Performing Binary Classification of Contest
Profitability for DraftKings

A WPI Project submitted to the faculty of Worcester Polytechnic Institute in partial
fulfillment of the requirements for the degree of Bachelor of Science

By

Brady, Sean Perry, Jackson Venne, Jonathan Woolf, Saul

April 24, 2019

Sponsored By

DraftKings
Advised By
WPI : Prof. Rick Brown Prof. Randy Paffenroth
DK : Brandon Ward

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its web site
without editorial or peer review. For more information about the projects program at
WPI, see http://www.wpi.edu/Academics/Projects.

This Major Qualifying Project was written by students as a requirement for a Bachelors of Science degree from Worcester Polytechnic Institute.
The authors are not data science experts nor professionals. This report was written in an effort to assist Draftkings. This report does not reflect

the opinions of Draftkings or Worcester Polytechnic Institute.

http://www.wpi.edu/Academics/Projects

Abstract

In this Major Qualifying Project, we worked alongside the online daily fantasy sports com-
pany DraftKings to build an algorithm that would predict which of the company’s contests
would be profitable for them. Namely, our goal was to detect contests at risk of not filling
to their maximum number of entrants by four hours before the contest closed. We combined
categorical and numerical header data provided by DraftKings for hundreds of thousands of
previous contests using modern data science techniques such as ensemble methods. We then
utilized parameter estimation techniques such as linear regression and the Kalman Filter to
model the time series data of entrants into a given contest. Finally, we fed these parameters
and the predictions they generated, alongside the header data previously mentioned, into a
Random Forest algorithm that provided our final prediction as to whether a contest would
fill or not. The algorithm we developed outperformed previous methodologies involving only
portions of the aforementioned data.

Acknowledgements

This Major Qualifying Project would not have been possible without the contributions of
many individuals in both the WPI community and at DraftKings. Firstly, to our WPI
advisors Professor Randy Paffenroth and Professor Rick Brown, we thank you for your con-
stant guidance, wisdom and direction from the start of this project to its end. Thank you
to DraftKings and WPI for coordinating this project sponsorship and beginning what will
hopefully be a productive cooperative. We particularly want to thank Brandon Ward at
DraftKings for his major role in the development of our project. His advisory role through-
out the course of our work was invaluable. In addition to these major players, many indi-
viduals played helpful auxiliary roles. Graduate student Rasika Karkare greatly aided our
understanding of imbalanced data and provided strategies for us to work with it. Another
graduate student, Wenjing Li, had experience in ensemble learning that was crucial to the
development of our methodology. Finally, we thank WPI’s Turing computer and particularly
Spencer Pruitt for his regular assistance in getting our code running efficiently. To all these
people and the many more who supported us through this process, we thank you. This
project was made possible by you.

i

Executive Summary

Fantasy sports is an area that has grown in popularity immensely over the last few decades.
With this growth has come the development of many new platforms in the realm of online
daily fantasy sports. Chief amongst these new platforms is DraftKings, a company founded
in 2012 that champions online fantasy sports contests. On DraftKings, a fixed number of
users may pay an entry fee to join a contest and compete for a fixed cash prize, which can
be up to $1 million or more. After paying an entry fee, users select a roster of professional
players and the users whose rosters score the most fantasy points win prizes. Since the entry
fee, maximum number of entries, and prizes of each contest are pre-defined, DraftKings earns
maximum revenue when each contest fills to its maximum number of entries. If a contest
appears to be at risk of not filling, DraftKings can mitigate losses by directing marketing
efforts towards this contest. These marketing efforts must be coordinated starting four hours
before entries close. The goal of this project, then, is to flag the contests we expect to fail,
four hours before entries close.

To explore this problem, DraftKings offered over 500,000 historical contests for our team to
analyze. This data included information about each contest’s header information such as
entry fee, top prize, start time, maximum number of entrants and how many users had played
in similar contests. The data also included time series information, namely measurements
of the number of new entries into the contest from the contest’s open to its close. The
magnitude of the dataset led us to seek a solution using machine learning and data science.
We immediately partitioned off a quarter of our data for testing purposes and began the
data cleaning process.

The dataset given to the team was reorganized and modified to fit into prediction algorithms.
The Header Data we received was scaled and coded. Variables such as ” ContestPayoutTime”
that were not useful in predicting the outcome of a contest were eliminated. A contest that
fills to its maximum was classified to be a success and a contest that does not fill was classified
as a failure. The Time Series data lent itself to some common modeling techniques in data
science, namely Linear Regression and Kalman Filtering.

For our project, we utilized a weighted linear, or least-squares, regression. This technique
allowed points towards the end of the time series to be weighted more heavily than points
early in the time series. For example, if a contest is on pace to fall short, but suddenly
gains many entries towards our 4-hour out deadline, a traditional linear regression would
still weight each point equally and predict a failure. However, a weighted least squares

il

would take those later entries into consideration and predict success. The model parameters
we generated from multiple different weighting procedures were obtained and added as new
variables to the complete dataset, along with the final predictions based on those parameters.

The Kalman Filter is another technique for modeling Time Series data that is traditionally
used for dynamic system parameter estimation. However, for our problem, we are attempt-
ing to estimate the parameters of an approximately exponential curve, a model that most
contests’ entries follow. Using different inputs for our Kalman Filter, we obtained 15 differ-
ent predictions that were also added to the complete dataset. In total, we had over 100 new
variables in our cleaned dataset developed through Linear Regression, Kalman Filtering and
the Header Data. The Random Forest ensemble was then selected to use these variables to
predict success or failure of contests.

The Random Forest Algorithm in a classification setting takes a high-dimensional dataset
and breaks it into smaller chunks that are fed into individual decisions trees. These trees
use information from each variable, or feature, that they receive to make a prediction about
whether a contest will succeed or fail. Taking these trees together in a random forest allows
for more accurate results than any one tree on its own. Once our full process of cleaning,
modeling, and using the algorithm was complete, we could repeat the process on the testing
data we set aside at the start of the project.

10 [VAULT 4] ROC Curve Comparison

(]

0&

True Positive Rate

04

02

Percent-Full at 4 Hours Out

Situational Predictor

Ensemble of Pacer+WLS+KF+Header Prediction
I i

00

I
0.0 02 0.4 06 08 10
False Positive Rate

To compare our methodology with other techniques, we utilized the receiver operating char-
acteristic (ROC) curve. This curve compares the False Positive (predicting a contest will
fail to fill, but it fills) rate versus True Positive (predicting a contest will fail to fill, and it
fills) rate along many different threshold values. A greater area under the curve indicates a
better prediction. As you can see in the above figure, our ensemble in green using all the

v

aforementioned data predicts better than a simple model in blue using only the proportion
of contests filling 4-hours out and better than the current method utilized by DraftKings.

Given our model’s accurate predictions, it can serve as the foundation of future studies.
Because we chose a classification problem instead of a regression problem, our algorithm
only outputs whether or not a contest will fill or fail to fill. It would also be useful to know
by how much a contest will miss, so contests that nearly fill would not be counted as failures.
Another limitation of our work was the assumption of an exponential model. It is possible
that the time series data follows a more complex model that could be explored in future
work. In closing, if our process is adapted and used by DraftKings, the company will be able
to better identify contests at risk of failing to ensure their continued success in online daily
fantasy sports.

Contents

1 Introduction

2 Background

2.1 Fantasy Sports and DraftKings
2.2 The Dataset
221 Header Data
2.2.2 Time Series Data
2.2.3 How to Approach the Problem
2.3 Basic Data Science Techniques L.
2.3.1 A Brief Overview of Machine Learning
2.3.2 Decision Trees
2.3.3 The Random Forest Algorithm
2.3.4 Advantages and Disadvantages
2.4 Imbalanced Data
2.4.1 Class Imbalance Problem
2.4.2 Solutions to the Class Imbalance Problem
2.5 Linear Regression e
2.5.1 Least-Squares Regression
2.5.2 Extensions of Linear Regression
2.6 Kalman Filters
2.6.1 Parameter Estimation with Kalman Filters
2.6.2 Extended Kalman Filter
Methodology
3.1 Time Series Data Processing
3.1.1 Data Chunking
3.1.2 DataCleaning
3.2 Exponential Model Fittingo
3.2.1 Least Squares
3.2.2 Kalman Filtero
3.3 Final Data Set Setup
3.4 Classification Prediction
3.5 Performance Evaluation

vi

p—

N e W W

10
11
14
15
15
15
17
19
19
22
23
24
28

4 Results 42

4.1 Header Data Results 43
4.2 Time Series Results 46
4.3 Combining Time Series and Header Data 58
4.4 Pacer Data Results 61
4.5 Situational Predictions 64
4.6 Considering Costs L 66
5 Conclusion 68
5.1 Takeaways 68
5.2 Future Work 68

vil

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

4.10

4.11
4.12
4.13
4.14

SportName Histogram
ContestGroup Histogram
Example of Provided Time Series Data
Example of Summed Time Series Data
Sample Decision Tree Classifier
ROC Curves of varying quality
Plots of Residuals
Kalman Filter Graphic Example
Comparison of Least Squares and Kalman Filter Models
Modified Q Parameter Kalman Filter
Additional Varied Parameter Kalman Filters

Visual progression of how we predict with the Kalman Filter
Combined ROC Curve for a Sample Classification

Baseline comparison ROC curve
ROCS from our ensemble of Header data
Header ensemble vs baseline comparisons
ROC’s from averaging our Kalman Filters
ROC’s from averaging our Weighted Least Squares
Comparison of averaging Kalman Filters, Weighted Least Squares, and the
baseline
ROC from avergaing Kalman Filters and Weighted LEast Squares together .
Average predictions of our Kalman Kilters based on only Non-zero data . . .
Average predictions of our Weighted Least Squares based on only Non-zero
data
Average predictions of both our Weighted Least Squares and Kalman Filter
based on only Non-zerodata
Comparison of averaging methods on non-zero data
Ensemble prediction using only our Kalman Filters
Ensemble prediction using only our Weighted Least Squares
Comparison of ensemble methods using Kalman Filter and Weighted Least
Square data separatelyo Lo

viii

co N

17
20
24
28
28
29

38
41

43

45
46
A7

48
49
50

4.15

4.16

4.17

4.18

4.19
4.20
4.21

4.22
4.23
4.24
4.25
4.26

Comparison of ensemble predictions when using both Kalman Filters and
Weighted Least Squares
ROCs from our ensemble using Header, Kalman Filter, and Weighted Least
Squares data
ROCs from our ensemble using Header, Kalman Filter, and Weighted Least
Squares on non-zero data
Comparison of predictions for our ensemble using Header, Kalman Filter, and
Weighted Least Squares on the full sets and just non-zero data
ROC from current Pacer data
ROC from the ensemble using Pacer and Hader data
ROC generated using an ensemble of Header, Pacer, and WLS and KF output

Comparison of the methods involving Pacer data.
ROC:s for the situational ensemble predictor
Comparison of ROC for our situational classifier
Approximate cost vs Threshold of our classifier
Percent flagged contests vs % of lost revenue correctly identifier

X

List of Tables

2.1 Problem-Specific Confusion Matrix 4
2.2 Header Data Column Descriptions)
2.3 Raw Time Series Data Example 9
2.4 Example Binary Response Dataset 11
3.1 Sample Time Series Data as Received 31
3.2 Basic Transformation of Time Series Data 31
3.3 Time Series Data with Summed Entries 32
3.4 Least Squares Parameters Utilized 33
3.5 Sample Data After a Log Transformation 33
3.6 Kalman Filter Parameters Utilized 36
3.7 Removed features 37
3.8 Example of Random Forest Predictions 40
3.9 Example of Final Predictions Against True Outcomes 40
3.10 Our Example’s Confusion Matrix 41

Introduction

As of 2017, there were nearly 60 million fantasy sports users in the United States alone, with
each spending an annual average of $556, making the industry as a whole worth around 7
billion dollars at the time [9] [20] [10]. DraftKings is a Boston-based fantasy sport contest
provider. Founded in 2012, they are a relatively new company, but they (alongside their
main competitor FanDuel) already control the vast majority of the growing online fantasy
sports market. Together in 2017, they brought in nearly 43% of the total fantasy sports
revenue for that year, with DraftKings earning a little more than half of that. DraftKings
runs daily fantasy sports competitions on virtually every major sport, including football,
soccer, baseball, and even recently the e-sport League of Legends. In these competitions,
users compete against each other for thousands of dollars in guaranteed prize money.

Guaranteed prize pools present DraftKings with a interesting business problem. If a contest
does not achieve enough entries, DraftKings could suffer a loss when they pay out to the
winner of the contest. Luckily, if a contest is flagged as failing to reach its maximum entries
before closing, DraftKings can advertise the contest to improve its visibility on the site to
users. DraftKings’ current solution is having analysts check that large contests are on track
to fill before closing. Each large contest on the website can be monitored for entries until its
close, but using a human prediction can be inaccurate and tedious. Some smaller contests
may not even be worth checking by hand.

Recently, a trend towards data science has produced many new and innovative solutions for
complex problems such as this one. Data science is a multi-disciplinary field that uses sci-
entific methods, processes, algorithms and systems to extract knowledge and insights from
structured and unstructured data [3]. Famous examples of such insights include internet
search engines, speech recognition and fraud detection. Knowledge gained from data sci-
ence techniques id often used to automate mundane repetitive tasks. One popular field in
data science is machine learning. Machine learning is a type of algorithm that automates
analytical model building [18]. These models are created by examining previous data to pre-
dict future outcomes. A machine learning algorithm could help DraftKings track contests
and flag failing ones for advertisement space. DraftKings has thousands of data entries of
previous contests that the algorithm can learn from. Such an algorithm could greatly im-
prove DraftKings’ profits by allowing the tracking of smaller failing contests, reducing man
power tracking larger contests and helping make more informed decisions on how to use their

limited advertisement space to maximize profits.

This project’s goal was to create a machine learning algorithm using DraftKings’ vast data
collection to identify failing contests early enough that DraftKings could take action to
minimize their losses. This paper serves to record the different techniques in time series
prediction, machine learning, and imbalanced data that were researched, implemented and
tested.

Background

2.1 Fantasy Sports and DraftKings

Our sponsoring company, DraftKings, is one of the leaders in online fantasy sports. Fantasy
sports are an online, skill-based game where users draft rosters of professional sports players
to compete against other users on a given platform. Users earn points based off of the
statistical performance of each professional player they draft in the games relevant to their
respective contests. Examples of some standard statistics tracked by fantasy sports include
yards gained, strikeouts thrown and free throws made. These points are then totalled up by
an algorithm and the user who earns the highest amount of points from their drafted players
wins the contest and often some cash prize. Fantasy sports often drive fierce competition to
see who can draft the best team . As such, the market for daily fantasy sports platforms has
grown immensely, with DraftKings taking the lead of this newly emerging industry.

DraftKings is a Boston-based online daily fantasy sports provider. Founded in 2012 by Paul
Liberman, Jason Robins and Matt Kalish, DraftKings has quickly grown into a billion dollar
company [5]. Their model differs from traditional fantasy sports in that their contests span
only a few games rather than an entire professional sports season. DraftKings runs an online
platform and a mobile application in which users can discover fantasy sports contests of many
types, ranging in sport, entry fee, maximum number of entrants allowed and numerous other
characteristics. On these platforms, users select a contest and pay a fee to enter up front.
Similarly to traditional fantasy sports as described above, they can then select a roster of
players from the professional sports games that the contest covers. Then the roster locks
and the professional players earn points for the user based on their performance in game.
Users whose rosters perform better in the contest are then eligible to receive prize money or
free entry to other contests.

This project’s goal is to create a predictive algorithm to correctly label if a DraftKings
contest will reach its maximum number of participants. The vast majority of the contests
the company has run over the last 7 years (approximately 90%) fill to the maximum number of
entries, however, when a contest does not fill, DraftKings can lose money, as they guarantee
an initial amount in prizes at the start of each contest. It would behoove DraftKings to
predict whether a contest will fill to its maximum number of entries early enough that
DraftKings could take action. Thus, if a contest is in danger of not filling, they can promote

Predict H, Predict H;
Predict Contest Fills | Predict Contest Fails

Actually H, True Negative False Positive
Contest Fills
Actually H, False Negative True Positive

Contest Fails

Table 2.1: This table is the confusion matrix of possible prediction alignments in our case of binary
classification. For this application, the null hypothesis (Hy) is that a given contest will fill. The
alternative (Hy) is that the given contest does not fill. Since the goal of this work is to detect failing
contests, a failing contest is considered to be a positive and a successful contest is considered to be a
negative. The prediction is considered “True” if the predicted class is the same as the actual class,
and “False” otherwise.

it by advertising it to drive up entries. Here, the null hypothesis is that a contest will fill
and be a ”Success”. The alternative hypothesis is then that a contest will not fill; this is
what we are trying to detect. Table 2.1 shows a labeled confusion matrix for clarification.
In this example, if a contest is predicted to fail (H;) and it actually fails (H;) then that is a
“True Positive”, the total number of which appears in the bottom right cell. If a contest is
predicted to fail (H;) and it actually succeeds (Hy) then that is a “False Positive” appearing
in the top right cell and so on.

For DraftKings’ purposes, a false negative is considered approximately ten times worse than
a false positive. In other words, predicting that a contest will fill and having it fail to fill is
about ten times worse than predicting it will fail to fill and it actually fills. Now that we
have identified the important aspects of our classification problem, we can begin to explore
the intricacies of the dataset that DraftKings provided our team.

2.2 The Dataset

The data consists of two main categories: what we call Header Data and Time Series
Data. In total, we received Header and Time Series data for 630,446 contests for the team
to analyze and predict on. In this section, we will explore both categories, describe the
magnitude and makeup of each and explore some characteristics of the set.

2.2.1 Header Data

The Header Data in our set consists of all the label information for each of the hundreds
of thousands of DraftKings contests over the last three years. A typical contest might be
an NFL contest where users pay $5 to enter, there are a total of 100,000 permitted entries,
and the contest only spans 1 actual professional game. The users scoring the most points
for that specific contest can win the top prize or any number of secondary prizes. For each
contest, we were provided 21 header columns of data, which can be found in Table 2.2.

4

Feature Name Data Description
Type
Contestld Integer a unique 7- or 8-digit number identifying each contest
DraftGroupld Integer number identifying a unique SportName, Variant-
Name and ContestStartDatetimeEST combination
SportName String a three or four character string describing the sport
of the contest
VariantName String a string description of the type of contest
GameSet String a string description of the time of day that the contest
runs
ContestName String the string users see describing the contest
ContestStartDatetimeEST | Datetime | when the contest opens to be entered by users
Object
ContestEndDatetimeEST Datetime | when the contest closes for users
Object
ContestPayoutDatetimeEST| Datetime | when DraftKings pays the prizes out to winning users
Object
EntryFeeAmount Double value of the price a user must pay to enter the contest
TotalPrizeAmount Double | value of the total amount in dollars that DraftKings
will pay out to winning users in that contest
MaxNumberPlayers Integer | value of the number of users allowed to enter that
contest
MaxEntriesPerUser Integer | value of the number of entries a single user can submit
to that contest
Entries Integer | value of the number of entries that contest received
by its close
DistinctUsers Integer value of the number of unique individuals entered in
the contest
Contest_Group String value of the type of contest
NumGames Integer value of the number of professional games covered by
that contest; for example, one contest may span 2
NBA games or 1 NFL game or 11 PGA tournament
events
DraftablePlayersInSet Double | value of the number of professional players available
to be drafted by users in the contest
PaidUsersInDraft Group Integer value of the number of users who have previously par-
ticipated in contests with the same DraftGroupld
TopPrize Double | value of the dollar amount paid to the top user in the
contest
MaxPayoutPosition Integer value of the index of the winning user in that contest,

not particularly pertinent to our analysis

Table 2.2: Summary of the provided Header Data including names, data types, and brief descriptions

of all 21 included features.

Contests by SportName

160000
140000

120000

o m - wo o m wun | g = =
4 & T = O w < m [w
2 3 =z Z § g 26 28 £ 0 E
SportName

Figure 2.1: A histogram of the number of contests for each SportName sorted in descending order.
Approzimately 80% of all contests are of the type NBA, MLB, NFL, or NHL which stand for
basketball, baseball, football and hockey respectively.

An important distinction in the Header Data is that between players and users. Here, players
are considered to be the professional athletes in the actual games played and users are the
DraftKings subscribers who enter into contests to select teams of those players.

Histograms of some of the Header Data columns can be found in the Figures 2.1 and 2.2.
Most contests that DraftKings runs involve the four major professional US sports: basketball,
football, baseball and hockey. In fact, 79.6% of contests involve these four professional sports.
The VariantName variable describes the type of contest, with over half of contests taking
place in Classic mode. The GameSet variable describes the time of day that the contest
runs during, with about two in five taking place during the day, Eastern Time, with other
major time periods being late at night and early in the morning.

A typical ContestName might be CFB 1K Blitz 1,000 Guaranteed, describing the sport,
prizes and occasionally the VariantName, all information coded in other variables. En-
tryFeeAmount ranges from $0.10 to $28,000, but most values fall between $1 and $27 with
a median of $5. TotalPrize Amount ranges from $2 to $2,000,000 with most values falling
between $100 and $25,000, with a median of $500. Similarly, TopPrize ranges from $1.80
and $2,000,000, with most prizes being between $20 and $400. MaxNumberPlayers ranges
from 2 to nearly 2,000,000 with a median value of 98. For most contests, MaxEntriesPe-
rUser is 1 or 2, but occasional contests are nearly uncapped, with up to a billion entries
available to each user. Entries varies between 1 and over 1,000,000, but most contests fall
between 23 and 441 entries; DistinctUsers varies similarly from 1 to about 500,000, with
most falling between 23 and 277 distinct users in any given contest.

Most contests fall into three categories of ContestGroup: Headliners, which are the main
featured contests; Satellites, whose prize is free entry into another contest with a large prize
pool; and Single Entry in which only one entry is allowed per user. NumGames, describing
how many professional games a contest covers, is less than eight 75% of the time, but can be
as many as 64 in our dataset. DraftablePlayersInSet is the number of players available
in the draft set for a contest with a median of 166, but is skewed left with a mean value of

250000

200000

150000

Frequency

100000

50000

e
[
T & 2 = © 8 3 5 & 8 § T €
cE = £ E > = £ = 3 @ ©
£ T E & = ® LY 4 a & T >
5 & w s = & 3 8 £ w
F] a 2 8 5 @]
g & 35 & =2 g @ 2 3 >
= c = (=] wvi —
A = E

FeaturedDoubleUp

Group Description

Figure 2.2: A histogram of the number of contests for each ContestGroup sorted in descending
order. Approzimately 94% of all contests are of the type Headliner, Satellite, SingleEntry, or
FeaturedDoubleUp.

about 316. Finally, the draft groups that DraftKings creates consist of all users who have
participated in similar contests recently, as defined by the company. These groups can be as
small as 0 and as large as 750,000, but most fall between 7,000 and 62,000.

2.2.2 Time Series Data

The Time Series Data was separated into monthly files. For example, one file 2015-09.csv
contained all the entry information for contests running in September of 2015. Each row
in these monthly entry files included the Contestld, minutes until the contest closes and
the number of entries the contest received in the last minute. An example can be seen in
Table 2.3. Between 2 minutes to close and 1 minute to close, Contest 7962690 received
18 entries. Likewise from 1 minutes to close to 0 minutes to close, the contest received 24
entries. Unfortunately, many contests began near the end of one month and continued into
the next, causing some individual contest data to be split between multiple month files.
This presented a technical challenge in aggregating data discussed more in the methodology
section.

Using the time series data, we can sum the entries in every interval to identify the total
number of entries a contest receives at any filled minute prior to the contest start. Figure
2.3 shows a scatter plot of the time series data for a single contest as it was provided to us.
Alternatively, Figure 2.4 shows a plot of the total number of entries in a contest summed

over time.

Contest 9213466

—— Contest Opens
2004 - Entries in Current Minutes
150 1
m
2
& 100 1
5] -
D - fam s

0 200 400 600 800 1000 1200 1400 1600
Minutes Remaining in Contest

Figure 2.3: A scatter plot of the entries per minute for an example contest. This shows the form
the time series data was originally provided in.

Contest 9213466

r—— Cumulatively Summed Entries 7----""""""""""p--
—— Contest Closes
sgopd —— Target Entries
6000 4
LA
a
b=
i@ 4000 -
2000 1
D_

0 200 400 o600 800 1000 1200 1400 1600
Time Passed (Minutes)

Figure 2.4: A plot of the total summed entries over time for an example contest. This shows the
form of data we were more interested in using

Contest ID | Minutes Remaining in Contest | Entries in Last Minute
7962690 1000 3
7962690 999 4
7962690 997 2
7962690 2 20
7962690 1 18
7962690 0 24
7865930 600 2
7865930 596 1
7865930 594 2

Table 2.3: This is an example of the form the times series data was originally provided in. FEach
file included columns for the unique contest ID, minutes until the contest closed, and the number
of entries that contest received in the last minute. Data only appears if users entered the contest
within the last minute, so gaps in “Minutes Remaining in Contest” can appear if no new entries
were made that minute. Additionally, each file contained multiple thousands of unique contests (this
synthetic set shows only two, but would surely include thousands more).

2.2.3 How to Approach the Problem

Given all this information about the dataset, we are still left with the issue of deciding how
to best utilize it for the purpose of predicting contest profitability.

To summarize the points already made, the dataset is known to be large, both in size and
dimension, as there are over 600,000 entries each with 21 potential features to analyze.
Prediction on data of this scale is commonly performed using flexible modeling techniques
that can better accommodate its complexities. One draw-back of flexible modeling, though,
is that as the flexibility increases the interpretability of the result decreases. That is to
say, it becomes more difficult to discern trends between the explanatory variable(s) and the
response variable as flexibility increases. In this application, we care more about the actual
prediction than being able to interpret trends so it would seem a flexible model may be what
we want.

We should also recall that the dataset includes time series data for each contest, which would
likely be far too large for any single modeling scheme to incorporate in its entirety. Assuming
we aim to utilize some kind of flexible technique, it could be good to try to characterize each
contest’s time series data by fitting a common function to it. Then, using the predicted
function’s parameters as new features in addition to the initial 21 header data features, we
may be able to achieve a higher level of accuracy from the chosen technique.

Lastly, this dataset contains both categorical and numerical features, so whatever technique
we apply will need to be able to handle both at once. Moreover, all the data we have can be
easily labeled as “Success” or “Failure”. This means we can directly evaluate the outputs

against the known true values. Even better might be if the technique we apply could take
advantage of having labeled data to further improve its predictive performance.

With all this in mind, we can conclude that an ideal solution (at least at the theoretical level)
would be to use a flexible predictive modeling technique that can handle both numerical and
categorical data simultaneously. It would also be preferred if it could utilize labeled data
for improved performance and that it use curve fitted functions from the time series data to
engineer new features along side the original set. In the realm of data science, one intuitive
solution that meets all these criteria is machine learning.

2.3 Basic Data Science Techniques

These next few sections serve to provide background into key tools we used in our method-
ology. These data science techniques are commonly employed for the type of classification
problem we have. To learn more about these tools, we delve first into machine learning, then
decision trees and finally random forests.

2.3.1 A Brief Overview of Machine Learning

Machine learning is a field of applied mathematical statistics and analytics where computers
are used to model the behavior of datasets in ways human minds cannot perceive. Machine
learning has a wide range of applications from computer vision to weather forecasting. These
methods rely on the use of known sample data, which is split into two non-overlapping data
subsets: training and testing. The training set is fed to the learner, enabling it to identify
trends and patterns in the data. The testing set is used to validate how predictive the
learned trends were. These two sets should be completely distinct (share no data points
between them), as the efficacy of prediction on the training set does not reflect the efficacy
of prediction on future data. For this application, we are concerned with predicting the
success of online fantasy sport contests hosted by DraftKings.

Supervised learning is a form of machine learning where both the inputs and outputs are
known in the sample data (i.e. all data is labeled). Entry ¢ of this set would come in the
form of

(Xi,yi) = (X10, 25, 5250, 05), X €ERVY yeR" (2.1)

where y; is the response value and x;; is the j* feature.

Supervised learning uses observed trends in a given training set with the aim of generating a
mapping from its set of features X to an estimated set ¢ that minimizes the prediction error
to the known true values y. This mapping function can then be used on new sets of features
to predict their response values with a fair degree of confidence before the true values are
known. When the label is a finite set of discrete categories, this is known as classification.

10

Contest ID | EntryFeeAmount | TopPrize | ... | Response
1932122 5.0 1000.0 e Success
2494993 2.0 650.0 e Failure

Table 2.4: A sample binary response dataset similar to our actual dataset. Note the actual dataset
includes 21 columns of the features listed in Table 2.2 and has over 600,000 entries.

In our dataset, each contest can be labeled a “Success” if it completely fills or a “Failure”
if it does not. This problem is then a form of binary classification (classification into two
possible categories).

While one function mapping the features to a response can be effective, a system of functions
can often be even better. Ensemble learning is a machine learning technique which uses
multiple weaker learners in parallel to collectively output a new, stronger prediction than
any of those single learners could. Errors are reduced in ensemble learning because of the
nature of the collection. If a single model makes an error based on the limited data it has,
that error can be easily corrected by numerous other models which have other data. In this
way, by measuring averages rather than individual results, an ensemble can be more effective
and consistent for predictive modeling than any individual technique.

2.3.2 Decision Trees

Random Forests are one example of ensemble learning, utilizing many decision trees as their
predictors. However, one must first understand the Decision Tree algorithm. Recall that
for this application of supervised learning, there are a number of features and one binary
response variable for each entry. A sample dataset can be seen in Table 2.4 for a binary
classification problem like this. To simplify the example, consider a dataset with only two
features and a binary categorical response variable, as appears in Figure 2.5.

In Figure 2.5, we see a set of 20 randomly generated points in 2-dimensional space, each
labeled as either a success or a failure. The goal of a decision tree is to draw axis-parallel
separators that minimize the number of incorrect classifications. Again referring to our
example, we first draw a vertical line where Feature 1 = 0.25; classifying everything left
of that value as a failure and everything right of that value a success. This results in the
misclassification of 7 points, the fewest of any line we could have drawn. From here, the
next split we make will only apply to one of the zones formed by the previous split. The
next split we make for the right region is a horizontal line where Feature 2 = 0.3; classifying
everything below the line a success and everything above it a failure. This results in five
misclassifications, again the fewest of any possible line for that region. We can continue
creating these cuts until each region only contains one point or until each region only contains
points of a single class. This example can also be extended to a case with more than two
features, but a cut can only ever be along one axis.

Tree learning centers on using known features (X) of the dataset to section the predictive

11

Sample 2-Dimensional Data

0.9 1
™ ® @ Success
0.8 1 ° ° ® Failure

0.7 4 []
0.6 *

05 A e ® ° .

Feature 2

04 °
0.3 1
0.2 1 L] o

01 .

T T T T T T

0.0 01 02 03 04 05 06
Feature 1

Sample 2-Dimensional Data

09
[™ ® Success
0.8 1 ™ ° @ Failure

0.7 4]

05 - e ® ® .

Feature 2

04 °
031
0.2 1 L e

01 1 .

T T T T T T

0.0 01 02 03 04 05 06
Feature 1

Sample 2-Dimensional Data

0.9 A
° P ® Success
0.8 1 ™ ° @ Failure
0.7 1]

0.6 1 °

05 1 e ® b .

Feature 2

04 - °
031
021 L] ®

011 °

T T T

0.0 01 0.2 03 04 05 06
Feature 1

Figure 2.5: Sample set of 2-dimensional binary response data with two possible initial decision tree
splits marked. In the top left image, we have only the data points. In the top right, the algorithm
makes the cut that misclassifies the fewest number of points, at x = 0.25, classifying points with
x values less than that as failures and greater as successes. The bottom picture is the second cut,

again minimizing the mislabeled points. This process could continue until we only have regions with
one point.

12

space into distinct regions [21]. Looking at the example dataset in Figure 2.5, we can see

X = (x1,22), y € [Success, Failure]

A line could be superimposed on Figure 2.5 where z; = 0.25. Then based on the sample
data, we could predict that any point where x; < 0.25 should be a Failure. By repeatedly
adding linear separators, it becomes possible to create multiple areas of classification. Certain
criteria should be used to best split the space.

In our example, we start by partitioning the left most points because that cut limits the
number of misclassifications, however, a more common way of choosing splits is by using the
Gini Impurity (GI) [22]. Gini Impurity is a metric for the uniformity of response types in a
region calculated by

GI=> ply=clz)1—ply=clr;) =1-Y [ply = clz;)]? (2.2)

[

where p(y = c|x;) is the conditional probability of a point in a region being of response type
¢ given some feature x;. Similarly, 1 — p(y = c|z;) is the conditional probability of a point
in a region not being of response type ¢ given feature z;. For a given region R, p(y = c|z;)
can be calculated as the percent of elements within R of class ¢, meaning 1 — p(y = c|z;) is
the percent of elements in R not of class c.

As the regions become more uniform, the impurity value decreases, eventually approaching
0 when all points in the region are of the same type. It it then possible to select the next
split that best separates the data in one of the new regions by minimizing the sum of the
Gini Impurities on either side of the new split.

In our example, we only consider the classes ¢; = Success and c; = Failure. Since this
is a binary classification, (1 — p(y = Failure|x;)) = p(y = Success|z;)) and vice versa.
Substituting this into Equation 2.2 and simplifying, we find

GI = 2p(y = Success|x;)p(y = Failure|x;)) (2.3)

From this, we can see that splitting at x; = 0.25 produces the lowest impurity sum and is
thus the best option. After all splitting, a tree can be formed from the ordered list of splits
which can be used to evaluate new points as either a ”Success” or ” Failure”. We can also use
decision trees for regression problems, where we would predict a numerical response at each
cut, but for the purposes of this project, we need only consider the classification application.

A decision tree that uses all the features and can make as many branches as possible is
likely to overfit, or build its predictions too closely off of the training data. This can be
detrimental for future predictions as the overfitted tree will likely do well on the trained set
and poorly on new data points in the testing set. Several techniques have been developed
to prevent overfitting of decision trees including limiting the number of features provided
to the algorithm and the number of branches (linear separators) it can produce. While a

13

stunted tree such as this can help reduce overfitting, they are also prone to inaccuracy. To
improve the predictive capabilities of this algorithm, it is common to use multiple stunted
trees in parallel to form an aggregate prediction. The issue then becomes deciding how to
effectively select the features and branching of each tree.

2.3.3 The Random Forest Algorithm

The Random Forest algorithm is a supervised ensemble learning method for problems in
data science. The algorithm utilizes multiple randomly selected features in decision trees
in order to predict outputs making it both easily implementable and interpretable. While
random forests can be used for both regression and classification, for the purposes of this
paper, we will only discuss classification.

In each tree, at each split k of the j features are randomly selected k < j. For the application
of classification, k is often chosen to be ~ +/j. The forest then considers all possible splits
among those k features and selects the one that minimizes the impurity score. An important
methodology to implement random forests is called bagging, or bootstrap aggregation [11].
Bootstrapping is the process by which a random sample is taken from the dataset for each
model used in the ensemble. Each bootstrapped sample has the same number of elements
n selected with replacement. This means each element in a bootstrap sample is selected
randomly from the original data set without deleting it from the original set. This also
ensures that each bootstrap sample preserves the approximate distribution of the original
set. Thus, the general form of the data is maintained across all samples.

As an example, consider a random forest of 1000 decision trees where each tree receives a
different bootstrapped sample set. A common implementation would split the trees into
10 equal batches of 100. Each batch would then have its branching limited by a different
integer, creating an ensemble of trees with varying levels of complexity. Each tree (¢) then
gets a “vote” (weighted equally in most cases) as to the categorization of each point. The
category receiving the majority vote from the set of all trees (T) is then predicted as the
proper class.

2y Ii(ts = Success)
T

Hi _ { y uccess

0, otherwise

. Success, v >0.5
Prediction = _ i
Failure, otherwise

So, if 500 or more of the 1000 decision trees in our forest predict a point to be a success, it
would be classified as a success.

14

The idea of bootstrapping may seem strange as it means each tree can receive different
datasets, each of which may contain duplicate values. In fact, this sampling scheme ulti-
mately improves the modeling performance by ensuring each tree is trained on different data.
If each tree were trained on the same original dataset, the splits (and therefore predictive
trends) would be similar or identical. This defeats the purpose of the random forest, as
having many trees “voting” would be pointless if they always tend to vote the same. By
bootstrapping, we ensure each tree receives a unique set of training data that is still repre-
sentative of the original set allowing for decreased variance without increasing the bias of
the model.

2.3.4 Advantages and Disadvantages

One distinct advantage of random forests is their flexibility. Forests are a non-parametric
modeling technique, meaning they make no assumptions of the form of the data and therefore
can work well for more complex sets of higher dimensional data. However, this comes at a
cost. Due to their flexibility, random forests provide no insights into the nature of the data
as trends cannot be discerned between features and the output response types, as opposed
to a simple decision tree [4]. Additionally, depending on the complexity and number of trees,
random forests can be computationally costly and are still at risk of overfitting.

2.4 Imbalanced Data

The proportion of occurrences belonging to each class in a dataset (class distribution) plays
a key role in classification in Machine Learning. An imbalanced data problem refers to when
a high priority class, (minority) infrequently appears in a dataset. This is due to another
class instance (majority) outnumbering the minority class. This can lead to the evaluation
criterion controlling the machine learning to treat minority class instances as noise, resulting
in the loss of the classifiers ability to classify any new minority class instances [7]. Consider
a dataset which has 1 member of the minority class to 100 members of the majority class.
A classifier that maximizes accuracy and ignores imbalance will obtain an accuracy of about
99 percent by only predicting the majority class outcome. This section will go into more
detail on how this problem occurs and the solutions investigated for this paper.

2.4.1 Class Imbalance Problem

This sections purpose is to refresh the reader’s knowledge of supervised classification, to detail
the Class Imbalance Problem and finally introduce a metric for performance evaluation.

15

Problem of Imbalanced Datasets

As stated, a dataset is said to be imbalanced when a minority class is underrepresented.
When this occurs, standard classifiers tend to predict majority class for maximum accuracy.
This is know as the class imbalance problem. However, the issue is more complicated than
this. If a dataset is not skewed, meaning the dataset has significant set regions where only one
class occurs, the class imbalance problem will not occur no matter how high the imbalanced
ratio is. When a skewed data distribution does occurs, the problems of small sample size,
overlapping and small disjuncts appear or are more relevant for minority class prediction.
These problems collectively result in the class imbalance problem.

e Overlapping is when data samples belonging to different classes occupy the same space,
making it difficult to effectively distinguish between different classes [25].

e Often the ratio between majority and minority class is so high that it can prove ex-
tremely difficult to record any minority class examples at all. Undersampling with
these few instances can result in overfitting. In addition to overfitting, the bigger the
imbalance ratio is, the stronger the bias to the majority class.

e Small disjuncts occur when the minority class instances are distributed in two or more
feature spaces. This makes it harder to pin down where minority class instances are
likely to occur.

Performance Evaluation

Traditionally, accuracy has been the metric for determining machine learning prediction effi-
ciency. But, as stated before, accuracy is not the best metric when dealing with imbalanced
data, as it may lead to removing minority class instances as noise. When working in im-
balanced datasets, there exist better metrics to evaluate performance. The most common
solution is to use a confusion matrix to measure the true positive rate, true negative rate,
false positive rate, and false negative rate.

e True positive (minority) rate is the percentage of minority class correctly classified
TPrate = True Positives / (True Positives + False Negatives)

e True negative (majority) rate is the percentage of majority class correctly classified
TNrate = True Negative / (False Positives + True Negatives)

e False positive rate is the percentage of negative instances misclassified
FPrate = False Positive / (False Positives + True Negatives)

e False negative rate is the percentage of positive instances misclassified
FNrate = False Negative/(True Positives + False Negatives)

The goal in classification is to achieve high true positive rates and true negative rates. A
common way of combining these results is through the use of a receiver operating character-

16

Comparing ROC Curves

1
039 -
0 -
0.7 -
06 -
05 -
04 -
o 03
F 02 4

01 4 Excellent

0 T T T T T T T T T
0 0402032040506 070808 1

— ‘Wiarthless

rue positive

— izood

Fakse positive rate

Figure 2.6: Examples of 8 different qualities of ROC curves. Yellow is an excellent curve repre-
senting a good ability to discern between classes. Purple is a useless curve equivalent to random
classification of each point. The magenta line is better than the purple, but not nearly as good as
yellow.

istic (ROC) curve. ROC curves serve as a metric of a classifier’s ability to discern between
classes. This allows for a visual representation of the trade-off between true positive and false
positive rates. The area under a ROC “is equivalent to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative instance”,
so the goal is to maximize this area [6]. A desirable ROC would look like the yellow curve in
Figure 2.6. Conversely, the purple line is the equivalent of randomly classifying each point;
while it clearly is not the minimum possible area, it is by no means good.

2.4.2 Solutions to the Class Imbalance Problem

Class imbalance has emerged as one of the challenges in the data science community [2] [25].
Many real world classification problems attempt to classify infrequent instances such as
fraud detection, medical diagnoses, and detection of oil spills. Many techniques have been
proposed to solve imbalanced data problems, the majority of which fall into three groups:
data-level, algorithm-level and cost sensitive learning.

Data-Level Techniques
Data level (Preprocessing) techniques are the most commonly use for solving imbalanced

data problems. Data level solutions rebalance the class distribution by resampling the data
space [2]. This solution avoids affecting the learning algorithm by decreasing the imbalanced

17

ratio with a preprocessing step. This makes data level solutions extremely versatile as they
are independent type of classifier used. The three preprocessing techniques considered for
this project were Oversampling, Undersampling, and Hybrid Sampling.

Oversampling

Oversampling refers to any algorithm that rebalances a dataset by synthetically creating
new minority class data. Oversampling is best paired with problems that have less data [8].
Two often used oversampling algorithms are Synthetic Minority Oversampling Technique
(SMOTE) and random data duplication. SMOTE creates new data points by taking linear
combinations of existing minority classes. Thus, SMOTE creates unique new data [14].
SMOTE is most effective for increasing the number of samples for clustered minority classes
where Data duplication is much less biased. Comparatively, random data duplication does
not create unique points, rather, it creates more instances of existing minority class points.

Undersampling

Undersampling is any algorithm that rebalances a dataset by removing majority class data
points. This method is best for large amounts of data were data retention is less critical.
The two most often used Undersampling algorithms are K-means clustering and Random
Undersampling. Random Undersampling selects random majority class data points to re-
move. Similarly to the SMOTE and data duplication, K-means is best for clustered majority
class data while random undersampling is best for extremely skewed data.

Hybrid Sampling

Hybrid sampling is the use of both Oversampling and Undersampling techniques to rebalance
the dataset. The use of both oversampling and undersampling is selected normally over just
undersampling in order to prevent the loss of large amounts of majority class data with
little additional work to implement. To put this into context, lets take a example of data
set with 100 points and an imbalance ratio of 99 to 1. We can undersample this data to
have an imbalance ratio of 10 to 1. This is results in most of the majority class data being
lost. Instead we can both Oversample and Undersample by duplication of the same minority
class.

Algorithm-Level Techniques

Algorithm-level solutions adapt/rewrite the existing classifier learning algorithm to increase
bias towards predicting the minority class [16]. Implementing these adaptations can be
difficult and require a good knowledge of the imbalanced data problems discussed in the
previous section.

18

Cost Sensitive Learning

Cost sensitive learning solutions are a hybrid of the previous two. They associate costs to
instances and modifies the learning algorithm to accept costs. The cost of misclassified a
minority class is higher than a majority class. This biases the classifier to the minority class
as it seeks to minimize total cost errors. The flaw to this method is that it is difficult define
exactly what these cost associations values should exactly be.

2.5 Linear Regression

In a dataset involving multiple variables, we can attempt to map a relation between them
using linear regression. This technique can be used to model such a relation through its
generation of a linear equation. In linear regression, one variable is considered to be the
independent variable and the other the dependent variable. We typically denote the depen-
dent, or response, variable as y and the independent, or explanatory, variable as x. Thus we
can generate the linear equation

y =P (2.4)

where (3 is a real coefficient denoting the slope of the line. A more commonly used function
includes an additional constant term («) allowing the translation of the line turning it into
an affine function. Adding a to Equation 2.4 yields

y=a+px (2.5)

It is important to note that while a strong correlation may exist between x and y (we will
explain in detail what that means later), this does not necessarily imply that = causes y or
vice versa [11].

2.5.1 Least-Squares Regression

Most data in real world applications is discrete, or a countable number of points n, while a
linear equation is a continuous approximation. How then do we generate such an equation
given our dataset?

The Least-Squares Regression fits a continuous line to a discrete set of data by finding and
minimizing the squared vertical distance between each data point and the line. This distance
between the line and the observed data point is called the residual. A plot of the explanatory
variable versus the residuals should have no discernible pattern. Otherwise, a linear model
may not be the best fit for this data. A good example of residual plots that either indicate
high goodness of fit or low goodness of fit can be found in Figure 2.7.

19

Standardized Residual
Standardized Residual

T T T T T T T T T T
-20] 20 48 68 B@ 1ee 120 140 168 180
a.7 a.8 2.9 1.8 1.1 1.2 1.3 1.4

Predicted Predicted

Figure 2.7: Two plots of residuals versus the explanatory variable, time. The figure on the left
shows a residual plot that has a discernible quadratic pattern, suggesting a linear model is not a
good fit. The figure on the right shows a residual plot that has no discernible pattern; that is it seems
like random noise that could have been sampled from a Gaussian distribution where the variance is
independent from the prediction. This suggests a linear model is a good fit.

In some cases, a transformation from the original data to something more linear may be
appropriate. For example, if the observed data is approximately exponential in nature, a
log transformation would take the data from the exponential space to linear space, where a
Least-Squares linear fit would be appropriate. The linear parameters could then be converted
back to exponential space.

To generate the least squares line, we consider the following system of equations. In the
following example, our explanatory variable is ¢, for time, and our response variable is .
We have n discrete data points that are time/response pairs, and we are attempting to
approximate a and 3, the coefficients of the best fit line.

The Mean Square Error, which is minimized in linear regression, is given by the following
equation:

n

ES) (26)

=1

a summation over all data points, where y is the observation and f(¢) is the function of time
evaluated at that point. From this equation, called the objective equation, we can find a
solution that minimizes mean squared error. To find the coefficients of the least squares line,

20

we use the following equations [23].

1t
1ty
H= |1 t3] HecR™ (2.7)
_1 tn—
a n

Here, H is known as the design matrix. The first column vector is entirely 1s. The second
column vector is all n known time values (¢). Setting up H in this way makes it so Equation
2.8 is equivalent to

yi = a+ [t (2.9)

which is the exact functional form we were looking for in Equation 2.5.

For each observation point, we have some relation between time and the response which we
can estimate with these two equations. To estimate our final relationship, the coefficients &
and [are found with the following equation.

m = (H'H)'H'y (2.10)

It should be noted that this example only involves prediction using a single input variable (),
however, the formulation is robust enough to be compatible with inputs of any dimension.
Consider the case where the input is instead X = (z1,x2,...,2;), thus we now want to
predict for the equation

y=a+ X =a+ pfixy + foxa + ...+ fix; (2.11)
H will then become
-1 11 T2 ot IEM-
To1 Xz - Ty
H= |1 231 x32 -+ x3 (2.12)
1 Tn1 Tp2 - Lin

21

and Equation 2.10 will become

o F> [oN

V)

= (H"H)'H"y (2.13)

§>...
L

2.5.2 Extensions of Linear Regression

The variety of problems to which linear regression can be applied has created the need for
various modifications to the technique. For example, there are some cases where certain
points within a dataset must be weighted more heavily than others. This cannot be done
in a traditional least squares, but can be achieved through the introduction of an additional
diagonal matrix W. For a matrix to be diagonal, it must only have entries along its main
diagonal as seen in Equation 2.14. For this application, the time series data is always provided
in chronological order with newer points coming last. For the purposes of prediction, we care
more about the more recent data as initial behavior would be expected to be non-influential
on end behavior. W would then take the form

A" 0 0 0]
0 At 0 0
W = diag A", \" - A =10 0 . T (2.14)
: ST U
0 0 0 A

where A € (0, 1]. The parameter A acts as a “forgetting factor”, making the later occurring
points exponentially more important in the parameter search. Effectively, this means the
residual used in the MSE calculation from Equation 2.6 for each point is weighted by its
associated power of A\ as in Equation 2.15.

SO~ ul)? .15

This allows for large residuals for the initial points while insisting on small residuals for the
later points. The new equation to estimate the coefficients of our best fit line then becomes

~

{Z] — (HTWH)'"HTWy (2.16)

As before, this function can also be used for a set of ¢ input variables reformatting the H
and coefficient matrices as in Equations 2.12 and 2.13.

22

2.6 Kalman Filters

The concept of the Kalman filter was first published by Rudolph E. Kalman in 1960 in
his paper “A new approach to linear filter and prediction problems”. Kalman sought to
create a new method of estimating linear dynamic systems that was more practical to use
with machine computation. Kalman explains, “Present methods for solving the Wiener
problem (linear dynamic systems) are subject to a number of limitations which seriously
curtail their practical usefulness” [12]. Kalman details his newly invented algorithm which
provides efficient computational means to recursively estimate the state and error covariance
of a process, in a way that minimizes the mean of the squared error covariance [24]. The
algorithm, now dubbed the Kalman filter, is a set of mathematical equations broken up into
two steps: Prediction and Update, described in detail below.

Today the Kalman filter is used in several modern applications such as sensor fusion/filtering,
data smoothing, and forecasting/prediction [12] [1] [19] [17]. The traditional Kalman Filter
(KF) is a tool used to analyze a set of linear data points for an unknown dynamic model.
Each data point is passed in 1-by-1 to the filter (thus the k' step involves the k' data point)
using the following nomenclature:

ek [R): the k' estimated state space given the first k observations (z; - - - 2)
Zpp—1 [R"]: | the k' estimated state space given the first k-1 observations (z; - - - zx_1)
F, [R™*™]: the state transition function

By, [R™™]: the control input model

ug, [R"]: the input control vector

Py [R™"]: | the error covariance matrix of (the confidence in) @y

Q [R™*"): the processing noise (confidence in each prediction)

Hy [RY*7: the observation model at step k

2 [R]: the k' observation

ur [R]: the k' estimate residual

R [R]: the measurement noise (confidence in each observation)

sk [R]: the innovation covariance

K}, [R™*"] the Kalman gain

Assuming a state space with n parameters, each of these is a matrix of dimension [R%*€]
meaning it has d rows and e columns [13]. For each dataset there exists a proper pairing
of () and R, however, they are usually not known. They represent artifacts of the Kalman
filters” assumptions that the noise in the data is Gaussian (normally distributed) with mean
0 (i.e. noise). @ is the covariance matrix of a multivariate normal distribution centered at p

B = [:ulv"' 7#71]7

where n is the number of elements in the state space &. () then represents the assumed
known variability in each of the n parameters in €. Larger entries in () corresponds to larger
variability in & which implies a lower confidence in the predicted &,. R is the variance of a

23

univariate normal distribution centered at 0. This acts as the assumed known variability in
all observations zj.

Given the appropriate values of () and R, the KF acts as an optimal estimator as it minimizes
the Mean Square Error (MSE) of the predicted & [15]. In practice, this can be thought of as
nearly equivalent to a recursive weighted least squares (WLS) estimate where @) acts as the
forgetting factor for the KF similar to what W does in WLS. It should be noted this only
works for our application because we provide the data in chronological order. In practice,
the Kalman Filter can predict on data provided in any order so) will more quickly “forget”
the earlier data points provided. However, determining a proper () — R pair for a set of data
can often be very difficult as it is still an open problem.

2.6.1 Parameter Estimation with Kalman Filters

Normally, the Kalman Filter is used to smooth out noise while maintaining the general form
of the original data. As seen in Figure 2.8, the KF can take a set of noisy observations and
reconstruct a good approximation of the true function’s behavior. For a good example with
step by step instructions on the implementation of how Kalman Filters are more traditionally
meant to be used, we recommend viewing the SeatGeek price prediction article referenced
in the bibliography. However, with minor adjustments to the algorithm, it can be converted
from predicting function values to predicting function parameters.

Estimate of Ball Trajectory (Elements from State Vector)
T T T T

— Kalman Filter Estimate
— Real]
e°o Measurement

X (m)

Figure 2.8: Example showing how the Kalman Filter is capable of taking in a set of noisy data (grey)
and derives a smoothed estimate (blue) that is generally accurate to the true function (green).

We will assume we have a set of noisy linear data of the form (time, value) such that we

24

want to find the best linear approximation of the form

v=a+ fpt (2.18)

that fits this data. We start with an initial state space estimate of &g, error covariance
matrix estimate Ppo and chosen values of) and R.

Tojo = [Cﬁk} (2.19a)
P = ﬁa gﬁ_ (2.19b)
Q= {%ﬂ c(g)g_ (2.19¢)

KF Prediction

The first step is prediction. We calculate @gx—1 and Pyr—; at the current iteration based
on the last iteration’s predicted @y_qjx—1 and Py_jjr_1.

ii?k|k_1 = Fkik—uk—l + Bk’l.l,k (2.20&)
Pye—1 = FxPoyp F +Q (2.20b)

For our purposes, assume F} is always identity, meaning the model does not change with
time. We also assume Biuy, = 0.

= B ﬂ (2.21)

Since any matrix multiplied by the identity is always the original matrix, this reduces Equa-
tions 2.20a and 2.20b to the form

Tpt1k = Lilk (2.22a)
Poyip = P +Q (2.22b)

25

This is a simplification in our application, as we know the true function is not constant as
can be seen from Figures 2.9. These changes shift the filter from a dynamic to a nearly static
model approximation. P represents the confidence in (or variability of) each parameter in
the current state space with larger values of P implying less confidence in . From Equation
2.22b, we can see that providing a larger () causes consistently larger estimates of P. This
makes sense as () is a measure of the variability in each parameter of &, so larger)’s should
cause the KF to be less confident in its predictions.

As a further simplification, we assumed P and @ to be 0 in the off diagonal as in Equations
2.19b and 2.19c. This assumes that the parameters o and [exist and change independent
of each other where P,, Pg, Q,, and Qg can be any non-negative real numbers.

KF Updating

The second step is updating. Each iteration of the KF utilizes a single data point, so the
k' iteration will use the point (¢, vy). We begin by calculating the residual (or error from
the k™ known observation) for (tx, vy).

Y = 2k — Hk£k|k—1 (223)
Here H;, is
Hi=1[1 t] (2.24)
From Equation 2.19a, we can see
Hkiﬁk|k—1 =a+ [ty = Uy (2.25)

Thus, yy is simply the difference between the prediction of 0y at ¢, and the actual observed
vy, at tp. We then perform the innovation step to calculate s,. We understand s as a metric
for the confidence in observation z; as it represents the variability of the first k£ observations
(21, -+, zk). If the values of z;.., tend to vary greatly, s, will be large. If the values of 2;...x
only vary slightly, s, will be small. Larger values of R also cause larger values of s, as seen
in Equation 2.26 since R is a measure of the variability for all observations.

P, H, and s come together to form K}, the Kalman gain. Kalman gain can be thought of
as a “velocity factor” of sorts for the KF, controlling the magnitude of adjustment to make

26

to the current &,. The formula for the optimal gain, minimizing the mean square error of
the estimate, is

Ky, = Pyp—1 Hy s (2.27)

From this we can see that as Py gets small, so too does Kj. This is because a small P, implies
high confidence (or low variability) in &. Thus, having high confidence in the current state
should yield only a small change to the new predicted &,. We can also see that as s, gets
large, K} gets small. This also makes sense since large s, implies low observation confidence
(or high observation variability). In that case we would want a smaller state adjustment for
larger prediction errors as we don’t trust the current observation as true (that is we want
our state adjustment to be less sensitive to erroneous predictions).

We then improve the current state space estimate using information from the k% iteration
thus transitioning from ®xk—1 to Tk

Cﬁk|k = :ijk:|k:—1 + Ay (2.28b)

From Equation 2.28a we see that y; controls the sign of the state prediction adjustment.
When z;, < HyZgjk—1, Yr < 0 making A&y negative. This means if £,y over /underestimates
2k, the new &y, will respond accordingly. We can also see that the magnitudes of y; and
K, control the magnitude of A&y.

The same improvement is done for P, changing Py, to Py, by

Py = (I — Ky Hy) Pyp—1 (I — Ky Hy)" + Ky RK} (2.29)

where [5 is the 2-by-2 identity matrix. When using the optimal Kalman gain, as we do, this
calculation can be reduced to

Py = (I, — Ky Hy) P (2.30)

Each iteration £ will use the previous iterations estimates of £x_qx—1 and Py_1,—1 as the
new starting guess for & and P while maintaining the same Q and R throughout. Once
completed for all data points, the final &, is treated as the model prediction. We can
then use those values of & and B to forecast what the value will be for some time in the
future. Since the KF processes data point by point, data can be fed in in any order with the
forgetting factor Q weighting the later processed points more heavily. Our time series data
comes in chronological order, so Q allows us to essentially weight the more recent data more
heavily. This is effectively equivalent to performing a WLS fit.

Figure 2.9 shows an example of a line whose parameters were found using the KF with an all
zero () along side the same contest fit with a line by ordinary least squares. Both approaches

27

predict virtually the same line. However, if () is changed such that @), = 0.3 instead of 0 as
in Figure 2.10, we can see the behavior changes significantly.

Contest 51551348 Time Series Kalman Prediction Contest 51551348 Time Series Least Squares Prediction

Logged Data /]

10 Kalman Prediction 10 /_/
8 8 /_//

; 7

In(Number of Entries)
In{Number of Entries)
\

0 2000 4000 6000 8000 10000 12000 14000

0 2000 4000 6000 8000 10000 12000 14000
Minutes Since Contest Start

Minutes Since Contest Start
Figure 2.9: The left image shows a linear regression performed on a real contest using the Kalman
Filter with o Q of all 0s. The right image shows a linear regression found using a weighted least
squares fit on the same contest with A = 1. This is the case of no forgetting factor for both methods
which can be seen to produce what looks like the same approximating function.

Performing the fit by KF can be convenient for time series data as each iteration involves
processing only one data point at a time. And while least squares is not very computationally
intensive, it still requires redoing the entire dataset calculation when updating the parameter
prediction.

Contest 51551348 Time Series Kalman Prediction

Logged Data
10 4 Kalman Prediction

B 4
7
v
g
e
w 6 Jd
6
]
2
E
2 41
E

24

0 4

0 2000 4000 6000 8000 10000 12000 14000

Minutes Since Contest Start

Figure 2.10: This is the same contest from Figure 2.9 except Qo = 0.3. We can see that even a
small change in the) matrix produces a significantly different fitting function.

2.6.2 Extended Kalman Filter

While the KF' is an excellent method for estimating model parameters, it is limited in the
same way as LS in that it can only predict for linear models. This works for estimations on

28

logged data, however, it would be preferable to be able to directly estimate the parameters
of the non-linear exponential function ae®. To do this, we turn to the Extended Kalman
Filter (EKF). The EKF works exactly the same as the normal KF except it can work with
non-linear model functions. The only difference between the KF and EKF in this application
is the values of Hy. For the EKF, H, takes the form

oM DM (t)
Hi= |50 ... 240 (2.31)

where Bj - - - B; are the values of the state space & and M (t) is the non-linear model function.
In our case, we assume M (t) = ae’, thus

Hy, = [¢” Bael] (2.32)

Otherwise the calculations are exactly the same as for the ordinary KF. Figure 2.11 shows
some exponential model predictions using the EKF. R = 30 for both, but the left one has
Qo = Qs = 0 while the right has Q, = @3 = 10.

Contest 51551348 Time Series Kalman Prediction Contest 51551348 Time Series Kalman Prediction

50000 50000

40000 40000
9 n
g o
£ 30000 Contest Data = 30000 Contest Data
bt Kalman Prediction b Kalman Prediction
]]
5 End of Contest 5 End of Contest
£ 20000 Actual Final Entries £ 20000 Actual Final Entries
5 5
= Z

10000 10000

0 0
0 2000 4000 6000 8000 10000 12000 14000 0 000 4000 6000 8000 10000 12000 14000

Minutes Since Contest Start Minutes Since Contest Start

Figure 2.11: This is the same contest from Figure 2.9 with R = 30 for both. The left image is an
exponential function found using a Q) of all 0’s. The right image shows the exponential function
found when Qo = Qg = 10. Again, we can see how changing the Q matriz produces a significantly
different fitting function.

29

Methodology

3.1 Time Series Data Processing

The total data cleaning and classification occurred over 5 major steps: Time Series Data
Processing, Exponential Model Fitting, Final Dataset Setup, Classification Prediction, Per-
formance Evaluation. In the following chapter, we explore each step, detailing the techniques
we utilized to generate our results.

3.1.1 Data Chunking

In its original format, the time series data was organized by month. This meant that a single
contest could have its data split into multiple files. Knowing that this organization would
involve extra load time for processing contests, we split the time series data into chunks
based on each series’ Contestlds. Each chunk consists of approximately 10,000 contests, and
were saved with a naming scheme “chunkN.csv” where N is a positive natural number. In
total, we ended with 65 chunks of data. Reorganizing the data as such ensures that each
chunk contained every data point for each of its assigned contests, which will save time when
loading data. Along with the new chunk formatting, we generated a chunk map: a csv that
lists each contest’s id and the name of the chunk file that contest is found in.

3.1.2 Data Cleaning

The original time series data format had columns for “Minutes Remaining” (minutes remain-
ing in contest) and “Entries in Last Minute” (number of entries received in that minute) as
shown in Table 3.1. For our purposes, we preferred to instead have the data in the form of
“Minutes Since Start” (minutes since contest opened) and “Summed Entries” (total number
of entries since contest opened). To do this, we performed a cumulative summation per
contest in chronological order over the number of entries at each minute.

We reformatted the time column, calculating the “Time Since Start” value by subtracting
the current minutes remaining from the maximum minutes remaining. This inverts the

30

Contest ID | Minutes Remaining | Entries in Last Minute
10486 400 2
10486 395 1
10486 394 3
10486 210 5
10486 0 4

Table 3.1: A representative set of fake time series data as it would have appeared in the originally
provided file. Note this reflects only a single contest while the actual files included one full months

worth of contests.

Contest ID | Minutes Since Start | Summed Entries | 4 Hours Out
10486 0 2 1
10486 5 3 1
10486 6 6 1
10486 190 60 0
10486 400 310 0

Table 3.2: This is the same representative set of fake data after processing “Minutes Remaining”
into “Minutes Since Start” by subtracting the “Minutes Remaining” value from the maximum “Min-
utes Remaining” value. “Entries in Last Minute” was also transformed into “Summed Entries” by
taking a cumulative sum of entry values. A fourth “4 Hours Out” boolean column was added with
value 1 if “Minutes Remaining” was > 240 and 0 otherwise.

numbering so time starts from 0 and increases until the contest closes. Additionally, we
added a Boolean column for each point to tell whether that point occurs in the last 240
minutes (4 hours) of the contest or not. A value of 1 means the point occurs before 4 hours
remaining (Time Remaining > 240), 0 otherwise. This column will be used later to separate
out which part of the time series occurs before there are 4 hours left in the contest (The
time we want to make a prediction at). This separation is intended to simulate the data that
would be available when we need to predict a contest’s success. Altogether, the structure
for each contest is changed from what’s seen in Table 3.1 to something more like Table 3.2.

We also go through each contest and scale “Minutes Since Start” and “Summed Entries” to
100 by dividing each point by the max value of its column, then multiplying by 100. When
we later fit exponential models to the data, this scaled format will ensure that every model
is in the same range, holding the predictive power consistent across contests of varying sizes.
The final scaled values from Table 3.2 can be found in Table 3.3.

31

Contest ID | Minutes Since Start | Summed Entries | 4 Hours Out
10486 0 0.6452 1
10486 1.25 0.9677 1
10486 1.5 1.935 1
10486 47.5 19.35 0
10486 100 100 0

Table 3.3: This is the same representative fake data set after scaling both “Minute Since Start” and
“Summed Entries” to 100 in order to standardize the range of values in each column.

3.2 Exponential Model Fitting

We found the time data tended to have the form of a noisy exponential, as can be seen in
Figures 2.5 - 2.7, since the cumulative sum of entries grows monotonically and most rapidly
towards the end of each contest. To keep the model simple, we opted to use an exponential
model of the form ae®’. This was meant to capture the basic nature of entries growing
more rapidly with time. We made predictions with exponential fits in two ways: a series of
Weighted Least Square (WLS) estimates (varying values of A) and a series of Kalman Filter
(KF) estimates (varying values of the () matrix).

3.2.1 Least Squares

For each contest, 15 WLS estimates were performed using the following set of 15 A values.
These values were chosen to ensure a wide range of values were applied in the hope that
more information could be drawn from them.

Starting with data of the form found in Table 3.3, we begin by excluding all data collected
after the “4 Hours Out” point (i.e. we only used the data where “4 Hours Out” = 1). This
allowed us to pretend as if we were analyzing a live contest 4 hours before it closed. We
then changed the “Summed Entries” data by taking its natural log to convert it from pseudo
exponential to pseudo linear. This made fitting with WLS possible as it can only be applied
to linear functions. The result of this can be seen in Figures 2.9 and 2.10 with Figure 2.11
showing the original form of the data. The final adjusted data set for performing WLS
on Table 3.3 can be seen in Table 3.5. Using this information, we could then create the
design matrix (H), weighting matrix (W), and response matrix (y) as described in Section
2.5. These matrices, as they apply to our example dataset from Table 3.5, can be found in
Equations 3.1 - 3.3.

32

Table 3.4: The set of A values used in WLS to predict the parameters and final number of entries

for each contest.

Al 0.1
A2 0.2
A3 0.3
M 0.4
A 0.5
A6 0.6
AT 0.7
A8 0.8
A9 0.9
A10 0.99
All 0.999
A12 | 0.9999
A13 | 0.99999
Al4 | 0.999999
A15 | 0.9999999

Contest ID | Minutes Since Start | In(Summed Entries) | 4 Hours Out
10486 0 -0.43819 1
10486 1.25 -0.03283 1
10486 1.5 0.6601 1
10486 47.5 2.9627 0
10486 100 4.6052 0

Table 3.5: The same representative fake data set after taking the natural log of the “Summed

Entries” column in order to put the data in a pseudo linear space.

33

1 1.25
1 15

1 475

1100
A0~ 0 0 - 0]
ABTB L0 0

e}

: : SN = 0
0 0 0 A =1

[—0.43819]
—0.03283
0.6601

: (3.3)
2.9627

| 1.6052

It should be noted that while normal WLS requires constant interval data (i.e. z;11 —x; = ¢
where z;,7 and z; are consecutive time entries and ¢ is some constant) our data tends to
have sporadic intervals as values are only recorded at times when people enter the contest.
To get around this, instead of the normal method for choosing powers of A described in
Section 2.6.1, we calculated powers of lambda by subtracting the relevant time value from
the maximum time value (which is always 100 after being scaled during preprocessing). Thus
the i'" entry of the diagonal matrix W becomes

W, = \100-zi (3.4)

This effectively assigns the same powers of A as if the data were interpolated (were made
to have constant intervals by filling in gaps with linear approximations based on the two
surrounding points), without the need for interpolation. It also ensured that contests with
thousands of entries did not cause massive exponents which can cause massively small values
for bases less-than 1. (Even 0.8'%% is on the order of 10797)

Since the dimensions of H, W, and y are dependent on the number of entries in a given
contest, we wanted to avoid the computational load of having to generate 15 W matrices in
IR™"™ where n can be over 1000 for each contest. We instead created an augmented version
of the HT matrix. As seen in Equation 2.12, HT is always right-multiplied by W . Taking
advantage of this, we opted to merge the powers of A\ directly into H?. This then left us

34

with three distinct matrices with H and y remaining the same and H” becoming H{, where
each column is multiplied by its respective power of \. The WLS formulation then became

] =y (35)

For our current example, W and H from equations 3.1 and 3.2 merge to form H{, as seen
in Equation 3.6.

2100 \98.75 2985 L. 20

Hyy = [0)\100 125X 150985 ... 100A° (3:6)

With this structure established, we simply then performed each of the 15 WLS parameter
estimates outputting 15 pairs of A and B values. Since this estimate was done in log space,
we then converted each set of parameters back to normal space. Our WLS predicted the
optimal A and B for the line

In(y) = a+ px (3.7)

To convert this, we raise both sides to powers of e, thus

y = et (3.8)

which is equivalent to

y = e (3.9)

Here, g doesn’t change as it remains in the exponential. To transition back to normal space,
we needed only to calculate a new «; o = e®. We concatenated the o/ and /3 values generated
from each value of A into a dataframe. In the event that no data exists beyond the “4 Hours
Out” mark, we set the values of o/ and 5 to 0. The WLS can also output values nan or inf
for “not a number” or “infinity” respectively in some cases. We deal with these later on.

3.2.2 Kalman Filter

Our application of the Extended Kalman Filter for non-linear parameter estimation follows
much the same steps as the WLS implementation. Just like WLS, we ran each contest’s time
data using 15 different () matrices with R = 1 in all cases.

These were chosen by performing an exhaustive search over values of R, (), and ()3 on a set
of 20 contests which included various sports, lengths, entry fees and total entries. R ranged
exponentially in the form 2V with N € {0, ..., 10} and Q, and Q4 each ranged exponentially

35

Label Qa Qs
vl 8000 60

v2 9000 60
v3 100000000 10
v4 10000000 100

VO 1000000 100
v6 10000000 10
V7 1000 1000

v8 1000000000 10
v9 10000000000 | 10
v10 100000000 32
vll 3981072 16
v12 208929613 13
v13 794328234 251
v14 60000 58000
v1) 2691534 1778

Table 3.6: The set of values on the main diagonal of the Q matriz used in KF to predict the
parameters and final number of entries for each contest. While we recognize these values may seem
arbitrary, they were chosen with the explicit goal of providing a wide variety of predictions from
which a machine learner may be able to derive trends.

in the form 10V with N € {0,...,10}. Each set of R;, Qu; and (ppi was evaluated by
the sum of residuals using three weighting schemes: a flat weighting where all residuals are
weighted equally, a linear weighting where more recent data is weighted linearly more than
older data, and an exponential weighting where more recent data is weighted exponentially
more than older data. From analyzing these results, we selected 15 that appeared to most
often reduce the sum of errors. It should be noted that this method of selecting) values
will not necessarily produce statistically “proper”)’s. It was our intent to have Kalman
Filters with a variety of () values, whose diversity could be instructive to a random forest.
As long as a single Kalman Filter behaves consistently across contests, a Random Forest
could theoretically use the noise in the prediction for its own predictive power.

Since the Extended Kalman Filter is able to perform estimations on non-linear data, we did
not need to convert to log space beforehand. In our example, this means the data from
Table 3.3 will work as is. Once again, we filter out contests that were recorded less than
four hours before the contest ends (we only use data where “4 Hours Out” = 1). In this
case, the output a and (8 values are already in normal space so no conversion is required.
We concatenated the o and S values generated from each value of () into a dataframe. In
the event that no data exists beyond the “4 Hours Out” mark, we set the values of o/ and 3
to 0. The Kalman Filter can also output values nan or inf for “not a number” or “infinity”
respectively in some cases. We deal with these later on.

gfinal = 0665100 (310)

36

Feature Reason for Removing
GameSet Proved unimportant
ContestName Complex string with information already present in other features
ContestStartDatetimeEST Proved irrelevant for the user
ContestSEndDatetimeEST Proved irrelevant for the user
ContestPayoutDatetimeEST Proved irrelevant for the user
Entries This would be cheating to know ahead of time

Table 3.7: The list of features removed during processing because they allow for unknowable infor-
mation or were determined to be irrelevant to contest users.

since the duration (or final recorded time) of all contests is 100 after scaling. Figure 3.1
visualizes the full progression of time series data processing used for both our Kalman Filters
and Weighted Least Square predictions.

3.3 Final Data Set Setup

At this stage, we preprocess the header data into a more usable format. We also bring
together all the data we’ve calculated so far and conglomerate it into our single final dataset.

We start by removing unusable / irrelevant columns. Features such as “Contest Name”
were full of incomparable Strings which would be unlikely to hold predictive power. Time
parameters also were not relevant to users and were determined to also be unusable for the
purposes of prediction.

In addition to removing ineffective features, we also removed features that would allow the
predictor to “cheat” (i.e. use information that could not be known before the end of a
contest). Features like final number of entries were removed to ensure the predictions were
made using fair and viable data. The full list of removed features appears in Table 3.7.

Next we standardized all numerical value columns. Features such as “Entry Fee” and “Total
Prize” can take any positive value so we divide each numerical column by its respective
maximum value to put them in the range of 0 to 1. We also had to translate the categorical
columns into a format a Random Forest could handle. We chose to create a column for
every categorical value. Each contest has a 1 in the columns of the categories it fit in and 0
in the rest. This sort of splitting is known as one-hot encoding and is extremely helpful in
instances where Strings cannot be interpreted.

We found that 2 sets of “Sport Name” needed to be merged. “SOCC” and “SOC” both
represent soccer contests, the naming code was simply changed at one point. “PGA” and
“GOLF” were also both present in data. Cases such as these with equivalent categories were
merged into singular respective columns.

Next, we created our “Success” column. It was necessary to have an easy-to-access metric for
whether a given contest met its goal. DraftKings informed us that they measure a contests’

37

Step 1: Series Summation

| — FulData | T
E 7500 1 Time of Prediction
(-
]
Ss5000] Contest Closes
= ------ Target Entries
'S 2500 -
'_
0 A T T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
Minutes Since Start
Step 2: Scaling Series
100 e
o) — Full Data
=]
- 151 Time of Prediction
2 —— Contest Closes
” 071 Target Entries
QD
£ 251
=
L
U A T T T T T
0 20 40 60 80 100
Time Passed (%)
Step 3: Removing "Cheat" Data
_ 100 free— e e e
2 —— Training Data
= 751 Time of Prediction
2 —— Contest Closes
- S f— Target Entries
Q
T 25
[y
LU
0 i T T T T T
0 20 40 60 80 100
Time Passed (%)
Step 4: Fit Model
9 100 Training Data f"d
= 75, —— Kalman Filter Model s
g Time of Prediction i
= e
. 501 — Contest Closes .
-g 25| - Target Entries
g V|- | =
o e
U A T T : T T T

0 20 40 60 80 100
Time Passed (%)

Figure 3.1: This is a visual progression showing the steps we take in getting a prediction from each

Kalman Filter. The methodology is identical for Weighted Least Squares except we take the natural
log of the scaled entries in order to convert to a pseudo linear space.

38

success as whether the number of entries matched the player limit. In accordance, we created
a new Boolean “Success” feature measuring whether the total number of entries equalled the
max number of players allowed.

The last step in processing data was to determine predictions based on both the Weighted
Least Squares and Kalman Filter results. Both algorithms were set up to return an o and
3 value from our model ce®®. Since all of our time series data was scaled 0-to-100 on both

axes, predictions are simply calculated as ae®*'% This computation was performed on all
15 versions of both the WLS and KF.

We combined each of the above-mentioned processes in our final dataframe. The final set of
features included the standardized numerical features, one-hot encoded features, “Success”
column, and the o and 8 parameters of each WLS and KF with their associated percent-full
predictions.

3.4 Classification Prediction

Before performing any sort of classification, we first divided the whole data set into five
subsets. The largest subset (about 40 percent) was the training set. This set was used
for all training of each iteration of our classifiers. The rest of the data was split into four
separate sets. These four sets were used for the purposes of cross-validation of results.
For predictive purposes, we created an ensemble of 20 random forests using the scikit learn
RandomForestClassifier module. Each forest was built using scikit learn’s default parameters
and contained 100 trees.

If you recall, our dataset is highly imbalanced with approximately 91% of contests filling
successfully. If we were to train our forest on such a skewed dataset, it would inevitably
over-fit. That is to say that it would tend to predict “Success” simply because there were
many successful contests in the training set. To address this, we start by balancing the
training set via undersampling. To undersample, we get the number of “Successes” and
“Fails” in the dataset. Whichever occurs less often, we select all training points of that type
and sample a set of equal size from the other type. In our case, failures are always less
common, so we select all failures then randomly sample a number of successes to match.

We implemented additional parameters to control the minimum acceptable accuracy for
each classifier. If a forest is found to be less accurate than the minimum, it is discarded
and new versions are generated until the desired number of forests have been collected. This
accuracy is measured as the percent of contests correctly labeled by the Random Forest from
the training set.

39

Contest | Forest 1 | Forest 2 | Forest 3 | Forest 4 | Forest 5 | True Value
Contest 1 1 1 1 1 1 1
Contest 2 0 1 0 0 1 0
Contest 3 0 0 0 1 0 1
Contest 4 1 1 1 0 0 1
Contest 5 0 1 0 1 1 0
Contest 6 0 1 1 0 1 0
Contest 7 1 0 1 1 1 0
Contest 8 1 1 0 0 0 1
Contest 9 1 1 0 1 1 0
Contest 10 1 0 0 0 1 1

Table 3.8: An example set of predictions from 5 different Random Forests on 10 different contests.

Contest | Overall Prediction | True Value
Contest 1
Contest 2
Contest 3
Contest 4
Contest b
Contest 6
Contest 7
Contest 8
Contest 9
Contest 10

el =l e =l Rl =1 E=]

= OO O

Table 3.9: One possible set of overall predictions from the example data in Table 3.7 for when the
threshold for predicting a value of 1 is 60% (i.e. 3 of the forests must predict 1 in order to have an
overall prediction of 1).

3.5 Performance Evaluation

To evaluate the efficacy of each classifier, we made a function to extract the values from
the confusion matrix of the ensemble of 20 forests. This function then calculates the True
Positive and False Positive Rates to be plotted in a ROC curve. Here, the threshold we vary
is the percent of Random Forests in the whole ensemble required to predict “True” before
the ensemble as a whole will predict “True” (where True means we predict the contest will
not fill). By plotting multiple ROC curves on the same graph, we found it relatively easy to
deduce which methodology of classification was most effective. A better performing predictor
will always tend towards the top left corner (i.e. have a larger area under its curve).

Consider the example dataset in Table 3.7. If we use a threshold of 50%, the overall prediction
matrix appears in Table 3.8. Comparing these values to the known True Values, we can
produce the confusion matrix in Table 3.9. From this, we can see that with a threshold of

40

Predict 0 | Predict 1
Actually 0 2 3
Actually 1 4 1

Table 3.10: The confusion matriz for the set of predictions shown in Table 3.8 when compared
against their respective known True Values.

60% we get an overall accuracy of 30% with a True Positive Rate of 0.4 and a False Positive
Rate of 0.8. Expanding this to all possible thresholds we get the blue ROC curve found in
Figure 3.2.

Since this curve appears to be concave up (as opposed to concave down) the area under
the curve is fairly small. In fact, because it falls below the line of True Positive Rate =
False Negative Rate, we can conclude that the classifier does a very poor job of discerning
between 1 and 0 response types and would be better off randomly guessing. However, we
could also invert this line by inverting every predicted value. Doing so would produce the
orange curve seen in Figure 3.2 which appears to do reasonably well at classification based
on the increased area under its curve.

False Positive Rate

Figure 3.2: In Blue: the ROC curve generated by varying the prediction threshold for the ensemble
of forests. In Orange: the ROC curve generated by taking the opposite of every prediction for each
threshold of the ensemble of forests. It should be noted that because there were only 5 example
forests, only 5 points appear on the curve causing it to b jagged. Given more forests, there could be
more possible thresholds and thus a smoother curve.

41

Results

Recall from Section 2.4 that a receiver operating characteristic (ROC) curve is a metric for
the ability of a classifier to discern between classes, where a larger area under the curve
indicates better predictive performance. The y-axis is the true positive rate (sensitivity) and
the x-axis is the false positive rate (1 - specificity). In this chapter, we discuss the changing
predictive ability of our classifier as it went through various iterations visualized through
ROC curves on four distinct validation sets.

For each of the below curves generated using our ensemble method, the threshold was the
required percent of random forests in the ensemble to flag a contest as a positive for it to
be labeled as a positive. (Once again, a flagged contest is one that we predict will not fill
to its target entries within the time that it is open to entries). Since our ensemble used 20
forests, each ROC was made from 20 threshold values. A ROC curve representing an optimal
algorithm will flag every True Positive (TP) contest without flagging a single False Positive
(FP). It is nearly impossible to create an algorithm with perfect sensitivity and specificity, so
our goal was simply to maximize the area below the ROC curve. In the following graphics,
many of the ROC curves are rainbow colored. This coloring is to help identify the threshold
used to produce the indicated TP and FP rate pair.

42

4.1 Header Data Results

[Percent-Full at 4 Hours Out]

10 — 10
08 08

o)

& 06 - 06

i -

B / 2

5 u

8 /| ¢

u 04 0.4

= /
0.2 02
0.0 0.0

0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Figure 4.1: ROC generated using a threshold of percent filled at the “4 Hour Out” point. This
represents an initial baseline estimation we needed to outperform. The fact that such a simple
edtimate appears to form a decent result already is a good way of showing just how imbalanced the
data set 1s.

To ensure we weren’t over-complicating our approach, we started by generating a simple
baseline ROC curve. Figure 4.1 was generated for this purpose by using “Percent Full at 4
Hours Out” as our threshold for each contest. At a threshold of 50%, any contest which was
less than 50% full at the Time Series data point 4 hours before contest start was flagged as a
positive. At that threshold, approximately 80% of True Positives are flagged with only 40%
of False Positives flagged. This visual is a good way of showing the dataset is inherently
imbalanced as it would seem we can achieve a decent prediction by simply evaluating each
contest at the “4 Hour Out” mark with no need for a complicated prediction. Nevertheless,
we aimed to improve upon it.

43

10 [VAULT 1] [Ensemble of Header Datal 10 10 [VAULT 2] [Ensemble of Header Datal

f—_’__,.-- -ﬂ""—---

/ /
08 / 08 08 / 08

wl /] v ol /)
A A/
| |

10

Thresheld
Thresheld

True Positive Rate
True Positive Rate

0o 0o 0o 0o
0.0 02 04 06 08 10 0.0 0.2 04 06 08 10
False Positive Rate False Positive Rate
1o [VAULT 3] [Ensemble of Header Datal 10 10 [VAULT 4] [Ensemble of Header Datal 10
/.-—l""--— /"_.--".-

08 / 08 0.8 / 0.8

06

/|
I/
|

06

/|
1/
|

Thresheld
Thresheld

True Positive Rate
True Positive Rate

0.2

0.0 0.0 0o 0o
(] 02 04 06 08 10 00 0z 04 06 0.8 1a

False Positive Rate False Positive Rate

Figure 4.2: ROCs generated based on our ensemble of random forests using only processed Header
data. Top Left: Validation set 1. Top Right: Validation set 2. Bottom Left: Validation set 3.
Bottom Right: Validation set 4.

Figure 4.2 was generated using processed Header data in our ensemble of 20 Random Forest
Classifiers (RFC). At a threshold of 50%, approximately 80% of True Positives are flagged
with only 30% False Positives being flagged in all four validation sets. These ROC curves
consistently have 10% better specificity (True Positive rate) than that of Figure 4.1 at equiv-
alent thresholds. Figure 4.3 shows a direct comparison between the baseline curve and the
curve from predicting using an ensemble of processed Header data for each validation set.

44

[VAULT 11 ROC Curve Comparison [VAULT 2] ROC Curve Comparison

10 T 10 T
Percent-Full at 4 Hours Out Percent-Full at 4 Hours Out
Ensemble of Header Data Ensemble of Header Data
08 08
w 0.6 w 0.6
]]
= =
u o
= =
-] -]
i i
& &
w w
2 =
= 04 = 04
02 02
oo i)
0o 0z 04 06 08 10 oo 0z 04 06 08 10
False Positive Rate False Positive Rate
10 [VAULT 3] ROC Curve Comparison 10 [VAULT 4] ROC Curve Comparison
T T
Percent-Full at 4 Hours Qut Percent-Full at 4 Hours Qut
Ensemble of Header Data Ensemble of Header Data
o8 08
w 06 w 06
;] I}
= &
u o
3 3
-] -]
W]
& &
n o
2 2
= 04 =04
02 02
0.0 0.0
0.0 02 04 06 08 10 o0 02 04 06 08 10
False Positive Rate False Positive Rate

Figure 4.3: Comparison of ROCs generated based on our ensemble of random forests using only
processed Header data against the baseline. Top Left: Validation set 1. Top Right: Validation set
2. Bottom Left: Validation set 3. Bottom Right: Validation set 4.

Figures 4.2 and 4.3 indicate that using an ensemble of Header data is useful for classifying
contests. It could be tempting to see this result and be satisfied with it, however, we should
remember that this does not yet include any of the Time Series Data. Theoretically, a model
which can effectively utilize both sets of data should be able to perform even better.

45

4.2 Time Series Results

Figures 4.4 - 4.10 were generated by feeding the time series data into our Kalman Filter (KF)
and Weighted Least Squares (WLS) methods with varying @) and A parameters respectively.
In these graphs, both methods predicted final percent-fill by averaging the predictions from
all 15 KF and all 15 WLS. The threshold used in all these ROC’s was the overall predicted
percent-fill.

[WAULT 1] [Mean KF Pred] [VAULT 2] [Mean KF Pred]
14 140 140 10
0.8 / 0.8 0.8 / 0.8
g / u /
i]
i 0.6 o 0.6 : 0.6 - 0.6
£ / 2 g / 2
3 g [g
u 04 J = 04 t 04 } = 04
L0 . u 0 .
= / = J
02 02 02 02
e L~
00 00 0.0 0.0
0.0 0.2 0.4 06 0.8 10 0.0 0.2 0.4 0.6 08 10
False Positive Rate False Positive Rate
[WAULT 3] [Mean KF Pred] [VAULT 4] [Mean KF Pred]
10 10 10 10

08 / 08 0.8 / 0.8
06 / 06 06 / 06
04 0.4 } 04
02 J J

0.2 0.2 0.2
7 7

—
Thresheld
Thresheld

True Positive Rate
—
=
=

True Positive Rate

0.0 0.0 0.0 0.0
(] 02 04 06 08 10 00 0z 04 06 0.8 1a

False Positive Rate False Positive Rate

Figure 4.4: ROCs generated based on the average percent-fill prediction of all 15 of our KF’s on
the entirety of each validation set. Top Left: Validation set 1. Top Right: Validation set 2. Bottom
Left: Validation set 8. Bottom Right: Validation set 4.

46

[VAULT 1] [Mean WLS Pred] [VAULT 2] [Mean WLS Pred]
10 10 10 10

- 4

08 / 08 08 / 08

06 / 06 06 / 06

0.4 f 0.4 0.4 0.4
02 J J

True Positive Rate
e
Thresheld
True Positive Rate

"
Thresheld

7 02 02 / 02
0.0 0.0 0.0 0.0
0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10
False Positive Rate False Positive Rate
[WAULT 3] [Mean WLS Pred] [VAULT 4] [Mean WLS Pred]
10 10 10 10

~ 4

08 / 08 08 / 08

06 / 06 06 / 06
0.4 - 0.4 0.4

02 J 02 0z J

7 e o2

True Positive Rate
S
Thresheld
True Positive Rate

——
Thresheld

0.0 0.0 0o 0o
(] 02 04 06 08 10 00 0z 04 06 0.8 1a

False Positive Rate False Positive Rate

Figure 4.5: ROCs generated based on the average percent-fill prediction of all 15 of our WLS’s on
the entirety of each validation set. Top Left: Validation set 1. Top Right: Validation set 2. Bottom
Left: Validation set 3. Bottom Right: Validation set 4.

Figure 4.4 shows the result of using the averaged percent-fill predictions of all 15 KF’s on
all 4 validation sets. Similarly, Figure 4.5 shows the result of using the averaged percent-fill
predictions of all 15 WLS’s on all 4 validation sets. Immediately, we can see the averaged
prediction of our 15 KF and WLS independently perform worse than even the baseline from
Figure 4.1. A direct comparison of all three can be found in Figure 4.6. It should be noted
that KF and WLS produce nearly identical curves, with KF tending to perform slightly
better in the False Positive range of around 0.4 - 0.5. This may imply both methods are
equal or very nearly equal in terms of predictive performance. This would be expected as
both perform an exponential fit on the data, just in different ways.

47

10

08

06

True Positive Rate

04

02

oo

10

o8

06

True Positive Rate

0.4

02

0.0

[VAULT 11 ROC Curve Comparison

[VAULT 2] ROC Curve Comparison

T
Percent-Full at 4 Hours Out
Mean KF Pred

Mean WLS Pred

10

08

T
Percent-Full at 4 Hours Out
Mean KF Pred

Mean WLS Pred

06

True Positive Rate

04

02

i)

0z 04 06
False Positive Rate

[VAULT 3] ROC Curve Comparison

10

0z 04 06
False Positive Rate

[VAULT 4] ROC Curve Comparison

T
Percent-Full at 4 Hours Qut
Mean KF Pred

Mean WLS Pred

T
Percent-Full at 4 Hours Qut
Mean KF Pred

Mean WLS Pred

08

True Positive Rate

06

0.4

02

0.0

0.0

02 0.4 06
False Positive Rate

08

10

00

02 0.4 06
False Positive Rate

08

10

Figure 4.6: Comparison of ROCs generated based on the average percent-fill prediction of all 15 of
our KF’s and all 15 of our WLS’s separately against our baseline curve. Top Left: Validation set
1. Top Right: Validation set 2. Bottom Left: Validation set 3. Bottom Right: Validation set 4.

One aspect all these graphics appear to share is a long, flat section at the beginning. We
believed this piece appeared because there were a large portion of contests which had no time
series data available before the “4 Hour Out” point. This meant our KF and WLS methods
could not make any predictions as they had no starting data. In order to get a better sense
for how well averaging the KF and WLS predictions performs, we recreated Figures 4.4 -
4.7 considering only contests which had data before the “4 Hour Out” point. The results
of limiting to only “non-zero” data as we call it, (contests with data before “4 Hours Out”)
can be found in Figures 4.8 - 4.10.

48

[VAULT 1] [Mean WLS+KF Pred] [VAULT 2] [Mean WLS+KF Pred]
10 10 10 10

08 // 08 08 // 08
0 0 08 08

04 J 04 04 J/ 04
0z

Thresheld

True Positive Rate

T
Thresheld
True Positive Rate

0z 0.2 0.2
e L~
0o 0o 0o 0o
0.0 02 0.4 06 08 10 0.0 02 04 06 0s 10
False Positive Rate False Positive Rate
[WAULT 3] [Mean WLS+KF Pred] [WAULT 4] [Mean WLS+KF Pred]

10 10 10 10

08 / 08 08 / 08
u / z /
s} 2]

06 06 06 06
: 3 2
=] a = 2
= el = n
3 = 8 g
= = = =
v 04 04 m 04 04
£ J £ J

02 7 02 02 L~ 02

0.0 0.0 0.0 0.0

(] 0z 04 06 08 140 (] 02 04 06 08 10
False Positive Rate False Positive Rate

Figure 4.7: ROCs generated based on the average percent-fill prediction of all 15 of our KF’s and
all 15 of our WLS’s combined for the entirety of each validation set. Top Left: Validation set 1.
Top Right: Validation set 2. Bottom Left: Validation set 3. Bottom Right: Validation set 4.

We thought averaging both the KF and WLS together may improve the result. Figure
4.7 shows the outcome of averaging both together. As might be expected, the result was
nearly identical to those previous with the initial flat section remaining and no apparent
improvement over the baseline.

49

[VAULT 1] [(Non-Zero) Mean KF Pred] [VAULT 2] [(Non-Zero) Mean KF Pred]
10 — 10 10 —— 10

/“'
08 / 08 08 // 08

%

] i
& 06 - 06 & 06 - 06
u - [1] -
z 2 Z]
k=] A =] A
3 u a o
= = = =
U 04 04 u 04 04
g / £ /

0z 0z 0.2 0.2

0o 0o 0o 0o

0.0 02 0.4 06 08 10 0.0 02 04 06 0s 10
False Positive Rate False Positive Rate
[WAULT 3] [(Non-Zero) Mean KF Pred] [VAULT 4] [(Non-Zero) Mean KF Pred]
/...-— 10 10 /.—-—— 10

08 / 08 08 / 08
] u /
] [
o« 06 06 06 06
b z g =
=] a = 2
= el = n
i} o a u
< = < =
Y 04 04 v 04 04
£ / £ /

02 02 02 02

0.0 0.0 0.0 0.0

(] 0z 04 06 08 140 (] 02 04 06 08 10
False Positive Rate False Positive Rate

Figure 4.8: ROCs generated based on the average percent-fill prediction of all 15 of our KF’s on just
non-zero data. Top Left: Validation set 1. Top Right: Validation set 2. Bottom Left: Validation
set 3. Bottom Right: Validation set 4.

Figure 4.8 is the same as Figure 4.4, except it only uses “non-zero” data. We can plainly
see significant performance improvements overall. At a False Positive Rate of 20%, non-zero
data performs 20% better in terms of True Positive Rate. This would seem to bolster our
theory that the abundance of dataless contests was detrimental for the average prediction.

50

[VAULT 1] [(Non-Zero) Mean WLS Pred] [VAULT 2] [(Non-Zero) Mean WLS Pred]
10 10 10 1a

- -
08 // 08 08 //
06 / . .
04 / 04 04 / 04

True Positive Rate

Thresheld
True Positive Rate

=

[=1]
\\k
Thresheld

=

[=1]

02+ 02 02+ 02
0o 0o 0o 0o
0.0 02 04 06 08 10 0.0 0.2 04 06 08 10
False Positive Rate False Positive Rate
[WAULT 3] [(Non-Zero) Mean WLS Pred] 10 10 [WAULT 4] [{Non-Zero) Mean WLS Pred] 10
yd ~ yd ~
0s 0s 0a 0a

06 // 06
04 / 04 0.4 0.4

0.2 1 02 0.2 0.2

Thresheld

True Positive Rate
=
[=1]
\‘
Thresheld
=
[=1]
True Positive Rate

0.0 0.0 0o 0o
(] 02 04 06 08 10 00 0z 04 06 0.8 1a

False Positive Rate False Positive Rate

Figure 4.9: ROCs generated based on the average percent-fill prediction of all 15 of our WLS'’s
on just non-zero data. Top Left: Validation set 1. Top Right: Validation set 2. Bottom Left:
Validation set 3. Bottom Right: Validation set 4.

Figure 4.9 is the same as Figure 4.5, except it only uses “non-zero” data. Once again, we can
see limiting the dataset in this way leads to significant improvements over predicting on the
entire set. In all 4 validation sets, the WLS curves can be seen to perform marginally better
than those from the KF up to a False Positive rate of 0.3. This is unexpected, especially
considering the KF performed better on the full sets. However, the WLS graphs also never
reach a 100% True Positive rate while the KF does. This is a trade-off between the methods
when averaging. A more direct comparison between the two can be seen in Figure 4.11.

51

[VAULT 1] [(Non-Zero) Mean WL5+KF Pred] [VAULT 2] [(Non-Zero) Mean WLS+KF Pred]
/--—— 10 //...-——

08 / 08 08 /
06 /’] 06 / 06
04 / 04 04 / 04
02 02 02

08

Thresheld
Thresheld

True Positive Rate
True Positive Rate

0.2
0o 0o 0o 0o
o0 o2 04 06 ik} 10 o0 0z 04 06 k] 10
False Positive Rate False Positive Rate
[VAULT 3] [(Non-Zero) Mean WLS+KF Pred] 10 [VAULT 4] [(Non-Zero) Mean WLS+KF Pred]

/-——- 10 /.‘-—- 10
08 / 08 08 /

/ / oE

06 06

o4 o4 . o4 / o4

0.2 / 0.2 0.2 /

0o 0o 0o 0o
oo 0z 04 06 08 10 oo oz 04 06 oE 1a

False Positive Rate False Positive Rate

Thresheld

True Positive Rate
=
[=1]
\‘L
Thresheld
=
[=1]
True Positive Rate

0.2

Figure 4.10: ROCs generated based on the average percent-fill prediction of all 15 of our KF'’s
and all 15 of our WLS’s combined on just non-zero data. Top Left: Validation set 1. Top Right:
Validation set 2. Bottom Left: Validation set 3. Bottom Right: Validation set 4.

Figure 4.10 shows the ROC generated by taking the average of all 15 KF’s and WLS together.
It’s interesting to note that averaging both together produces a curve that seems to perform
better than either method individually as if they somehow compensate for one another.
Figure 4.10 also appears in 4.11 along side both the KF and WLS methods independently
as well as the baseline.

52

[VAULT 1] ROC Curve Comparison [VAULT 2] ROC Curve Comparison

10 10
—]
/ -
08 08
w 0.6 w 0.6
]]
= =
u o
= =
-] -]
i i
& &
w w
2 =
F 04 F 04
02 02
Percent-Full at 4 Hours Qut Percent-Full at 4 Hours Out
{Non-Zero) Mean KF Pred {Non-Zero) Mean KF Pred
(Non-Zero) Mean WLS Pred (Non-Zero) Mean WLS Pred
= {Non-Zero) Mean WLS+KF Pred = {Non-Zero) Mean WLS+KF Pred
oo t t i) t t
00 02 04 06 08 10 00 02 04 06 08 10
False Positive Rate False Positive Rate
10 [VAULT 3] ROC Curve Comparison 10 [VAULT 4] ROC Curve Comparison
1]
o .
o8 08
w 06 w 06
;] I}
= &
m s /
3 3
-] -] /
W