. (2015, May 28). Trend to Watch Closely: Data and (Deep) Machine Learning.
Retrieved February 26, 2017, from
https://www.linkedin.com/pulse/trend-watch-closely-data-deep-machine-learning-rajat-taneja

Warin, F., Diamant, M., & Vretsona, O. (2013, August). How to use company data efficiently to
detect fraud and corruption. Retrieved February 26, 2017, from
https://www.financierworldwide.com/how-to-use-company-data-efficiently-to-detect-fraud-and-
corruption

86

http://money.usnews.com/money/personal-finance/articles/2013/07/10/how-credit-card-companies-spot-fraud-before-you-do
https://www.youtube.com/watch?v=RqkheMI3Ciw
http://pages.skytree.net/rs/855-VWM-226/images/SkytreeRESTAPI.pdf
https://www.financierworldwide.com/how-to-use-company-data-efficiently-to-detect-fraud-and-corruption
http://searchcloudstorage.techtarget.com/definition/RESTful-API
http://money.usnews.com/money/personal-finance/articles/2013/07/10/how-credit-card-companies-spot-fraud-before-you-do
https://www.financierworldwide.com/how-to-use-company-data-efficiently-to-detect-fraud-and-corruption
https://www.linkedin.com/pulse/trend-watch-closely-data-deep-machine-learning-rajat-taneja
http://www.pymnts.com/news/2015/global-card-fraud-damages-reach-16b/
http://chem-eng.utoronto.ca/~datamining/dmc/artificial_neural_network.htm

Warnick, M. (2016, February 02). 7 reasons your credit card gets blocked and 7 tips for handling
it. Retrieved February 26, 2017, from
http://www.creditcards.com/credit-card-news/7-reasons-credit-card-blocked-tips-for-handling-12
82.php

Zitter, L. (2016, August 24). How Credit Card Companies Fight Fraud. Retrieved February 26,
2017, from
http://www.investopedia.com/articles/personal-finance/080416/how-credit-card-companies-fight
-fraud.asp

Image Credits
By the Eyecons. N.d. Data base, data storage, server, storage icon [Online image]. Retrieved
from
https://www.iconfinder.com/icons/1370034/data_base_data_storage_server_storage_icon#size=1
28

Webalys. n.d. Database, streamline icon [Online image]. Retrieved from
https://www.iconfinder.com/icons/185097/database_streamline_icon#size=128

Atlas. n.d. Account, man, person, profile, user icon [Online image]. Retrieved from
https://www.iconfinder.com/icons/1540176/account_man_person_profile_user_icon#size=128

87

https://www.iconfinder.com/icons/1370034/data_base_data_storage_server_storage_icon#size=128
https://www.iconfinder.com/icons/1370034/data_base_data_storage_server_storage_icon#size=128
http://www.creditcards.com/credit-card-news/7-reasons-credit-card-blocked-tips-for-handling-1282.php
http://www.investopedia.com/articles/personal-finance/080416/how-credit-card-companies-fight-fraud.asp
https://www.iconfinder.com/icons/1540176/account_man_person_profile_user_icon#size=128
https://www.iconfinder.com/icons/185097/database_streamline_icon#size=128
http://www.creditcards.com/credit-card-news/7-reasons-credit-card-blocked-tips-for-handling-1282.php
http://www.investopedia.com/articles/personal-finance/080416/how-credit-card-companies-fight-fraud.asp

Appendix

Appendix A: User Guide
Pipeline
Software Requirements

● Node
● Dragula
● Express
● Bootstrap
● JQuery
● Spark Version 2.1.0
● Hadoop Version 2.7.3
● Hive

File Structure

88

Order of Initialization

1. MongoDB
2. REST API
3. User interface
4. Hadoop
5. Spark
6. Model Generator

Initializing Hadoop and Spark(Step 4 and 5) can be done before Front end initialization, but
initializing Model Generator must be after REST API running. Make sure REST API is running
before running Model Generator

REST API
Navigate to the folder containing restserver.js

node restserver.js &

User Interface
Navigate to the folder containing server-express.js

89

node server-express.js &

Chronos Backend Infrastructure

Hadoop
Navigate to hadoop/sbin folder containing shell command

./start-all.sh

This command runs both dfs and yarn

For stop Hadoop service, go to the same folder and run

./stop-all.sh

For stop Yarn service, go to the same folder and run

./stop-yarn.sh

For start Yarn service, go to the same folder and run

./start-yarn.sh

Spark

Navigate to spark/sbin folder containing shell command

./start-all.sh

For stop spark service, go to the same folder and run

./stop-all.sh

Hadoop and Spark Configuration

HDFS is constructed through the port 127.0.0.1:9001 with data duplication of 1, which means all
data will be copy once. Namenode is distributed under directory /mqp/hadoopinfra/namenode.
Datanode is distributed under directory /mqp/hadoopinfra/datanode. As we are using only one
node, the dfs.namenode.handler.count and dfs.datanode.handler.count are all set as default.

Yarn is the resource manager, tracking down the namenode and datanode activities. Specific
configuration of Yarn is in ~/hadoop/etc/hadoop/yarn-site.xml. All values for each property in
Yarn is calculated by yarn-tuning-guide.xlsx from cloudera, using one worker hosts as cluster
size. Specifying Worker Host Configuration, Worker Host Planning and Cluster Size.

90

Mapreduce configuration are set as default, because the calculated mapreduce results in the
document met the lowest requirements.

In our setting, Spark connected to Yarn, which ran on the top of hadoop. In client mode, Spark
runs driver and submits application to Yarn, Yarn resource manager launches Spark application
master. Spark application master and Spark driver request resources from Yarn. If there are
resources available, Spark application master will launch container via Yarn NodeManager
which launches Spark Executors. After Spark Executors launched, Spark driver will be register
with Executors and launch tasks for the Executors. All Yarn containers runs on HDFS.

Model Generator
Navigate to ModelGenerator/refractory folder under /mqp

To start model generator run

crontab -e
This will open up the script of cronjob
setup time interval for running ./script.sh in cronjob

Right now it is */1 * * * * ./script.sh >> logAddress(optional) 2>&1, which means it runs

every minute and save the running log to ModelGenerator directory.

To close the Model Generator

crontab -e
Comment out the line of running ./script.sh in cronjob

To read csv sample data in the home directory to Hive table, run under
/mqp/modelGenerator/refractory

~/spark/submit --master yarn --client spark.py

Feature and Transaction Storage
To construct Dimension Table, run under /mqp/modelGenerator/refractory

~/spark/submit --master yarn --client dimension.py

91

To construct Features Table, run under /mqp/modelGenerator/refractory. Go to main function of
constructFeatures.py. Comment out the join_all_features_table() and leave
construct_feature_table() for running. You can change valid data percentage to keep columns
with more valid data, and change time range for dataset.

~/spark/submit --master yarn --client constructFeatures.py

To construct AllFeaturesTable Table, run under /mqp/modelGenerator/refractory. Go to main
function of constructFeatures.py. Comment out the construct_feature_table() and leave
join_all_features_table() for running. It joins all calculated features and attributes to one table,
from which customer will select attributes they want for final dataset.

~/spark/submit --master yarn --client constructFeatures.py

Note: For now, Spark and Hadoop runs on one machine in pseudo distributed mode. The system
only has one node, but it distributes all files and applications to a huge storage mount. Spark
sometimes don’t have enough space for execute the task in Yarn(All spark tmp files, hadoop tmp
files, yarn tmp files are under /tmp directory, which increases dramatically and could occupy the
5G after about 25 times spark submit trials). If Spark get stuck in the middle, like lost task
executors, or stuck at the “accept” state, turn off cronjob, restart Hadoop and Spark following the
command above if necessary.

Scoring Engine
To start Scoring Engine, actually the command is contained in the script.sh under
/mqp/modelGenerator/refractory, so if script.sh running in the cronjob, Scoring Engine is started.

crontab -e
This will open up the script of cronjob
setup time interval for running ./script.sh in crontab

Right now it is */1 * * * * ./script.sh >> logAddress(optional) 2>&1, which means it runs every
minute and save the running log to ModelGenerator directory.

To close the Model Generator

crontab -e

92

Comment out the line of running ./script.sh in cronjob

Creating a Model
1. View begins at Create View
2. Fill out form of fields below

Parameter How Explanation

Model Name Fill-in Name of model

Author Fill-in Who is creating the model

Algorithm Dropdown Algorithm used to generate model

Output Dropdown Categorical output of model

Features Drag and drop Features used to train model

Data date
range

Fill-in + Drag and
Drop

Date range of data to train the model on

Re-train
frequency

Fill-in + Drag and
Drop

How often to re train the model

 3. Once the form is filled with valid information, hit the “Train” button and view your model
in the list of models, as a detailed view, or in the queue

Viewing a Model
In the view tab

1. Go to the “View” tab
2. Click on any model you wish to view

In the queue tab
1. Go to the “Queue” tab
2. Click on any model you wish to view

In either case, clicking on the model will bring you to the model detail view.

93

Appendix B: Comparison of Algorithms
Classification Algorithms Comparison

 Algorithm Advantages Disadvantages

1 Artificial
Neural
Network

● Good with diverse data and
capturing regularities

● Deal with complex relations

● A black box, hard to interpret
the solving process

● It is not probabilistic
● Prone to overfitting

2 Hidden
Markov
Model

● Sequence analysis
● Produce probabilities
● Flexible to allow unknow

states

● Expensive in computation time
and memory

3 Multilayer
Perceptron
Classifier

● Capture non-linearly relation
● Computation speed is high
● Do not require assumption

about statistical distribution

● Same as ANN

4 Naive
Bayes

● Simple and super fast
● When independence is valid,

this method is faster than
others and needs less training

● Assumes independence
between predictors

● Bad at classifying if category
not included in training

94

● Produce probability

5 Decision
Tree

● Are simple to understand and
interpret.

● Help determine worst, best
and expected values for
different scenarios

● Can be combined with other
decision techniques.

● For data including categorical
variables with different number
of levels, information gain in
decision trees are biased in
favor of those attributes with
more levels.

● Calculations can get very
complex particularly if many
values are uncertain and/or if
many outcomes are linked.

6 Random
Forest

● Combine results from
multiple decision trees to
avoid overfitting

● Performance improves
monotonically with the
number of trees

● Provides the same
functionalities as decision
trees

● Faster by training trees in
parallel

● Runs efficient on larger
dataset

● Have been observed to overfit
with noisy
classification/regression tasks

● Include the drawbacks the
decision has

7 Support
vector
machine

● Less overfitting
● Efficient in high dimensional

spaces

● Spark only supports linear
kernel function

● Computation expensive, speed
is slow

8 Gradient-B
oosted
Trees
(GBTs)

● Capture non-linearities and
feature interactions

● Handle category features

● Training in sequence could
result in low computation speed

● Performance decrease as the
number of trees becomes larger

● Works better on smaller tree

9

Isotonic
Regression

● Does not assume any form
for the target function

● Not applicable for the large
scale of the transactions
because it has to be maintained
as increasing trend always

● It is a monotonic regression

95

Appendix C: Notes from User Interface Review

This test began with an overview of the pipeline and its purposes and then a discussion of the
human computer interaction principles and how they might apply to our project (Nielsen, 1994).

Principle Comments

Visibility of system status Not sure state of system, visibility of things you can do
The more you can put out without confusion, the better it is

Match between system and
the real world

Ask the data scientists terminology

User control and freedom -

Consistency and standards -

Error prevention -

Recognition rather than
recall

-

Flexibility and efficiency of
use

Not very important for this task, don’t want too much
flexibility
Expert users want to make sure they can do things quickly

96

Aesthetic and minimalist
design

Key idea: everything you put on the screen is information

Help users recognize,
diagnose, and recover from
errors

Flag errors, point out where the error is, say what the error is,
suggest how to fix it, helpful!

Notes before analysis:

● Consider the user and what they want
● Important question: what the features are impacts the output
● Are you assuming DS knows where all the data knows?
● Expectations: Make sure what they expect is realized
● Task analysis

○ If there were no user interface you would still want to consider what things would
a user wanna do as a series of actions

● Group related items
● Consider using some kind of diagram to represent what the user will do

○ Finite State Automata diagram, state transition diagram
○ This will reveal which things are more frequent

Analysis of User Interface:

● Odd Place for the blue “confused” box, field is large, cancel is in far right
● Would move “model generation” title over to the left, line it up with left
● Lining things up is important-- looks simpler when lined up
● Closer things are more related in the eyes of the user, so make sure you are mindful of

this
● Dummy entries vs real entries--hard to tell the difference of dummy prefilled values, keep

all boxes initially empty
● Features are not in line, looks odd
● Arrows for inputs are a long way off from their text
● What does an author's name looks like? (username, name, etc.)
● You could make algorithm and output fields smaller because they are far from their drop

down arrows which are small and it is hard to hit a small target
● Looking at ANN, shows its subsidiary information
● Scrolling should be there all the time for tuning parameters
● Error messages for entering invalid information should pop up earlier if possible, before

the user hit submit
● The interface should give you error when you try to increase and its hit the max as

opposed to capping out with no message

97

● Number boxes are very far between label and box
● Many components are equal size in a way that is misleading (i.e. not related, but same

size)
● Hidden layers should be children to tuning parameters
● Colons in second indent of labels should maybe go, but they are a consistent
● Change “Name” to “Model Name” for clarity
● Typo on author label
● Make error messages look the same for consistency
● Put an arrow between the two feature boxes to make it more clear you drag, make chosen

features box darker, All / Chosen - label boxes and make the labels distinguishable from
names of features maybe italics or lighter font

● Scroll bar on the right is darker , make it consistent
● Even field names are far away from the field names that they apply to, make it smaller
● Clarify the retrain date
● One thing that might be an issue is how easy it is to read for people who don’t have good

vision, add contrast
● Label underneath should match initial value (if we are giving an example and the box has

“3 days” filled in, use that to give the example
● Date range goes negative on the last two date ranges

98

