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Abstract 
 This thesis describes investigation of the dynamic performance of an analog-to-
digital converter (ADC) for wireless wearable systems and separately the development of a 
Python-based application for electromyography (EMG) data acquisition and processing. To 
assist in the investigation of ADC dynamic performance, a MATLAB implementation of a 
time-domain sinusoid fitting technique was developed for effective number of bits (ENOB) 
estimation. Performance of the ADC was measured against power consumption for various 
resolution and oversampling configurations on Nordic Semiconductor’s nRF52840 system-
on-a-chip (SoC). Results showed oversampling to provide a significant improvement in 
ENOB, though at a substantial relative cost in power consumption. The Python-based 
application for EMG was developed to facilitate the acquisition, processing, and 
visualization of biometric data with a user-friendly graphic user interface. The application 
was developed with a modular design, utilizing object-oriented coding and open-source 
libraries, to ease future development.  
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1 Introduction 
Wireless and wearable physiological sensors have become increasingly common in 

applications of human studies, medical research, patient monitoring, and human-machine 
interface control. Whether used for remote patient monitoring, sports performance 
analysis, or rehabilitation, these sensors play a crucial role in capturing and analyzing 
physiological signals such as electromyography (EMG). The accuracy and efficiency of data 
acquisition are paramount, as they directly impact the quality of information obtained from 
physiological measurements.   

Electromyography serves as a measure of the electrical activity associated with the 
activation and contraction of motor units within skeletal muscles. Due to the nature of 
surface EMG as an amplitude-modulated random process, significant processing must be 
done to extract useful information from raw EMG. Traditional processing of surface EMG 
involves several steps, including filtering to eliminate noise, whitening to reduce signal 
variability, rectification or squaring to estimate amplitude, and smoothing to capture signal 
trends. Additionally, decimation and noise correction techniques may be applied to improve 
signal fidelity. 

At the core of these sensor systems lies the analog-to-digital converter (ADC), crucial 
for transforming continuous analog physiological signals into digital data for computational 
analysis. Key specifications, including resolution, conversion speed, and dynamic 
performance metrics such as signal-to-noise ratio (SNR), signal-to-noise and distortion ratio 
(SINAD), and effective number of bits (ENOB), characterize ADC performance. The ENOB 
metric reflects the usable resolution of the ADC in real-world conditions, considering noise 
and distortion. 

The Nordic Semiconductor nRF52840 wireless microcontroller offers advanced 
features for internet-of-things (IoT) and wearable applications, including an adjustable 8-
channel, successive-approximation register (SAR), 12-bit ADC: low power consumption, 
and support for multiple wireless protocols. It includes protocols for Bluetooth Low Energy 
(BLE) communication, which is ideal for physiological monitoring applications, offering low 
power consumption and high transmission rates. 

Chapters 3 and 4 of this thesis focuses on the objectives related to the performance of 
the nRF52840 for use in the collection of EMG: 

1. Effective estimation of ENOB from input test signals.  
2. Measurement of ENOB under different available ADC configurations. 
3. Measurement of power consumption under the same configurations. 
4. Evaluating the trade-off between improvements to signal fidelity and power 

consumption. 
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These objectives contribute to understanding the optimization of EMG sensor systems. 
Understanding the nuances of ADC performance can assist in selection of the right ADC 
architecture depending on the application.  

Chapter 5 of this thesis aims to address the practical implementation of physiological 
data acquisition, processing, and visualization using a Python-based application. The 
development of this application is tailored towards facilitating remote patient monitoring 
and assessment of rehabilitation progress, particularly focusing on shoulder range of 
motion (ROM) and electromyography (EMG) data. 

The application leverages the versatility of Python and integrates various open-source 
libraries such as Tkinter for the graphical user interface (GUI), Matplotlib for data 
visualization, NumPy for numerical computing, and SciPy for signal processing. This 
combination allows for the creation of a modularly designed, user-friendly interface that 
enables efficient data handling and analysis. 

The main program orchestrates the flow of data between different modules, managing 
tasks such as serial data collection, filtering options, data processing, visualization, and 
analysis. Users are provided with flexibility in configuring serial ports, defining data packets, 
and applying filters specific to EMG processing. Real-time plotting and analysis capabilities 
empower users to monitor joint angles, detect movement cycles, and normalize data for 
advanced analysis purposes. 

Despite its promising functionality, the application acknowledges areas for 
improvement. Optimization of data handling and filtering algorithms is identified as crucial 
for enhancing efficiency and responsiveness. Standardization of data export formats will 
facilitate interoperability with other tools and systems. Additionally, refinement of 
algorithms will facilitate accurate data analysis calculations. Overall, the application will 
serve as a useful tool for clinical research, development, and as a proof of concept for a 
future user-facing application. 
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2 Background 

2.1 Electromyography 
Electromyography (EMG) is a measure of the electrical activity associated with the 

activation and contraction of motor units of skeletal muscles. A motor unit (MU) is defined 
as a motor neuron and the muscle fibers innervated by that neuron [1]. Human muscles can 
be categorized into two types: smaller, slow twitch, type I MUs or larger, fast twitch, type II 
MUs. During muscle contraction, MUs are activated by an action potential, initiated by the 
motor neuron.  The action potential moves along the length of the muscle fiber, producing a 
motor unit action potential (MUAP). A characteristic shape of a single MUAP signal is shown 
in Figure 2-1. 

 
Figure 2-1: Shape of a MUAP signal recorded from an indwelling electrode [2]. 

To generate a sustained contraction, the motor neuron will repeatedly generate 
MUAPs at a rate related to the intensity of contraction. As the intensity of muscle contraction 
is increased, the force generated by a muscle will be increased by recruiting additional MUs 
and/or increasing the rate at which already active MUs are firing. The temporal sum of 
MUAPs is measured by electrodes as EMG. A diagram of the generation of the EMG signal 
from the trains of multiple MUAPs is shown in Figure 2-2.  
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Figure 2-2: Generation and Decomposition of the surface EMG signal  [3]. 

 

There are two types of electrodes commonly used for EMG collection — surface and 
intramuscular, with surface being the most common due to being non-invasive. Surface 
electrodes collect the contributions of MUAPS in a measure inversely proportional to the 
distance between the motor unit and the electrode on the skin. Due to this, the magnitude 
of surface EMG (sEMG) is not a direct measure of the magnitude at the motor neuron [4].   

2.1.1 Characteristics of EMG Signals 
Surface EMG signals are generally modeled as amplitude modulated stochastic 

(random) processes that can be characterized by a probability density function, often 
Gaussian or Laplacian. Typical measured surface electrode amplitudes range from 0 to 10 
mV (peak-to-peak) or 0 to 1.5 mV (rms) with frequencies within the range 0 to 1000 Hz, with 
the dominant signal power being within 0 to 150 Hz. Due to the contributions of noise in the 
signal, the band of usable signal is generally limited to 0 to 500 Hz. There are various 
common sources of noise included within raw measured EMG including: noise generated 
from collection equipment, ambient power line interference, motion artifacts, electrode-
skin  interfacing, and random firings of motor units [5].  

2.1.2 Traditional Surface EMG Processing for Amplitude Estimation 
 As EMG is the measure of MUAPs which have both negative and positive 
components, whereas the induced MU force generation is only positive, making EMG 
representative of contraction intensity (force) processing must be done. Figure 2-3 outlines 
the processing steps for amplitude estimation from sEMG [6]. 
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Figure 2-3: Filter steps used to produce EMG amplitude estimation, adapted from [6] 

The goal of pre-processing is to eliminate outside noise acquired along with the sEMG 
signal. A highpass filter with a cutoff frequency of 10-20 Hz can be used to eliminate DC 
offsets and reduce motion artifacts and other unwanted instability in the signal. The filter 
order of 2 or 4 is common for the highpass but can be as high as 6 or 8 in applications with 
large motion artifacts. Since the band of usable signal exists below 500 Hz, a lowpass filter 
of order 2 or 4 can be applied with a cutoff of 400-800 Hz. Conventional filter types for the 
low-pass and highpass filters are Butterworth or Chebyshev. A notch filter can be used to 
eliminate power-line interference at 50/60Hz, with additional cascaded notch filters at 
harmonics that fall within the targeted signal band. Since power-line interference is 
extremely narrow, the filter should be designed with a width of 1 Hz, to limit impact on other 
relevant frequencies. An optional whitening filter can be used to statistically uncorrelate the 
EMG and reduce the variance of the signal. A simplified whitening filter (e.g. a first 
difference) can be used for this step. The next step is to estimate sEMG amplitude as a 
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function of time, by “detecting” the voltage modulation, which is representative of 
contraction intensity. To achieve this, one of two “detection” methods can be used, either 
an absolute value (rectification) or squaring operation. The signal then should be smoothed 
to acquire the signal trend of the sEMG amplitude (low frequency components). To do this, 
either a moving average or conventional low-pass filter can be used. For low-pass filtering, 
filter orders of 2 or 4 with cutoff frequencies of less than 10-15 Hz are common. If a squaring 
operation is used during the detection step, the signal should be re-linearized (square root 
operation) following the smoothing low-pass filter. An optional decimation step can be 
applied following smoothing. The decimation operation should include a cascade of a 
lowpass filter to attenuate the signal above the Nyquist frequency (half of the resultant 
sampling rate) to avoid aliasing. The smoothing lowpass filter from the prior step may be 
used to provide this anti-aliasing.  

If an estimate of the standard deviation of noise is available, which is traditionally 
computed from a sample of sEMG at rest, a further step of root difference of squares (RDS) 
noise correction can be applied. The goal of this step would be to attenuate (broad band) 
background noise which cannot be removed with the steps from preprocessing.  

2.2 Wireless Sensor Systems 
Wireless and wearable physiological sensors have become common for the 

applications of human studies, medical research, patient monitoring, and human-machine 
interface control [7, 8]. Most applications of wearable physiological sensors require 
collection over multiple channels, potentially across multiple peripheral nodes, to be 
transferred to a central node for further processing. Typically, each peripheral node includes 
its own analog-to-digital converter (ADC), to sample connected analog channels before 
packaging and broadcasting to the central node [8]. 

2.2.1 Bluetooth Low Energy  
A commonly used communication protocol for biomedical signal applications is 

Bluetooth Low Energy (BLE) for its low power consumption, high transmission rate, and low 
cost. BLE provides the flexibility to adjust parameters such as connection interval, 
maximum transmission unit (MTU) size, and event length, to best suit the needs of the 
applications and the number of peripheral nodes being supported [7]. The connection 
interval controls the time interval between successive peripheral-central device connection 
events. The MTU size is the maximum packet size that can be sent over one transmission. 
Event length is the time interval reserved for sending and receiving packets. Understanding 
the effect these parameters have on power consumption and transmission integrity is 
important for designing a wearable sensor system. 

2.2.2 Analog to Digital Converter  
 ADCs are devices which translate analog real-world signals into digital 
representations which can be interpreted by digital processors for further manipulation, 
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transmission, or storage. The first stage of an ADC is typically a sample and hold circuit 
which stores a value of the continuous analog signal at a defined sampling rate. This signal 
is digitized by the converter by comparing the “held” analog value to reference voltages of 
different quantization levels. Parallel converters, such as found in flash ADCs, 
simultaneously compare the quantization levels. Serial converters, such as found in 
successive approximation register (SAR) ADCs, compare each quantization level in 
succession [9].   

There are several key specifications beyond converter type that can be used to 
characterize an ADC. The DC specifications define the conversion range, in which input 
voltages can fall without being clipped or causing distortion. This range is typically defined 
by the ADC’s power supply voltages. Resolution, measured in bits, indicates the number of 
quantization levels the analog sample will be compared to, as well as the size of the 
resultant digital output. Conversion speed determines the fastest sampling rate capability 
of the ADC [10]. 

There are several common metrics used to evaluate the dynamic performance of an 
ADC such as signal-to-noise ratio (SNR), total harmonic distortion (THD), total harmonic 
distortion plus noise (THD + N), signal-to-noise and distortion ratio (SINAD), effective 
number of bits (ENOB), and spurious free dynamic range (SFDR) [11]. Most methods for 
quantifying these metrics involve analysis in the frequency domain, which can be done by 
estimating the power spectral density (PSD) of the output of ADC.  

2.2.2.1 Signal-to-Noise Ratio 
Signal-to-noise ratio (SNR) is defined as the ratio of the power of the wanted 

components of the signal to the power of broadband background noise or otherwise 
unwanted components. Note that distortion (harmonic, intermodulation, etc.) is not 
included in the calculation of broadband background noise. You can express SNR in terms 
of decibels using the equation: 

𝑆𝑁𝑅𝑑𝐵 = 10 ∗ 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) 

In an ideal ADC, the only noise would be error due to the quantization of the signal. 
Quantization error is due to there being a range of analog values that will be interpreted as a 
discrete digital value, where the range is the smallest voltage change represented by a bit, 
or least-significant bit (LSB). A simplification of this error is shown in Figure 2-4. The size, in 
volts, of the LSB is determined by the voltage reference and the resolution (N-bits) of the 
ADC [12].  
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Figure 2-4. Transfer Function and Quantization Noise of an Ideal N-bit ADC [12]. 

 Using this simplified model, the SNR of an ideal N-bit ADC can be estimated by the 
equation: 

𝑆𝑁𝑅𝑑𝐵,𝑖𝑑𝑒𝑎𝑙 = (6.02 ∗ 𝑁 + 1.76) 𝑑𝐵  

This ideal SNR can then be compared to the actual SNR of the ADC to evaluate the 
performance of the ADC, where a higher SNR indicates a higher quality system.  

2.2.2.2 Signal-to-Noise and Distortion Ratio 
 Signal-to-Noise and Distortion Ratio (SINAD) is a crucial metric used to evaluate the 
dynamic performance of an ADC. Unlike SNR, which solely considers the ratio of the power 
of the wanted signal to the power of broadband background noise, SINAD factors in both the 
signal and all unwanted distortions (including, for example, harmonic and intermodulation 
distortion—which is not included in the noise portion of an SNR measurement). It provides 
a more comprehensive understanding of the ADC's performance in real-world scenarios 
where signal integrity can be affected by various sources of noise and distortion. 

SINAD is calculated as the ratio of the power of the signal to the sum of the power of 
all non-signal components, including noise and distortion. You can express SINAD in terms 
of decibels using the equation: 

𝑆𝐼𝑁𝐴𝐷𝑑𝐵 = 10 ∗ 𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒 + 𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
) 

In an ideal scenario, where there is no distortion present apart from quantization 
noise, SINAD would essentially represent the SNR. However, in practical ADC 
implementations, various sources of distortion, such as harmonic distortion and 
intermodulation distortion, can affect the overall performance. A high SINAD value indicates 
that the ADC effectively preserves the integrity of the input signal, even in the presence of 
noise and distortion [11].  



 

13 
 

2.2.2.3 Effective Number of Bits (ENOB) 
 Effective number of bits (ENOB) is a measure of the usable resolution in number of 
bits of the ADC when noise and distortion are considered. It provides an intuitive measure 
of the dynamic quality of the ADC to be compared to the ADC’s stated resolution. ENOB is 
calculated by comparing the calculated SINAD of the ADC to the theoretical SNR of an ideal 
N-bit ADC:  

𝐸𝑁𝑂𝐵 =  
𝑆𝐼𝑁𝐴𝐷𝑑𝐵 − 1.76

6.02
 𝑏𝑖𝑡𝑠. 

It should be noted that this equation assumes that the input signal is a sine wave that fills 
the full input range of the ADC. However, in real world systems, approaching the full input 
range may result in clipping or additional distortion due to exceeding the ADC’s conversion 
range. If the magnitude of the input signal is lowered below the full ADC range, the measured 
value of SINAD using the above equation will be reduced. Thus, a correction factor is 
typically applied for calculating ENOB: 

𝐸𝑁𝑂𝐵 =  

𝑆𝐼𝑁𝐴𝐷𝑑𝐵 + 20 ∗ 𝑙𝑜𝑔10 (
𝑉𝑟𝑒𝑓

𝑉𝑖𝑛𝑝𝑢𝑡
) − 1.76

6.02
 𝑏𝑖𝑡𝑠, 

where Vref is the full peak-to-peak range of the ADC, and Vinput is the peak-to-peak range of 
the input signal. 

ENOB essentially indicates the equivalent number of ideal bits that the ADC 
effectively utilizes under real-world operating conditions. A higher ENOB value signifies 
better dynamic performance, indicating that the ADC can maintain high accuracy and 
fidelity in converting analog signals to digital representations, even in the presence of noise 
and distortion [11]. 

2.2.3 Nordic NRF52840 Wireless Microcontroller 
 The nRF52840 microcontroller is an advanced system-on-chip (SOC) designed by 
Nordic Semiconductor ideal for internet-of-things (IoT) devices, wearables, and other 
wireless system applications. The nRF52840 supports multiple wireless data transmission 
protocols, including Bluetooth mesh, Bluetooth Low Energy (BLE), Thread, and ZigBee. The 
nRF52840 features an adjustable 8-channel successive-approximation register (SAR) ADC 
which can be configured to convert data at resolutions of 8, 10, 12, or 14 bits (14 bits is 
achieved with oversampling), at a maximum speed of 200 ksps. With adaptive on-chip 
power management capabilities it has low power consumption. The nRF52840 can act as 
both peripheral and central node, with a variety of peripheral input/output (IO) ports and 
virtual UART serial ports [13].  
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2.3 Muscle Activity, Human Motion, and Joint Kinematics 
Wireless sensor systems enable continuous monitoring of physiological data and 

can be integrated into wearable devices or attached directly to the skin, allowing for 
unobtrusive and convenient data collection during rehabilitation sessions. Studies have 
demonstrated the effectiveness of wireless sensor systems in monitoring and  guiding 
rehabilitation for injuries and conditions [14]. Additionally, wireless sensor systems offer the 
advantage of remote monitoring, allowing clinicians to assess patients' progress and 
adherence to prescribed exercises outside of clinical settings. This remote monitoring 
capability enhances the continuity of care and enables timely adjustments to rehabilitation 
protocols based on objective data. 

2.3.1 Estimation of Muscle Contribution from Electromyography 
Electromyography (EMG) data as a measure of motor unit activation is often used to 

estimate the production of force generation by the measured muscle. However, the nature 
of measured EMG, and different factors such as the dynamics of muscle tension production, 
muscle fiber type, fiber length, and joint kinematics complicate the relationship between 
EMG and force [15]. Due to this, it is common for EMG data across different muscles to be 
normalized to its respective EMG during maximal voluntary contraction [16]. Additionally, it 
is generally understood that EMG does not follow a linear relationship to force when 
contractions are not isometric (fixed muscle length).   

2.3.2 Motion Extraction using Electromyography 
Musculoskeletal modeling involves creating computational representations of the 

human musculoskeletal system to simulate movement and estimate muscle forces. These 
models integrate anatomical data, such as muscle attachment points and joint geometries, 
with physiological data, including muscle activation patterns derived from EMG. By 
simulating the interactions between muscles, bones, and joints, musculoskeletal models 
can estimate the contribution of individual muscles to joint kinematics during various 
movements [17].  

  



 

15 
 

By using parameterized musculoskeletal models, elements of human motion such 
as range-of-motion, gait positioning, or postural stabilization, can be extracted from EMG 
data, particularly for standardized movements such as rehabilitation exercises.  As shown 
in Figure 4, shoulder flexion can be represented as a pendulum model with a spring and 
damper, modeling muscles in the form of a spring who’s spring constant is a function of the 
muscle activation level [18]. Estimates of changes in joint angle also must consider the role 
of gravity. 

 
Figure 2-4. Simple pendulum model with spring and damper [18]. 

By incorporating real-time data from other wearable sensors, such as accelerometers and 
gyroscopes, researchers can refine and validate their models to better represent dynamic 
movements and functional tasks [16].  

2.3.3 Motion Extraction using Inertial Measurement Units  
Several methods exist for measuring human kinematics such as visual estimations, 

optical motion capture, and inertial-based motion capture. Inertial motor units (IMUs) have 
increasingly become popular due to their ease-of-use, cost, and versatility [19]. IMUs utilize 
accelerometers, gyroscopes, and sometimes magnetometers to measure the force, angular 
velocity, and sometimes magnetic orientation of the device. These measurements can be 
combined with a kinematic model to accurately estimate elements of human motion.  
However, there are limitations to IMUs caused by several error sources: inertial sensor drift, 
linear acceleration interference (e.g. gravitational acceleration), and other electronic 
interference [19]. Kinematic estimations require integration of measurements, meaning 
even small errors will accumulate over time, requiring complex algorithms to counteract.   
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Preprocessing of IMU data typically will include data normalization against a reference 
frame (such as gravity), noise removal using traditional (e.g. Butterworth) low pass filters, 
removal of other unwanted artifacts, and data manipulation such as resampling. Then 
sensor fusion, or the combination of the two or three data types, can be performed with a 
filter or algorithm. Popular choices for filters for IMU sensor fusion are complementary 
filters, Kalman filters, and Madgwick filters [20, 21].  

Further processing is required to estimate motion elements, such as angular kinematics 
or spatiotemporal detection, as well as further derivatives such as range of motion. This 
processing typically requires additional calibration, windowing, and anatomical information 
such as distance to the joint to perform [20]. 
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3 Time-Domain Sinusoid Fitting for ENOB Estimation  

3.1 Introduction 
As established earlier, effective number of bits (ENOB) is an intuitive measure of the 

dynamic performance of an ADC or other data transfer or conversion system. There are two 
approaches to calculate ENOB, one a frequency domain analysis and the other a time 
domain analysis. 

 The frequency domain analysis requires using a discrete Fourier transform (DFT) to 
convert the time domain signal into the frequency domain. A summation of the power of the 
input signal frequencies is then compared to the summation of the noise to calculate 
SINAD. One issue with this approach is that DFTs perform the frequency domain transform 
over a finite number of frequencies called bins and using a finite signal duration. These 
limitations cause the spectral estimates to be smeared over multiple bins in the frequency 
domain, the extent being dependent on bin resolution and the widowing function used by 
the DFT. This smearing means the a narrow-band sinusoidal input signal is now spread over 
multiple bins, meaning improper bin selection will affect ENOB calculation by either 
including noise or excluding signal [22].   

The time domain analysis requires fitting a digitally generated sinusoid to the ADC 
data. The generated waveform is then subtracted from the ADC data, leaving only the noise 
and distortion, which can be used to calculate SINAD and ENOB [23]. IEEE Standards 1057 
[24] and 1241 [25] present methods for sinusoid fitting using three or four-parameter least-
squares regression, where the sinusoid is defined as: 

𝑓(𝑡) =  𝐴0 cos(𝜔0𝑡) +  𝐵0 sin(𝜔0𝑡) + 𝐶0 

where ω0 is the frequency of the input signal and can be plotted in the form: 

  
𝑓(𝑡) =  𝐴 cos(𝜔0𝑡 +  𝜃) + 𝐶 

where:  

𝐴 =  √𝐴0
2 + 𝐵0

2 

𝜃 =  tan−1 [−
𝐵0

𝐴0
] , 𝑖𝑓𝐴0 ≥ 0 

𝜃 =  tan−1 [−
𝐵0

𝐴0
] + 𝜋, 𝑖𝑓𝐴0  < 0 

The algorithm then finds the values of the parameters which minimize the residual of the 
following sum of squared differences of a sample with M samples: 
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𝑟𝑛 = ∑[𝑦𝑛 − 𝐴0 cos(𝜔0𝑡𝑛) +  𝐵0 sin(𝜔0𝑡𝑛) + 𝐶0]2

𝑀

𝑛=1

 

where rn is the residuals of the fit, and yn is the recorded ADC data. 

A three-parameter fit (A0, B0, C0) requires a known frequency and is a closed-form 
solution that will always produce an answer. A four-parameter fit (A0, B0, C0, ω0) provides a 
better fit than the three-parameter regression if the actual frequency of the input does not 
match the known frequency. The four-parameter fit employs an iterative solution that may 
diverge if a bad initial estimate is provided. To solve the four-parameter regression a non-
linear system of equations must be solved in an iterative fashion.  

3.2 Methods 
The goal was to evaluate the dynamic performance of the ADC and BLE transfer of 

the nRF58240 by measuring ENOB through time-domain analysis. A four-parameter fitting 
algorithm was implemented in MATLAB based on the methods presented in [24] and [25]. A 
copy of the code used can be found in Appendix A.  

The initial parameters of the model were set using simple calculations from the noisy 
signal. The first parameter A0 was set to the full amplitude of the signal, estimated using the 
square root of two, multiplied the rms value of the signal. The second parameter B0 was set 
to zero, assuming that there is no phase shift in the signal. The third parameter C0 represents 
the DC offset, so was set to the mean value of the signal, being zero if the signal has already 
undergone mean removal. The fourth parameter, ω0 was set to the fundamental frequency 
of the signal in radians (2πf). The fundamental frequency of the signal can be estimated by 
finding the maximum of the signal’s power spectral density (PSD). This is preferable to 
setting the parameter to the frequency used in function generation to reduce the effect of 
frequency irregularities from the physical function generator. MATLAB’s implementation of 
Welch’s method was used to estimate the PSD.  

To solve the regression model, MATLAB’s lsqcurvefit() function, which uses a trust-
region reflective algorithm to find the parameters which best match a provided dataset, 
following a user-defined function, initial parameters, and algorithm tolerances. Algorithm 
tolerances, such as step tolerance, function tolerance, and maximum number of 
evaluations, define the stopping criteria of the algorithm and can have a significant impact 
on the results. Step tolerance defines the lower bound of the size of change in each 
parameter from the last iteration. Function tolerance defines the lower bound on the change 
in value of the function output from the last iteration. Figure 3-1 shows the application of 
these parameters as iterations approach a local minimum. MATLAB’s default values for both 
are 10-6

, which was found to be sufficient to locate the local minimum of the regression.  
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Figure 3-1: Definitions of step tolerance and function tolerance near local minimum [26]. 

 It should be noted that this technique of low-parameter, trust-region reflective 
modeling is vulnerable to becoming “trapped” in a local minimum that produces a non-ideal 
fit to the data. However, due to the controlled test conditions this technique is being applied 
under, with the parameters of the input signal being known to be used for the initial estimate, 
such a model performed acceptably.  Future consideration of alternative models may be 
appropriate. 

3.2.1 Validating Noise Estimation 
First, the MATLAB implementation of the time-domain analysis was validated for its 

accuracy in estimating SINAD. A series of test sine waves with fundamental frequencies of 
50 Hz, sampled at 2000 Hz, were generated in MATLAB. White Gaussian noise was then 
added to the signal using MATLAB’s awgn() function to give the signal a specified SNR. Since 
there is no distortion, SNR can be considered equivalent to SINAD for validation. Tests were 
run for various added SNR values ranging from 5 to 80 decibels. As shown in Figure 3-2, the 
MATLAB implementation of the time-domain SINAD estimation can reliably estimate the 
noise present. 
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Figure 3-2: Mean percent error ± standard deviation of n = 550 SNR estimations using time-domain 

analysis. 

 Statistical testing was conducted to determine whether there were statistical 
differences over the tested SNR values. To assess the normality of error values, a 
Kolmogorov-Smirnov (KS) test was used. A KS-test is a non-parametric test used to 
determine if data follow a given distribution, in this case, a normal distribution. Application 
of the KS-test, with a 5% significance threshold, rejected the null hypothesis that the data fit 
a normal distribution for SNR values less than 60dB, so a Friedman test rather than a 
traditional analysis of variance (ANOVA) test was used to compare the data.  

 To determine if there were statistical differences in error over the tested SNR values, 
a Friedman test was applied to the data after being normalized to the theoretical SNR values, 
with the null hypothesis that the normalized values would be the same. The results of the 
Friedman test over the entire SNR range rejected the null hypothesis (𝑝 <  2.4954 ×

10−69). Next, the Friedman test was only applied to the data whose theoretic SNR values 
were greater than 40 dB, yielding a nonsignificant result (𝑝 =  0.1607). This shows that 
while there is a significant difference in the error of noise estimation over the full tested SNR 
range, the differences are minimal for SNRs above 40 dB.  
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3.2.2  ENOB Estimation 
To evaluate the performance of the system, a peripheral device was set up to read 

data from a single analog input channel and stream the data over BLE to a central device. 
The nRF52840-DK (Discovery kit for interfacing with the nRF58240 SOC) was used for both 
the peripheral and central devices, powered by USB connections to a PC. The ADC input of 
the peripheral device was configured to have a 12-bit resolution and to sample continuously 
at 2 kHz with no oversampling. Data was transmitted from the peripheral to the central 
device every 10 ms, consisting of 4 sync bytes, 8 additional header bytes, and 40 data bytes 
(2 bytes per sample). From the central node, the data was transmitted set to a PC over a 
COM port for processing. A custom MATLAB application (see Appendix B) was used to 
stream data, decode the data packets, and log the data.  

Test sine waves with peak-to-peak voltage of 3.44V (selected below maximum input 
voltage of 3.6V to avoid clipping or attenuation) and frequencies ranging from 50 to 150 Hz 
were applied to the analog input of the ADC. The test signal was generated by a Hewlett 
Packard 33120A waveform generator. For each trial, 1 second of data were collected, 
providing approximately 50 cycles to estimate over, well over the 5 cycle minimum 
recommended in  IEEE standard 1241 [25].  The collected data were then processed using 
the MATLAB implementation to estimate the ENOB of the system.  

Function generators tend to have relatively high levels of noise, data were also 
collected from the peripheral with the analog input of the ADC shorted to the ground pin of 
the microprocessor. As a point of comparison, the root mean square (RMS) value of the 
noise can be taken and used as the NAD value during the calculation of ENOB for the test 
signals. 
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3.3 Results 
Figure 3-3 shows 5 cycles of data collected from a 50Hz input sine wave, the time-

domain fitted wave, and their difference, which is being used as the NAD estimate. 

 

 
Figure 3-3: 5 cycles of collected 50 Hz sine wave (black, obscured), fitted wave (red), and their 

difference (blue). 

 

 Figure 3-4 shows the power spectral density plots of the time-domain fitted wave 
alongside the estimated NAD, and noise when the board is shorted. The estimated noise 
floor is approximately one scale of magnitude higher than the noise when the ADC input is 
shorted. This suggests that there is a significant amount of noise coming from the function 
generator that will impact the ENOB estimation. However, there are discernable noise 
components, such as peaks at harmonics of the signal’s fundamental frequency that would 
be ignored if ENOB is calculated only with the shorted noise. The actual ENOB of the system 
likely lies somewhere between these two estimates.  
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Figure 3-4: Power spectral density of the collected signal and noise at 50Hz (left) and 150Hz (right). 

 

 The results (Table 3-1), based on n=5 test sine waves at each of the frequencies: 50, 
100, and 150 Hz, showed the effective number of bits of the system is approximately 6.3 bits, 
decreasing as input frequency increases. A comparison between the PSD plots of 50Hz and 
150Hz tests shows increased noise around the fundamental frequency for the 150Hz test. 
When estimated using the shorted noise the ENOB across all test frequencies can be 
estimated to be approximately 8.3 bits. Figure 3-5 show the ENOB results plotted against 
frequency.  

Table 3-1: Effective number of bits of the nRF52840 ADC for different test input frequencies. Results 
based on the time-domain analysis, and the shorted noise floor are shown.  

  

Input 
Frequency 

(Hz) 
50 100 150 

Trial 
ENOB 
(noise) 

ENOB 
(shorted) 

ENOB 
(noise) 

ENOB 
(shorted) 

ENOB 
(noise) 

ENOB 
(shorted) 

1 6.7218 8.3223 6.0578 8.3202 4.5726 8.3319 

2 6.677 8.3186 5.3963 8.3241 4.5652 8.3133 

3 6.4419 8.3191 5.8241 8.3248 4.3832 8.3228 

4 5.8503 8.32 5.3888 8.3178 4.9346 8.3284 

5 5.8216 8.3232 6.0378 8.3238 5.6073 8.3269 
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Figure 3-5: Mean percent error ± standard deviation of effective number of bits vs. input frequency. 

3.4 Discussion 
The evaluation of the dynamic performance of the ADC and BLE transfer of the 

nRF58240 through ENOB estimation using time-domain analysis provides valuable insights 
into the system's capabilities and limitations. The implemented four-parameter fitting 
algorithm in MATLAB based on IEEE standards 1057 and 1241 appears to be capable of 
estimating SINAD and subsequently ENOB, however, there are limitations of becoming 
“trapped” in non-ideal local minima. Validation tests using known SNR values affirm the 
reliability of the time-domain analysis in accurately estimating SINAD across various SNR 
levels.  

Nordic Semiconductor reports an ENOB of 9 bits for the nRF52840 at its maximal 
sampling rate of 200ksps, 1/1 gain, internal clock, and minimum input resistance. The ENOB 
of 8.3 bits estimated from the shorted noise floor is a ~7.8% difference from that reference. 
Further testing could be performed for configurations approaching Nordic’s test conditions, 
and with a non-development kit nRF52840 could provide insights into the specific source of 
deviation.  

The observed decrease in ENOB with increasing input frequency raises questions about 
the ADC's performance at higher frequencies. However, the consistent results obtained 
when considering the shorted noise floor suggest that this decrease in performance may be 
attributed to the noise introduced by the function generator rather than inherent limitations 
of the ADC itself. The comparison between ENOB estimates using shorted noise and actual 
collected data underscores the complexity of accurately characterizing system 
performance in real-world scenarios with multiple noise sources. 
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In conclusion, while the ENOB estimation process using time-domain analysis offers 
valuable insights into the ADC and BLE transfer system's capabilities, it is essential to 
consider potential limitations and external factors such as noise sources. Further 
refinement of testing methodologies and test conditions could enhance the accuracy and 
reliability of ENOB estimations, facilitating better informed decisions in system design and 
optimization. 
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4 DAQ Precision and Power Consumption 

4.1 Introduction 
To enhance the effective number of bits (ENOB) in EMG data acquisition, several 

methods can be employed, including oversampling and increased ADC resolution. 
Oversampling involves sampling the EMG signal at a rate higher than the Nyquist rate, which 
can improve resolution and reduce quantization noise. Similarly, increasing the ADC 
resolution enhances the granularity of the digitized EMG signal, allowing for more precise 
measurements. The SAADC on the nRF52840 provides options up to 256 times 
oversampling and resolution options of 8, 10, and 12 bits with a 14-bit format to 
accommodate additional precision from oversampling. 

It is important to note that these enhancements come at the cost in terms of power 
consumption. ADCs consume power during both the acquisition and conversion phases, 
only dropping to a low-power state between samples. Oversampling requires increasing the 
sampling rate, thus reducing the time spent in a low-power state. Similarly, increasing 
resolution lengthens the conversion phase and increases power consumption.  

When using continuous mode on the nRF52840, sampling events are triggered at a 
given sampling rate. There are two methods in which timing can be implemented, either 
attaching the sampling event to one of the general-purpose timers, or by utilizing the 
SAADC’s internal timer. Example projects provided by Nordic Semiconductor suggest that 
the internal timer implementation should only be used for sampling rates above 8kHz. 
Oversampling can be implemented on the nRF52840 by utilizing an accumulator on the 
SAADC to average several samples of the analog input. Alternatively, the sampling rate 
could be increased by the desired factor to be later averaged and downsampled after digital 
conversion. It should be noted that on the nRF52840 oversampling, can only be used when 
a single channel is enabled, as the averaging occurs over all enabled channels.  

4.2 Methods 
The goal was to measure power consumption and the effective number of bits of the 

nRF52840 under different resolution and oversampling conditions.  A peripheral node was 
set up to read data from a single analog input channel and stream the data over BLE to a 
central node. The nRF52840-DK was used for both the peripheral and central devices, with 
the peripheral powered by an external 5V supply and the central by a USB connection to a 
PC. The ADC input of the peripheral device was configured to have various resolutions and 
to sample continuously at 2 kHz with various oversampling. Data was transmitted from the 
peripheral to the central device every 10 ms, consisting of 4 sync bytes, 8 additional header 
bytes, and 40 data bytes (2 bytes per sample). From the central node, the data was 
transmitted to a PC over a COM port for processing. A custom MATLAB application (see 
Appendix B) was used to stream data, decode the data packets, and log the data. 
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To program the different configurations, Visual Studio Code (v1.72.2 for Windows 64-
bit) installed for programming in C/C++ and with extensions for Zephyr was used. Zephyr is 
an open-source real-time operating system (RTOS) developed by Nordic Semiconductor 
based on a small-footprint kernel, designed for use on resource-constrained embedded 
systems. It is integrated into Nordic’s software development kit (SDK) along with essential 
drivers, libraries, and protocol stacks for programming and interfacing with Nordic devices 
[27]. For this work, nRF Connect SDK v2.1.1 provided through the nRF Connect for Desktop 
(v4.3.0) was used.  

 

4.2.1 Setting ADC Sampling Rate  
Sampling rate can be set by adjusting the timing interval parameters for the timer 

linked to the ADC sampling event, which also serves as the primary timer for the entire 
program. The initialization and start command are defined in the main body of the program 
as shown in Figure 4-1. Lines 783-4 shows the definition of a work queue as a kernel object 
to process the ADC sampling sequence (adc_sample). The size of the memory block and 
priority of the work queue can be configured here. Lines 787-8 shows the definition of a timer 
object which calls the adc_sampling_event, which itself calls the above work queue, at a set 
time, defined in microseconds (TIMER_INTERVAL_USEC). In this configuration, the timer 
here defines the sampling rate of the ADC.  

 
Figure 4-1: ADC sampling event timer initialization. 

Based on Zephyr’s documentation for Nordic ADC’s, the sampling rate should also 
be able to be set by adjusting the interval parameter within the code that defines the ADC 
sampling sequence. However, adjusting this parameter was not shown to be able to define 
the sampling rate in the current configuration, likely due to issues with blocking during a 
given sequence. 

4.2.1.1 Other Parameters following Adjusting Sampling Rate 
Under the original parameters, when the timer interval was lowered below 500 ns, 

indicating a sampling rate of 2kHz, data packets (containing 20 samples) could sometimes 
be split and sent to the central board in two incomplete packets. To address this issue, the 
peripheral preferred maximum and minimum BLE connection interval must be lowered to 
accommodate the higher delivery rate. This parameter can be found in the prj.conf file for 
the peripheral device, as shown in Figure 4-2. Line 28 enables the configuration of the 
following BLE timing preference parameters. Lines 30-31 set the maximum and minimum 
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preferred connection interval between the peripheral and central nodes. In this 
configuration, the maximum interval needed to be lowered to accommodate a  10 ms 
transmission interval.  

 
Figure 4-2: BLE timing parameters. 

It should be noted that these specific timing parameters were only tested for a single 
peripheral with a 52-byte packet. Other setups may require different parameters. An 
alternative method found to address this issue would be to increase the number of samples 
in each packet, thus reducing the likelihood of overlap between connection intervals.  

 

4.2.2 Setting Resolution and Oversampling 
The resolution and oversampling factor of the nRF52840 ADC can be configured from 

within the devicetree data structure which can interface with the Zephyr libraries through a 
Visual Studio Code extension. Figure 4-3 shows the default configuration of the nRF52840-
DK ADC.   

 
Figure 4-3: Default ADC initialization in the nRF52840-DK devicetree.  

 Valid values for resolution (Figure 4-3, line 91) and oversampling (Figure 4-3, line 92) 
are shown in Figure 4-4, where the value is what should be provided in the devicetree. 
Resolution is applied before the averaging for oversampling, meaning that for high 
oversampling, the signal quality improvement will be limited by the resolution.  
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Figure 4-4: Configuration options for resolution (top) and oversampling (bottom). 

4.2.3 Measuring Current Consumption 
Current consumption can be measured from the peripheral device using Nordic 

Semiconductor’s Power Profiler Kit II setup in its ammeter configuration. The kit is 
connected as an interrupt between the VDD pins (P22) provided on the nRF52840 
Development Kit (DK). The Power Profiler application (v4.0.0) provided through the nRF 
Connect for Desktop (v4.3.0) was used to record measured current from the kit during each 
trial. Average current was measured over the application’s default time window of 10 
seconds. A diagram of the configuration for measuring current from a nRF52840-DK with the 
PPK2 can be seen in Figure 4-5.  

 
Figure 4-5: PPK2 setup for measuring current on the nRF52840-DK in ammeter mode.  

  

4.2.4 Determining Effective Number of Bits 
Simultaneous to measuring current consumption, ENOB was measured using a 50Hz 

sine wave and the MATLAB implementation presented in chapter 2. Test sine waves with 
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peak-to-peak voltage of 3.44V (selected below maximum input voltage of 3.6V to avoid 
clipping or attenuation) were applied to the analog input of the ADC. The test signal was 
generated by a Hewlett Packard 33120A waveform generator. For each trial 1 second of data 
was collected, providing approximately 50 cycles for analysis. The collected data was then 
processed using the MATLAB implementation to estimate the ENOB of the system (see 
Appendix A). 

4.3 Results 
4.3.1 Current Consumption 

Figure 4-6 shows the results of measuring current consumption from the peripheral 
device with different resolutions and oversampling factors. Current consumption was 
shown to decrease by approximately 2%, from 2.16 mA to 2.21 mA, when resolution was 
changed from 12 to 14-bit configuration. Current consumption was shown to increase by 
approximately 16.5%, from 2.05 mA to 2.40 mA, when changing from 0 to 16 times 
oversampling. Current consumption without BLE transfer was approximately 1.8 mA, and 
with the ADC disabled was 499.5 μA.  

 

 
Figure 4-6: Current consumption vs. oversampling factor and resolution. 
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Statistical testing was conducted to determine whether there were statistical 
differences in current values over different oversampling and resolution configurations. To 
assess the normality of current values, a KS-test was used. Application of the KS-test, with 
a 5% significance threshold, did not reject the null hypothesis that the data fit a normal 
distribution, so a two-way ANOVA test was used on the dataset.  

 A two-way ANOVA test was applied on current consumption data grouped by 
oversampling factor and resolution, with the null hypothesis that there would be no 
difference in current consumption. An interaction was found ( 𝑝 = 2.1528 × 10−5 ). 
Therefore, we initially pursued separate one-way ANOVAs for each resolution. For the 12-bit 
resolution data, a one-way ANOVA found that there were significant differences in current 
consumption [F(4,95)  =  16945, 𝑝 = 1.3199 × 10−5] , and post hoc pairwise tests 
(adjusted for multiple comparisons) found that all oversampling factors differed from each 
other (𝑝 <  0.0000). For the 14-bit resolution data, a one-way ANOVA found that there were 
significant differences in current consumption [F(4,95)  =  16945, 𝑝 = 1.3199 × 10−5], and 
post hoc pairwise tests (adjusted for multiple comparisons) found that all oversampling 
factors differed from each other (𝑝 <  0.0000) except when comparing oversampling factor 
0 to oversampling factor 2 (𝑝 =  0.6598). Lastly, paired t-tests were conducted within each 
of the five oversampling factors, with Bonferroni correction (reducing confidence interval to 
𝛼 = 0.01 ), comparing 12-bit to 14-bit resolutions.  These tests found that there were 
significant differences in current consumption (𝑝 < 6.3447 × 10−6) , except at 
oversampling factor 16 (𝑝 = 0.0272).  This shows that both oversampling factor and 
resolution have a significant impact on current consumption, with evidence that their 
effects are not independent of each other. 
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4.3.2 Effective Number of Bits 
As shown in Figure 4-7, the ENOB of the ADC increased as the oversampling factor 

increased, as well as when the resolution configuration was changed from 12 to 14 bits. 
ENOB was increased by 1.2 bits (~22%) when changing from 0 to 16 times oversampling. 
ENOB only increased by 0.2 bits (~2.9) over the same range, with significant overlap between 
the standard deviations in oversampling factors less than or equal to 8.  

 
Figure 4-7: ENOB vs oversampling factor and resolution. 

Statistical testing was conducted to determine whether there were statistical 
differences in ENOB values over different oversampling and resolution configurations. To 
assess the normality of ENOB values, a KS-test was used. Application of the KS-test, with a 
5% significance threshold, did not reject the null hypothesis that the data fit a normal 
distribution, so a two-way ANOVA test was used on the dataset.  

A two-way ANOVA test was applied on ENOB data grouped by oversampling factor and 
resolution, with the null hypothesis that there would be no difference in current 
consumption, and that there are no interactions between the two factors. The test found no 
interaction (𝑝 =  0.2514 ). The results of the two-way ANOVA test showed that for both 
oversampling factor [𝐹(4,190)  = 63.82, 𝑝 = 0.0000]  and resolution  [𝐹(1,190)  =

20.46, 𝑝 = 0.0000], there were significant differences in ENOB. Further post hoc pairwise 
tests (adjusted for multiple comparisons) found that all oversampling factors differed from 
each other (𝑝 < 0.0286), except oversampling factor 0, which did not differ significantly 
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from oversampling factors 2 and 4 (𝑝 = 0.1442, 𝑝 = 0.9170).  Post hoc pairwise testing 
found that 12-bit and 14-bit resolutions significantly differed from each other (𝑝 = 0.0000). 
This shows that both oversampling factor and resolution have a significant impact on ENOB, 
with their impact being independent of each other.   

4.4 Discussion 
The findings on power consumption demonstrate the trade-offs associated with 

resolution and oversampling. Unexpectedly, a decrease in current consumption was 
observed when switching from a 12-bit to a 14-bit configuration. This decrease was relatively 
marginal (~2%) compared to the substantial increase (~16.5%) observed with higher 
oversampling factors. The 14-bit resolution does not represent a true change in the ADC’s 
resolution, rather the format in which the data is saved in following oversampling, meaning 
that the only power consumption difference should be due to memory.  

Increasing the oversampling factor led to a notable increase in power consumption. 
This is consistent with the understanding that oversampling involves acquiring more 
samples per conversion cycle, thereby increasing the time the ADC spends in active mode, 
which in turn elevates power consumption. The recorded values provide practical insights 
for system designers, helping them balance the desired level of oversampling with the 
available power budget. This is especially important as the ADC appears to make up the 
majority (~76% at 12-bits, no oversampling) of current consumption during collection.  

The ENOB results illustrate the impact of resolution and oversampling on the quality 
of digitized EMG signals. As expected, increasing the oversampling factor led to a significant, 
approximately 22%, from 5.2 bits to 6.4 bits, improvement in ENOB. This improvement can 
be attributed to the reduction in quantization noise and generation noise achieved through 
the averaging performed by the accumulator. Similarly, increasing the resolution from 12 to 
14 bits also contributed to enhancing ENOB, albeit to a lesser extent, approximately 4.8%. 
This suggests that while higher resolution enables finer granularity in representing signal 
amplitudes, the benefits in terms of ENOB may not be as pronounced as those achieved 
through oversampling. This matches expectations of the 14-bit format, where it would not 
be expected to have a significant impact on signal resolution until precision approaches the 
limitations of 12 bits.  

These findings underscore the importance of careful optimization and parameter 
selection in EMG data acquisition systems. Designers must strike a balance between 
achieving sufficient signal quality (as indicated by ENOB) and managing power consumption 
to ensure the longevity of battery-powered devices. Additionally, the results highlight the 
need for comprehensive testing and validation to understand the behavior of ADCs under 
different operating conditions. This knowledge can inform design decisions and enable the 
development of efficient and robust EMG data acquisition systems tailored to specific 
application requirements. 
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5 Python-Based Application for Data Acquisition and Processing 

5.1 Introduction 
Developments in wireless wearable sensor systems have opened space for potential 

applications in remote patient monitoring, diagnostics, and real-time feedback for patients. 
These technologies have the potential to significantly improve patient outcomes by enabling 
continuous monitoring and personalized interventions, particularly in the realm of 
rehabilitation and post-operative care [28]. To facilitate the acquisition, processing, and 
visualization of biometric data an application with a user-friendly graphic user interface 
(GUI) must be developed.  

5.1.1 OrthoKinetic Track Inc 
OrthoKinetic Track (OKT) is developing a sensor-based wearable shoulder device for 

remote patient monitoring of range of motion (ROM) and muscle activity (EMG). The 
application will utilize biometric data and a predictive machine-learning algorithm to allow 
real-time guidance to the user for feedback on rehabilitation progress during post-operative 
recovery. 

In this chapter, the development of a python-based application for the acquisition 
and processing of ROM and EMG data will be discussed. The primary objective of this 
application is twofold: firstly, to serve as a tool for clinical research during the iterative 
development of the wearable system, and secondly, to demonstrate the feasibility of 
creating a user-facing application for future deployment. 

5.1.2 Python  
Python is a versatile high-level programming language for general purpose coding, 

commonly used for various applications for its simplicity, readability, and extensive open-
source libraries. Several of these open-source libraries were used in the development of the 
application discussed in this chapter.  

Tkinter is a standard Python library for creating GUI applications. It provides a simple and 
efficient way to develop interactive interfaces, making it ideal for desktop applications. It 
allows for customizable widgets such as windows, buttons, menus, and other GUI 
components to enhance user interaction. 

Matplotlib is a powerful plotting library that enables the creation of static, animated, and 
interactive visualizations in Python. It offers a wide range of plotting functions for generating 
line plots, scatter plots, histograms, bar charts, and more.  Matplotlib includes functionality 
to display a plot within a Tkinter window for real-time and interactive visualization. 

Numpy is a fundamental package for numerical computing in Python. It provides support 
for large, multi-dimensional arrays and matrices, along with a collection of mathematical 
functions to operate on these arrays efficiently. Numpy's capabilities are crucial for 
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scientific computations, data manipulation, and algorithm implementations. Scipy is an 
open-source library that builds upon numpy to provide additional functionality for scientific 
computing. The scipy.signal module, in particular, offers various signal processing 
algorithms and digital signal processing (DSP) tools. These tools include filtering, 
convolution, Fourier analysis, and window functions; facilitating advanced signal analysis 
and manipulation. Use of this library allows for efficient application of various DSP 
techniques.  

Python's support for object-oriented programming (OOP) enables the creation of 
complex and reusable data structures. By encapsulating data and methods within objects, 
developers can organize code more efficiently and facilitate code reuse and maintenance. 
Commonly used object-oriented data structures in Python include classes, objects, 
inheritance, polymorphism, and encapsulation. Integrating object-oriented data structures 
alongside libraries enhances code modularity, scalability, and readability.  

5.2 Design Approach 
This section will focus on the overall design of the application as shown in Figure 5-1. 

The main program is responsible for the primary handling of GUI frames, user selection of 
sub-programs, and handling of data structures that must be passed between sub-programs.  

 
Figure 5-1: Overall system flowchart. 

5.2.1 Serial Data Collection 
The serial data collection window, shown in Figure 5-2, can be used to read data 

transmitted to the desktop over its serial communication (COM) port. This allows for the 
acquisition and real-time visualization of data acquired from systems such as the nRF52840 
BLE system explored in chapters 2 and 3.  
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Figure 5-2: Data acquisition window. 

The left side of the window (Figure 5-3) includes two user input modules to configure 
the serial port and define incoming data packets, and to add information about the subject 
and trial. 

 
Figure 5-3: Serial, patient, and trial information modules. 

 To allow for real-time collection and plotting of the data collected over the serial port, 
the background animation process provided in the matplotlib.animation library was used 
alongside several interrupts to provide start, stop, and amplitude scaling functionality. The 
animation function works by repeatedly calling an update module and using the results of it 
to update a figure. The update function works similarly to the MATLAB script found in 
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Appendix A, with some adjustments made to adapt it to python and to handle real time 
acquisition. One notable difference is that rather than acquiring one packet at a time, all 
bytes available are acquired and placed into a buffer. The buffer is then sorted through to 
sequentially process full packets within the buffer. When a packet is processed, the data is 
then added to a frame which the animation function adds to the figure. 

 Interrupts are handled by the GUI foreground process. The start and stop interrupts 
change the state of the animation function, and the clear interrupt erases the current figure 
and stored data. The first time the start button is triggered it initializes the animation before 
starting. Additionally, the figure’s y-axis can be switched between auto-scaling or being set 
to manual limits. The new selection will only be reflected in the figure upon the next update 
of the animation.   

 Data can then be saved to a .csv file using the save data button, which can later be 
loaded in the data visualization and processing window. The filename is automatically 
generated based on subject ID and trial information, with the additional information (age, 
pathology, location, etc.) stored in the header. 

5.2.2 EMG Filtering Options 
The filtering options window, shown in Figure 5-4, handles the creation of filters for EMG 

processing in the data visualization window. The options and building of the filters are based 
on the processing recommendations described in Section 2.1.2 from [4]. The user inputs are 
then used to construct a new Filter object, which is then added to a Filters object which 
holds all created filters. A series of different filters can be built in this menu and later 
individually applied to EMG data channels in the Data Processing and Visualization window. 
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c  

Figure 5-4: Filtering options window. 

The Filters class serves as a container for managing multiple filter objects. Upon 
initialization, it creates an empty list to store Filter objects. The class provides methods to 
add new filters to the collection and retrieve existing filters based on their names. The add() 
method allows adding a new filter to the collection. It checks if a filter with the same name 
already exists; if so, it updates the existing filter with the new parameters; otherwise, it adds 
the new filter to the collection. The get() method retrieves a filter object from the collection 
based on its name. The validate() filter can be used to check if the user-inputted parameters 
fit hard coded requirements. Additionally, the class includes a method named build to call 
the build() method within the Filter class for all filters contained within its collection.  

The Filter class represents a single filter with configurable parameters. Upon 
instantiation, it initializes with default filter parameters. The define() method allows setting 
custom parameters for the filter, such as cutoff frequencies and the inclusion of different 
filtering options. Once the parameters are defined, the build() method constructs the filter 
using the provided parameters. It utilizes a function called buildFilters() from an external 
emg processing module. After building the filter, the apply() method can be used to apply 
the filter to input data. This method employs another function named runFiltering() from the 
same external module to process the data using the constructed filter. If the filter has not 
been built before applying, the apply method automatically builds it using a default sampling 
frequency before applying it to the data. 

A flowchart representation of the two classes and their interactions with each other, 
and external scripts is shown in Figure 5-5.  
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Figure 5-5: Flowchart representation of Filters and Filter class data structures. 

5.2.3 Data Processing and Visualization 
The data processing and visualization window, shown in Figure 5-7, handles the loading 

data from a file, storing the data into an easily parsable data structure, the processing of the 
data with a filter object. The EMG and IMU data shown in Figure 5-7 were collected for 
assessment of commercially available EMG and IMU sensor hardware, and not for 
contributions to generalizable knowledge.  The data were used herein only to provide display 
data  for the development of the software for the application. 

The data structure (Figure 5-6) is organized into a Data class object which serves as a 
container for a set of Channel objects. The Data class also holds the filename, collection 
length, and a read() module which when called interprets the file. The Channel class 
contains the channel name and one Lines object for each datatype: EMG, processed EMG, 
acceleration, and gyroscope data. The Lines class contains the time series, data, and 
header(s) as lists, as well as the sampling frequency. 
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Figure 5-6: Flowchart representation of Data, Channel, and Lines class data structures. 

The application currently is able to interpret data files generated by the application’s 
serial data collection, as well as exports from Delsys’ EMGworks and TrignoDiscover 
applications (Delsys, Natick, MA). Since all of these files use the commonly used .csv 
filename extension, the application currently requires the user to specify the data source. 
Once the data is loaded, the detected channel names will appear in the channel slots and 
the EMG and IMU (acceleration and gyroscope) data will be plotted. Filter options can then 
be selected from the dropdown next to the channel slot. The run processing can be pressed 
to run through the processing sequence. Currently, this sequence passes a channel of EMG 
through the Filter.apply() method for the Filter object specified by the dropdown. Processed 
EMG data is then plotted in the same figure as the raw EMG data and stored within the data 
structure. 
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Figure 5-7: Data processing and visualization window displaying the data of all sensors (top) and 

displaying one sensor with EMG processing (bottom). 

 

5.2.4 Data Analysis 
The data analysis window displays options for performing additional data processing, 

visualization, and analytics beyond filtering. When analyzing range of motion, it is typical to 
normalize the data to be plotted against the percent of a cycle rather than time. To do this, 
a detection method must be used to identify individual cycles out of a trial, before 
normalizing, and averaging over all cycles in the trial (the data shown in Figure 5-7 contain 
15 cycles).  
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To remove high-frequency noise, a 4th order Butterworth filter with a 50 Hz cutoff 
frequency is applied to the IMU data. The application then uses IMU gyroscope data to 
estimate the orientation of the IMU in terms of rotational angles (roll, pitch, yaw). 
Acceleration data is ignored due to complexities to simplify orientation calculations for 
development. Since there is no standard physiological model being considered at this stage 
in application development, the linear sum of the rotational angles is considered 
representative of joint angle during movement. To smooth the orientation estimate, a 4th 
order Butterworth filter with a 0.5 Hz cutoff frequency is then used. 

Since the target application would analyze cyclical “going” and “returning” 
trajectories, movement cycles are then detected from the orientation estimation signal by 
identifying peaks using the first derivative of the signal. The detection logic locates two local 
minimums (negative to positive zero crossings in the first derivative), before checking if a 
local maximum exists between them which is above a user-defined threshold angle value. 
Both angle and processed EMG data are segmented at the local minimums as an individual 
cycle. To average the data over differently sized cycles, the angle and EMG data is resampled 
to 1000 samples/cycle using a Fourier method implementation, signal.resample() found in 
the scipy library. To reduce oscillations near the edges of the resampled signal, a windowing 
function was included in resampling.  

The total number of cycles over the trial can then be averaged and displayed in a plot 
as shown in Figure 5-8. Metrics such as total EMG energy (calculated as the rms of the signal 
over the cycle) can be reported over the entire cycle or sectioned into going and returning 
phases of the cycle defined by the maximum angle value over the cycle. The EMG and IMU 
data shown in Figure 5-8 were collected for assessment of commercially available EMG and 
IMU sensor hardware, and not for contributions to generalizable knowledge.  The data were 
used herein only to provide display data for the development of the software for the 
application. 
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Figure 5-8: Example latissimus dorsi EMG and angle vs. percent cycle during shoulder abduction. 

  

 

5.3 Discussion and Future Improvements 
The described application outlines the development of a python-based application for 

the acquisition and processing of ROM and EMG data to serve as a tool for clinical research 
and as a proof of concept for a user-facing application. However, there are several areas 
that could be further discussed and improved upon for future iterations. 

While the application performs real-time data collection, optimizing the efficiency of 
data handling, memory management and filtering algorithms could enhance performance, 
particularly for handling large datasets or processing complex filters. The current 
application was only tested collecting data from one channel for up to three minutes, so 
further optimization may be needed when using a full array of sensors or prolonged data 
collection. Additionally, more efficient processing could allow for the implementation of 
real-time filtering.  

Currently, data collected within the application is exported to a generic csv file. In the 
future data could be exported either in a standard format such as the European data format 
or with a custom file extension that is easily read by the application. This would additionally 
allow for the application to easily track previous subjects and trials collected by the 
application. 
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Further improvements could also be made to range-of-motion data analysis presented 
in section 5.2.4. Many filters used for estimating orientation based on IMU data, such as the 
Madgwick filter, rely upon having a known reference frame to account for bias in the 
gyroscope and accelerometer measurements. Since measurement device placement 
varies based on subject and trial, this reference frame becomes hard to account for. More 
complex algorithms and/or utilizing user-inputted information about the reference frame or 
physiological model could be used to provide more accurate ROM calculations.  

5.4 Conclusion 
The development of a Python-based application for the acquisition and processing of 

range of motion (ROM) and electromyography (EMG) data was outlined in the chapter. This 
application, developed for OrthoKinetic Track Inc. will be used to assist in the development 
of a predictive machine-learning algorithm, and wireless wearable sensor system for the 
shoulder.  

The application leverages Python's versatility and the power of various open-source 
libraries such as Tkinter, Matplotlib, NumPy, and SciPy. These libraries enable efficient data 
acquisition, processing, visualization, and interaction. Through a series of modular 
components, the application allows for real-time data collection via serial communication, 
flexible filtering options for EMG processing, and comprehensive data visualization tools. 
Furthermore, advanced data analysis techniques, including cycle detection and 
normalization, contribute to a deeper understanding of patient movement patterns and 
muscle activity. 

While the current version of the application demonstrates promising functionality, 
there are opportunities for future improvements. Enhancements in efficiency, particularly in 
handling larger datasets and implementing real-time filtering, could further enhance 
performance and usability. Additionally, standardizing data export formats and refining 
algorithms for accurate ROM calculations would increase the application's utility and 
compatibility with existing systems and protocols. 

Overall, the application presented in this chapter will serve as a useful tool for clinical 
research, development, and as a proof of concept for a future user-facing application for 
OrthoKinetic Track. The primary objective of this application was to serve as a tool for 
clinical research during the iterative development of the wearable system and to 
demonstrate the feasibility of creating a user-facing application.  
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6 Conclusion 
 This thesis describes the investigation of the dynamic performance of an analog-to-
digital converter (ADC) for wireless wearable systems and the development of a Python-
based application for EMG data acquisition and processing.  

 The first part of the thesis discusses the design of a MATLAB implementation of a 
time-domain sinusoid fitting technique for effective number of bits estimation. The 
implemented four-parameter fitting algorithm in MATLAB based on IEEE standards 1057 and 
1241 was capable of estimating SINAD and subsequently ENOB, however did have its 
limitations at higher tolerances, and with non-ideal initial estimations.  This technique was 
applied to the nRF52840 producing a maximal ENOB estimation ~7.8% lower than the 
specifications documented by Nordic Semiconductor. During testing, noise was measured 
both from the acquired signal and from the noise floor when the input was shorted to ground. 
The significant difference between the measured values highlighted the complexity of 
accurately characterizing system performance in real-world scenarios with multiple noise 
sources. 

 The second part of this thesis applies the techniques developed in the first part 
alongside power measurement of the nRF52840 to explore the impact of different ADC 
resolution and oversampling configurations. The results illustrated the impact of resolution 
and oversampling on the quality of digitized EMG signals. As expected, increasing the 
oversampling factor led to a significant 1.2-bit (~22%) improvement in ENOB. Increasing the 
resolution configuration from 12 to 14 bits showed lower amounts (~4.8%) of improvement 
to the ENOB value. Results also showed the increase in oversampling and resolution came 
at the cost of significant relative power consumption compared to baseline power 
consumption.  

 The third part of this thesis discusses the development of a Python-based platform 
for acquisition and processing of range of motion (ROM) and electromyography (EMG) data.  
The application was developed with a modular design, utilizing object-oriented coding and 
open-source libraries, to ease future development. 

 In totality, this thesis provides insights into the development of wearable wireless 
sensor systems from analog-to-digital conversion to acquisition, processing, and 
visualization on a GUI platform.    
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Appendix A: MATLAB Time-Domain ENOB Estimation 
clear all; close all; clc; 
load('3.31_signal_150_5.mat') 
load('3.27_shortednoise.mat') 
  
Y = double(data)/1124; 
Y = (Y-mean(Y)); 
t = 0.0005:0.0005:0.0005*length(Y); 
N_short = N_short/1124; 
  
[pxx, f] = pwelch(Y,length(Y),0,length(Y),2000); %Welch's power spectral density estimate 
[~, ind] = max(pxx); 
fc_hat = f(ind); 
  
%Initial parameter estimates: 
A_0 = rms(Y)*sqrt(2); 
B_0 =  0; 
C_0 = mean(Y); 
w_0 = (2*pi*fc_hat); 
params_0 = [A_0 B_0 C_0 w_0]; 
  
%Function model 
fun = @(a, t) a(1).*cos(a(4).*t) + a(2).*sin(a(4).*t) + a(3); 
options = optimoptions('lsqcurvefit','FunctionTolerance',1e-20,'StepTolerance',1e-10); lb = 
[]; ub = []; %Options for lsqcurvefit 
[params_hat, resnorm] = lsqcurvefit(fun, params_0,t,Y,lb,ub,options); %Non-linear data 
fitting in least-squares sense 
  
%Generate sinusoid from parameters 
A = sqrt(params_hat(1)^2 + params_hat(2)^2); 
if A >=0 
    Theta = atan(-1*params_hat(2)/params_hat(1)); 
elseif A < 0 
    Theta = atan(-1*params_hat(2)/params_hat(1)) + pi; 
end 
Y_hat = A*cos(params_hat(4).*t + Theta) + params_hat(3); 
  
NAD_hat = Y - Y_hat; 
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figure(1) 
t = t*1000; 
plot(t,Y,'k',t,Y_hat,'r',t,NAD_hat,'b') 
xlabel('Time(ms)') 
ylabel('Amplitude (V) [Normalized]') 
legend('Signal','Model Sinusoid','Noise','Interpreter','latex') 
hold on 
  
  
SINAD_hat = 20*log10(rms(Y_hat)/rms(NAD_hat)); 
ENOB_hat = (SINAD_hat - 1.76 + 20*log10(Vio/Vin))/6.02; 
  
SINAD_hat_short = 20*log10(rms(Y_hat)/rms(N_short)); 
ENOB_hat_short = (SINAD_hat_short - 1.76 + 20*log10(Vio/Vin))/6.02; 
  
figure(3) 
[pxx, f] = pwelch(Y_hat,length(Y),0,length(X),2000); 
semilogy(f,pxx,'k') 
hold on 
[pxx, f] = pwelch(NAD_hat,length(Y),0,length(X),2000); 
semilogy(f,pxx,'r') 
[pxx, f] = pwelch(N_short,length(N_short),0,length(N_short),2000); 
semilogy(f,pxx,'b') 
xlabel('Frequency (Hz)') 
ylabel('Power/Frequency(db/Hz)') 
legend('Signal','Noise', 'Shorted Noise','latex') 
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Appendix B: MATLAB Data Collection for Nordic nRF52840 
This code was modified based on code developed by Kiriaki Rajotte 

clear all; clc; 
 
% Read the Data from the Serial Port 
num_reads = 5000; 
Vio = 3.6; % Maximum ADC Voltage Pk-pk 
Vin = 3.44; % Input Voltage Amplitude Pk-pk 
%Offset: 0.8V, mean: 1.60V 
ADC_noise_rms = 0; 
 
expected_pkt_size = 52; 
port = 'COM12'; 
baud_rate = 115200; 
 
 
s = serialport(port, baud_rate); 
raw_data = []; 
pkt_size = []; 
for i = 1:num_reads 
    cnt = 0; 
    while (s.NumBytesAvailable < expected_pkt_size) 
        pause(0.0005); 
        cnt = cnt + 1; 
        %         if cnt > 1000; 
        %             break; 
        %         end 
    end 
    raw_data = [raw_data, uint8(read(s, expected_pkt_size, 'uint8'))]; 
     
    %raw_data = [raw_data, read(s, expected_pkt_size,'uint8')]; 
     
    %data = readline(s); 
    i = i + 1 
end 
 
array = zeros(num_reads,expected_pkt_size); 
for i = 1:num_reads 
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    array(i,:) = raw_data(1+(i-1)*expected_pkt_size:expected_pkt_size+(i-
1)*expected_pkt_size); 
end 
 
sync_bytes = [100,15,202,235]; 
data = []; 
timestamp = []; 
k = 1; 
 
while(k < length(raw_data)) 
    if raw_data(k:k+3) == sync_bytes(1:4) %checking for sync bytes in raw_data 
        disp("Found Sync Byte"); 
        pkt_size = double(raw_data(k+7)); %the first 8 bytes should contain the pkt_size 
        if k+pkt_size-1 > length(raw_data) 
            break 
        end 
        data = [data, typecast(raw_data(k+12:k+pkt_size-1),'int16')]; %concecates the two 
bytes into one 16-bit value, adds to data 
        timestamp = [timestamp,typecast((raw_data(k+4:k+5)),'uint16')]; %conececates the 
two bytes into one 16-bit timestamp  
        k = k + pkt_size; %instances a full packet 
    else 
        k = k + 1;  
        if k+3 > length(raw_data) %breaks if there will not be another sync byte 
            break 
        end 
    end 
end 
 
X = double(data); 


