
Scalable Integration View Computation and

Maintenance with Parallel, Adaptive and

Grouping Techniques

by

Bin Liu

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

August 4, 2005

APPROVED:

Prof. Elke A. Rundensteiner
Advisor

Prof. Murali Mani
Committee Member

Prof. Michael Gennert
Head of Department

Prof. David Finkel
Committee Member

Dr. Paul Larson
Microsoft Research
External Committee Member

i

Abstract

Materialized integration views constructed by integrating data from mul-

tiple distributed data sources help to achieve better access, reliable perfor-

mance, and high availability for a wide range of applications. In this disser-

tation, we propose parallel, adaptive, and grouping techniques to address

scalability challenges in high-performance integration view computation

and maintenance due to increasingly large data sources and high rates of

source updates.

State-of-the-art parallel integration view computation makes the com-

mon assumption that the maximal pipelined parallelism leads to supe-

rior performance. We instead propose segmented bushy parallel processing

that combines pipelined parallelism with alternate forms of parallelism to

achieve an overall more effective strategy. Experimental studies conducted

over a cluster of high-performance PCs confirm that the proposed strategy

has an on average of 50% improvement in terms of total processing time in

comparison to existing solutions.

Run-time adaptation becomes critical for parallel integration view com-

putation due to its long running and memory intensive nature. We inves-

ii

tigate two types of state level adaptations, namely, state spill and state relo-

cation, to address the run-time memory shortage. We propose lazy-disk and

active-disk approaches that integrate both adaptations to maximize run-time

query throughput in a memory constrained environment. We also propose

global throughput-oriented state adaptation strategies for computation plans

with multiple state intensive operators. Extensive experiments confirm the

effectiveness of our proposed adaptation solutions.

Once results have been computed and materialized, it’s typically more

efficient to maintain them incrementally instead of full recomputation. How-

ever, state-of-the-art incremental view maintenance require O(n2) mainte-

nance queries with n being the number of data sources that the view is de-

fined upon. Moreover, they do not exploit view definitions and data source

processing capabilities to further improve view maintenance performance.

We propose novel grouping maintenance algorithms that dramatically re-

duce the number of maintenance queries to (O(n)). A cost-based view

maintenance framework has been proposed to generate optimized main-

tenance plans tuned to particular environmental settings. Extensive exper-

imental studies verify the effectiveness of our maintenance algorithms as

well as the maintenance framework.

iii

Acknowledgments

This dissertation and the growth in my knowledge over the last few years

owe a great deal to many professors, colleagues, and friends. First among

them is my advisor, Prof. Elke A. Rundensteiner. She inspired my interests

in database research and gave me direction by suggesting interesting prob-

lems. It has been my luck to have her as my advisor. Her technical and

editorial advice was essential to the completion of this dissertation. I ex-

press my sincere thanks for her support, advice, patience, and encourage-

ment throughout my graduate studies. Her persistence in tackling prob-

lems, confidence, and great teaching will always be an inspiration.

My thanks go to the members of my Ph.D. committee, Prof. David

Finkel, Prof. Murali Mani and Dr. Per-Ake (Paul) Larson, who provided

valuable feedback and suggestions to my comprehensive-exam, my disser-

tation proposal talk and dissertation drafts. All these helped to improve the

presentation and contents of this dissertation. I thank Prof. David Finkel

for his time and efforts discussing with me in my research qualifying exam.

I would like to thank Songting Chen for his collaboration on the txn-

Wrap system, which composes the basis for my third part of dissertation

iv

work. I thank Yali Zhu for her valuable discussions on part of my second

dissertation task on adapting operator states of query trees with multiple

stateful operators. My thanks also go to Luping Ding, Mariana Jbantova,

Rimma V. Nehme, Bradley Momberger, Venkatesh Raghavan and Timothy

Sutherland and all other previous and current D-Cape team members for

their useful discussions and feedback. The long hours spent in the Fuller

Lab would not have been possible but for the company of wonderful office

colleagues around me such as Maged F. EL Sayed. The friendship of Song

Wang, Xin Zhang, Li Chen and all the other pervious and current DSRG

members is much appreciated. They have contributed to many interesting

and good-spirited discussions related to this research.

My thanks also go to Josh Brandt, the WPI computing cluster admin-

istrator, who helped me setting up my cluster account and gave me quick

responses on cluster usage questions. I also thank Worcester Polytechnic

Institute and the Computer Science Department for giving me the oppor-

tunity to study and also providing TAship during my studies.

Finally, I would like to thank my wife Xiaojie for her understanding and

love during the past few years. Her support and encouragement was in the

end what made this dissertation possible. My parents receive my deepest

gratitude and love for their dedication and the many years of support dur-

ing my studies. Special thanks also go to my little boy Jeffrey (Linjun), his

nice cooperation in the past year made me possible to complete my studies

on schedule.

v

Contents

1 Introduction 1

1.1 Background and Research Focus 4
1.1.1 Overall Architecture 4
1.1.2 Computing Integration Views 6
1.1.3 Maintaining Integration Views 9

1.2 Contributions of this Dissertation 11
1.2.1 Segmented Bushy Parallel Multi-Join Processing . . . 11
1.2.2 Run-Time Operator State Adaptation 12
1.2.3 View Maintenance by Restructuring and Grouping . 14
1.2.4 Optimizing Cyclic Integration View Maintenance . . 15

1.3 Dissertation Organizations . 16

I Parallel Integration View Computation 17

2 Revisiting Pipelined Parallelism 18

2.1 Introduction . 18
2.2 State-of-the-Art . 21

2.2.1 Sequential vs. Pipelined Processing 21
2.2.2 Maximally Pipelined Processing 23

2.3 A Multi-Phase Optimization Approach 25
2.4 Cost Analysis of Pipelined Segment 28

2.4.1 Identifying Tradeoffs 28
2.4.2 Pipelined Processing Cost Model 29

3 Segmented Bushy Parallel Processing 33
3.1 Breaking Pipelined Parallelism 33

3.1.1 Segmented Bushy Tree 35
3.1.2 Segmented Bushy Tree Cost Analysis 37

CONTENTS vi

3.2 Composing Segmented Bushy Tree 39
3.3 Handling Insufficient Memory 43
3.4 Experimental Studies . 45

3.4.1 Prototype System and Setup 45
3.4.2 Segmented Bushy Processing Evaluation 48

4 Related Work 56

II Run-time Operator State Adaptation 60

5 Non-Blocking Pipelined Query Processing 61

5.1 Introduction . 61
5.1.1 Motivation . 61
5.1.2 State-Level Adaptations 64

5.2 Partitioned Non-blocking Query Processing 66
5.2.1 Partitioning State Intensive Operators 66
5.2.2 Initial Distributions and Connections 68
5.2.3 Experimental Setup . 70
5.2.4 Partitioned Parallel Evaluation 74

6 Run-time Adaptation Strategies 79

6.1 State Spill . 79
6.1.1 State Partitions and Partition Groups 79
6.1.2 Clean Up Disk Resident Partitions 81
6.1.3 Throughput-Oriented State Spill 86
6.1.4 State Spill Evaluation 89

6.2 State Relocation . 93
6.2.1 Moving States Across Machines 96
6.2.2 State Relocation Evaluation 103

6.3 Integrating State Spills and Relocations 108
6.3.1 Lazy Disk and Active Disk Approaches 108
6.3.2 Lazy-Disk and Active-Disk Evaluation 111

7 Spilling States of Pipelined Query Trees 117

7.1 Global Throughput-Oriented State Spill 118
7.1.1 Choosing Candidate Partitions to Spill 120
7.1.2 Clean Up Multiple Stateful Operators 132

7.2 Partitioning Query Trees . 135
7.3 Global State Spill Evaluation 139

CONTENTS vii

8 Related Work 146

III Integration View Maintenance and Optimization 150

9 Introduction and Background 151

9.1 Sequential vs. Batch Maintenance 153
9.2 Abstraction of View Maintenance Process 157

10 Grouping and Restructuring Maintenance Queries 160

10.1 Adjacent Grouping Algorithm 160
10.2 Grouping Heterogenous Deltas 162

10.2.1 Basic Notations . 162
10.2.2 A Greedy Grouping Algorithm 163
10.2.3 Conditional Grouping Algorithm 166
10.2.4 Unifying Deltas Together 170

10.3 Generalizing the Maintenance Strategies 172
10.3.1 Concurrent Updates 172
10.3.2 General View Definitions 173

10.4 Cost Model and Analysis . 174
10.5 Experimental Evaluations . 177

10.5.1 Experimental Testbed 177
10.5.2 Composing Maintenance Queries 179
10.5.3 Grouping Maintenance Performance 182

11 Maintaining and Optimizing Cyclic Join Views 188

11.1 View Maintenance Optimizations 189
11.1.1 Choosing Optimized Join Orders 189
11.1.2 Reducing the Number of Maintenance Queries 190

11.2 Cyclic Join View Maintenance 191
11.2.1 View Definition Graph 191
11.2.2 Extended Batching and Graph Transformation 192

11.3 Cost-Based VM Optimization Framework 198
11.3.1 Cost-Based Analysis 198
11.3.2 Generate Optimized Maintenance Plans 203

11.4 Experimental Studies . 209
11.4.1 Diversity of Maintenance Plans and Costs 210
11.4.2 Cost-Based Optimizations 211
11.4.3 Complex Join Views and Large Batches of Updates . 217
11.4.4 Optimization Overhead 219

CONTENTS viii

12 Related Work 221

IV Conclusions and Future Work 225

13 Conclusions of This Dissertation 226

14 Ideas for Future Work 231

14.1 State Spilling for Window Join Queries 231
14.2 Pair-Wise Adaptation or Diffusion 232
14.3 Distributed Query Plan Adaptation 235

14.3.1 Impact of Initial Distribution 235
14.3.2 Transforming Distributed Query Plans 236

14.4 Half-Baked Thoughts . 238

Appendices 240

A General Partitioned M-Way Join Processing 241

ix

List of Figures

1.1 Overall Architecture . 5
1.2 View Computation Overview 7
1.3 View Maintenance Overview 10

2.1 A Motivating Example . 19
2.2 An Example Query with 10 Relations 21
2.3 Sequential vs. Pipelined . 22
2.4 ZigZag and Right-Deep Trees 24
2.5 Fully Concurrent Execution 27

3.1 Right-Deep vs. Wide Bushy Tree 34
3.2 A Segmented Bushy Tree . 37
3.3 An Example of the Algorithm 41
3.4 Segmented Bushy Tree and Node Allocation 42
3.5 Architecture of the System . 46
3.6 Experimental Environment 47
3.7 Vary the Number of Data Servers 49
3.8 Performance of 20 Example Queries 50
3.9 Right-Deep vs. Segmented Bushy 51
3.10 Probing Relation Selection . 52
3.11 Probing Relation Selection . 53
3.12 Exchanging the Probing Relation 54
3.13 Segmented Bushy vs. Segmented Right-Deep 55

5.1 A Real-time Data Integration System 62
5.2 Example of Partitioned Processing 67
5.3 Partitioned Query Plan Distribution 69
5.4 Partitioned Query Plan Connection 70
5.5 D-Cape System Architecture 72
5.6 Join Factor and the Number of Join Results 73

LIST OF FIGURES x

5.7 Join Rate Example: Non-Uniform Distribution 75
5.8 Join Rate Example: Uniform Distribution 76
5.9 Partitioning Non Memory-Intensive Query into 1∼ 5 machines 77
5.10 Partitioning Memory-Intensive Query into 1 ∼ 5 machines . 78

6.1 Variations in Choosing Partitions to Spill 82
6.2 Example of Cleanup Process 83
6.3 Percentage of States Pushed in Each Adaptation 90
6.4 Memory Usage vs. Percentage Pushed 91
6.5 Throughput-Oriented Spill: Various Join Rates 92
6.6 Throughput-Oriented Spill: Similar Join Rates 93
6.7 Compute Partitions to Move 97
6.8 Deactivate Partitions to be Moved 98
6.9 Deactivate Partitions to be Moved 99
6.10 Reactivate Partitions that Moved 100
6.11 Sequence Diagram of State Relocation Protocols 101
6.12 Varying Threshold (θr) that Triggers Relocation 105
6.13 Impact of Minimal Time-span (τm) on Throughput 106
6.14 Memory Usage with/without Relocation 106
6.15 Throughput: with/without State Relocation 107
6.16 Lazy-Disk Adaptation . 110
6.17 Active-Disk Adaptation Approach 112
6.18 Lazy-Disk vs. No State Relocation 113
6.19 Lazy-Disk vs. Active-Disk: Comparison One 114
6.20 Lazy-Disk vs. Active-Disk: Comparison Two 115

7.1 A Chain of Stateful Operators 118
7.2 Operator/Query Tree State Size 119
7.3 An Operator Chain . 121
7.4 A Chain of Partitioned Operators 124
7.5 Globally Choose Partition Groups 124
7.6 A Localized Statistics Approach 125
7.7 Tracing and Updating the Poutput 128
7.8 The Impact of the Intermediate Results 131
7.9 Tracing and Updating Pinter Values 132
7.10 Clean Up the Operator Tree 133
7.11 Partitioned Parallel Processing of Query Trees 136
7.12 Tracing the Number of Output 138
7.13 Comparing the Run-time Throughput 140
7.14 Global Output vs. Global Output with Pentalty 142

LIST OF FIGURES xi

7.15 Global Output with Penalty vs. Bottom-up 143
7.16 Run Time Throughput For Join Rates 1-3-3 144
7.17 Run Time Throughput For Join Rates 3-2-3 144

9.1 Incremental Maintenance over Distributed Data Sources . . 152

10.1 Group Adjacent Maintenance Steps 161
10.2 The First Three Greedy Grouping Queries 164
10.3 Scroll Up Phase . 168
10.4 Scroll Down Phase . 170
10.5 Example of Unifying Different Deltas 171
10.6 Handling General View Definitions 175
10.7 Relationship in Maintenance Strategies 178
10.8 Batching a Small Number of Updates 180
10.9 Performance Ratio (Seq. divided by Batch) 181
10.10Batch a Large Number of Updates 182
10.11Group a Small Number of Source Updates 183
10.12Group a Large Number of Source Updates 183
10.13Change the Join Ratio in the View 185
10.14Change the Distributions of Updates 186
10.15The Impact of Network Delay 187

11.1 Model View Definition . 192
11.2 Divide View Definition Graph 195
11.3 Cost-Enhanced View Graph 200
11.4 Enumerations of Maintenance Step 4 206
11.5 Enumerations of Grouping Plans 208
11.6 Experimental Configuration 210
11.7 Diversity of Maintenance Costs 211
11.8 Cost Function Regression . 213
11.9 Cost Estimation of Batch Plans 214
11.10Cost Estimation of Grouping Plans 215
11.11Batching Vs. Grouping . 217
11.12Batch Plans with Network Delay 218
11.13A 6-Relation Join View Configuration 218
11.14Batch vs. Group Plans Given Large Update Batches 219

14.1 Load Representation Example 233
14.2 Various Initial Distribution Methods 235
14.3 Distributed Query Plan Restructuring 237

LIST OF FIGURES xii

A.1 Partitioning General M-way Joins 242
A.2 Replicating m-streams . 243
A.3 Generating Multiple Partitions 244

xiii

List of Tables

9.1 Data Sources Descriptions . 154
9.2 Data Updates Descriptions . 155

11.1 Number of Available Plans . 210
11.2 Selected Maintenance Plans 216
11.3 Optimization Cost vs. Quality of Solution 220

1

Chapter 1

Introduction

With the information explosion on the World Wide Web, the integration of

data from multiple distributed data sources is critical to many modern ap-

plications, e.g., data warehousing and data mining systems [46, 53], digital

libraries [29], and semantic web [10]. The integration results are usually

materialized (referred as materialized views) [42] to ensure better access, re-

liable performance and high availability. The computation of the material-

ized views can be rather complex and time consuming due to distributed

nature of data sources, i.e., evaluating joins across multiple distributed data

sources. Thus, it is better to perform the computation process once and ma-

terialize the result.

Materialized views need to be maintained given changes on data sources

after the integration. This is because stale view extent may not serve well

or even mislead user applications. Thus, two essential services need to be

provided to realize the benefits of applying materialized views, (1) how to

initially compute the view result from multiple data sources (referred as

CHAPTER 1. INTRODUCTION 2

view computation), and (2) how to maintain materialized view extents when

data sources are changed after the initial computation to provide up-to-

date results (referred as view maintenance).

These two services face scalability concerns in this modern, networked

environment. First, data sources are becoming increasingly large over time.

It is not uncommon to see a terabyte warehouse nowdays [37]. Second,

rapid changes made to such data sources are common too, e.g., millions of

daily transactions [62]. Third, the number of available data sources are in-

creasing due to the information explosion and these data sources tend to be

distributed over the network or even over the Web [36]. All these trends de-

mand scalable view computation and view maintenance solutions. More-

over, for time-critical applications such as real-time data integration ser-

vices [112], the performance of view computation and view maintenance

has extremely significant impact on the success of these applications.

This dissertation work is motivated by the above scalability require-

ment. Corresponding to the two services identified in the materialized

view context, we divide the whole work into two parts. The first part re-

lates to efficiently computing views from a large number of distributed data

sources, in particular, we focus on investigating research issues related to

parallel and adaptive view computation solutions. The second part aims

to investigate how to scale materialized view maintenance performance

when large batches of source updates need to be maintained. More specif-

ically, the following four research questions are addressed in this disserta-

tion work:

CHAPTER 1. INTRODUCTION 3

• Parallel and Adaptive View Computation:

– How to design efficient parallel processing strategies for com-

puting materialized views defined over a large number of dis-

tributed data sources. That is, given a view definition and a par-

allel system (i.e., a cluster of high performance PCs), we need to

determine a strategy to compute the view results efficiently in

terms of the total computation time required.

– Given a long running computation process with state intensive

query operators, it may demand more memory than even a par-

allel system can provide. Thus, we propose to tackle the chal-

lenge of how to efficiently adapt run-time main memory usage

to improve the overall performance of parallel view computa-

tion process.

• Scalable View Maintenance for Large Update Batches:

– Materialized view maintenance process presents certain regular-

ity in terms of composing and sending maintenance queries to

distributed data sources. We investigate whether and how the

regularity of the view maintenance process can be exploited to

improve the view maintenance performance when maintaining

large batches of source updates.

– Materialized view maintenance over distributed data sources

also relates to traditional distributed query processing. We thus

also study whether and how the state-of-the-art distributed query

1.1. BACKGROUND AND RESEARCH FOCUS 4

processing techniques could be applied and appropriately ex-

tended to improve the view maintenance performance given the

distributed nature of the data sources.

1.1 Background and Research Focus

1.1.1 Overall Architecture

The overall architecture of materialized views and their applications is de-

picted in Figure 1.1. We divide the architecture into three layers, namely,

data sources, materialized views, and user applications. The interactions among

these different layers can be described as follows. Data from distributed

data sources will be first integrated and stored as materialized views by

the view computation engine. After the integration, source updates will be

reported to the view maintenance engine. Then the materialized views will be

maintained to have up-to-date view extent. Note that both view computa-

tion and view maintenance engines are software modules in charge of view

computation and maintenance tasks. They do not have to be deployed on

the server where materialized views are stored. The user applications can

(and also prefer to) directly access materialized views to answer complex

analysis queries efficiently even without accessing data sources.

To further understand the research focus, we first describe the compo-

nents of each layer.

• Data Sources. Data sources in a materialized view maintenance con-

text usually play a restricted role [16, 36, 114]. That is, they only pro-

1.1. BACKGROUND AND RESEARCH FOCUS 5

Data Source

…

Data Sources

Materialized
Views

Materialized
Views

User Applications (Data
Warehousing and
Decision Support System)

… …Data Source

Data Source

Materialized
Views

V
iew

C

om
pu

ta
tion

E

n
gin

e

V
iew

M

a
in

ten
an

ce
E

n
gin

e

Figure 1.1: Overall Architecture

vide limited query processing capabilities to the outsiders such as ma-

terialized views or user applications. This is because (1) data sources

may belong to other organizations that are not willing to give full

control to the outsiders, (2) the data sources may be too busy doing

daily transactions to afford processing additional typically complex

queries, i.e., a join query over two data sources, or (3) in some cases,

the data sources may indeed only have very limited query processing

capabilities or even do not have them at all, for instance, streaming

data sources [75].

• Materialized Views. View definitions could be defined across multi-

ple data sources in order to achieve the integration of disparate data.

However, they usually share a core part, namely, a select-project-join

(SPJ) clause that integrates data from multiple data sources. We refer

to such an SPJ view as an integration view. In this work, we choose

integration views as the main focus for the following two reasons. (1)

It is a common base for a majority of view definitions, and (2) it is the

1.1. BACKGROUND AND RESEARCH FOCUS 6

most expensive part to evaluate and maintain in most cases since it

involves joins across multiple distributed data sources. Other parts

of a view definition, i.e., aggregations, could be evaluated after the

integration view has been processed. Moreover, some principles dis-

cussed in this work such as parallel and adaptive computation tech-

niques, can be re-applied in a similar manner. In essence, the inte-

gration view definitions can be treated as multi-join queries across

multiple distributed data sources.

• User Applications. User applications may ask ad-hoc or pre-defined

queries against materialized views and data sources. This requires

that the materialized views are properly computed and maintained.

Research questions related to user applications, i.e., how to answer

user queries using materialized views [4, 45], choosing views to be

materialized [6, 26, 43], are out of the scope of this dissertation work.

1.1.2 Computing Integration Views

The computation of an integration view can be treated as answering a

multi-join query across distributed data sources. However, two major points

differentiate a view computation process from that of typical distributed

multi-join query processing. First, a typical distributed query processing

engine assumes that the data sources are fully cooperative [57]. That is, we

often consider to ship data to the data source and to evaluate the query or

a subset of the query locally at the data source. However, as we discussed

in Section 1.1.1, the roles of data sources involved in the view computa-

1.1. BACKGROUND AND RESEARCH FOCUS 7

tion process are restrictive in many cases. We thus cannot make such an

assumption in general in computing integration views. For example, data

sources may belong to other organizations or the data sources may be too

busy handling daily transactions to afford processing additional complex

join queries. Second, view computation usually is a fairly long running pro-

cess since a large volume of data as well as a large number of data sources

may be involved. While distributed queries often tend to be ad-hoc queries

that need to (and can) be answered fairly quickly.

Middleware

…

Data Source

…

Data Sources

Materialized
Views

Materialized
Views

…Data Source

Data Source

Materialized
Views

Figure 1.2: View Computation Overview

Figure 1.2 depicts the high level picture of the view computation pro-

cess. Here the computation process (the middleware part) is represented

by a query tree with each node in the tree denoting query operator(s).

Given the restricted role that the data sources would play in a materialized

view environment, the data source query processing capabilities cannot be

counted upon when generating the view computation plan. Thus, we need

to have the methods of how to preform the view computation process out-

side the data sources.

1.1. BACKGROUND AND RESEARCH FOCUS 8

Parallel query processing techniques over a shared-nothing architec-

ture, i.e., a computer cluster, can be naturally applied to this view com-

putation process given its proven scale-up and speed-up properties [31].

As identified in the literature [47], three types of parallelism can be identi-

fied. One, operators none of which use data produced by the others may

run simultaneously on distinct machines. This is termed independent par-

allelism (inter-operator parallelism). Two, operators may be composed by

a producer and consumer relationship. Thus tuples output by a producer

can be fed to a consumer as they get produced. Such inter-operator paral-

lelism is termed pipelined parallelism. A third form of parallelism, termed

partitioned parallelism, provides intra-operator parallelism based on the par-

titioning of the data. That is, several instances of one operation run on dif-

ferent machines, with each instance only processing a partitioned portion

of the complete data.

To summarize, the main research focus of the view computation pro-

cess is to design efficient parallel processing strategies, i.e., to find the best

way to incorporate various forms of parallelism for the middleware com-

putation process shown in Figure 1.2.

Uneven workload may happen among machines in a parallel system

due to inaccurate cost estimations, or changing cost statistics, or both. This

unevenness could impact or even counteract the benefits of the parallel

processing. Thus, run time adaptation strategies also need to be investi-

gated especially for such long running computation processes with state

intensive queries due to the integration of large volumes of data over dis-

tributed data sources. Note that techniques such as load shedding [107]

1.1. BACKGROUND AND RESEARCH FOCUS 9

is not a valid option in this integration context since it usually requires

complete and accurate results. Moreover, the overall resources (i.e., main

memory) of a parallel system remain limited, thus we have to design run-

time adaptation strategies for resource restricted environments where the

overall resources of the parallel system are not enough for the given com-

putation workload.

1.1.3 Maintaining Integration Views

A large amount of source data updates are common for modern appli-

cations, i.e., millions of daily transactions are experienced by modern e-

businesses on the internet such as Amazon.com. Thus, efficiently main-

taining a materialized view becomes critical in order to provide refreshed

results. Incremental materialized view maintenance has been extensively

studied in the literature [5, 18, 93, 120, 122, 123] due to the high cost asso-

ciated with shipping large volumes of data in a distributed environment.

That is, instead of completely recomputing the view extent from scratch

whenever source updates happen, the delta of the view extent for the given

source update is computed and committed to refresh the view extent. The

computation of a view delta for join views requires the sending of mainte-

nance queries [122] to the remote data sources to determine the changes of

the view extent related to the current updates.

Figure 1.3 depicts the high level of the view maintenance process. In

general, a view maintenance engine is in charge of view maintenance for

source updates. The data sources report the source updates to the view

maintenance engine. The maintenance engine composes maintenance queries

1.1. BACKGROUND AND RESEARCH FOCUS 10

V
iew

 M
a

in
ten

an
ce

E
n

gin
e

Maintenance queries

Source updates

Data Source

…

Data Sources

Data Source

Data Source

Materialized
Views

Materialized
Views

Figure 1.3: View Maintenance Overview

based on the view definition and the updates (or the results of other main-

tenance queries). The maintenance queries are sent to the data sources.

The results are returned back to the view maintenance engine. The main-

tenance engine computes the changes to the view extent, and finally in-

stalls the changes to the materialized views. Note that in an incremental

view maintenance context, the data sources are assumed to be able to an-

swer maintenance queries issued by the view manager. Otherwise, it is not

possible to perform the incremental maintenance for join views involving

distributed data sources 1. This requirement does not conflict with the re-

stricted role typically assumed for the data sources as we discussed in the

overall architecture (Section 1.1.1). This is because the maintenance queries

are usually created based on source updates or other maintenance query

results. Thus, the maintenance queries are much smaller in size and easier

1There are self-maintainable views [87] that can be maintained without issuing main-
tenance queries. However, the views are rather restricted or it may require copies of data
source contents at the view server. In this work, we instead address general non self main-
tainable join views and assume view server does not have copies of data source contents.

1.2. CONTRIBUTIONS OF THIS DISSERTATION 11

to answer compared to the complex join queries in the view computation

process. This is because the later usually relates to join queries involving

the whole data sources.

In this work, we would target the view maintenance layer (maintenance

queries as shown in Figure 1.3) to address the scalability issue in the view

maintenance process. This is because the maintenance queries are the key

and the expensive part in a view maintenance process. Moreover, all these

queries show a certain regularity (i.e., all of them are join queries involv-

ing data sources and the updates) that has the potential to be utilized to

improve the overall maintenance performance.

1.2 Contributions of this Dissertation

The main contributions of this dissertation work are described below.

1.2.1 Segmented Bushy Parallel Multi-Join Processing

Evaluating multi-join queries over a shared-nothing architecture has been

extensively investigated in the literature [77, 95, 106]. Different parallel pro-

cessing strategies such as left-deep and right-deep [95], segmented right-

deep [21], and zigzag tree [124] have been proposed. These proposed so-

lutions make the common assumption that the maximal pipelined paral-

lelism leads to superior performance. Thus, these approaches tend to max-

imally apply the pipelined parallelism whenever it is possible.

In this work, we instead illustrate via cost model analysis as well as ex-

perimental studies that this commonly accepted assumption does not hold

1.2. CONTRIBUTIONS OF THIS DISSERTATION 12

in practical. We investigate how best to combine pipelined parallelism with

alternate forms of parallelism to achieve an overall more effective parallel

processing strategy. A new parallel multi-join processing strategy, called

segmented bushy processing, is proposed that brings all three forms of par-

allelism to bear in the evaluation of multi-join queries. An algorithm is

proposed to generate such segmented bushy plans for arbitrary multi-join

queries represented by connected join graphs.

To investigate the effectiveness of the proposed parallel processing strat-

egy, we have implemented a parallel multi-join query optimization and

processing system, called PETL, to conduct extensive experimental stud-

ies on a real system (not just a simulation). The experiments are conducted

over a computer cluster of 10 high-performance PCs connected by a private

network. The experimental results confirm that the proposed parallel pro-

cessing strategy leads to an on average of 50% improvement in terms of the

total processing time in comparison to existing state-of-the-art solutions.

1.2.2 Run-Time Operator State Adaptation

Main memory is a critical resource in an integration view computation pro-

cess due to the long running nature of multiple join queries composed of

state intensive operators. In such environments, the operator state size (so

as the main memory consumption) keeps on increasing as more data is be-

ing processed. Works in the literature apply partitioned parallel processing

[41, 94, 99] to alleviate the stringent memory demands. However, uneven

workload may appear in distributed and parallel environments due to in-

accurate cost estimations, or changing cost statistics, or both. Moreover,

1.2. CONTRIBUTIONS OF THIS DISSERTATION 13

main memory of even a parallel system remains limited. Thus, there is a

demand for efficient and flexible run-time main memory adaptation solu-

tions for distributed and partitioned parallel queries.

Two types of adaptation solutions are available in partitioned paral-

lel processing environments. First, as discussed in XJoin [109] and Hash-

Merge Join [79], main memory resident operator states can be chosen and

pushed into local disks when memory overflow happens. As can be seen,

this type of approach is designed to delay the processing of certain opera-

tor states. We refer this process as state spill. Second, in a distributed envi-

ronment, when only a subset of machines gets overloaded, we can choose

states from the overloaded machine and move them over to a less loaded

machine. For simplicity, we call this type of adaptation state relocation. The

potential advantage of this state relocation is that the adapted states remain

active in the main memory. However, this type of adaptation may not solve

the memory shortage problem by itself since the aggregated main memory

of multiple machines remains limited.

We investigate these two adaptations and analyze the tradeoffs regard-

ing the factors and polices to be used when adapting operator states to

overcome memory overflow. Two approaches, namely, lazy-disk and active-

disk, are proposed to integrate both the state spill and relocation when the

aggregated main memory of a distributed system is not sufficient for the

query processing. Both approaches aim to maximize the overall run-time

query throughput, defined as the total number of results being output.

We further investigate state spill strategies for complex queries com-

posed of multiple state intensive operators. We observe an interdepen-

1.2. CONTRIBUTIONS OF THIS DISSERTATION 14

dency when spilling operator states among different operators in the query.

Thus, a consolidated plan level spill strategy must be devised to address

this problem. Two global throughput-oriented state spill approaches, namely,

global output and global output with penalty, are proposed aiming for maxi-

mal run-time query throughput in memory constrained environments.

The proposed adaptation strategies are implemented in the D-Cape sys-

tem [70, 91, 104]. Extensive experiments have been conducted over the

same 10 high performance PC cluster discussed in Section 1.2.1. These ex-

periments confirm the effectiveness of our proposed adaptation solutions.

1.2.3 View Maintenance by Restructuring and Grouping

Incremental view maintenance, instead of completely recomputing the view

extent from scratch, has been extensively studied in the literature [5, 18, 93,

120, 122, 123] due to high cost associated with recomputing large volumes

of data in a distributed environment. Among these works, the incremental

maintaining of batches of updates [27, 63, 66, 93] is of particular interest

because it is attractive from both a resource and a performance perspective

to most practical systems.

State-of-the-art view maintenance strategies require O(n2) (batch view

maintenance [63, 66, 93]) or more (i.e., sequential maintenance [5, 122])

maintenance queries to remote data sources with n being the number of

data sources. This mechanism does not scale for a large number of nor for

large sized data sources. We propose two novel maintenance strategies,

namely, adjacent grouping and conditional grouping, that are able to dramat-

ically reduce the number of maintenance queries required to maintain the

1.2. CONTRIBUTIONS OF THIS DISSERTATION 15

materialized views. This reduction in the number of maintenance queries

brings the basic tradeoff between the complexity of each query and the total

number of maintenance queries that can be exploited to improve mainte-

nance performance.

The proposed maintenance strategies have been implemented in the

TxnWrap system [20]. Extensive experimental studies have been conducted.

The results show that our proposed view maintenance strategies are able

to achieve about 400% performance improvement in terms of the total pro-

cessing time compared with existing batch algorithms in a majority of cases.

1.2.4 Optimizing Cyclic Integration View Maintenance

State-of-the-art view maintenance algorithms [5, 63, 64, 66, 93] tend to focus

on maintaining simple acyclic join views. Little attention has been paid

thus far on more complex view definitions, i.e., cyclic join views that may

specify many join conditions between any two arbitrary source relations.

Such cyclic join views are being widely used in practical systems [108].

We model view maintenance as the process of answering a set of inter-

related distributed multi-join queries. This model enables us to expose

several potential optimization opportunities. For example, we can study

the techniques of seeking optimal join ordering of a multi-join query or

combining queries (sub-queries) to reduce the total number of join queries.

We investigate two maintenance strategies that apply the above optimiza-

tion techniques, namely, extended batching and view graph transformation, for

maintaining general join views where join conditions may exist between

any pair of data sources possibly with cycles.

1.3. DISSERTATION ORGANIZATIONS 16

A large amount of of maintenance plans can be built given the complex-

ity of view definitions, we thus propose a cost-driven view maintenance

framework which generates optimized maintenance plans taking into con-

sideration the view definition characteristics, the number of source updates

and the network costs. The proposed framework has been implemented in

the TxnWrap system [20]. Extensive experimental studies illustrate that our

proposed optimization techniques significantly improve the view mainte-

nance performance in a distributed environment.

1.3 Dissertation Organizations

This dissertation is organized into three parts. The first part focuses on

parallel view computation strategies. It is described in Chapters 2, 3 and

4. The second part, described in Chapters 5, 6, 7 and 8, addresses how

to dynamically adapt operator states in partitioned parallel computation

environments. While the third part, focusing on incremental batch view

maintenance and its optimizations, is described in Chapters 9, 10, 11 and

12. Conclusions of this dissertation and the future work are described in

Chapters 13 and 14 respectively.

17

Part I

Parallel Integration View

Computation

18

Chapter 2

Revisiting Pipelined

Parallelism

2.1 Introduction

As discussed in Chapter 1, the integration view computation can be viewed

as evaluating multi-join queries assuming the join is evaluated outside the

data sources. Without loss of generality, we may interchange the usage of

terms multi-join query and integration view in the following of this work.

Two processing strategies at opposite ends of the spectrum, namely, se-

quential processing and pipelined processing, have been proposed in the lit-

erature [95]. For example, Figure 2.1 illustrates these two approaches when

processing a four-way join query R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4 on 2 machines. Here,

we assume join relations R1, R2, . . ., R4 are not in these 2 machines orig-

inally. Figure 2.1(a) illustrates an example of sequential processing. That

2.1. INTRODUCTION 19

is, we first evaluate R1 ⊲⊳ R2 over 2 machines and get the intermediate

result I1. We then process I1 ⊲⊳ R3 on the same 2 machines (indicates by

the dashed rectangle) and get the intermediate result I2. This process re-

peats until we get the final query results. Figure 2.1(b) shows an example

of pipelined processing of this four-way join query. For example, we first

distribute (load) R2, R3, and R4 over the 2 machines. Then, tuples read

from R1 probe these relations in a pipelined fashion and generate query

results. This pipelined processing of multi-join queries has been shown to

be superior to the sequential processing given sufficient resources [95]. As

we will discuss shortly, state-of-the-art parallel multi-join query process-

ing solutions tend to maximally apply this pipelined processing as its core

execution strategy [21, 95, 124].

R2

(a) Sequential Processing (b) Pipelined Processing

Probing

(1) I1=R1 R2 (2) I2=I1 R3 (3) I3=I2 R4 2 Machines

2 Machines

R1 R3I1 R4I2 R3R2 R4R1

Figure 2.1: A Motivating Example

However, does this commonly accepted solution of maximally applying

pipelined parallelism always perform effectively when evaluating multi-

join queries? Or, put differently, are there methods that enable us to gener-

ate even more efficient parallel execution strategies than this fully pipelined

processing? In this part of the dissertation work, we first show via a cost

analysis as well as using real system evaluations that such maximally pipelined

2.1. INTRODUCTION 20

processing is not always effective. We then propose an segmented bushy

parallel processing strategy for multi-join queries that outperforms state-

of-the-art solutions.

As motivated in Chapter 1, we assume that the multi-join queries are

processed outside of any data sources. We focus on complex multi-join

queries, i.e., those that involve 10 or more source relations.

We focus on hashing join algorithms [72] since they are among the most

popular ones in the literature due to their proven superior performance

[72, 94]. Hashing joins provide the possibility of a high degree of pipelined

parallelism. Other join algorithms such as sort-merge join do not have this

natural property of pipelined parallelism [94]. Furthermore, hashing joins

also naturally fit partitioned parallelism.

The key research question that we propose to address in this work is

whether maximally pipelined multi-join query processing is indeed a su-

perior solution as commonly assumed in the literature. This pipelined pro-

cess implies main memory based processing. Hence, we assume that the

aggregated memory of all available machines is sufficient to hold the hash

tables of the join relations 1. The rationale behind this is that both the main

memory of each machine and the number of machines in the cluster are

getting increasingly large at affordable cost.

Due to possibly large volumes of data in each source relation, the main

memory of one machine may not be enough to hold the full hash table of

one source relation. Thus, partitioned parallelism is applied to each join

1In situations when main memory is not enough to hold all hash tables at the same time,
we follow the typical approach to divide the query into several pieces with each piece being
processed sequentially. We defer this discussion to Section 3.3.

2.2. STATE-OF-THE-ART 21

operation whenever it is necessary. That is, a partition (exchange) operator

[41] will be inserted into the query plan to partition the input data tuples

to multiple machines to conduct a partitioned hashing join processing.

2.2 State-of-the-Art

Various solutions have been investigated for parallel multi-join query pro-

cessing in the literature [21, 95, 124]. To illustrate, we use the 10-join query

depicted in Figure 2.2 to explain the core ideas. The multi-join query is de-

picted by its join graph. Each node in the graph (R0, R1, . . ., R9) represents

one join relation (data source), while an edge denotes a join between two

respective data sources.

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

Figure 2.2: An Example Query with 10 Relations

2.2.1 Sequential vs. Pipelined Processing

Two strategies at opposite ends of the spectrum, namely, sequential pro-

cessing and pipelined processing, have been proposed [95]. Note that par-

titioned parallelism is applied by default for each join operator. Sequential

processing is based on a left-deep query tree. Figure 2.3(a) illustrates one

example of sequential processing for the query defined in Figure 2.2. Here

2.2. STATE-OF-THE-ART 22

Bi represents the building phase of the i-th join operation, while Pi denotes

the corresponding probing phase. This processing can be described by the

following steps: (1) scan R0 and build B1, (2) scan R1, probe P1, and build

B2, (3) scan R2, probe P2, and build B3, and so on. This is repeated until

all the join operations have been evaluated. As can be seen, it processes

joins sequentially and only partial operations, namely, the probing and the

successive building operations, are pipelined.

R1 R0

R2

R8

R9

R0 R1

R2

R8

R9

B1 P1

(a) Sequential (b) Pipelined

......
B2 P2

B8 P8

B9 P9

B1 P1

B2 P2

B8 P8

B9 P9

Figure 2.3: Sequential vs. Pipelined

Pipelined processing is based on a right-deep query tree [95]. Figure

2.3(b) illustrates an example of pipelined processing for the same query

in Figure 2.2. In this case, all the building operations such as scan R1 and

build B1, scan R2 and build B2, . . ., scan R9 and build B9 can be run concur-

rently. After that, the operation of scan R0 and all the probing operations,

probe P1, probe P2, . . ., probe P9 can be done in a pipelined fashion. As

demonstrated above, it achieves fully pipelined parallelism.

Note that a pipeline process implies main memory based processing 2.

2The term main memory henceforth denotes the sum of memory of all machines in the
cluster unless otherwise specified.

2.2. STATE-OF-THE-ART 23

That is, it requires there to be enough main memory to hold all the hash

tables of the building relations (R1, R2, . . ., R9 in this case) throughout the

duration of processing the query.

As identified in [95], pipelined processing is preferred whenever main

memory is adequate. This is because (1) intermediate results in pipelined pro-

cessing exist only as a stream of tuples flowing through the query tree, and

(2) even though sequential processing in general may require less memory,

this is not always true due to intermediate results have to be stored. A large

intermediate result may consume even larger memory than the sum of all

building relations.

The simulation results in [95] confirm that the pipelined processing

(right-deep) is more efficient than the sequential one (left-deep) in most

of the cases they considered. Without loss of generality, we thus associate

the pipelined processing with a right-deep query tree, and the sequential pro-

cessing with a left-deep query tree in the following discussions.

2.2.2 Maximally Pipelined Processing

State-of-the-art parallel multi-join query processing solutions maximally

pursue the above pipelined parallelism to improve the overall performance

[21, 95, 124]. If the main memory is not enough to hold all the hash tables

of the building relations, they commonly take the approach of dividing the

whole query into “pieces”, with the expectation that the building relations

of each piece fit into the main memory. That is, pieces are processed one by

one with each piece utilizing the entire memory applying fully pipelined

parallelism.

2.2. STATE-OF-THE-ART 24

For example, zigzag processing [124] takes a right-deep query tree and

slices it into pieces based on the memory availability. As an example, the

right-deep tree in Figure 2.3(b) is cut into two pieces, one is R0, R1, . . ., R3,

and the other is I1, R4, . . ., R9 (Figure 2.4(a)). Here, I1 corresponds to the

result of the first piece R0 ⊲⊳ R1 ⊲⊳ . . . ⊲⊳ R3. These two pieces are processed

sequentially with fully pipelined parallelism in each piece.

R0R1

R2

R4

R3

R9

R8

R4

R9

R5

(a) Zig-Zag Tree (b) Segmented Right-Deep Tree

I1

B9 P9

B8 P8

B4 P4

B3 P3

B2 P2

B1 P1

�

R0R1

R2

R3

I1 B3 P3

B2 P2

B1 P1

B9 P9

B8 P8

B4 P4

�

Figure 2.4: ZigZag and Right-Deep Trees

Segmented right-deep processing [21] proposes heuristics, namely, bal-

anced consideration and minimized work, to generate pieces directly from the

query graph based on the memory constraint. The query tree is similar

to the zigzag tree. However, each piece can be attached not only at the

first join operation of the next piece, but instead also in the middle of it.

For example, Figure 2.4(b) illustrates one example of segmented right-deep

processing. As can be seen, the output (from P3) is attached as the building

relation of B8.

To summarize, all the above approaches take the common model of

pursuing a maximally pipelined processing of multi-joins via a right-deep

2.3. A MULTI-PHASE OPTIMIZATION APPROACH 25

query tree, with the number of join relations in the right-deep tree primar-

ily being determined by the main memory available in the cluster.

We now question the performance of such a maximally pipelined pro-

cessing model. As mentioned earlier, this pipeline process implies a main

memory based processing. Clearly, more efficient main memory based pro-

cessing strategies would lead to an improved overall performance. With-

out loss of generality, we use the term pipelined segment to refer a right-deep

query tree that can be fully processed in the main memory.

2.3 A Multi-Phase Optimization Approach

Multi-join query optimization is an expensive process because the num-

ber of alternative query plans for a query grows at least exponentially in

the number of relations participating in the query [113]. Parallel multi-join

query optimization is even harder [35, 51, 101]. Complications arise be-

cause the cost to be optimized, either total amount of work to be processed

or total processing time, are no longer closely correlated since a query plan

with minimal work may have a high sequential dependency that results in

high overall processing time. Second, even one sequential query plan can

in turn have a huge number of parallel solutions.

We take a multi-phase optimization approach 3 to cope with the com-

plexity of parallel multi-join query optimization. That is, we break the op-

timization task into several phases and optimize each phase individually.

We divide the whole optimization task into the following three phases,

3A single-phase optimization approach such as [101] could also be applied, our multi-
phase approach enables us to focus our attention on the research task we are tackling.

2.3. A MULTI-PHASE OPTIMIZATION APPROACH 26

(1) generating an optimized query tree, (2) allocating query operators in the

query tree to machines, and (3) choosing pipelined execution methods. We

note that even if we divide the optimization task into multiple phases, the

complexity of each phase, i.e., phases (1) and (2), still remains exponential

in the number of join relations.

The main focus of this work is on investigating the impact of query

trees (phase (1)) and different forms of parallelism on the overall perfor-

mance. To proceed, we first describe the design choices we will assume

in the reminder of our work for phases (2) and (3) below. We simplify the

operator-machine allocation (for phase(2)) and choose the concurrent execu-

tion approach [95] as the pipeline execution method (for phase(3)).

Allocating Query Operators. Query operators (joins) need to be allocated

to machines in the cluster. However, resource allocation itself is a research

problem of high complexity that has been extensively investigated in the

literature [39, 59, 71]. Like most work in parallel multi-join query pro-

cessing literature [21, 95, 124], we focus on main memory in the allocation

phase. This is because main memory is the key resource in the above hash-

ing join processing. Other factors such as CPU capabilities of computation

nodes are assumed to have less impact on the allocation, i.e., they are often

assumed to be sufficient.

The allocation is performed based on pipelined segments to promote

the usage of pipelined parallelism [71]. For example, if a right-deep tree

is cut into pieces with each piece being processed sequentially due to in-

sufficient memory, then all machines are allocated to each piece. Thus, the

2.3. A MULTI-PHASE OPTIMIZATION APPROACH 27

whole allocation is performed in a linear fashion. As it can be seen, all previ-

ous processing strategies described in Section 2.2 fall into this type of linear

allocation.

Pipelined Execution Method. The building relations of each pipelined

segment can entirely fit into the memory of the machines that have been

allocated to it. We apply a concurrent execution approach [95] to process

a pipelined segment 4. In this execution method, all scan operations are

scheduled concurrently. For example, in Figure 2.5, we process a 4 way

pipelined segment on 3 machines. Each building relation (R2, R3, R4) is

evenly partitioned across all 3 machines. Thus, each machine houses the

appropriate partitions from all building relations, denoted as P j
i . Here,

subscript i (2 ≤ i ≤ 4) denotes join relations, while superscript j (1 ≤ j ≤ 3)

represents machine ID. The probing relation (R1) is also partitioned into all

3 machines to probe the appropriate hash tables to generate results.

R2 R3 R4R1

Computation Machines

R1R2

R3

R4

Partition Partition Partition Partition

BuildingProbing

P3
2 P

3
3 P

3
4P2

2 P
2
3 P

2
4P1

2 P
1
3 P

1
4

Figure 2.5: Fully Concurrent Execution

4Other pipelined execution strategies such as staged partitioning [21] have also been pro-
posed. The detailed discussion of these strategies and their impact on parallel processing
strategies are left as one future work of this dissertation.

2.4. COST ANALYSIS OF PIPELINED SEGMENT 28

2.4 Cost Analysis of Pipelined Segment

2.4.1 Identifying Tradeoffs

The following two factors need to be considered when analyzing the per-

formance of parallel multi-join query processing via a partitioned hashing:

(1) redirection costs between join operations, and (2) optimal degree of par-

allelism.

Redirection Costs. The basic idea behind the partitioned hash join algo-

rithm is that the join operation can be evaluated by a simple union of joins

on individual partitions. For example, an equi-join A ⊲⊳ B can be computed

via (A1 ⊲⊳ B1)∪(A2 ⊲⊳ B2) . . .∪(An ⊲⊳ Bn) if A and B are first divided into n

partitions (A1, A2, . . ., An and B1, B2, . . ., Bn) using the same hash function.

Assume the two partitions in a pair (Ai, Bi) are put in the same machine,

while different pairs are spread over the distinct machines. This way, all

pairs can be evaluated in parallel.

However, for a right-deep tree segment, it is not possible to always have

all the matching partitions reside in the same machine. For example, as-

sume a query tree is defined by “A.A1 = B.B1 and B.B2 = C.C1”. A and

B are partitioned based on their common attribute A.A1 (or B.B1), while

C has to be partitioned based on the common attribute between B and C,

namely, B.B2 (or C.C1). If we assume A is the probing relation, then the

partition function of B.B2 has to be re-applied to the intermediate result

of Ai ⊲⊳ Bi to find the corresponding partitions Ci. However, this corre-

sponding partition Ci might exist in a machine different from where the

2.4. COST ANALYSIS OF PIPELINED SEGMENT 29

current Bi resides. Thus redirection of intermediate results is necessary in

this situation. For the special case of a right-deep tree when only one at-

tribute per source relation is involved in the join condition, i.e., “A.A1 =

B.B1 = C.C1”, the same partition function can be applied to all relations. In

that case, all the corresponding partitions can be put into the same machine

to avoid such redirections. Such redirection affects the probing cost of the

query processing.

Optimal Degree of Parallelism. Startup and coordination overhead of

different machines may counteract the benefits that could be gained from

parallel processing. [78, 116] discuss the basics on how to choose the op-

timal degree of parallelism for a single partitioned operator, meaning the

idea number of machines that need to be assigned to one operator. As one

example, if a relation only has 1,000 tuples, it is not a good idea to have

it evenly distributed across a large number of machines (i.e., 100) since the

startup and coordination costs among these machines might be higher than

the actual processing cost. Given the processing of more than one join op-

erators (pipelined segment), we expect this factor has a major impact on the

overall performance. That is, it affects the building phase cost of the query

processing.

2.4.2 Pipelined Processing Cost Model

For pipelined processing of a right-deep segment, the cost in terms of total

work versus the overall processing time may not be that closely correlated.

We thus derive two separate cost models. To facilitate the description of

2.4. COST ANALYSIS OF PIPELINED SEGMENT 30

cost models, we assume R0 is the probing relation, while R1, R2, . . ., Rn are

the building relations of the pipelined segment. We also assume k machines

are available to process the pipelined segment. These machines are denoted

by M1, M2, . . ., Mk. Without loss of generality, we use Ii to represent the

intermediate result after joining with Ri. For example, I1 denotes the result

of R0 ⊲⊳ R1, while I2 represents I1 ⊲⊳ R2. Thus In represents the final output

of these joins.

Estimating Total Work. The total work of pipelined processing can be

described as the sum of the work in the building phase (Wb) and the work

in the probing phase (Wp), as listed below.

Wb = (tread + tpartition + tnetwork + tbuild) ∗
n
∑

i=1

|Ri|

Wp = (tread + tpartition + tnetwork + tprobe) ∗ |R0|

+
k − 1

k
∗

n−1
∑

i=1

|Ii| ∗ tnetwork + (

n−1
∑

i=1

|Ii|) ∗ tprobe

tread, tpartition, tnetwork, tbuild, and tprobe in the above formulae represent

the unit cost of reading a tuple from a source relation, partitioning, trans-

ferring the tuple across the network, inserting the tuple into the hash table,

and probing the hash tables respectively. They represent the main steps

involved in a partitioned hash join processing. In the probing phase work,

k−1
k ∗
∑n−1

i=1 |Ii| ∗ tnetwork denotes the redirection cost assuming the redirec-

tion occurs after each join operation and the output of each join operation

2.4. COST ANALYSIS OF PIPELINED SEGMENT 31

is uniformly distributed across all the machines. The cost of outputting the

final results is omitted since it is the same for all processing strategies.

Estimating Processing Time. Similarly, estimation of the processing time

can be divided into two parts: one, the hash table building time (Tb) and

two, the probing time (Tp). The building time of the pipelined processing

Tb can be estimated as follows:

Tb = max
1≤i≤n

(tread + tpartition + tnetwork + tbuild) ∗
f(k)

k
∗ |Ri|

The processing time of the building phase can be estimated as the max-

imal building time of each individual relation over k machines. Here, f(k)

represents the contention factor of the network since the more machines

are involved, the more contention of the network caused by transferring

tuples of join relations arises. This is used to reflect the optimal degree of

parallelism as discussed in Section 2.4.1.

The processing time of the probing phase (Tp) is more difficult to ana-

lyze because of the pipelined processing. We use the following formula to

estimate the pipeline processing time.

Tp = Isetup +
Wp

k
+ Idelete

Here Isetup represents the pipeline setup time, while Idelete denotes the

pipeline depletion time. The steady processing time of the pipeline can be

estimated by the average processing time of one tuple (
Wp

|R0|
) multiplied by

the number of tuples (|R0|) that need to be processed over the total of k

2.4. COST ANALYSIS OF PIPELINED SEGMENT 32

machines. Clearly, this is a simplified model representing the ideal steady

processing time without including for example variations in the network

costs.

From above analysis, we can see that both the number of building re-

lations (n) and the number of machines (k) assigned to the pipeline play

an important role in the overall processing time. As we will discuss in

Section 3.1, we investigate to break both n and k , and compose smaller

pipelined segments to query trees to improve the query processing perfor-

mance. Note that above cost model is also applied to find the most efficient

pipelined processing strategies for each subgraph (Section 3.2).

33

Chapter 3

Segmented Bushy Parallel

Processing

3.1 Breaking Pipelined Parallelism

Query trees of a multi-join query can be classified into two types: sequen-

tial trees (i.e., a right-deep tree or a left-deep tree as discussed above), and

bushy trees. A right-deep tree has a better performance over a left-deep

tree since it has a high potential of pipelined parallelism for a hash-based

join algorithm. Thus we now use a right-deep tree as the representative of

sequential trees (e.g., Figure 3.1(a)).

A bushy tree has a height of at least log2n (given a binary bushy tree

that is balanced) with n being the number of join relations involved in the

multi-join query. A bushy tree brings new flexibility to the style of pro-

cessing, such as having multiple probing relations and composing different

3.1. BREAKING PIPELINED PARALLELISM 34

pipelined segments. Moreover, a bushy tree has the potential of processing

independent subtrees (segments) concurrently. However, such flexibility

may also bring dependencies to the execution. This dependency may both

affect the allocation of query operators and the corresponding parallel pro-

cessing performance. For example, Figure 3.1(b) illustrates one bushy tree

and its possible pipeline segments (each pipeline segment is denoted by

one dashed oval). Four segments (P1, P2, . . ., P4) can be identified. As can

been seen, P1 and P3 can be processed in parallel with one another by pro-

cessing them on different machines. While the execution of P2 depends on

P1, the execution of P4 depends both on P2 and P3.

R8

R7

R1 R2

(b) A wide bushy with dependency
upto log2

n layers

P1
P2 P3

P4

R3 R4R1 R2 R5 R6
R7 R8

(a) Right-Deep with
no dependency

Figure 3.1: Right-Deep vs. Wide Bushy Tree

As can be seen, a right-deep tree has the highest degree of pipelined

parallelism without any dependencies because each subtree is a join rela-

tion. However, there is no opportunity for independent parallelism except

during the initial building phase of the join relations. While a wide bushy

tree has many subtrees, it also has up to log2n layers of dependencies with

n being the number of source relations. These dependencies are likely to

impact the overall performance.

3.1. BREAKING PIPELINED PARALLELISM 35

3.1.1 Segmented Bushy Tree

Seen from the pipelined cost model discussed in Section 2.4.2, if the results

of pipelined segments in a bushy tree are smaller than those of the origi-

nal join relations, then the bushy tree processing may have less total work

(Wb + Wp) when compared with the fully right-deep processing. Here we

assume all the intermediate results are kept in main memory.

Comparing the overall parallel processing time of fully right-deep and

bushy trees is more complicated. As we can see, each pipelined segment in

a bushy tree only gets one portion of the total available machines. Thus the

network contention (f(k)) in the building phase may be less severe than

that of the full right-deep case. As a consequence, given the independent

processing of these smaller pipelined segments, the processing time of a

bushy tree may be better than that of fully pipelined processing. However,

as we identified earlier, a bushy tree style processing may be affected by

the dependencies among subtrees. Moreover, there may be subtrees (up to

⌈n/4⌉) that have short pipelined processing stages. For example, P1 and

P3 only have a pipeline of one probing followed by the building for the

next join. These two factors may eventually counteract the benefits gained

by introducing independent parallelism and smaller network contention in

each segment.

Thus, the key question now is how to balance independent parallelism

and pipelined parallelism in parallel multi-join query processing. By reduc-

ing each pipelined segment (i.e., identified by dashed oval in Figure 3.1(b))

into one ‘mega-node’, we can build a dependency tree out of the original

3.1. BREAKING PIPELINED PARALLELISM 36

query tree. We note that the dependencies are associated with the height

of this dependency tree. Thus reducing the height of the dependency tree

should effectively reduce the dependencies. We thus propose to utilize a

segmented bushy query tree. A segmented bushy tree can be controlled to

have a dependency tree with height of 2 as long as we increase the number

of subtrees of the root node.

Figure 3.2 illustrates the example of a segmented bushy tree of the join

query in Figure 3.1. In this example, the whole query is cut into three

groups, R1 ∼ R3, R4 ∼ R7, and R8. Three pipelined segments P1, P2,

and P3 can be identified correspondingly. P1 and P2 can be processed inde-

pendently, each with pipelined parallelism. The output from these two seg-

ments can be directly fed into P3. Without loss of generality, the pipelined

segment that contains outputs of all other segments is referred to as the fi-

nal pipelined segment. In this case, P3 is the final pipelined segment. Thus,

all pipelined segments except the final one can be executed concurrently

without any dependencies given enough main memory. We can see that

a segmented bushy tree processing applies independent parallelism with

minimal dependencies among subtrees (groups) since it only has one layer

of dependencies among pipelines.

Without loss of generality, we always assume that the right-most pipeline

of a segmented bushy tree by this convention serves as the probing relation

of the final pipelined segment. For example, P1 is the probing relation of

the final segment P3 in Figure 3.2.

3.1. BREAKING PIPELINED PARALLELISM 37

R3R1 R2R4 R5 R6
R7

R8
P2

P3

P1

Figure 3.2: A Segmented Bushy Tree

3.1.2 Segmented Bushy Tree Cost Analysis

Similarly, the cost of the segmented bushy tree processing has two different

cost measurements as we discussed in Section 2.4.2, one is the total work

and the other is the total processing time.

Estimating Total Work. Assume join relations are divided into s groups

connected by a segmented bushy tree. Without loss of generality, we as-

sume these groups are denoted by their join relation indices, (0 ∼ m1),

(m1 + 1 ∼ m2), . . ., (ms−1 + 1 ∼ n). The intermediate result of each group

is represented by Im1
, . . ., Ims

. Correspondingly, we assume each group

will be assigned kmi
machines based on its building relation size. The final

pipelined segment gets kf machines. The final query result is represented

by In. Without loss of generality, we assume that Im1
will be the probing

relation of the final pipelined segment. Given these, the total work of the

building phase of the segmented bushy processing (W ′b) and the total work

of the probing phase (W ′p) can be described by the following formulae.

W ′b = (tread + tpartition + tnetwork + tbuild) ∗ (

s
∑

i=1

mi+1−1
∑

j=mi+1

|Rj |+
s
∑

i=2

|Imi
|)

3.1. BREAKING PIPELINED PARALLELISM 38

W ′p = (tread + tpartition + tnetwork + tprobe) ∗ (|Im1
|+ |R0|+

s−1
∑

i=1

|Rmi+1|)

+ tnetwork ∗ (

s
∑

i=1

kmi
− 1

kmi

mi+1−1
∑

j=mi+1

|Ij|+
s
∑

i=2

kf − 1

kf
|Imi
|)

+ tprobe ∗ (

s
∑

i=1

mi+1−1
∑

j=mi+1

|Ij |+
s
∑

i=2

|Imi
|)

Estimating Processing Time. The overall processing time of the segmented

bushy tree can be treated as the sum of two phases. The first phase, Tf1, es-

timates the time of processing all the pipelined segments (groups) with the

results of these pipelines being directly fed into the building phase of the

final pipelined segment. The second phase, denoted as Tf2, estimates the

time of probing the final pipelined segment and outputting the query re-

sults.

The processing time of each pipelined segment (mi) is composed of the

following three components. (1) The building phase time of the building

relations in mi, denoted by Bmi. (2) The probing phase time of the group

mi, represented by Pmi. (3) The building time of the final pipelined segment

from the output of group mi (Imi), denoted as B′mi. The processing time

estimations of these components are given below.

Bmi
= Maxmi+1≤j≤mi+1−1{

f(kmi
)

kmi

∗|Rj |)∗(tread+tpartition+tnetwork+tbuild)}

Pmi = Isetup +
Wpmi

kmi

+ Idelete

3.2. COMPOSING SEGMENTED BUSHY TREE 39

Wpmi
= (tread + tpartition + tnetwork + tprobe) ∗ |Imi−1

|

+ tnetwork ∗ (
kmi
− 1

kmi

mi+1−1
∑

j=mi+1

|Ij |) + tprobe ∗ (

mi+1−1
∑

j=mi+1

|Ij|)

+ (tpartition + tnetwork + tbuild) ∗ |Imi
|

B′mi =
f(kf)

kf
∗ |Imi

| ∗ (tread + tpartition + tnetwork + tbuild)

The cost of the first phase is estimated by Tf1 = Max1≤i≤s{Bmi
+Pmi

+

B′mi
}. Note that the Pmi

and B′mi
are actually processed in a pipelined

fashion, yet here we simplify it by adding the two costs directly.

The processing time of the second phase (Tf2) is composed basically of

the probing of the first group (Im1
), and the rest of the intermediate results.

We estimate the time as
W ′

i

kf
. W ′i can be described below.

W ′i = tnetwork ∗
kf − 1

kf

s−1
∑

i=2

|Imi
|+ tprobe ∗

s−1
∑

i=2

|Imi
|

3.2 Composing Segmented Bushy Tree

Now, we address the question how to generate the above segmented bushy

tree for a multi-join query. Algorithm 1 sketches our proposed algorithm

that incorporates heuristics as well as cost-based optimizations. It con-

sumes a connected join graph G. We also input the maximal number of

nodes m per group (we will discuss how to get this m shortly). We choose

the largest join relation as the probing relation of each group since this re-

duces the time and the memory consumption of the building phase. Once

we select the probing relation, we then enumerate all possible groups hav-

3.2. COMPOSING SEGMENTED BUSHY TREE 40

ing a maximum of m join nodes starting from this probing relation. Enu-

meration is possible since m is usually much smaller than the number of

nodes in the join graph. Some of the groups may contain less than m nodes

due to the nodes in the group being no longer connected by a join edge.

Our goal is to avoid Cartesian products given that each data source may

be large, thus resulting in huge intermediate results. After that, we choose

the best graph, a partition of the original join graph, from these candidates

generated from the enumeration based on the cost model we developed in

Section 2.4.2. Alternatively, the selection could also be based on heuristics,

i.e., choosing the group in which the join attributes are the same to reduce

the possible redirection costs, or selecting the group with the smallest out-

put results.

Algorithm 1 ComposeBushyTree(G,m)

Input:A connected join graph G with n nodes. Parameter m specifies the max-
imum number of nodes in each group. Output:A segmented bushy tree with at
least ⌈n/m⌉ groups.

1: completed = false

2: while (!completed) do

3: Choose a node n with largest cardinality not yet been grouped
4: Mark n as a probing relation
5: Enumerate all subgraphs starting from n with at most m nodes
6: Choose the best subgraph Gi

7: Mark nodes in Gi as grouped in graph G
8: if !((∃K , K is a connected subgraph of G with unselected nodes) &&

(K.size() ≥ 2)) then

9: completed = true

10: end if

11: end while

12: Compose a segmented bushy tree

Figure 3.3 illustrates how the example join graph depicted in Figure 2.2

3.2. COMPOSING SEGMENTED BUSHY TREE 41

is divided by applying Algorithm 1 when m = 4. For example, we start

from the relation with largest cardinality, say relation R7. The enumeration

in Step 5 generates all the possible connected groups with 4 nodes starting

from R7, as illustrated in Figure 3.3(a). In this case, we choose R7, R9, R6,

and R8 as the nodes in the first group (pipelined segment). For simplicity,

we call this group G1. After this, if R1 is the one with the largest cardinality

among the nodes that have not yet been grouped, we then choose R1 as the

probing relation for the second group G2. We repeat the process as illus-

trated by Figures 3.3(b)-(c). After these steps, only R0 and R5 are left. They

are not connected. We thus end up with 4 groups. An example segmented

bushy tree with these 4 groups can be built as shown in Figure 3.4(a).

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

(1) R7, R8, R9, R6

(2) R7, R9, R6, R8

(3) R7, R4, R8, R5

...

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

(1) R1, R0, R2, R3

(2) R1, R2, R0, R3

(3) R1, R2, R3, R4

...

R7

R6

R4

R3

R5 R0

R1

R8

R9

R2

(a) Enumerate groups
with 4 nodes from
relation R7

(b) Enumerate groups
with 4 nodes from
relation R1

(c) Finish the grouping
process since no more
connected groups with
nodes larger than 2

G1 G1

G2

Figure 3.3: An Example of the Algorithm

Allocating machines to a segmented bushy is based on the number of

building relations in each pipelined segment. For example, for the seg-

mented bushy tree shown in Figure 3.4(a), three pipelined segments can

be identified (see dashed cycles in Figure 3.4(b)). The number of machines

3.2. COMPOSING SEGMENTED BUSHY TREE 42

that are assigned to each pipelined segment, denoted by k1, k2, and k3, can

be computed as follows.

Nb =
∑

0≤i≤9,i6=1,7

|Ri|+ |I1|

k1 = ⌊(|R6|+ |R8|+ |R9|)
Nb

⌋

k2 = ⌊(|R2|+ |R3|+ |R4|)
Nb

⌋

k3 = k − k1 − k2

Here, I1 and I2 denote the outputs of groups G1 and G2 respectively.

Nb represents the total number of tuples that need to be built assuming

R7, R1, and I2 are the probing relations of G1, G2, and the final pipelined

segment respectively. Note that the selection of the probing relation for the

final pipeline segment is not straightforward. We will discuss this in more

detail in Section 3.4.2.

R2R4 R3R8 R6 R9
R7

R5

R1

R0I1 I2

(a) Segmented bushy tree

R2R4 R3R8 R6 R9
R7

R5

R1

R0I1 I2

k3

k2

(b) allocation

k1

Figure 3.4: Segmented Bushy Tree and Node Allocation

However, the question remains how to decide what may be an appro-

priate number of groups given a join graph. Let us now use g to represent

this number. Note that the input of Algorithm 1, the maximum number of

3.3. HANDLING INSUFFICIENT MEMORY 43

nodes in each group m is estimated by m = ⌈n/g⌉with n being the number

of join relations in the query. There are two ways to address this issue. The

first is a heuristics-based selection approach. For example, we can choose

g as the number of nodes that have cardinality larger than 3/2 of the aver-

age cardinality. Here, we assume that g has to be bound within 2 ∼ n/2.

The rationale behind this selection criterion is that in the best case, we can

choose all these large join relations as the probing relations for the gener-

ated groups. The second is a cost-based selection approach. Again we note

that the range of the number of groups g is between 2 to n/2 1. We thus can

repeatedly call the function ComposeBushyTree (Algorithm 1) with the num-

ber m ranging from n/2 to 2 (g changes from 2 to n/2 correspondingly). We

then estimate the cost of the processing strategy from ComposeBushyTree.

The final output will be the one with the best estimated cost. While this

may increase the optimization cost, this has the potential to result in a bet-

ter processing strategy.

3.3 Handling Insufficient Memory

The problem of handling insufficient memory can be addressed using the

“cutting” principle as in [21, 95]. That is, we divide the whole query (joins)

into pieces such that each piece can be run in the main memory. Note that

in the extreme case, the multi-join query processing would have to be se-

quentialized due to not enough memory being available to hold more than

1In extreme cases, the actual number of groups may be larger than n/2. However, we
have less interest in these cases having a large number of groups, while each group may
only have one join relation in it.

3.3. HANDLING INSUFFICIENT MEMORY 44

one join. As we mentioned in Section 2.1, we assume that the aggregated

memory can hold at least 2 or more building relations.

Algorithm 2 sketches an incremental approach to address this problem.

This incremental approach is based on the static right deep tree [95] or seg-

mented right-deep tree [21] which divides the join query into right-deep

segments based on the main memory of the cluster. After that, we further

compose each right-deep segment into a segmented bushy tree if it is nec-

essary, i.e., the number of building relations in each piece is larger than a

certain threshold. Since each right-deep segment is likely to be more effi-

ciently processed, the performance of the whole query is also expected to

be better than the static right-deep or segment-right deep tree processing.

Algorithm 2 SimpleIncSegTree(G,M)

Input: A connected join graph G with n nodes, total cluster memory M. Output:
A sequence of segmented bushy trees, each processable in M.

1: Compose Static or Segmented Right-Deep Tree
2: for each right-deep segment r do

3: m←Maximal number of relations per group
4: t← ComposeBushyTree(r,m)
5: Put t into result sequence
6: end for

7: Return result sequence

A “top-down cut” approach, dividing the join graph directly such that

each group can be processed in the main memory, can also be devised.

We then select the groups and process them iteratively. However, as men-

tioned earlier, the essence of our work is to re-examine the performance of a

main memory based maximal pipelined processing. We argue that having

a more efficient main memory based processing strategies will also lead to

3.4. EXPERIMENTAL STUDIES 45

improved overall performance even if we apply a simple incremental op-

timization algorithm such as Algorithm 2. This claim is confirmed by our

experimental studies discussed below.

3.4 Experimental Studies

3.4.1 Prototype System and Setup

We have implemented a distributed query engine to test out the proposed

processing strategy. The system is implemented using Java. It is capable

of optimizing and executing multi-join queries across a set of shared noth-

ing machines connected by a network. The basic architecture of the system

is depicted in Figure 3.5. The architecture consists of two main modules,

one is the controller module and the other is the execution module. The con-

troller module is in charge of managing the computation process. It can be

installed on a stand-alone machine or on a machine that also houses other

modules. The controller module contains packages that compose multi-

join queries, generate parallel execution query plans, and distribute query

plans to the participating machines. The parallel query plans (processing

strategies) composed of query operators such as scan, partition, hash join,

union and load are specified in an xml file format. The query is executed

in the execution module. This execution engine is installed on each partic-

ipant machine in the cluster that is involved in the computation process.

The execution engine in each node waits for incoming query plans sent by

the controller module. Once the execution engine receives the query plan,

it parses the query plan, initializes it and starts up the query operators. Af-

3.4. EXPERIMENTAL STUDIES 46

ter that, query operators in different computation machines automatically

connect to each other and begin the query processing.

Controller Module

Query Composer Query Optimizer

Query Plan GeneratorDistribution Manager

Communication Queues

Query Operators

Query Plan Parser

Execution Module

Communication Queues

Query Operators

Query Plan Parser

Execution Module

...

Distributing Parallel Query Plans

Control Flow Data Flow

Figure 3.5: Architecture of the System

The system is deployed on a cluster composed of 10 machines, as de-

scribed in Figure 3.6. Each machine in the cluster has dual 2.4GHz Xeon

CPUs with 2GB RAM. They are connected by a private gigabit ethernet

switch. In our experimental setting, all source (join) relations are stored

in an Oracle database server that reside in a different machine outside the

cluster having 2 PIII 1G Hz CPUs and 1G main memory. The query re-

sults are sent to an application server with one PIII 800M Hz CPU and

256M Memory. This setup follows a typical data warehouse loading envi-

ronment (e.g., ETL [92]) where the process has to be performed outside the

data sources. This is because the operating data sources may be too busy

to process complex join queries or even simply may not be willing to give

3.4. EXPERIMENTAL STUDIES 47

control to the outsiders.

Oracle 8i

Controller

...

10 Nodes Cluster

PIII 800M Hz PC,
256M Memory

Each processing node: 2 2.4GHz Xeon CPUs,
2G Memory. Connect by Gigabit ethernet switch

2 PIII 1G CPUs,
1G Memory

Application
PIII 800M Hz PC,

256M Memory

Figure 3.6: Experimental Environment

As done in [21], we use generated data sets and queries in our experi-

ments. This is because benchmark queries such as TPC-H [108] only have

a limited number of queries (around 20), and most of them have less than

5 joins. The multi-join queries used in the experiments are randomly gen-

erated with the number of join relations ranging from 8, 12, to 16 2. The

cardinality of each join relation ranges from 1K ∼ 100K tuples, and the av-

erage size of each source tuple is about 40 bytes. Each result tuple has

about 320 ∼ 640 bytes on average, by simply concatenating all tuples from

join relations. Thus, the whole data in one test query (including intermedi-

ate results) can go up to 600MB. The data size in our experiment is chosen

to make sure all the hash tables can fit in the main memory since our main

focus of this work is the main memory based processing.

2We randomly generate connected acyclic graphs given a specified number of nodes.
Each node represents a join relation, while each edge denotes the join condition.

3.4. EXPERIMENTAL STUDIES 48

3.4.2 Segmented Bushy Processing Evaluation

Impact of the Number of Data Servers

Initial experiments have been conducted to evaluate the impact of the num-

ber of Oracle data servers in the experimental setup on the overall perfor-

mance. We compare the performance of multi-join queries using a pure

right-deep tree (pipelined) processing given different numbers of data servers.

The test queries are generated randomly with 8 ∼ 16 join relations. For

each query, we vary the number of data servers from 1 to 4. Thus, if we

have i data servers with 1 ≤ i ≤ 4 and k (either 8, 12, or 16) join rela-

tions, then we have each data server hold on average ⌈k/i⌉ join relations.

These data servers are deployed on different machines with similar con-

figurations having Oracle 8i installed. The result is shown in Figure 3.7.

Each data point in Figure 3.7 reflects an average of 50 randomly gener-

ated queries for each query type (queries have the same number of join

relations). In Figure 3.7, x-axis denotes the number of join relations in the

query, while y-axis represents the total processing time. From Figure 3.7,

we can see that the number of data servers in the system only has a minor

impact on the overall performance. This is because the total time spend on

reading the tuples from data servers only represents a small fraction of the

total query processing time in our current experimental settings. Thus, the

improvement due to shared read by multiple data servers does not play a

major role in the overall performance. This indicates that the data server is

not the bottleneck in our experimental environment. Without loss of gener-

ality, we report our following experimental results with a setup that stores

3.4. EXPERIMENTAL STUDIES 49

all join relations in one data server.

0

100000

200000

300000

400000

500000

600000

700000

800000

8 12 16

Number of join relations in a Query

P
ro

ce
ss

in
g

 T
im

e
(m

s)

1 Server
2 Servers
3 Servers
4 Servers

Figure 3.7: Vary the Number of Data Servers

Pipelined vs. Segmented Bushy Processing

Experiments have been conducted to compare the performance (total pro-

cessing time) of a pure right-deep tree processing having fully pipelined

processing to our proposed segmented bushy tree processing that mixes

both pipelined and independent parallelism. Figure 3.8 shows the results of

20 randomly generated queries with 8 join relations. Here, the segmented

bushy tree has a maximum of 3 join relations per group. In Figure 3.8,

we see that a segmented bushy tree processing almost consistently outper-

forms fully pipelined processing.

Figure 3.9 shows the results of queries with an increasing number of

join relations in the query. The number of relations in a query ranges from

8, 12 to 16. The experimental results reflect an average processing time

over 50 different randomly generated queries per query type. For exam-

ple, for queries with 8 join relations, we generate 50 queries randomly. We

3.4. EXPERIMENTAL STUDIES 50

0

100000

200000

300000

400000

500000

600000

700000

1 3 5 7 9 11 13 15 17 19

Sample Queries

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Right-Deep Tree
Segmented Bushy Tree (3)

Figure 3.8: Performance of 20 Example Queries

then produce both the fully pipelined processing and the segmented bushy

processing strategies for each generated query. In this experimental setup,

queries with 8 relations are divided into groups having a maximum of 3

relations, while queries with 12 and 16 relations are divided into groups

having a maximum of 4 relations.

In Figure 3.9, we can see that segmented bushy tree processing is con-

sistently better than maximal pipelined parallelism. The performance im-

provement is around 50% in terms of the total processing time.

Probing Relation Selection for Final Pipelined Segment

Selection of the probing relation of a pipelined segment is usually based on

the cardinality of the join relations. This is because choosing a large relation

as probing relation can effectively reduce the work and processing time of

the building phase. However, for a pipelined segment that involves out-

puts from other segments (assuming main memory is enough to hold these

building relations), the cardinality of the relation alone may no longer be

3.4. EXPERIMENTAL STUDIES 51

0

100000

200000

300000

400000

500000

600000

700000

800000

8 12 16

Number of relations in a query

P
ro

ce
ss

in
g

 ti
m

e
(m

s)

Right-Deep
Segmented Bushy

Figure 3.9: Right-Deep vs. Segmented Bushy

the best choice in general. Changing the probing relation of a pipelined

segment that only involves source join relations does not change the num-

ber of probes in the probing phase. It only changes the number of probing

and building tuples. Here we define the number of probe steps as the max-

imum number of hash tables that a tuple from the probing relation needs

to probe to produce the final output. However, for a pipeline segment hav-

ing outputs from other segments, changing the probing relation will also

change the total number of probes.

For example, if we change the probing relation for the pipeline segment

P1 as shown in Figure 3.10(a) from R7 to R6, no changes in the number of

probe steps occur. Both of them are 3 (Figures 3.10(a)-(b)). However, if we

change the probing relation of pipeline P3 (exchanging P1 and P2), then the

total number of probe steps changes from 4 to 5 in this case. This is because

P1 itself has 3 probe steps while P2 only has 2.

Figure 3.11 shows the experimental results of the impact of the probing

relation selection for the final pipelined segment. Here, the number on

3.4. EXPERIMENTAL STUDIES 52

R4 R5 R6
R7 R4 R5 R7

R6

R3R1 R2R4 R5 R6
R7

R8

R3R1 R2 R4 R5 R6
R7

R8

(a) 3 Probe Steps (b) 3 Probe Steps

(c) 4 Probe Steps (d) 5 Probe Steps

P1 P1

P1

P2

P3 P3

P2
P1

Figure 3.10: Probing Relation Selection

the x-axis denotes the number of relations in the probing relation of the

final pipelined segment. The generated queries have 16 join relations. In

Figure 3.11, we see that in our current environment, the larger the number

of relations in the probing relation of the final pipelined segment, the worse

the total processing performance will be. This is because the longer probe

steps in the final pipelined segments impair the processing performance.

This again confirms our observation that a full pipeline may not be the best

performer. Note that the performance degradation for a pipeline that is

longer than 8 can be explained by the experiments shown in Figure 3.9.

Hence, in Figure 3.11, we conveyed the scope of smaller pipeline sizes.

Number of Join Relations per Group

Figure 3.12 illustrates the impact of the maximal number of join relations

per group in our environment. Here, all the tested queries have 16 join rela-

tions. We vary the number of join relations per group from 3 to 6. As we can

see, if the number of join relations per group increases, the total processing

3.4. EXPERIMENTAL STUDIES 53

0
50000

100000
150000
200000

250000
300000
350000
400000
450000

3 4 5 6

Number of relations in the group for the probing relation
of final segment

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Figure 3.11: Probing Relation Selection

time also increases. This is mainly because given our ComposeBushyTree

algorithm, the final pipelined segment tends to choose the largest subgraph

(the one with the largest number of join relations) as the probing relation

since it usually has the largest intermediate results. As shown in Section

3.4.2, a long pipeline of the final pipelined segment degrades the overall

performance. We thus revise our algorithm to choose the subgraph with

the smallest number of probing steps as the probing relation of the final

pipelined segment. As can be seen, the revised algorithm is less sensitive

to the number of join relations in a group.

Insufficient Main Memory

Figure 3.13 shows the experimental results when the aggregated main mem-

ory is not sufficient to hold all the hash tables of the building relations. We

deploy join queries with 32 join relations. Assume the query will be cut

into three pieces with each piece being executed sequentially. Here, the

intermediate results of each piece will be first written to the data server,

3.4. EXPERIMENTAL STUDIES 54

0

100000

200000

300000

400000

500000

600000

700000

800000

Right-Deep 3 4 5 6

Maximal Number of Relations per Group

Pr
oc

es
si

ng
 T

im
e

(m
s)

Original Algorithm
Revised Algorithm

Figure 3.12: Exchanging the Probing Relation

while the next piece will read the intermediate results back into the main

memory. We compare the performance of the segmented right-deep tree

with our segmented bushy tree generated by Algorithm 2. Note that the

segmented right-deep tree has each piece fully pipelined, while the seg-

mented bushy will have the same right-deep segment (piece) further com-

posed into a segmented bushy tree with a maximum of 3 join relations per

group. Figure 3.13 reports the comparison between these two approaches

for 10 randomly generated queries. As can be seen, the segmented bushy

tree processing consistently outperforms the segmented right-deep pro-

cessing. This is expected because each piece is processed more efficiently

given our segmented bushy tree approach. Thus, the overall performance

of the query is correspondingly improved.

Concluding Remarks

As can be seen, these experimental results clearly highlight the main mes-

sage of our work, namely, the long standing assumption that “maximal

3.4. EXPERIMENTAL STUDIES 55

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8 9 10

Example Queries

P
ro

ce
ss

in
g

Ti
m

e
(m

s)

Segmented Right-Deep
Segmented Bushy Tree

Figure 3.13: Segmented Bushy vs. Segmented Right-Deep

pipelining is preferred” is shown to be wrong. Our proposed segmented

bushy processing almost consistently beats full pipelined processing. Given

the massive application of pipelined processing, especially in growing ar-

eas such as continuous query processing, this observation can also shed

some new light on how best to optimize distributed pipelined query plans

when the optimization function is related to total processing time.

56

Chapter 4

Related Work

Parallel query processing has been extensively studied in the literature

[17, 22, 25, 31, 41, 48, 51, 59, 77, 78, 95, 99, 116]. Most work in the liter-

ature has had rather different research focuses, such as parallel database

systems, scheduling algorithms, resource allocation, and load balancing.

These works provide the necessary background for this part of my disser-

tation work.

A lot of early work focused on implementing parallel database systems.

For example, the GAMMA Database Machine [32] is implemented on Intel

iPSC/2 hypercube with many processors. It provides various partition-

ing techniques, parallel hashing join algorithms to speedup and scale the

query processing. Bubba [12] and Teradata [1] are other similar prototypes.

Volcano [41] proposes an operator model by introducing exchange opera-

tors in a query dataflow to achieve partitioned parallelism. PRISMA/DB

[116] is a main-memory based parallel database prototype that provides a

query execution platform to enable experiments related to the performance

CHAPTER 4. RELATED WORK 57

of parallel processing. Many techniques have been proposed and their per-

formance also has been investigated based on these systems. However,

these works usually assume the data sources are fully cooperative in the

query processing. Thus, each data source is able to process any part of the

queries that are assigned to it. As we have discussed in Section 1.1.2, the

view computation is assumed to be processed outside the data sources due

to the data sources possibly being too busy in daily transactional process-

ing or the data sources being simply not willing to give control to outsiders.

Thus, the data source processing capabilities cannot be taken into consid-

eration in generating or optimizing view computation plans.

As discussed in [47] and other related work, three types of parallelism

could be identified, namely, partitioned parallelism, pipelined parallelism,

and independent parallelism. Orthogonal to the different types of paral-

lelism, various system architectures can be applied to realize parallel pro-

cessing, i.e., shared-memory, shared-everything, or shared-nothing. Among

these, a shared-nothing architecture is shown to have better speedup and

scalable performance [31]. Our work here thus applies this shared-nothing

architecture (i.e., a cluster of high-performance PCs) and investigates how

all three types of parallelism can be applied in parallel multi-join query

processing.

Two heuristics-based algorithms for scheduling a pipelined query tree,

localcuts and boundedcuts, are proposed by [48]. They schedule pipelined

query operators to a set of shared-nothing processing nodes based on com-

munication and computation costs of each operator which minimizes the

total work. Task scheduling in general has been extensively studied in typ-

CHAPTER 4. RELATED WORK 58

ical parallel processing. [59] provides a recent survey in this area. Nu-

merous algorithms such as list-scheduling [52, 60], clustering [119], task

duplication [7, 86], and guided random search techniques [28, 61] have

been developed. All these scheduling algorithms usually focus on the inter-

operator (task) level. That is, these works usually treat a whole query oper-

ator as the smallest unit in the allocation. While our work has the main fo-

cus on the partitioned parallelism (intra-operators). Moreover, these works

assume a pipelined parallelism whenever it is possible, thus all the oper-

ators can be processed simultaneously. In this case, scheduling is not the

main focus if enough processing nodes are available and all the available

processing nodes are fully utilized.

Resource allocation is related to parallel processing in general. [71]

proposes algorithms to achieve optimal processor allocation for pipelined

hashing joins in a multiprocessor environment. [39] develops an approach

which schedules multi-dimensional resources for pipelined queries. Other

allocation algorithms such as memory allocation strategies for complex

queries [81] are also related. In this work, we take the similar approach

as [71]. Other focuses such as load balancing [13, 33] and degree of paral-

lelism [78, 116] have also been investigated that relate to parallel process-

ing. These ideas have also been applied in our work.

Distributed query processing in general is fundamentally similar to par-

allel query processing. That is, there is a close relationship between these

two areas. [57] provides a recent survey on state-of-the-art distributed

query processing and optimization. A lot of optimization techniques, such

as two-phase optimization [51] and dynamic programming [58, 96], can be

CHAPTER 4. RELATED WORK 59

found to be useful in parallel query processing.

All above mentioned related work provides the general background

for this parallel view computation work in this dissertation. As we have

mentioned in Section 2.2, the closest related work is processing a multi-

ple join query via hashing in parallel over a shared-nothing environment

[77, 95, 106]. Different parallel processing strategies such as left-deep and

right-deep [95], segmented right-deep [21], and zigzag tree [124] have been

proposed, as we have discussed in-depth in Section 2. However, these

proposed solutions all share the common approach which is to maximally

use pipelined parallelism (i.e., maximally divide a right-deep tree into seg-

ments) based on certain objective functions (i.e., memory constraints). Each

segment is then processed one by one. In this work, we instead consider

more tradeoffs in optimizing such parallel multi-join query processing, i.e.,

other types of query tree shapes, independent parallelism and its depen-

dencies, properties of the join definitions to reduce redirection costs, etc.

Moreover, most of the previous works report their results based on simula-

tions, while we report our results based on a working distributed system.

[117] experimentally compares five types of query shapes such as left-

deep, right-deep, wide-bushy and various execution strategies based on

the PRISMA/DB system [116]. However, it does not explore how to gen-

erate optimized parallel processing query plans. In this work, we propose

segmented bushy processing and also provide algorithms to generate such

segmented bushy parallel processing solutions.

60

Part II

Run-time Operator State

Adaptation

61

Chapter 5

Non-Blocking Pipelined Query

Processing

5.1 Introduction

5.1.1 Motivation

Current research of non-blocking pipelined query processing often seems

to assume that query operators have fairly small-sized operator states, i.e.,

small-window joins, or stateless operators such as select and project [3, 8, 9,

56]. Query operators with potentially huge operator states, such as multi-

way joins, have not been carefully studied in the non-blocking query pro-

cessing context. However, such query operators are rather common in our

target data integration or data warehousing environments. For example, a

real-time data integration system as shown in Figure 5.1 helps financial an-

alysts in making timely decisions. Here, stock prices, volumes and external

5.1. INTRODUCTION 62

reviews are continuously sent to the integration server during the working

hours (i.e., 9AM-4PM). The server is required to process these input streams

as fast as it can to output the data in real-time fashion to the decision sup-

port system. This way, analysts are able to analyze and make decisions

based on the up-to-date information. Two factors are important for such a

real-time integration server: (1) The ability to produce as many results as

possible given its resources, if not all of them, when data comes through.

This ensures that the decision-maker applications could have more infor-

mation available instantly during working hours. (2) The capability to as-

sure that the whole data processing is conducted in an efficient manner to

minimize the overall processing time. This would benefit the analysis ap-

plications that rely on the complete data, i.e., quantative analysis. Thus, the

overall processing may be composed of two phases: First, a specified run-

time phase (i.e., from 9AM to 4PM). Second, a post-run phase (i.e., to clean

up disk resident states if operator states have been pushed to disks during

run-time whenever memory overflow occurred).

Real Time Data
Integration Server

... ...
Decision

Support System

...

Decision-Make Applications

Stock Price,
Volumes,...

Reviews, External
Reports, News, ...

Figure 5.1: A Real-time Data Integration System

The stringent requirement of generating near real time results demands

efficient main memory based query processing. This is because any delay

5.1. INTRODUCTION 63

in the query processing will cause the input data to accumulate in the sys-

tem. This in turn would be likely to further accelerate the slow down of the

overall processing. Thus, the system may quickly use up all available main

memory. This is particularly critical for data integration type queries that

are complex and stateful in nature, for example, multi-join queries. Given

that the main memory is a limited resource, there is a demand for efficiently

utilizing main memory during the query processing.

In this part of dissertation work, we focus on addressing the run-time

memory shortage during query processing by adapting operator states, i.e.,

moving operator states across distributed machines or temporarily pushing

operator states into disks. In particular, we focus on queries with state-

intensive operators, i.e., queries with multiple-way join [111] operators.

These queries are common in data integration related applications as shown

in Figure 5.1. Note that stateless operators in the query such as select,

project, or operator states are not monotonically increasing (i.e., operators

have a small fixed window size) can be addressed without special atten-

tions in the query processing given our focus on run-time main memory

usage. This is because these operators are not memory intensive in nature.

As indicated above, we focus on applications that need accurate query

results. Thus, all input tuples have to be processed. We thus cannot resort

to techniques such as load shedding or approximations [107] to address

run-time memory shortage. This also implies that the states of stateful op-

erators could be monotonically increasing during the run-time phase. As

motivated in Figure 5.1, we assume the query is long running but finite.

However, the techniques we study in this work could also be applied to

5.1. INTRODUCTION 64

cases with infinite data streams as long as operators have finite window

sizes, a common situation in continuous query processing environments.

5.1.2 State-Level Adaptations

One viable solution to address the problem of main memory shortage, as

discussed in XJoin [109] and Hash-Merge Join [79], is to choose memory

resident states and push them into disks when memory overflow occurs.

This type of approach delays the processing of certain states (the disk resi-

dent states) until a later time when more resources would be freed up. The

processing of the disk resident states is referred as state cleanup. It is re-

quired to generate any thus far missed results. We refer this pushing and

cleaning process as state spill adaptation. Given a monotonic increase of

the operator states, it is not likely that we would have the opportunity to

perform the state cleanup process during the run-time phase. Thus, these

disk resident states would be processed after the run-time phase finishes.

An alternate solution to address memory shortage is to distribute state

intensive operators to multiple machines in a shared-nothing architecture,

i.e., a cluster of high-performance PCs. Thus, they can be processed in par-

allel with each machine processing a partition of states (input data). This

is referred to as a partitioned parallel processing [41, 68, 94, 99]. In such a

distributed environment, when only a subset of machines is overloaded at

a given time, we then move operator states from the overloaded machine

to a less loaded machine. For simplicity, we call this type of adaptation

state relocation. The potential advantage of this relocation of states is that

the adapted states remain active in main memory once the adaptation is

5.1. INTRODUCTION 65

completed, avoiding a potentially more long-term delay that would likely

be caused by the state spill adaptation. However, this type of adaptation

may not in all cases solve the overall memory shortage problem since even

the aggregated main memory of multiple machines remains limited.

For this reason, we propose to investigate both type of adaptations in an

integrated manner. This should facilitate a more comprehensive solution

since state spill may not be efficient due to the access of slow secondary

storage, while state relocation alone may not fully resolve the problem of

memory shortage. In the rest of this chapter, we first discuss the parti-

tioned non-blocking query processing with multiple input state intensive

operators and its performance evaluation. This has not been addressed in

previous works such as Flux [99].

In Chapter 6, we then analyze the tradeoffs regarding the factors and

policies to be considered when adapting operator states to overcome run-

time main memory shortage. Two adaptation approaches that both aim to

maximize the overall run-time query throughput, namely, the lazy-disk and

the active-disk methods, are proposed. The query throughput here is de-

fined as the total number of tuples have been output thus far. Both ap-

proaches integrate state spill and state relocation in memory constrained

environments where the aggregated memory of a distributed system is not

sufficient for the given query workload.

While in Chapter 7, we investigate the state spill strategies for queries

with multiple state intensive operators. We propose global throughput-oriented

adaptation strategies to handle interdependency when spilling operator

states among different operators in the query. These strategies also aim

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 66

for maximal run-time query throughput.

Extensive experimental evaluations have been conducted based on D-

CAPE system [70, 91, 104]. These experiments confirm the effectiveness of

our proposed adaptation approaches.

5.2 Partitioned Non-blocking Query Processing

As in [41, 99], we assume that the state intensive operators in the non-

blocking query can be so large that they cannot fit in main memory of one

single machine. As a result, partitioned parallelism [41, 68, 94, 99] that

aims to partition the operator and thus to process it in multiple machines

will be applied to these operators. Throughout this work, we use a sym-

metric multiple-way hash join operator [111] as a representative example of

the state intensive operators. Other state intensive operators can also be ad-

dressed in a similar manner as long as their functionality can be distributed

to multiple machines with each machine only processing non-overlapping

partitions of inputs.

5.2.1 Partitioning State Intensive Operators

The first question that needs to be addressed is how to achieve such a par-

titioned parallel processing for state intensive multi-input operators. As

discussed in [41, 99], we insert a split operator in front of each input stream

of the to be partitioned operator (the state-intensive operator). This split

operator partitions the input stream and sends the appropriate partitions

to each machine. For simplicity, we will henceforth refer to each instantia-

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 67

tion of the operator that is running in a particular machine as an instance of

the partitioned operator.

For example, assume we process a three-way join query (A ⊲⊳ B ⊲⊳ C)

as shown in Figure 5.2 (a). The join is defined as A.A1 = B.B1 = C.C1 where

A, B, and C denote the three input streams (join relations) and A1, B1, and

C1 are the join columns of A, B and C respectively. As shown in Figure

5.2(b), the query plan is partitioned and and run on two machines denoted

as m1 and m2. The SplitA operator partitions the input stream A based

on the column A1, while the SplitB operator partitions the input stream B

based on B1, and so on 1.

Union

Join Join
m1 m2

Join

A B C

A B C

Split� Split� Split�
(a) Original Three-way Join

(b) Partitioned Three-way Join

Figure 5.2: Example of Partitioned Processing

Thus, each operator instance only processes non-overlapping partitions

of the input stream (a portion of the whole input data). A union operator,

if needed for result merging, can be inserted into the output streams of all

instances of the partitioned operator to combine the results into one output

stream for further processing.

1Note that for m-way joins (m > 2) that the join conditions are defined on different
columns, more data structures are required to support this partitioned m-way join process-
ing. The discussion of this can be found in Appendix A.

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 68

Such partitioned processing has advantages over centralized process-

ing. Clearly, more resources are made available given multiple machines

are involved in the computation.

5.2.2 Initial Distributions and Connections

An initial distribution can be applied to distribute query operators to multi-

ple machines before the execution. This usually has to be established with-

out statistics information about the operators and input streams. In this

work, we utilize operator type in the initial distribution since the operator

type convey the potential resource requirements of the operator. For ex-

ample, a symmetric m-way join operator usually is state intensive, while

a select operator is stateless. Basically, we distribute each state intensive

operator to all available machines. We then allocate the rest of query oper-

ators, such as split and union, using a Round-Robin algorithm to all these

machines. The goal of this distribution algorithm is to balance the num-

ber of operators as well as the load among different machines. Note that a

detailed investigation of such initial distribution algorithm is not the main

focus of this work. We design a simple algorithm here to only provide nec-

essary background for the run-time operator states adaptations.

Figure 5.3(b) illustrates the distribution of the three-way join query (as

shown in Figure 5.3(a)) over 4 machines (represented by mi, 1 ≤ i ≤ 4).

In our architecture, each machine carries a full copy of the original query

plan with all the query operators in each machine being deactivated by de-

fault initially. The shading of an operator represents that the operator is

activated in that respective machine. In this particular example, each ma-

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 69

chine has one three-way join operator and one stateless operator assigned

as shown in Figure 5.3 (b).

Union

Join

A B C

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

A B C

m1 m2 m3 m4

(a) Query Plan (b) Initial Distribution

Figure 5.3: Partitioned Query Plan Distribution

The partitioned query plan, operators in the query plan that have been

assigned to different machines, needs to be connected together to reflect the

pipeline relationship among operators defined in the original query plan.

Basically, if two operators with a producer-consumer relationship are acti-

vated in the same machine, we then use the memory-based queue to con-

nect them together. If these two adjacent operators are assigned to different

machines, we then create a Socket connection to connect them. For exam-

ple, the connection of the initial distribution as described in Figure 5.3 (b) is

shown by Figure 5.4. Solid lines in Figure 5.4 represent the connections be-

tween operators (either local or distributed) in the partitioned query plan,

while the dashed lines (connections defined in the original query plan) are

not used for this particular connection setup. Note that all the network

connections and the corresponding data transfers are managed by the Data

Distributor and the Data Receiver (see Figure 5.5) in each machine with ded-

icated common sending and receiving buffers. Thus, any transient imbal-

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 70

ances due to short-term burst arrival rates can be naturally handled as dis-

cussed in Flux [99]. The output connections of the split operator are created

dynamically based on the number of state-intensive operator instances. In

Figure 5.4, each split operator has 4 output connections (one local and 3 dis-

tributed connections) given the join is being partitioned into 4 machines. If

we change the distribution, these output connections also will be changed

correspondingly.

Union

Join

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

Union

Join

SplitA SplitB SplitC

A B C

m1 m2 m3 m4

m1 m3 m4

m4
m1

m2

m1

m2

m3

m1 m1 m1

Figure 5.4: Partitioned Query Plan Connection

5.2.3 Experimental Setup

Experimental Environment Description. All our experimental studies in

this part of dissertation work are conducted based on the D-Cape system

developed at WPI [70]. The overall system architecture is described in Fig-

ure 5.5. We have a dedicated distribution manager in charge of a set of query

processors. The distribution manager distributes query plan(s) and connects

operators that are distributed into different query processors (as discussed

in Section 5.2.2). It collects and analyzes running statistics of each query

processor. It makes global adaptation decisions such as relocating states from

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 71

one query processor to the other. Each query processor employs a Cape

continuous query engine [91] as its core. The Cape engine takes care of ex-

ecuting the continuous query plans (operators) assigned to it. Each query

processor also has modules to collect running statistics and report statis-

tics to the distribution manager, to receive tuples from up stream opera-

tors and distribute tuples to down stream operators if they are activated in

other query processors. A local adaptation controller is responsible for choos-

ing operator states to be spilled or relocated. Note that in this architecture,

the state relocation decision is made by the distribution manager based on

the collected statistics, while the decision of choosing which partitions to

spill/relocate is handled by the local adaptation controller in each query

processor. Unlike Flux [99], which puts all the adaptation and partitioning

functionalities into the Flux operator, our architecture applies ‘light’ split

operators with a tiered decision architecture. It enables more global adap-

tation decision making especially given multiple state-intensive operators

in the query plan.

The D-Cape system is deployed on a 10-machine cluster. Each machine

in the cluster has dual 2.4Hz Xeon CPUs with 2G main memory. These

machines are connected via a private gigabit ethernet. We dedicate three

of them to run the distribution manager, stream generator, and application

server respectively. The stream generator continuously generates stream

input tuples for queries to process, while the application server processes

the output results of the query plan. All the other machines are deployed

as query processors as necessary for the given experiment.

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 72

Local Statistics
Gatherer

Data
Distributor

CAPE Continuous Query
Processing Engine

Data
Receiver

Query Processor

Local Adaptation
Controller

Distribution Manager

Streaming
DataInternetInternetEnd User

Distribution/Adaptation
Decision Maker

Runtime
Monitor

Query Plan
Manager

Repository

Connection
Manager

Repository

Figure 5.5: D-Cape System Architecture

Experimental Data Sets and Queries. We use a three-way symmetric hash

join query plan as described in Figure 5.2(a) to report our experimental re-

sults in the following sections. The join is defined on the first column of

each input stream. We partition each input stream into 300 partitions based

on its join column values. As we will discuss shortly, the run-time adap-

tation policies we developed, as the main focus of this work, are based on

main memory usage and the statistics of each individual partition, they are

insensitive to the query plan itself. Other query plans will shown similar

results as we will describe below.

We vary the following variables in generating input streams in our ex-

perimental studies. We use term tuple range to indicate the possible num-

ber of tuples with distinct join values in a given set of tuples. We define

join multiplicative factor as the average number of tuples with the same join

value in a given set of tuples. Here, the given set can be tuples have been

processed thus far from one input stream, or it can be the tuples in one par-

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 73

ticular partition of the input stream. Clearly, this join multiplicative factor

is not a static number in our environment. This is because operator states

are accumulated as more inputs get processed (given our no state purging

assumption). Thus, the join multiplicative factor keeps on increasing as

more inputs get processed.

Tuple Range = 1000
Uniform Distribution of Join Values

A B C

1… 1… 1…

First 2000 tuples

1…

1…

1…Next 2000 tuples

Expected a total of 8
output tuples with join
value 1 (2x2x2)

…

1…
1…

1…

1…

1…

1…
Expected a total of 56
output tuples with join
value 1 (4x4x4 – 2x2x2)

Figure 5.6: Join Factor and the Number of Join Results

Above join multiplicative factor is closely related to the the number of

join results generated. For example, as shown in Figure 5.6, assume we

have a three way join. Each input stream has a tuple range of 1000. We

assume join values are uniformally distributed. Thus, after processing 2000

tuples per input stream, we expected two tuples with a join value 1 from

each input stream. It generates a total 8 (2 × 2 × 2) output tuples with

the join value 1. While after the next 2000 tuples has been processed from

each input stream, we then would expect a total of 4 tuples with the join

value 1 from each input stream. It thus generates a total of 64 (4 × 4 × 4)

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 74

output tuples with the join value 1. Thus, a high join multiplicative factor

indicates that a larger number of tuples will be generated during the query

processing.

As we will discuss shortly, we will partition each input stream into a

large number of non-overlapping partitions to help the run-time adapta-

tion. Thus, different partitions may have different join multiplicative fac-

tors over time depending on the partitioning and the distribution of join

values. We now define term join multiplicative factor increase rate (r), or sim-

ply join rate, to describe that the join multiplicative factor increases r after

processing every k tuples. For example, as illustrated in Figure 5.7, we as-

sume partition P1 has join rate 1, while partition P2 has join rate 3 for every

1000 tuples being processed. As can be seen, a higher join rate implies a

higher join multiplicative factor value over time, which in turn results in

generating a larger number of output tuples.

Given uniform distribution of join values, the relationship among k, join

rate r, and the tuple range can be illustrated by Figure 5.8. We assume that

the tuple range of the input stream is 1000. We assume that the join rate of

partitions P1 and P2 are 2 and 3 respectively. Thus, k can be computed as

(2+3)*1000=5000. That is, after processing every 5000 tuples from this in-

put, join multiplicative factor of P1 increases by 2, while join multiplicative

factor of P2 increases by 3.

5.2.4 Partitioned Parallel Evaluation

The performance analysis of partitioned parallel processing is divided into

two parts. One, we assess the performance of partitioning a non-memory

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 75

Input Stream A: Tuple Range = 1000
Join Rate of P1 = 1, Join Rate of P2 = 3

P1

1…

First 1000 tuples
3… 2…

2…

2…

P2

… …

5…

7… 4…

4…

Next 1000 tuples

9…

1…

3… 2…

2…

2…

… …

5…

7… 4…

4…9…

Figure 5.7: Join Rate Example: Non-Uniform Distribution

intensive query that can be fully processed by one single machine. Two,

we then study the case that the query workload is beyond the processing

capability of one single machine.

Figure 5.9 shows the performance of partitioning a non-memory intensive

query. In this experiment, the stream generator sends one tuple per 20 ms

on average for each input stream. The tuple range is set to 50k, while the

join rate is set to 1. The query runs over 40 minutes. The maximal available

memory of each processor is set large enough to run the query completely

in its own main memory. We then distribute the query to run it on 2 up to 5

machines. Note that in this work, we rely on Java Virtual Machine (JVM) to

manage the run-time main memory usage. In most of our experiments, the

overall memory usage of one single machine in the query processing is less

than 300MB. Given 2GB physical main memory of each machine, run-time

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 76

Input Stream A: Tuple Range = 1000
Join Rate of P1 = 2, Join Rate of P2 = 3

P1

1…

First 5000 tuples

1…

Next 5000 tuples

…

1…

1…

2…

2…

2…

P2
…

…
…

…

2…

2…

2…
…

Figure 5.8: Join Rate Example: Uniform Distribution

swapping of main memory pages by the JVM (or the operating system) is

not likely to occur that may affect the query processing performance.

In Figure 5.9, the X-axis represents the time (in terms of minutes) of ex-

ecution up to that point, while the Y-axis denotes the overall throughput 2

of the query up to that point of time. Throughput is defined as the total

number of tuples output thus far. Here, the line denoted by Mi represents

the query throughput when the query is partitioned into i number of ma-

chines. As can be seen, there is a negligible effect on the overall throughput

when we assign more machines to this query plan. This is because adding

extra resources (memory) beyond the maximally needed does not help the

overall performance.

However, since each split operator has to partition the input data to all

instances of the partitioned operator, this may incur noticeable overhead in

2In this work, we focus on query throughput as the measurement of run-time query
processing performance. The discussions of using other matrics are beyond the scope of
this dissertation. They are left as one possible future work.

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 77

the query processing if an unnecessary large number of machines were as-

signed to the query. For example, it would not be worthwhile to distribute

the query into 100 machines while it can be fully processed by one single

machine. This is conferred by Figure 5.9 where the overall throughput of

‘M5’ already has a slight drop compared with the throughput of ‘M1’.

0

100000

200000

300000

400000

500000

600000

700000

800000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Miniutes

Th
ro

ug
hp

ut

M1 M2

M3 M4

M5

Figure 5.9: Partitioning Non Memory-Intensive Query into 1 ∼ 5 machines

Figure 5.10 shows the case for memory intensive queries. In this setup,

we set the maximal available main memory of each processor to 200MB.

We change the data stream generator so that each input stream sends out

one tuple per 10ms on average, 2 times more input tuples are generated

than the settings in Figure 5.9. The tuple range is set to 50K, while join

rate is set to 2 to produce a lot more output tuples. In Figure 5.10, we see

that the query throughput drops after about 20 minutes of running com-

pared with full main memory based processing if it is run on one single

machine. This is because the memory consumption exceeding the 200MB

limitation. Note that it actually stops running after about 25 minutes of run-

ning. This is because the JVM tries to take some actions to handle the main

5.2. PARTITIONED NON-BLOCKING QUERY PROCESSING 78

memory overflow, i.e., to call garbage collections more frequently. How-

ever, this affects the run-time query throughput and eventually fails due to

main memory states keep on increasing. If we distribute this query plan

on two machines, it runs about 30 minutes before main memory of each

machine exceeds 200MB. However, as we discussed above, once we have

enough resources to run the query, adding more machines will not improve

the overall throughput. In this experiment, we can thus again observe that

‘M4’ and ‘M5’ have almost the same throughput over the 40 minute run.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Minutes

Th
ro

ug
hp

ut

M1 M2
M3 M4
M5

Figure 5.10: Partitioning Memory-Intensive Query into 1 ∼ 5 machines

79

Chapter 6

Run-time Adaptation Strategies

6.1 State Spill

6.1.1 State Partitions and Partition Groups

State spill refers to the processing of selecting memory resident states and

pushing them into disks when memory overflow happens. Given a mono-

tonic increase of memory usage during the run-time phase, these spilled

states will be kept in disk (inactive) until memory overflow has been ad-

dressed, i.e., at the end of the query processing.

To facilitate this run-time adaptation, we divide the input streams into a

much larger number of partitions than the number of machines. For exam-

ple, we might work with 500 partitions over 10 machines. This enables us

to effectively redistribute partitions at minimal cost without affecting any

of the partitions that are not adapted. This is because we can simply choose

appropriate partitions to adapt at run time, while avoiding repartitioning

6.1. STATE SPILL 80

during the adaptation process. This method has first been applied in early

data skew handling literature such as [33] as well as the recent partitioned

continuous query processing work Flux [99].

We organize operator states based on the input partitions. Since each in-

put partition is identified by a unique partition ID, thus the operator states

can also be identified by the IDs of the input partitions. For simplicity, we

also use the term partition to refer to the corresponding operator state par-

tition if the context is clear.

For a single input query operator, as tackled in Flux [99], it is natural

to choose partitions from one input stream since there is only one input

stream for the single input query operator. However, for a multiple-input

operator, there are partitions from different inputs in the operator states

with the same partition ID. Thus, multiple ways of organizing partitions

are possible, as we will discuss below. Note that we discuss the possi-

ble smallest unit in the adaptation here. The strategy of selecting partition

units to adapt will be described later.

As discussed in XJoin [79, 109], we could choose partitions from one

input at a time as shown in Figure 6.1(a). However, this strategy has two

potential drawbacks in processing of partitioned multi-way join queries.

(1) It increases the complexity in the cleanup process. This is because if the

partitions have been pushed to disk, this requires us to keep track of the

timestamps of when each of these partitions was pushed, and the times-

tamps of each tuple in order to avoid duplicates in the cleanup process.

For example, partition A1 has been pushed into the disk at time t during

the execution. Here, we use A1
1 to denote this part of partition A1. Then

6.1. STATE SPILL 81

all the tuples from B1 and C1 with a timestamp greater than t have to join

with the A1
1 in the cleanup. Given A1, B1, and C1 could be pushed into

the disk more than one time, the cleanup process needs to be carefully syn-

chronized with the timestamps of the input tuples and the timestamps of

the partitions being pushed. (2) If we were to move partitions from indi-

vidual inputs to other machines, this then would force us to process tuples

for that partition with across machine joins. For example, if we have parti-

tion A1 in machine M1, while having partitions B1 and C1 in machine M2,

then a new coming tuple that belongs to A1 has to access both M1 and M2

to produce the join result. Clearly, if instead we were to put all three parti-

tions A1, B1, and C1 (partitions with the same ID) in the same machine, we

could access one machine only to produce the result.

In this dissertation work, we thus propose to group the partitions from

all involved input streams that have the same partition ID as the smallest

unit to be adapted. For simplicity, we call this smallest adaptation unit as

one partition group. For example, as illustrated in Figure 6.1(b), A1, B1, and

C1 together is referred as one partition group. This avoids the expensive

processing of queries across multiple machines. It also greatly simplifies

the cleanup process as we will discuss shortly. Without loss of generality,

we may use the term partition to refer to partition group if the context is

clear.

6.1.2 Clean Up Disk Resident Partitions

When memory becomes available, disk resident states have to be brought

back to main memory to produce missing results. This state cleanup process

6.1. STATE SPILL 82

(a) Select partitions from one
individual input steam

(b) Select partitions from all
input streams with the same ID

A B C

A1 B1 C1

A B C

A1 B1 C1

Figure 6.1: Variations in Choosing Partitions to Spill

can be performed at any time when memory becomes available during the

execution. It does not have to be at the end of the run-time phase. In the

cleanup, we should produce all missing results due to these disk resident

states while preventing duplicates. Note that multiple partition groups

may exist in disk given one partition ID. This is because once a partition

group has been pushed into disk, new tuples with the same partition ID

may accumulate a new partition group in main memory. Later, as needed,

this partition group could be pushed into the disk again.

The tasks that need to be performed in the cleanup can be described

as follows: (1) Organize the disk resident partition groups based on their

partition ID. (2) Merge partition groups with the same partition ID and

generate missing results. (3) If a main memory resident partition group

with the same ID exists, then merge this memory resident part with the

disk resident ones.

Figure 6.2 illustrates an example of the partition groups before and after

the cleanup process. Here, the example query is defined as A ⊲⊳ B ⊲⊳ C .

We use a subscript to indicate the partition ID, while we use a superscript

6.1. STATE SPILL 83

A1
1 B1

1 C1
1

A2
1 B2

1 C2
1

Ar
1 Br

1 Cr
1

...

A1
2 B1

2 C1
2

As
2 Bs

2 Cs
2

...

...

A1
m B1

m C1
m

At
m Bt

m Ct
m

...

A1~r
1 B1~r

1 C1~r
1

A1~s
2 B1~s

2 C1~s
2

A1~t
m B1~t

m C1~t
m

...

merge

merge

merge

partition groups with ID 1

partition groups with ID 2

partition groups with ID n

Figure 6.2: Example of Cleanup Process

to distinguish between the partition groups with the same partition ID that

have been pushed at different times. The collection of superscripts such as

1 ∼ r represents the merge of partition groups that respectively had been

pushed at time 1, 2, . . . , r.

The merge of partition groups with the same ID can be described as

follows. For example, assume that a partition group with partition ID i

has been pushed k times to disk, represented as (A1
i , B

1
i , C1

i), (A2
i , B

2
i , C2

i),

. . ., (Ak
i , B

k
i , Ck

i) respectively. Here (Aj
i , B

j
i , C

j
i), 1 ≤ j ≤ k denotes the j-

th time that the partition group with ID i has been pushed into the disk.

For ease of description, we denote these partition groups by P 1
i , P 2

i , . . . , P k
i

respectively.

The results generated within members of each partition group have al-

6.1. STATE SPILL 84

ready been produced during the run-time phase execution. In other words,

all the results such as A1
i ⊲⊳ B1

i ⊲⊳ C1
i , A2

i ⊲⊳ B2
i ⊲⊳ C2

i , . . ., Ak
i ⊲⊳ Bk

i ⊲⊳ Ck
i

have been generated during the run-time phase. For simplicity, we denote

these results as V 1
i , V 2

i , . . ., V k
i . These partition groups can thus be consid-

ered to be self-contained partition groups given the fact that all the results

have been generated from the operator states that are included in the par-

tition group.

Merging two partition groups with the same partition ID results in a

combined partition group having the operator states from both partition

groups. For example, the merge of P 1
i and P 2

i results in a new partition

group P 1,2
i now containing the operator states A1

i ∪ A2
i , B

1
i ∪ B2

i , C1
i ∪ C2

i .

Note that the output V 1,2
i from partition group P 1,2

i should be (A1
i ∪A2

i) ⊲⊳

(B1
i ∪ B2

i) ⊲⊳ (C1
i ∪ C2

i). Clearly, a subset of these output tuples have al-

ready been generated, namely, V 1
i and V 2

i . Thus now we must generate the

missing part ∆V 1,2
i = V 1,2

i − V 1
i − V 2

i in the merging process for these two

partition groups in order to make the resulting partition group P 1,2
i self-

contained. Here, we observe that the incremental batch view maintenance

algorithm [63, 66] can be applied to merge partition groups and produce

missing results.

Lemma 6.1 A combined partition group P r,s
i generated by merging partition groups

P r
i and P s

i using incremental batch view maintenance algorithm is self-contained

if P r
i and P s

i were self-contained before the merge.

Proof. Without loss of generality, we treat partition group P r
i as the base

state, while P s
i as the incremental change to P r

i . Incremental batch view

6.1. STATE SPILL 85

maintenance equation as described in 9.4 produces the following two re-

sults 1: (1) the partition group P r,s
i having both states of P r

i and P s
i and

(2) the incremental changes to the base result V r
i by ∆ = V r,s

i - V r
i . Since

two partition groups P r
i and P s

i already have results V r
i and V s

i generated,

the missing result of combining P r
i and P s

i can be generated by ∆ - V s
i . As

can be seen, P r,s
i is self-contained since it has generated exactly the output

results V r,s
i = (∆ - V s

i) + (V r
i + V s

i).

For example, let us assume A1
i , B1

i and C1
i are the base states, while

treating A2
i , B2

i and C2
i as the incremental changes. Then, by evaluating

the view maintenance equation seen in 6.1, we get the combined partition

group P 1,2
i and the delta change ∆ = V 1,2

i − V 1
i . By further removing V 2

2

from ∆, we generate exactly the missing results by combining P 1
i and P 2

i .

V 1,2
i − V 1

i = A2
i ⊲⊳ B1

i ⊲⊳ C1
i

∪ (A1
i ∪A2

i) ⊲⊳ B2
i ⊲⊳ C1

i

∪ (A1
i ∪A2

i) ⊲⊳ (B1
i ∪B2

i) ⊲⊳ C2
i

(6.1)

Lemma 6.2 Given a collection of self-contained partition groups {P 1
i , P 2

i , . . . ,

Pm
i }, a self-contained partition group P 1∼m

i can be constructed using incremen-

tal view maintenance algorithm in m− 1 steps.

Proof. A straightforward iterative process can be applied to combine such

a collection of partition groups. The first combination consumes two par-

tition groups, while the remaining m-2 partition groups are combined one

at a time. Thus the combination ends after m-1 steps. Given each combi-

1The detailed discussion and its correctness proof of incremental batch view mainte-
nance algorithm can be found in Part III of the dissertation.

6.1. STATE SPILL 86

nation results in a self-contained partition group based on Lemma 6.1, the

final partition group is self-contained.

Based on Lemmas 6.1 and 6.2, we can see that the cleanup process

(merging partition groups with same partition ID) ends successfully with

all missing results. Note that any memory resident partition groups can be

combined with the disk resident parts in the same manner as we discussed

above. As can be seen, the cleanup process does not rely on any times-

tamps. We thus do not have to keep track of any timestamps during the

state spill process.

6.1.3 Throughput-Oriented State Spill

Now, we need to address what amount of states and which partition groups

to be pushed into disks when main memory overflows. Pushing different

partition groups may have different impact on the overall performance. As

motivated in Section 5.1.1, we propose a throughput-oriented state spill

strategy that aims for high overall run-time query throughput. That is, we

aim to generate as many output results as possible given part of the mem-

ory resident states are pushed into disks and thus are temporarily inactive.

Ideally, given a high overall throughput in the run-time phase, this should

also reduce the efforts in the cleanup process as more work would have

already been completed 2.

The intuition behind our throughput-oriented state spill strategy is to

identify productivities of partitions and push partitions that are less pro-

2This may not be true given multiple stateful operators that depend on each other. We
will discuss this in more detail in Chapter 7.

6.1. STATE SPILL 87

ductive in each spill process. Thus, memory space is utilized by productive

partitions that could potentially generate more output results.

The usage of partition groups as adaptation unit helps us to realize this

throughput-oriented strategy. This is because it simplifies the statistics col-

lection to the granularity of each partition group. Otherwise, one may need

to collect a more general histogram for all possible values at the individual

tuple level. Instead, for each partition group, we record the current size

of each partition group, represented by Psize. We also record how many

tuples have been generated from this partition group, denoted by Poutput.

We define the productivity of each partition group as Poutput/Psize. Given a

similar size Psize, a small Poutput/Psize value indicates that only few output

results have been generated so far. We thus prefer to spill the partitions

with smaller productivity values into the disk. The intuition is that the par-

titions left in the main memory are likely to produce more results than the

ones that have been pushed into disks.

Other factors could also be considered when choosing candidate parti-

tions to push such as the activity value of each partition group. For exam-

ple, we can record the time when an input tuple is being inserted into the

hash table of the partition, denoted by Taccess. We then compute inactive

time, defined as the current time Tcurr - Taccess, to indicate the activity of

each partition group. If the inactive time is larger than a certain threshold

τ , we then choose this partition group as the candicate to be pushed. The

intuition of identifying activity of partition is to push the partitions that

are least often being used. This is similar in concept to the commonly used

LRU cache replacement strategy.

6.1. STATE SPILL 88

Note that both the productivity and activity values of each partition

group only reflect the input data that has been processed so far. They are

updated when new data gets processed. Here we assume that the value

we observed so far would be indicative of the trends of behavior of the

partition group. Given a more dynamic environment where the properties

of input data keeps on changing, we may have to apply other techniques

to predict the productivity/activity value of each partition group. Clearly,

various alternate ways of computing the above productivity and activity

values exist. For example, we can maintain a list of history values and as-

sign different weights to each value using some amortized weight function,

i.e., the latest one has the highest weight, to compute partition productivity

and activity values. However, any new cost model of identifying produc-

tivities/activities can be easily plugged into our system if it turns out to

be necessary. This is because we work on the mechanisms and policies of

run-time state adaptation, which are independent of such low level cost

models.

The state spill decision is made by the local adaptation controller (shown

in Figure 5.5) of each processor. The controller continuously checks the

current memory usage and compares it against a threshold θs, i.e., 200 MB.

If the current memory usage is larger than θs, then the adaptation controller

initiates the throughput-oriented state spill adaptation process.

The high level description of how to choose the candidate partitions

to be pushed to disk is sketched in Algorithm 3. The algorithm returns

the partition IDs that will be spilled based on the collected cost statistics,

i.e., the productivity values of the partition groups. Here p denotes the

6.1. STATE SPILL 89

percentage of operator states to be pushed in this state spill process. We

will experimentally evaluate how to choose p in Section 6.1.4.

Algorithm 3 ComputePartitionsToPush(p)

Input: p, the percentage of states to be pushed.
Output: retID, a list of Partition IDs to be pushed.

1: retID = null; /*list to hold the Partition IDs to be pushed*/
2: pStats = getPartitionStats(); /*get statistics of the partitions*/
3: pStats.computeProductivity(); /*compute & order productivity values*/
4: pct = 0; /*the percentage of states being selected*/
5: while (pct < p) do

6: if (pStats.hasNext()) then

7: retID.add(pStats.getNext());
8: pct = computePercent();
9: else

10: break;

11: end if

12: end while

13: return retID;

6.1.4 State Spill Evaluation

We first need to address how much state is to be pushed to disk when main

memory gets overloaded. We run the query on one single machine in the

cluster for over 50 minutes. The input tuples are set to arrive at a rate of ev-

ery 30 ms on average from each input stream. The tuple range is set to 30K.

The join rate of each partition group is set to 3. In this experiment, the state

spill is triggered when the memory usage of the machine is over 200MB.

In the experimental studies, we have each partition group frequentlly ac-

cessed, thus measuring the activity value in our setup would not turn out

to be of much interest. We thus focus on investigating the impact of the

6.1. STATE SPILL 90

productivity of partitions on the state spill performance.

Figure 6.3 depicts the overall throughput with different percentages of

states being pushed when overload happens. A k%-push means that k% of

the main memory states are chosen to be pushed to disk in each adaptation.

We vary k from 10 to 100 in this experiment. We randomly choose partition

groups from the operator state for this experimental setup since we investi-

gate the impact of which amount of state to be pushed in each adaptation.

As a comparison, we also provide the throughput of the query when it is

fully processed in main memory (labeled as ’All-Mem’). Seen from Figure

6.3, the more states are being pushed into the disk each time, the smaller

the overall throughput. This is as expected since the states being pushed

are no longer active.

0

200000

400000

600000

800000

1000000

1200000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Minutes

T
h

ro
u

g
h

p
u

t

All-Mem

10%-Push

30%-Push

50%-Push

100%-Push

Figure 6.3: Percentage of States Pushed in Each Adaptation

Figure 6.4 shows the corresponding memory usage for above k%-push

strategies. The memory is projected based on the memory usage of all ac-

tive operator states as well as the input and output tuples in queues in the

query processor. Seen from Figure 6.4, the main memory utilization can be

6.1. STATE SPILL 91

effectively controlled by the adaptation to avoid system crashs arising due

to memory overflow. We also see that the more states (a higher percentage)

we push in each adaptation, the fewer times we need to trigger the state-

spill process. In Figure 6.4, each zag in the line represents one adaptation

process.

0

50

100

150

200

250

300

350

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Every 60 Seconds

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

All-Mem

10%-Push

30%-Push

50%-Push

100%-Push

Figure 6.4: Memory Usage vs. Percentage Pushed

Without loss of generality, we will use the 30%-push strategy for further

analyzing state spill adaptations in the following experiments unless spec-

ified otherwise. This is because the 30%-push strategy has a small number

of adaptations, while at the same time it has a reasonable small impact on

the overall query throughput.

Given a specified percentage of states to be pushed, i.e., 30%, the ques-

tion remains which partition groups to be pushed. Figures 6.5 and 6.6 show

the impact of choosing different partition groups on the overall run-time

phase throughput. In Figure 6.5, the input stream has 1/3 of the parti-

tions with an average join rate of 4, 1/3 of partitions with an average join

rate of 2, while the rest have a join rate of 1. We compare the strategies

6.1. STATE SPILL 92

of pushing more productive partition groups with the pushing of less pro-

ductive ones. The ‘push-30% | less-productive’ line corresponds to the case

of pushing partition groups with the smallest Poutput/Psize value first. As a

comparison, the ‘push-30% |more-productive’ line denotes the pushing of

partition groups with the largest Poutput/Psize value first. Seen from Figure

6.5, the ‘push-30% | less-productive’ strategy has a much higher run-time

throughput. This is because that leaving the partition groups with high

productivity values in main memory is more likely to generate more out-

put results as input tuples come through.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Minutes

T
h

ro
u

g
h

p
u

t

Push-30%|More-Productive

Push-30%|Less-Productive

Figure 6.5: Throughput-Oriented Spill: Various Join Rates

A high overall run-time throughput also helps to reduce the cleanup

efforts in this case. This is because more work has been accomplished

before the cleanup starts. In the above experiment, the ‘push-30% | less-

productive’ strategy uses 26, 879 ms to generate 194, 308 tuples during the

cleanup, while the ‘push-30% |more-productive’ one generates 992, 893 tu-

ples in around 359, 396 ms.

Even if the join factors of different partitions are similar, the throughput-

6.2. STATE RELOCATION 93

oriented strategy of pushing less productive partition groups does not hurt

the overall performance. Figure 6.6 depicts the run-time phase through-

put when we set the join factor of all partitions to be around 3. As can be

seen, the ‘push-30% | less-productive’ strategy still slightly outperforms the

‘push-30% | more-productive’ since it is able to capture even minor differ-

ences of partition productivities.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Minutes

T
h

ro
u

g
h

p
u

t

Push-30%|More-Productive

Push-30%|Less-Productive

Figure 6.6: Throughput-Oriented Spill: Similar Join Rates

6.2 State Relocation

Uneven workload may arise among machines in a distributed environ-

ment. Thus, while one machine runs out of memory, another machine may

still have memory at its disposal for holding additional states. Unlike the

state spill that results in temporarily inactive adapted states, moving op-

erator states across machines will have the adapted operator states stay

in main memory. Thus, the adapted states are still actively involved in the

query processing. Given that, state relocation, which moves operator states

6.2. STATE RELOCATION 94

across machines, may be a preferred choice over state spill to maximally

utilize all memory resources.

State relocation requires knowledge from several machines to make an

adaptation decision. In our system, the distribution manager has the global

knowledge including main memory usage of each machine by monitoring

run-time statistics of the distributed system continuously. The state reloca-

tion process is triggered once the distribution manager observes an accel-

erated uneven memory usage among the machines.

State relocation is performed in a pair-wised scheme in our system.

That is, once the distribution manager finds the difference between the

maximal amount of memory used (referred as Mmax) and the least amount

of memory used (referred as Mleast) reaches a certain threshold (θr) in the

cluster, i.e., Mleast/Mmax < θr, it then initiates the state relocation process.

In each relocation process, the distribution manager asks the most used

machine to move (Mmax − Mleast)/2 amount of states to the least used

one. Note that the actual partition groups to be moved are decided by

the local adaptation controller of the machine with the most used memory.

Given such tiered decision architecture, the distribution manager only re-

quires to collect very little running statistics such as main memory usage

to make globally adaptation decisions. It thus helps to increase the scala-

bility of the distribution manager. Ideally, both machines will have about

(Mmax + Mleast)/2 amount of states after the adaptation.

Theorem 6.1 The pair-wised adaptation scheme converges to a balanced load for

any load distribution.

6.2. STATE RELOCATION 95

Proof. Assume n machines with their load (i.e., memory usage) denoted

by l1, l2, . . ., ln in an ascending order. E represents the mean value of the

load. σ2 denotes the current load variance. After one pair-wised adapta-

tion, both l1 and ln become (l1 + ln)/2. We assume the load variance after

the adaptation to be σ2
1 . Here the changes on the load variance ∆ = σ2 - σ2

1

can be derived as follows:

∆ = [

n
∑

i=1

(li − E)2]− {2[(l1 + ln)/2− E]2 +

n−1
∑

i=2

(li − E)2}

= [(l1 − E)2 + (ln − E)2]− 2[(l1 + ln)/2 − E]2

= l21/2 + l2n/2− l1 ∗ ln = (l1 − ln)2/2 > 0

As can be seen, ∆ is always positive. This means that the load variance

reduces after applying each pair-wised adaptation. Thus, the minimal load

and the maximal load ratio would converge to 1 after enough number of

adaptations. This indicates a balanced load distribution.

Note that in a dynamic environment with the load of the machines con-

tinuously changing, it is not worthwhile (or even possible) to achieve a

perfectly balanced load in each adaptation. We thus perform only one pair-

wised adaptation in each adaptation phase. For simplicity, we call the ma-

chine with the maximally used memory the sender, and the machine with

the least memory usage the receiver.

6.2. STATE RELOCATION 96

6.2.1 Moving States Across Machines

For the state relocation process, we need to make sure no data (operator

states) are missing, duplicated or corrupted. To achieve that, we design the

following 8 steps protocol, denoted as steps i with 1 ≤ i ≤ 8. These steps

are illustrated in Figures 6.7, 6.8, 6.9, and 6.10. Note that the sender, the

receiver and the amount of state to be moved are known before the state

relocation process starts.

In this process, the distribution manager and the local adaptation con-

troller of each machine are responsible of executing the moving protocols.

Here, the distribution manager is responsible of the overall control of the

moving process. It accomplishes that by sending protocols (messages) to

the local machines and waiting for appropriate responses. While the local

adaptation controller in each machine is in a wait mode until it is woken up

by the distribution manager via the moving protocols. The local adaptation

controller then performs the requested actions, and returns messages back

to the distribution manager. Different local machines have different roles

in the relocation process such as sender, receiver, or machines with active

split operator(s). The distribution manager has the responsibility to send

appropriate messages to the right machines.

The goal of the first two steps of the protocol is to figure out which

partitions in the sender’s machine are to be moved. These two steps are

depicted in Figure 6.7.

In step 1, the distribution manager sends a ComputePartitionsToMove

message to the sender. This message tells the sender the amount of operator

6.2. STATE RELOCATION 97

Distribution Manager

(2) PartitionsToMove
List of partition IDs to be
moved, i.e., {1,2,3}

(1) ComputePartitionsToMove
(Mmax-M least)/2

Sender’s Machine

Union

Join

Split� Split� Split�Local Adaptation
Controller

Figure 6.7: Compute Partitions to Move

states ((Mmax - Mleast)/2) that is to be moved out. In step 2, the sender calls

its local adaptation controller to identify the actual partition groups that it

suggests to move. Various local heuristics could be employed here to make

this decision, for example, the throughput-oriented strategy discussed in

Section 6.1.3. After that, the IDs of these partition groups to be moved are

returned to the distribution manager via a PartitionsToMove message, as il-

lustrated in Figure 6.7.

After the partitions to be moved have been computed, two issues need

to be addressed before moving the selected partitions: (1) We need to create

temporary space for holding new incoming tuples belonging to partitions

to be moved and (2) we need to make sure all on-the-fly tuples have been

processed before moving partitions. Protocol steps that address these two

issues are illustrated in Figure 6.8.

In step 3, after receiving the PartitionsToMove message from the sender,

the distribution manager sends a DeactivatePartitions message with the par-

6.2. STATE RELOCATION 98

Distribution Manager

(4) Deactivated(4) Deactivated (3) DeactivatePartitions
IDs to be moved, i.e., {1,2,3}

...

Sender’s Machine

Union

Join

Split� Split� Split�
Machines with Active Split Operator (s)

Union

Join

Split� Split� Split� 1. Remove IDs from PartitionMap
2. Create temporary space for
inputs of ID {1,2,3}
3. Send EndofPartitionInputFlag
to the sender
4. Return Deactivated to DM

1. Set the Join operator to
check EndofPartitionInputFlag,
and record the number of flags
received
2. Return Deactivated to DM

Local
Adaptation
Controller

Local
Adaptation
Controller

Figure 6.8: Deactivate Partitions to be Moved

tition IDs to be moved to the sender and to all machines where split opera-

tors are activated.

After receiving the message DeactivatedPartitions, the sender is triggered

to start checking whether the flag End-Of-Moved-Partitions from the split

operators has been received. While the machine on which split operator(s)

is running notifies the split operator to perform the following two tasks. (1)

The split operator creates a temporary storage space. (2) The split operator

stops sending the tuples with IDs that will be moved and puts them in the

temporary storage space. Then it sends out a special control tuple called

End-of-Moved-Partitions to the sender to indicate that no more tuples will

arrive belonging to the partitions that are to be moved. Note that once the

sender receives the End-of-Moved-Partitions tuples from all the split opera-

tors, this indicates that all on-the-fly tuples have been processed.

The distribution manager will first send the DeactivatedPartitions mes-

sage to the sender, and then to the machines with split operators being

6.2. STATE RELOCATION 99

activated 3. This is to make sure the End-Of-Moved-Partitions flag will not

arrive the sender’s machine before the sender is set to receive these flags.

After that, in step 4, the split operator returns the Deactivated message

back to the distribution manager. The distribution manager knows that the

partitions to be moved have been successfully deactivated once the distri-

bution manager receives Deactivated messages from all split operators. That

is, no more input tuples belonging to the partitions to be moved will be sent

to the sender.

Steps 5, 6, and 7 together perform the actual movement of states from

the sender to the receiver, as illustrated by Figure 6.9.

(6) ReceivePartitions
i.e., PartitionGroups 1,2,3

Distribution Manager

(7) Received(5) SendPartitions
IDs to be moved, i.e., {1,2,3}

Receiver’s Machine

Union

Join

Split� Split� Split�All EndofPartitionInputFlags
received before sending
states

Sender’s Machine

Union

Join

Split� Split� Split�
Local

Adaptation
Controller

Local
Adaptation
Controller

Figure 6.9: Deactivate Partitions to be Moved

In step 5, the distribution manager sends a SendPartitions message to

the sender after it has received all Deactivated messages from machines with

active split operators. Then, in step 6, the sender prepares to move parti-

3Note that in a slow (and nonstable) network environment, we may need another round
of protocol to make sure that the DeactivatedPartitions message is received at the sender be-
fore sending it to machines with active split operator(s). However, given a local highspeed
cluster environment, a simple wait at the distribution manager is sufficient for this purpose.

6.2. STATE RELOCATION 100

tions. As discussed in step 4, the sender has to wait until all End-of-Moved-

Partitions messages from split operators have been received. This indicates

all on-the-fly tuples have been processed. After that, it gets the partition

groups to be moved and puts them into a ReceivePartitions message. Then

it sends the message to the receiver. In step 7, the receiver install the parti-

tion groups extracted from the ReceivePartitions message. The receiver then

returns a Received message back to the distribution manager to indicate that

the partitions have been received and successfully installed.

Split�Split�
Distribution Manager (8) ReactivatePartitions

IDs, Receiver’s addr

Union

Join

Split� Split� Split�
Local

Adaptation
Controller Union

Join

Split� Split�
Local

Adaptation
Controller

Split�Union

Join

Split�
Local

Adaptation
Controller

Figure 6.10: Reactivate Partitions that Moved

Finally, in step 8, after the distribution manager receives the Received

message from the receiver, it sends the ReactivatePartitions message to ma-

chines where the split operators are running. This notifies the split oper-

ator to change the partition mapping of the moved IDs. That is, the split

operator will now send the tuples with partition IDs that just moved to the

receiver machine. Note that the split operator will first process the data

in its temporary space, if it is not empty before working with tuples in its

input queue.

6.2. STATE RELOCATION 101

To summarize, the overall interactions between the distribution man-

ager and the local adaptation controller of each individual machine (for

those machines that involved in the relocation process) can be described by

the sequence diagram illustrated in Figure 6.11. Here, the local adaptation

controller in each processor is responsible for parsing moving protocols

and performing corresponding actions.

ComputePartitionsToMove

Compute the
partitions IDs
to be moved

Distribution
Manger

Sender Split Operators Receiver

PartitionsToMove

DeactivePartitions

Deactived

SendPartitions
ReceivePartitions

Received

ReactivatePartitions

Stop the input
to partitions to
be moved

Move partitions
across machines after
on-the-fly tuples
being processed

Restore the inputs
to partitions just
moved

Figure 6.11: Sequence Diagram of State Relocation Protocols

Algorithms 4 and 5 sketch the high level interactions between the dis-

tribution manager and the local adaptation controller during the state relo-

cation process.

Algorithm 4 describes the basic operations of the distribution manager.

The algorithm is triggered to move operator states from the sender to the

receiver when the distribution manager observes Mleast/Mmax < θr. The

algorithm basically follows the actions in the sequence diagram (Figure

6.11) by sending protocol messages and waiting for the corresponding re-

sponses. Here, the send and wait are primitive operators designed to send

6.2. STATE RELOCATION 102

or wait for messages across machines.

Algorithm 4 State-Relocation:Manager(sender, receiver, amt)

/*It controls state relocation process by sending moving protocols to local machines
and waiting for corresponding responses.*/

1: send ComputePartitionsToMove(amt) msg to sender;
2: wait until get PartitionsToMove msg;
3: send DeactivatePartitions to sender & machines with split operator(s);
4: wait until get all Deactivated msgs;
5: send SendPartitions msg to sender;
6: wait until get Received msg;
7: send ReactivatePartitions msg to machines with split operator(s);

Similarly, Algorithm 5 describes the main steps performed in the local

adaptation controller during the state relocation process. Here, the algo-

rithm keeps on listening to moving protocols. It performs corresponding

actions based on the protocols it has received.

In step 3 (DeactivatePartitions), each split operator creates a temporar-

ily storage space for holding the new incoming tuples that belong to the

partition groups to be moved. It then sends a special control tuple (End-Of-

Moved-Partitions) to the sender. While in steps 5 and 6, the sender moves

partition groups after it has received all End-Of-Moved-Partitions control tu-

ples. Given an ordered (FIFO) message transfer, this guarantees all on-the-

fly tuples belonging to the moved partition groups have been processed

and included in.

While in step 8, each split operator redirects the tuples belonging to the

partition groups that just moved to the receiver’s machine. This makes sure

all new incoming tuples to those moved partitions continue to be processed

correctly. Each split operator processes tuples stored in its temporarily stor-

6.2. STATE RELOCATION 103

Algorithm 5 State-Relocation:Local()

/* to receive messages, perform corresponding actions, and return message(s) to the
distribution manager.*/

1: while (keepGoing) do

2: wait for moving protocols;
3: switch(protocol)
4: ComputePartitionsToMove: /*compute partitions to be moved*/
5: compute partitions to move;
6: send PartitionsToMove msg to Distribution Manager;
7: DeactivatePartitions: /*stop the inputs to partitions to be moved*/
8: deactivate partition inputs;
9: send Deactivated msg to Distribution Manager;

10: SendPartitions: /*send out partitions*/
11: wait on-the-fly tuples being processed;
12: send partitions via ReceivePartitions msg to receiver;
13: ReceivePartitions: /*receive and install partitions*/
14: install partitions received;
15: send Received msg to Distribution Manager;
16: ReactivatePartitions: /*resume & redirect inputs for moved partitions */
17: reactivate moved partitions;
18: redirect moved partitions’ input;
19: end while

age first (if any) to make sure tuples get processed in an ordered manner.

Note that the state relocation protocols are performed at the granularity

of the partition group. Thus, the processing of partition groups other than

those to be moved would not be affected by this relocation process.

6.2.2 State Relocation Evaluation

We study the following two parameters in evaluating the state relocation

performance: (1) threshold θr , and (2) minimal time-span between two

consecutive relocations τm. The distribution manager triggers state reloca-

tion if and only if when Mleast/Mmax < θr and the time elapsed since the

6.2. STATE RELOCATION 104

last relocation is greater than τm.

Figures 6.12 and 6.13 aim to investigate the impact of these two param-

eters. Here, the query is partitioned to run in two machines. Each machine

processes about half of all partitions. Maximal memory of each machine

is set large enough to have the query completely run in main memory.

We use a worst case situation in terms of input stream fluctuations hav-

ing each machine alternatively change its demand of main memory. For

example, partitions assigned to machine 1 get 10 times more tuples than

those of machine 2 for the first five minutes. After that, the machine 2 gets

10 times more tuples than machine 1 for the next 10 minutes, and so on.

Thus the main memory usage of these two machines alternates dramat-

ically every 10 minutes. Given this setup, the state relocation may keep

on moving states among two machines, i.e., thrashing by wasting time on

moving states.

Figure 6.12 shows the impact of choosing the threshold θr. We vary

θr from 50% to 90%. A high percentage indicates that a larger number of

adaptations is triggered with each adaptation only moving a small amount

of states. τm is set to 45 seconds in this experiment. Note that the impact of

τm will be further discussed in Figure 6.13.

Seen from Figure 6.12, the throughput when choosing different θr is al-

most the same. All of them experience throughput similar to that of the

pure main memory processing without any adaptations (‘All-mem’). This

implies that the cost of state relocation is low. We thus potentially could

perform such state relocations frequently without impacting the overall

performance. In Figure 6.12, a total of 24 relocations has been conducted

6.2. STATE RELOCATION 105

when θr is set to 90%, while only 2 adaptations when θr equals 50%.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Minutes

T
h

ro
u

g
h

p
u

t

All-Mem

Threshold 90%

Threshold 80%

Threshold 70%

Threshold 60%

Threshold 50%

Figure 6.12: Varying Threshold (θr) that Triggers Relocation

Figure 6.13 shows the impact of τm on the overall performance. We set

θr equal 90%, the one with a large number of adaptations. We then change

τm from 15 seconds to 45 seconds. In Figure 6.13, we again see that the

overall throughput also does not change too much. In this run, there are

31 relocations when τm = 15 seconds, 27 relocations when τm = 30 seconds,

and 24 relocations when τm = 45 seconds.

Seen from Figures 6.12 and 6.13, our pair-wised relocation does not in-

cur significant overhead on the query processing.

We compare the memory usage with/without state relocations, as shown

in Figure 6.14. We set θt = 90% and τm = 15 seconds for the state relocation.

The ‘no-relocation-M1’ and ‘no-relocation-M2’ show the memory usage re-

spectively of machines M1 and M2 without state relocations. As can be

seen, the memory consumption alternatively changes due to our input data

pattern. ‘with-relocation-M1’ and ‘with-relocation-M2’ indicate the mem-

ory usage after the state relocations. We can see that the main memory

6.2. STATE RELOCATION 106

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Minutes

T
h

ro
u

g
h

p
u

t

MinSpan 15 Seconds
MinSpan 30 Seconds

MinSpan 45 Seconds

Figure 6.13: Impact of Minimal Time-span (τm) on Throughput

usage remains largely balanced due to the relocation.

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Every 60 Seconds

M
em

o
ry

 U
sa

g
e

(M
B

)

no-relocation M1

no-relocation M2
with-relocation M1

with-relocation M2

Figure 6.14: Memory Usage with/without Relocation

Applying state relocation maximizes the opportunity for a full main

memory based processing if the aggregated main memory is sufficient for

a given query workload. It thus has the potential to result in a much higher

overall throughput since the cost of state relocation is not expensive as

shown by Figures 6.12 and 6.13.

Figure 6.15 illustrates the benefits of the state relocation. The query is

6.2. STATE RELOCATION 107

run over three machines. We change the initial distribution of partitions to

make one machine process 60% of all partitions, while the other two have

20% of partitions respectively. We set θr = 80% and τm = 45 seconds. In this

setup, state spill is triggered when the main memory usage of the machine

is over 200MB.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Minutes

T
h

ro
u

g
h

p
u

t

no-relocation
with-relocation

Figure 6.15: Throughput: with/without State Relocation

Seen from Figure 6.15, the throughput of the ‘no-relocation’ drops after

running for 40 minutes. This is because main memory of the machine hav-

ing 60% of the partitions overflows and starts pushing states into disks. On

the other hand, the ‘with-relocation’ adapts these states to other machines

having all states kept in main memory. Thus, it generates output contin-

uously at maximal rate during the run-time phase instead of waiting until

the cleanup stage.

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 108

6.3 Integrating State Spills and Relocations

6.3.1 Lazy Disk and Active Disk Approaches

In case of the aggregated memory of all machines not being sufficient for

the given query workload, then the state spills cannot be avoided even

by relocating states across machines. This is because some machines (or

even all machines) in the cluster may suffer due to memory overflow. We

now propose two strategies to combine both state spill and state relocation

aiming for achieving maximal overall throughput in run-time phase in such

memory-constrained environments.

The first solution, called lazy-disk approach, is to postpone the state spill

until there is no main memory in the cluster that can hold the states from

the overloaded machine. That is, when the distribution manager observes

that the difference between the maximal used memory and the least used

memory reaches a certain threshold, then the state relocation is started to

balance the memory usage among machines. This relocation aim to have

as much as states kept in main memory. While the local adaptation con-

troller observes that the memory usage of the machine is beyond a certain

threshold, it then triggers the local state spill adaptation on that particular

machine. Note that these two adaptations are not concurrent. This means

only one adaptation will be processed at a time. In the state relocation pro-

cess, we prefer to choose partitions that have not been pushed into disks

to adapt. This helps to avoid unnecessary overhead and complexity in the

cleanup stage.

The interactions of two adaptations in this lazy-disk approach are de-

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 109

scribed by the pseudo code sketched in Figure 6.16. That is, the distribution

manager starts the state relocation process when the Mleast/Mmax < θr.

While the state spill is triggered for each individual machine if Mused > θs.

Here, Mused denotes the main memory that has been used so far for that

machine. The boolean nodiskAdaptation is set by the sender’s machine in

the state relocation process (when the sender receives the ComputePartition-

sToMove message) to make sure no state spill adaptation will be processed

in that machine when its local adapter is computing the partitions to be

moved across machines. The boolean indiskAdaptation is set when the state

spill adaptation starts. It will force the sender’s machine in a state reloca-

tion process to wait until the state spill finishes. Note that the state spill

adaptation usually finishes quickly. Thus the sender will not need to wait

a long time before resuming the state relocation process. A time-out mech-

anism is also implemented in the system to make sure the state relocation

process will not halt for a long time due to the state spill adaptations.

As can be seen, this lazy-disk approach focuses on the main memory us-

age only since both types of adaptations are driven purely by main memory

usage. In the lazy-disk approach, we push the less productive partitions

(with small Poutput/Psize values) to disk in the state spill process, while we

choose the productive partitions (with large Poutput/Psize values) to move

in the state relocation adaptation. Given that, productive partitions are

likely to be kept in main memory that would result in a high throughput in

the run-time phase.

The state spill in the above approach is a local decision. This means the

decision is made by the query processor as the memory overflow happens

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 110

Distribution Manager

Query
Processor

Query
Processor...

Memory UsageMemory Usage

1: if (Mused> θs) {
2: if (!nodiskAdaptation) {
3: indiskAdaptation= true;
4: diskAdaptation(...);
5: indiskAdaptation= false;
6: }
7: }

1: if (M least/Mmax > θr) {
2: distributedAdaptation(...);
3: }

1: if (receiving ComputePartitionsToMove){
2: wait until !indiskAdaptation;
3: nodiskAdaptation= true;
6: ComputePartitionsToMove(...) ;
7: ...
8: SendPartitions(...);
9: nodiskAdaptation= false;
10: }

Figure 6.16: Lazy-Disk Adaptation

at a local machine. However, the productivity of partitions among ma-

chines might not be the same. For example, the least productive partition

in one machine, as the candidate to be pushed into disks, may still be much

more productive than many other partitions in another machine. Thus, if

we raise the state spill adaptation decision to a global level (to the distri-

bution manager), we could instead globally choosing the least productive

partitions among all machines to be pushed into disks. This should free

more aggregated main memory space across the cluster for the productive

partitions.

Corresponding to this idea, we now propose an active-disk approach

which actively performs state spill adaptations. As illustrated in Figure

6.17, the distribution manager monitors both the main memory usage and

the average productivity rate of machines in the cluster. Here, the average

productivity rate of one machine is defined as the total number of tuples that

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 111

have been generated from this machine during the sampling time divided

by the number of partition groups in the machine.

As in the lazy-disk approach, if Mleast/Mmax < θr, then the state relo-

cation is triggered. If the memory usage across machines in the cluster is

balanced, i.e., the Mleast/Mmax ≥ θr, then we compare the average produc-

tivity rate (R) of each machine. If one machine has a much lower average

productivity rate, for example, Rmax/Rmin > λ, we then force the par-

titions of the lower average productivity rate machine to be pushed into

disks. Given this, we would leave main memory space for the high produc-

tive partitions in other machines to be relocated into these machines. This

would help the overall performance since higher productive partitions re-

main in main memory. Note that the state spill is triggered independently

when Mused > θs as described in the lazy-disk approach.

However, pushing more states into disks than necessary could decrease

the overall performance as well. In the active-disk strategy, we set the max-

imal amount of states being pushed by the distribution manager to be less

than Mquery −Mcluster, where Mquery denotes the estimation of the over-

all main memory consumption for the query, while Mcluster is the overall

available main memory of the cluster.

6.3.2 Lazy-Disk and Active-Disk Evaluation

A lazy-disk adaptation approach has the potential to fully utilize all avail-

able main memory in the cluster. As we have shown in Section 6.2.2, the

state relocation only causes little overhead on the query processing. Thus,

this has a high chance of resulting in a high run-time throughput. Figure

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 112

Distribution Manager

Query
Processor

Query
Processor...

Memory Usage
Output Rate

Memory Usage
Output Rate

Query
Processor

...

Memory Usage
Output Rate

1: if (M least/Mmax > θr) {
2: distributedAdaptation(...);
3: } else if (Rrmax/Rmin > λ) {
4: forceDiskAdaptation(...);
5: }

1: if (Mused> θs) {
2: if (!nodiskAdaptation) {
3: indiskAdaptation= true;
4: diskAdaptation(...);
5: indiskAdaptation= false;
6: }
7: }

1: if (receiving ComputePartitionsToMove){
2: wait until !indiskAdaptation;
3: nodiskAdaptation= true;
6: ComputePartitionsToMove(...) ;
7: ...
8: SendPartitions(...);
9: nodiskAdaptation= false;
10: }

1: if (receiving ForcePartitionsToPush){
2: wait until !indiskAdaptation;
3: nodiskAdaptation= true;
4: ForcePartitionsToMove(...) ;
5: nodiskAdaptation= false;
6: }

Figure 6.17: Active-Disk Adaptation Approach

6.18 shows the performance of the lazy-disk approach in a memory con-

straint environment when the memory of all machines is not enough for

the query processing. The query is deployed on three machines. We set

a skewed initial distribution with one machine being assigned 2/3 of all

partitions, while another two machines share evenly the rest 1/3 of par-

titions. In this setup, if we do not apply state relocation, then only one

machine gets overloaded. While the other two can process its partitions

fully in main memory. We call this ‘no-relocation’ approach. Using the

lazy-disk approach, all three machines will eventually get overloaded and

trigger state spill processes.

Seen from Figure 6.18, the lazy-disk approach has a higher overall through-

put than the ‘no-relocation’. This is because the lazy-disk approach fully

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 113

makes use of available main memory in the cluster during the query pro-

cessing.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Minutes

T
h

ro
u

g
h

p
u

t

No-Relocation

Lazy-Disk

Figure 6.18: Lazy-Disk vs. No State Relocation

Even for an extremely heavy query workload where each machine in

the cluster does not have sufficient memory to process the partitions as-

signed to them, a lazy-disk approach still has benefits. To illustrate, we

again deploy the given query into three machines and have one machine

get more partitions than the others. We run the query for 6 hours so that

each machine has a large amount of states beyond its capacity, i.e., its avail-

able main memory. We again compare the performance of lazy-disk and

no-relocation. In the experiment, the overall results generated in this 6 hour

run by these two approaches are similar since they have similar amount of

states being pushed into the disk.

However, the clean up process of these two approaches are dramati-

cally different. The no-relocation approach takes more than 1600 seconds

to produce 2,023,781 tuples in the clean up stage. This is because most of

work is done by one machine. While the lazy-disk approach only takes less

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 114

than 400 seconds to clean up. This is because the work is already evenly

distributed among all three machines before cleanup starts.

0

500000

1000000

1500000

2000000

2500000

3000000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Minutes

T
h

ro
u

g
h

p
u

t
Lazy-Disk
Active-Disk

Figure 6.19: Lazy-Disk vs. Active-Disk: Comparison One

We now illustrate that the active-disk approach could further improve

run-time query throughput if the distribution manager observes major dif-

ferences of productivity among machines while the memory usage is bal-

anced. Figure 6.19 shows one comparison of these two approaches. In this

experiment, we set the tuple range of the input stream to 30K. We set the

partitions assigned to machine m1 to have a high average join rate of 4,

while partitions in the other two machines have a low average join rate of

1. The lazy-disk approach does nothing at the distribution manager level if

the memory usage among the three machines is balanced. While the active-

disk approach forces lower productive partitions to be pushed into disks

since the average productivity of partitions in machine m1 is much larger

than that of the other two. Note that in both approaches, each machine

triggers the state spill process as its memory usage reaches its threshold

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 115

(θs ≥ 60MB). Here, the state relocation threshold θr is set to 0.8, while

the minimal time span of two relocations τm is set to 45 seconds. The pro-

ductivity threshold λ that triggers a ‘force state spill adaptation’ is set to 2.

Seen from Figure 6.19, the active disk strategy experiences a slight drop in

the throughput after it starts pushing partitions into disks. However, the

active-disk strategy outperforms the lazy-disk gradually since more high

productive partitions remain in main memory.

We need to control the total amount of states that are pushed by the dis-

tribution manager. This is because too many pushes than necessary could

slow down the overall performance. In the above experiment, we set the

total amount of states being pushed by the distribution manager to less

than 100 MB.

0

500000

1000000

1500000

2000000

2500000

3000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Minutes

Th
ro

ug
hp

ut

Lazy-Disk

Active-Disk

Figure 6.20: Lazy-Disk vs. Active-Disk: Comparison Two

As the difference of average productivity of different machines increases,

then the active-disk approach can further improve the run-time query through-

put compared to the lazy-disk approach. We set partitions assigned to ma-

6.3. INTEGRATING STATE SPILLS AND RELOCATIONS 116

chine m1 (with a join rate 4) to have a small tuple range (15K), while set

the partitions assigned to the other two machines (with a join rate 1) to

have a large tuple range (45K). This setup further differentiates the average

productivity values of machines. Having a smaller tuple range indicates

a larger join factor value given the same number of input tuples. It thus

further increases the number of output tuples. As expected, the active-disk

approach has a major throughput improvement compared with that of the

lazy-disk approach (see Figure 6.20).

117

Chapter 7

Spilling States of Pipelined

Query Trees

In Chapter 6, we have focused on adapting states of queries with one single

state intensive multiple input operator to address the run-time main mem-

ory shortage problem. However, in a data integration context, queries with

multiple state intensive operators are common. In this chapter, we thus

investigate how to spill operator states (partition groups) from pipelined

state intensive operators in the query tree.

Given multiple state intensive operators, interdependency among dif-

ferent operators cannot be avoided. For example, as shown in Figure 7.1,

two state intensive operators OPi and OPj with the output of OPi directly

being pipelined as input stream into OPj . Now, if we apply state spill

strategies for one single operator, i.e, with the adaptation decision aimed

to maximize output streams generated by OPi when spilling states from

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 118

OPi. Now this would in turn increase the main memory consumption of

OPj . This is because the operator states of OPj are directly dependent on

the output of OPi. On the other hand, these states in OPj may not necessar-

ily contribute to the final output of the query. For example, OPj may have

a rather low selectivity, thus only very few results tuples will be generated

from OPj .

OP� OP�… …

Maximize the output of OPi?

Figure 7.1: A Chain of Stateful Operators

As we have discussed in Chapter 6, we also aim for maximal run-time

phase throughput when the main memory of the system is not enough for

the query processing. Again, we use symmetric m-way hash join [111] as

the example of state intensive operators.

7.1 Global Throughput-Oriented State Spill

We first define the operator state size and the state size of the query tree

since different operators in the query tree can have different contributions

to the overall state size. The size of the operator state can be estimated

based on the average size of each tuple and the total number of tuples in

the operator. The total state size of the query tree is defined as the sum of

all the operator sizes. For example, the state size of Join1 (see Figure 7.2)

can be estimated by S1 = ua ∗ sa + ub ∗ sb + uc ∗ sc. Here, sa, sb, and sc

denote the number of tuples have been stored in Join1 from input streams

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 119

A, B and C respectively. While ua, ub, and uc represent the average sizes of

each input tuple from the corresponding input streams.

In Figure 7.2, I1 and I2 denote the intermediate results from Join1 and

Join2 respectively. Note that the average size of each tuple in I1 can be

represented by ua + ub + uc, while the average size of one tuple in I2 can be

denoted by ua + ub + uc + ud. Here, we assume no projection is applied in

the query plan. However, this simple model can be naturally extended to

situations when projection does exist.

The size of operator states to be pushed during the spill process can be

computed in a similar manner. For example, assume da tuples from A, db

tuples from B, and dc tuples from C are to be pushed. Then, the pushed

state size can be represented by D1 = ua ∗ da + ub ∗ db + uc ∗ dc.

A B C

D

E

Join�
S1=ua*sa +ub*sb +uc*sc ua ub

uc

ud

ue

I1

I2

D1=ua*da +ub*db +uc*dc

(ua+ub+uc)

(ua+ub+uc+ ud)

overall state size

spilled state size
Join� Join�

Figure 7.2: Operator/Query Tree State Size

Thus, the percentage of states been pushed for the query tree can be

computed by the sum of state size being pushed divided by the current

total main memory resident state size. For the query tree depicted in Figure

7.2, it is denoted by (D1 + D2 + D3)/(S1 + S2 + S3). Here Si represents the

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 120

current total state size of operator Joini, while Di denotes the operator

states being pushed from Joini (1 ≤ i ≤ 3).

7.1.1 Choosing Candidate Partitions to Spill

Given multiple stateful operators in the query tree, partition groups from

different operators can be considered as the candidates to be pushed when

main memory overflows. Again, the question is how to spill the right par-

tition groups in order to have the least effect on the overall run-time query

throughput.

In Section 6.1, we have investigated different strategies on how to push

partition groups from one single operator into disks in order to have the

least affect on the overall run-time phase throughput. While given multiple

stateful operators in the query tree, we have to further figure out which

operator(s) and how many partition groups from each operator need to

be pushed. As we will discuss shortly, a direct extension of our strategies

described in Section 6.1.3 does not perform well in the multiple stateful

operator situation. We instead propose various strategies for how to choose

partition groups from multiple stateful operators. As discussed in Chapter

6, we will continue to push k% of operator states in each adaptation.

Let us first investigate the impact of pushing operator states in a chain

of operators. Figure 7.3 illustrates an example chain of operators: OP1,

OP2, . . ., and OPn. Here OPi (1 ≤ i ≤ n) in the chain can be viewed

as an abstract stateful operator in the query tree, it does not have to be a

single input operator. While si represents the selectivities of operator OPi

respectively.

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 121

OP
1

OP
2

OP
3

OP
n

…
s1 s2 s3 sn

to final output

Intermediate states

Figure 7.3: An Operator Chain

For such an operator chain, Equation 7.1 estimates the possible number

of output tuples (u) from OPn given a set of t input tuples to OP1.

u =
n
∏

i=1

si ∗ t (7.1)

The total number of tuples that will be stored in the chain due to these

t tuples, that is, the indicator of the increase on the operator state size, can

be computed as follows 1.

I =

n
∑

i=1

[(

i−1
∏

j=1

sj ∗ t)] (7.2)

More precisely, OP1 stores t tuples, OP2 stores t ∗ s1 tuples, OP3 stores

t∗s1 ∗s2 tuples, and so on. Thus, if we were to drop all t tuples at OP1, then

all the corresponding intermediate results due to these t tuples that have to

be stored in OP2, OP3, . . ., OPn on the other hand now would not appear

any more. Note that dropping any of these intermediate results would also

have the same overall effect on the final output, i.e., dropping the t ∗ s1

1Note that we assume that all the input tuples to the stateful operators have to be stored
in the operator as operator states, i.e., join operators. In principle, other stateful operators
such as those impose a window constraint for state purging can be addressed in a similar
manner.

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 122

tuples at OP2 has the same overall effect on the final output as estimated

by the Equation 7.1.

Bottom-up Pushing. Inspired by the above analysis, we propose one naive

solution, referred to as bottom-up pushing, to spill operator states of a query

tree with multiple stateful operators. That is, we always choose operator

states from the bottom operator(s) in the query tree until the selected states

reach k% compared to the overall operator state size. Here, the bottom

operator is defined as the stateful operators having the highest height in

the query tree assuming the root operator has a height of zero, i.e., OP1

in Figure 7.3. Partition groups from the bottom operator are chosen ran-

domly, or alternatively, we can employ a more sophisticated strategy based

on certain statistics such as the throughput-oriented strategy discussed in

Section 6.1.3. Note that for a query tree having multiple bottom operators,

we randomly choose one of them to start. We only spill states of their par-

ent operators until states from all bottom operators do not fill up the k%.

As can be seen, if we spill partition groups of the bottom operator, we

would have less intermediate results stored in the query tree compared

with pushing states in the other operators. Thus, the bottom-up push-

ing strategy has the potential of requiring a smaller number of state spill

processes while still achieving the same reduction in memory space usage.

This is because less states (intermediate results) are expected to be accumu-

lated during the query processing.

However, having a smaller number of state spill processes does not nat-

urally result in a high overall throughput. This is because (1) the parti-

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 123

tions being pushed in the bottom operator can be the parent partitions in

its downstream operators. While these downstream partitions may expe-

rience a high output rate. (2) the cost of each state spill process may not

be high, thus instead opting for a large number of state spill processes may

not incur any significant overhead on the query processing. That is, which

partitions to be spilled may be more important than how many time of state

spill processes in terms of the effect on run-time query throughput.

Given a partition based query tree, the output of a particular partition

of any operator (in particular a bottom operator) is likely to be sent into

multiple different partitions of its downstream operator(s). For example,

as illustrated in Figure 7.4, assume t input tuples into OP1 are partitioned

to become member of the partition group P 1
1 . Here the superscript repre-

sents the operator ID, while the subscript denotes the partition ID. After

the processing in OP1, (t11 + t12) result tuples are output to OP2. Of those,

t11 tuples are partitioned to P 2
1 of OP2, while t12 tuples are partitioned to P 2

2

of OP2. Now P 2
1 and P 2

2 of OP2 may have rather different selectivities. For

example, the number of output t22 from P 2
2 may be much larger than the

output t21 from P 2
1 , while the size of these two partitions may be similar.

Thus, it may be worth while to keep P 1
1 in OP1 even though certain states

(in P 2
1 of OP2) will be accumulated as a side-effect of keeping P 1

1 .

As can be seen, the relationship between partitions among adjacent op-

erators is a many to many relationship. Thus, pushing partition groups at

the bottom operator may affect multiple partition groups at any of its down

stream operators. From above, we can see that this naive bottom-up push-

ing strategy does not have a as clear connection to the overall throughput

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 124

as one may assume at first.

OP� OP�...

OP�...
p1

1t

t11

t12

t21

t22p1
2 ...

p2
1

p2
2 ...

pn
1

pn
2

Figure 7.4: A Chain of Partitioned Operators

To design a better state spilling strategy, we need to globally select par-

tition groups in the query tree as candidates to be pushed. Figure 7.5 il-

lustrates the basic idea of this type of approach. That is, instead of push-

ing partition groups from particular operator(s) only, we conceptually view

partition groups from different operators at the same level. While we choose

partition groups among all operators based on the cost statistics collected

about each partition.

A B C

D

EJoin�
Join�

Join�
…

Disk
State Spill

Figure 7.5: Globally Choose Partition Groups

The basic statistics we collect for each partition group are Poutput and

Psize. Poutput indicates the total number of tuples that have been output

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 125

from the partition group, while Psize refers to the operator state size of the

partition group. These two values together can be utilized to identify the

productivity of the partition group. We now describe three different strate-

gies on how to collect Poutput and Psize values of each partition group, and

how partition groups can be chosen based on these values with less impact

on the run time throughput.

Local Output. The first strategy, referred to as local output, treats each op-

erator individually when updating its statistics such as Poutput and Psize

values of each partition group. This strategy actually is inspired by exist-

ing strategies as described in Section 6.1.3. Psize of each partition group is

updated whenever the input tuples are inserted into the partition group.

While Poutput value is updated whenever output tuples are generated from

the operator.

A B C

D

EJoin�
Join�

Join�
Poutput, Psize

…

…

t1

t2

t3

Poutput, Psize

t

Figure 7.6: A Localized Statistics Approach

Figure 7.6 illustrates this localized approach. For example, t tuples in-

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 126

put into Join1, we then update Psize of the corresponding partition groups

in Join1. When t1 tuples are generated from Join1, then Poutput value of the

corresponding partition groups in Join1 and the Psize value of related par-

itition groups in Join2 are updated. Similarly, if we get t2 from Join2, then

Poutput of the corresponding partition groups in Join2 and Psize in Join3

are updated.

The selection of partition groups to be pushed to disk is based on the

productivity value (Poutput/Psize) of each partition group. In this local output

strategy, we select the partition group with the smallest productivity value

among all partition groups in the query as candidates to be pushed.

However, this approach does not provide a global productivity view of

the partition groups. For example, if we leave partition groups of Join1

in main memory that exhibit high productivity values, then this in turn

would contribute to generating more output tuples to be sent as inputs to

Join2. All these outputs will be stored in Join2. It thus increases the main

memory consumption of Join2. This may cause the main memory to be

filled up quickly. Note that these intermediate results may not necessarily

help the overall throughput since these results may be dropped by any one

of its down-stream operators if it happens to have a low selectivity.

Global Output. In order to maximize the run-time throughput after push-

ing states into disks, we need to have a global view of partition groups

that reflects how each partition group contributes to the final output of the

query. That is, the productivity value of each partition group needs to be

defined in terms of the whole query tree (not just its local effect).

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 127

This requires us to have the Poutput value of each partition group cor-

respond to the number of final output tuples generated from the query.

In this case, the productivity value, Poutput/Psize, denotes how ‘good’ the

partition group is in terms of contributing to the final output of the query.

Thus, if we have the partition groups with high global productivity value

in main memory, the overall throughput of the query tree is likely to be

high compared with other pushing strategies.

To achieve this, we design a tracing algorithm to update the Poutput value

of each partition group. The basic idea is whenever output tuples are gen-

erated from the query tree, we then figure out the lineage of each output

tuple. That is, we trace back to the respective partition groups of different

operators that contributed to the output. For join operators, we note that

the tracing back to the contributing partition groups that contributed to the

output can be computed by reapplying the corresponding split operators.

Here we assume the output tuple contains at least all join columns along

the query tree. Thus, applying corresponding split functions on each out-

put tuple (on the corresponding join column value) exactly re-produces the

lineage of partition groups that contributed to the output. Note that the up-

date of the Psize value remains the same as we have discussed in the local

output approach.

Note that for other operators that do not have such partition informa-

tion automatically embedded in each output tuple, we may have to encode

such lineage information into the output tuple. In this case, techniques

such as discussed in [30] can be applied.

For example, as shown in Figure 7.7, if 10 tuples are generated from

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 128

partition group 2 (P 3
2) of Join3, we directly update the Poutput values of P 3

2

by Poutput ← Poutput + 10. To find out the partition groups in the Join2 that

contribute to the outputs, we then apply the partition function of Split2 on

each output tuple. Note that multiple partition groups in the Join2 may

contribute to even to the same partition group in Join3. In this example,

partition groups with ID 1 (P 2
1) has output 6 tuples, partition group P 2

4 has

sent 2 tuples, while P 2
6 have sent 2 tuples to P 3

2 repectively. We thus update

the Poutput values for partition groups with IDs 1, 4 and 6 in Join2 based on

the number of output tuples they have sent to Join3. Similarly, we apply

the partition function of Split1 to find the corresponding partition groups

in operator Join1 and update their Poutput values.

A B C

D

EJoin�
Join�

Join�
Split�

Split� Split� Split�
Split�

Split�Split�
10

{P3
2:10}

{P2
1:6, P2

4:2, P2
6:2}

{P1
2:4, P1

6:6}

Figure 7.7: Tracing and Updating the Poutput

Such tracing and updating may incur a certain overhead on the query

processing. We thus do not have to trace and update Poutput values for each

output tuple, we can only update the value with a certain probability, say,

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 129

10% of the output tuples using some random sampling method.

The high level picture of this tracing algorithm is sketched in Algorithm

6. Here, we assume in each stateful operator in the query tree has references

to its immediate upstream stateful operator and its immediate split oper-

ator. Note that for a query tree, then multiple pairs of immediate stateful

operator references and its immediate split operator references may exist.

We thus can similarly use a breadth-first/depth-first query tree search al-

gorithms to update the Poutput values of corresponding partition groups.

Algorithm 6 updateStatistics(tpSet)

/*Tracing and updating the Poutput values for a given set of output tuples
tpSet.*/

1: prv join ref ← this.getUpStreamJoinReference();
2: prv split ref ← this.getUpStreamSplitReference();
3: while ((prv join ref 6= null) && (prv split ref 6= null)) do

4: for each tp ∈ tpSet do

5: cPID← Compute partitionID of tp in prv join ref ;
6: Update Poutput of partition group with ID cPID;
7: end for

8: prv split ref ← prv split ref.getUpStreamSplitReference();
9: prv join ref ← prv join ref.getUpStreamJoinReference();

10: end while

Algorithm 6 is activated when output tuples of the query tree have been

generated, i.e., from Join3 as shown in Figure 7.7.

Given the above tracing, the Poutput value of each partition group indi-

cates the total number of outputs that have been generated that had some

part of the output tuple come from this partition group. Thus, Poutput/Psize

indicates the global productivity of the partition group. By pushing partition

groups with a lower global productivity, we expect that the overall run-

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 130

time phase throughput would be better optimized than when using the

localized approach or the bottom-up approach.

Global Output with Penalty. In the above approaches, the size of the

partition group Psize only reflects the main memory usage of the current

partition group. However, the operators in a query tree are not indepen-

dent. That is, output tuples of an upstream operator have to be stored in

its downstream stateful operators. This indirectly affects the Psize of the

corresponding downstream operator partition groups.

For example, as shown in Figure 7.8, both partition groups P 1
1 and P 1

2

of OP1 have the same Psize and Poutput values. Thus, these two partitions

would have been assigned the same productivity value given the global

output approach. However, P 1
1 produces 2 tuples on average (have to be

stored in OP2) given one input tuple. While one tuple input to P 1
2 generates

20 tuples on average and stores in OP2. Given that all such intermediate

results have to be stored in the downstream stateful operators, pushing P 1
2

instead of P 1
1 can help to reduce the storage requirement demanded by in-

termediate results. This in turn reduces the number of state spill processes

required overall.

To capture this, we now define an intermediate result factor in each

partition group Pinter. This factor indicates the possible intermediate re-

sults that will need to be stored in its downstream operators in the query

tree. This intermediate result storage factor can be computed similarly as

the tracing of the final output. That is, if a final output is produced from

the query tree, we update the Poutput value of the corresponding partition

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 131

...

2

2

P1
1: Psize= 10, Poutput=20

P1
2: Psize= 10, Poutput=20

OP�...
p1

1

1

p1
2

OP�...
p2

i

p2
j1

2

20

Figure 7.8: The Impact of the Intermediate Results

groups in the operators. While for all the intermediate results generated,

we update the Pinter values of the upstream operators. We then define the

productivity value of each partition group as Poutput/(Psize + Pinter)
2.

Figure 7.9 illustrates how tracing algorithm can be utilized to record

the intermeidate result strorage factor Pinter. For example, one input tuple

to OP1 eventually generates 2 output tuples from OP4. For simplicity, we

assume all these tuples are partitioned to the partition group 1 of each op-

erator. Here, the number indicated in the square box represent the number

of intermediate results tuples generated along the processing of this input

tuple. Thus, once the 2 output tuples are produced by partition group P 1
1 ,

the tracing algorithm updates the Pinter ← Pinter + 2 for P 1
1 . After the 3

tuples are produced from P 2
1 (in OP2), the tracing algorithm updates the

Pinter (Pinter ← Pinter + 3) for both P 1
1 and P 2

1 . Similarly, once the 4 tuples

are produced from P 3
1 , Pinter values of P 1

1 , P 2
1 and P 3

1 are updated. Thus,

Pinter of P 1
1 increases by 9, Pinter of P 2

1 increases by 7 tuples, while Pinter of

P 3
1 increases by 4. As can be seen, Pinter value of an operator indicates the

2Variations exist on how to define the productivity, i.e., to emphasize the Pinter value.
Again, this can be investigated in the future work.

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 132

number of intermediate result tuples need to be stored in its downstream

operators.

While for the final 2 output tuples, the tracing algorithm updates the

Poutput values of partition group 1 in all operators.

......
3

OP�...
p1

1

1

p1
2

OP�p2
1

p2
j

2 4

OP�p3
1

p3
j

2

OP�...
p4

1

p4
j

2
3

3

4

4
4

Figure 7.9: Tracing and Updating Pinter Values

Only little change is required in Algorithm 6 to to support this tracing of

both intermediate results and final output tuples. Now we update Poutput

value if the tpSet is the set of final output tuples of the query, while update

Pinter otherwise.

7.1.2 Clean Up Multiple Stateful Operators

Given a query tree with multiple stateful operators, when operator states

from any of the stateful operators have been pushed into the disk at the

run-time phase, then the cleanup stage cannot be performed in a random

order. This is because the operator has to incorporate the missing results

generated from the cleanup process of its up stream operator. That is, the

cleanup process of join operators has to conform to the partial order as

defined in the query tree.

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 133

Figure 7.10 illustrates a 5-join query tree ((A ⊲⊳ B ⊲⊳ C) ⊲⊳ D) ⊲⊳ E with

three joins being denoted as Join1, Join2, and Join3 respectively. Assume

we have operator states pushed into the disk from all three operators. The

corresponding join results from these disk resident states are denoted by

∆I1, ∆I2, and ∆I3. From Figure 7.10, we can see that the cleanup results of

the Join1 (∆I1) have to be joined with the complete operator states of D to

produce the cleanup result for Join2. Here, the complete states D includes

states from the disk resident part ∆I2 and the corresponding main memory

operator states. While the cleanup result of Join2, (∆I2 + ∆I1 ⊲⊳ D), has

to join with the complete operator states from E to produce the missing

results.

A B C

D

E

∆I1

∆I2

∆I3

Clean up

Spilled States

Join� Join� Join�

Figure 7.10: Clean Up the Operator Tree

Given this constraint, we design a synchronized cleanup process to com-

bine disk resident states and to produce missing results. That is, we order

the cleanup process based on the height in the query tree. We first cleanup

the operator(s) with the largest height.

The clean up process for a particular operator is the same as we dis-

7.1. GLOBAL THROUGHPUT-ORIENTED STATE SPILL 134

cussed in Section 6.1.2. Note that the cleanup process for operators with

the same height can be processed concurrently. Once the up stream op-

erator completes its cleanup process, it notifies its down stream operator

using a control message to indicate no more input tuples will come. Then

the cleanup process of the down stream operator can be started. Note that

all the other operators (the stateful operators that have not been cleaned

and other stateless operators such as split) keep on running as usual. Here,

the results of the current cleanup process will continue feeding the down

stream operators as during the normal run-time query processing. Once

the cleanup process of the operator has been completed, the operator then

will no longer be scheduled.

Given the example illustrated in Figure 7.10, we first start the cleanup

process of Join1. Note that in the cleanup process, no more input tuples

will come from the input streams such as A, B and C. The missing results

generated from the cleanup process of Join1 will be immediately sent to

the down stream operators. Once the cleanup process of Join1 completes,

i.e., ∆I1 has been generated. Then, the Join1 generates a special control

tuple ‘End-of-Cleanup’ to indicate the end of the cleanup process. After the

down stream stateful operator, Join2 in this example, receives the tuple,

it starts its cleanup process. Note that all the other non-stateful operators

between these two stateful operators, such as split operators, will simply

pass the ‘End-of-Cleanup’ tuple to the down stream operator. This process

continues until all cleanup processes have been processed.

Note that it is possible to start the cleanup process of all stateful op-

erators at the same time. However, this may require a large amount of

7.2. PARTITIONING QUERY TREES 135

main memory space since each cleanup process will bring disk resident

states into the memory. On the other hand, the operator states of the down

stream operators cannot be released until its up stream operators finish

their cleanup and compute the missing results. While for the synchronized

method, we bring these disk resident states sequentially and discard them

once the cleanup process of this operator completes.

7.2 Partitioning Query Trees

The approach of partitioning input streams, that is, operator states, helps to

achieve a partitioned parallel query processing [21, 68, 95]. This is because

we can simply spread the partitions into different machines with each ma-

chine thus only processing a portion of all inputs. This is useful given our

focus on queries with multiple state intensive operators that are resource

demanding in nature. In this section, we now extend our global state spill

strategies to also work for partitioned parallel query processing environ-

ments.

The following two issues first need to be solved for supporting a par-

titioned parallel query processing: (1) allocation of stateful operators to

available machines, and (2) composition of partitioned query plan that run

on multiple machines.

Allocating Multiple Stateful Operators. The allocation of stateful oper-

ators refers to the distribution of stateful operators to available machines.

In this work, we choose to allocate all stateful operators in the query tree

7.2. PARTITIONING QUERY TREES 136

to all the machines in the cluster, as shown in Figure 7.11(b). Thus, each

machine will have exactly the same number of stateful operators defined

in the query tree activated. Each machine processes a partition of all input

streams of the stateful operators.

Note that we only focus on the complex stateful operators in the alloca-

tion since these operators have the potential of requiring partitioned pro-

cessing. While the allocation of non-stateful operators in the query tree is

simple, i.e., a round robin approach that aims to distributed these operators

evenly to the available machines.

Join��Join��
A B C

D

Split� Split� Split�Join��Split� Join��
Split�� Split��

Join�Join�
A B C

D

cluster

m1 m2

m3 m4

(a) Original Query (b) Allocating Multiple
Stateful Operators

(c) Composing Partitioned
Query Plan

Figure 7.11: Partitioned Parallel Processing of Query Trees

Composing Partitioned Query Tree. The composition of the partitioned

query plan focuses on how to connect partitioned stateful operators. It

needs to be addressed after the distribution of stateful operators as dis-

cussed above has been completed.

Here we use the split per instance approach illustrated in Figure 7.11(c).

We directly insert one split operator after each instance of the stateful op-

7.2. PARTITIONING QUERY TREES 137

erator. Both the split operator and the operator instance are activated in

the same machine. Thus, the output of the operator instance is directly

partitioned and then shipped to the appropriate down stream operators.

Note that other approaches exist for both allocating stateful operators

and composing partitioned query plan. However, the main focus of the

work is to adapt operator states in order to address run time main memory

shortage problem. Thus, the exploration of other partitioned parallel pro-

cessing approaches as well as their performance are beyond the scope of

this dissertation work.

State Spilling in Partitioned Parallel Environments. The global through-

put oriented state spilling strategies discussed in Section 7.1.1 naturally ap-

ply to the partitioned parallel processing environments. This is because the

cost statistics we collected are purely based on main memory usage and op-

erator states only. It is not sensitive to the distribution of the query plans.

However, given partitioned parallel processing, the update of the Poutput

value can be across different machines. For example, as shown in Figure

7.12, the query plan is deployed in two machines. If k tuples are gener-

ated from Join3, we directly update the Poutput values of partition groups

in Join3 that produces these outputs. To find out the partition groups in

Join2 that contribute to the outputs, we then apply the partition function

of Split2 on each output tuple. Note that given partitioned parallel process-

ing, partition groups from different machines may contribute to the same

partition group of the down stream operator. Thus, the tracing and up-

dating of Poutput values may involve multiple machines. In this work, we

7.2. PARTITIONING QUERY TREES 138

design a UpdatePartitionStatistics message to notify other machines the up-

date of Pinter and Poutput values. Since each split operator knows exactly

the mapping between the partition groups and the machines having these

partitions, it is feasiable to only send the message to the machine having

the partition groups to be updated.

A B C

D

EJoin�
Join�

Join�
Split�

Split� Split� Split�
Split�

Split�Split�
k

A B C

D

EJoin�
Join�

Join�
Split�

Split� Split� Split�
Split�

Split�Split�
Machine1 Machine2 m

Figure 7.12: Tracing the Number of Output

The revised updateStatistics algorithm is sketched in Algorithm 7. We

classify partition group IDs by applying the current split function into lo-

calIDs and remoteIDs depending on whether the ID is mapped to the cur-

rent machine. Then for the partition groups with localIDs, we update either

Pinter or Poutput based on whether the current tpSet is a set of intermedi-

ate results. While for the remoteIDs, we compose UpdatePartitionStatistics

messages with appropriate information and then send the messages to the

machine with the partition groups having IDs in the remoteIDs.

7.3. GLOBAL STATE SPILL EVALUATION 139

Algorithm 7 updateStatisticsRev(tpSet,intermediate)

/*Tracing and updating the Poutput/Pinter values for a given set of output tuples
tpSet. intermediate is a boolean values indicate whether the tpSet is the interme-
diate results of the query tree*/

1: prv join ref ← this.getUpStreamJoinReference();
2: prv split ref ← this.getUpStreamSplitReference();
3: while ((prv join ref 6= null) && (prv split ref 6= null)) do

4: for each tp ∈ tpSet do
5: cPID← Compute partitionID of tp in prv join ref ;
6: Classify cPID into localIDs/remoteIDs;
7: end for

8: if (intermediate) then

9: Update Pinter of localIDs;
10: else

11: Update Poutput of localIDs;
12: end if

13: Compose & send UpdatePartitionStatistics msg(s) for remoteIDs;
14: prv split ref ← prv split ref.getUpStreamSplitReference();
15: prv join ref ← prv join ref.getUpStreamJoinReference();
16: end while

7.3 Global State Spill Evaluation

The above state spill strategies for query trees with multiple stateful opera-

tors have been implemented in the D-Cape system. The performance stud-

ies are conducted on the 10-machine cluster we already describe in Section

11.6. We use a five-join query tree illustrated in Figure 7.12 as an example

to report our experimental results. The query is defined on 5 input streams

denoted as A, B, C, D, and E with each input stream having two columns.

Here Join1 is defined on the first column of each input stream A, B, and

C. Join2 is defined on the first join column of input D and the second join

column of input C, while Join3 is defined on the first column of input E

and the second column of input D. Note that other types of query plans

7.3. GLOBAL STATE SPILL EVALUATION 140

have also been used in the experimental studies. They all result in similar

results as will be reported here.

We deploy the query on two machines with each machine processing

about half of all input partitions. All input streams are partitioned into 300

partitions. We set the memory threshold to 60 MB, which means the system

starts spilling operator states into the disk when the memory usage of the

system is over 60 MB. In each state spill process, we push 30% of all states

into disks. We vary the join rate of the join operators in the query tree. The

average tuple inter arrival time is set to 50 ms for each input stream.

Figure 7.13 compares the run-time phase throughput of different state

spilling strategies. Here we set the average join rate of Join1 3, while the

average join rates of Join2 and Join3 are both 1. In Figure 7.13, the X-

axis represents the minutes have been run up to the point, while the Y-axis

denotes the overall run time throughput.

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Minutes

T
h

ro
u

g
h

p
u

t

Global Output with Penalty
Global Output
Local Output
Bottom-Up

Figure 7.13: Comparing the Run-time Throughput

From Figure 7.13, we can see that both the local output approach and

the bottom-up approach perform much worse than the global output and the

7.3. GLOBAL STATE SPILL EVALUATION 141

global output with penalty approaches. This is as expected because the local

output and the bottom-up approaches do not consider the productivity of

partition groups at a global level. From Figure 7.13, we also see that the

global output with penalty approach performs even better than the global out-

put approach. This is because the global output with penalty approach is

able to efficiently use the main memory resource by considering both the

partition group size as well as the possible intermediate results that have

to be stored in the query tree.

Figures 7.14 and 7.15 show the the corresponding memory usage when

applying different spilling strategies. Figure 7.14 shows the memory usage

of the global output approach and global output with penalty approach. Note

that each ‘zig’ in the lines denotes one state spill process. From Figure

7.14, we can see that the global output approach has a total of 13 state spill

processes in the 50 minutes running. While the global output with penalty

approach only has a total of 10 times of spills. Again, this is as expected

since the global output with penalty approach considers both the size of the

partition group and the overall memory impact on the query tree in each

adaptation.

As discussed in Section 7.1.1, having a smaller number of state spill

processes does not imply a high overall run time phase throughput. From

Figure 7.15, we can see that the bottom-up approach only has 7 adaptations.

However, the run time phase throughput of the bottom-up approach is much

less than the global output with penalty approach as seen from Figure 7.13.

This is because having high productive partition groups in main memory

helps to the overall throughput.

7.3. GLOBAL STATE SPILL EVALUATION 142

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Every 30 Seconds

M
em

o
ry

 U
sa

g
e

(M
B

)

Global Output with Penalty
Global Output

Figure 7.14: Global Output vs. Global Output with Pentalty

In Figures 7.16 and 7.17, we show the run time phase throughput if we

vary join rates of the operators. As can be seen, they exhibit the results

similar to what we have shown in Figure 7.13. In Figure 7.16, we set the

join rate of Join1 1, while the join rates of Join2 and Join3 3. In Figure

7.17, we set the join rate of Join1 to 3, Join rate of Join2 to 2, and the join

rate of Join3 to 3. From both figures, we can see that the global output with

penalty approach alway outperforms other state spill strategies, while both

the bottom-up and the local output approaches are much worse than the two

global approaches.

Note that the run-time throughput of bottom-up approach and the local

output approach are not always consistent. It is not that one approach is

always better than the other. Figure 7.16 shows that the bottom-up approach

has a higher run-time throughput than that of the local output approach,

while Figure 7.17 instead shows that the local output approach is better than

the bottom up approach. This is because both approaches do not consider

the productivity of partition groups at a global level.

7.3. GLOBAL STATE SPILL EVALUATION 143

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Every 30 Seconds

M
em

o
ry

 U
sa

g
e

(M
B

)

Global Output with Penalty

Bottom-Up

Figure 7.15: Global Output with Penalty vs. Bottom-up

The main memory usage of these two experiments also show a similar

pattern as we illustrated in Figures 7.14 and 7.15. That is, the global output

with penalty approach requires less number of adaptations compared with

the global output approach. While the bottom-up approach requires even

less number of adaptations than the global output with penalty approach. As

can be seen, less number of adaptations does not imply a high run-time

throughput.

The cleanup process time depends on where the operator states are

pushed in the query tree. As we discussed in Section 7.1.2, the lower

level partition groups are pushed (from operators with a higher height),

the higher the clean up cost. This is because the clean up process needs to

be sequentialized according to the partial order defined in the query tree.

The factor of cleanup process time has not been incorporated in the cur-

rent global state spilling strategies. The cleanup processing times of these

approaches vary depending on the queries and the settings. In experiment

7.3. GLOBAL STATE SPILL EVALUATION 144

0

5000

10000

15000

20000

25000

30000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Minutes

T
h

ro
u

g
h

p
u

t

Global Output with Penalty
Global Output
Local Output
Bottom-Up

Figure 7.16: Run Time Throughput For Join Rates 1-3-3

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Minutes

Th
ro

ug
hp

ut

Global Output with Penalty
Global Output
Local Output
Bottom-Up

Figure 7.17: Run Time Throughput For Join Rates 3-2-3

shown in Figure 7.13, the total cleanup time of the global output with penalty

approach takes 495,741 ms, while the cleanup time of the global output ap-

proach takes 305,997 ms. While in experiment shown in Figure 7.16, the

cleanup time of the global output with penalty approach takes 278,234 ms,

while the global output approach takes 362,752 ms. However, in all above

experiments, the bottom-up approach takes much longer time to clean up

disk resident states since this strategy tends to push partitions at the bot-

7.3. GLOBAL STATE SPILL EVALUATION 145

tom operators.

The cleanup processing time can also be incorporated into the state

spilling strategies if it is necessary. For example, we can assume a slightly

higher weight for the partition groups in the upper level operators when

calculating the productivity value (as part of the partition group size). Thus,

it will promote the pushing of partition groups that require less cleanup

process time. However, this in turn may impact the run time through-

put since it indirectly influences the selection of the partition groups to be

pushed. The evaluation of different weight or different productivity func-

tions is not the main focus of this work. They are left as the feature work of

this dissertation work.

146

Chapter 8

Related Work

Continuous query processing [3, 8, 15, 19, 76, 115] is closely related to our

work in that it applies a push based non-blocking processing model. Con-

tinuous query processing also faces scalability concerns due to high rates of

inputs and possibly infinite data streams. A lot of techniques with different

research focuses have been investigated to address this problem. For ex-

ample, load shedding techniques [3, 107] aim to drop input tuples to han-

dle the run time resource shortage while having the query results within

certain predefined QoS requirements. In this work, we instead require an

accurate query results, thus load shedding is not an option in our context.

Operator-state purging [34] relies on certain semantics of the input streams,

e.g., puncations, to purge useless states. This is orthogonal to our current

focus of the work since we only temporarily move states and do not focus

on the semantics of the states. Adaptive scheduling and processing [9, 76]

techniques have also been proposed. But they focus on adapting the order

of operators or tuples being processed. While in this work, we instead fo-

CHAPTER 8. RELATED WORK 147

cus on adapting the memory usage for complex stateful query operators

with possible huge volumes of states. Note that this issue has not yet been

carefully addressed in the continuous query processing literature.

Distributed continuous query processing over a shared nothing archi-

tecture, i.e., a computing cluster, has been investigated in the literature to

address the resource shortage and the scalability concerns [2, 25, 105, 99].

In existing systems such as Aurora* [25] and Borealis [2], operators are as-

sumed to be small enough to fit completely within one single machine.

Thus, their main focus is how to distribute the query plan over multiple

machines while treating each operator as one atomic unit. The adapta-

tion in such systems [118] mainly focuses on balancing the load by moving

query operators across machines. Thus, the basic unit to be adapted in the

system is always at the granularity of one complete operator. D-Cape [105]

also distributes and adapts continuous queries at an operator-level. While

in this work, we instead investigate methods of adapting operator states to

optimize the main memory usage.

Flux [99] is the first work in the literature to discuss the partitioned

parallel processing and the distributed adaptation in a continuous query

processing context. It makes use of the exchange architecture that was pro-

posed by Volcano [41] by inserting split operators into the query plan to

achieve partitioned processing for large stateful query operators. However,

Flux mainly focuses on single input query operators. Given complex state-

ful query operators such as multiple-way join, more issues such as how to

organize states from different input steams need to be addressed even for a

pure distributed adaptation. Flux also discusses how to spill operator states

CHAPTER 8. RELATED WORK 148

into disks. However, it does not consider the state spill process at a global

level. As we have discussed in Section 6.3.2, our proposed active disk strat-

egy which makes state spill decisions across multiple machines, helps to

further improve the overall run time throughput. Flux does not address

how to adapt operator states for a full query tree with multiple stateful op-

erators. Moreover, Flux tends to put all the adaptation logic and decisions

to the split operator. This will make the coordination among different split

operators complex when adapting multiple stateful operators. While in

our architecture, we employ light split operators and leave the adaptation

logic and decisions to separate modules in each query processor and in the

distribution manager. This helps to achieve a better adaptation decisions

especially in our target environment, i.e., local computer clusters.

State spill adaptation for non-blocking query operators has also been

investigated in the literature. As discussed above, both XJoin [109] and

Hash-Merge Join [79] adapt memory resident states from individual input

streams to disks when memory overflow happens. As we have discussed in

Chapter 6, this strategy does not work well for multiple input query opera-

tors, especially in a partitioned parallel processing environment. Moreover,

these strategies are designed to work in a central environment. In an en-

vironment where both state spill and state relocation are necessary, again,

issues such as how to integrate them need to be considered.

Parallel and distributed query processing has been the focus of both

academia and industry for a long time [31, 35, 57]. Partitioned parallel pro-

cessing, especially for complex operators such as joins, has also been stud-

ied in [21, 67, 95]. Correspondingly, data skew handling techniques [33]

CHAPTER 8. RELATED WORK 149

have been proposed. All these works provide the necessary background

for our distributed non-blocking query processing and its forms of adap-

tations. However, they are typically studied under a traditional database

processing model assuming static queries. Unique properties such as push-

based processing (requires a non-blocking pipelined processing), little statis-

tics about input data streams at query definition time (requires adaptation

at run time) and long running or even infinite data streams (high demand

on the system resources) differentiate this work from traditional distributed

and parallel query processing.

Main memory allocation and management for distributed systems has

also been extensively studied [14, 39, 85]. However, they usually focus on

static resource allocations. While in this work, we instead focus on the run

time adaptation. This is because little statistics about input streams are

available initially. Moreover, the adaptation techniques proposed in this

work consider both the state spill and state relocation.

150

Part III

Integration View Maintenance

and Optimization

151

Chapter 9

Introduction and Background

As motivated in Chapter 1, materialized views need to be maintained upon

source changes since a stale view extent may not help or even mislead

user applications. Incremental view maintenance, which aims at only com-

puting the deltas of the view result instead of recomputing the view from

scratch upon data source changes, has been extensively studied in the past

[5, 11, 18, 24, 27, 93, 120, 123, 122]. Among these works, the incremental

maintenance of batches of updates [27, 63, 66, 93] is of particular interest

because it is attractive from both a resource and a performance perspective

to most practical systems/applications. The benefits are two fold. One, bet-

ter overall maintenance performance can be achieved. Two, fewer conflicts

of the maintenance tasks with users’ read sessions upon the view extent

may arise.

In an incremental view maintenance context, especially when the mate-

rialized view is defined upon distributed data sources, maintenance queries

[122] need to be composed and processed to compute the view delta. Fig-

CHAPTER 9. INTRODUCTION AND BACKGROUND 152

ure 9.1 illustrates the basic architecture of an incremental view maintenance

framework. First, data sources report source updates to the materialized

view manager. Then, the view manager composes maintenance queries

and sends them to distributed data sources (or their corresponding wrap-

pers if necessary) to compute the view delta change. Note that all mainte-

nance queries are created by the view manager and the query results will

also be returned to the view manager.

Data Source

Wrapper

Data Source

Wrapper

Data Source

Wrapper

...

Materialized
Views

View Manager

Source
 Update

s
Maintenance Queries

Query Results

Figure 9.1: Incremental Maintenance over Distributed Data Sources

State-of-the-art view maintenance strategies require O(n2) (batch view

maintenance) maintenance queries to remote data sources with n being the

number of data sources in the view definition. They usually only batch the

updates specified against the same data source [63, 66, 93]. This mechanism

does not scale for large sized nor for a large number of data sources.

On the other hand, state-of-the-art view maintenance algorithms [5, 63,

64, 66, 93] also tend to focus on maintaining simple acyclic join views. Lit-

tle attention has been paid thus far to more complex view definitions, i.e.,

cyclic join views that may specify many join conditions between any two

arbitrary source relations. Such cyclic join views are also being widely used

9.1. SEQUENTIAL VS. BATCH MAINTENANCE 153

in practical systems [108].

In this part of dissertation work, we first investigate scalable view main-

tenance algorithms for maintaining large batches of source updates (Chap-

ter 10). The basic approach we take is to reduce the number of maintenance

queries to remote data sources by effectively restructuring and grouping

the batch view maintenance plans. Though such reduction in the number

of maintenance queries will increase the complexity of each query, we find

that it outperforms existing batch view maintenance strategies in a rather

significant manner (around 400% improvement) in a majority of the cases.

We then focus on maintaining and optimizing cyclic join views over

distributed data sources (Chapter 11). Many maintenance plans are avail-

able given the complexity of view definitions. We propose a cost-based

view maintenance optimization framework that is able to generate opti-

mized maintenance plans that incorporate variations of view definitions,

data source processing capabilities and network cost. Such cyclic join view

maintenance as well as cost-based view maintenance optimization have not

been carefully addressed in state-of-the-art solutions.

9.1 Sequential vs. Batch Maintenance

We use the following concrete example to illustrate two of the most prevail-

ing classes of existing incremental view maintenance strategies, namely, se-

quential maintenance and batch maintenance. The basic tradeoff that will

be exploited in this work is revealed by analyzing these two strategies. Ta-

ble 9.1 describes three data sources with one relation each that will be used

9.1. SEQUENTIAL VS. BATCH MAINTENANCE 154

in the example. A view Tour-Customer is defined as depicted in Query 9.1.

CREATE VIEW Tour − Customer AS

SELECT C.Name, C.Age, T.T ourID,

F.F lightNo, F.Dest

FROM Cust C, F lightRes F, Tour T

WHERE C.Name = F.Name AND

F.Name = T.CustName

(9.1)

R1: Cust (Name, Age, Address, Phone)

R2: FlightRes (Name, FlightNo, Source, Dest)

R3: Tour (TourID, CustName, Type, Days)

Table 9.1: Data Sources Descriptions

Sequential Maintenance. Sequential maintenance refers to maintaining

one single source update at a time. As one typical example of such strategy,

we illustrate the SWEEP algorithm introduced in [5]. For example, one data

update “U1 = Insert into Cust Values (‘Ben’, 28, ‘WPI’, 6136)” happened at R1.

In order to determine the delta effect on the view extent, this requires us to

send two maintenance queries, one to R2 and another to R3. In this case,

one maintenance query (Query 9.2) is generated based on U1 and send to

source R2. After we get the result, say (‘Ben’, 28, ‘AA69’, ‘Mia’), another

maintenance query (Query 9.3) will be generated and sent to R3 to get the

delta change on the view extent.

SELECT
′Ben′ as Name, 28 as Age

F.F lightNo, F.Dest

FROM F lightRes F

WHERE F.Name =
′Ben′

(9.2)

9.1. SEQUENTIAL VS. BATCH MAINTENANCE 155

SELECT
′Ben′ as Name, 28 as Age, T.T ourID
′AA69

′ as F lightNo, ′Mia′ as Dest

FROM Tour T

WHERE T.CustName =
′Ben′

(9.3)

Thus, to maintain one source update using SWEEP, we may have to

send maintenance queries to all data sources besides the one where the

source update originated from to compute the delta effect on the view ex-

tent. If multiple source updates need to be maintained, as illustrated in

Table 9.2, we would repeat this process for each and every update until all

updates have been processed 1.

U1: Insert (‘Ben’, 28, ‘WPI’, 6136) into Cust

U2: Insert (‘Tom’, DL169, ‘Lax’, ‘Bos’) into FlightRes

U3: Insert (63, ‘Tom’, ‘Lux’, 10) into Tour

U4: Insert (‘Joe’, AA189, ‘Bos’, ‘Paris’) into FlightRes

U5: Delete (‘Ken’, 27, ‘WPI’, 5857) from Cust

Table 9.2: Data Updates Descriptions

Batch Maintenance. Batch maintenance refers to maintaining the view

extent using source-specific deltas [63, 66] where one source delta describes

a set of changes made to a data source in a certain time period. For ex-

ample, instead of maintaining five updates listed in Table 9.2 individually

as described above, we construct a delta specific for each source. Thus,

1Concurrent source updates could happen during the maintenance process. Thus ad-
ditional concurrency control is necessary to keep the view extent consistent [24, 123]. We
discuss this with more detail in Section 10.3.1.

9.1. SEQUENTIAL VS. BATCH MAINTENANCE 156

∆R1 = { +(‘Ben’, 28, ‘WPI’, 6136), -(‘Ken’, 27, ‘WPI’, 5857) } 2, ∆R2 = {

+(‘Tom’, DL169, ‘Lax’, ‘Bos’), +(‘Joe’, AA189, ‘Bos’, ‘Paris’) }, and ∆R3 = {

+(63, ‘Tom’, ‘Lux’, 10) }. Thereafter, the incremental view extent (view delta)

for all five updates can be logically computed in three steps (one step per

source delta). Within each step, maintenance queries are built based on the

source-specific delta and submitted to the other data sources to compute

the maintenance result.

Batch view maintenance reduces the time taken for maintaining a large

set of source updates [27, 63, 66, 93]. Sequential maintenance involves

many maintenance queries (depending on both the number of source up-

dates and the number of data sources) to be sent with each maintenance

query reflecting a single source update. Batch maintenance typically has

a smaller number of maintenance queries (depending only on the number

of data sources) with each maintenance query being more complex that

is reflecting a set of source updates. This now opens the opportunity to

group multiple source updates and to construct a combined maintenance

query that may outperform handling each individual update one by one.

Exploitation of this tradeoff between the number of maintenance queries

and their complexity (size) leads to novel view maintenance algorithms

that improve maintenance performance.

2For simplicity, we use ‘+’ to represent an insert operation and ‘-’ to denote a delete
operation. Here, each source delta represents the updates at a logical level, we separate the
processing of insert and delete operations in the real implementation.

9.2. ABSTRACTION OF VIEW MAINTENANCE PROCESS 157

9.2 Abstraction of View Maintenance Process

For ease of describing our proposed maintenance strategies, we first present

an abstraction capturing the essence of the state-of-the-art batch view main-

tenance algorithms below. Assume a materialized view V is defined as an

n-way join upon n distributed data sources. It is denoted by R1 ⊲⊳ R2 . . . ⊲⊳

Rn
3. There are n source deltas (∆Ri, 1 ≤ i ≤ n) that need to be maintained.

As was mentioned earlier, each ∆Ri denotes the changes (the collection of

insert and delete tuples) on Ri at a logical level. An actual maintenance

query will be issued separately, that is, one for insert tuples and one for

delete tuples.

Given the above notations, the batch view maintenance process can be

depicted as in Equation 9.4. Here Ri refers to the original data source state

without any changes from ∆Ri, while R′i represents the state that reflects

Ri + ∆Ri (‘+’ denotes the union operation). The discussion of the correct-

ness of this batch view maintenance itself can be found in [63, 66]. Note

that concurrency control strategies either compensation-based [5, 20, 122]

or multiversion-based [24] need to be employed if additional source up-

dates happen concurrently. Without loss of generality, we now only fo-

cus on the maintenance queries and ignore any concurrent source updates.

The discussion of handling concurrent updates will be deferred to Section

10.3.1.

3Discussions of the handling of more general SPJ views will be deferred to Section 11.2.

9.2. ABSTRACTION OF VIEW MAINTENANCE PROCESS 158

∆V = ∆R1 ⊲⊳ R2 ⊲⊳ R3 . . . ⊲⊳ Rn

+ R′1 ⊲⊳ ∆R2 ⊲⊳ R3 . . . ⊲⊳ Rn

+ . . .

+ R′1 ⊲⊳ R′2 ⊲⊳ R′3 . . . ⊲⊳ ∆Rn

(9.4)

We call Equation 9.4 a batch maintenance plan. It specifies how to

maintain the view at an abstract level. Each “line” in Equation 9.4 is re-

ferred to a maintenance step, i.e., ∆R1 ⊲⊳ R2 ⊲⊳ R3 . . . ⊲⊳ Rn. A mainte-

nance query needs to be composed for each join (⊲⊳) either from the source

delta (∆Ri) or the intermediate results from previous queries, i.e., ∆R1 ⊲⊳

R2. For ease of description, we may interchange the term ‘maintenance

query’ and ‘delta’ (either ∆Ri or the result of a maintenance query) in the

following sections. Two ways of composing a maintenance query from a

delta will be discussed in Section 10.5.2. Note that the evaluation of each

maintenance step is expected to start from the source delta (∆Ri) and goes

over all the other data sources. This is because each source delta is usu-

ally much smaller in terms of the number of tuples compared to the size of

a data source. Seen from the above discussion, n(n-1) (O(n2)) maintenance

queries are required for the batch maintenance to compute the delta change

(∆V) of the view extent.

However, two questions remain. First, is it possible to further reduce

the number of maintenance queries, say to less than O(n2)? Second, does

a lower number of maintenance queries imply a reduction in total main-

tenance time? Or, put differently, what are the key factors that affect the

maintenance performance? Here, we use the batch maintenance plan (Equa-

9.2. ABSTRACTION OF VIEW MAINTENANCE PROCESS 159

tion 9.4) as the baseline algorithm and exploit it to form our proposed

strategies.

Traditional distributed query optimization techniques [57] could be ap-

plied to improve view maintenance performance, e.g., to select an opti-

mized join execution order for each maintenance step. Clearly, this is or-

thogonal to what we will explore in this Chapter since our focus is to find

new maintenance algorithms by restructuring the batch maintenance pro-

cess. The cost-based optimization techniques will be discussed in Chapter

11. We note that the size of each source delta usually is much smaller than

that of the data source. Hence in the view maintenance context, finding the

common expressions such as R3 ⊲⊳ R4, which is investigated in traditional

multiple query optimization [98], may not be beneficial since the common

parts are too large to be evaluated.

160

Chapter 10

Grouping and Restructuring

Maintenance Queries

10.1 Adjacent Grouping Algorithm

One way to reduce the number of maintenance queries is to exploit the reg-

ularity in a maintenance plan to promote sharing of common accesses to

data sources. Studying the batch maintenance plan (Equation 9.4), we ob-

serve that a large number of common data source accesses exist in different

maintenance steps. For example, the first two maintenance steps both have

R3 ⊲⊳ R4 ⊲⊳ . . . ⊲⊳ Rn in common, while the second and the third steps both

have R′1 and R4 ⊲⊳ . . . ⊲⊳ Rn. If we share the accesses to these common

data sources, the number of maintenance queries (join operations) would

be reduced.

The matrix-like depiction of the batch maintenance plan as in Figure

10.1. ADJACENT GROUPING ALGORITHM 161

(a) Group by 2

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

(b) Group by 3

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

Figure 10.1: Group Adjacent Maintenance Steps

10.1 highlights the regularity and also the common items between adjacent

maintenance steps. The basic idea underlying the adjacent grouping strat-

egy is illustrated in Figure 10.1. Namely, we divide maintenance steps and

group the deltas from different maintenance steps along the main diagonal.

Then we share the accesses to common data sources.

For example, Figure 10.1(a) illustrates the grouping by two. The first

two maintenance steps can be rewritten into one expression, namely, (∆R1 ⊲⊳

R2 + R′1 ⊲⊳ ∆R2) ⊲⊳ R3 ⊲⊳ . . . ⊲⊳ Rn. Thus, the total number of maintenance

queries for evaluating these two maintenance steps is reduced from 2(n-1)

to n. While for the third and the fourth steps, we rewrite them to R′1 ⊲⊳ R′2 ⊲⊳

(∆R3 ⊲⊳ R4 + R′3 ⊲⊳ ∆R4) ⊲⊳ . . . ⊲⊳ Rn, and so on. Grouping maintenance

steps by three can be done in a similar manner (see Figure 10.1(b)).

If we divide steps equally, i.e., we group every m (m < n) adjacent

steps along the main diagonal, the total number of maintenance queries

(Nm) can be described by Equation 10.1. Here, ℜ = (n − ⌊ n
m⌋m)(n − 1)

includes the leftover factors of n that can’t be divided by m. By solving

10.2. GROUPING HETEROGENOUS DELTAS 162

∂Nm

∂m = 0, we know that the total number of queries reaches its minimum

when m is around
√

n. Note that other grouping heuristics are also possible.

For example, we could group maintenance steps unevenly based on the

estimated respective delta sizes.

⌊ n

m
⌋(m(m− 1) + (n−m)) + ℜ (10.1)

By adjacent grouping, we are able to reduce the total number of main-

tenance queries to O(n3/2) when m =
√

n. We note that this approach only

combines temporary results having the same schema. For example, the

combination of the result from ∆R1 ⊲⊳ R2 and R′1 ⊲⊳ ∆R2. This of course

limits the type of query shrinking that can be considered. To further reduce

the number of accesses to data sources, we must take a different approach.

A new type of solution is outlined below.

10.2 Grouping Heterogenous Deltas

10.2.1 Basic Notations

To keep our description simple, we first introduce the following two no-

tations. We use δ to represent the operation that takes a list of deltas as

input and combines them together except those bracketed. For example,

δ([∆R1],∆R2,∆R3) equals a combined delta containing both ∆R2 and ∆R3.

Note that we focus on the logical expressions only for now. The engineering

problem of how to actual combine different deltas will be discussed in more

detail in Section 10.2.4. Given this notation, a join operator that involves a δ

10.2. GROUPING HETEROGENOUS DELTAS 163

can be treated as the computation of each delta in δ individually by simple

combining and decomposing rules. For example, δ([∆R1],∆R2,∆R3) ⊲⊳ Ri

equals the collection of result deltas ∆R2 ⊲⊳ Ri and ∆R3 ⊲⊳ Ri, represented

by {∆R2 ⊲⊳ Ri, ∆R3 ⊲⊳ Ri}. To further simplify the notations, we may omit

the ⊲⊳ sign in the result set if the context is clear, i.e., {∆R2 ⊲⊳ Ri, ∆R3 ⊲⊳ Ri}

will be represented by {∆R2Ri, ∆R3Ri}.

We assume that each ∆Ri has been installed to Ri before it is reported

to the view manager for maintenance. Thus, each maintenance query result

will be evaluated based on R′i instead of Ri. Compensations are needed to

get the maintenance query results based on the original state Ri. We in-

troduce θi to represent the compensation process using ∆Ri. For example,

assuming D is a delta (either ∆Ri or previous maintenance query result),

then θi(D ⊲⊳ R′i) = D ⊲⊳ R′i - D ⊲⊳ ∆Ri = D ⊲⊳ Ri. The rationale behind

this compensation process can simply be illustrated as follows. D ⊲⊳ R′i =

D ⊲⊳ (Ri + ∆Ri) = D ⊲⊳ Ri + D ⊲⊳ ∆Ri. Note that both D and ∆Ri are

available at the view manager. Thus such compensation can be computed

locally at the view manager when we get the result of D ⊲⊳ R′i.

10.2.2 A Greedy Grouping Algorithm

To maintain n source deltas ∆R1,∆R2,∆R3, . . . ,∆Rn on an n-way join

view, one extreme solution is to group all the intermediate results (deltas)

computed in maintenance steps (∆Ri or any previous maintenance query

result) to construct a combined query. We are thus able to access each data

source (Ri, 1 ≤ i ≤ n) once to evaluate the maintenance process as repre-

sented by Equation 9.4. In this way, we only require n combined mainte-

10.2. GROUPING HETEROGENOUS DELTAS 164

nance queries (the theoretically minimal number).

…

∆R
1

∆R
2

∆R
n…∆R

3

∆R
1 …∆R

2
R’
1

∆R
3
R’
1

∆R
n
R’
1

Compensation using ∆∆∆∆R
2

(a) Query 1 to Source R1

…∆R
2
R’
1

∆R
3
R’
1
R’
2

∆R
1
R’
2

∆R
n
R’
1
R’
2

…

(b) Query 2 to Source R2

∆R
1 …∆R

2
R’
1

∆R
3
R’
1

∆R
n
R’
1

…

(c) Query 3 to Source R3

…∆R
2
R’
1

∆R
3
R’
1
R’
2

∆R
1
R
2

∆R
n
R’
1
R’
2

…∆R
2
R’
1
R’
3

∆R
3
R’
1
R’
2

∆R
1
R
2
R’
3

∆R
n
R’
1
R’
2
R’
3

Compensation using ∆∆∆∆R
3

R1
’ R2

’
R3
’

Figure 10.2: The First Three Greedy Grouping Queries

These n combined maintenance queries will be evaluated in a sequen-

tial manner by sending them to the data sources R1, R2, . . ., Rn respectively.

For simplicity, these queries are represented by Q1, Q2, . . ., Qn, as we de-

scribe them below.

• Q1: We send all source deltas except ∆R1 to the data source R1 and

evaluate the query result. This process can be expressed by δ([∆R1],

∆R2, ∆R3, . . ., ∆Rn) ⊲⊳ R′1 = {∆R1, R′1∆R2, R′1∆R3, . . ., R′1∆Rn}

(see Figure 10.2a).

• Q2: We combine all result deltas from Q1 except the one containing

∆R2 and submit it to R2 (referred as the evaluation step). After we get

the query result, we compensate it using ∆R2 for those result deltas

containing ∆R1 (referred as the compensation step). The following

two capture this process (see Figure 10.2b).

– Evaluation step:

10.2. GROUPING HETEROGENOUS DELTAS 165

δ(∆R1, [R′1∆R2], R′1∆R3, . . ., R′1∆Rn) ⊲⊳ R′2

= {∆R1R
′
2, R′1∆R2, R′1R

′
2∆R3, . . ., R′1R

′
2∆Rn}.

– Compensation step:

{θ2(∆R1R
′
2), R′1∆R2, R′1R

′
2∆R3, . . ., R′1R

′
2∆Rn}

= {∆R1R2, R′1∆R2, R′1R
′
2∆R3, . . ., R′1R

′
2∆Rn}

• Q3: Similarly, we combine all result deltas except the one containing

∆R3 from query results of Q2, we then ship them to the data source

R3 and evaluate the query. We compensate the results using ∆R3 for

deltas containing ∆R1 or ∆R2 after we get result deltas (see Figure

10.2c for the illustration).

• Qi (1 < i ≤ n): To generalize, for any query Qi, we combine the

result from query Qi−1 except the one containing ∆Ri and then ship

them to data source Ri for evaluation. The result deltas that contain

∆Rj (j < i), which correspond to the data sources that have been

visited, will be compensated using ∆Ri. Similarly, this evaluation

and compensation process can be described as follows.

– Evaluation:

δ(R′1R
′
2 . . . ∆RkRk+1 . . . Ri−1 (1 ≤ k < i), [R′1R

′
2 . . . R′i−1∆Ri],

R′1R
′
2 . . . R′i−1∆Rk (i < k ≤ n)) ⊲⊳ R′i

= {R′1R′2 . . . ∆RkRk+1 . . . Ri−1R
′
i (1 ≤ k < i), R′1R

′
2 . . . R′i−1∆Ri,

R′1R
′
2 . . . R′i−1R

′
1∆Rk (i < k ≤ n)}.

– Compensation:

apply θi to R′1R
′
2 . . . ∆RkRk+1 . . . Ri−1R

′
i (1 ≤ k < i), we get

10.2. GROUPING HETEROGENOUS DELTAS 166

the final result of Qi as {R′1R′2 . . . ∆RkRk+1 . . . Ri (1 ≤ k < i),

R′1R
′
2 . . . R′i−1∆Ri, R′1R

′
2 . . . R′i∆Rk (i < k ≤ n)}.

Thus, after the n-th query Qn, we get {R′1R′2 . . . ∆RkRk+1 . . . Ri (1 ≤

k < n), R′1R
′
2 . . . R′i−1∆Rn}. This exactly equals {∆R1 ⊲⊳ R2 ⊲⊳ R3 . . . ⊲⊳

Rn, R′1 ⊲⊳ ∆R2 ⊲⊳ R3 . . . ⊲⊳ Rn, R′1 ⊲⊳ R′2 ⊲⊳ ∆R3 . . . ⊲⊳ Rn, . . ., R′1 ⊲⊳

R′2 ⊲⊳ R′3 . . . ⊲⊳ ∆Rn}. Clearly, this is the same with the equation we have

shown for the batch maintenance plan (Equation 9.4). The correctness of

the approach can also be shown similarly with the above step-by-step re-

transformation of Equation 9.4. Thus, by issuing only n combined queries

to the underlying data sources, we indeed compute the incremental view

extent ∆V .

However, one weakness of this approach is the possibly large interme-

diate result set caused by the lack of a join condition between some of the

intermediate results and the data source. For example, we send δ([∆R1],

∆R2, ∆R3, . . ., ∆Rn) to data source R1 in Q1. Only R2 has the join condi-

tion with R1 given the view is defined by R1 ⊲⊳ R2 ⊲⊳ . . . ⊲⊳ Rn. Thus, to

evaluate the result ∆Rk ⊲⊳ R′1 (3 ≤ k ≤ n), we may have to compute the

Cartesian product instead. Given that the size of each data source may be

huge, this approach is thus likely not feasible for practical settings.

10.2.3 Conditional Grouping Algorithm

To address the large intermediate result set problem arising in the above

greedy approach, we now take a different approach and propose the condi-

tional grouping strategy. The basic idea is to make use of join conditions in

10.2. GROUPING HETEROGENOUS DELTAS 167

the view definition. This is because a maintenance query composed from

join conditions is much cheaper to process than a Cartesian product in a

view maintenance context.

The whole maintenance process in the conditional grouping is divided

into two phases, called scroll up phase and scroll down phase. In each phase,

we only group the deltas having common join conditions with the data

source.

Scroll Up Phase. n − 1 queries, represented by Qu
1 , Qu

2 , . . ., Qu
n−1, will be

evaluated sequentially in this phase. We describe each query below.

• Qu
1 : We send ∆R1 to R2, evaluate ∆R1 ⊲⊳ R′2 and then compensate the

result using ∆R2. These two steps can be expressed by δ(∆R1) ⊲⊳ R′2

= ∆R1R
′
2 and θ2(∆R1R

′
2) = ∆R1R2 (see Figure 10.3(a)).

• Qu
2 : We combine the result of the first query (∆R1R2) with ∆R2 and

send them to R3. We then compensate this query result using ∆R3.

The following steps capture this: (1) δ(∆R1R2,∆R2) ⊲⊳ R′3 = {∆R1R2R
′
3,

∆R2R
′
3}, and (2) {θ3(∆R1R2R

′
3), θ3(∆R2R

′
3)} = {∆R1R2R3, ∆R2R3}

(see Figure 10.3(b)).

• Qu
3 : Similarly, we have the third query expressed as (1) δ(∆R1R2R3,

∆R2R3, ∆R3) ⊲⊳ R′4, and (2) apply θ4 to compensate the query results.

After the compensation, we get {∆R1R2R3R4, ∆R2R3R4, ∆R3R4} as

the result of the third query (see Figure 10.3(c)).

• Qu
i (1 < i ≤ n−1): To generalize, we do the following three operations

for any query Qu
i in the scroll up phase.

10.2. GROUPING HETEROGENOUS DELTAS 168

– Build the maintenance query by combing Qu
i−1 query result with

∆Ri. We get δ(∆R1R2R3 . . . Ri, ∆R2R3 . . . Ri, . . ., ∆Ri−1Ri, ∆Ri).

– Send the combined query to Ri+1 and evaluate it against Ri+1.

We get the query result {∆R1R2R3 . . . RiR
′
i+1, ∆R2R3 . . . RiR

′
i+1,

. . ., ∆Ri−1RiR
′
i+1, ∆RiR

′
i+1}.

– Compensate the result using ∆Ri+1 (θi+1). We then get {∆R1R2R3

. . . RiRi+1, ∆R2R3 . . . RiRi+1, . . ., ∆Ri−1RiRi+1, ∆RiRi+1}.

After processing query Qu
n−1, we get {∆Rk ⊲⊳ Rk+1 . . . ⊲⊳ Rn (1 ≤ k ≤

n) } as the result of the scroll up phase (Figure 10.3(d)).

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

∆Rn…R4
'R3

'R2
'R1

'

Rn……………

Rn…∆R4R3
'R2

'R1
'

Rn…R4∆R3R2
'R1

'

Rn…R4R3∆R2R1
'

Rn…R4R3R2∆R1

(a) Query 1 to R2 (b) Query 2 to R3

(c) Query 3 to R4 (d) Query n-1 to Rn-1

Figure 10.3: Scroll Up Phase

10.2. GROUPING HETEROGENOUS DELTAS 169

Scroll Down Phase. There are also n− 1 queries in the scroll down phase

represented by Qd
1, Qd

2, . . ., Qd
n−1. These queries take the result from the

scroll up phase as input. Below, we again describe this phase by its queries.

• Qd
1: We first evaluate δ(∆Rn) ⊲⊳ R′n−1 and get R′n−1∆Rn. Note that

no compensation needs to be applied in this phase (Figure 10.4(a)).

• Qd
2: We combine the result of the first query (R′n−1∆Rn) with the re-

sult from the scroll up phase containing ∆Rn−1 (∆Rn−1Rn in this

case). This results in δ(R′n−1∆Rn, ∆Rn−1Rn). We send it to Rn−2 to

evaluate δ(R′n−1∆Rn, ∆Rn−1Rn) ⊲⊳ R′n−2. We get {R′n−2R
′
n−1∆Rn,

R′n−2∆Rn−1Rn} (Figure 10.4(b)).

• Qd
i (1 < i ≤ n− 1): To generalize, we take the following two steps for

any query Qd
i in the scroll down phase.

– Combine previous query (Qd
i−1) result (denoted by {R′n−i+1R

′
n−i+2

. . . ∆Rn−k+1Rn−k+2 . . . Rn, 1 ≤ k ≤ i− 1}) with the result from

the scroll up phase that contains ∆Rn−i+1 (∆Rn−i+1Rn−i+2 . . . Rn).

– Submit the combined query to Rn−i and evaluate it against Rn−i.

We get result {R′n−iR
′
n−i+1R

′
n−i+2 . . . ∆Rn−k+1Rn−k+2 . . . Rn

(1 ≤ k ≤ i)}.

Thus, after processing query Qd
n−1, we get {R′1R′2R′3 . . . ∆Rn−k+1Rn−k+2

. . . Rn (1 ≤ k ≤ n − 1)}. As we can see, this equals {∆R1 ⊲⊳ R2 ⊲⊳ R3

. . . ⊲⊳ Rn, R′1 ⊲⊳ ∆R2 ⊲⊳ R3 . . . ⊲⊳ Rn, R′1 ⊲⊳ R′2 ⊲⊳ ∆R3 . . . ⊲⊳ Rn, . . .,

R′1 ⊲⊳ R′2 ⊲⊳ R′3 . . . ⊲⊳ ∆Rn} (See Figure 10.4(d)). It is clear that this is also

the same as Equation 9.4.

10.2. GROUPING HETEROGENOUS DELTAS 170

∆RnR'
n-1R'

n-2
…R2

'R1
'

Rn∆ Rn-1R'
n-2

………

RnRn-1∆ Rn-2
…R2

'R1
'

RnRn-1Rn-2
…R2

'R1
'

RnRn-1Rn-2
…∆R2R1

'

RnRn-1Rn-2
…R2∆R1

(a) Query 1 to Rn-1 (b) Query 2 to Rn-2

(c) Query n-2 to R2 (d) Query n-1 to R1

∆RnR'
n-1R'

n-2
…R2

'R1
'

Rn∆ Rn-1R'
n-2

………

RnRn-1∆ Rn-2
…R2

'R1
'

RnRn-1Rn-2
…R2

'R1
'

RnRn-1Rn-2
…∆R2R1

'

RnRn-1Rn-2
…R2∆R1

∆RnR'
n-1R'

n-2
…R2

'R1
'

Rn∆ Rn-1R'
n-2

………

RnRn-1∆ Rn-2
…R2

'R1
'

RnRn-1Rn-2
…R2

'R1
'

RnRn-1Rn-2
…∆R2R1

'

RnRn-1Rn-2
…R2∆R1

∆RnR'
n-1R'

n-2
…R2

'R1
'

Rn∆ Rn-1R'
n-2

………

RnRn-1∆ Rn-2
…R2

'R1
'

RnRn-1Rn-2
…R2

'R1
'

RnRn-1Rn-2
…∆R2R1

'

RnRn-1Rn-2
…R2∆R1

Figure 10.4: Scroll Down Phase

To summarize, the scroll up phase calculates the upper part along the

main diagonal of the batch maintenance plan (Equation 9.4) using n-1 queries,

while the scroll down phase computes the remaining part in another n-1

queries.

10.2.4 Unifying Deltas Together

Next, we address the engineering problem of combining the heterogeneous

deltas. For example, consider building a combined delta for δ(∆R1 ⊲⊳ R2,

∆R2). If the query engine at the data source were advanced, it could

exploit the similarity among the deltas to scan the source relation once

10.2. GROUPING HETEROGENOUS DELTAS 171

when processing this δ operator even if we send them separately. How-

ever, data sources may not be that advanced. Thus, we instead propose a

non-intrusive method to address this issue of unifying various deltas from

different data sources.

The basic idea is to construct one large table that contains the schema of

different deltas and fill the respective unrelated fields with default values.

This table is shipped to the data source as one large delta and evaluated

together. The view manager splits the large query result back into different

deltas per source. We may append certain identification related informa-

tion to the delta so we can split the query result back into deltas more easily.

As shown in Figure 10.5, instead of sending delta tables ∆R1 ⊲⊳ R2 and

∆R2 to the data source R3 separately, we build a union table which contains

the information of both deltas and send them together to R3 to evaluate the

maintenance result in one pass. For the issues of building a maintenance

query from a delta table, either a composite SQL query or temporary table

approach can be applied based on whether the data source is cooperative

or not. We will discuss this in more detail in Section 10.5.2.

5�

5432

4321

B2B1A2A1

∆5� 5�

75

64

B2B1

∆5�

∪ 5432

64xx

75xx

4321

B2B1A2A1

× ×

Figure 10.5: Example of Unifying Different Deltas

10.3. GENERALIZING THE MAINTENANCE STRATEGIES 172

10.3 Generalizing the Maintenance Strategies

10.3.1 Concurrent Updates

In the grouping strategies proposed above, we have assumed that there is

no concurrency interfering with the current view maintenance plan. This

can be easily achieved by a multi-version system [24] because we can al-

ways retrieve the right data source states from the versioned source data.

However, if a compensation-based approach were to be used such as [20],

concurrent updates would have to be considered. To address this, we pro-

pose to apply the following method to maintain the view even in concur-

rent environments.

We use two vectors to hold source updates: the current vector (CV)

holds the deltas per source that currently is being maintained, while the

concurrent vector (CRV) holds all updates that occur concurrently to the

current maintenance plan. Initially, CRV is empty because all source up-

dates will be put into CV. After we begin to maintain the deltas in CV, newly

incoming updates will be put into CRV. As usual, we use Ri (1 ≤ i ≤ n) to

represent its original data source state, and R′i (R′i = Ri +∆Ri) to represent

the state that incorporates the effect of source updates in CV. We use Rc
i

to represent the state that reflects R′i + ∆Rc
i , where ∆Rc

i denotes the corre-

sponding deltas accumulated in CRV that are concurrent with the current

maintenance plan.

As done in most of the literature [5, 122], we assume that all message

transfers between sources and the view manager use a FIFO scheme. That

is, all updates that happen on a data source after the evaluation of the main-

10.3. GENERALIZING THE MAINTENANCE STRATEGIES 173

tenance query upon this source will also arrive at the view manager (vector

CRV) after the arrival of the result of this maintenance query. That is, we

can use deltas in both vectors (∆Ri,∆Rc
i) to restore the appropriate data

source states (either R′i or Ri), when the view manager gets the result of a

maintenance query.

Now, we are ready to extend the original compensation operator θi to

θi+c
i and θc

i . Here θi+c
i compensates the query result using ∆Ri +∆Rc

i . That

is θi+c
i (D ⊲⊳ Rc

i) = D ⊲⊳ Ri. The θc
i compensates the result using ∆Rc

i . That

is, θc
i (D ⊲⊳ Rc

i) = D ⊲⊳ R′i. Given that, above conditional grouping algorithm

can be simply adapted as follows for a concurrent environment: (1) For any

query Qu
i in the scroll up phase, we use θ

(i+1)+c
i+1 to compensate the result. (2)

For any query Qd
i in the scroll down phase, we then use θc

n−i to compensate

the result.

Thus, we compute view delta (∆V) which exactly only reflects the source

updates in CV. Once we refresh the view extent, we simply move the deltas

in CRV to CV and set Rk = R′k (1 ≤ k ≤ n). Thereafter, we can repeat the

maintenance process for the next set of collected updates.

10.3.2 General View Definitions

The grouping strategies we have described so far assume a linear join view

definition, i.e., R1 ⊲⊳ R2 . . . ⊲⊳ Rn, as also implicitly assumed by many pre-

vious works [5, 64, 66, 93]. However, practical view definitions may have

other shapes, such as a star-shaped view definition. For these, we use a join

graph to represent the view definition. A node in a join graph represents

the data source, while an edge denotes the join conditions that appear in

10.4. COST MODEL AND ANALYSIS 174

the view definition. We then propose to apply the following graph trans-

formation technique, as briefly described below. (1) Find a linear path and

apply the grouping strategies for parts of the view definition related to the

linear path 1. (2) Transform the graph using the partial results from (1) and

recursively apply this Find-and-Transform technique.

For example, Figure 10.6(a) represents a star-shaped view (V) that in-

volves 5 data sources. To maintain this view using grouping strategies, we

first find a linear path, i.e., R1 ⊲⊳ R2 ⊲⊳ R3. For simplicity, we use G1 to rep-

resent this part of the view definition. We then maintain G1 by the group-

ing strategy (Figure 10.6(b)). After that, we transform the original graph

by replacing the linear path using G1. Here, edges that connects to any of

nodes in the linear path are changed to G1, and multiple edges between

two nodes are combined into one. The delta change of G1 (∆G1) can be

got from the maintenance result of G1 (Figure 10.6(c)). We repeat the above

processes until we get the final view maintenance result ∆V . Note that we

do not have G1 materialized, thus, a maintenance query involving G1 (or

G′1 = G1 + ∆G) has to go through each of the underlying data sources, i.e.,

R1 ⊲⊳ R2 ⊲⊳ R3 in this case.

10.4 Cost Model and Analysis

We now introduce cost models we have developed to analyze proposed

maintenance strategies. Here, we focus on the following two cost variables

since they are the main factors that affect the overall performance: the cost

1In Chapter 11, we will provide a cost-based optimization algorithm to find a good linear
path from the view graph.

10.4. COST MODEL AND ANALYSIS 175

G1

R4

R5

G1

(b) Maintain R1-R2-R3 (c) Maintain R4-G1-R5

R2R4 R3

R1

R5

(a) A Star-View Definition

R2R4 R3

R1

R5

Figure 10.6: Handling General View Definitions

of transferring data between the view manager and the data sources, and

the cost of evaluating maintenance queries (join operations). We note that

no compensation cost would exist if we were to apply a multiversion based

concurrency control strategy [24]. This happens indeed to be the environ-

ment we have at our disposal for our experimental study (Section 10.5).

Hence, in the cost model, we do not consider the compensation cost.

We use the following assumptions to further simplify the models we

develop: (1) Assume all data sources are identical in terms of the cost of

answering similar maintenance queries. Thus, we use R to represent each

data source Ri (1 ≤ i ≤ n). (2) Assume all ∆Ri (1 ≤ i ≤ n) are identical

in terms of the cost when evaluating against a data source R, i.e., all ∆Ri

have same number of insert and delete tuples involved. Thus, we use D to

represent each delta ∆Ri.

To represent the result delta of a maintenance query composed from a

source delta D, we define Di+1 = Di ⊲⊳ R (1 ≤ i ≤ n− 1) with D1 = D. For

simplicity, we use Si to represent the size of a delta Di.

The cost of the batch maintenance is given by Tb with Tb = n
∑n−1

i=1 [N(Si)

+ J(Si) + N(Si+1)], which is a summation of individual maintenance query

10.4. COST MODEL AND ANALYSIS 176

costs. Here N() and J() represent the magic unit cost functions of data

transfer and maintenance query answering respectively 2. N(Si) repre-

sents the network cost of sendingDi from view manager to the data source.

N(Si+1) denotes the network cost of transferring the corresponding query

result from the data source to view manager. J(Si) denotes the join cost of

evaluating the corresponding maintenance query.

The cost of adjacent grouping can be described by Ta assuming that

we divide the maintenance steps evenly into groups of size m where m <

n. m
∑m−1

i=1 [N(Si) + J(Si) + N(Si+1)] represents the cost of grouping and

processing m source deltas (a m × m matrix along the main diagonal in

Equation 9.4), while
∑n−1

i=m[N(mSi)+J(mSi)+N(mSi+1)] denotes the cost

of processing the result of above m×m matrix on the remaining n−m data

sources.

Ta =
n

m
{m

m−1
∑

i=1

[N(Si) + J(Si) + N(Si+1)]

+

n−1
∑

i=m

[N(mSi) + J(mSi) + N(mSi+1)]}

The cost of conditional grouping is given in Tc. Here,
∑n−1

i=1 [N(
∑i

j=1 Sj)

+J(
∑i

j=1 Sj)+N(
∑i+1

j=2 Sj)] represents the scroll up phase cost, while
∑n−1

i=1

2We omit the discussion of detailed cost functions in our model in order to illustrate
the main tradeoff on the number of maintenance queries and the complexity of each query
clearly.

10.5. EXPERIMENTAL EVALUATIONS 177

[N(iSi) +J(iSi) + N(iSi+1)] denotes the scroll down phase cost.

Tc =
n−1
∑

i=1

[N(
i
∑

j=1

Sj) + J(
i
∑

j=1

Sj) + N(
i+1
∑

j=2

Sj)]

+

n−1
∑

i=1

[N(iSi) + J(iSi) + N(iSi+1)]

The above formulae show the basic relationship between the number of

maintenance queries and the complexity (size) of each query as expected.

To accentuate this difference, we use S to represent each Si (assume the size

of each delta Di is the same, 1 ≤ i ≤ n − 1). The relationship among these

approaches is described in Figure 10.7. Here the x-axis represents the num-

ber of maintenance queries required, while y-axis denotes the average delta

size.
∑

N represents the total data transfer cost. If the cost (network trans-

fer and the query answering) for a large delta is less than that of the sum of

the costs of handling multiple smaller deltas, performance improvements

are expected by reducing the number of maintenance queries.

10.5 Experimental Evaluations

10.5.1 Experimental Testbed

We have implemented the proposed strategies based on the TxnWrap sys-

tem [24]. TxnWrap is a multiversion-based view maintenance system which

removes concurrency control concerns from its maintenance logic. Thus, it

is not necessary to apply compensation for handling concurrent source up-

dates in our setting. The basic TxnWrap system maintains one single source

10.5. EXPERIMENTAL EVALUATIONS 178

A
ve

ra
g

e
D

el
ta

 S
iz

e Conditional
Grouping

Sequential
Maintenance

Batch
Maintenance

Number of Queries

Adjacent
Grouping2

Sn

2
nS

S

() ∑+− NSJnn)(1

()() ∑+−+− NSnJnSnJSJnn)()()(1

∑∑ +
−

=

NiSJ
n

i

1

1

)(2

1

)(nO)(2/3nO)(2nO

Figure 10.7: Relationship in Maintenance Strategies

update at a time using the known SWEEP algorithm [5]. The batch Txn-

Wrap [66] combines the updates from the same data source and maintains

the view extent using the source specific deltas.

We have conducted our experiments on four Pentium III 500MHz PCs

connected via a local network. Each PC has 512M memory with Windows

2000 and Oracle 8i installed. We employ six data sources with one relation

each over three PCs (two data sources per PC). Each relation has 1,000,000

(1M) tuples with 64 bytes on average of each tuple size. A materialized join

view is defined through equi-joins upon these six source relations residing

on a separate (the fourth) machine. The view has 1M tuples with each

tuple having 384 bytes on average (having all source relations’ attributes

included). All the source deltas are composed of approximately the same

number of insert and delete tuples. Note that two actual queries are needed

when a single delta contains both insert and delete tuples.

10.5. EXPERIMENTAL EVALUATIONS 179

10.5.2 Composing Maintenance Queries

Two ways of composing a maintenance query from a delta can be distin-

guished based on source dependent properties, namely, either cooperative

or non-cooperative data sources. A non-cooperative source only answers

maintenance queries (SQL queries), but offers no other services or control

to the view manager. A cooperative data source would cooperate with the

view manager by allowing to synchronize processes or to lock its data. To

compose an appropriate maintenance query from a delta submitted to a

non-cooperative data source (i.e., evaluating ∆Ri ⊲⊳ Rj), we have to use a

composite SQL query which unions maintenance queries for a single source

update to evaluate the result. A cooperative source would allow the view

manager to build a temporary table directly at the data source, ship the

delta data, evaluate it locally and send the result back.

The performance of these two methods of evaluating maintenance queries

are different as we experimentally explore below by comparing batch main-

tenance costs using these two methods against sequential maintenance. In

Figures 10.8, 10.9 and 10.10, we vary the number of data updates from 10 to

100 (and then from 500 to 3000) with all updates from the same data source

(on x-axis). The y-axis represents the total maintenance query processing

time.

From Figure 10.8, the processing time using a composite query increases

slowly. For the temporary table approach, the increase of the total cost is

even slower than that of using a composite query. This is due to the fact that

the setup cost (create temporary table and populate its extent) dominates

10.5. EXPERIMENTAL EVALUATIONS 180

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40 50 60 70 80 90 100

P
ro

ce
ss

in
g

T
im

e
(s

)

Number of Updates

Batch-Temporary Table vs. Batch-Composite Query

Sequential
Batch-Composite Query
Batch-Temporary Table

Figure 10.8: Batching a Small Number of Updates

the actual maintenance query expenses for small cases. This also explains

that with a small number of updates, a temporary table approach is more

expensive than that of the composite query. The sequential maintenance

processing time increases linearly as expected.

Figure 10.9 displays the ratio of the sequential processing time divided

by batch processing using the data gotten from Figure 10.8. The higher the

ratio, the larger a performance improvement is achieved. We observe that

the improvement of the composite query approach slows down when the

number of updates is larger than 50 in our current setting. While for batch

maintenance using temporary tables, the ratio increases steadily.

In Figure 10.10, we see that the cost of batch maintenance using the

composite query approach becomes increasingly high when the number

of updates increase. This is because a composite query composed of the

union of a large number of queries will result in a huge cost increase. We

thus instead suggest to divide such a large number of updates into smaller

10.5. EXPERIMENTAL EVALUATIONS 181

1

2

3

4

5

6

7

8

9

10

11

10 20 30 40 50 60 70 80 90 100

B
at

ch
/S

eq
ue

nt
ia

l R
at

io

Number of Updates

Improvement Ratio

Batch-Composite Query
Batch-Temporary Table

Figure 10.9: Performance Ratio (Seq. divided by Batch)

subbatch queries of size k based on the ratio measured in Figure 10.9. The

cost of the sum of these subqueries will be smaller than that of the one large

composite query. As seen in Figure 10.10, when we choose k equal 50, the

total maintenance cost using a composite query approach will reach its op-

timum in our setting. However, if we use the temporary table approach, the

total cost is even much lower than that of the optimized composite query

approach. This is because the ratio of the increase of each such batch main-

tenance query to the increase in the number of source updates is very low.

Without loss of generality, from now on we utilize this more efficient tem-

porary table approach to compose maintenance queries from deltas when

comparing our proposed strategies.

10.5. EXPERIMENTAL EVALUATIONS 182

0

5000

10000

15000

20000

25000

30000

500 1000 1500 2000 2500 3000

Q
ue

ry
 T

im
e

(s
)

Number of Updates

Batch Large Number of Updates

Batch-Query
Batch-Table

Batch-Query(10)
Batch-Query(50)

Batch-Query(100)

Figure 10.10: Batch a Large Number of Updates

10.5.3 Grouping Maintenance Performance

Change the Number of Source Updates

Figure 10.11 shows the average maintenance time (on the y-axis) of differ-

ent maintenance approaches by varying the number of source updates from

100 to 1000 (on the x-axis). These updates are evenly distributed among six

data sources. That is, for the k updates in the setting, each source delta ex-

perience approximately k/6 updates. From Figure 10.11, the maintenance

cost of all these strategies increases very slowly because we compose and

issue maintenance queries using the temporary table approach. Seen from

Figure 10.11, the batch processing is almost 4 times slower than the con-

ditional grouping. We also see the following maintenance cost relation-

ship: conditional grouping < adjacent grouping < batch processing. Thus, with

less number of maintenance queries, we do have less processing time even

when the complexity (size) of each maintenance query increases. Given

10.5. EXPERIMENTAL EVALUATIONS 183

that the adjacent grouping is a medium performer between the batch and

conditional grouping, we will focus on comparing batch with conditional

grouping in more depth below.

0

200

400

600

800

1000

100 200 300 400 500 600 700 800 900 1000

Q
ue

ry
 T

im
e

(s
)

Number of Updates

Batch vs. Grouping

Batch Processing
Adjacent Grouping

Conditional Grouping

Figure 10.11: Group a Small Number of Source Updates

Batch

Conditional

0

200

400

600

800

1,000

1,200

5,000 10,000 15,000 20,000 25,000

Q
ue

ry
 ti

m
e

(s
)

Number of Updates

Large Number of Updates

Figure 10.12: Group a Large Number of Source Updates

Figure 10.12 shows the performance changes of batch and conditional

grouping given an increasing number of source updates. The maintenance

cost of both approaches increases steadily as the size of each delta increases.

10.5. EXPERIMENTAL EVALUATIONS 184

The conditional grouping still outperforms batch maintenance due to the

size of the delta not being a major factor on the Oracle query cost if we use

the temporary table approach and the conditional grouping has a smaller

number of maintenance queries.

Impact of the Join Ratio

We set up 200 updates on six sources (each source delta change experi-

ence about 30 updates) and vary the join ratio from 0.5 to 3.0 (on x-axis).

Join ratio here represents the average number of tuples affected by a source

change. For example, a join ratio equals to 2 means that a single update

which changes a tuple in the source may cause 25 tuples to be updated in

the view extent given the view is defined over six sources. From Figure

10.13, we see that the higher the join ratio, the higher both maintenance

costs. A high join ratio increases the size of each temporary maintenance

result, which in turn increases the time to answer the maintenance query.

Also, the higher the join ratio, the closer these two maintenance costs be-

come. This is because any change in the temporary result size will be am-

plified by the join ratio and the conditional grouping has extra data (null

values) need to be processed in the scroll up phase. Thus, the benefit of

having a smaller number of maintenance queries will be slowly overtaken

by the increase of each query cost.

10.5. EXPERIMENTAL EVALUATIONS 185

Batch

Conditional

0

100

200

300

400

500

600

700

800

900

1,000

0.5 1 1.5 2 2.5 3

Q
ue

ry
 T

im
e

(s
)

Join ratio

Impact of Join Ratio

Figure 10.13: Change the Join Ratio in the View

Change the Distribution of Source Updates

We examine the impact of the distribution of 1,000 updates among the data

sources on the maintenance performance (Figure 10.14). On the x-axis, a

distribution of 1 denotes that we only have one source delta with 1000 up-

dates, while k (2 < k ≤ 6) indicates that k source deltas with each delta

change has around 1000/k updates. Figure 10.14 presents the cost ratio

(batch maintenance cost divided by conditional grouping cost). Clearly, the

more data sources are involved, the higher the performance improvement.

This is because the total number of maintenance queries in batch mainte-

nance changes from 5 to 30 queries if we increase the distribution from 1 to

6 sources, while the conditional grouping only changes from 5 to 10 corre-

spondingly. Thus more improvement is achieved by further reducing the

number of maintenance queries.

10.5. EXPERIMENTAL EVALUATIONS 186

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

B
at

ch
/C

on
di

tio
na

l R
at

io

Distributions of Updates among Data Sources

Change the Distributions of Updates

Figure 10.14: Change the Distributions of Updates

Impact of the Network Delay

To evaluate the impact of different data transfer rates of the network, we

insert delay factors to model the data shipping costs. The delay is gener-

ated based on the average time to transfer one tuple. For example, if we

assume that the average time of transferring a tuple with 64 bytes is ℓ, then

it takes 100*2*ℓ to transfer one delta with 100 tuples with 128 bytes each.

We set up six source delta changes with about 180 updates each (a total of

1000 data updates) and vary ℓ from 0 ms to 200 ms. On Figure 10.15, both

maintenance costs grow steadily as the network cost of each maintenance

query is increasing. In a typical network environment where the transfer

time of one tuple with 64 bytes is less than 100 ms, conditional grouping is

more efficient than the batch method because we have a smaller number of

maintenance queries. However, in a slow network, i.e, when the average

transfer time for one tuple is larger than 200 ms, then the gain gotten by

10.5. EXPERIMENTAL EVALUATIONS 187

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200

Q
ue

ry
 T

im
e

(s
)

Network Delay Unit (ms)

Impact of Network Delay

Batch Maintenance
Conditional Grouping

Figure 10.15: The Impact of Network Delay

reducing the number of maintenance queries is overtaken by the increase

in the network cost of each query. This is because we may have some extra

data (null values) to be transferred in the conditional grouping. This extra

data becomes a burden in a slow network.

188

Chapter 11

Maintaining and Optimizing

Cyclic Join Views

As we mentioned in the introduction section, state-of-the-art view main-

tenance algorithms usually focus on maintaining simple acyclic join views

[63, 64, 66, 93]. They also have not investigated on potential optimiza-

tion opportunities by exploring environmental settings such as view def-

initions and data source processing capabilities. In this chapter, we first

describe possible view maintenance optimization opportunities in Section

11.1. While in Section 11.2, we discuss the cyclic view maintenance strate-

gies. In Section 11.3, we then provide a cost-based view maintenance opti-

mization framework to generate optimized view maintenance plans tuned

to particular environmental settings

11.1. VIEW MAINTENANCE OPTIMIZATIONS 189

11.1 View Maintenance Optimizations

The maintenance process as identified in Equation 9.4 can be viewed as the

process of answering n inter-related distributed queries. That is, each main-

tenance step corresponds to a distributed query that involves joins on n

data sources. Given that, two general optimization opportunities, namely,

choosing optimal join orders for maintenance queries and and sharing com-

mon accesses to data sources to reduce the number of maintenance queries,

can be naturally applied to a view maintenance process. We briefly describe

them below.

11.1.1 Choosing Optimized Join Orders

In an incremental view maintenance context, the size of source deltas is

usually much smaller compared with the size of data source relations. Hence,

without loss of generality, the evaluation of each maintenance step can be

expected to start from the source delta. That is, maintenance queries in one

maintenance step are processed in a sequential manner. The view manager

first composes a maintenance query based on the source delta. While the

maintenance query to the next data source will be composed and processed

after the results of the previous maintenance query have been returned to

the view manager. This is to avoid maintenance queries that directly join

over data sources. Yet, multiple ways of executing each maintenance step

exist. For example, for the second maintenance step that contains ∆R2, we

could either evaluate ∆R2 ⊲⊳ R3 or ∆R2 ⊲⊳ R′1 first. Different join orderings

bring variations such as different intermediate results that affect the over-

11.1. VIEW MAINTENANCE OPTIMIZATIONS 190

all performance. Thus, the selection of optimal join orders for a multi-join

query, which has also been investigated in traditional distributed query

optimization such as in [57, 44], could be applied here to improve the view

maintenance performance.

Considering view definitions beyond simple acyclic join views, i.e., those

having multiple join conditions between arbitrary data sources possibly

with cycles, the selection of such join orderings is likely to have a major

impact on the view maintenance performance.

However, we note that such optimization only manipulates the order-

ing of maintenance queries, it does not change the maintenance logic itself.

For instance, it does not combine multiple maintenance queries into one

customized query to reduce the number of accesses to remote data sources.

11.1.2 Reducing the Number of Maintenance Queries

Reducing the number of accesses (maintenance queries) to remote data

sources has the potential to improve the overall maintenance performance.

For example, a batch maintenance that maintains multiple updates from

the same data source together (n*(n-1) maintenance queries) is shown to

have a superior performance compared with maintaining one single source

update at a time (k*(n-1) queries) [66, 93]. Here n is the number of data

sources, while k is the total number of source updates that need to be main-

tained. The number k usually is much larger than n.

As discussed in Chapters 10, we have proposed a grouping maintenance

algorithm that maintains a materialized view defined as R1 ⊲⊳ R2 ⊲⊳ . . . ⊲⊳

Rn only using 2*(n-1) maintenance queries. In grouping maintenance, n

11.2. CYCLIC JOIN VIEW MAINTENANCE 191

maintenance steps (Equation 9.4) is visualized as a computational matrix.

The basic idea is to group deltas (source deltas or intermediate mainte-

nance results) and construct combined maintenance queries whenever it is

possible. Compared with state-of-the-art batch maintenance which as il-

lustrated by Equation 9.4 having O(n2) remote maintenance queries, this

further reduction of maintenance queries has been shown to lead to major

performance improvements in a majority of cases (see Section 10.5). How-

ever, the basic grouping maintenance algorithm does not address the views

beyond simple acyclic join views.

11.2 Cyclic Join View Maintenance

11.2.1 View Definition Graph

We use a view graph to represent a general join view definition (including

cyclic views). Each node in the graph represents a data source that ap-

pears in the view definition. An edge indicates a join condition in the view

definition between two respective data sources. For example, the graph

depicted in Figure 11.1(c) represents the view Tour-Customer defined by the

SQL query in Figure 11.1(a) based on the data source descriptions in Fig-

ure 11.1(b). Other operations in the view definition such as projection and

selection are assumed to be applied locally at each data source. Thus they

are not explicitly depicted in the view graph. As we will discuss in Sec-

tions 11.3.1 and 11.4.2, these operations are implicitly captured by our cost

regression model.

11.2. CYCLIC JOIN VIEW MAINTENANCE 192

R3

R1

R4

R2

CREATE VIEW Tour-CustomerAS
SELECT C.Name, F.Dest, F.FlightNo,T.TourID, P.StartDate
FROM Customer C, FlightRes F, Tour T, Participant P
WHERE C.Name=F.Nameand F.Name=T.Name

and T.Name=P.Nameand P.Loc=F.Dest
and F.Age<=`65'

(a) SQL Query View Definition

(c) View Definition Graph

R4: Tour(TourID, Name, Type, Dest)

R3: Participant(Name, TourID, StartDate, Loc)

R2: FlightRes(Name, Age, FlightNo, Dest)

R1: Customer(Name, Address, Phone)

(b) Description of Data Sources

Figure 11.1: Model View Definition

11.2.2 Extended Batching and Graph Transformation

One key issue in maintaining a general join view is how to handle extra

join conditions that compose cycles, i.e., the join between R2 and R4 in

Figure 11.1(c). We now propose the following two strategies to address

this: (1) extended batching that incorporates extra join conditions in each

maintenance step whenever it is applicable, and (2) view graph transforming

that transforms view graph into simpler forms and then applies existing

algorithms for simple join views recursively.

Extended Batching. In this extended batching approach, we aim to incor-

porate such extra join conditions between data sources in each maintenance

query whenever it is possible. For example, after we get the maintenance

query results of ∆R2 ⊲⊳ R3, we can combine the join conditions indicated

by edges R2-R4 and R3-R4 together and send a combined maintenance

query to R4. Thus, both join conditions can be evaluated at the same time.

11.2. CYCLIC JOIN VIEW MAINTENANCE 193

We prefer such combinations in a distributed environment because this re-

duces the number of accesses to remote data sources. Such reductions have

the potential to improve the view maintenance performance.

Note that extra join conditions also bring more options regarding the

join orders that can be considered for each maintenance step. For example

as shown in Figure 11.1(c), R2 has join conditions both with R3 and R4.

Thus a ∆R2 can first join with either R3 or with R4.

For simplicity, we use ⊲⊳ij to represent the edge in the view graph which

denotes the join condition between data sources Ri and Rj . We defineRc as

the set of all data sources that have been evaluated thus far. For example,

Rc = ∅ initially. After we have evaluated the join condition between R2-

R3 (⊲⊳23), then Rc = {R2, R3}. We define ⊲⊳>j as the collection of all join

conditions (edges) that can be evaluated at the data source Rj together.

More formally, it has the following two properties: (1) each ⊲⊳ij in ⊲⊳>j is

an edge in the view graph, and (2) each Ri of ⊲⊳ij has Ri ∈ Rc and Rj 6∈ Rc.

For example, if we have Rc = {R2, R3}, then ⊲⊳>4 = {⊲⊳24, ⊲⊳34}. After ⊲⊳>4

has been evaluated,Rc = {R2, R3, R4}.

Thus each ⊲⊳>j contains all the join conditions that can be combined into

one maintenance query to be submitted to the source Rj . The join condi-

tions in each ⊲⊳>j depend on the actual execution order of the maintenance

queries (the data sources that have been visited so far) in each maintenance

step. For example, both Formulae 11.1 and 11.2 are possible ways of execu-

tion to maintain a delta change ∆R2 for the view modeled by Figure 11.1.

Here ⊲⊳>4 of Formula 11.1 includes {⊲⊳24, ⊲⊳34}, while ⊲⊳>3 in Formula 11.2

denotes {⊲⊳43, ⊲⊳23}.

11.2. CYCLIC JOIN VIEW MAINTENANCE 194

∆R2 ⊲⊳23 R3 ⊲⊳>4 R4 ⊲⊳12 R1 (11.1)

∆R2 ⊲⊳12 R1 ⊲⊳24 R4 ⊲⊳>3 R3 (11.2)

Based on the above notations, the batch maintenance process for gen-

eral join views containing n data sources can be represented by Equation

11.3. Compared with state-of-the-art batch process denoted by Equation ??,

join conditions in the maintenance query modeled by ⊲⊳>j in Equation 11.3

are more flexible.

∆V = ∆R1 ⊲⊳>2 R2 ⊲⊳>3 R3 . . . ⊲⊳>n Rn

+R′1 ⊲⊳>1 ∆R2 ⊲⊳>3 R3 . . . ⊲⊳>n Rn

+ . . .

+R′1 ⊲⊳>1 R′2 ⊲⊳>2 R′3 . . . ⊲⊳>n−1 ∆Rn

(11.3)

We refer to one possible execution such as Formulae 11.1 or 11.2 as an

instance of a maintenance step. The term extended batch maintenance plan, or

batch plan for short, refers to a collection of instances with one instance per

maintenance step. It specifies at the logical level the specific evaluation of

a maintenance process. As can be seen, many maintenance plans exist for

one given view definition since each maintenance step may have multiple

instances. These maintenance plans may exhibit different performances

due to differences among join conditions, network costs, and other factors.

The problem of choosing the best instance for each maintenance step

is similar with finding the optimal join ordering that has been investigated

in traditional distributed query optimization [44, 57, 103]. However, in the

view maintenance context, each instance will start from the source delta

11.2. CYCLIC JOIN VIEW MAINTENANCE 195

change since it is much smaller than that of data sources. We also pro-

mote the combination of join edges (conditions) to reduce the number of

access to data sources. These two heuristics together reduce the overall

search space we need to go through in the optimization. As described in

Section 11.3.1, we will first enhance our view definition model with appro-

priate cost information and then apply search techniques such as dynamic

programming [97] to generate optimized extended batching maintenance

plans.

Note that this extended batching approach still requires O(n2) join queries

over distributed data sources to compute the view delta.

View Graph Transformation. Another approach for maintaining a gen-

eral join view is to transform the view graph into simpler structures, and

then to recursively apply the existing algorithms. For example, the view

graph defined in Figure 11.2(a) can be divided into two parts as shown

in Figures 11.2(b) and 11.2(c). Existing join view maintenance algorithms

could be applied to Figure 11.2(b) first. Once we get the maintenance re-

sult for Figure 11.2(b), let us call it ∆V1, then the remaining join conditions

could be directly applied to ∆V1 to get the final maintenance result.

R3

R1

R4

R2

R3

R1

R4

R2

(b) A Simple Linear Join (c) Remaining Join Conditions

R3

R1

R4

R2

(a) Original Graph

Figure 11.2: Divide View Definition Graph

11.2. CYCLIC JOIN VIEW MAINTENANCE 196

Any existing view maintenance algorithms that work for a simpler view

graph could be applied here. In this work, we choose the grouping main-

tenance algorithm introduced earlier (Section 11.1.2) to illustrate the basic

idea of this transformation-based approach. We choose the grouping algo-

rithm because (1) it has been shown to be more efficient than the typical

batch maintenance in a majority of cases for views defined as a linear form

such as R1 ⊲⊳ R2 . . . ⊲⊳ Rn, and (2) the grouping maintenance as discussed

in [69] cannot handle views other than simple linear join views.

Thus the transformation-based approach for maintaining general join

views can be abstracted in the following two steps: (1) Find a path in the

view graph that goes through all nodes once and apply the grouping al-

gorithm for the part of view defined by the selected path. (2) Apply the

remaining join conditions (if any) to the result calculated in the first step.

Thus, we end up with 2(n − 1) + 1 maintenance queries to calculate ∆V

since all the remaining join conditions on the result of the first step can be

evaluated locally at the view manager.

Given multiple paths may exist in one view graph, we will also have

multiple ways of execution when applying the transformation-based ap-

proach using the grouping maintenance. For example, both Formulae 11.4

and 11.5 are possible choices when using the grouping strategy for the view

defined in Figure 11.1. Formula 11.4 chooses the path R4 → R3 → R2 →

R1, while Formula 11.5 uses the path R1 → R2 → R4 → R3. The super-

script in the formulae represents the remaining join condition(s) that need

to be evaluated locally at the view site after we get the maintenance result

generated by the grouping maintenance. Similarly, we refer to each such

11.2. CYCLIC JOIN VIEW MAINTENANCE 197

execution choice, i.e., Formula 11.4 or 11.5, as a grouping maintenance plan

since it also specifies how to compute ∆V logically. Not surprisingly, such

different grouping maintenance plans may exhibit rather distinct mainte-

nance performance due to variations in join conditions and network costs.













∆R4 ⊲⊳43 R3 ⊲⊳32 R2 ⊲⊳21 R1

R′4 ⊲⊳43 ∆R3 ⊲⊳32 R2 ⊲⊳21 R1

R′4 ⊲⊳43 R′3 ⊲⊳32 ∆R2 ⊲⊳21 R1

R′4 ⊲⊳43 R′3 ⊲⊳32 R′2 ⊲⊳21 ∆R1













⊲⊳24

(11.4)













∆R1 ⊲⊳12 R2 ⊲⊳24 R4 ⊲⊳43 R3

R′1 ⊲⊳12 ∆R2 ⊲⊳24 R4 ⊲⊳43 R3

R′1 ⊲⊳12 R′2 ⊲⊳24 ∆R4 ⊲⊳43 R3

R′1 ⊲⊳12 R′2 ⊲⊳24 R′4 ⊲⊳43 ∆R3













⊲⊳23

(11.5)

In a view graph such as a star-shaped one, there may not be no one

single path that goes through all the data sources. Again, we could use the

same partition and transform approach that described in Section 10.3.2 to

address this. The basic idea is to select a subgraph of the view graph such

that it contains a path going through all its nodes exactly once. Then, for

those data sources and the corresponding join conditions included in the

subgraph, we apply the same strategy as described above. This way, we

compute the delta result for this subgraph. We then transform the view

graph by replacing the subgraph by a single node. We consider the delta

result of the subgraph as the delta change to that single node. Thereafter,

we can recursively apply this technique to the reduced view graph. Given

a connected join graph, such transformation guarantees to terminate with

one node in the graph with its delta representing exactly the final ∆V .

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 198

11.3 Cost-Based VM Optimization Framework

11.3.1 Cost-Based Analysis

Given the above two maintenance strategies, namely, incorporating extra

join conditions (extended batch maintenance) and transforming the view

graph (grouping maintenance with a smaller number of maintenance queries),

and the possibly large number of available maintenance plans in each strat-

egy, the optimization question arises how to generate an efficient mainte-

nance plan tuned to given environmental settings, i.e., a particular view

graph, data source processing capabilities and network costs. We thus pro-

pose a cost-based optimization framework to generate optimized mainte-

nance plans.

Cost Factors and Cost Functions

We first enhance the view graph by incorporating the relevant cost informa-

tion to estimate the cost of maintenance plans in terms of total processing

times. We annotate each node in the view graph with cost factors that de-

scribe the basic information about the data source. In the remainder, we

work with the following two factors, (1) |Ri|: the cardinality of the source

relation Ri, and (2) |Ai|: the number of attributes in the source relation Ri.

Other cost information related to a data source could similarly be added

into our model, such as the average tuple length or the number of used

disk blocks. While additional factors may result in a more precise cost

model, it is often not exposed by data sources. As we will illustrate in

Section 11.4, we have found these two factors which are most easily avail-

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 199

able about remote sources to be already effective in estimating the cost of a

view maintenance plan.

We also attach cost functions to each edge in the view graph to esti-

mate the cost of a maintenance query (join). In a view maintenance con-

text, the view manager (as shown in Figure 9.1) composes the maintenance

query based on the delta change (either source delta or intermediate results

from previous maintenance queries). Thus, for each edge (⊲⊳ij) in the view

graph, the cost of having the left operand ready in the view manager and

evaluating the join at Rj may differ with having the right operand ready in

the view manager and evaluating it at Ri. For example, for join edge ⊲⊳23

in Figure 11.3, the cost of ∆ ⊲⊳ R3 and the cost of ∆ ⊲⊳ R2 may be different

even we have exactly the same ∆ and the same join condition ⊲⊳23. Cor-

respondingly, we associate two cost estimation functions with each edge.

Moreover, a selectivity estimation function σij is also necessary for each

edge ⊲⊳ij in the view graph. In summary, the following two types of func-

tions will be associated with each edge in the view graph:

• τij (or τji) estimates the processing time for evaluating the join condi-

tion ⊲⊳ij at the data source Rj (or Ri) and returning the result back to

the view manager.

• σij estimates the selectivity of the join operation ⊲⊳ij between data

sources Ri and Rj .

As an example, the view graph described in Figure 11.1 extended with

appropriate cost factors and functions is depicted in Figure 11.3. Here, we

assume the selectivity of each join edge σij is known to the cost model. We

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 200

apply linear regression techniques [82, 121] to build cost functions for each

edge (details provided in Section 11.3.1). In general, any cost estimation

methods can be used to build and improve cost functions, and they could

be easily plugged into our maintenance optimization framework. Clearly,

knowing more information about the view definition and the data sources

could help us to build better cost functions. For example, knowing the

dependency among join conditions of the view definition could help us

to improve the join selectivity estimation function σ, while knowing the

particular join method being used for maintenance queries could improve

the cost function τ (and the regression model). However, we aim to provide

a high level cost model of the view maintenance process in this work.

R3

R1

R4

R2

|R4|
|A4|

τ34/τ43/σ34

τ32/τ23/σ23

τ
24 /τ

42 /σ
24

τ12/τ21/σ12

|R1|
|A1|

|R2|
|A2|

|R3|
|A3|

Figure 11.3: Cost-Enhanced View Graph

Cost Function Regressions

The basic idea of the regression analysis is to derive a cost model based on

observed costs of several sample queries. A major benefit of using the re-

gression model is its local autonomy. That is, we do not require the knowl-

edge of any details regarding the remote data sources to estimate the cost.

This is practical in a distributed environment where we have no control

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 201

over remote data sources. And in fact, it may simply not be possible to get

internal information about a source.

As described in Section 11.3.1, a cost function τij with two basic input

variables (parameters) is used to estimate the maintenance query process-

ing time when evaluating a maintenance query against the data source Rj .

Here we use Ci to represent the cardinality of the operand table and Ai to

denote its number of attributes. We propose the following basic formula,

which includes other potential derived variables based on Ai and Ci, to

model the processing time of a maintenance query against a source Rj . 1

τij = B0 + B1 ∗ Ci ∗ Ai + B2 ∗ Ci + B3 ∗ Ai +

B4 ∗
√

Ci + B5 ∗
√

Ai + B6 ∗
√

Ci ∗ Ai

This model can be explained based on existing join query cost models

for a DBMS. The coefficient B0 can be interpreted as the initialization cost.

While the combination of B1, B2, . . ., B6 and their corresponding variables

can be interpreted as the estimations of processing all tuples in the delta

table on the source relation incorporating the effect of the number of at-

tributes in each tuple on the total cost.

We run a set of sample queries for each τij defined in the view graph

in our environment to measure the actual query costs on different inputs (a

combination of a different number of tuples and attributes). Based on the

observed values and the basic cost model, we apply the least squares fit and

the stepwise selection [82] to find the suitable variables and corresponding

1We can build other cost models for different join edges in the view graph, for simplicity
but without loss of generality, we only describe one model to illustrate the overall process.

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 202

coefficients for each τij of a join edge. For example, B0 + B2 ∗ Ci + B6 ∗
√
Ci ∗ Ai can be the actual cost function selected for a particular join edge.

Cost of a Maintenance Plan

In this section, we now elaborate on how we have extracted cost expres-

sions of maintenance plans given the annotated cost factors and functions

as identified in the above sections. Note that the cost model we developed

here is a refined model based on Section 10.4.

The cost of a maintenance plan, the total processing time, can be esti-

mated based on its computation process. For simplicity, we use Ci to rep-

resent the cardinality of a source delta ∆Ri, while we use Ai to denote the

number of attributes of ∆Ri (1 ≤ i ≤ n).

The cost of a batch maintenance plan (Tb) can be described as the sum

of its maintenance step costs. For ease of explanation, we assume that k1,

k2, . . ., kn−1 denotes the sequence (the order) that the view manager will

use to evaluate the maintenance step k (having the source delta ∆Rk, 1 ≤

k ≤ n). ki in the sequence means that the view manager will visit the data

source Rki
at the i-th maintenance query. This sequence actually is one of

the permutations of data source indices without k. More formally, it has

the following two properties: (1) ∀i, 1 ≤ i ≤ n − 1, ki 6= k and 1 ≤ ki ≤ n.

(2) ∀i, j, 1 ≤ i, j ≤ n− 1, i 6= j ⇐⇒ ki 6= kj .

Given that, the number of attributes in the i-th maintenance query for

the maintenance step k is denoted by Ak
i = Ak +

∑i
s=2 |Aks−1

|. While the

number of tuples in the delta for the i-th query is described as Ck
i = Ck ·

∏i−1
s=1(σks−1,ks

·|Rks
|). The cost of the maintenance step k will be the summa-

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 203

tion of its n-1 maintenance queries, as described by T k
b =
∑n−1

i=1 τki,ki+1
(Ck

i ,

Ak
i). The cost of a batch maintenance plan can be represented as the sum of

the cost of n maintenance steps, that is, Tb =
∑n

i=1 T i
b .

The cost of a grouping maintenance plan (Tg) can be described as the

summation of the cost of the scroll up phase (Tu), the scroll down phase (Td),

and the cost of applying the remaining join conditions (if any) (Tr). For

simplicity, we assume k1, k2, . . ., kn is the path chosen in the view graph.

Thus, the cost can be expressed by the following formula.

Tu =

n−1
∑

i=1

τki,ki+1
(

i
∑

j=1

(Ckj
·

i
∏

s=j

σks−1,ks
· |Rks

|),
i
∑

j=1

|Akj
|)

Td =

2
∑

i=n

τki,ki−1
(

n
∑

j=i

(Ckj
·

n
∏

s=i

σks−1,ks
· |Rks

|),
n
∑

j=i

|Akj
|)

The cost of Tr is denoted by a cost function Costr on the result delta

from the scroll up and scroll down phases. That is, Tr = Costr(
∑n

i=1(Cki
·

∏n−1
j=1 σkj ,kj+1

|Rkj+1
|), ∑n

i=1 |Aki
|). While the cost of a grouping mainte-

nance plan Tg as a whole equals to Tu + Td + Tr. Note that the cost of view

graphs that do not have a path can be estimated by the sum of individual

subgraphs as described in Section 11.2.2.

11.3.2 Generate Optimized Maintenance Plans

As described in Section 11.2, various combinations of join edges and dif-

ferent paths or even different subgraphs can be chosen from a view graph.

This would lead to multiple maintenance plans. Such maintenance plans

may have rather distinct performances (in terms of total processing times).

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 204

In our optimization framework, we reduce the problem of finding the over-

all optimal maintenance plan to the problem of getting the optimal main-

tenance plan of each approach (either extended batching or a grouping

maintenance plan). Given that, we can simply choose the better one from

the most efficient maintenance plan for each individual approach. Note

that the maintenance optimization framework can be naturally extended

to support a global search based on the whole problem space, i.e., mixing

the batching and grouping maintenances.

Select Optimal Batch Plan

One way to generate the optimal batch maintenance plan for views with a

small number of data sources is via enumeration. As discussed in Section

11.3.1, the cost of a batch maintenance plan is the sum of the cost of its

maintenance steps. Thus, the cost for the batch maintenance plan reaches

its minimum given the minimal cost for each maintenance step.

Algorithm 8 sketches the enumeration algorithm that generates all in-

stances of the maintenance step i that contains the source delta ∆Ri. Ini-

tially, vNodes only contains Ri, cEdges has all edges that start from Ri, while

lEdges has all edges except those in cEdges. As described in Section 11.2.2,

each instance starts from the source delta relation since that delta is much

smaller than the data sources. We prefer to combine as many join edges as

possible in each maintenance query. In line 8 of Algorithm 8, we combine

those edges that have the same ending node with the start nodes of the

edges having been visited. This is because such a combined edge reduces

the number of accesses to a data source. Such reduction usually results in

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 205

a performance improvement in a distributed environment. Thus this enu-

meration algorithm does not consider any execution instance that starts

from a data source other than the source delta or evaluates join conditions

separately one by one. Both would in general lead to sub-optimal solutions.

Algorithm 8 EnumerateStep(vNodes, cEdges, lEdges)

/* vNodes: Nodes visited so far. cEdges: Edges selectable for next step.
lEdges: Edges not yet processed. */

1: while cEdges 6= ∅ do
2: Get an edge c from cEdges and remove c from cEdges
3: n vNodes← vNodes; n cEdges← cEdges; n lEdges← lEdges
4: Put new node (from step 2) into n vNodes
5: nCands← All new candidate edges
6: n cEdges← n cEdges + nCands /*add new candidate edges into n cEdges*/
7: n lEdges← n lEdges− nCands /*remove new candidate edges from n lEdges*/
8: Combine edges in n cEdges if applicable
9: EnumerateStep(n vNodes, n cEdges, n lEdges)

10: end while
11: if sizeof(vNodes) = number of graph nodes then
12: Record the instance and compute its cost
13: end if

For example, Figure 11.4 shows all available instances of the mainte-

nance step 4 that contains ∆R4 for the view defined in Figure 11.1. The

number on each edge indicates the execution order. For simplicity, we use

the list of data source indices to represent the instance. For example, the in-

stances of the maintenance step illustrated in Figure 11.4 are represented by

4-3-2-1, 4-2-3-1 and 4-2-1-3 respectively. Thus a batch maintenance plan can

be represented by the collection of such lists of instances with one instance

per maintenance step.

The cost of an instance can be estimated whenever the instance is found

by the enumeration algorithm based on the cost model given in Section

11.3.1 (line 10 in Algorithm 1). For edges that can be combined, we simply

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 206

R4 R3

R1 R2
3

22

1
R3

R1

R4

R2
3

21

2
R3

R1

R4

R2
2

31

3

4-3-2-1 4-2-3-1 4-2-1-3

Figure 11.4: Enumerations of Maintenance Step 4

use the average of each individual estimated edge cost. For the combined

join selectivity, we choose the product of individual ones as the estimation.

Other refined cost estimation strategies could be applied for these to be

combined join edges. Such changes on the cost estimation model would

not change the overall search strategy. The optimal maintenance step in-

stance can be simply found by choosing the one with minimal cost from all

instances.

The complexity of finding an optimal instance of a maintenance step

is similar to that of the join ordering optimization problem encountered

in traditional distributed query processing, which has been proven to be

NP-hard [113]. Thus, efficient algorithms cannot be found to solve such

problems in general. We design a controlled dynamic programming algo-

rithm (Algorithm 9) to control the tradeoff of the optimization cost with

the quality of the solution. Here, the parameter k is used to indicate how

many intermediate plans are kept in the pruneQueryP lan process. For ex-

ample, the user can set k equal to 1 to prune all other intermediate plans

except the most promising one in each recursive call. Thus, the algorithm

is reduced to a greedy algorithm with maximal search efficiency for iden-

tifying an optimized solution. Or the user can set k to infinite to have

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 207

the algorithm keep all the intermediate plans. In that case, the algorithm

then becomes the full enumeration algorithm that produces the optimal

plan. In algorithm 9, the totalNumnerOfNodes denotes the total num-

ber of nodes in the view graph, while the currP lans.getNumberOfNode()

returns the number of nodes have been included in the intermediate main-

tenance plans.

Algorithm 9 controlledDP(currP lans, k)

/* currPlans: plans have been built so far. Initially, only ∆Ri in currPlans.
k: the parameter to adjust the pruneQueryPlan. */

1: if currP lans.getNumberOfNodes() < totalNumberOfNodes then
2: currP lanLists = currP lans.getCurrPlanLists()
3: newP lans = ∅ /* to store new query plans */
4: for each p ∈ currP lanLists do
5: candEdges← All possible candidate edges for plan p
6: for each edge ∈ candEdges do
7: Compose new plan np from p and edge
8: Store np in newP lans
9: end for

10: end for
11: newP lans← pruneQueryPlan(newP lans, k)
12: controlledDP(newP lans, k)
13: end if
14: if currP lans.getNumberOfNodes() = totalNumberOfNodes then
15: Compute cost of each plan in currP lans
16: return the best plan
17: end if

Select Optimal Grouping Plan

The first step to generate a grouping maintenance plan is to find and choose

a path in the view graph. However, finding a path (visiting all nodes in the

graph once) with minimal cost is equivalent to the Hamiltonian Path opti-

mization problem, which is known to be NP-complete [38]. Thus, similar

11.3. COST-BASED VM OPTIMIZATION FRAMEWORK 208

to the selection of the optimal batch maintenance plan, we build an enu-

meration algorithm to generate all possible paths for a view graph. The

algorithm is similar to Algorithm 8. As an example, Figure 11.5 shows all

possible paths illustrated by the enumeration algorithm for the view de-

fined in Figure 11.1. Once one path has been selected, the corresponding

maintenance plan is also decided accordingly. For simplicity, we again use

the list of source node indices in the path to represent a grouping plan. For

example, the sequence 1-2-3-4 denotes the first plan listed in Figure 11.5.

The dashed line denotes the remaining edge(s) that need to be processed

after the completion of the scroll up and scroll down phases of the group-

ing maintenance (Section 11.1.2).

R3

R1

R4

R2

R3

R1

R4

R2

R3

R1

R4

R2

R3

R1

R4

R2

1-2-3-4 4-3-2-1 3-4-2-1 1-2-4-3

Figure 11.5: Enumerations of Grouping Plans

The cost of a grouping maintenance plan can be estimated as described

in Section 11.3.1. The optimal grouping plan will be the one with the small-

est estimated cost. Given the number of nodes in a view graph is usually

not large, such enumeration-based algorithms are still acceptable for most

practical cases.

11.4. EXPERIMENTAL STUDIES 209

11.4 Experimental Studies

To verify the feasibility and effectiveness of our view maintenance strate-

gies and our corresponding optimization framework, we have implemented

the proposed optimization strategies and the corresponding searching al-

gorithms within a working view maintenance system (TxnWrap) [24]. We

deploy join relations across distributed data sources. Each relation has

1,000,000 (1M) tuples. Each tuple has about 80 bytes. Here, join column

values in each relation are uniformally distributed integers, while other

columns are randomly generated characters. If not specified explicitly, the

cardinality of one maintenance query result is similar in size to the delta.

That is, if we have 10 tuples in the source delta, we expect to see roughly 10

tuples in the final view delta. Each source delta will have an equal number

of insert and delete tuples. These tuples are generated randomly within the

join column data value range. For the delete tuples, we make sure the gen-

erated join column values are already in the current data source. Two actual

maintenance queries, one is insert and the other is delete, are involved in

each single logical maintenance query such as ∆Ri ⊲⊳ Rj .

We deploy the view manager and the corresponding materialized view

on a Oracle 8i server with dual 2.4GHz Xeon CPUs and 1G main mem-

ory. Data sources are deployed on different machines with various ma-

chine configurations (different CPU speed and memory size). Thus, differ-

ent data sources have different processing capabilities. The data sources

and the view manager are connected through a local 100M ethernet.

The first set of experiments is conducted based on the configuration

11.4. EXPERIMENTAL STUDIES 210

shown in Figure 11.6. We employed four data sources with one relation

each, denoted by R1, R2, . . ., R4. Three join views V1,V2 and V3 are defined

upon these four data sources. Note that the view includes all attributes of

the underlying join relations in our experimental setup. In this setup, one

index has been built on R4 along the join condition between R3 and R4, and

one on R1 based on the join condition between R2 and R1.

Celeron 800MHz PC,
384M Memory.

R2 (Oracle 8i): R3 (Oracle 8i):
2-450MHz Pentium III
CPU, 512M Memory.

R3

R1 R2

R4

(V2)

R4 (Oracle 8i):
2-1GHz Pentium III
CPU, 1G Memory.

R1 (Oracle 8i):
800MHz Pentium III
CPU, 512M Memory.

R3

R1 R2

R4

(V1)

R3

R1 R2

R4

(V3)

Figure 11.6: Experimental Configuration

11.4.1 Diversity of Maintenance Plans and Costs

Table 1 shows the number of maintenance plans for batching and grouping

that are possible for the views defined in Figure 11.6 (V1, V2 and V3). As

expected, having more join edges in the view graph dramatically increases

the number of maintenance plans available in the maintenance process.

Views Batching plan # Grouping plan #

V1 9 2

V2 108 4

V3 576 12

Table 11.1: Number of Available Plans

11.4. EXPERIMENTAL STUDIES 211

Not surprisingly, more maintenance plans bring diversity in the view

maintenance performance. Figure 11.7 shows the best (and the worst) main-

tenance plans of both batching and grouping for views V1, V2 and V3 when

maintaining a total of 2000 source updates. Each source delta (∆R1, ∆R2,

. . ., ∆R4) experiences around 500 updates mixed with both insert and delete

tuples. Here Best.B (or Worst.B) represents the least (or the most expen-

sive) total processing time from all available batching maintenance plans,

while Best.G (or Worst.G) denotes the best (or the worst) of grouping plans.

As can be seen, the addition of more join edges results in more available

maintenance plans. This in turn results in a larger gap in the view main-

tenance performance. Such diversity motivates the needs of the proposed

view maintenance optimization.

40000

50000
60000

70000

80000
90000

100000
110000

120000
130000

140000

Bes
t.B

W
or

st.
B

Bes
t.G

W
or

st.
G

Bes
t.B

W
or

st.
B

Bes
t.G

W
or

st.
G

Bes
t.B

W
or

st.
B

Bes
t.G

W
or

st.
G

P
ro

ce
ss

in
g

 T
im

e
(m

s)

V1 V2 V3

Figure 11.7: Diversity of Maintenance Costs

11.4.2 Cost-Based Optimizations

We now choose V2 as an example to further explore the cost-based opti-

mizations. Other view graphs we have worked with result in similar con-

11.4. EXPERIMENTAL STUDIES 212

clusions as we describe below.

Cost Function Regression

We first have to establish the cost functions for each edge (join condition)

defined in the view graph to estimate the query processing time for a given

maintenance plan. Figure 11.8 shows the regression function we built for

R3 along the join condition between R2 and R3 using least squares fit and

the stepwise selection as discussed in Section 11.3.1. The fitted model (vari-

ables) and its coefficients (using SAS 8.0) are: B0 + B1 ∗ Ci ∗ Ai + B2 ∗ Ci +

B3 ∗ Ai with B0 = 8840.55, B1 = 0.0242, B2 = 0.0208 and B3 = 16.26. Other

cost functions are omitted here due to the space constraints. The three solid

lines in Figure 11.8 record the observed query processing times (on the y-

axis) for sample maintenance queries with 2, 4 and 6 attributes respectively.

The number of tuples in the source delta that the maintenance query is gen-

erated upon changes from 100 to 1000 (on the x-axis). The three dashed

lines illustrate the estimated query processing time given the same input

parameters (the number of attributes and the number of tuples) using the

fitted function. As seen in Figure 11.8, the cost function adequately cap-

tures the basic trends of the actual query processing costs. 2

Cost Estimation of Maintenance Plans

Figures 11.9 and 11.10 show the cost estimation of various maintenance

plans. Figure 11.9 shows both the estimated and measured costs of batch-

2Further examination of observed values can help to find a better fitted cost function.
However, this is not the main focus of this work, we thus only choose a reasonable good
function which reflects the trend of the cost.

11.4. EXPERIMENTAL STUDIES 213

8300

8400

8500

8600

8700

8800

8900

9000

9100

9200

200 400 600 800 1000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Number of Updates

Measured (A#=2)
Measured (A#=4)
Measured (A#=6)

Regression (A#=2)
Regression (A#=4)
Regression (A#=6)

Figure 11.8: Cost Function Regression

ing maintenance plans. The line ‘Worst Measured’ records the total main-

tenance query processing time measured for the maintenance plan with

the highest estimated cost generated by the search algorithm. The num-

ber of source updates ranges from 200 to 2000 (on the x-axis). 3 While the

line ‘Best Measured’ records the corresponding observed processing times

for the maintenance plan with the lowest estimated cost. The two dashed

lines in Figure 11.9 show the corresponding estimated total query process-

ing times for these two plans. We note that the estimated cost reflects the

measured cost trends. However, it only accounts for around 80% of the real

cost. This is because: (1) the accumulated errors caused by each individual

join cost function, and (2) the measured cost includes all extra processing

cost in the view manager such as converting the query results and compos-

ing maintenance queries which have not been incorporated into our cost

3We assume all the updates are evenly distributed among data sources. Thus, in this ex-
periment configuration, each delta has k/4 updates where k is the total number of updates
(tuples) since we have 4 source relations.

11.4. EXPERIMENTAL STUDIES 214

model for simplicity reasons.

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

200 400 600 800 1000 1200 1400 1600 1800 2000

Q
ue

ry
 T

im
e

(m
s)

Number of Updates

Worst Measured
Best Measured

Worst Estimated
Best Estimated

Figure 11.9: Cost Estimation of Batch Plans

Figure 11.10 illustrates all four grouping maintenance plans available

for V2. Each grouping plan is represented by its corresponding path as dis-

cussed in Section 11.3.2, i.e., 1-2-3-4. Four solid lines record the measured

costs and the dashed lines show the corresponding estimated costs. For

the same reasons as those for the batch maintenance cost estimation, the

estimated grouping maintenance plan cost is also below that of the mea-

sured cost. However, it again indicates the trends well and thus supports

the usage of our proposed cost estimation approach.

Batching vs. Grouping

In the above cases (i.e., Figures 11.9 and 11.10), the cost of the best batch

maintenance plan is still worse than the worst grouping maintenance plan.

This is because the grouping maintenance plans have a much smaller num-

ber of accesses to the remote data sources. However, this is not true in

11.4. EXPERIMENTAL STUDIES 215

20000

30000

40000

50000

60000

70000

80000

90000

200 400 600 800 1000 1200 1400 1600 1800 2000

Q
ue

ry
 T

im
e

(m
s)

Number of Updates

Measured (1234)
Measured (4321)
Measured (2134)
Measured (4321)
Estimated (1234)
Estimated (4321)
Estimated (2134)
Estimated (4312)

Figure 11.10: Cost Estimation of Grouping Plans

general. To illustrate this, we remove the index on R1, and assume 2000

updates both in R1 and R2 respectively, 10 updates in R3 and R4. We set

up the join conditions between R1-R3 and R2-R3 to have an approximate

50 join ratio which will return 50 times the number of input tuples as the

join results. While the join ratios of other edges is set to be around 1.

Figure 11.11 illustrates the costs of five different batch maintenance

plans given the above settings and the cost of four grouping maintenance

plans. Note that many other batch plans are available. Here we only se-

lect a small subset of them as illustrating examples. The selected plans are

listed in Table 2. As identified above, each maintenance plan is denoted

by the list of maintenance steps for batching plan or the selected path for

grouping plan.

Seen from Figure 11.11, at least two batch maintenance plans are more

efficient than even the best grouping maintenance plan. This is because in

each grouping maintenance plan, we have to include one of the high join

11.4. EXPERIMENTAL STUDIES 216

B(1): 2134,1234,4312,3124 B(2): 2314,1324,4321,3142

B(3): 2341,1342,4321,3412 B(4): 2341,1342,4321,3241

B(5): 2341,1342,4321,3214

G(1): 4312 G(2): 4321 G(3): 1234 G(4): 2134

Table 11.2: Selected Maintenance Plans

factor edges (either R1-R3 or R2-R3) in the grouping path. Thus, the inter-

mediate result will be amplified by the high join factor of such a join edge.

For example, if we use the grouping path 1-2-3-4, then the second query

of the scroll up phase may return 4000*50 tuples. However, in the batch

maintenance plan, we may defer such joins to avoid unnecessary process-

ing with such a large number of tuples. In this case, a batch maintenance

plan having a large number of maintenance queries (in this example, it has

12 queries) will be still more efficient than a grouping maintenance plan

(with 7 queries). This is because the large maintenance query results in

the grouping plan overtake the benefits gained by the smaller number of

maintenance queries.

Impact of the Network Cost

In the above experiments, the difference between the best and the worst

maintenance plans is around 40% of the total cost. In a more diverse en-

vironment, the cost difference between maintenance plans may vary more

dramatically. The following experiment illustrates the impact of the net-

work delay on the total maintenance cost.

To evaluate the impact of different data transfer rates of the network, we

11.4. EXPERIMENTAL STUDIES 217

50000

80000

110000

140000

170000

200000

230000

260000

290000

B(1) B(2) B(3) B(4) B(5) G(1) G(2) G(3) G(4)

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Group Maintenance PlansBatch Maintenance Plans

Figure 11.11: Batching Vs. Grouping

insert delay factors before evaluating each maintenance query. The delay

is generated based on the average time to transfer one tuple. For example,

if we assume that the average time to transfer a tuple with 2 attributes is t,

then it takes 100*2*t to transfer one delta with 100 tuples with 4 attributes

per tuple. Figure 11.12 shows the batch maintenance plan processing time

given t equal to 5 ms while all the other settings are the same as in the ex-

periment in Figure 11.11. Seen from Figure 11.12, the difference between

the maintenance plans can be more than 300% of the total processing time.

This is because the slower the network, the more the effect of processing ex-

tra intermediate query results due to a bad maintenance plans will become

apparent.

11.4.3 Complex Join Views and Large Batches of Updates

We now report on some of the experiments we have conducted for complex

join graphs with large batches of updates. The view is defined on 6 join

relations over 4 data sources as shown in Figure 11.13. In this setup, one

11.4. EXPERIMENTAL STUDIES 218

0

600000

1200000

1800000

2400000

3000000

3600000

4200000

4800000

5400000

6000000

B(1) B(2) B(3) B(4) B(5)

Batch Maintenance Plans

P
ro

ce
ss

in
g

 T
im

e
(m

s)

Figure 11.12: Batch Plans with Network Delay

index has been built on R1 along the join condition between R2 and R1, and

one on R6 based on the join condition between R5 and R6.

R4

R1

R2

R3 R5 R6
Celeron 800MHz PC,
384M Memory.

R5 (Oracle 8i):R2 (Oracle 8i):
2-450MHz Pentium III
CPU, 512M Memory.

R1 R4 (Oracle 8i):
2-1GHz Pentium III
CPU, 1G Memory.

R3 R6 (Oracle 8i):
800MHz Pentium III
CPU, 512M Memory.

Figure 11.13: A 6-Relation Join View Configuration

We change the number of source updates from 1,000 to 10,000. We com-

pare the best batch maintenance plans with that of the best grouping plans

along with their cost estimations. Figure 11.14 shows the performance

changes. Again, we see that the cost estimation continues to capture the

actual performance difference. We also see that the best grouping plans in

this case are almost 3 times better than the best batch maintenance plans.

This is because the grouping plan has a lot less maintenance queries (joins

over distributed data sources) to process. This reduction of the number of

11.4. EXPERIMENTAL STUDIES 219

maintenance queries helps to improve overall maintenance performance.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000

Q
ue

ry
 T

im
e

(m
s)

Number of Updates

Measured Best Batch
Estimated Best Batch
Measured Best Group
Estimated Best Group

Figure 11.14: Batch vs. Group Plans Given Large Update Batches

11.4.4 Optimization Overhead

Due to the inherent complexity of the optimization problem, there is no

‘efficient’ algorithm guaranteed to find the optimal plan. The cost of the

enumeration algorithm is small when the number of data sources is not

large. For example, the batch enumeration algorithm for the four node

view graph (V2) defined in Figure 11.6 takes less than 30 ms in our test

environment. The grouping path search algorithm takes less than 15 ms to

enumerate the paths. Such optimization cost is almost negligible compared

with the total maintenance cost.

As expected, when the number of nodes in the view graph increases, the

enumeration time also increases dramatically. A view graph with 9 nodes

and 12 join edges needs 12,228 ms to enumerate using the batch enumer-

ation algorithm (Algorithm 8) in our current settings. Such enumeration

11.4. EXPERIMENTAL STUDIES 220

algorithms are acceptable primarily in cases when the number of nodes in

a view graph is not large. Also the actual view maintenance time is usually

much larger than that of the optimization time.

Parameters 1 (greedy) 5 20 all (enumeration)

Opt. Time (ms) 51 100 271 11313

Plan Cost (ms) 357465.8 307108.8 293901.7 292246.8

Table 11.3: Optimization Cost vs. Quality of Solution

The proposed controlledDP algorithm (Algorithm 9) can be used to

trade the optimization time with the quality of a solution. Here, we use

the same 9 nodes and 12 join edges view graph. We now vary the setup

of pruneQueryP lan to keep the best 1, 5, 20, and all intermediate plans

when building instances of each maintenance step. Seen from Table 11.4.4,

the greedy approach only takes 51 ms seconds to find a maintenance plan.

However, the plan is not as efficient compared with the optimal one. In this

setup, we see that if we keep the best 20 intermediate plans in each recur-

sive call of controlledDP , the cost of the result maintenance plan is close to

the optimal one. While it only takes 271 ms, almost 50 times less than the

enumeration approach, to generate this plan.

221

Chapter 12

Related Work

Maintaining materialized views under source updates is one of the impor-

tant issues in information integration given the dynamic nature of the data

sources [122]. This is because stale view extents may not help or even mis-

lead user applications. Early work has studied incremental view mainte-

nance assuming no concurrency [27, 73]. In approaches that need to send

maintenance queries to the data sources, especially in a environment with

autonomous data sources, concurrency problems can arise. Maintenance

strategies such as [5, 18, 23, 24, 122, 123] have focused on handling anomaly

problems due to concurrent updates among data sources.

Many algorithms have been proposed to date to maintain materialized

views incrementally by issuing maintenance queries to the data sources

[5, 11, 122, 123]. From both a resource and performance perspective, in-

crementally maintaining batches of updates is of particular interest. That

is, changes to the sources can be buffered and propagated periodically to

maintain the view extent. [27, 63, 80, 88, 93] propose algorithms to maintain

CHAPTER 12. RELATED WORK 222

materialized views incrementally using source-based batching. [93] pro-

posed an asynchronous view maintenance algorithm using delta changes

of data sources. [63] proposed a batch maintenance algorithm which can

be applied to maintain a set of views. In our previous work [66], we have

proposed a batch view maintenance strategy that works even when both

data and schema changes may happen on data sources. However, all these

existing approaches are only concerned with batching updates from the

same data source. [64] introduces a delta propagation strategy that also

reduces the number of maintenance queries to data sources. It is close to

our proposed adjacent grouping approach. However, none of above have

considered how to group heterogenous deltas to further reduce the number

of maintenance queries. This is exactly the approach where we observed a

major performance gain.

Parallel view maintenance strategies [65, 120] have also been investi-

gated to improve the view maintenance performance. These works are or-

thogonal to our current research focus since they take the approach to have

multiple maintenance plans run in parallel to improve view maintenance

performance.

Similar to [63], Posse [84] introduced a view maintenance optimization

framework. This work only focuses on the order in which these source

deltas are to be installed (to be maintained). While in our work here, we

now explore the optimizations at an even lower level. That is, given delta

changes, we study how to order and compose maintenance queries to data

sources to calculate the maintenance results more efficiently. Recent work

[49] proposes a maintenance strategy with a response time constraint by

CHAPTER 12. RELATED WORK 223

exploiting the asymmetry among different components of the maintenance

cost. While our approach in this work focuses on exploiting variations in

the maintenance logic (i.e., reducing the number of maintenance queries),

view definitions and environmental settings to improve view maintenance

performance.

Moreover, all above solutions tend to focus on maintaining acyclic join

views. They do not explore the diversity of the view definitions nor the dy-

namic nature of the environment to further optimize the view maintenance

process.

Distributed query processing and the optimization has widely been

studied for distributed environments [57]. For example, R* [74] extends

System R [97] algorithm to optimize distributed queries. Garlic [44] focuses

on optimizing queries across diverse data sources. Mariposa [103] applies

an economic paradigm to optimize distributed queries. These works apply

common search strategies such as enumeration and dynamic programming

to generate efficient query plans due to the inherit complexity in optimiz-

ing complex queries.

However, in a view maintenance context, the processing model is slightly

different than assumed in traditional distributed query processing. Here,

each maintenance query is created by the view manager based on the source

delta (or the intermediate results from previous maintenance queries). The

results of each maintenance query are typically returned back to the view

manager instead of directly communicating with other sources. We also

prefer to combine join conditions whenever it is possible to reduce the

accesses to distributed data sources. These heuristics help to reduce the

CHAPTER 12. RELATED WORK 224

overall search space explored by the optimization. Moreover, the grouping

maintenance plans cannot be generated by the existing distributed query

optimizers such as [44, 74, 103]. This is because the building block, the

grouping maintenance logic, is developed in the view maintenance context

by combining heterogeneous deltas to reduce the number of join queries.

This grouping maintenance has not been investigated in the distributed

query processing (nor its cost models).

Various optimization techniques, i.e., finding common sub-expressions,

have been studied in the context of multiple query optimization [98, 90].

However, this does not apply in the context of view maintenance. For ex-

ample, the common sub-expression such as R3 ⊲⊳ R4 ⊲⊳ . . . ⊲⊳ Rn for the

first two maintenance steps in Figure 10.3(a) is too expensive to evaluate.

This is because each data source may be huge compared to the deltas.

Recent works on adaptive query processing [54, 55, 83, 110] aim to opti-

mize distributed query processing by dynamically monitoring an execution

plan and identifying points of sub-optimal performance. This is orthogo-

nal to this work. Here we resort to cost estimation and employ a static

cost-based optimizer to find an optimized maintenance plan. We borrow

ideas from [121] on developing cost models for data sources, yet other cost

models could be easily applied in our framework.

225

Part IV

Conclusions and Future Work

226

Chapter 13

Conclusions of This

Dissertation

Materialized view computation and maintenance are two very basic ser-

vices that need to be addressed to achieve the benefits of applying materi-

alized views such as efficient access, reliable performance and high avail-

ability. These two services face scalability concerns due to (1) large number

of data sources, (2) increasing size in each data source and (3) high volumes

of source updates.

In this dissertation work, we aim to provide scalable solutions to these

two services. We have proposed parallel and adaptive integration view

computation strategies. We have provided novel grouping view mainte-

nance algorithms as well as view maintenance optimization framework to

generate optimized view maintenance plans. The conclusions of this dis-

sertation work are listed below.

CHAPTER 13. CONCLUSIONS OF THIS DISSERTATION 227

In part I, we have revisited the common assumption that has been taken

by practically all prior work in the literature, namely, to pursue maximal

pipelined parallelism when processing multi-join query processing in par-

allel. We have shown both experimentally and via a cost analysis that the

introduction of independent parallelism at the cost of reducing the pipeline

can greatly impact the parallel performance. A new type of parallel multi-

join query processing strategy, namely, the segmented bushy processing

strategy, has been proposed. A heuristic-driven optimization algorithm

for generating the segmented bushy processing strategies incorporating in-

dependent parallelism and yet controlling its dependencies has been pro-

posed in this part of the dissertation work.

A working distributed query engine called PETL has been implemented

for this part of dissertation work. Extensive experimental studies have been

conducted on a 10 high performance PC cluster connected by a local gigabit

ethernet. Experimental studies confirm the effectiveness of our proposed

processing strategy. As shown in the Section 3.4, the segmented bushy pro-

cessing has an average of 50% improvement in terms of total processing

time compared to the existing solution with a fully pipelined processing.

This confirms our claim that maximal pipelined parallelism is not always

the best.

The observation we made in this work also sheds some light on how

best to optimize pipelined query plans in general given the optimization

function is related to the total processing time. This optimization is bound

to get increasing attention due to new and growing research areas such as

continuous query processing [3].

CHAPTER 13. CONCLUSIONS OF THIS DISSERTATION 228

In part II, we have extensively studied the tradeoffs and policies of

adapting operator states of complex non-blocking multi-input operators to

overcome run-time main memory overflow. We have proposed two state

level adaptation strategies, namely, lazy-disk and active-disk, that both in-

tegrate the state spill and state relocation in memory constrained environ-

ments. That is, in environments where the aggregated main memory of the

distributed system is still not sufficient for the query processing. Note that

such integrations have not been carefully studied in the literature, yet, it is

necessary in practical environment since the main memory of a distributed

system remains limited. We have shown that run-time state relocation im-

proves query throughput given sufficient overall main memory resource.

This is because state relocation helps to maximally utilize available mem-

ory resource. We also have shown that active-disk strategy outperforms the

lazy-disk one. This is because the active-disk strategy tends to have more

productive states remain in main memory in the adaptation.

We also have investigated the dependency problem when adapting op-

erator states for query plans with multiple state-intensive operators. Note

that such query plans are common in a data integration context since the

integration queries (views) are complex and stateful in nature. We have

proposed two global state spill strategies, namely, global output and global

output with penalty, that are designed to improve the run-time query through-

put. We have shown that these two global adaptation strategies greatly out-

perform other solutions that do not consider the dependency among oper-

ators. All proposed state-level adaptation strategies have been designed

and implemented in the D-Cape system [70].

CHAPTER 13. CONCLUSIONS OF THIS DISSERTATION 229

In part III, we have taken a fresh new look at how to restructure a batch

view maintenance plan to optimize the view maintenance performance

when maintaining a large batch of source updates. This optimization is

achieved by dramatically reducing the number of maintenance queries to

remote data sources. A series of novel grouping maintenance strategies,

namely, adjacent grouping and conditional grouping, have been proposed

and implemented in a TxnWrap system [24]. Our experimental studies il-

lustrate that maintenance performance can be significantly improved by

having a smaller number of maintenance queries. In particular, our con-

ditional grouping strategy is almost four times faster compared with the

typical batch maintenance in a majority of the cases.

The state-of-the-art view maintenance literature tends to focus on the

maintenance of acyclic join views [5, 63, 66, 93]. They do not exploit charac-

teristics of the view definitions and the dynamic nature of the environmen-

tal settings to further optimize the view maintenance process. In this part of

dissertation work, we have proposed view maintenance strategies to han-

dle general join views by extending batching and grouping maintenance

techniques. We have proposed a cost-based view maintenance optimiza-

tion framework that is capable of generating optimized maintenance plans

tuned to view definitions as well as particular environmental settings. We

have shown that the optimization does make a difference when maintain-

ing complex join views since (1) a lot more maintenance plans are available,

and (2) different maintenance plans have rather different performance. We

also see that grouping maintenance performs much better than batching

maintenance in most of the cases we have considered. This is because a

CHAPTER 13. CONCLUSIONS OF THIS DISSERTATION 230

grouping maintenance plan requires much less maintenance queries than

a batching plan. In other words, current distributed query optimization

techniques if applied to view maintenance would lead to inferior results.

Moreover, this part of dissertation work also brings two independent

areas one step closer, namely, the fusion of distributed query optimization

and the area of view maintenance optimization. As one possible future

work, a more fine-grained adaptive view maintenance optimizer, i.e., one

that provides adaptivity at run-time within one single maintenance process

by mixing batch and grouping techniques, could be designed. To support

this, we need to collect run-time cost statistics in a more timely fashion. We

also would need to devise strategies on how to migrate from a partially ex-

ecuted batch maintenance plan to a grouping plan, or vice verse. Also, the

adaptation policies would need to consider when to adapt the maintenance

process, and so on.

231

Chapter 14

Ideas for Future Work

14.1 State Spilling for Window Join Queries

The solutions for run-time operator state adaptations in this dissertation

are primarily optimized for non-blocking queries with long running yet

finite input streams. However, these solutions can also be extended to the

continuous query processing context with possibly infinite input streams

with window semantics [40, 56]. Note that the major difference here is how

to handle the window constraints imposed in the operator when spilling

states into disks.

For example, the states of a window join operator are usually not mono-

tonically increasing. This is because the states beyond the window con-

straint are purged from the operator [40, 56, 102]. However, if we start

spilling operator states into disks, then purging of outdated states cannot

be performed purely based on the window constraints. This is because par-

tial operator states may have been pushed into disks and temporarily inac-

14.2. PAIR-WISE ADAPTATION OR DIFFUSION 232

tive. Thus, missing query results can be generated from the main memory

resident states that qualified to be purged based on the window constraint

and the spilled states.

One solution for handling window constraints is to also push these out-

of-window states into disks whenever there are operator states from the

same partition that are disk resident at that time. The following research

issues need to be addressed:

• Design solutions to incorporate the window constraints in the state

spill process. That is, we need to coordinate among state purge, state

spill and state cleanup processes based on the window semantics.

• Given the fact that operator states may not be monotonically increas-

ing, it is necessary to design policies to perform run-time state cleanup

processes depending on the memory availability. The adaptation poli-

cies may need to be designed to incorporate various factors such as

the stream input rate, operator window size, memory usage, partition

productivity.

14.2 Pair-Wise Adaptation or Diffusion

Two extreme cases that can be considered when deciding how to adapt

states in the state relocation process are the pair-wise and the diffusion ap-

proaches. To illustrate, we briefly discuss these two approaches using the

sample load bar chart depicted in Figure 14.1. In Figure 14.1, Li represents

the current load of machine mi. The x-axis represents the machines, while

14.2. PAIR-WISE ADAPTATION OR DIFFUSION 233

the y-axis denotes the difference Li − L. Here, a positive number denotes

that the load is higher than the average, while a negative number repre-

sents that the load is lower than the average.

L m1 m2

m3

m4

m5

LL i −

Figure 14.1: Load Representation Example

• Pair-Wise Approach: We take the pair-wise approach in this disserta-

tion (see Chapter 6). Note that many other run-time adaptation works

also apply this type of approach, for instance, Flux [99] and Borealis

[118]. The basic idea in this approach is to choose a pair of proces-

sors, one with the largest load, and the other with the least load. The

operator states will be moved from the most loaded processor to the

least loaded one. This type of approach usually has one round of bal-

ancing in each adaptation process. It only involves two processors

that is likely to have only a limited effect on the overall processing.

However, this may not result in a balanced load in each adaptation

even if the environment stabilize, it still takes several rounds to get a

14.2. PAIR-WISE ADAPTATION OR DIFFUSION 234

balanced load distribution. For example, we may pair m1 with m3 as

shown in Figure 14.1. As can be seen, the load after this adaptation

would still not be balanced.

• Diffusion Algorithm: A diffusion-like algorithm [89] usually has no

restriction on how the states are moved among processors. That is,

many processors may be involved in each adaptation process. For

example, load in m1 can be moved to all the other nodes except m1.

The diffusion algorithm can lead to a better distribution of load in

a short time, i.e., in one optimization cycle. However, it may incur

high adaptation costs since multiple processors are involved in each

adaptation.

Such tradeoffs can be explored in the future between the adaptation

overhead vs. the quality of the adaptation process. In general, the follow-

ing two issues can be investigated. (1) One could add certain restrictions to

the diffusion algorithm to speed up the adaptation process. For example,

we can divide the processing nodes into two categories; one category con-

tains all overloaded processors with Li > L, while the other one contains

all underloaded ones with Li < L. Then, the load movement could only

appear between these two categories. (2) Even a perfect balance may not

be good enough in some cases. For example, the processors with high load

may experience a high load quickly again even if the adaptation achieves

a balanced load distribution. Thus, we may even consider to distribute the

load (states) even the system may experience unbalanced load temporarily

to plan for future.

14.3. DISTRIBUTED QUERY PLAN ADAPTATION 235

14.3 Distributed Query Plan Adaptation

14.3.1 Impact of Initial Distribution

Given a query plan with multiple state-intensive operators, various ways of

distributing the query plan among available machines exist. For example,

as shown in Figure 14.2(a), we partition all available machines into non-

overlapping regions. Then we divide the query plan according to the state-

intensive operators. We distribute one state-intensive operator only into

one region of machines.

On the other hand, as shown in Figure 14.2(b), we can have all the state

intensive operators evenly distributed into all available machines. In this

case, each machine has the same amount of state intensive operators acti-

vated with each processing only partial inputs.

Join�Join�
A B C

D Join�Join�
A B C

D

(a) Regional Partitioning (b) Mixed Distribution

Join�
Join� Join�Join�Join�Join�
Join�

Join�
Join�Join�
Join� Join�

Join�Join�
Join�Join�
Join�Join�

Join�
Join�
Join�Available Machines

Region 1

Region 2

Available Machines

Figure 14.2: Various Initial Distribution Methods

Clearly, many other initial query plan distribution algorithm can be de-

signed. Different initial distribution algorithms may exhibit different per-

formance due to differences in intercommunication among different ma-

chines and the overhead of the split operator (related to optimal degree

14.3. DISTRIBUTED QUERY PLAN ADAPTATION 236

of parallelism). On the other hand, different initial distribution algorithm

may even impact the selection of possible adaptation methods.

14.3.2 Transforming Distributed Query Plans

The distributed query plan itself may also need to be optimized for cer-

tain metrics by rewriting the query plan shape itself. This is an as of now

unexplored area of research in stream processing context. Besides typi-

cal query plan rewriting strategies which consider reordering of operators

[50], and deciding between m-way joins and binary join trees, we can focus

on exploiting opportunities of adapting query plans across inter-operator

and intra-operator parallelism boundaries. Figure 14.3 illustrates the ba-

sic idea of this distributed query plan restructuring. For example, Figure

14.3(a) shows a binary join tree with each join allocated to one machine.

Here, the letters AB, I1C , and I2D represent the operator states that have

to be stored in the join operators, while I1 and I2 denote the intermediate

results, and m1, m2, and m3 represent available machines. As shown in

Figure 14.3(b), we would merge Join1 and Join2 into a 3-way join Join12

if we observe that large intermediate results are transferred from m1 to m2

and then stored in m2. After that, state ABC becomes the only state that

needs to be stored. However, the state ABC may no longer fit into one

machine. Thus, we need to partition the state into multiple machines as

shown in Figure 14.3(c).

Note that such transformation of a distributed query plan can be achieved

by a set of basic state relocation services as discussed in Chapter 6.

The policy of adapting a distributed query plan also needs to be de-

14.3. DISTRIBUTED QUERY PLAN ADAPTATION 237

Join12Join1

Join3

Join2

A B

C

D

(a) Binary Query Plan

Join12

Join3

A B C

D

(b) M-way Query Plan (c) Partitioned Query Plan

Join12

Join3

A B C

D

AB

I1C

I2D

ABC

I2D

A1B1C1 A2B2C2

I2D

m1

m2

m3

m1

m3

m1 m2

m3

Figure 14.3: Distributed Query Plan Restructuring

signed carefully. For example, (1) what composes a good plan given cur-

rent statistics information? (2) what is the adaptation cost (i.e., states to

move, intermediate results to drop or build) for transforming the current

distributed query plan to the new one. Moreover, the cost of statistics gath-

ering and maintaining also needs to be considered in this adaptation pro-

cess.

Several interesting questions that need to be further explored for this

distributed query plan adaptation are listed below.

• Parallel Adaptation: In a fine-grained adaptation (moving states),

multiple adaptations in different machines can be done in parallel.

Thus, the overall adaptation cost can be shared.

• Ordered Adaptation: Given a pipeline query tree with a regional par-

titioning approach, it may make a difference in terms of performance

which regions we choose to adapt first. This may be similar to the in-

terdependency in spilling operator states among pipelined operators

as discussed in Chapter 7.

• Adaptation Decision: The adaptation decision is one major issue that

14.4. HALF-BAKED THOUGHTS 238

still need to be further studied. For example, questions such as inves-

tigating cost models and choosing criteria to initialize adaptation are

not trivial to address in this partitioned parallel environment.

14.4 Half-Baked Thoughts

In this section, we provide several high-level thoughts on possible future

work ideas. Note that those ideas have not been carefully investigated.

Various System Load Measurements. The solutions we have provided

for run-time adaptations are primarily based on system main memory us-

age having the assumption of enough system CPU processing capability.

However, system CPU and main memory usage are closely related. Thus,

issues such as how to combine these two factors into one system load mea-

surement function and how the changing (spilling/relocating) of operator

states relates to the system load need to be further investigated. These may

lead to the design of new run-time operator state adaptation policies.

System Load Predictions. In this dissertation, we basically use the aver-

age to represent the current system load (see Chapters 6 and 7). We also

use this average to indicate the future behavior of the system. However,

the current (and the prediction) system load can be described more pre-

cisely based on a time series of previous system loads. Techniques in time

series analysis [100] can be applied to design a better prediction function.

This in turn may affect the designing of adaptation policies such as when

to adapt.

14.4. HALF-BAKED THOUGHTS 239

Mix Load Shedding and Spilling. Previous work in stream processing

resorts to load shedding [107] to handle run-time system resource shortage.

In this dissertation, we instead propose state spill, which only temporarily

push states into disks. However, it may be useful to combine these two

techniques. The combination of shedding and spilling can result in an in-

creasing accuracy of query results by allowing out-of-order results. This

may be better than pure shedding or spilling in certain applications.

Semantic Spilling. Instead of simple productivity value that is based on

query throughput, we can identify the usefulness of operator states based

on certain semantic values related to applications. Thus, the run-time spilling

of operator states can be based on their semantic values such as values re-

lated to the QoS requirements. The issues here are (1) how to define such

requirements, and (2) how to relate such requirements to each individual

partition or even each tuple.

Other Parallel Architecture. This dissertation mainly focuses on a shared-

nothing architecture, in particular, a local cluster with high-performance

PCs connected by a high-speed network. In this architecture, each machine

in the system has its own main memory, CPU, and disks. The communica-

tion among different machines is achieved by a high-speed network. How-

ever, other parallel architectures such as shared-memory and shared-disk

exist. The impact of these architectures on proposed parallel computation

and adaptation strategies is one interesting future work idea to be investi-

gated.

14.4. HALF-BAKED THOUGHTS 240

Relating View Maintenance with Non-Blocking Join Processing. Incre-

mental batch view maintenance process (see Chapter 9) is similar to the

non-blocking symmetric m-way hash join processing. Thus, the grouping

view maintenance algorithm we have described in Chapter 10 may be ap-

plied to the non-blocking join processing. That is, instead of probing and

hashing per input tuple, we can defer the join processing using deltas. New

optimization techniques may exist even in this pure main memory based

join processing.

Views with Other State-Intensive Operators. In this dissertation work,

we basically focus on computing and maintaining integration views (multi-

join queries). However, there are other types of view definitions, i.e., views

with aggregation operators. How the parallel computation, adaptation,

and grouping maintenance techniques be extended can be another promis-

ing future work direction.

241

Appendix A

General Partitioned M-Way

Join Processing

In Chapter 5, we assume a partitioned m-way join query that has the same

join column among different join conditions. Here, we lift this restriction

and discuss how to support the processing of a general partitioned m-way

join query.

Note that given an m-way join query for which join columns among

different join conditions are not the same, simply applying one partition

function per input stream does not work well. For example, we have a

three way join that is defined A.A1 = B.B1 and B.B2 = C.C1, as illustrated

in Figure A.1. Here A, B, and C represent input streams (join relations)

while A1, B1, B2, and C1 are join columns from A, B, and C respectively.

Note that input stream B has two different join columns involved in the

join conditions. Thus, if we partition input tuples from stream B based on

APPENDIX A. GENERAL PARTITIONED M-WAY JOIN PROCESSING 242

Join Joinm1 m2

A B C

Split� Split� Split�
A.A1=B.B1 and B.B2=C.C1

(A.A1) (C.C1)(B.B1)

?

Join Joinm1 m2

A B C

Split� Split� Split�(A.A1) (C.C1)(B.B2)

?

(a) Partition B on B1 (b) Partition B on B2

Figure A.1: Partitioning General M-way Joins

join column B1, as shown Figure A.1 (a), then tuples from input stream C,

which are partitioned based on C1, cannot find the corresponding parti-

tions of input stream B. For example, one tuple tc from C may have been

partitioned into machine m1 using C.C1, while state partitions of stream

B in m1 are organized based on B1. However, tc does not have informa-

tion about the partitioning join column B.B1, which helps tc to identify the

corresponding matching tuples from input stream B. Thus, tuple tc cannot

found the corresponding matching tuples from B in this case. Note that

even a whole scan of all state partitions of B in m1 still does not address

the problem. This is because the matching tuples from B for tc can be in

any other machines, in this case, in machine m2. Similarly, if we partition

B based on B2, then the tuples from A cannot find the matching tuples, as

illustrated in Figure A.1 (b). Clearly, we do not want to scan all state parti-

tions of stream B in all machines whenever we need to probe B since that is

a rather expensive process.

For simplicity, we refer to input streams with multiple join columns

APPENDIX A. GENERAL PARTITIONED M-WAY JOIN PROCESSING 243

involved in the join conditions as m-streams. We propose two alternate

solutions to perform the above partitioned general join query processing:

(1) Replicate m-stream inputs to all available machines, or (2) partition m-

stream inputs applying multiple join column partition functions.

Replicating Input Streams. The basic idea of this approach is illustrated

in Figure A.2. That is, instead of partitioning m-streams (input stream B in

this example), we instead send input tuples from B into all machines with

partitioned states. In that case, both input tuples from A and C can find

the matching tuples from B by a full scan. Note that in such environment,

run-time repartitioning of intermediate results is necessary. For example,

after we get the intermediate result of B ⊲⊳ C , we have to apply the SplitA

function on B1 of the intermediate results to find the corresponding parti-

tion of A. For each tuple in the intermediate result set, this partition can A

be in a different machine. Thus, the intermediate results may be redirected

to other machines at run time.

A B C

Split� Replicate Split�
A.A1=B.B1 and B.B2=C.C1

(A.A1) (C.C1)

m2m1

A1
A1 C1

C1
JoinB Join A2

A1 C2
C1B

S p l
i t�(B 1

)

Split� (B2)

Figure A.2: Replicating m-streams

APPENDIX A. GENERAL PARTITIONED M-WAY JOIN PROCESSING 244

Generating Multiple Partitions. The second approach is to partition m-

streams based on all join columns that involved in the join conditions, as

illustrated in Figure A.3. In this example, each input tuple from B is parti-

tioned twice. We first apply partition function based on the value of B1 and

send the tuple to the corresponding partitions. After that, we again apply

the partition function that based on B2 and send it to the corresponding

machines. Note that we may have different partition IDs for one single tu-

ple of B, and even if we have the same partition ID, the tuple can still be sent

to different machines depending on the mapping functions of partition IDs

and machines. Given two types of state partitions of input stream B in each

machine, we can always find the corresponding matching tuples. As in the

replication approach, run-time repartition and redirection of intermediate

results also have to be applied.

m2

A B C

Split� Split� Split�
A.A1=B.B1 and B.B2=C.C1

(A.A1) (C.C1)

m1

(B.B1)
(B.B2)

A1
A1 C1

C1
JoinB1

B1

B1
B2

Join A2
A1 C2

C1B2
B1

B2
B2S p l

i t�(B 1
)

Split� (B2)

Figure A.3: Generating Multiple Partitions

Note that when multiple join columns in the m-stream are correlated,

then we may be able to organize multiple partitions of the m-stream to

save storage space in this multiple partitions approach compared with the

replication approach.

245

Bibliography

[1] Exegesis of DBC/1012 and P-90 - Industrial Supercomputer Database Ma-
chines, 1992.

[2] D. Abadi, Y. Ahmad, and et. al. The design of the borealis stream
processing engine. In Proceedings CIDR, page to appear, 2005.

[3] D. J. Abadi, D. Carney, and et al. Aurora: a new model and architec-
ture for data stream management. The VLDB Journal, 12(2):120–139,
2003.

[4] F. N. Afrati, C. Li, and J. D. Ullman. Generating efficient plans for
queries using views. In SIGMOD, pages 319–330, 2001.

[5] D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient View
Maintenance at Data Warehouses. In Proceedings of SIGMOD, pages
417–427, 1997.

[6] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated Selection
of Materialized Views and Indexes in SQL Databases. In VLDB 2000,
Proceedings of 26th International Conference on Very Large Data Bases,
pages 496–505. Morgan Kaufmann, 2000.

[7] I. Ahmad and Y.-K. Kwok. On exploiting task duplication in paral-
lel program scheduling. IEEE Transactions on Parallel and Distributed
Systems, 9(9):872–892, 1998.

[8] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Mod-
els and issues in data stream systems. In Proceedings of ACM PODS,
pages 1–16, 2002.

[9] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: operator
scheduling for memory minimization in data stream systems. In
ACM SIGMOD, pages 253–264, 2003.

BIBLIOGRAPHY 246

[10] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. In
Scientific American, May 2001.

[11] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently Updating
Materialized Views. In Proceedings of SIGMOD, pages 61–71, May
1986.

[12] H. Boral, W. Alexander, L. Clay, G. P. Copeland, S. Danforth, M. J.
Franklin, B. E. Hart, M. Smith, and P. Valduriez. Prototyping bubba,
a highly parallel database system. IEEE TKDE, 2(1):4–24, 1990.

[13] L. Bouganim, D. Florescu, and P. Valduriez. Dynamic load balancing
in hierarchical parallel database systems. In The VLDB Journal, pages
436–447, 1996.

[14] L. Bouganim, O. Kapitskia, and P. Valkuriez. Memory-adaptive
scheduling for large query execution. In Proceedings of the seventh in-
ternational conference on Information and knowledge management, pages
105–115. ACM Press, 1998.

[15] S. Chandrasekaran and M. J. Franklin. Streaming queries over
streaming data. In proceedings of VLDB, pages 203–214, 2002.

[16] S. Chaudhuri and U. Dayal. An Overview of Data Warehousing and
OLAP Technology. SIGMOD Record, 26(1):65–74, 1997.

[17] C. Chekuri. Approximation Algorithms for Scheduling Problems. PhD
thesis, Stanford University, Aug 1998.

[18] J. Chen, S. Chen, and E. A. Rundensteiner. A Transactional Model for
Data Warehouse Maintenance. In ER’02, pages 247–262, Sep 2002.

[19] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: a scalable
continuous query system for internet databases. In ACM SIGMOD,
pages 379–390, 2000.

[20] J. Chen, X. Zhang, S. Chen, K. Andreas, and E. A. Rundensteiner.
DyDa: Data Warehouse Maintenance under Fully Concurrent Envi-
ronments. In Proceedings of SIGMOD Demo Session, page 619, 2001.

[21] M.-S. Chen, M.-L. Lo, P. S. Yu, and H. C. Young. Using segmented
right-deep trees for the execution of pipelined hash joins. In VLDB,
pages 15–26, 1992.

BIBLIOGRAPHY 247

[22] M.-S. Chen, P. S. Yu, and K.-L. Wu. Scheduling and processor allo-
cation for parallel execution of multi-join queries. In Proceedings of
ICDE, pages 58–67, 1992.

[23] S. Chen, J. Chen, X. Zhang, and E. A. Rundensteiner. Detection and
Correction of Conflicting Sources Updates for View Maintenance. In
ICDE 2004, pages 436–448, Apr 2004.

[24] S. Chen, B. Liu, and E. A. Rundensteiner. Multiversion Based View
Maintenance over Distributed Data Sources. ACM Transactions on
Database Systems (TODS), 29(4):675–709, 2004.

[25] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. Zdonik. Scalable distributed stream
processing. In 2003 CIDR Conference, 2003.

[26] R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the
view selection problem. The VLDB Journal, 11(3):216–237, 2002.

[27] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algo-
rithms for Deferred View Maintenance. In Proceedings of SIGMOD,
pages 469–480, 1996.

[28] R. C. Correa, A. Ferreira, and P. Rebreyend. Scheduling multiproces-
sor tasks with genetic algorithms. IEEE Transactions on Parallel and
Distributed Systems, 10(8):825–837, 1999.

[29] L. Crum. University of Michigan Digital Library Project. Communi-
cations of the ACM, 38(4):63–65, April 1995.

[30] Y. Cui and J. Widom. Lineage tracing for general data warehouse
transformations. In Proceedings VLDB, pages 471–480, 2001.

[31] D. DeWitt and J. Gray. Parallel database systems: the future of high
performance database systems. Communications of the ACM, 35(6):85–
98, 1992.

[32] D. J. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H.-I.
Hsiao, and R. Rasmussen. The gamma database machine project.
IEEE TKDE, 2(1):44–62, 1990.

[33] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Prac-
tical skew handling in parallel joins. In Proceedings of VLDB, pages
27–40, 1992.

BIBLIOGRAPHY 248

[34] L. Ding, N. Mehta, E. Rundensteiner, and G. Heineman. Joining
punctuated streams. In Proceedings of the EDBT, pages 587–604, 2004.

[35] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization
for parallel execution. In Proceedings of ACM SIGMOD, pages 9–18.
ACM Press, 1992.

[36] H. Garcı́a-Molina, W. Labio, J. L. Wiener, and Y. Zhuge. Distributed
and Parallel Computing Issues in Data Warehousing . In Symposium
on Principles of Distributed Computing, page 7, 1998.

[37] H. Garcı́a-Molina, W. J. Labio, and J. Yang. Expiring data in a ware-
house. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages
500–511, 24–27 August 1998.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-completeness. WH Freeman and Co., 1979.

[39] M. N. Garofalakis and Y. E. Ioannidis. Multi-dimensional resource
scheduling for parallel queries. In Proceedings of ACM SIGMOD,
pages 365–376. ACM Press, 1996.

[40] L. Golab and M. Tamer. Processing sliding window multi-joins in
continuous queries over data streams. In Proceedings of VLDB, pages
500–511, 2003.

[41] G. Graefe. Encapsulation of parallelism in the volcano query process-
ing system. In Proceedings of ACM SIGMOD, pages 102–111, 1990.

[42] A. Gupta and I. Mumick. Maintenance of Materialized Views: Prob-
lems, Techniques, and Applications. IEEE Data Engineering Bulletin,
18(2):3–19, 1995.

[43] H. Gupta. Selection of views to materialize in a data warehouse. In
Database Theory - ICDT ’97, 6th International Conference.

[44] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing
Queries Across Diverse Data Sources. In Proceedings of VLDB, pages
276–285, 1997.

[45] A. Y. Halevy. Answering queries using views: A survey. VLDB Jour-
nal: Very Large Data Bases, 10(4):270–294, 2001.

[46] J. Han and M. Kamber. Data Mining Concepts and Techniques. Morgan
Kaufmann, 2001.

BIBLIOGRAPHY 249

[47] W. Hasan. Optimization of SQL Queries for Parallel Machines. PhD
thesis, Stanford University, Dec 1995.

[48] W. Hasan and R. Motwani. Optimization algorithms for exploiting
the parallelism-communication tradeoff in pipelined parallelism. In
Proceedings of VLDB, pages 36–47, 1994.

[49] H. He, J. Xie, J. Yang, and H. Yu. Asymmetric Batch Incremental View
Maintenance. In Proceedings of ICDE, pages 106–117, 2005.

[50] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Deshpande,
K. Hildrum, S. Madden, V. Raman, and M. A. Shah. Adaptive query
processing: Technology in evolution. IEEE Data Engineering Bulletin,
23(2):7–18, 2000.

[51] W. Hong and M. Stonebraker. Optimization of parallel query execu-
tion plans in xprs. In Proceedings of PDIS, pages 218–225, 1991.

[52] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee. Scheduling
precendence graphs in systems with interprocessor communication
time. SIAM Journal of Computing, 18(2):244–257, 1989.

[53] W. Inmon. Building the Data Warehouse. John Wiley and Sons, 1996.

[54] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld. An
Adaptive Query Execution System for Data Integration. In Proceed-
ings of SIGMOD, pages 299–310, 1999.

[55] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of
sub-optimal query execution plans. In Proceedings of the 1998 ACM
SIGMOD international conference on Management of data, pages 106–
117. ACM Press, 1998.

[56] J. Kang, J. F. Naughton, and S. Viglas. Evaluating window joins over
unbounded streams. In Proceedings of ICDE, pages 341–352, 2003.

[57] D. Kossmann. The State of the Art in Distributed Query Processing.
ACM Computing Surveys (CSUR), 32(4):422–469, 2000.

[58] D. Kossmann and K. Stocker. Iterative dynamic programming: a new
class of query optimization algorithms. ACM Trans. Database Syst.,
25(1):43–82, 2000.

BIBLIOGRAPHY 250

[59] Y.-K. Kwok. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Computing Surveys (CSUR),
31(4):406–471, 1999.

[60] Y.-K. Kwok and I. Ahmad. Dynamic critical-path scheduling: An ef-
fective technique for allocating task graphs to multiprocessors. IEEE
Transactions on Parallel and Distributed Systems, 7(5):506–520, 1996.

[61] Y.-K. Kwok and I. Ahmad. Fastest: A practical low-complexity al-
gorithm for compile-time assignment of parallel programs to mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems,
10(2):147–159, 1999.

[62] W. J. Labio, J. L. Wiener, H. Garcia-Molina, and V. Gorelik. Efficient
resumption of interrupted warehouse loads. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages
46–57. ACM Press, 2000.

[63] W. J. Labio, R. Yerneni, and H. Garcı́a-Molina. Shrinking the Ware-
house Updated Window. In Proceedings of SIGMOD, pages 383–395,
June 1999.

[64] K. Y. Lee, J. H. Son, and M. H. Kim. Efficient Incremental View Main-
tenance in Data Warehouses. In CIKM’01, pages 349–356, November
2001.

[65] B. Liu, S. Chen, and E. A. Rundensteiner. A Transactional Approach
to Parallel Data Warehouse Maintenance. In DAWAK’02, pages 307–
317, Sep 2002.

[66] B. Liu, S. Chen, and E. A. Rundensteiner. Batch Data Warehouse
Maintenance in Dynamic Environments. In CIKM’02, pages 68–75,
Nov 2002.

[67] B. Liu and E. A. Rundensteiner. Revisiting Parallel Multi-Join Query
Processing via Hashing . Technical Report WPI-CS-TR-05-05, Worces-
ter Polytechnic Institute, February 2005.

[68] B. Liu and E. A. Rundensteiner. Revisiting Parallel Multi-Join Query
Processing via Hashing . In Proceedings of VLDB, to appear, 2005.

[69] B. Liu, E. A. Rundensteiner, and D. Finkel. Restructuring View Main-
tenance Plans for Large Update Batches. Technical Report WPI-CS-
TR-03-29, WPI, 2003.

BIBLIOGRAPHY 251

[70] B. Liu, Y. Zhu, and et. al. A Dynamically Adaptive Distributed Sys-
tem for Processing Complex Continuous Queries. In VLDB Demo, to
appear, 2005.

[71] M.-L. Lo, M.-S. S. Chen, C. V. Ravishankar, and P. S. Yu. On optimal
processor allocation to support pipelined hash joins. In Proceedings of
ACM SIGMOD, pages 69–78, 1993.

[72] H. Lu, K.-L. Tan, and M.-C. Sahn. Hash-based join algorithms for
multiprocessor computers with shared memory. In Proceedings of
VLDB, pages 198–209, 1990.

[73] J. J. Lu, G. Moerkotte, J. Schue, and V. S. Subrahmanian. Efficient
Maintenance of Materialized Mediated Views. In SIGMOD, pages
340–351, 1995.

[74] L. F. Mackert and G. M. Lohman. R* optimizer validation and perfor-
mance evaluation for local queries. In Proceedings of ACM SIGMOD,
pages 84–95, 1986.

[75] S. Madden and M. J. Franklin. Fjording the stream: An architecture
for queries over streaming sensor data. In ICDE, pages 555–566, 2002.

[76] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. In ACM SIGMOD, pages
49–60, 2002.

[77] T. P. Martin, P.-A. Larson, and V. Deshpande. Parallel hash-based join
algorithms for a shared-everything. IEEE TKDE, 6(5):750–763, 1994.

[78] M. Mehta and D. J. DeWitt. Data placement in shared-nothing paral-
lel database systems. The VLDB Journal, 6(1):53–72, 1997.

[79] M. Mokbel, M. Lu, and W. Aref. Hash-merge join: A non-blocking
join algorithm for producing fast and early join results. In ICDE, page
251, 2004.

[80] I. Mumick, D. Quass, and B. Mumick. Maintenance of Data Cubes
and Summary Tables in a Warehouse. In Proceedings of SIGMOD,
pages 100–111, May 1997.

[81] B. Nag and D. J. DeWitt. Memory allocation strategies for complex
decision support queries. In Proceedings of the seventh international
conference on Information and knowledge management, pages 116–123.
ACM Press, 1998.

BIBLIOGRAPHY 252

[82] J. Neter, M. Kunter, C. Nachtsheim, and W. Wasserman. Applied Lin-
ear Statistical Models. Times Mirror Pub., 1996.

[83] K. W. Ng, Z. Wang, R. R. Muntz, and S. Nittel. Dynamic query re-
optimization. In Statistical and Scientific Database Management, pages
264–273, 1999.

[84] K. O’Gorman, D. Agrawal, and A. E. Abbadi. Posse: A framework
for optimizing incremental view maintenance at data warehouse. In
Data Warehousing and Knowledge Discovery, pages 106–115, 1999.

[85] H. H. Pang, M. J. Carey, and M. Livny. Managing memory for real-
time queries. In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 221–232. ACM Press, 1994.

[86] G.-L. Park, B. Shirazi, and J. Marquis. Dfrn: A new approach for du-
plication based scheduling for distributed memory multiprocessor
systems. In Proceedings of International Conference of Parallel Process-
ing, pages 157–166, 1997.

[87] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making Views
Self-Maintainable for Data Warehousing. In Conference on Parallel and
Distributed Information Systems, pages 158–169, 1996.

[88] D. Quass and J. Widom. On-Line Warehouse View Maintenance. In
Proceedings of SIGMOD, pages 393–400, 1997.

[89] T. Rotaru and H.-H. Nägeli. Dynamic load balancing by diffu-
sion in heterogeneous systems. J. Parallel Distrib. Comput., 64(4):481–
497, 2004.

[90] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and Ex-
tensible Algorithms for Multi Query Optimization. In Proceedings of
SIGMOD, pages 249–260, 2000.

[91] E. A. Rundensteiner, L. Ding, and et. al. Continuous Query En-
gine with Heterogeneous-Grained Adaptivity. In VLDB Demo, pages
1353–1356, 2004.

[92] Sagent Technology. http://www.sagent.com.

[93] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How To Roll
a Join: Asynchronous Incremental View Maintenance. In SIGMOD,
pages 129–140, 2000.

BIBLIOGRAPHY 253

[94] D. A. Schneider and D. J. DeWitt. A performance evaluation of four
parallel join algorithms in a shared-nothing multiprocessor environ-
ment. In Proceedings of ACM SIGMOD, pages 110–121, 1989.

[95] D. A. Schneider and D. J. DeWitt. Tradeoffs in processing complex
join queries via hashing in multiprocessor database machines. In Pro-
ceedings of VLDB, pages 469–480, 1990.

[96] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database manage-
ment system. pages 82–93, 1988.

[97] P. G. Selinger, M. M. Astrahan, and etal. Access path selection in a
relational database management system. In Proceedings of SIGMOD,
pages 23–34, 1979.

[98] T. K. Sellis. Multiple-query Optimization. ACM Transactions on
Database Systems (TODS), 13(1):23–52, 1988.

[99] M. A. Shah, J. M. Hellerstein, and et. al. Flux: An adaptive partition-
ing operator for continuous query systmes. In ICDE, pages 25–36,
2003.

[100] R. H. Shumway and D. S.Stoffer. Time Series Analysis and Its Applica-
tions. Springer, 2000.

[101] J. Srivastava and G. Elsesser. Optimizing multi-join queries in paral-
lel relational databases. In Proceedings of the 2nd PDIS, pages 84–92,
1993.

[102] U. Srivastava and J. Widom. Memory-limited execution of win-
dowed stream joins. In Proceedings of VLDB, pages 324–335, 2004.

[103] M. Stonebraker, P. Aoki, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: A Wide-area Distributed Database System. VLDB
Journal, 5(1):48–63, 1996.

[104] T. Sutherland, B. Liu, M. Jbantova, and E. Rundensteiner. D-CAPE:
Distributed and Self-Tuned Continuous Query Processing. In CIKM
Poster, to appear, 2005.

[105] T. Sutherland and E. Rundensteiner. D-CAPE: A Self-Tuning Contin-
uous Query Plan Distribution Architecture. Technical report, Worces-
ter Polytechnic Institute, Dept. of Computer Science, July 2004.

BIBLIOGRAPHY 254

[106] K.-L. Tan and H. Lu. Processing multi-join query in parallel systems.
In Proceedings of ACM Symposium on Applied computing, pages 283–
292, 1992.

[107] N. Tatbul, U. etintemel, S. B. Zdonik, M. Cherniack, and M. Stone-
braker. Load shedding in a data stream manager. In VLDB, pages
309–320, 2003.

[108] TPC. TPC-H Benchmark Standard Specification.
http://www.tpc.org/tpch/.

[109] T. Urhan and M. J. Franklin. Xjoin: A reactively-scheduled pipelined
join operator. IEEE Data Engineering Bulletin, 23(2):27–33, 2000.

[110] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query scram-
bling for initial delays. In Proceedings of the ACM SIGMOD, pages
130–141, 1998.

[111] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the output rate of
multi-way join queries over streaming information sources. In VLDB,
pages 285–296, 2003.

[112] Vision Solutions. The Need for Real Time Data Warehousing.
http://www.visionsolutions.com/docs/data warehouse.pdf.

[113] C. Wang and M.-S. Chen. On the Complexity of Distributed Query
Optimization. IEEE TKDE, 8(4):650–662, 1996.

[114] J. Widom. Research Problems in Data Warehousing. In Proceedings
of International Conference on Information and Knowledge Management,
pages 25–30, November 1995.

[115] A. N. Wilschut and P. M. G. Apers. Dataflow query execution in a par-
allel main-memory environment. Distrib. Parallel Databases, 1(1):103–
128, 1993.

[116] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallelism in a main-
memory dbms: The performance of prisma/db. In Proceedings of
VLDB, pages 521–532, 1992.

[117] A. N. Wilschut, J. Flokstra, and P. M. G. Apers. Parallel evaluation of
multi-join queries. In Proceedings of ACM SIGMOD, pages 115–126,
1995.

BIBLIOGRAPHY 255

[118] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load distribution in
the borealis stream processor. In Proceedings of ICDE, pages 791–802,
2005.

[119] T. Yang and A. Gerasoulis. Dsc: Scheduling parallel tasks on an un-
bounded number of processors. IEEE Transactions on Parallel and Dis-
tributed Systems, 5(9):951–967, 1994.

[120] X. Zhang, E. A. Rundensteiner, and L. Ding. Parallel Multi-Source
View Maintenance. VLDB Journal, 13(1):22–48, 2004.

[121] Q. Zhu, Y. Sun, and S. Motheramgari. Developing Cost Models with
Qualitative Variables for Dynamic Multidatabase Environments. In
Proceedings of ICDE, pages 413–424, 2000.

[122] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom. View Main-
tenance in a Warehousing Environment. In Proceedings of SIGMOD,
pages 316–327, May 1995.

[123] Y. Zhuge, H. Garcı́a-Molina, and J. L. Wiener. The Strobe Algorithms
for Multi-Source Warehouse Consistency. In Parallel and Distributed
Information Systems, pages 146–157, 1996.

[124] M. Ziane, M. Zat, and P. Borla-Salamet. Parallel query processing
with zigzag trees. The VLDB Journal, 2(3):277–302, 1993.

