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Abstract 
The project’s goal is to build a motion platform that emulates the motion of an air carrier deck 

under varying sea conditions. This is the first of a series of projects that will lead to an 

autonomous helicopter landing on a platform that can measure weight distribution and impact force. 

The motion platform, run by three 14.4W motors is 1 meter long and 0.49 meters wide. Designs of the 

motion platform were performed using Solidworks. Kinematics, motion and ocean dynamics studies 

were performed using Matlab and Simulink. The ocean conditions were calculated and translated into 

gear rotations using Simulink as sine waves degrees per time. An Arduino, a single-board microcontroller 

was then programmed to take these gear rotations and send pulses to the motors to execute the 

maneuver.  
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Introduction 
Helicopter pilots can have a difficult time landing onto an air carrier deck, especially during a 

storm. The pilot would have to take into consideration the motion of the deck when landing. The pilot 

does not want to land at an angle that may cause the helicopter to tip over onto the deck. As the air 

carrier moves, the pilot may experience disorientation and vertigo. (Tormes 1974) The pilot may “fail to 

conceptualize his speed, motion, and altitude relative to the speed and motion of the ship.” 1 Research 

has been performed on creating autonomously landing helicopters. These groups tried different 

approaches such as using a tether cord as a guide, which was done in the University of Delaware. (Oh, 

Pathak and Agrawal 2005) This MQP is the first of a series of MQP’s that will ultimately conclude with a 

helicopter that can land autonomously under different sea conditions. The final objective of this project 

is to create a motion platform that can simulate the motion of an air carrier deck under different sea 

conditions.   

Motion Platform Designs 
Motion platforms have been utilized for different environments such as for flight simulators, 

entertainment rides and medical research. (Borta 2002) One popular motion platform for small projects 

is called the Stewart Platform, a small platform with six degrees of freedom created by six actuators 

connected to each corner or side at a 45° angle. (Roth and Roth 1996) The Stewart Platform was the 

starting point to understanding how motion platforms work and the parts and joints that makes up one. 

The initial platform idea was to have 6DOF and be large enough for future MQP’s should they want to 

experiment using RC airplanes or large RC helicopters. After doing research on the motions of the deck, 

the group decided to remove 3DOF: the yaw, sway, and translational motions and keep the pitch, roll, 

and heave. Though each of the six motions impact the pilot’s ability to successfully land a helicopter, the 

latter three mentioned are the main DOFs that can be more problematic for the pilots. The pitch and roll 

can cause the helicopter to tip if the timing of the landing is off while the heave can cause the pilot to 

land hard or not find the deck where the pilot expected to land. To have the 3DOF at least three 

actuators would have to be working together under the platforms with their positioning carefully 

determined. The group constructed three designs incorporating only three actuators.  

                                                           
1 Tormes, Felix (1974). “Disorientation Phenomena in Naval Helicopter Pilots”, pg. 7 
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Design 1 

 

Figure 1: Motion Platform Design 1 

Design 1 is the more complex of the three designs. This platform has two actuators attached to 

the corners at opposite ends of the shorter edge and a third actuator centered at the opposite edge. All 

three actuators must work together to create all 3DOF of the platform. Every DOF has all three actuators 

moving concisely together. The rod connecting the gears to the platform will have a ball joint connecting 

one end to the gear and a universal joint connecting it to the platform. A center pivot point was added 

as a safety feature so as to stop the rod from rotating away from their respective gears, which would 

create a swaying motion that is not wanted in the final product. To create this center pivot point, a tube, 

firmly connected to the bottom base, will encase a rod. This rod will have a spring under it connected it 

to the tube and a ball joint at the other end connecting it to the platform. The rod will be able to freely 

move linearly in the z-direction. This is the most stable of the three designs.  

Design 2 

 

Figure 2: Motion Platform Design 2 

 

Design 2 is very similar to the first design in which there are three actuators located between 

two planes, but the positioning of the actuators differs. In this design, one actuator is centered at the 
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small edges, one centered at the longer edge, and another located mid center of the platform. The 

reasoning for placing the actuator as such is to give each actuator fewer degrees of freedoms to control. 

The former actuator mentioned will only be a part of the pitch and heave motions, the second with the 

roll and heave motion, and the third with only the heave motions. In this way, programming the 

actuators is simplified because now, instead of having all three actuators needed to move for a single 

motion, for the pitch and roll; only two actuators would be needed to move concisely. The only DOF that 

would require all three actuators working jointly would be the heave. A problem with this design, is that 

half of the platform would become a cantilever beam and would create more stress onto the platform 

should the helicopter land or even collide at this section.  

Design 3 

 

Figure 3: Motion Platform Design 3 

 
This design follows the same train of thought as the second design, trying to simplify the 

programming. Each actuator is only responsible for a single DOF of the platform. The top two actuators 

are positioned in the same spots as the non-center mid actuators in the second design, and control the 

pitch and roll motions, respectively. Under them is a third actuator, which controls solely the heave 

motion. There is a rod centered between the top and second planes, in which connects at the top by a 

ball joint. In between the second and last planes, there are four rods at each corner, connected through 

springs onto the higher-level plane. This design, though the easiest to program to emulate the deck, 

would be bulky in size and need the most material. The problem with this design is the amount of 

torque needed by the bottom motor to lift the top half of the motion platform. This design is also bulky 

and would be harder to carry. 

 

Design Choice 
While choosing a design three factors were considered: stability, portability, and ease of 

programming. The most important factor is the platform’s stability. Should the helicopter crash into the 

platform, the platform should not break or dent especially with repetitive crashes. The second factor of 

importance is the portability. The platform should be able to be easily carried by the group from one 
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location to the next easily by the group. This is important because when experimenting, it would be 

safer to fly the helicopter outside rather than inside the lab. The third factor is the ease of programming. 

The motion of an air carrier on the ocean has many different levels of turbulence from a calm day to a 

severe hurricane. Programming and creating these levels of turbulence through the actuators can be a 

very difficult aspect of this project but it is the least important factor in deciding the design for the 

platform. Using these factors as a guide, the first design was chosen as the group’s model platform.  

Material Analysis 
  The material choices for the platform will be focused on two major pieces, the platform itself 

and the rods connecting the platform to the motors. The main criteria for these components is weight, 

since any weight would have to be pushed or pulled by the motors and the additional weight would 

potentially require a higher class of motors which would significantly increase the cost. The other basic 

criteria is strength or the ability to handle the stress caused from repeated landings and even a potential 

crash of larger helicopter such as the T-Rex 450. 

  Metal materials were looked at for the rods, starting with aluminum 6061 and aluminum 3004. 

Aluminum 6061 was cheaper while actually providing a higher strength. Since aluminum 6061 met all 

requirements for the rods and any alternative metals would add weight the analysis for the rods 

stopped there. However the initial selection for board materials was much broader, several different 

types of materials were looked at such as aluminums, plastics, and woods. Two specific materials in each 

of these categories were chosen for more detailed analysis: aluminum 6061, aluminum 3004, ABS 

plastic, PLA plastic, mahogany, and oak. After weight calculations aluminum was removed as an option 

for the board. Mahogany and oak were considerably equal to plastic in most respects but after detailed 

review; they were considered too inconsistent. Their values of strength and weight would vary greatly 

depending on water content which would be difficult to specify with any supplier. PLA was removed due 

to its lack of availability in the correct dimensions, ABS proved to be easily obtained at a low cost in 

almost any dimensions required and was able to pass all stress calculations. 

  Initial calculations for the platform were made based on the idea that the T-Rex 450 would land 

at the farthest corner from any supporting rods; this setup applies the largest bending stress to the 

platform. This calculation was later altered to account for a crash using numbers for a top speed attack 

dive. It should be noted that this is not an expected scenario but gives a good margin of safety or an idea 

of how the platform would handle the worst possible scenario. To calculate the maximum amount of 

stress the board could handle calculations that were made to see what the maximum repeatable stress 

would be, or the fracture stress of the board. These values were compared to the bending stress that 

would be applied to the board for a maximum velocity downward crash of the helicopter on the farthest 

corner edge. For the selected material ABS plastic the stress from this scenario proved to be several 

magnitudes less than the amount of stress the board could handle. 

The condition for the rods was altered slightly to provide the worst possible case for the rods 

specifically. The effects of the board that realistically would distribute any crashes force were ignored, 

giving a simplified scenario where the helicopter would hit a rod head on in a vertical crash at top speed. 



9 
 

The material of aluminum 6061 initially gave a magnitude of strength higher than was needed that the 

equations were redone with a thinner rod of quarter inch diameter, which the material was also able to 

handle. This reduction in diameter resulted in a reduction in price by almost half. 

The following equations are the final results for the stress analysis of both the board and rod 

during worst case scenarios. 

𝑉𝑚𝑎𝑥 = 70
𝑚𝑖𝑙𝑒

ℎ𝑟
= .0194

𝑚𝑖𝑙𝑒

𝑠
 

𝑎 =
(𝑉𝑚𝑎𝑥 − 0)

0.2𝑠
= 0.097

𝑚𝑖𝑙𝑒𝑠

𝑠
= 156.106

𝑚

𝑠2
 

𝐹𝑖𝑚𝑝𝑎𝑐𝑡 = (0.68 𝑘𝑔) ∗ 𝑎 = 106.15 (𝑁) 

𝜎𝐵 =
3𝐹𝐿

2𝑤𝑡2
=

3 ∗ 106.15 ∗ 0.5

2 ∗ 0.5 ∗ (0.00635)2
= 3948787.898 (𝑃𝑎) = 3.948787 (𝑀𝑃𝑎) 

𝜎𝑟𝑜𝑑 =
𝐹

𝐴
=

106.1

𝜋 ∗ (
0.0063

2 )2
= 724520.5866 (𝑃𝑎) = 0.724520 (𝑀𝑃𝑎) 

𝜎𝑐 =
𝐾𝑐

√𝜋𝑎𝑑

 

𝑎𝑑 − 1(𝑚𝑚) = .001(𝑚) 

𝜎𝐴𝐵𝑆 = 17.07 (𝑀𝑃𝑎) 

𝜎𝐴𝐿6061 = 305.5 (𝑀𝑃𝑎) 

Motor Selection 
There were three different types of motors investigated for this project: brushless DC motors, 

servo motors, and stepper motors. The factors put into selecting a motor are ease of positioning, cost, 

and torque/speed ratio. Each of their advantages and disadvantages are listed in a table below. (Design 

Trends: 'The Stepper Versus Brushless Servo Myth...' 2007)  
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Table 1: Advantages and Disadvantages of Motor Types 

 Brushless Motor Stepper Motor Servo Motor 

Advantages Ability to maintain or 
increase torque at 

various speeds 

Large amount of 
poles for motor 

positioning 

Faster than Stepper 
Motor 

 Low Power Loss Constant holding 
Torque 

Low Power Loss 

 - Does not require 
Driver 

High torque at high 
speeds 

Disadvantages High Cost Torque decreases as 
motor reaches 

maximum speed 

Require driver and 
feedback loop 

 Require Driver and 
Feedback Loop 

Vibration if not 
properly loaded 

Need power to hold 
position 

 

The number one factor in choosing a motor was the ease of positioning. For each sea level state, 

the positioning has to be as precise as possible to collect accurate data. The stepper motor exceeds the 

other motors in this aspect. Stepper motors comes in many different amount of poles, making the 

positioning more defined for programming. The second factor of importance is the cost of the motor. 

Looking at the Digikey site, the servo motor was the cheapest and the Brushless motor the most 

expensive when compared at similar power output. The torque/speed ratio is a complicated factor 

because depending on how much money is put into the motor, one could get a motor of either selection 

that could satisfy the torque/speed requirement of the application. The brushless motor though has 

torque control, meaning that the torque produced by the motor is an independent, controlled variable 

and not a part of other aspects of the motor such as the speed. They all require a motor driver that 

controls the start and stop timing of the motor, rotation direction, regulating speed and torque, and 

setting fail-safes. The brushless motor and the servo also needs a driver for the feedback loop so the 

Arduino can figure out the distance the shaft had turned in any given pulse. The group selected the 

stepper motor because of the high importance put into the positioning. The stepper motor does 

decrease in torque as the speed increases, but if the motor is carefully chosen so that at the maximum 

needed speed it still has enough torque to lift the platform, then the stepper motor will work well for 

the project.  

The max torque and angular velocity were calculated to be 0.3466 nm (49.083 oz-in) and 2.85 

rad/s (27.21 rpm), respectively.  The stepper motor selected was a 14.4W, 1.8° step angle motor made 

by Hurst. The motor was bought from Allied Electronics at $53.39 each. The torque-frequency curve 

taken from the datasheet is shown below. (Series H23R Hybrid Stepper Motor n.d.) The x-axis is the 

pulses per second (pps) and the y-axis is the torque in oz-in. 
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Figure 4: Torque vs PPS for Stepper Motor 

The pull-out torque curve represents the maximum torque the motor can handle at specified 

speeds. If the load creates a torque larger than shown on the graph for that specific speed, the motor 

will stall. To calculate the pps, the angular velocity had to be changed from rpm to rps. The equation for 

pps is shown below. (Step Motor Basis n.d.) 

𝑝𝑝𝑠 = (𝑟𝑝𝑠) (
𝑝𝑢𝑙𝑠𝑒𝑠

𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) (𝑚𝑖𝑐𝑟𝑜𝑠𝑡𝑒𝑝𝑠) 

The calculated pps for the max angular velocity of 27.21 rpm is 90.7 pulses per second with no 

extra microstepping between poles. Looking at the graph the torque is over 60 oz-in, which is higher 

than the max torque to lift the platform and small helicopter of 49.083 oz-in. The group took in 

consideration the torque needed for microstepping 4x should a more precise degree be wanted and the 

speed was not a problem. The pps for this case would be 362.8 pulses per second, which still achieves a 

torque higher than the expected load. This motor will be able to handle the max outputs needed for the 

project and also more weight for future projects. 

RC Helicopter Selection 
The project requires a RC helicopter in which to test land on the platform. There are two routes 

in which the group could have gone with in choosing the helicopter since no member has adequate 

experience in flying RC helicopters. The first route is to either purchase a large T-REX helicopter or fix the 

one that the advisor already had in possession. These large helicopters are more stable and easier to fly 

but should any piece should break, the repair cost would be greater than that of the small RC 

helicopters. The second route would be to purchase a small, single-rotor helicopter. The learning curve 

would be greater but with the helicopter bought ready-to-fly, more time could be spent on the building 

of the platform, programming, and testing. Should the small helicopter crash and break pieces, the parts 

are cheaper and repair is easier than the T-REX. The group decided to go with route two but build the 

platform to suit the formerly mentioned helicopter as well.  
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The helicopter must be able to maneuver similarly to a full-size helicopter and also have the 

same ground effects that a real helicopter would encounter when landing. The control options for the 

helicopter must include the roll, elevator, tail rotor, and a collective pitch over fixed pitch. A helicopter 

with collective pitch has the ability for the change the main rotor blades at different angles to change 

the applied lift. The RC helicopter must also be exceptionally responsive so should the helicopter be 

given pre-set instructions for future work on autonomous landing, the helicopter should be able to 

receive and perform the desired motions as quickly as possible. The Blade mCP X was recommended by 

an avid RC helicopter hobbyist as well as the hobby store owner of Turn4 Hobbies located in West 

Boylston when given the project requirements for the helicopter to the group. The specifications of the 

Blade mCP X is listed in the table below. (Blade mCP X n.d.) 

 

Table 2: mCP X Description 

Gross Weight 1.60 oz (45.5 g) 

Length 9.25 in 

Main Rotor Diameter 9.65 in 

Rotor Type Collective Pitch Single 
Rotor 

Tail Rotor Diameter 1.40 in 

 

 

Figure 5: mCP X (Blade mCP X BNF 2014) 
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Emulating the Motion of an Air Carrier 
The platform dynamics have been worked on separate from the ocean dynamics, in an attempt 

to set up multiple parts of the overall equations of motion simultaneously. These dynamic equations will 

not be able to produce any actual numbers until the ocean dynamics are calculated giving the required 

angles of motion that the platform must be able to achieve. The platform dynamic equations will relate 

these angles to the moments and forces the motors will have to generate. These equations require 

repeat iterations for each set of motions the platform will have to perform, such as a rotation about the 

x-axis after a rotation about the y-axis has already been performed and vice versa.  

In order to write out functions in Matlab that relates the desired motion of the platform to the 

required motion of the motors, it was necessary to do a three dimension mathematical calculation. 

These calculations were also necessary in order to accurately know how much torque would be required 

from the motors, this in turn will affect every other part of the platform as the motors are the largest 

part of the budget. The equation that relates motor motion to platform motion is based on a vector 

representing the arm bar or connecting rod between the motor arm and the corner of the platform. By 

doing some vector addition, relating the center of the board before motion to the gear, a second vector 

describing the motion of the gear arm in terms of α, plus the heave motion at the center of the board, 

and using an Euler angle transformation on the vector between the center of the board and the corner 

of the board, resulted in the following position equation was derived as seen in the equation below. 

𝑟𝐵/𝐶 =

𝑤 × 𝑐𝑜𝑠(𝜑) + 𝐿 × sin(𝜑) × sin(𝜃) − 𝑤

𝐿 × cos(𝜃) − 𝐿 − 𝑅 × cos (𝛼)

𝑤 × sin(𝜑) − 𝐿 × sin(𝜃) × cos(𝜑) + 𝑧 − 𝑚 − 𝑅 × sin (𝛼)

 

Since 𝑟𝐵/𝐶 is not known and α is what needs to be solved for 𝑟𝐵/𝐶 must be squared to equal its 

magnitude which is the known length of the bar and each of the x, y, and z terms must be squared. As 

shown below. 

(𝑟𝐵/𝐶)2 = 𝑟𝑥
2 + 𝑟𝑦

2 + 𝑟𝑧
2 

This gives the full position equation with only α unknown.  Phi, theta, and “z” can be gathered 

from the Simulink program written by Fossen, while L, R, m, and W can be adjusted for the geometric 

measurements of the actual platform. Re-arranging the equation and attempting to solve for α is 

impossible to do by hand. Given the different inputs and constants, the simplest approach was to reduce 

the equation until all terms except for the variable α, were equal to A, B, and C. 

𝐴 ∗ sin(α) + B ∗ cos(α) = C 

Using a trigonometric identity of tangent this equation can be solved for α. There are some 

mathematical limitations that have to be understood involving which quadrant α is in, however the 

programming can be adjusted to account for this. All of this allows for α to be calculated with only the 

heave, pitch, and roll as inputs with all other constants being given from the dimensions of the platform. 
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Ocean Dynamics 
For the purposes of creating a moving landing platform that simulates an aircraft carrier’s 

landing deck it is important to understand the fundamental equations that govern the ocean and ship 

dynamics. These equations affect the motion of the aircraft carrier, and assuming an entirely rigid 

structure, the landing deck of the aircraft carrier as well. These equations are used to gather an 

understanding of how the platform should move and to allow for future variations in programming for 

different models of ocean conditions or varying ship parameters. The initial base equation involves both 

the ocean dynamics and the ship dynamics and models all effects on the ship. (Fossen 2002) 

 

𝑀 ∗ 𝑣̇ + 𝐶(𝑣) ∗ 𝑣 + 𝐷(𝑣) ∗ 𝑣 + 𝑔(𝜂) = 𝜏 + 𝑔𝑜 + 𝑤 
 

For this project, the effects of tau, which represents the control forces and moments of the ship 

that are used to maneuver, are neglected. It is assumed that the ship is not making any advanced or 

aggressive maneuvers while a helicopter is attempting to land. The moments and forces, “g,” caused by 

the ballast system of the ship is also considered negligible as the ship is assumed to be one completely 

rigid piece. These variables could easily be added back into the equations for more advanced work if 

needed, however this project only requires a general equation to model the major motions of an aircraft 

carrier. This simplification leaves only the terms for the system inertial matrix M, Coriolis Effect C, 

Damping effects D, gravity/buoyancy forces g, and environmental disturbances w. The remaining 

environmental disturbance “w” on the right side of the equation can now be expanded into wind and 

ocean matrices. Since data about aircraft carriers center of gravity and moments of inertia are not public 

knowledge due to national security concerns they can be substituted with similar data from ships 

classified as very large crude carriers (VLCCs). VLCCs are a good approximation to an aircraft carrier since 

the only major differences are in weight and length. Making this assumption allows the use of the 

following equations for the wind forces and moments. 

 

𝑋𝑤𝑖𝑛𝑑 = (
1

7.6
) ∗ 𝐶𝑋 ∗ 𝛾𝑟 ∗ 𝜌𝑎 ∗ 𝑉𝑟

2 ∗ 𝐴𝑇

𝑌𝑤𝑖𝑛𝑑 = (
1

7.6
) ∗ 𝐶𝑌 ∗ 𝛾𝑟 ∗ 𝜌𝑎 ∗ 𝑉𝑟

2 ∗ 𝐴𝐿

𝑁𝑤𝑖𝑛𝑑 = (
1

7.6
) ∗ 𝐶𝑁 ∗ 𝛾𝑟 ∗ 𝜌𝑎 ∗ 𝑉𝑟

2 ∗ 𝐴𝐿 ∗ 𝐿

 

 
Cx, Cy, and Cn are coefficients that are defined based on the following set of equations. 

𝐶𝑋 = 𝐴0 + 𝐴1 ∗ 2 ∗
𝐴𝐿

𝐿2
+ 𝐴2 ∗ 2 ∗

𝐴𝑇

𝐵2
+ 𝐴3 ∗

𝐿

𝐵
+ 𝐴4 ∗

𝑆

𝐿
+ 𝐴5 ∗

𝐶

𝐿
+ 𝐴6 ∗ 𝑀

𝐶𝑌 = −(𝐵0 + 𝐵1 ∗ 2 ∗
𝐴𝐿

𝐿2
+ 𝐵2 ∗ 2 ∗

𝐴𝑇

𝐵2
+ 𝐵3 ∗

𝐿

𝐵
+ 𝐵4 ∗

𝑆

𝐿
+ 𝐵5 ∗

𝐶

𝐿
+ 𝐵6 ∗ 𝐴𝑆𝑆/𝐴𝐿)

𝐶𝑁 = −(𝐶0 + 𝐶1 ∗ 2 ∗
𝐴𝐿

𝐿2
+ 𝐶2 ∗ 2 ∗

𝐴𝑇

𝐵2
+ 𝐶3 ∗

𝐿

𝐵
+ 𝐶4 ∗

𝑆

𝐿
+ 𝐶5 ∗

𝐶

𝐿
)

 

 
The coefficients A, B, and C in these equations numbered one through six are further defined by 

the following tables based on the angle between the ship’s heading and the direction of the wind, called 
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gamma, which is also a key term in the general wind equations that could be used to run different 
simulations of varying weather conditions. 
 

Table 3: Coefficient A 

𝛾𝑟(deg) 𝐴𝑜 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝐴6 S.E. 

0 2.152 -5.00 0.234 -0.164 - - - 0.086 

10 1.714 -3.33 0.145 -0.121 - - - 0.104 

20 1.818 -3.97 0.211 -0.143 - - 0.033 0.096 

30 1.965 -4.81 0.243 -0.154 - - 0.041 0.117 

40 2.333 -5.99 0.247 -0.19 - - 0.042 0.115 

50 1.726 -6.54 0.189 -0.173 0.348 - 0.048 0.109 

60 0.913 -4.68 - -0.104 0.482 - 0.052 0.082 

70 0.457 -2.88 - -0.068 0.346 - 0.043 0.077 

80 0.341 -0.91 - -0.031 - - 0.032 0.09 

90 0.355 - - - -0.247 - 0.018 0.094 

100 0.601 - - - -0.372 - -0.020 0.096 

110 0.651 1.29 - - -0.582 - -0.031 0.09 

120 0.564 2.54 - - -0.748 - -0.024 0.1 

130 -0.142 3.58 - 0.047 -0.7 - -0.028 0.105 

140 -0.677 3.64 - 0.069 -0.529 - -0.032 0.123 

150 -0.723 3.14 - 0.064 -0.475 - -0.032 0.128 

160 -2.148 2.56 - 0.081 - 1.27 -0.027 0.123 

170 -2.707 3.97 -0.175 0.126 - 1.81 - 0.115 

180 -2.529 3.76 -0.174 0.128 - 1.55 - 0.112 

 

Table 4: Coefficient B 

𝛾𝑟(deg) 𝐵𝑜 𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 S.E. 

10 0.096 0.22 - - - - - 0.015 

20 0.176 0.71 - - - - - 0.023 

30 0.225 1.38 - 0.023 - -0.29 - 0.03 

40 0.329 1.82 - 0.043 - -0.59 - 0.054 

50 1.164 1.26 0.121 - -0.242 -0.95 - 0.055 

60 1.163 0.96 0.101 - -0.177 -0.88 - 0.049 

70 0.916 0.53 0.069 - - -0.65 - 0.047 

80 0.844 0.55 0.082 - - -0.54 - 0.046 

90 0.889 - 0.138 - - -0.66 - 0.051 

100 0.799 - 0.155 - - -0.55 - 0.05 

110 0.797 - 0.151 - - -0.55 - 0.049 

120 0.996 - 0.184 - -0.21 -0.66 0.34 0.047 

130 1.014 - 0.191 - -0.28 -0.69 0.44 0.051 

140 0.784 - 0.166 - -0.209 -0.53 0.38 0.06 

150 0.536 - 0.176 -0.029 -0.163 - 0.27 0.055 

160 0.251 - 0.106 -0.022 - - - 0.036 

170 0.125 - 0.046 -0.12 - - - 0.022 
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Table 5: Coefficient C 

𝛾𝑟(deg) 𝐶𝑜 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 S.E. 

10 0.0596 0.061 - - - -0.074 0.0048 

20 0.1106 0.204 - - - -0.17 0.0074 

30 0.2258 0.245 - - - -0.38 0.0105 

40 0.2017 0.457 - 0.0067 - -0.472 0.0137 

50 0.1759 0.573 - 0.0118 - -0.523 0.0149 

60 0.1925 0.480 - 0.0115 - -0.546 0.0133 

70 0.2133 0.315 - 0.0081 - -0.526 0.0125 

80 0.1827 0.254 - 0.0053 - -0.443 0.0123 

90 0.2627 - - - - -0.508 0.0141 

100 0.2102 - -0.0195 - 0.0335 -0.492 0.0146 

110 0.1567 - -0.0258 - 0.0497 -0.457 0.0163 

120 0.0801 - -0.0311 - 0.0740 -0.396 0.0179 

130 -0.0189 - -0.0488 0.0101 0.1128 -0.420 0.0166 

140 0.0256 - -0.0422 0.01 0.0889 -0.463 0.0162 

150 0.0552 - -0.0381 0.0109 0.0689 -0.476 0.0141 

160 0.0881 - -0.0306 0.0091 0.0366 -0.415 0.0105 

170 0.0851 - -0.0122 0.0025 - -0.220 0.0057 

 

The other have of the environmental effects are the wave equations which are initially written as the 

following. 

𝑋𝑤𝑎𝑣𝑒𝑠 =
𝐾𝜔1 ∗ 𝑠

𝑠2 + 2 ∗ 𝜆1 ∗ 𝜔𝑒1 ∗ 𝑠 + 𝜔𝑒1
2 ∗ 𝜔1 + 𝑑1

𝑌𝑤𝑎𝑣𝑒𝑠 =
𝐾𝜔2 ∗ 𝑠

𝑠2 + 2 ∗ 𝜆2 ∗ 𝜔𝑒2 ∗ 𝑠 + 𝜔𝑒2
2 ∗ 𝜔2 + 𝑑2

𝑁𝑤𝑎𝑣𝑒𝑠 =
𝐾𝜔3 ∗ 𝑠

𝑠2 + 2 ∗ 𝜆3 ∗ 𝜔𝑒3 ∗ 𝑠 + 𝜔𝑒3
2 ∗ 𝜔3 + 𝑑3

 

The right side of the equation can be further simplified through manipulation and basic 

assumptions, such as ignoring the effects of drift “d” which for the purposes of this project are not large 

enough over the projected time frame of a helicopter landing to significantly affect ship motion. 

2(𝜆𝜔0𝜎)𝜔

√(𝜔0
2 − 𝜔2)2 + 4(𝜆𝜔0𝜔)2

 

𝜔𝑜 is substituted with 𝜔𝑒 which is the encounter frequency of the waves calculated with the following 

equation. 

𝜔𝑒(𝑈,𝜔0, 𝛽) = |𝜔0 −
𝜔0

2

𝑔
𝑈 cos𝛽| 

This equation allows the equations of motion to be changed based on the velocity of the ship, 

“U” and the angle between the waves direction and ships heading, “B.” Since these equations are based 
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on the modified Pierson-Moskowitz equations λ equals 0.26 and sigma can be solved using the 

significant wave height in the following form. 

𝐻𝑠 = 4𝜎 

These equations allow the wave forces to be calculated based on the ship speed, ship direction 

relative to wave direction, wave frequency, and the significant wave height. These variables can easily 

be changed to imitate different ship parameters and different sea states once the equations are 

inputted into Matlab.   

The other half of the equation consists of variables representing the system inertia matrix, 

Coriolis-centripetal, damping, and gravitational/buoyancy forces and moments. The system inertia 

matrix is broken into two parts, one for the rigid body of the ship and the other for the added mass of 

water around the ship. 

𝑀𝑅𝐵 = 𝐻𝑇(𝑟𝑔
𝑏)𝑀𝑅𝐵

𝑐𝑔
𝐻(𝑟𝑔

𝑏) 

= [
𝑚𝐼3𝑥3 −𝑚𝑆(𝑟𝑔

𝑏)

𝑚𝑆(𝑟𝑔
𝑏 𝐼𝑐 − 𝑚𝑆2(𝑟𝑔

𝑏)
] 

=

[
 
 
 
 
 
 

𝑚
0
0
0

𝑚𝑧𝑔

−𝑚𝑦𝑔

0
𝑚
0

−𝑚𝑧𝑔

0
𝑚𝑥𝑔

0
0
𝑚

𝑚𝑦𝑔

−𝑚𝑥𝑔

0

0
−𝑚𝑧𝑔

𝑚𝑦𝑔

𝐼𝑧
−𝐼𝑥𝑦

−𝐼𝑥𝑧

𝑚𝑧𝑔

0
−𝑚𝑥𝑔

−𝐼𝑥𝑦

𝐼𝑦
−𝐼𝑦𝑧

−𝑚𝑦𝑔

𝑚𝑥𝑔

0
−𝐼𝑧𝑥
−𝐼𝑦𝑧

𝐼𝑧 ]
 
 
 
 
 
 

 

 

𝑀𝐴 = 𝐻𝑇(𝑟𝑔
𝑏)𝑀𝑅𝐵

𝑐𝑔
𝐻(𝑟𝑔

𝑏) 

=

[
 
 
 
 
 

−𝑋𝑢̇

0
0
0

−𝑧𝑔𝑋𝑢̇

𝑦𝑔𝑋𝑢̇

0
−𝑌𝑣̇

0
𝑧𝑔𝑌𝑣̇

0
−𝑥𝑔𝑌𝑣̇

0
0

−𝑍𝑤̇

−𝑦𝑔𝑍𝑤̇

𝑥𝑔𝑍𝑤̇

0

 

 

0
𝑧𝑔𝑌𝑣̇

−𝑦𝑔𝑍𝑤̇

−𝑧𝑔
2𝑌𝑣̇ − 𝑦𝑔

2𝑍𝑤̇ − 𝐾𝑝̇

𝑥𝑔𝑦𝑔𝑍𝑤̇

𝑥𝑔𝑧𝑔𝑌𝑣̇

−𝑧𝑔𝑋𝑢̇

0
𝑥𝑔𝑍𝑤̇

𝑥𝑔𝑦𝑔𝑍𝑤̇

−𝑧𝑔
2𝑋𝑢̇ − 𝑥𝑔

2𝑍𝑤̇ − 𝑀𝑞̇

𝑦𝑔𝑥𝑔𝑋𝑢̇

𝑦𝑔𝑋𝑢̇

−𝑥𝑔𝑌𝑣̇

0
𝑥𝑔𝑧𝑔𝑌𝑣̇

𝑦𝑔𝑧𝑔𝑋𝑢̇

−𝑦𝑔
2𝑋𝑢̇ − 𝑥𝑔

2𝑌𝑣̇ − 𝑁𝑟̇]
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For the Coriolis and centripetal matrices apply to the rigid body and added mass of a surface ship. 

𝐶𝑅𝐵(𝜐) =

[
 
 
 
 
 

0 0 0
0 0 0
0 0 0

−𝑚(𝑦𝑔𝑞 + 𝑧𝑔𝑟) 𝑚(𝑦𝑔𝑝 + 𝑤) 𝑚(𝑧𝑔𝑝 − 𝑣)

𝑚(𝑥𝑔𝑞 − 𝑤) −𝑚(𝑧𝑔𝑟 + 𝑥𝑔𝑝) 𝑚(𝑧𝑔𝑞 + 𝑢)

𝑚(𝑥𝑔𝑟 + 𝑣) 𝑚(𝑦𝑔𝑟 − 𝑢) −𝑚(𝑥𝑔𝑝 + 𝑦𝑔𝑞)

 

𝑚(𝑦𝑔𝑞 + 𝑧𝑔𝑟) −𝑚(𝑥𝑔𝑞 − 𝑤) −𝑚(𝑥𝑔𝑝 + 𝑣)

−𝑚(𝑦𝑔𝑝 + 𝑤) 𝑚(𝑧𝑔𝑟 + 𝑥𝑔𝑝) −𝑚(𝑦𝑔𝑞 − 𝑢)

−𝑚(𝑧𝑔𝑝 − 𝑣) −𝑚(𝑧𝑔𝑞 + 𝑢) 𝑚(𝑥𝑔𝑝 + 𝑦𝑔𝑞)

0 −𝐼𝑦𝑧𝑞 − 𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑟 𝐼𝑦𝑧𝑞 + 𝐼𝑥𝑦𝑝 − 𝐼𝑦𝑟

𝐼𝑦𝑧𝑞 + 𝐼𝑧𝑥𝑝 − 𝐼𝑧𝑟 0 −𝐼𝑧𝑥𝑞 − 𝐼𝑧𝑦𝑝 + 𝐼𝑧𝑟

−𝐼𝑦𝑧𝑞 − 𝐼𝑧𝑦𝑝 + 𝐼𝑦𝑟 𝐼𝑧𝑥𝑞 + 𝐼𝑧𝑦𝑝 − 𝐼𝑧𝑟 0 ]
 
 
 
 
 
 

 

 

𝐶𝐴(𝜐) =

[
 
 
 
 
 

0 0 0
0 0 0
0 0 0

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

0 −𝑏3 𝑏2

𝑏3 0 −𝑏2

−𝑏2 𝑏1 0 ]
 
 
 
 
 

 

 

𝑎1

𝑎2

𝑎3

𝑏1

𝑏2

𝑏3

=

𝑋𝑢̇𝑢 + 𝑋𝑣̇𝑣 + 𝑋𝑤̇𝑤 + 𝑋𝑝̇𝑝 + 𝑋𝑞̇𝑞 + 𝑋𝑟̇𝑟

𝑌𝑢̇𝑢 + 𝑌𝑣̇𝑣 + 𝑌𝑤̇𝑤 + 𝑌𝑝̇𝑝 + 𝑌𝑞̇𝑞 + 𝑌𝑟̇𝑟

𝑍𝑢̇𝑢 + 𝑍𝑣̇𝑣 + 𝑍𝑤̇𝑤 + 𝑍𝑝̇𝑝 + 𝑍𝑞̇𝑞 + 𝑍𝑟̇𝑟

𝐾𝑢̇𝑢 + 𝐾𝑣̇𝑣 + 𝐾𝑤̇𝑤 + 𝐾𝑝̇𝑝 + 𝐾𝑞̇𝑞 + 𝐾𝑟̇𝑟

𝑀𝑢̇𝑢 + 𝑀𝑣̇𝑣 + 𝑀𝑤̇𝑤 + 𝑀𝑝̇𝑝 + 𝑀𝑞̇𝑞 + 𝑀𝑟̇𝑟

𝑁𝑢̇𝑢 + 𝑁𝑣̇𝑣 + 𝑁𝑤̇𝑤 + 𝑁𝑝̇𝑝 + 𝑁𝑞̇𝑞 + 𝑁𝑟̇𝑟

 

 

For the dampening matrices there is no added mass, but instead the dampening forces are broken into 

linear and non-linear matrices. 
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𝐷 = 𝐻𝑇(𝑟𝑔
𝑏)𝐷𝑐𝑔𝐻(𝑟𝑔

𝑏) 

=

[
 
 
 
 
 

−𝑋𝑢

0
0
0

−𝑧𝑔𝑋𝑢

𝑦𝑔𝑋𝑢

0
−𝑌𝑣

0
𝑧𝑔𝑌𝑣

0
−𝑥𝑔𝑌𝑣

0
0

−𝑍𝑤

−𝑦𝑔𝑍𝑤

𝑥𝑔𝑍𝑤

0

 

 

0
𝑧𝑔𝑌𝑣

−𝑦𝑔𝑍𝑤

−𝑧𝑔
2𝑌𝑣 − 𝑦𝑔

2𝑍𝑤 − 𝐾𝑝

𝑥𝑔𝑦𝑔𝑍𝑤

𝑥𝑔𝑧𝑔𝑌𝑣

−𝑧𝑔𝑋𝑢

0
𝑥𝑔𝑍𝑤

𝑥𝑔𝑦𝑔𝑍𝑤

−𝑧𝑔
2𝑋𝑢 − 𝑥𝑔

2𝑍𝑤 − 𝑀𝑞

𝑦𝑔𝑥𝑔𝑋𝑢

𝑦𝑔𝑋𝑢

−𝑥𝑔𝑌𝑣

0
𝑥𝑔𝑧𝑔𝑌𝑣

𝑦𝑔𝑧𝑔𝑋𝑢

−𝑦𝑔
2𝑋𝑢 − 𝑥𝑔

2𝑌𝑣 − 𝑁𝑟]
 
 
 
 
 
 

 

 

 

𝐷𝑛 = 𝐻𝑇(𝑟𝑔
𝑏)𝐷𝑛

𝑐𝑔
(𝜐)𝐻(𝑟𝑔

𝑏) 

=

[
 
 
 
 
 

−𝑋𝑢|𝑢||𝑢|

0
0
0

−𝑧𝑔𝑋𝑢|𝑢||𝑢|

𝑦𝑔𝑋𝑢|𝑢||𝑢|

0
−𝑌𝑣|𝑣||𝑣|

0
𝑧𝑔𝑌𝑣|𝑣||𝑣|

0
−𝑥𝑔𝑌𝑣|𝑣||𝑣|

0
0

−𝑍𝑤|𝑤||𝑤|

−𝑦𝑔𝑍𝑤|𝑤||𝑤|

𝑥𝑔𝑍𝑤|𝑤||𝑤|

0

 

0
𝑧𝑔𝑌𝑣|𝑣||𝑣|

−𝑦𝑔𝑍𝑤|𝑤||𝑤|

−𝑧𝑔
2𝑌𝑣 − 𝑦𝑔

2𝑍𝑤|𝑤|𝑤 − 𝐾𝑝|𝑝||𝑝|

𝑥𝑔𝑦𝑔𝑍𝑤|𝑤||𝑤|

𝑥𝑔𝑧𝑔𝑌𝑣|𝑣||𝑣|

−𝑧𝑔𝑋𝑢|𝑢||𝑢|

0
𝑥𝑔𝑍𝑤|𝑤||𝑤|

𝑥𝑔𝑦𝑔𝑍𝑤|𝑤||𝑤|

−𝑧𝑔
2𝑋𝑢|𝑢||𝑢| − 𝑥𝑔

2𝑍𝑤|𝑤||𝑤| − 𝑀𝑞|𝑞||𝑞|

𝑦𝑔𝑥𝑔𝑋𝑢|𝑢||𝑢|

𝑦𝑔𝑋𝑢|𝑢||𝑢|

−𝑥𝑔𝑌𝑣|𝑣||𝑣|

0
𝑥𝑔𝑧𝑔𝑌𝑣|𝑣||𝑣|

𝑦𝑔𝑧𝑔𝑋𝑢|𝑢||𝑢|

−𝑦𝑔
2𝑋𝑢|𝑢||𝑢| − 𝑥𝑔

2𝑌𝑣|𝑣||𝑣| − 𝑁𝑟|𝑟||𝑟|]
 
 
 
 
 
 

 

 

The gravitational and buoyancy forces can be written into one matrix as follows: 
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𝐺 = 𝐻𝑇(𝑟𝑔
𝑏)𝐺𝑐𝑔𝐻(𝑟𝑔

𝑏) 

=

0
0
0
0
0
0

0
0
0
0
0
0

0
0

−𝑍𝑧

𝑦𝑔𝑍𝑧

−𝑥𝑔𝑍𝑧

0

0
0

𝑦𝑔𝑍𝑧

−𝑦𝑔
2𝑍𝑧 − 𝐾𝛷

𝑥𝑔𝑦𝑔𝑍𝑧

0

0
0

−𝑥𝑔𝑍𝑧

𝑥𝑔𝑦𝑔𝑍𝑧

−𝑥𝑔
2𝑍𝑧 − 𝑀𝜃

0

0
0
0
0
0
0]
 
 
 
 
 

 

 

Arranging these matrices into a coherent set of equations will prove incredibly difficult to do by 

hand and will be incredibly time consuming to calculate for multiple iterations with varying values for 

wave height, wave frequency, and ship angles relative to both the wind and the waves. Fossen includes 

several Matlab codes for the majority of these matrices, which prove to be instrumental in solving these 

equations and allow for quick corrections for any future changes to the projects simulation needs. 

The mathematics required to calculate for the various variables regarding ship motion in 

different ocean conditions proved to be highly difficult, resulting in the need for a computer program 

that could perform these calculations quickly. While Matlab was an initial choice, literature review 

uncovered a Simulink file that was already capable of calculating the majority of required variables. 

Figure 6 below shows the original Simulink program as written by Thor Fossen. 

 

Figure 6: Fossen's Simulink Program 
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This code allowed for the input of several different ocean conditions, and had preloaded ship 

information for more accurate calculations. However, the code only outputted some of the necessary 

variables for the project: heave, pitch, and roll. Since the project required the velocity rates and the 

acceleration rates of these variables, several block additions were needed. All three variables had 

several Simulink blocks added to their original outputs in much the same way as shown for heave, in 

Figure 7 below.  

 

Figure 7: Simulink Block for Heave Motion 

The red blocks show the original Simulink code, while the white blocks show the new additions 

to the program. The major additions are the derivative blocks that take the heave motion and transform 

it into heave velocity and heave acceleration. The other blocks shown are output blocks, which are 

outputting to the oscilloscope blocks allowing for an easy check as to whether or not the variables are 

behaving in a logical manner. The “To workspace” blocks are one of the important outputs, as this 

allows Simulink to send the variables to Matlab for further calculations. Using functions in Matlab that 

can relate these Simulink outputs to the Alpha positions and velocities, the motors can be positioned 

correctly. If the Matlab functions were brought into Simulink, this would increase the processing time, 

allowing for a simple one-click operation to output everything needed for programming the motors that 

move the platform. 
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Figure 8: Matlab Function into Simulink Block 

An example of turning a Matlab function into a Simulink block is shown in Figure 8 above. This 

block will be able to take the variable calculated through previous Simulink adaptations and turn them 

into data needed for operating the motors of the platform. The Matlab blocks have significant problems 

in regards to what kind of programming they can use. In order to bypass the limitations of the Matlab 

block and keep the entire process in either Simulink or Matlab as opposed to switching back and forth, 

certain adaptations were made.  Since certain solve commands could not be used inside the Matlab 

block the trigonometric identity discussed in the mathematics section was substituted. The 

trigonometric identity technique was already a Matlab function, however the “if” statements it required 

did not function inside the Matlab block. Instead, the trigonometric function was “translated” into 

Simulink manually. This multilayered Simulink system was then reduced into a single block for simplicity 

as shown by Figure 9. The A, B, and C variables needed for the trigonometric function were solved for 

using a Matlab block, shown as the blocks on the right in Figure 9. They contain all of the mathematics 

as well as the variables for platform dimensions. This allows the program to be adapted for multiple 

platforms of different sizes as long as the set up remains the same. This also allows the trigonometric 

solver block to remain independent, since it should not require adjustments. The original trigonometric 

identity function script contained several “if” statements to account for the multiple quadrants that the 

angle could be found in, these statements were incorporated into the Simulink version as well but were 

fed into a separate oscilloscope block as seen on the far right side of Figure 9. These oscilloscope blocks 

only read zero for typical ocean conditions used with this platform, but would allow the same block to 

be applied to other scenarios. 
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Figure 9: Multilayer Simulink System 

Once the numbers leave the trigonometric block the selected output is fed into a separate 

oscilloscope as well as a Matlab output block. The oscilloscope block allows for quick “sanity” checks for 

de-bugging. The Matlab output blocks give the actual results to Matlab where the time steps can be sent 

for manual insertion to another software program that is more compatible with operating a stepper 

motor. For future use this step could possibly be bypassed with a specialized Simulink block that could 

possibly connect the stepper motor directly to the ocean and dynamic conversion Simulink programs in 

real time. However, no translator blocks were applicable at present. 

Simulink Results 
The results from Simulink are detailed in both oscilloscope graphically as well as time stamped 

results into Matlab. The oscilloscope gives immediate visual results and a better visual of how the gears 

are supposed to move. The time stamped results can be uploaded easily into Arduino for the 

programming but are difficult to use for troubleshooting purposes. The graphs from set known numbers 

are easy to visualize and identify any errors in coding.  
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Figure 10: Oscilloscope Readouts 

As shown in the oscilloscope, the readouts given are visuals of how each individual gear should 

move. Figure 10 is an example of one of the test runs for the program, showing results for a set of heave 

without roll or pitch. The x-axis is time in seconds while the y-axis is the degrees the motor lead rotates. 

Running multiple scenarios allows for narrowing down of any program issues. This makes it easier to 

figure out that the right gear would need to be programmed slightly offset because of an error at zero 

pitch and roll. This was only a programming error, but was almost impossible to see without the visual 

feedback form the oscilloscope results. The above figure gives readouts for each of the gears on the left 

window going clockwise with readouts for the left, right, and rear gears while the right two column 

graphs give the heave and initial conditions with left, right, and rear gears stacked  from top to bottom. 

These are just one of example of the multitude of scenarios that were run. 

Simulink Operation Manuel 
  

Construction of the Platform 
The platform had to be large enough should a future MQP want to use it to experiment using 

larger RC helicopters or even airplanes. For this reason, the platform was design to be 1 meter by 0.5 

meter. The 1-meter length was chosen by researching the average amount of runway needed to land an 

RC airplane. The motion platform is being modeled from the Nimitz Class air carrier which flight deck is 

317 meter long and 77 meters wide. This would scale the platform’s width to be 0.25 meters wide. (The 

centerpiece of Navy operations: Aircraft Carriers n.d.) The group was worried that this width would not 

suffice for the larger helicopters such as the T-REX whose length is exactly the same size as the width of 

the platform. (T-REX 500 n.d.) Instead, the group decided to cut the Nimitz flight deck in half, which 
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would work better for the larger helicopters and give more room to future MQP’s to add arresting gear. 

This turned the platform to be 1 meter by 0.49 meters.  

Scaling the maximum lift that an air carrier can experience on a large wave would create a 

maximum pivot angle of 15° at the center point, which creates a maximum height of about an eighth of 

a meter (5 in). This would mean that the connection of the rod would have to be the same distance 

away from the motor lead to achieve this pivot angle.  

While building the motion platform, it was realized that the project might only need the motors 

connected to the rods with a ball joint directly rather than using gears if the motor is strong enough. A 

reason for this is so that the maximum speed is not hindered for more torque. The motor’s speed and 

torque will be the limiting factor. Another change was replacing the ABS plastic base that holds 

everything together to plywood for budgeting reasons. Figure 11 below reveals the built motion 

platform.  

 

 

Figure 11: Constructed Motion Platform 

Motor Mounts 
The motor mounts were handmade utilizing the extra pieces of ABS plastic, ceiling boxes, and 

blocks of 2x4 wood blocks due to budgeting reasons. Holes were drilled into the ceiling box through the 

large area side. These holes were sized to be a quarter inch, same size as the mounting holes for the 

motors. The ceiling box also would enclose the motor when connected, with the ABS plastic covering the 

rear. This is shown in Figure 11. The block of wood is to raise the motor to the desired height so that the 

servo horn can rotate without hitting the base. 



26 
 

 

Figure 12: Inside the Motor Mount/Enclosure 

Power Source 
If the budget had permitted, a rechargeable external battery would be perfect to power the 

motors. The motors require 12V with a nominal power of 14.4W. The best and cheapest way to power 

the motor was to use a PC power supply that is available for free from Randy. The PC power supply 

would be perfect because it provides a current with a regulated voltage ranging from 3.3V to 12V 

depending on the color of the wire. For the power supply acquired, the yellow wire provides the 12V.  

The disadvantage is that they power supply needs to be connected to an outlet, making the platform not 

useful outside unless near a power outlet.  To have the power supply work the green wire must either 

have a load or shorted to have power supply work. The reason for this is because the green wire is the 

Power On wire meaning it checks to make sure that the power supply is properly connected to 

something before it lets any current through the other wires. A jumper cable was used to short this 

green wire, having the power supply always ready to supply the current when the switch is turned on. 

Once the jumper cable was placed and the insulation for the yellow (12V) and black (ground) were 

stripped, they can be easily connected with the motor and motor drivers to a breadboard.  

Micro-Controller Selection 
The micro-controller is the brain of the landing platform; it controls the behavior of the actuators 

and receives feedback. There are three most popular micro-controllers in the market: the Arduino, the 
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Raspberry Pi and the BeagleBone. Each of these controllers has its strengths and weaknesses. These three 

types of controllers looked into were carefully before making the decision.  

 

Figure 13: Arduino, BeagleBone or Raspberry Pi? (Allan 2013) 

 

 

 

 

 

 

 

 

 

The table below described their basic characteristics (Allan 2013): 
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Figure 14: Arduino vs raspberry Pi vs BeagleBone 

When comparing computational power, the Raspberry Pi and the BeagleBone are very powerful; 

in fact they have the computational power similar to an average personal desktop manufactured 10 years 

ago. On the other hand, the computational power of an Arduino seems negligible compare to the other 

two (16MHz compare to 700MHz).  

However, the Raspberry Pi and the BeagleBone maintain a real Linux operating system, which will 

consume a significant amount of the computational power. The Arduino on the other hand will only 

perform a single task uploaded to its memory. What this means is that for a simple task, an Arduino is 

most likely a better choice, but for task that requires heavy computation and multitasking, a Raspberry Pi 

or a BeagleBone should be used.  

In the moving platform, there must be some Servos or Motors involved; controlling these 

components requires the use of the GPIO (General Purpose Input/Output) pin, and PWM (Pulse width 

modulation). Therefore, the second consideration for the micro-controller is the number of GPIO pins and 

the number of PWM capacity. As can be seen, the Raspberry Pi has only 8 GPIO pins and none of them 

can do PWM, therefore it is not a good idea to use it to control multiple motors or servos. The Arduino 

has 14 GPIO pins and 6 of them can be used to do PWM, the team thinks this number of GPIO pins is 

sufficient to control the number of motors and servos that the platform will need, so going for the 

BeagleBone (66 GPIO and 8 PWM) would be a waste of budget. 
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Other factors to consider are the price for each controller and how to program them. The price 

for a standard Arduino Uno is about $30~$35, which is the cheapest amount the three. The price for a 

Raspberry Pi is about $45, and the price of a BeagleBone is about $90, which might be too expensive since 

the budget of this project is $480. For the IDE, the Arduino comes with its own IDE and programming 

language, with the syntax pretty similar to C. For the Raspberry Pi and BeagleBone, the main programming 

language will be Python because there are extensive Python libraries to communicate with the GPIO pins. 

However, since the Raspberry Pi has a real Linux Operating System, so it can be program with many Linux 

supported languages such as Java, C, Ruby or even shell script.  

Having considered all of the factors, the team decided that an Arduino would be a better choice 

for the moving platform. However, based on the intensity of the math computation needed for the 

microcontroller, a BeagleBone will also be considered. 

Programming Approaches 
 

Precise Orientation 
For precise orientation, every movement of the platform is carefully planned and calculated. In 

other words, for every computational cycle of the microcontroller, the platform will move in a specific 

rate so that it would reach a desire state at a specific time. Each rates, desire states and desired times is 

calculated or inputted by operator before the process start. 

Pros: 

1. Operator will have full control of the platform. 

2. Motion of the platform is predictable, the orientation and motion of the platform at any 

time is known.  

3. Better actuator cooperation since the motion of each actuator is preloaded into the 

controller. 

 

Cons: 

1. Fix/periodic motion, which eliminate the uncertainty of the ocean. 

2. Required more computational power. Heavy math computation might interrupt the 

controlling of the actuators. 

3. Some motion needs to be hard coded, result in large and un-clear program. 

 

Uncertain/Random Orientation 
The major characteristic of the ocean movement is that it is unpredictable. This uncertainty can 

be used to develop the moving platform solution. Similar to the previous approach, for every 

computational cycle of the microcontroller, the platform will move in a specific rate to achieve a specific 

goal state (notice that it is not enforce that it reaches the state at a specific time). The different is that for 
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every computational cycle, the rate is randomly picked from a normal distribution with an empirical mean 

and standard deviation base on the ocean state (or mode for the platform). Once the platform reaches a 

desired state, the next desire state is chosen by the same method.  

To demonstrate this, assume the curve below in Figure 15 is the distribution of the wave speed, 

with mean of 3ft/sec and standard deviation of 1ft/sec. For the next wave speed, it is chosen at random 

based on the distribution curve below, so there are 38.2% chance the next wave speed will in between 

2.5ft/sec and 3.5ft/sec, and 15% chance it will be in between 3.5ft/sec and 4ft/sec.   

 

 

Figure 15: Normal Curve, Standard Deviation (Roberts 2012) 

Pros: 

1. Reduce computational power 

2. More realistically mimic the ocean movement 

3. More ocean states can be simulated. 

 

Cons: 

1. Need gyro to determine the current platform orientation 

2. Need to carefully choose empirical data for every ocean state. 

3. Need a certain motor/servo orientation for this method to work best. 

 

 

Pseudo code for this approach 
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//0 means board is reaching max, 1 means board is reaching min 

turn = 0;    

current_position = 0; //initial position  

servos.initial(current_position); // this should make the board flat 

// Unit of curerent_position and goal will be in degree 

goal = pick_random_max(max_mean, max_standard_deviation); // choose a goal state 

 

while(1){   

  if(turn == 0){ 

     while(current_position < goal){ 

       current_position++; 

       servo.position(current_position); 

       // use wait time to control the speed of the servo 

       // if we have multiple servos, another clock technique will  

       // be use instead of waiting.  

       wait_time = pick_random_delay_time(delay_mean, delay_std); 

       delay(wait_time) 

     } 

     // choose the minimum goal state 

     goal = pick_random_min(min_mean, min_standard_deviation); 

     // reverse the turn counter to indicate the board is going to min value 

     turn = 1 - turn; 

  } 

   

  // Same as above be just reverse the sign 
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    if(turn == 1){ 

     while(current_position > goal){ 

       current_position--; 

       servo.position(current_position); 

       wait_time = pick_random_delay_time(delay_mean, delay_std); 

       delay(wait_time) 

     } 

     // choose the maximum goal state 

     goal = pick_random_max(max_mean, max_standard_deviation); 

     // reverse the turn counter to indicate the board is going to min value 

     turn = 1 - turn; 

  } 

} 

Driving a Stepper Motor with the Arduino 
To drive a stepper motor with the Arduino, a motor driver will be needed with separate power 

source for the motors. The motor cannot be directly to the Arduino board because this will cause a large 

amount of current flow through the Arduino board; the amount of current will excess the Arduino’s 

capacity, therefore breaking the Arduino board.  

A double H-bridge was used as the simple motor driver; the model we use is the SN754410 Motor 

Driver IC. Below is the schematic: 
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Figure 16: SN754410 Motor (Texas Instruments 1995) 

 

Figure 17: Motor Driver Function Table (Texas Instruments 1995) 

For the power source, we will use 3 AA batteries for prototyping and testing. Below is a diagram for the 

stepper motor connection.  
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Figure 18: Stepper Motor Connection (Arduino 2014) 

 

The Arduino has its own stepper motor library. However, this library only supports one stepper 

motor to be run at a given time; it cannot be used to run multiple stepper motor simultaneously. In order 

to run multiple stepper motor simultaneously, third party stepper motor library “AccelStepper” was 

obtained from GitHub (AccelStepper 2012).  

The position, velocity and acceleration of the stepper motors can be changed by calling the AccelStepper 

functions: 

Stepper.moveTo (integer) 

Stepper.setMaxSpeed (double) 

Stepper.setAcceleration (double) 

The unit for these functions will be in steps, steps/second and steps/second2. 

User Interface 
Because the Arduino is a simple electronic, it does not have a display or a terminal to interact with 

the human operator at runtime. In order to do user interaction, a communication channel needs to be 

built, and all the interaction patterns preprogrammed. 

There are many ways to build the communication channel. One simple approach is to use a series 

of buttons, each one represent an ocean states. The advantage of this approach is that it is simple and 

very easy to build. The weakness is that it required too many input pins, which might not be available 

since 12 pins would be needed to drive the 3 stepper motors.  
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Another approach is to use a potentiometer and read a multiplier for each of the ocean states. 

For example, suppose the reading from the potentiometer is ranging from 1 to 10, the ocean state data 

(angular velocity, angular acceleration) for an ocean state will be:  

(Constant)* (Potentiometer_multiplier) 

The advantages of this approach are: 

1. Easy to build and program 

2. Few pin required 

3. Can simulate large number of ocean states 

4. Easy to operate 

 

The weaknesses of this approach are: 

1. The exact data for each of the states is unknown 

2. Fix pattern for each of the states 

 

The third method is to connect a Bluetooth module to the Arduino board so that communication with 

the Arduino can be accomplished with any Bluetooth enable devices. The module that will be used is the 

HC-06 Bluetooth to serial adapter, it can be used to send and receive Bluetooth signal. Below is the 

connection diagram for this Bluetooth module: 

 

 

Figure 19: Connection Diagram for Bluetooth Module (AccelStepper 2012) 
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Smartphones can be used as the controller for the platform. Out of the many open source 

Bluetooth controller Apps the “Bluetooth Serial Controller” on an Android phone are the one that have 

been looked into for the controller. The controller can be programmed to send out different strings or 

characters as its signal. Integers 1 to 9 will be used for the Bluetooth signal, representing ocean state 1 to 

ocean state 9. The “R” signal is used as the reset button; every time the module receive the “R” signal, it 

will reset the platform to the initial position. 

Stepper Motor Repositioning 
The platform must be leveled every time the program starts so it can behave properly. The 

Arduino and the stepper motors do not have hardware or software support for this. The stepper motor 

cannot be moved to position zero because position zero will always be defined as the position when the 

motor starts by the AccelStepper library. Addition hardware is needed to define the fix zero position.  

The hardware used to define the zero position is a simple photo resistor and a LED. The photo 

resistor will be fix to a point below the gear; an LED will be mounted to the gear. The image below shows 

how this looks like: 

 

Figure 20: Initializing the Motors 

Every time the motor starts, it will rotate one full revolution. As the gear is spinning, the photo 

resistor will continue to read the light level under the gear. Every time the photo resistor read a maximum 

value (when the LED is right above the photo resistor), it will remember the location where the maximum 

happen. Once the initializing revolution is finished, the Arduino will reverse the gear to the position where 

the maximum light level is read. This will be defined as the zero position. 
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Arduino code for this method 

#include <AccelStepper.h> 

AccelStepper stepper; // Defaults to 4 pins on 2, 3, 4, 5 

int stepToGo; 

int i; 

int sensorMax = -1000; 

int sensorPin = A0; 

int sensorValue; 

int stepBackward = 0; 

int k = 1; 

 

void setup(){   

 Serial.begin(9600); 

   stepper.setSpeed(100);  

   stepper.moveTo(200); 

   while(k == 1){ 

      stepper.run(); 

      stepToGo = (int)stepper.distanceToGo();      

      if (stepToGo == 0){ 

         k = 0; 

       } 

      sensorValue = analogRead(sensorPin); 

      Serial.println(sensorValue); 
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      if (sensorValue > sensorMax){ 

         sensorMax = sensorValue; 

         stepBackward = stepToGo; 

         } 

    } 

       stepper.setSpeed(-100); 

       Serial.print("stepBackward: "); 

       Serial.println(stepBackward); 

       stepBackward = 200 - stepBackward; 

       stepper.runToNewPosition(stepBackward); 

} 

Implementation of the Arduino 
The final implementation of the platform is slightly different than the original design. First, 

the actual motors for the platform are unipolar stepper motors, which require a different motor 

driver than the original design. 

The actual driver for the platform is the ULN2003A by Texas Instruments. They are high-

voltage high-current Darlington transistor arrays. Each consists of seven npn Darlington pairs that 

feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. 

(Instruments 2004) For the configuration of the platform, 4 GPIO pins from the Arduino will 

responsible for sending signal to the 4 input pins of the motor driver in order to control the stepper 

motor (pin 2 – 5 for motor 1, 6 – 9 for motor 2, 10 – 13 for motor 3). Below is a diagram for the 

configuration: 



39 
 

 

Figure 21: Configuration for Unipolar Motor Driver 

To run the three motor simultaneously with different parameters, the Arduino will use the 

3rd party open source library AccelStepper as discussed in earlier chapter. 

In the original design, it includes a Bluetooth module that acts as the communication 

channel between the Arduino and the human operator. After consideration, this Bluetooth module 

will be replaced by a potentiometer in order to reduce cost and simplify the controlling procedure. 

Based on the position of the potentiometer, the Arduino will select the appropriate pre-loaded 

ocean state to execute. The below diagrams, taken from ITP Physical Computing will demonstrate 

the connection: 

 

Figure 22: Arduino Uno Connection to Potentiometer  (Using a transistor to control high current loads with an 
Arduino 2013) 
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Figure 23: Arduino Uno  (Using a transistor to control high current loads with an Arduino 2013) 

Movement Pattern 
The movement of the three motors is based on the simulation obtained from the Simulink 

model discussed in the previous session. The movement of different ocean state for each motor will be 

stored inside the Arduino program as an array of position and angular rate. The pattern will repeat itself 

once the cycle ends.  

For future development, the team suggests to add an Arduino SD card shield for the Arduino, 

and store the ocean state parameters inside a SD card in different files. To read the data in the SD card 

in real-time, the Arduino can use the SD library. This method can create a more robust moving platform. 

The Hardware and Software Limitation 

According to the Simulink model, for calmer ocean state (e.g. wave height less than 15 meters), 

the different between the highest and lowest motor position is very small (~ 2 degree). For the current 

setup, it is very difficult to achieve this small change since the minimum movement for the motor is one 

step, which is 1.8 degree. For any smaller movement than 1.8 degree, it will require micro-stepping, 

which require additional hardware for the Arduino or very complex and precise programming.  

For future development, the team suggests that replacing the hinge mounted on the motors 

with 2 gears with big gear ratio. Doing this has multiple advantages, first, big gear ratio reduces the 

torque requirement for the motors, and therefore the motors can lift the platform more easily. Second, 

using big gear ratio and placing the supporting rod in the mid-way of the big gear radius can make the 

platform move more smoothly and  precisely for smaller changes. Therefore eliminate the need for 

micro-stepping. 
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Operation Manual 
The platform is still in testing phase, therefore the circuit is connected with a breadboard. 

Before turning any power on, make sure that the motors connection is same as the diagram shown in 

the previous session, with the color in the right order. The black and white wires from the motors should 

be connected to the positive of the 12V power supply (In the diagram they are both shown in black).  

Once they are connected properly, turn on the 12V power supply first. And then connect the 9V 

cell battery to the Arduino. Shortly after the 9V battery is connected, the platform should start its 

initialization process. In this process, all the three hinges will be repositioned to a horizontal position. 

Once the three hinges are in their horizontal position, the main loop of the program will start. And now 

the operator can select the wave intensity with the potentiometer. 

To exit the program, just turn off the PC power supply and disconnect the 9V battery from the Arduino. 

Conclusion and Recommendations 
Researching and understanding the ocean dynamics and its effect onto an air carrier has been 

the highlight of this project. Although there are a few issues with the built motion platform, they can be 

easily fixed. The first problem is that the stepper motor chosen had a torque too weak with the 

maximum speed needed to lift the platform. The reason for this error came from miscommunication 

between the group members. Three correctly sized motor will fix this problem. The second problem is 

the ball joint that connects the motor horn to the rod. This joint allows unwanted motion perpendicular 

to the motor’s rotation. This causes the platform to have an unwanted sway from side-to-side as it is 

lifted up and lowered down. Two quick-solve ways the group used to stop this sway was to connect the 

two back rods together so that they would sway together and not cause harm to the platform and to 

clamp the joint to the motor horn to limit the amount of motion in this unwanted direction. Though this 

will temporarily limit the impact of the problem, the future students to tackle this MQP should purchase 

a new joint that already constricts this movement. Throughout this project the group has gained a much 

better understanding of the programs Matlab and Simulink while looking through Fossen’s program and 

making additions to fit the project’s objectives. For the motor, it is advised to get a motor with smaller 

steps for example a step of 0.125⁰ rather than 1.8⁰. This is because with larger steps, the platform will 

jerk as it hits each step during a slow movement rather than move smoothly. Should such a small-step 

motor cannot be bought, the original idea with gears would also remedy the jerking motion.  
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