

 Project Number: KZP - AA5Z

Using iBeacon for Navigation and Proximity
Awareness in Smart Buildings

A Major Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
in

Electrical and Computer Engineering
By

Qusai Alhumoud

Chris Connor

David Goodrich

Advisor: Professor Kaveh Pahlavan

Co-Advisor: Professor Jahangir Rahman

This report represents work of WPI undergraduate students submitted to the faculty as evidence
of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects​.

http://www.wpi.edu/Academics/Projects

Abstract
Guests in unfamiliar buildings often do not know where to go to or what is around them.

This project sought to alleviate this problem using a combination of Android smartphone and

Bluetooth iBeacon technology. Released in 2013 by Apple, the iBeacon specification allows an

embedded device to broadcast telemetry to various Bluetooth-enabled devices, such as smart

phones. This project used iBeacon devices from Estimote, a company that has seen its iBeacon

devices used in a variety of real-world applications, such as enhancing the experience of tours

at the Guggenheim museum in New York.

This project relied on received signal strength (RSS) information obtained from iBeacon

devices deployed on the third floor of Atwater Kent Labs on the WPI campus. This information

was used to model Atwater Kent Labs as a wireless channel with established path loss

characteristics for bluetooth signals. These path loss characteristics were incorporated into an

Android application, which localized the user with live telemetry from the iBeacons using a least

mean squares (LMS) algorithm and provided contextual information to the user about their

surroundings. The overall goal was to provide a proof of concept platform for indoor navigation

and proximity awareness using iBeacon.

In this paper, we discuss the channel model used for modelling bluetooth signals in

Atwater Kent Labs and the development of the LMS localization algorithm used in the

application. We also provide a performance evaluation of the application’s localization

functionality where the real-world localization error is examined and compared to a Cramer-Rao

Lower Bound (CRLB) analysis for the iBeacon deployment. We also discuss the development

and features of the Android application and provide all the code so that future projects can build

off of the platform we have developed. We conclude by discussing the feasibility of using

iBeacon for indoor navigation and proximity awareness and make recommendations for future

work using iBeacon.

1

Acknowledgements
This project would not have been possible without the help of a number of individuals

who provided us with advice, guidance, and resources.

We would first like to thank our project advisors. Professor Kaveh Pahlavan provided us

with a huge amount of support and encouragement. He gave great advice and pushed us to

make the project better and better as the year went on. Professor Jahangir Rahman gave us a

lot of advice on our paper and pushed us to submit our project to conferences and for the

Provost’s Award. His confidence in our project is one of the biggest reasons that this project

was a Provost Award finalist.

We would also like to thank all the students and teaching assistants who helped us

through the project. Without the resources and guidance of the students who work in the

CWINS lab, especially Julang Ying, our project would not have been able to touch on so many

areas of wireless communications research. Thanks as well to Arkar Min Aung, who was

instrumental in helping us develop the java version of the LMS localization algorithm used in this

project.

Finally, we would like to thank Adriana Hera and Sabah Razavi, who helped us with a lot

of the Matlab code used in this project.

2

Table of Contents

Abstract 1

Acknowledgements 2

Table of Contents 3

List of Figures 6

List of Tables 8

1. Introduction 9
1.1 Motivation 9
1.2 Technology 9
1.3 Project Description 10
1.4 Report Outline 13

2. Application Development for Localization 14
2.1 Previous Work on iBeacon Technology 15
2.2 Localization and Navigation research 16

2.2.1 Path Loss Modeling 17
2.2.2 Least Mean Squares (LMS) Localization Algorithm 17
2.2.3 Trilateration Localization Algorithm 18
2.2.4 Cramer-Rao Lower Bound 18

2.3 Hardware Platform 18
2.4 Software Platform 22
2.5 Software Development and Coding 24

3. Project Objectives and Methodology 26
3.1 Objective 1: Channel Modeling 27

3.1.1 Channel Modeling Basics 27
3.1.2 Collecting Path Loss Data 27
3.1.3 Interpreting Path Loss Data 29

3.2 Objective 2: Localization 31
3.2.1 LMS Localization Algorithm 31
3.2.2 Trilateration Localization Algorithm 34
3.2.3 iBeacon Deployment in Atwater Kent Labs 35
3.2.4 Cramer-Rao Lower Bound (CRLB) Analysis 35

3.3 Objective 3: Smartphone Application 37

3

3.4 Application Testing 38

4. Results 40
4.1 Channel Modeling 40

4.1.1 Determining Path Loss 40
4.1.2 Coverage Analysis 42

4.2 Localization in Atwater Kent 43
4.2.1 Localization Algorithms 43

4.2.1.1 Least Mean Squares (LMS) Algorithm 44
4.2.1.2 Trilateration Algorithm 46
4.2.1.3 Localization Error 46

4.2.2 iBeacon Deployment on Atwater Kent Labs Third Floor 48
4.2.2.1 Deployment Maps 48
4.2.2.2 Cramer-Rao Lower Bound (CRLB) Analysis 50

4.3 Smartphone Application 53
4.3.1 Graphical User Interface (GUI) and Main Navigation Screen 53
4.3.2 Notification Functionality 54
4.3.3 Contextual Information 55

4.4 Application Performance Evaluation 56

5. Conclusions and Future Work 59

Works Cited 61

Appendices 63
Appendix A: Notification Code 63
Appendix B: RSSI and Distance Measurement Application Code 65
Appendix C: LMS Code 67

C-1. Matlab Version: 67
C- 2. Java Version: 68

Appendix D: Trilateration Matlab Code 72
Appendix E: GUI Code 74
Appendix F: Point of Interest List 82
Appendix G: CRLB Analysis Matlab Code 86
Appendix H: Coverage Analysis 88
Appendix I: LMS and Trilateration Performance Comparison 89
Appendix J: Application Performance Evaluation Test Table 90
Appendix K Full Path Loss Testing Dataset 93

4

List of Figures

Figure 1.1 Estimote Location iBeacons………………………………………………………..........9

Figure 1.2 iBeacon Deployment in Atwater Kent Labs…………………………………………....10

Figure 1.3 Application Main Screen with Navigation Map……………………………..................11

Figure 2.1 iBeacon Packages………………………………………………………………....……19

Figure 2.2 Estimote Example Android Application Menu.………....……………………………...21

Figure 2.3 Estimote Online iBeacon Settings Menu……….………………………………...……22

Figure 2.4 Estimote Webapp “Beetroot” iBeacon Specifications……………………..………….22

Figure 3.1 RSSI and Distance Test Application Interface……………………………......……....26

Figure 3.2 Matrix Mathematics for CRLB Analysis…………………………......………………...34

Figure 3.3 Early Application Graphical User Interface (GUI) Mockup………………….…..…....35

Figure 3.4 Application Test Area on the Third Floor of Atwater Kent Labs…....…..…................36

Figure 4.1 Observed Bluetooth Signal Path Loss Vs Real World Distance…………...….……..38

Figure 4.2 Observed Path Loss Vs Estimated Distance……………………………..……..….....39

Figure 4.3 Estimote Distance Compared to Real Distance……....………………...……...….....40

Figure 4.4 Example Output of Matlab LMS Algorithm………………………….…..………....…..42

Figure 4.5 Java Version of LMS Code and Example Output…...………...……..…………..…...43

Figure 4.6 Comparing LMS and Trilateration Localization Accuracy for X and Y Coordinates…45

5

Figure 4.7 Grid Deployment of iBeacons for Atwater Kent Labs Third Floor…………………….47

Figure 4.8 Hall Deployment of iBeacons for Atwater Kent Labs Third Floor…….…………….…48

Figure 4.9 CRLB for Grid Deployment…….…....…………………………………………………..49

Figure 4.10 Smaller Section of CRLB for Grid Deployment……………….………………..……..49

Figure 4.11 CRLB for Hall Deployment…...………………………………………..…………….....50

Figure 4.12 Smaller Section of CRLB for Hall Deployment……………..………………………....50

Figure 4.13 Android Application Main Activity Window…….……………………………………....51

Figure 4.14 Android Application Example iBeacon Proximity Notification………………….……..52

Figure 4.15 Android Application Contextual Information Window……..…...…………………...…53

Figure 4.16 X Coordinate Error for Application Localization………………………….……..……..55

Figure 4.17 Y Coordinate Error for Application Localization…………………..………………...…55

6

List of Tables

Table 2.1 Bluetooth Low Energy (BLE) Specifications………….…………………………..…...14

Table 2.2 Estimote iBeacon Package Options……………………………………………….……18

Table 2.3 Oneplus One Test Phone Specifications………………………………………………..20

Table 4.1 Statistical Coverage Analysis with Shadow Fading……………..……...……………...41

Table 4.2 Comparing LMS and Trilateration Localization Accuracy……………………….....…..45

Table 4.3 Application Localization Performance Evaluation Data……………………………..….54

7

1. Introduction
This project aimed to implement ​Bluetooth low energy (BLE) proximity sensing within an

enclosed, indoor environment. The team designed an application with a variety of features

which enhance the experience of anyone who enters the Atwater Kent building on the WPI

campus, such as localization and navigation using Bluetooth signals. as well as the ability to

access contextual information based on proximity to certain locations. This makes it easier for

users to find and orient themselves within the building, even if they are unfamiliar with it. The

application also provided users with helpful information about points of interest based on their

physical location within the building, including professors’ offices, conference rooms, and labs.

1.1 Motivation

When someone walks into a building and is unfamiliar with the layout, they often do not

know where they are meant to go, and so need to look around for signs pointing to their

destination. If a guest only knows someone’s name, looking for that particular person’s office

can be especially tricky since it could be any room on any floor and typically there are not signs

pointing out how to get to a particular office. In an academic setting, office hours are usually just

posted online, so even if a student finds an unfamiliar professor’s office, the professor may not

even be there if the student did not plan to meet with the professor in advance and the student

would have no way of knowing when the professor is coming back. This points to a major

problem with many large buildings: guests often have a hard time navigating the building and

cannot get useful information about the locations and people within it.

1.2 Technology

Recently developed technology, in the form of iBeacon BLE technology, gave the team

a way to address this problem. ​Since its initial development in 2013 by Apple, iBeacon

technology has greatly expanded in availability. This technology allows an embedded device to

broadcast telemetry to various Bluetooth-enabled devices, specifically smartphones. For this

project, the team used Estimote beacons, as they provided a good balance of competitive

pricing and a substantial suite of features including a ranging API, large sets of example code,

8

long battery life, and variable broadcast power that the team was able to set to suit the needs of

the project. Estimote beacons have also already been used in a variety of real-world

applications, such as for displaying contextual information to guests at the Guggenheim

museum in New York. This combination of features and a proven track record in real-world

applications make Estimote beacons an ideal choice for this project. A picture of the Estimote

Location beacons used in this project can be seen in Figure 1.1.

Figure 1.1 Estimote Location iBeacons

1.3 Project Description

This project provides a process and proof of concept for implementing navigation and

contextual information broadcasting within future smart buildings. Given the popularity of

smartphones and other mobile devices, the team felt that iBeacon technology can be leveraged

in many places across the world to provide users with indoor navigation assistance and

contextual information about the points of interest near their physical location. This project took

the first step in developing an application to meet these need areas by creating an indoor

localization and proximity awareness system for the third floor of the Atwater Kent building on

the Worcester Polytechnic Institute campus.

9

The project had three main objectives that built off one another as the project

progressed. These objectives were:

1. Model the third floor of Atwater Kent Labs as a wireless channel.

2. Perform localization of a user in Atwater Kent using path loss characteristics derived

from our channel model.

3. Create an Android application to localize a user and provide them with contextual

information about their surroundings.

In order to fulfill these objectives, the project had to touch on many different research

and design areas. First, the team needed to correctly model the third floor of Atwater Kent Labs

as a wireless channel. This involved taking hundreds of samples of received signal strength

(RSS) data, extrapolating a path loss model from this data, determining the fade margin

experienced by bluetooth signals in the channel due to shadow fading, and determining the

broadcast coverage of beacons under different circumstances.

Second, the team created a deployment plan for placing the beacons throughout the

third floor of Atwater Kent. This involved mapping out the deployment using the coverage

analysis the team performed and comparing the real performance of localization in the

deployment to theory using a Cramer-Rao lower bound (CRLB) analysis. The deployment map

for the iBeacons on Atwater Kent’s third floor can be seen in Figure 1.2

Figure 1.2 iBeacon Deployment in Atwater Kent Labs

10

Third, the team worked to create a localization scheme that would use the beacons to

place a user in their real location on a digital map of Atwater Kent. To do this, the team created

a least mean squares (LMS) algorithm in both Matlab and Java that could take distance inputs

and reference locations and localize a user on a grid. The team also created a trilateration

algorithm in Matlab to use as a comparison point for the LMS algorithm’s performance. Using

these two algorithms, the team did an analysis of how effective each was and what degree of

error could be expected when using each.

Finally, the team used what it had determined for the channel model, deployment, and

localization functionality to build an Android application. To build this application, the team

needed to use the channel model and localization algorithm it had built to place a user at a

specific location on a map of Atwater Kent. The team also had to build a user-friendly graphical

user interface (GUI) for the application, add useful information for the user to look at, and

incorporate notification functionality. All together, this application was the culmination of the

project because it incorporated everything the team learned and did in the project in order to

solve the primary issue of people not being able to navigate effectively indoors. A screenshot of

the application’s main screen can be seen in Figure 1.3

Figure 1.3 Application Main Screen with Navigation Map

11

This type of technology would be able to make it much less frustrating for users to find

their way around unfamiliar locations and get useful information that they would normally not

have access to. The team hopes this application can be expanded to other buildings across

WPI after Atwater Kent, so that it can be useful to all students, faculty, and guests regardless of

where they are on campus.

1.4 Report Outline

In the background, the team starts by summarizing previous projects which use

iBeacons. The team then researched how we planned to perform the localization by performing

path loss modeling, investigating possible algorithms and performing a Cramer-Rao lower

bound to find the lowest possible error which would be the theoretical best possible result. To

conclude the background, the team goes on to describe the hardware and software which would

be required to carry out the project.

For the methodology, the team broke the project into three objectives, first of which was

the discussion of their channel modeling process. Second is the localization process through the

use of the LMS and trilateration algorithms. Third was the discussion of the smartphone

application which would utilize the localization in a form which can be useful and serve users

with information. This application was also tested to check how it actually worked to compare

with theoretical results.

The results section details what the team actually accomplished with their project and

final product. It goes in the same order as the methodology starting with channel modeling,

going through localization and then detailing the final application. The performance of the final

application was also evaluated based on the tests that were conducted.

Finally, the team concludes the paper with reflections on the design decisions that were

made and making recommendations for work which can be done in the future to extend the

usefulness of this application.

12

2. Application Development for Localization
Students and visitors at schools across the country often have appointments and

activities in buildings with which they are unfamiliar. They don’t usually have a map of the

building, they are left with just a room number or room name. If they are looking for a particular

person’s office it could be even worse as the only clue might be a plaque by the door. Some

buildings are even so large it is hard to a person to keep track of their bearings. Schedules and

information about people and offices are not always posted in obvious places or easy to find

online. All together, this means that there is a need for an indoor geolocation system to help

users navigate new buildings and get information on points of interest in those buildings.

The team solved these issues by integrating iBeacon technology with a smartphone

application to build an indoor geolocation and information broadcasting system in Atwater Kent.

The application provided indoor geolocation in three dimensions so that users could be able to

tell where they are in a building and where they need to go to reach their destination. It also

provided contextual information on various points of interest in the building depending on the

user’s location. This was very useful for students who are unfamiliar with Atwater Kent who are

looking for a specific office, conference room, or lab. It also gave students access to more

detailed information about different professors, including research interests and the classes they

teach, that they otherwise would not get by just walking around the building. Finally, with a

dynamic information broadcasting feature, users were able to get access to conference room

and lab schedules so that they know exactly when these rooms are going to be in use by

someone else and when they are free to be used.

Bluetooth (IEEE 802.15.1) is a good platform to use for geolocation and information

broadcasting because of its ubiquity in basically every smartphone on the market. Combined

with the fact that most people have smartphones or some other mobile device these days, this

means that the application has a wide potential user base. The specific type of Bluetooth signal

being used in this project is Bluetooth Low Energy (BLE). This wireless specification provides

for low power, low range, and a very short connection time. This makes it ideal for high

resolution localization and contextual information broadcasting. Some general specifications for

BLE can be found in Table 2.1 below [1].

13

Table 2.1 Bluetooth Low Energy (BLE) Specifications

Topology Star and broadcast

Modem GFSK with 1 Mbps at 2 MHz bandwidth

Power -20 dBm to 10 mW with -70 dBm sensitivity requirement

Channels 40 centered at 2402-2480 MHz

Connection Time 6 ms (100 ms in classic BT)

 In order to do localization with BLE, the team had to model the environment in Atwater

Kent as a wireless channel. To do this, the team had to closely estimate the path loss, or the

amount of power lost when a signal travels between a transmitter and a receiver, of the iBeacon

broadcasts to the user smartphones. This is to say, the team must have come up with an

algorithm to determine the RSS (received signal strength) that a phone gets from the beacons

at various distances from the beacons. Generally, as the phone got further from the beacon,

RSS would decrease since the path loss of a signal gets more significant with distance.

The Estimote beacons that the team used, provided the team with a lot of information it

need such as RSSI, broadcasting interval, minor and major values and even motion sensing

capabilities. Minor and major values could be defined by users, which could be used to

distinguish each iBeacon [2]. However, the existing application from Estimote did not allow the

team to collect data directly from either android or iPhone devices, which means that the team

must have collected data by hand to build a path loss algorithm to use in the project. After this,

the team had to develop a specific application to make use of RSS information and this path

loss algorithm to determine where a device actually is in Atwater Kent.

2.1 Previous Work on iBeacon Technology

The Center for Wireless Information Network Studies (CWINS) is a compact wireless

research laboratory with a rich history of research that have been done with other industrial and

academic groups. The research program in wireless information networks at Worcester

Polytechnic Institute (WPI) was established in 1985 by Professor Kaveh Pahlavan as the first

research program of this sort in the United States. The main focuses of the center are Body

Area Network, Indoor Geolocation and Wireless Local Area Network [3]. Recently, the center

started focusing on developing projects with iBeacons under the advisement of Professor Kaveh

14

http://www.cwins.wpi.edu/kaveh-pahlavan.shtml
http://www.cwins.wpi.edu/kaveh-pahlavan.shtml

Pahlavan​. Starting in 2016, there have already been two significant projects developed in this

area; “Using iBeacon for Newborns Localization in Hospitals” and “Using iBeacon for Intelligent

In-Room Presence Detection.”

 “Using iBeacon for Newborns Localization in Hospitals” was done by a group of WPI

graduate students under Professor Pahlavan. The main idea of the project was to use iBeacons

to create an in-room newborn localization system in hospitals to replace systems relying on

Radio Frequency Identification (RFID). In order for the group to certify the benefit of using

iBeacon over RFID technology for this application, they developed a custom application to

receive iBeacon data over BLE because of the difficulty of collecting the needed data by iphone

using third party applications. After that, the group had to develop a real-world path loss model

for a line-of-sight (LOS) environment to estimate distance using a received signal strength

indication (RSSI) analysis. Then, by simulation, the group was able to directly observe the

influence of different iBeacon deployment patterns in this hypothetical in-room localization

application [4].

 “Using iBeacon for Intelligent In-Room Presence Detection” was done by the same WPI

graduate students under Professor Pahlavan. The main idea of the project was to create an

intelligent in-room presence detection system to record the users in a room by using iBeacon

and relying on the fact that the beacon signal is only broadcasted on a certain time interval. The

group follows the same procedure for developing an application as was used in the “Using

iBeacon for Newborns Localization in Hospitals” project to obtain the necessary data from

iBeacon and get RSSI readings directly from iPhone sensors for an LOS situation in a typical

indoor office environment. Afterwards, the group tested both a double iBeacon approach for

increased coverage, and a single iBeacon approach for lower cost and more convenience [5].

 These two projects played an important role in starting this project, as they provided a

source for research on iBeacons and channel modelling. Relying on these two projects, the

team will have a jumping off point to develop an application to obtain RSSI readings from

iBeacons and do localization using smartphones.

2.2 Localization and Navigation research

There are several useful techniques for the localization and tracking of moving objects

over networks. These techniques are classified into centralized and decentralized algorithms.

The centralized approaches assume the existence of a central processing unit that is

15

http://www.cwins.wpi.edu/kaveh-pahlavan.shtml

responsible for all the processing tasks, such as the least squares localization algorithms. ​The

goal of all localization methods is to minimize the error between where the mobile is and where

the mobile should be. The algorithm must be able to follow a preset track or find the least error

in the mobile location [6][7][8].

2.2.1 Path Loss Modeling

The first step in localizing a user in an area is to model the path loss experienced by a

signal in that area. A path loss algorithm determines how much signal is loss over a given

distance in a given channel, which in wireless applications, is the physical space being used in

the application. Given a certain received signal strength indication (RSSI) from an iBeacon, the

team used a path loss algorithm to determine how far the receiver device is from that beacon.

The general formula for a path loss algorithm, based on IEEE models, takes the form [9]:

RSSI(d) = P​r​ = P​t​ – L​p​(d​0​) - 10α log​10​ d/d​0​ + σ​SF

Using an algorithm based on this formula should have allowed the team to determine, within a

small error range, how far away a user device is from a given beacon.

2.2.2 Least Mean Squares (LMS) Localization Algorithm

After determining how far away a user device is from a beacon, the team used

localization techniques to determine exactly where a user is on the third floor of Atwater Kent. In

this project, the team used an LMS algorithm for mobile localization. ​LMS is a centralized

approach that assume the existence of a central processing unit is responsible for all the

processing tasks. LMS algorithm is used for mobile localization that utilizes a distributed

mechanism to process the data, and uses the received signal strength (RSSI) and the signal

propagation time (SPT) to estimate mobile locations and increase the accuracy of the

localization [10][11].

LMS algorithm should perform well in small network environments such as buildings

where the energy and communication bandwidth are not scarce resources. The LMS algorithm

has a simple structure and requires low computational resources. Therefore, it was an attractive

solution for the proposed applications. More importantly, the algorithm operated in an adaptive

manner and had an agile tracking ability which made it particularly useful for tracking a user in

16

real time [10][12].

2.2.3 Trilateration Localization Algorithm

Trilateration is the process of finding the center of the area of intersection of three

spheres which are three beacons in this project case. The center point and radius of each of the

three beacons must be known. Therefore, trilateration does have practical applications in

navigation, including global positioning systems (GPS) [13].

In three-dimensional geometry, trilateration should narrow the possible locations down to

no more than two unless the centers lie on a straight line [13].

2.2.4 Cramer-Rao Lower Bound

As the team builds a localization model, the team needed to determine the accuracy of

their model by comparing their localization estimates to theoretical estimates. The team did this

by comparing their model to estimates obtained by modelling the Cramer-Rao Lower Bound

(CRLB) for this application. The CRLB expressed the lower bound on the estimators of a

deterministic parameter. CRLB stated that the variance of an unbiased estimator was at least as

high as the inverse of the Fisher information. An unbiased estimator at this lower bound was

considered fully efficient [14]. The team calculated this lower bound for their deployment of

iBeacons in order to see how close their deployment and localization strategy get to the realistic

best performance described by CRLB.

2.3 Hardware Platform

For this project, the team used iBeacons from Estimote. These beacons come in a

variety of package types including “Location,” “Proximity,” “Stickers,” and “Video.” A breakdown

of all of these package types can be seen in Table 2.1 below. The physical appearance of each

package type can be seen in Figure 2.1 [2].

17

Table 2.2 Estimote iBeacon Package Options

Package Type Location Proximity Sticker Video

Battery life 5 years 2 years 1 year Endless (USB‑powered)

Range 70 meters 70 meters 7 meters 10 meters

Thickness 24 mm 17 mm 6 mm 14 mm

iBeacon™ or Eddystone™

packets 8 simultaneously 1 at a time 1 at a time 2 simultaneously

Additional packets

connectivity,

telemetry,

user‑defined

connectivity,

telemetry

Connectivity,

nearable with

telemetry

connectivity, telemetry,

user‑defined

Built-in sensors

motion, temperature,

ambient light,

magnetometer motion, temperature

motion,

temperature n/a

Additional tech

GPIO, RTC, LED,

1Mb EEPROM Programmable NFC n/a

WiFi, HDMI, USB, 1GB

eMMC Storage

18

Figure 2.1 iBeacon Packages. Upper Right to Lower Left: Proximity, Location, Video, Sticker

The Location beacons are Estimote’s most robust package type with its highest available

broadcasting power, largest range, and longest battery life. The Proximity beacons share many

of the same features as the Location beacons, but are somewhat cheaper and lack the

additional sensor functionality that the Location beacons have. The Stickers have a much lower

broadcast range and limited features, but are much smaller in size. Finally,the Video beacons

are usb-powered and have a feature set centered around video content. For this project, the

team used with Location beacons, as they have the largest available broadcast range and

longest battery life.

Estimote beacons have previously been used in a variety of applications, including in

world landmarks such as the Guggenheim museum in New York City where they were used to

display contextual information about nearby paintings and sculptures. They were also used in

Camp Nou, stadium for FC Barcelona, ​to create an app which contains information about what

is happening with each of the professionals teams of FCB including football, basketball, hockey,

handball, and more. The app welcomes thousands of visitors and fans every day, triggers

specials promotions depending on the user’s location and allows people to buy tickets for Camp

Nou museum tour. ​Hamad International Airport is using beacons to enable navigation that leads

19

passengers to their gate and checks them in [2].

In addition to the iBeacons, the team used a OnePlus One, an Android phone running a

version of Android 6 (Marshmallow), to test the application with. This is the phone that all

internal testing was being done on. Further testing details can be found in Section 3.5. The

pertinent specifications for this phone can be found in Table 2.2 below [15].

Table 2.3 Oneplus One Test Phone Specifications

Operating System CyanogenMod 12.1.2 (Based on Android 6.01)

Chipset Qualcomm MSM8974AC Snapdragon 801

CPU Quad-core 2.5 GHz Krait 400

GPU Adreno 330

RAM 3 GB LDDR3

WLAN

Wi-Fi 802.11 a/b/g/n/ac, Wi-Fi Direct, DLNA,

hotspot

Bluetooth v4.1, A2DP

GPS Yes, with A-GPS, GLONASS

Other Sensors Accelerometer, gyro, proximity, compass

2.4 Software Platform

The team opted to use Android instead of iOS as the primary development platform for a

few reasons. The first reason was that, while Apple phones are certainly very popular, Android

has taken a large market share in the US, so the team would not be losing out on too many

potential users by going with Android. Secondly, because all of the Android development tools

are free and generally open source under the Apache 2.0 license or Creative Commons

Attribution 2.5 [16], the team did not have to worry about paying for a development license or

operating in a locked-down development environment. Instead, the team could use whatever

development tools it chooses. Finally, the team already had had access to several Android

phones of various specifications to test the application with.

20

The team’s smartphone application would be interfacing with the beacons using

Estimote’s development API and by leveraging the Estimote application ecosystem. Estimote

has an extensive software ecosystem for running example programs and editing the settings of

the beacons. On mobile, Estimote provides an application for running a number of example

applications, such as an example ranging app and a simple notification app. A screenshot of the

mobile app can be seen in Figure 2.2.

Figure 2.2 Estimote Example Android Application Menu

On the Estimote website, Estimote has a webapp for editing the settings of all the

beacons owned by the account. The interface allows a user to select any of the beacons they

own, then go in and see each beacon’s settings. A screenshot of the beacon selection menu

can be seen in Figure 2.3 [2].

21

Figure 2.3 Estimote Online iBeacon Settings Menu

From the beacon selection menu, a user can go in and see the current settings of any

beacon they own. From there, the user can edit any settings without doing any code changes.

Instead, all a user has to do is edit this page and the beacons will be automatically updated with

the new settings. This made it very easy to program all the project’s beacons with the settings

that the team wanted. The interface for viewing the settings for the team’s “beetroot” beacon

can be seen in Figure 2.4 [2].

Figure 2.4 Estimote Webapp “Beetroot” iBeacon Specifications

22

2.5 Software Development and Coding

The team used Android Studio, the official Google Android development environment

and Java IDE [16], for writing code and uploading programs to the test phones. Using Android

Studio for development would cut down on any potential compatibility issues with the project

code and would allow the team to quickly and easily test new builds. Additionally, since Android

Studio is a full Java IDE, the team would be able to check syntax and compile code directly in

the Android Studio program.

Java is an object-oriented coding language used on many different platforms from PCs

to smartphones to Internet of Things devices. In fact, it is so ubiquitous, it is the world’s number

one coding language [17]. Java was the language of choice for the project because it is the

main language used for Android development and all of Estimote’s example code for Android

was written in Java.

In order to maintain proper source control and store project code, the team used Github.

Github is a source control program that is often used for open source projects, so there was a

lot of Android example code on the service. Additionally, Estimote kept all of their example code

repositories on Github, so using Github had made getting started with the project very easy.

Github, available in both web and desktop versions [18], allowed the team to track coding

progress, document all code revisions, and track which team members have written which

segments of code. In this way, in the case of a bug or unexpected problem, the team would be

able to track down exactly when that problem started happening, what new code caused it, and

even revert to an older build if necessary.

23

3. Project Objectives and Methodology
When a new student or non ECE student visits Atwater Kent, they often get lost when

trying to find a professor’s office, a conference room, a lab, or a bathroom. iBeacons can be

used to do localization and as monitors of movement in order to track users in Atwater Kent,

guide them to their desired location, and prevent them from getting lost. The team also aimed to

serve these users with information that relates to their location in the building. The essence of

the project and where the team wanted to go with it is summed up in the project mission

statement:

Use wireless technologies to make indoor localization simpler and more user-friendly,
and to serve specific information to users depending on their location and interests.

In order to complete the project mission, the team had the following three objectives:

1. Use channel modelling techniques to model path loss of bluetooth signals and determine
distance from a beacon to a user device using received signal strength (RSS).

2. Apply information derived from channel modelling to perform localization of a user device
in Atwater Kent.

3. Create a smartphone application to locate a user device in Atwater Kent and provide
contextual information about a user’s surroundings.

24

3.1 Objective 1: Channel Modeling

In this section, we discuss how we collected RSSI data from iBeacon devices. We also

discuss how we interpreted and used that information to build a path loss model for Bluetooth

signals in our wireless channel, the third floor of Atwater Kent Labs.

3.1.1 Channel Modeling Basics

By determining the path loss, or how much signal strength is lost over a certain distance,

the team was able to tell how far away from an iBeacon each user is. In order to compute a

location from RSSI data, the team needed to create an algorithm for path loss of Bluetooth

signals in Atwater Kent. This algorithm would tell the team how far away a receiver (a phone)

was from the transmitter (an iBeacon) given the RSSI readings from the receiver.

The team worked to model Atwater Kent as a transmission channel by estimating the

path loss experienced by the Bluetooth signals. For the final result, the team wanted an

algorithm for path loss that as closely as possible resembled the actual behavior of the

Bluetooth transmission.

The team used IEEE 802.11 Model C [19] as a starting point for this model since this model

(residential or small office environment, LOS/NLOS conditions) closely approximates the

environment in the hallways of Atwater Kent. Using this model, the team’s statistical path loss

model was represented by the equation:

RSSI(d) = P​r​ = P​t​ – L​p​(d​0​) - 10α log​10​ d/d​0​ + σ​SF

Where d denotes to the actual distance between the smartphone and a specific iBeacon, P​t is

the constant transmit power of iBeacons, L​p​(d​0​) is the path-loss at reference distance d​0​. α

denotes to the distance power gradient and σ denotes to the shadow fading effect. The ranging

estimate (to estimate distance) can be shown as:

d = 10​(RSSI(d)- Pt + Lp(d0) / 10 α)​ x d​0

3.1.2 Collecting Path Loss Data

In order to determine the inputs for this path loss model, the team took measurements of

25

RSSI at several different distances away from a beacon. In order to do this, the team built a

simple Android application to read RSSI and the estimated distance to the beacon that Estimote

provides from a test beacon, then used this application to take readings at different distances

from the beacon. The team used a tape measure to measure exactly how far away the test

device was from the beacon, then recorded the RSSI obtained at a given location, the Estimote

estimated distance, and the actual distance to that location. A screenshot of the test

application’s interface can be found in Figure 3.1.

Figure 3.1 RSSI and Distance Test Application Interface

The relevant code snippets where the balls to access the RSSI and distance information

are made can be found below. The rest of the code for the test application can be found in

Appendix B.

private ​String placesNearBeacon(Beacon beacon) {

 String rssi = String.​format​(​"%d"​, beacon.getRssi());

 String res= String.​format​(​"Distance:%s, RSSI:%s"​,

Utils.​computeAccuracy​(beacon),rssi);

26

 ​return ​res;

}

beaconManager ​= ​new ​BeaconManager(​this​);

beaconManager​.setRangingListener(​new ​BeaconManager.RangingListener() {

 ​@Override

 ​public void ​onBeaconsDiscovered(Region region, List<Beacon> list) {

 String text;

 Integer backgroundColor;

 ​if ​(!list.isEmpty()) {

 Beacon nearestBeacon = list.get(​0​);

 String rssiVals = placesNearBeacon(nearestBeacon);

 text = (rssiVals);

 backgroundColor = ​null​;

 } ​else ​{

 text = ​"No beacons in range."​;

 backgroundColor = ​null​;

 }

 ((TextView) findViewById(R.id.​textView​)).setText(text);

 findViewById(R.id.​relativeLayout​).setBackgroundColor(

 backgroundColor != ​null ​? backgroundColor : ​BACKGROUND_COLOR_NEUTRAL​);

 }

});

This code works by identifying a beacon “region” defined by the broadcast range of a

certain beacon (specified by UUID, major, and minor). When the device enters this region, it

accesses the beacon’s broadcasted information and characteristics as an object of class

“Beacon.” The application then simply accesses the RSSI and distance estimates from this

object, converts them to a text string, then displays the text on the screen to be viewed by a

user.

3.1.3 Interpreting Path Loss Data

The team mapped the path loss obtained in these measurements versus distance on a

logarithmic scale. These graphs were then used to extrapolate the observed path loss

characteristics, along with the algorithm that Estimote uses to do its distance estimates. Finally,

27

the team compared the Estimote distance estimates to the real world distances to determine

how much of an error was associated with these distance estimates and whether the error was

small enough that these estimates could be used in our localization model.

The path loss models that the team extrapolated from the data were a good starting

point for determining the path loss experienced by bluetooth signals in Atwater Kent. However,

by themselves they were not good enough to determine the complete path loss experienced by

signals and the signal coverage associated with each beacon because they did not take shadow

fading into account. In order to model the random shadow fading experienced by signals in

Atwater Kent, the team determined the variance in path loss experienced by the iBeacon signals

using the data the team had collected. This variance allowed the team to determine a gaussian

random variable that predicted the variance of shadow fading. In turn, this shadow fading

variable allowed the team to model the actual coverage that each beacon would be capable of

at a given broadcast power. In order to do this, the team utilized the following script in Matlab:

percentCoverage= .5*(erfc((f/(sqrt(2)*sigma))))

Where sigma is the standard deviation of the RSSI from the team’s data and f is the shadow

fading. Using this information, the team determined how beacons can be deployed on the third

floor of Atwater Kent to obtain coverage levels of 50%, 70%, 80%, 90%, 95%, and 99% at

different broadcast powers.

28

3.2 Objective 2: Localization

In order to make navigation in the Atwater Kent building more convenient, especially for

guests and new students, the team wanted to be able to localize users very specifically in the

building in three dimensions. In other words, users should be able to tell which floor they are on

and where they are on that floor. Given path loss information from the previous objective, the

team planned on localizing users in Atwater Kent using a least mean squares algorithm.

3.2.1 LMS Localization Algorithm

Using the received signals from the beacons by mobile software, the location of the

mobile could be known by triggering their own push notifications ​(each beacon referred to as a

node in this work). ​All the device need was to measure its distance to beacons. With reliable

Time Of Arrival TOA- based distance measurements from landmarks with known locations, the

location of a device could be found more accurately. The team used path loss data model to

relate mobile locations with the received signal power, and presume that the received signal and

mobiles are synchronized such that the SPT can be measured using a time of arrival (TOA)

mechanism with low error. The synchronization assumption, however, could be relaxed if the

team employed a time difference of arrival (TDOA) technique to measure SPT [6][20].

The team determined the pass loss by measuring RSSI values and inputting them into

the following formula:

 RSSI(d) = P​r​ = P​t​ – L​p​(d​0​) - 10α log​10​ d/d​0​ + σ​SF ​(1)

Where d denotes to the actual distance between the smartphone and a specific iBeacon, P​t is

the constant transmit power of iBeacons, L​p​(d​0​) is the path-loss at reference distance d​0​. ​α

denotes to the distance power gradient and σ denotes to the shadow fading effect.

The time varying Euclidean distance between node k and the mobile terminal is given by

d​k​(i) = w​o ​
i − s​k​, where s​k is the known location of node k in two dimensional space and w​o i is the

location of the mobile user at time instant i [21].

In addition to RSS measurements, each node records the SPT​, t​k​(i), ​which is the signal

propagation time from the mobile to node k. If we denote the speed of light by c, ​t​k​(i) can be

expressed as:

 t​k​(i) = (d​k​(i)/c) + b​k​(i) + n ​(t)​ ​k​ (i) (2)

29

where b​k​(i) ​is a random error with exponential distribution caused by NLOS, and ​n ​(t) ​k (i) ​is zero

mean measurement noise.

To model the mobile motion over time, the team considered the mobility function

Gauss–Markov motion model with constant velocity as following:

 w​o​ ​i​ = w​o​ ​i−1​ + v [cos(φ(i)) sin(φ(i))]​T​ ∆T (3)

where v denotes the mobile speed​, φ(i) ​represents the mobile direction at time i and ∆T ​is the

sampling time. The time-varying mobile direction​,​ φ(i), ​is random and changes according to:

φ(i) = βφ(i − 1) + (1 − β)φ¯ + [2π (1 − β ​2​)] u(i) (4)

where φ¯ ​is the average direction angle and u(i) is a zero mean random Gaussian variable with

variance​ σ ​2​ ​u​ .

To maintain simplicity in the derivation of the algorithm, the team omitted the index i from

w​o ​i ​and work with ​w o ​instead. Let us first assume there exists a fusion center where the

measurements by N sectorized base stations (nodes) are sent to for localization. Then, w ​o ​can

be found by minimizing the following hybrid global cost function over w:

 J ​ctrl​(w) = ​k=1​ ​N​ [(1 − η) J ​(p) ​
k​ (w) + η ν J​(t)​ ​k​ (w)] (5)

where J ​(p) ​k (w) and J ​(t) ​k (w) ​are the local costs associated with node k and related to RSSI and

time interval measurements, respectively. The variable η ​∈ [0, 1] ​specifies the amount of the

participation of RSSI and SPT measurements in locating the mobile terminal. Parameter ν

magnifies J ​(t) ​k ​(w) ​to be approximately in the same numerical range as J ​(p) ​
k (w). ​The local cost

functions are defined as:

 J ​(p)​ ​k​ (w) = lp​k​ (i) + 10α log llw– s​k​ ll− h​k​(i)l​2E (6)

 ​ J ​(t)​ ​k​ (w) = l t​k​(i) – [(llw – s​k​ll)/c] l​2​ (7)E

where:

 h​k​(i) = ​P​t​ – L​p​(d​0​) - 10α log​10​ d​0

The gradient vector of the global objective function (5) can be expressed as:

 ∇​w​J ​ctrl​(w) = ​N​ ​k=1​ [(1 − η)​∇​w​J ​(p)​ ​k​ + η ν​∇​w​J ​(t) ​k​] (8)

where:

30

 ∇​w​J ​(p)​ ​k​ = [(20α)/ (ln 10)] { [(w − s​k​) / (llw − s​k​ ll​
2​)] e ​(p)​

 k​ (i) }E (9)

∇​w​J ​(t)​ ​k ​= − (2 / c) { [(w − s​k​) / (llw − s​k​ ll)] e ​(t)​ k​ (i) }E (10)

with the error functions:

 e ​(p)​ ​k​ (i) = p​k​ (i) + 10α log llw − skll − h​k​(i) (11)

 e ​(t) ​k​ (i) = t​k​(i) – [(llw − s​k​ll) / c] (12)

For minimization of (5):

 w​i ​= w​i−1​ − µ​∇​w​J ​ctrl​(w​i−1​) (13)

where parameter µ > 0 is the step size, and w​i​ is the estimate of the mobile location at iteration i.

Equations (9) and (10) can become smaller by multiplying ​∇​w​J ​(p) ​k by llw−s​k​ll​2 ln 10/20 and

scaling ​∇​w​J ​(t) ​
k with (c llw − s​k​ll) / 2. Doing so, lead the team to the final LMS localization

which is [14]:

∇​w​J​k​(w​i−1​) = [α(1 − η)e ​(p)​ ​k​ (i) − ν η e ​(t)​ ​k​ (i)] (w​i−1​ − s​k​) (14)

 w​i​ = w​i−1 ​− µ ​N​ ​k=1​ ​∇​w​J​k​(w​i−1​) (15)

Applying the equations above to Matlab using the least squares technique; the least

squares technique provided a method of estimating x and y when there are errors in the

estimates. Then the team constructed the jacobian matrix as [15]:

Then the team picked an arbitrary location which was the initial guess and then the team

determined the error in the solution where [15]:

31

The team adapted a Matlab script written by a previous CWINS project to implement LMS [15].

The code takes in beacon coordinates and distances to those beacons to run the algorithm.

Running the Matlab code, which is attached in Appendix C-1, gave the team the location of the

mobile user in x and y coordinates.

Since the project including created an Android application, the Matlab code needed to be

ported to Java. Writing the code in Java was a major issue, since Java does not have robust

native matrix manipulation functionality. The team needed to find Java libraries that supported

matrix manipulation and write custom functions in order for the Java code to do what the Matlab

code does. Luckily, the team was able to implement LMS in Java by leveraging the Efficient

Java Matrix Library (EJML). The code for the Java version of the LMS code can be found in

Appendix C-2.

3.2.2 Trilateration Localization Algorithm

The team wanted to be able to compare the LMS algorithm to another common

localization algorithm. The team chose to implement a trilateration algorithm because it was

relatively simple (relying almost primarily on geometric triangulation methods) and easy to

implement. It also shared LMS’ restriction of only being useful when in range of three beacons,

which means the team could use the same datasets to compare the trilateration algorithm to

LMS.

In order to implement the algorithm, the team researched trilateration methods using

Matlab. The team found that trilateration was very simple to implement graphically, as one only

had to draw circles around each reference point, where the radius of each circle was how far

away the user was from that reference point. The user location was the intersection of all three

of the circles. In order to perform this operation mathematically, the team utilized trigonometric

methods rather than drawing circles, but the result remained the same, where the user location

was the intersection between the three reference points. The geometry used in trilateration can

be described by [13]:

32

Simplifying, we find that the trilateration solution is [13]:

As one can see from the solution, the algorithm is capable of outputting X, Y, and Z

coordinates. However, this project only deals with two-dimensional localization, so we only used

the X and Y coordinates.

3.2.3 iBeacon Deployment in Atwater Kent Labs

After the team determined the variance of shadow fading from path loss measurements

and did the coverage analysis, the team began to think about what sort of deployment pattern

would be best. The team wanted to map out a grid deployment for the third floor of Atwater

Kent, but this deployment must bear in mind that the team would need a user device to be in

range of at least three beacons at all times in order to use LMS for localization. The team

deployment would need to account for this restriction, and the team would also have to

determine whether the team need to provide coverage for the entire floor or just for the hallways

where users would be walking.

In order to check whether the team localization algorithm performed well given our

deployment strategy, the team compared their localization technique with the Cramer-Rao

Lower Bound (CRLB). This comparison let the team know how effective the localization

algorithm they were using was compared to the theoretical bound performance provided by

CRLB.

3.2.4 Cramer-Rao Lower Bound (CRLB) Analysis

In its most basic form, a CRLB analysis showed one how much variation to expect in a

given region based on a given deployment of access points. In the case of this project, the

region was Atwater Kent’s third floor, the variation was the localization error, and the access

points were the iBeacons. In order to perform this analysis, the team took the deployment maps

that were generated earlier in the project and translated the specifics of those deployments to

Matlab code. The team then adapted a Matlab script from Professor Pahlavan’s ECE 5307 class

[22] to generate the CRLB for the deployments. These scripts rely on matrix mathematics [22]

as described below:

33

Figure 3.2 Matrix Mathematics for CRLB Analysis

The Matlab code takes in information about the access point locations (iBeacons in this

case), the distance-power gradient of the wireless channel, and the standard deviation of

shadow fading in the channel. The code then applies these variables in the matrix math

described in Figure 3.2. Finally, the code generates contour plots of the standard deviation of

location error in our deployment according to CRLB.

34

3.3 Objective 3: Smartphone Application

The team developed an application where the user’s phone is used to determine the

distance from the beacons in its vicinity. This information is then processed using an LMS

localization algorithm to determine the user’s location on a map. After this, the application

overlays the user’s location on a map of Atwater Kent so that user would be able to tell where

they need to go from their current location to reach their destination.

Once the team had established the ability to localize users based on proximity to an

iBeacon, we used this information to serve users with information based on where they are in

Atwater Kent. More specifically, the team was trying to leverage user location information to tell

when a user is near a certain professor’s office, different labs, conference rooms, and lecture

halls. If a user is near a particular location, the user would get a notification from the application

that they are in a particular spot in Atwater Kent and that information is available for that location

They will then either be able to dismiss the notification or click on it for details, which may

include more text or an html link. For instance, a user may be walking by Professor Pahlavan’s

office and will get a notification on their phone that they are right near his office door. Once the

user has read the notification, if they are interested they will be able to click on it for more

information. In the case of Professor Pahalavan’s office, this information might take the form of

an html link to his biography on the WPI site. A mockup for what the main window of the

application will look like can be seen below, in Figure 3.1. In this figure, red dots are beacon

locations, stars are points of interest, and the blue dot is the user’s current location.

Figure 3.3 Early Application Graphical User Interface (GUI) Mockup

35

Overall, the essential goal of this application was to make it easier to quickly obtain

information about the professors, labs, and conference rooms in Atwater Kent. In the past,

people have attempted to serve users with this sort of simple information using things like

physical signs and QR codes. The problem with signs is that the type and amount of information

they can display is limited. QR codes are a little better in that they can provide information such

as html links, but ultimately QR codes are not a very good solution for quickly serving users with

information because they require a lot of interaction on the part of the user to actually be

effective. For instance, if a user wanted information about a particular office, they would have to

find the QR code nearby that pertained to that office, pull out their phone, scan the code, and

read the information. Most people do not even have QR code reader applications on their

phones. Therefore, having an application that automatically serves useful information to users

depending on where they are is a much better solution than QR codes because most everyone

has a smartphone and this application would require almost no additional user interaction.

3.4 Application Testing

The team tested the application by going to the third floor of Atwater Kent Labs and

taking readings on the application. The test area is called out in Figure 3.3.

Figure 3.4 Application Test Area on the Third Floor of Atwater Kent Labs

36

The coordinates given by the algorithm were compared with the actual coordinates

calculated using a tape measure. Sixty different readings were taken and compared to the

actual locations. The results of this testing can be found in Appendix J.

37

4. Results
This section outlines the results of the project objective by objective. We begin by

discussing our channel model, then touch on our localization model, and then discuss the

Android application that incorporates the channel model and localization algorithm. Finally, we

evaluate the performance of our application in a real-world test. We also describe how we did

our statistical coverage analysis to account for shadow fading in the wireless channel.

4.1 Channel Modeling

The channel modeling subsection discusses the team’s results related to our first

objective. We discuss our findings from our path loss testing and compare those results to the

path loss algorithm that Estimote uses to approximate distance.

4.1.1 Determining Path Loss

In order to determine values for this path loss model, the team measured the path loss of

the iBeacon signal versus real world distance. The standard deviation of this data, which is used

for the CRLB analysis, was 9.6 dBm. Plotting the path loss in dBm versus distance in meters on

a logarithmic scale, the team obtained Figure 4.1. The full set of data for this figure can be found

in Appendix K.

Figure 4.2 Observed Bluetooth Signal Path Loss Vs Real World Distance

38

Using this graph, the team determined that the path loss that the bluetooth signals

experienced was described by a first meter path loss of 60 dBm and an alpha of 3.3. This yields

the path loss equation found equation (16):

Lp= 60 +33log(d) (16)

The team then did measurements to determine the path loss algorithm that Estimote

uses for its built-in distance estimates. The graph of this data can be seen in Figure 4.2.

Figure 4.2 Observed Bluetooth Signal Path Loss Vs Estimated Distance

Using this graph, the team determined that the path loss that the bluetooth signals

experienced was described by a first meter path loss of 55 dBm and an alpha of 2.5. This yields

the path loss equation found equation (17):

Lp= 55 + 25log(d) (17)

This path loss equation from Estimote is closer to the theoretical path loss described in

the IEEE model, which predicts an alpha of 2 (for line of sight conditions) and a first meter path

loss of 40-50 dBm. Therefore, the team decided to investigate whether we could simply use

these distance estimates in our localization algorithm. To do this, we took measurements

comparing the estimated distance to the real distance. A graph of this data can be found in

Figure 4.3.

39

Figure 4.3 Estimote Distance Approximation Compared to Real Distance

This graph shows that the distance estimates provided by Estimote are actually fairly

accurate, and look to be able to provide a good estimate of distance to a user device within 2 or

3 meters of the actual distance. Additionally, from these tests, it seems like the estimates are

fairly consistently biased towards being slightly above the real distance.

4.1.2 Coverage Analysis

After determining a path loss equation for the iBeacon signals, the team expanded that

equation by adding a term signifying the fade margin, or the amount of path loss associate with

shadow fading at a given coverage level. This allowed the team to determine the amount of

coverage that could be statistically guaranteed for a given radius at a given transmission power.

This was done using Matlab as described in section 3.1. The results of this coverage analysis

can be seen in Table 4.1. An expanded version of the chart is available in Appendix H.

40

Table 4.1 Statistical Coverage Analysis with Shadow Fading

Transmission
Power= 4 dBm

Transmission
Power= 0 dBm

Transmission
Power= -4 dBm

Percent
Coverage

Fade Margin
(dB) Equation

coverage radius
(m)

coverage radius
(m)

coverage radius
(m)

50% (0.5) 0 Lp= 55+ 25log(d) 47.86 33.113 22.909

70% (0.699) 5 Lp= 55+ 25log(d)+ 5 30.2 20.893 14.454

80% (0.798) 8 Lp= 55+ 25log(d)+ 8 22.91 15.849 10.965

90%
(0.9003) 12.3 Lp= 55+ 25log(d)+ 12.3 15.42 10.666 7.379

95%
(0.9503) 15.8 Lp= 55+ 25log(d)+ 15.8 11.169 7.727 5.346

99% (0.99) 22.3 Lp= 55+ 25log(d)+ 22.3 6.138 4.246 2.938

Bearing this analysis in mind, the team chose to build the beacon deployment with the

beacons transmitting at 4 dBm, as this statistically guarantees 90% coverage in a 15.42 meter

broadcast radius. This should assure that the beacon coverage on the third floor of Atwater Kent

is solid enough to reliably perform localization.

4.2 Localization in Atwater Kent

In this section, we discuss the results of our research on localization. We compare the

LMS localization algorithm’s performance to a simpler trilateration algorithm. We also discuss

the specifics of our iBeacon deployment in Atwater Kent. Finally, we perform a CRLB analysis of

our iBeacon deployment using information from our path loss testing.

4.2.1 Localization Algorithms
During this project, the team explored two different localization algorithms. The first was

least mean squares (LMS). This is an algorithm that relies on three reference points (in this

case, beacons) to do successive guessing to find a user position. The mathematics behind it are

fairly complex, but this algorithm tends to be accurate enough in practice that it is useful in

real-world applications.

The second algorithm the team examined was trilateration, which is a much simpler

algorithm based off of geometric triangulation techniques that also requires three reference

41

points to work. This localization method is very simple to implement, but is usually not accurate

enough in practice to be used in real-world scenarios. Taking that into account, the team is

simply using trilateration as a comparison point to the LMS algorithm’s performance to ensure

that the LMS algorithm is performing reasonably well, with little error.

4.2.1.1 Least Mean Squares (LMS) Algorithm
As mentioned in chapter 3, the team adapted a Matlab script written by a previous

CWINS project to implement LMS. The code basically generate the mobile user location in x

and y coordinates. All the code needs is the beacon's location and the distances between the

mobile user and the beacons. The code start from an arbitrary location which is initial guess

point of the mobile user location; the code keep iterating till the estimation error get so close as

0.01. This can be seen in Figure 4.4.

Figure 4.4 Example Output of Matlab LMS Algorithm

In order to make the LMS interact with smartphone application, the team write another

LMS code in Java that has the same functionality as Matlab code. This code generates the

location of the mobile user in x and y coordinates. Figure 4.5 is an example of the output of the

Java code.

42

 Figure 4.5 Java Version of LMS Code and Example Output

43

4.2.1.2 Trilateration Algorithm
In order to have another algorithm to compare the LMS algorithm’s performance to, the

team built a trilateration algorithm in Matlab. This algorithm simply outputs X and Y coordinates

for a given set of fixed reference points and distances. Much like LMS, this algorithm requires

three beacons because it relies on triangulation methods. This allows the trilateration to be

easily compared to LMS because the same data sets can be used for both algorithms. The code

for this algorithm can be found in Appendix D.

4.2.1.3 Localization Error
After LMS was generated in Matlab, the team did some measurements manually in the

third floor of Atwater Kent to compare the real mobile user location with the location that is

generated by the LMS code. The team generated 14 mobile user locations. In all these 14

locations, the mobile user was within the range of three beacons. This measurements can be

found later section.

In order to make sure that LMS is a reliable algorithm in this project, the team also wrote

code for a trilateration algorithm in Matlab. By comparing the Trilateration to LMS, the team

found that the two algorithms had similar performance for some data points, but that trilateration

had several points that were way off of the real location. Overall, the LMS algorithm has an

average error of 6.18 meters, with a standard deviation of 9.02 meters. Meanwhile, the

trilateration algorithm had an average error of 13.47 meters, with a standard deviation of 27.02

meters. This means that, on average, the LMS algorithm will perform with a lower degree of

error. The relevant results of this error analysis can be seen in Table 4.2. The full version of the

error test table can be found in Appendix I.

44

Table 4.2 Comparing LMS and Trilateration Localization Accuracy

The team graphed this error information in histograms to determine statistically what

percentage of calculations could be expected to have little error versus what percentage of

calculations could be expected to have large errors. These graphs can be seen in Figure 4.6.

Figure 4.6 Comparing LMS and Trilateration Localization Accuracy for X and Y Coordinates

45

The major conclusions to be made out of this analysis are that, in the team’s testing,

LMS had a better average error and that trilateration had a few very large error data points,

meaning it had a very high standard deviation. Additionally, the team can expect that 90% of the

time, the LMS algorithm will produce an error of 10 units or less for the X coordinate and that

60% of the time, the LMS will produce an error of 10 units or less for the Y coordinate. This

gives the algorithm fairly good odds to be close to the true user location and so could most likely

be used, with acceptable error, for localization.

4.2.2 iBeacon Deployment on Atwater Kent Labs Third Floor

In order for the team to use the LMS localization algorithm in the application, the team

needed to deploy actual beacons in Atwater Kent. To do this, the team leveraged the coverage

analysis described in section 4.1.3 to determine what broadcast ranges are available at different

broadcast powers. The team came up with two deployment options for the third floor of Atwater

Kent: a purely grid-type deployment and a deployment where beacons are only placed in

hallways. The team then did a Cramer-Rao Lower Bound (CRLB) analysis on these deployment

options to determine their expected performance for localization and to give a performance

reference for the real localization in the smartphone application.

4.2.2.1 Deployment Maps
The team ultimately decided to deploy the beacons assuming a 15 meter broadcast

range on all the beacons and a transmission power of 4 dBm. This statistically guarantees with

90% confidence that a user will receive signal from a beacon even at the very edge of this

broadcast radius. Given this broadcast radius, the team identified two main deployment plan

options. The first is a grid-based deployment. This deployment can be seen in figure 4.7, which

is a map of Atwater Kent’s third floor split into one meter grids. The red dots on the map

represent beacon locations.

46

Figure 4.7 Grid Deployment of iBeacons for Atwater Kent Labs Third Floor

While the grid deployment is fairly simply geometrically speaking, it has a number of

practical issues. One issue is that the deployment calls for placing beacons in offices and labs

where people may not want them placed, they could interfere with experiments, and they would

be difficult to access for maintenance. Another issue is that this deployment has many NLOS

conditions. Since the Estimote distance algorithm is based off of LOS conditions, having a lot of

NLOS conditions in the deployment is not good.

In order to solve some of these problems, the team developed a deployment that only

calls for placing beacons in hallways. Since users will almost always be in hallways while using

the application, it should be safe to focus the deployment on hallways. A map of this deployment

can be seen in Figure 4.8.

47

Figure 4.8 Hall Deployment of iBeacons for Atwater Kent Labs Third Floor

Much like the grid deployment, the hall deployment should guarantee three beacon

coverage for all the hallways. While the hall deployment calls for more beacons (20 total as

opposed to 16 total for the grid deployment), the hall deployment is better in that it allows more

freedom for where the team places the beacons and beacons do not have to be placed in hard

to access places like labs. Additionally, this deployment assures LOS conditions for almost all

points, which should make the application’s localization functionality more accurate.

4.2.2.2 Cramer-Rao Lower Bound (CRLB) Analysis
The team performed a CRLB analysis in Matlab to determine what sort of error range to

expect for different areas in the deployment. The code for this analysis can be found in

Appendix G. Figure 4.9 shows the CRLB for the entire grid deployment. Figure 4.10 shows just

the lower left-hand section of the grid deployment. Figure 4.11 shows the CRLB analysis for the

entire hall deployment. Figure 4.12 shows just the lower left-hand section of the hall

deployment.

48

Figure 4.9 CRLB for Grid Deployment

Figure 4.10 Smaller Section of CRLB for Grid Deployment

49

Figure 4.11 CRLB for Hall Deployment

Figure 4.12 Smaller Section of CRLB for Hall Deployment

This analysis shows that the team can expect a standard deviation of location error of

between 4 and 12 for the hallways in the hall deployment and between 7 and 10 for the

hallways in the grid deployment. This means that both these deployments have potential errors

associated with them, but they are not so large as to be hugely significant in a theoretical

scenario.

50

4.3 Smartphone Application

In this section, we discuss our smartphone application, which incorporates information

from our channel model and the LMS localization algorithm we built. We discuss the

functionality of the application. We also evaluate the application’s real-world localization

performance.

4.3.1 Graphical User Interface (GUI) and Main Navigation Screen
The main screen consists of a map of atwater kent which shows the user location as a

blue dot based on input from the beacons. The screen also shows the beacons as red dots. For

testing purposes the distances to each of the beacons are also shown, as well as output from

the LMS algorithm. There is a button to proceed to the contextual information screen (Professor

Info) as well as a button to toggle whether notifications are given or not based on close

beacons. The numbers in the middle left are the beacon majors of the three closest beacons, as

well as the distances (in meters) to those beacons. In the bottom left are the X and Y coordinate

returned by the LMS algorithm based on those beacons, where the 0,0 point is in the upper

right.

51

Figure 4.13 Android Application Main Activity Window

The relevant code can be found in Appendix B.

4.3.2 Notification Functionality
The team implemented notifications into the application with the user receiving a

notification whenever they enter the range of a beacon (Assuming they have notifications on).

These notifications tell the user about the closest room to the beacon. An example notification

can be seen in Figure 4.14.

52

Figure 4.14 Android Application Example iBeacon Proximity Notification

The code for the beacon notifications can be found in Appendix A. Below is a code

snippet for creating a new notification with a specific beacon.
 beaconNotificationsManager.addNotification(​//Beetroot 3

 ​new ​BeaconID(​"6EE4D6A9-DD8E-550E-FF81-783E445F9C5B"​,​48542​,​60126​),

 ​"Room 320 is the CWINS lab"​,

 ​null​);

This code specifies the ID of the beacon that the team is communicating with, as well as

major and minor. These three values together identify a specific iBeacon. Next, the messages

for when the phone is entering transmission range and exiting transmission range are specified.

Using this template, the team added functionality to the application to notify a user about useful

information when they are entering the transmission range of any beacon. This forms one of the

core elements of the applications end functionality, as the team wants to be able to notify users

when they are near certain points of interest and deliver information to them about those

locations.

53

4.3.3 Contextual Information
When a user clicks the Professor Info button, the application displays a second window

with information about the rooms on the floor. This window can be seen in Figure 4.15.

Figure 4.15 Android Application Contextual Information Window

The team has also built a database of the information that will be displayed to a user

through the app. A table describing the contents of the database so far can be seen in Appendix

D.

4.4 Application Performance Evaluation

In order for the team to investigate the performance of the application, the team

deployed actual beacons on third floor of Atwater Kent. We then measured and collect data on

where the application showed us to be on the map versus where we were in real life. Table 4.3

shows a selection of the collected data. The full version of the data table can be found in

Appendix J.

54

Table 4.3 Application Localization Performance Evaluation Data

By comparing the LMS algorithm’s output to real-world positions, the team was able to

determine the localization error at several different locations in Atwater Kent. From the CRLB

analysis, the team was expecting a good deal of error, as the standard deviation for location

error in the hallways ranged from 4 to 12 meters depending on the position. As can be seen in

Figure 4.16, the average X coordinate error was 8.67 meters with a standard deviation of 8.94

meters. Figure 4.17 shows the Y coordinate with an average error of 8.88 meters and a

standard deviation of 6.43 meters.

55

Figure 4.18 X Coordinate Error for Application Localization

Figure 4.19 Y Coordinate Error for Application Localization

Overall, the average error was 8.78 meters with a standard deviation error of 7.72

meters. The average error was somewhat larger than what the team had expected given the

LMS algorithm testing. However, the standard deviation of the results is in line with what the

team expected of the deployment given the CRLB analysis the team conducted, which expected

an error between 4 and 12 meters of standard deviation based on position. This indicates that

the application’s performance is in line with theory, but not working as well as it could in ideal

conditions.

While this project provides a good proof of concept for indoor localization, the

localization error is too large to reasonably be useful for a user in real-time. The team

56

determined that a major source of this error is inaccurate distance estimates from the iBeacons

due to fluctuating RSSI readings. For instance, in one test, the distance estimation to an

iBeacon was 6 meters, but the actual distance to that iBeacon was 15 meters (representing a

150% ranging error). This seems to indicate that the inaccurate localization results are due to

unreliable distance approximations from the iBeacon signals. Moreover, the team also

experienced issues with getting reliable signal from three iBeacons at once, as the application

was only able to pick up signal from three iBeacons for a few seconds at any one time. This

made it difficult to smoothly track a user’s position as they were moving through the hallways,

and resulted in the user location jumping across the map during use.

57

5. Conclusions and Future Work
During our testing, the team determined that the RSSI values obtained from the

iBeacons can fluctuate significantly. Oftentimes, the team would still have to stand in a location

for several seconds in order to get accurate RSSI readings. This resulted in inaccurate distance

approximations being fed into the localization algorithm when testing it with real-time data. The

team found the localization provided by the LMS algorithm to be fairly accurate in theory, but in

practice the application’s localization functionality had significant error associated with it

because of the inaccurate real-time distance measurements. This indicates that it is difficult to

accurately measure distance using telemetry from the iBeacons and that the Estimote distance

approximation is not accurate enough to do localization with. A major element of future work on

this subject will be determining a way to obtain more stable and accurate RSSI readings from

the iBeacons in real-time. Getting accurate distance approximations from the RSSI readings

could dramatically increase the performance of the localization algorithm. It would also prevent

the user icon from jumping around on the map, which happened quite a lot during our testing.

For a real application, the user icon would need to smoothly follow the path that the user is

walking so the user could actually navigate using the application.

In our final performance evaluation, we found that the average localization error in our

application was 8.88 meters. This error might be good enough for a large outdoor environment,

but for an indoor environment, it is too large for the application to be useful to a real user. The

team believes that if the average error can be brought down to 4 meters, which is the

approximately the distance between doors of adjoining offices in Atwater Kent, the localization

functionality in the application could be useful to an actual user. At this level of error, a user

would always get a localization estimate that was no more than one room away from where they

actually are.

Overall, using iBeacon technology for navigation and proximity awareness shows

promise, but the technology is not quite ready for real-world use. In order to develop the

technology for future applications, future projects should explore different models to use to

approximate distance with and compare the performance of those model to the Estimote

algorithm. Additionally, a future team should build more localization algorithms to test against

our results to see if a more accurate algorithm for localizing users can be found. Finally,

iBeacon localization should be compared to other common indoor localization methods, such as

58

localization using Wifi, which will provide a better idea of how localization using iBeacon

performs compared to existing indoor localization technologies.

With future research, we will get a greater understanding of the capabilities of iBeacon

technology for indoor navigation and proximity awareness and perhaps finally find a reliable way

to accurately localize users indoors, help them find the locations they need to go, and serve

contextual information to them about their surroundings. This technology could be used for a

number of applications, such as enhancing the experience of museum tours and serving

advertisements to potential customers in real-time based on their location. In this way, iBeacon

can form a foundation for the smart building technologies of the future that will help us navigate

indoors and get better information about the many interesting things around us.

59

Works Cited

[1] Pahlavan, Kaveh. ECE 3308. Class Lecture, Topic: “Evolution of IoT and 5G.” Worcester
Polytechnic Institute, October 10, 2016.

[2] “Estimote.” Internet: ​http://estimote.com/​, 2016, ​[Oct.5, 2016].

[3] “CWINS.” Internet: ​http://www.cwins.wpi.edu/​, [Oct. 5, 2016].

[4] Z. Li, Y. Yang, and K. Pahlavan. “Using iBeacon for Newborns Localization in Hospitals.”
Internet: ​http://www.cwins.wpi.edu/publications/conference%20paper/ZhouchiISMICT.pdf​.
CWINS Lab, Worcester Polytechnic Institute.

[5] Z. Li, Y. Yang, and K. Pahlavan. “Using iBeacon for Intelligent In-Room Presence Detection.”
Internet: ​http://www.cwins.wpi.edu/publications/conference%20paper/Sushi.pdf​. CWINS Lab,
Worcester Polytechnic Institute.

[6] I. Guvenc and C. Chong, “A survey on TOA based wireless localization and NLOS mitigation
techniques,” IEEE Communications Surveys & Tutorials, vol. 11, no. 3, pp. 107–124, Mar. 2009.

[7] N. Yousef, A. H. Sayed, and L. Jalloul, “Robust wireless location over fading channels,” IEEE
Trans. on Vehicular Technology, vol. 52, no. 1, pp. 117–126, Jan. 2003.

[8] X. Li, “Collaborative localization with received-signal strength in wireless sensor networks,” IEEE
Trans. on Vehicular Technology, vol. 56, no. 6, pp. 3807–3817, June 2007.

[9] Pahlavan, Kaveh, Krishnamurthy, and Prashant. ​Principles of Wireless Networks​. N.p.: John
Wiley & Sons, 2013. Print.

[10] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks:
Formulation and performance analysis,” IEEE Trans. on Signal Processing, vol. 56, no. 7, pp.
3122–3136, July 2008.

[11] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network based wireless location: Challenges
faced in developing techniques for accurate wireless location information,” IEEE Signal Proc.
Magazine, vol. 22, no. 4, pp. 24–40, April 2005.

[12] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE
Trans. on Signal Processing, vol. 58, no. 3, pp. 1035–1048, Mar. 2010.

[13] Pablo Cotera, Miguel Velazquez, David Cruz, Luis Medina​ ​and Manuel Bandala​. ​” ​Indoor Robot
Positioning Using an Enhanced Trilateration Algorithm” - Jun 02, 2016​, 2 June 2016,
journals.sagepub.com/doi/full/10.5772/63246. Accessed 20 Feb. 2017.

60

http://www.cwins.wpi.edu/
http://www.cwins.wpi.edu/publications/conference%20paper/Sushi.pdf
http://www.cwins.wpi.edu/publications/conference%20paper/ZhouchiISMICT.pdf
http://estimote.com/

[14] Y. Yang. “Application Performance Evaluation for iBeacon In-Room Localization Technology
Using CRLB.” Internet:
http://www.cwins.wpi.edu/publications/Thesis/MS%20Thesis/Yang%20Yang.pdf​. Worcester
Polytechnic Institute.

[15] “OnePlus One.” Internet: ​http://www.gsmarena.com/oneplus_one-6327.php​, [Sept. 20, 2016].

[16] “Android Studio.” Internet: ​https://developer.android.com/studio/index.html​, [Sept. 20, 2016].

[17] “Create the Future with Java.” Internet: ​https://www.oracle.com/java/index.html​, ​[Sept. 20, 2016].

[18] “GitHub.” Internet: ​https://github.com/​, 2016, ​[Sept. 15, 2016].

[19] Pahlavan, Kaveh. ECE 3308. Class Lecture, Topic: “Characteristics of Wireless Medium.”
Worcester Polytechnic Institute, August 29, 2016.

[20] A. Pal, “Localization algorithms in wireless sensor networks: Current approaches and future
challenges,” Network Protocols and Algorithms, vol. 2, no. 1, pp. 45–73, Jan. 2010.

[21] Ali H. Sayed, Benoit Champagne, Stephan Saur and Reza Abdolee, "DIFFUSION LMS
LOCALIZATION AND TRACKING ALGORITHM FOR WIRELESS CELLULAR NETWORKS."
Ece.mcgill.ca​. N.p., 2013. Web. 10 Dec. 2106.
<http://www.ece.mcgill.ca/~bchamp/Papers/Conference/ICASSP2013c.pdf>.

[22] Pahlavan, Kevah. ECE 5307. Class Lecture, Topic: “​Performance of RSS Based Localization
Systems.” ​Worcester Polytechnic Institute, February 2017.

61

https://www.oracle.com/java/index.html
https://github.com/
http://www.gsmarena.com/oneplus_one-6327.php
http://www.cwins.wpi.edu/publications/Thesis/MS%20Thesis/Yang%20Yang.pdf
https://developer.android.com/studio/index.html

Appendices

Appendix A: Notification Code

//Notification toggling code is included in here

@Override

protected void ​onResume() {

 ​super​.onResume();

 SystemRequirementsChecker.​checkWithDefaultDialogs​(​this​);

 ​//Button to toggle notifications

 ​final ​Button notifsOff = (Button)findViewById(R.id.​notifsOff​);

 notifsOff.setX(​500​);

 notifsOff.setY(​1200​);

 notifsOff.setBackgroundColor(​0xFFFF0000​);

 notifsOff.setOnClickListener(​new ​View.OnClickListener() {

 ​@Override

 ​public void ​onClick(View v) {

 ​beaconNotificationsEnabled ​= !​beaconNotificationsEnabled​;

 ​if​(​beaconNotificationsEnabled​){

 ​notifsOff​.setText(​"Notifications Off"​);

 ​notifsOff​.setBackgroundColor(​0xFFFF0000​);

 }

 ​else ​{

 ​notifsOff​.setText(​"Notifications On"​);

 ​notifsOff​.setBackgroundColor(​0xFF00FF00​);

 }

 }

 });

 ​if ​(!isBeaconNotificationsEnabled()) {

 Log.​d​(​TAG​, ​"Enabling beacon notifications"​);

 enableBeaconNotifications();

 }

 ​beaconManager​.connect(​new ​BeaconManager.ServiceReadyCallback() {

 ​@Override

62

 ​public void ​onServiceReady() {

 ​beaconManager​.startRanging(​region​);

 }

 });

}

@Override

protected void ​onPause() {

 ​beaconManager​.stopRanging(​region​);

 ​super​.onPause();

}

//Creates android notifications when the user enters the range of beacons

public void ​enableBeaconNotifications() {

 ​if ​(​beaconNotificationsEnabled​) { ​return​; }

 BeaconNotificationsManager beaconNotificationsManager = ​new

BeaconNotificationsManager(​this​);

 beaconNotificationsManager.addNotification(​//Beetroot 3

 ​new ​BeaconID(​"6EE4D6A9-DD8E-550E-FF81-783E445F9C5B"​,​48542​,​60126​),

 ​"Room 320 is the CWINS lab"​,

 ​null​);

 beaconNotificationsManager.startMonitoring();

 ​beaconNotificationsEnabled ​= ​true​;

}

public boolean ​isBeaconNotificationsEnabled() {

 ​return ​beaconNotificationsEnabled​;

}

63

Appendix B: RSSI and Distance Measurement Application Code

public class ​MainActivity ​extends ​AppCompatActivity {
 ​private static final ​String ​TAG ​= ​"MainActivity"​;
 ​private static final ​Map<Color, Integer> ​BACKGROUND_COLORS ​= ​new ​HashMap<>();
 ​static ​{
 ​BACKGROUND_COLORS​.put(Color.​ICY_MARSHMALLOW​, android.graphics.Color.​rgb​(​109​,
170​, ​199​));
 ​BACKGROUND_COLORS​.put(Color.​BLUEBERRY_PIE​, android.graphics.Color.​rgb​(​98​, ​84​,
158​));
 ​BACKGROUND_COLORS​.put(Color.​MINT_COCKTAIL​, android.graphics.Color.​rgb​(​155​, ​186​,
160​));
 }
 ​private static final int ​BACKGROUND_COLOR_NEUTRAL ​= android.graphics.Color.​rgb​(​160​,
169​, ​172​);
 ​private ​String placesNearBeacon(Beacon beacon) {
 String rssi = String.​format​(​"%d"​, beacon.getRssi());
 String res= String.​format​(​"Distance:%s, RSSI:%s"​,
Utils.​computeAccuracy​(beacon),rssi);
 ​return ​res;
 }
 ​private ​BeaconManager ​beaconManager​;
 ​private ​Region ​region​;
 ​@Override
 ​protected void ​onCreate(Bundle savedInstanceState) {
 ​super​.onCreate(savedInstanceState);
 setContentView(R.layout.​activity_main​);
 ​beaconManager ​= ​new ​BeaconManager(​this​);
 ​beaconManager​.setRangingListener(​new ​BeaconManager.RangingListener() {
 ​@Override
 ​public void ​onBeaconsDiscovered(Region region, List<Beacon> list) {
 String text;
 Integer backgroundColor;
 ​if ​(!list.isEmpty()) {
 Beacon nearestBeacon = list.get(​0​);
 String rssiVals = placesNearBeacon(nearestBeacon);

 text = (rssiVals);
 backgroundColor = ​null​;
 } ​else ​{
 text = ​"No beacons in range."​;
 backgroundColor = ​null​;
 }
 ((TextView) findViewById(R.id.​textView​)).setText(text);
 findViewById(R.id.​relativeLayout​).setBackgroundColor(
 backgroundColor != ​null ​? backgroundColor :
BACKGROUND_COLOR_NEUTRAL​);
 }

64

 });
 ​region ​= ​new ​Region(​"ranged region"​,
UUID.​fromString​(​"B9407F30-F5F8-466E-AFF9-25556B57FE6D"​), ​61665​, ​42057​);
 }
@Override
 ​protected void ​onResume() {
 ​super​.onResume();

 SystemRequirementsChecker.​checkWithDefaultDialogs​(​this​);

 ​beaconManager​.connect(​new ​BeaconManager.ServiceReadyCallback() {
 ​@Override
 ​public void ​onServiceReady() {
 ​beaconManager​.startRanging(​region​);
 }
 });
 }
 ​@Override
 ​protected void ​onPause() {
 ​beaconManager​.stopRanging(​region​);

 ​super​.onPause();
 }
}

65

Appendix C: LMS Code

C-1. Matlab Version:

function​ [final_x,final_y] = ch12_p2(known_references,initial_guess,distances)
known_references = [10,10;0,15;-5,5];
initial_guess = [2,2];
distances = [15,16,5];
if​ size(known_references,2) ~= 2
error(​'location of known reference points should be entered as Nx2 matrix'​);
end
figure(1);
hold ​on
grid ​on
i=1;
temp_location(i,:) = initial_guess ;
temp_error = 0 ;
for​ j = 1 : size(known_references,1)
temp_error = temp_error + abs((known_references(j,1) - temp_location(i,1))^2 +
(known_references(j,2) - temp_location(i,2))^2 - distances(j)^2) ;
end
estimated_error = temp_error ;
% new_matrix = [];
while​ norm(estimated_error) > 1e-2 ​%iterative process for LS algorithm
for​ j = 1 : size(known_references,1) ​%Jacobian has been calculated in advance
jacobian_matrix(j,:) = -2*(known_references(j,:) - temp_location(i,:)) ; ​%partial
derivative is i.e. -2(x_1-x)
f(j) = (known_references(j,1) - temp_location(i,1))^2 + (known_references(j,2) -
temp_location(i,2))^2 - distances(j)^2 ;
end
estimated_error = -inv(jacobian_matrix' * jacobian_matrix) * (jacobian_matrix') * f' ;
%update the U and E
temp_location(i+1,:) = temp_location(i,:) + estimated_error' ;
% current_point = [temp_location(i+1,1),temp_location(i+1,2)];
% new_matrix = [new_matrix; current_point];
plot(temp_location(i+1,1),temp_location(i+1,2),​'rx'​) ; ​% plot
text(temp_location(i+1,1), temp_location(i+1,2)*(1 + 0.005) , num2str(i));
i = i + 1;
end
final_x = temp_location(i,1) ;
disp(final_x);
final_y = temp_location(i,2) ;
disp(final_y);

66

C- 2. Java Version:

/**

* Created by qusai on 2/1/17.

*/

public class Beacon {

 //instance variables

 private int x;

 private int y;

 public Beacon(int x, int y) {

 this.x = x;

 this.y = y;

 }

 public int getX() {

 return this.x;

 }

 public int getY() {

 return this.y;

 }

}

//Main Class

import org.ejml.ops.CommonOps;

import org.ejml.ops.NormOps;

import org.ejml.simple.*;

import org.ejml.ops.CommonOps.*;

import org.ejml.ops.NormOps.*;

import sun.java2d.pipe.SpanShapeRenderer;

67

public class Main {

 public static void main(String[] args) {

 //array of Beacon objects

 Beacon[] beacons = new Beacon[3]; //set the size to 3 at first

 int numBeacons = beacons.length;

 //create Beacons

 Beacon beacon1 = new Beacon(10, 10);

 Beacon beacon2 = new Beacon(0, 15);

 Beacon beacon3 = new Beacon(-5, 5);

 //add Beacons to array

 beacons[0] = beacon1;

 beacons[1] = beacon2;

 beacons[2] = beacon3;

 //set intial guess

 double guessX = 2;

 double guessY = 2;

 double[][] station = new double[][]{{ guessX, guessY }};

 SimpleMatrix matStation = new SimpleMatrix(station);

 double[][] mo = new double[][]{{ -1.0, -1.0}};

 SimpleMatrix minusOne = new SimpleMatrix(mo);

 //calculate the estimation error

 double estimationError = 0;

 double[] distances = {15,16,5};

 for (int i=0; i<numBeacons; i++) {

 Beacon thisBeacon = beacons[i];

// double d = getDistance(thisBeacon.getX(), thisBeacon.getY(), guessX,

guessY);

 double d = distances[i];

68

 double f = Math.abs(Math.pow(thisBeacon.getX() - guessX, 2) +

Math.pow(thisBeacon.getY() - guessY, 2) - Math.pow(d, 2));

 estimationError = estimationError + f;

 }

 //create a Jacobian matrix of size [number_of_beacons][2]

 double[][] jacobianMatrix = new double[numBeacons][2];

 double[][] matF = new double[numBeacons][1];

 while (estimationError > 0.01){

 //for loop happens here

 //the condition for, for loop ->

 for (int i=0; i<numBeacons; i++){ //3 is the number of beacons

 //we calculate the jacobian matrix here

 Beacon b = beacons[i];

 for (int j=0; j<2; j++){

 if (j==0){

 jacobianMatrix[i][j] = -2*(b.getX()-guessX);

 }

 else {

 jacobianMatrix[i][j] = -2 * (b.getY() - guessY);

 }

 }

 matF[i][0] = Math.pow(b.getX() - guessX, 2) + Math.pow(b.getY() -

guessY, 2) - Math.pow(distances[i], 2);

 }

 SimpleMatrix matrixJacobian = new SimpleMatrix(jacobianMatrix);

 SimpleMatrix matrixF = new SimpleMatrix(matF);

 //here goes the matrix inverse operation

 // estimationError = -inv(jacobianMatrix' * jacobianMatrix) *

(jacobianMatrix') * F'

 SimpleMatrix first =

(matrixJacobian.transpose().mult(matrixJacobian)).invert();

 SimpleMatrix second = (matrixJacobian.transpose().mult(matrixF));

69

 SimpleMatrix matrixError = first.mult(second);

 matrixError = matrixError.negative();

 matStation = matStation.plus(matrixError.transpose());

 System.out.println(matStation);

 estimationError = matrixError.elementSum();

 }

 }

 //coordinate 1: x1, y1; coordinate 2: x2, y2

 public static double getDistance(int x1, int y1, int x2, int y2) {

 double d = Math.sqrt(Math.pow(x2-x1, 2) + Math.pow(y2-y1, 2));

 return d;

 }

}

70

Appendix D: Trilateration Matlab Code

function [lat, lon] = trilateration(DistA, DistB, DistC, xA, yA, xB, yB, xC, yC)

%

% Adapted from:

% https://www.mathworks.com/matlabcentral/fileexchange/57218-2d-trilateration/content/trilateration.m

% Copyright (c) 2016, Lionel Tailhardat

% All rights reserved.

%

% Redistribution and use in source and binary forms, with or without

% modification, are permitted provided that the following conditions are

% met:

%

% * Redistributions of source code must retain the above copyright

% notice, this list of conditions and the following disclaimer.

% * Redistributions in binary form must reproduce the above copyright

% notice, this list of conditions and the following disclaimer in

% the documentation and/or other materials provided with the distribution

%

% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

% POSSIBILITY OF SUCH DAMAGE.

distA=122;

distB=32;

distC=32;

71

xA=443;

yA=0;

xB=376;

yB=70;

xC=313;

yC=70;

P1 = [xA; yA; 0];

P2 = [xB; yB; 0];

P3 = [xC; yC; 0];

%% Transformation

% from wikipedia https://en.wikipedia.org/wiki/Trilateration

% transform to get circle 1 at origin

% transform to get circle 2 on x axis

ex = (P2 - P1) / (norm(P2 - P1));

i = dot(ex, (P3 - P1));

ey = (P3 - P1 - i*ex) / (norm(P3 - P1 - i*ex));

d = norm(P2 - P1);

j = dot(ey, (P3 - P1));

%Trianglulation Math

x = ((distA^2) - (distB^2) + (d^2))/(2*d);

y = (((distA^2) - (distC^2) + (i^2) + (j^2))/(2*j)) - ((i/j)*x);

% triPt is an array with ECEF x,y,z of trilateration point

triPt = P1 + x*ex + y*ey

end

72

Appendix E: GUI Code

//From the MainActivity class
public class ​MainActivity ​extends ​AppCompatActivity {

 ​private static final ​String ​TAG ​= ​"MainActivity"​;

 ​private ​Button ​userLocation​;
 ​//distances to the beacons

 ​private double ​distance1​,​distance2​,​distance3​;

 ​private ​BeaconManager ​beaconManager​;
 ​private ​Region ​region​;
 ​private boolean ​beaconNotificationsEnabled ​= ​false​;

 ​@Override
 ​protected void ​onCreate(Bundle savedInstanceState) {
 ​super​.onCreate(savedInstanceState);
 ​//this.setTitle(R.string.instructions);

 ​setContentView(R.layout.​activity_main​);

 ​beaconManager ​= ​new ​BeaconManager(​this​);
 ​beaconManager​.setRangingListener(​new ​BeaconManager.RangingListener() {
 ​@Override
 ​public void ​onBeaconsDiscovered(Region region, List<Beacon> list) {
 String text;
 Beacon firstBeacon, secondBeacon, thirdBeacon;
 ​//Only one beacon in range
 ​if ​(list.size()==​1​) {
 firstBeacon = list.get(​0​);
 ​distance1 ​= Utils.​computeAccuracy​(firstBeacon);

 text = (Integer.​toString​(firstBeacon.getMajor()) + ​": " ​+
Double.​toString​((​double​)Math.​round​(​distance1 ​* ​100d​) / ​100d​) + ​" Only 1 beacon in
range"​);
 }

 ​else if​(list.size()==​2​){
 ​//Only two beacons in range
 ​firstBeacon = list.get(​0​);
 ​distance1 ​= Utils.​computeAccuracy​(firstBeacon);

 secondBeacon = list.get(​1​);
 ​distance2 ​= Utils.​computeAccuracy​(secondBeacon);

 text = (Integer.​toString​(firstBeacon.getMajor()) + ​": " ​+
Double.​toString​((​double​)Math.​round​(​distance1 ​* ​100d​) / ​100d​) + ​", ​\n​" ​+

73

 Integer.​toString​(secondBeacon.getMajor()) + ​": "
+Double.​toString​((​double​)Math.​round​(​distance2 ​* ​100d​) / ​100d​) + ​" Only 2 beacons in
range."​);
 }

 ​else if​(list.size()>=​3​){

 firstBeacon = list.get(​0​);
 ​distance1 ​= Utils.​computeAccuracy​(firstBeacon);

 secondBeacon = list.get(​1​);
 ​distance2 ​= Utils.​computeAccuracy​(secondBeacon);

 thirdBeacon = list.get(​2​);
 ​distance3 ​= Utils.​computeAccuracy​(thirdBeacon);

 ​//***************Start LMS
Functionality*****************************
 ​LMSBeacon[] beacons = ​new ​LMSBeacon[​3​]; ​//set the size to 3 at
first
 ​beacons[​0​]=​null​;
 beacons[​1​]=​null​;
 beacons[​2​]=​null​;
 ​int ​numBeacons = beacons.​length​;

 ​//create Beacons
 ​LMSBeacon beacon1 = ​new ​LMSBeacon(-​45​, ​0​);​//Set this as candy with
major 20303
 ​LMSBeacon beacon2 = ​new ​LMSBeacon(-​40​, -​8​);​//Set this as beetroot
with 8897
 ​LMSBeacon beacon3 = ​new ​LMSBeacon(-​30​, ​0​);​//Set this as lemon with
61665
 ​LMSBeacon beacon4 = ​new ​LMSBeacon(-​40​, -​23​);​//Set this as candy2
with major 12070
 ​LMSBeacon beacon5 = ​new ​LMSBeacon(-​30​, -​30​);​//Set this as beetroot2
with 53500
 ​LMSBeacon beacon6 = ​new ​LMSBeacon(-​37​, -​15​);​//Set this as lemon2
with 34226
 ​LMSBeacon beacon7 = ​new ​LMSBeacon(-​53​, -​28​);​//Set this as candy3
with major 11911
 ​LMSBeacon beacon8 = ​new ​LMSBeacon(-​60​, -​30​);​//Set this as beetroot3
with 48542
 ​LMSBeacon beacon9 = ​new ​LMSBeacon(-​45​, -​30​);​//Set this as lemon3
with 22098

 //array of LMSBeacon objects

 //add Beacons to array, based on Major and Minor
 //First closest Beacon
 ​int ​firstMajor = firstBeacon.getMajor();

74

 ​if​(firstMajor== ​20303​)
 beacons[​0​] = beacon1;
 ​else if​(firstMajor== ​8897​)
 beacons[​0​] = beacon2;
 ​else if​(firstMajor== ​61665​)
 beacons[​0​] = beacon3;
 ​else if​(firstMajor== ​12070​) {
 beacons[​0​] = beacon4;
 }
 ​else if​(firstMajor== ​53500​) {
 beacons[​0​] = beacon5;
 }
 ​else if​(firstMajor== ​34226​) {
 beacons[​0​] = beacon6;
 }
 ​else if​(firstMajor== ​11911​) {
 beacons[​0​] = beacon7;
 }
 ​else if​(firstMajor== ​48542​) {
 beacons[​0​] = beacon8;
 }
 ​else if​(firstMajor== ​22098​) {
 beacons[​0​] = beacon9;
 }

 ​//Second closest Beacon
 ​int ​secondMajor = secondBeacon.getMajor();

 ​if​(secondMajor== ​20303​)
 beacons[​1​] = beacon1;
 ​else if​(secondMajor== ​8897​)
 beacons[​1​] = beacon2;
 ​else if​(secondMajor == ​61665​)
 beacons[​1​] = beacon3;
 ​else if​(secondMajor == ​12070​)
 beacons[​1​] = beacon4;
 ​else if​(secondMajor == ​53500​)
 beacons[​1​] = beacon5;
 ​else if​(secondMajor == ​34226​)
 beacons[​1​] = beacon6;
 ​else if​(secondMajor== ​11911​)
 beacons[​1​] = beacon7;
 ​else if​(secondMajor== ​48542​)
 beacons[​1​] = beacon8;
 ​else if​(secondMajor== ​22098​)
 beacons[​1​] = beacon9;

 ​//Third closest beacon
 ​int ​thirdMajor = thirdBeacon.getMajor();

75

 ​if​(thirdMajor== ​20303​)
 beacons[​2​] = beacon1;
 ​else if​(thirdMajor== ​8897​)
 beacons[​2​] = beacon2;
 ​else if​(thirdMajor== ​61665​)
 beacons[​2​] = beacon3;
 ​else if​(thirdMajor == ​12070​)
 beacons[​2​] = beacon4;
 ​else if​(thirdMajor== ​53500​)
 beacons[​2​] = beacon5;
 ​else if​(thirdMajor== ​34226​)
 beacons[​2​] = beacon6;
 ​else if​(thirdMajor== ​11911​)
 beacons[​2​] = beacon7;
 ​else if​(thirdMajor== ​48542​)
 beacons[​2​] = beacon8;
 ​else if​(thirdMajor== ​22098​)
 beacons[​2​] = beacon9;

 ​//set initial guess
 ​double ​guessX = beacons[​0​].getX();
 ​double ​guessY = beacons[​0​].getY();
 ​double​[][] station = ​new double​[][]{{guessX, guessY}};
 SimpleMatrix matStation = ​new ​SimpleMatrix(station);
 ​double​[][] mo = ​new double​[][]{{-​1.0​, -​1.0​}};
 SimpleMatrix minusOne = ​new ​SimpleMatrix(mo);

 ​//calculate the estimation error
 ​double ​estimationError = ​0​;
 ​double​[] distances = {​distance1​, ​distance2​, ​distance3​};
 ​for ​(​int ​i = ​0​; i < numBeacons; i++) {
 LMSBeacon thisBeacon = beacons[i];
 ​//double d = getDistance(thisBeacon.getX(),
thisBeacon.getY(), guessX, guessY);
 ​double ​d = distances[i];
 ​double ​f = ​abs​(Math.​pow​(thisBeacon.getX() - guessX, ​2​) +
Math.​pow​(thisBeacon.getY() - guessY, ​2​) - Math.​pow​(d, ​2​));
 estimationError = estimationError + f;
 }

 ​//create a Jacobian matrix of size [number_of_beacons][2]
 ​double​[][] jacobianMatrix = ​new double​[numBeacons][​2​];
 ​double​[][] matF = ​new double​[numBeacons][​1​];
 ​while ​(estimationError > ​0.01​) {
 ​//for loop happens here
 //the condition for, for loop ->

76

 ​for ​(​int ​i = ​0​; i < numBeacons; i++) { ​//3 is the number of
beacons
 //we calculate the jacobian matrix here
 ​LMSBeacon b = beacons[i];
 ​for ​(​int ​j = ​0​; j < ​2​; j++) {
 ​if ​(j == ​0​) {
 jacobianMatrix[i][j] = -​2 ​* (b.getX() -
guessX);
 } ​else ​{
 jacobianMatrix[i][j] = -​2 ​* (b.getY() -
guessY);
 }
 }
 matF[i][​0​] = Math.​pow​(b.getX() - guessX, ​2​) +
Math.​pow​(b.getY() - guessY, ​2​) - Math.​pow​(distances[i], ​2​);
 }
 SimpleMatrix matrixJacobian = ​new
SimpleMatrix(jacobianMatrix);
 SimpleMatrix matrixF = ​new ​SimpleMatrix(matF);
 ​//here goes the matrix inverse operation
 // estimationError = -inv(jacobianMatrix' * jacobianMatrix)
* (jacobianMatrix') * F'
 ​SimpleMatrix first =
(matrixJacobian.transpose().mult(matrixJacobian)).invert();
 SimpleMatrix second =
(matrixJacobian.transpose().mult(matrixF));
 SimpleMatrix matrixError = first.mult(second);
 matrixError = matrixError.negative();
 matStation = matStation.plus(matrixError.transpose());
 estimationError = matrixError.elementSum();
 ​if​((​int​)​abs​(matStation.get(​0​,​0​))>​80 ​||
(​int​)​abs​(matStation.get(​0​,​1​))>​80​)​//This line avoids nonconvergence
 ​break​;

 }
 ​//*******************End LMS
Functionality***
 //Creates a UserPosition to convert map coordinates to a
position on map
 ​UserPosition position = ​new
UserPosition((​int​)​abs​(matStation.get(​0​,​0​)),(​int​)​abs​(matStation.get(​0​,​1​)));

 ​userLocation ​= (Button)findViewById(R.id.​userLocation​);
 ​userLocation​.setX(position.getXpos());
 ​userLocation​.setY(position.getYpos());

 ​//Displays the coordinates given by algorithm
 ​TextView distance = (TextView)findViewById(R.id.​math​);
 distance.setText(Double.​toString​(matStation.get(​0​,​0​)) + ​" , "
+

77

 Double.​toString​(matStation.get(​0​,​1​)));

 ​//Displays the majors of three closest beacons, as well as the
distance to them
 ​text = (Integer.​toString​(firstMajor)+ ​": " ​+
Double.​toString​((​double​)Math.​round​(​distance1 ​* ​100d​) / ​100d​)+ ​", ​\n​" ​+
 Integer.​toString​(secondMajor)+ ​": "
+Double.​toString​((​double​)Math.​round​(​distance2 ​* ​100d​) / ​100d​)+ ​", ​\n​" ​+
 Integer.​toString​(thirdMajor)+ ​": "
+Double.​toString​((​double​)Math.​round​(​distance3 ​* ​100d​) / ​100d​));
 ((TextView) findViewById(R.id.​textView​)).setText(text);

 }

 ​else ​{
 text = ​"No beacons in range."​;
 }

 ((TextView) findViewById(R.id.​textView​)).setText(text);
 ​//((TextView)
findViewById(R.id.distances)).setText(Double.toString(distance1));

 ​}
 });
 ​region ​= ​new ​Region(​"ranged region"​,
UUID.​fromString​(​"6EE4D6A9-DD8E-550E-FF81-783E445F9C5B"​), ​null​, ​null​);

 ​//Set the locations of each of the beacons, moving left to right and top to
bottom
 ​Button beacon1 = (Button)findViewById(R.id.​beacon1​);
 beacon1.setX(​200​);
 beacon1.setY(​410​);

 Button beacon2 = (Button)findViewById(R.id.​beacon2​);
 beacon2.setX(​295​);
 beacon2.setY(​385​);

 Button beacon3 = (Button)findViewById(R.id.​beacon3​);
 beacon3.setX(​360​);
 beacon3.setY(​160​);

 Button beacon4 = (Button)findViewById(R.id.​beacon4​);
 beacon4.setX(​360​);
 beacon4.setY(​400​);

 Button beacon5 = (Button)findViewById(R.id.​beacon5​);
 beacon5.setX(​370​);
 beacon5.setY(​230​);

78

 Button beacon6 = (Button)findViewById(R.id.​beacon6​);
 beacon6.setX(​370​);
 beacon6.setY(​320​);

 Button beacon7 = (Button)findViewById(R.id.​beacon7​);
 beacon7.setX(​420​);
 beacon7.setY(​275​);

 Button beacon8 = (Button)findViewById(R.id.​beacon8​);
 beacon8.setX(​470​);
 beacon8.setY(​170​);

 Button beacon9 = (Button)findViewById(R.id.​beacon9​);
 beacon9.setX(​470​);
 beacon9.setY(​410​);

 Button beacon10 = (Button)findViewById(R.id.​beacon10​);
 beacon10.setX(​520​);
 beacon10.setY(​190​);

 Button beacon11 = (Button)findViewById(R.id.​beacon11​);
 beacon11.setX(​520​);
 beacon11.setY(​390​);

 Button beacon12 = (Button)findViewById(R.id.​beacon12​);
 beacon12.setX(​570​);
 beacon12.setY(​170​);

 Button beacon13 = (Button)findViewById(R.id.​beacon13​);
 beacon13.setX(​570​);
 beacon13.setY(​410​);

 Button beacon14 = (Button)findViewById(R.id.​beacon14​);
 beacon14.setX(​670​);
 beacon14.setY(​230​);

 Button beacon15 = (Button)findViewById(R.id.​beacon15​);
 beacon15.setX(​670​);
 beacon15.setY(​320​);

 Button beacon16 = (Button)findViewById(R.id.​beacon16​);
 beacon16.setX(​720​);
 beacon16.setY(​170​);

 Button beacon17 = (Button)findViewById(R.id.​beacon17​);
 beacon17.setX(​720​);
 beacon17.setY(​275​);

 Button beacon18 = (Button)findViewById(R.id.​beacon18​);
 beacon18.setX(​720​);

79

 beacon18.setY(​410​);

 Button beacon19 = (Button)findViewById(R.id.​beacon19​);
 beacon19.setX(​780​);
 beacon19.setY(​385​);

 Button beacon20 = (Button)findViewById(R.id.​beacon20​);
 beacon20.setX(​840​);
 beacon20.setY(​410​);

 init();

 }

//Method to change screens when a button is clicked
private void ​init(){
 Button switchScreen = (Button)findViewById(R.id.​switchScreen​);
 switchScreen.setX(​500​);
 switchScreen.setY(​900​);
 switchScreen.setOnClickListener(​new ​View.OnClickListener() {
 ​@Override
 ​public void ​onClick(View v) {
 Intent nextScreen = ​new ​Intent(getApplicationContext(),
ProfessorTableActivity.​class​);
 startActivity(nextScreen);
 }
 });

}

//From the ProfessorTableActivity class
public class ​ProfessorTableActivity ​extends ​AppCompatActivity {

 ​private ​Button ​mapScreen​;

 ​private void ​init(){
 ​mapScreen ​= (Button)findViewById(R.id.​mapScreen​);
 ​mapScreen​.setOnClickListener(​new ​View.OnClickListener() {
 ​@Override
 ​public void ​onClick(View v) {
 Intent nextScreen = ​new ​Intent(ProfessorTableActivity.​this​,
MainActivity.​class​);
 startActivity(nextScreen);
 }
 });
 }
 ​@Override
 ​protected void ​onCreate(Bundle savedInstanceState) {

80

 ​super​.onCreate(savedInstanceState);
 setContentView(R.layout.​activity_professor_table​);
 init();
 }
}

Appendix F: Point of Interest List

Professor Name

Room
Numbe
r URL Text to Display

R. James Duckworth 301 https://www.wpi.edu/people/faculty/rjduck

Intrested in
multiprocessing,
parallel
computation, logic
synthesis, real time
systems and rapid
prototyping of
computer system.

Berk Sunar 302 https://www.wpi.edu/people/faculty/sunar

Intrested in
cryptography,
network security
and high
performance
computing.

Xinming Huang 303 https://www.wpi.edu/people/faculty/xhuang

Intrested in
autonomous cars,
integrated circuit
design, cyber
physical system
and wirless
communications.

Edward Clancy 304 https://www.wpi.edu/people/faculty/ted

Intrested in
biomedical signal
processing,
modeling and
instrumentation.

John McNeill 305 https://www.wpi.edu/people/faculty/mcneill

Intrested in analog
microelectronics
and high-speed
imagining and
mixed signal circuit
characterization.

81

https://www.wpi.edu/people/faculty/ted
https://www.wpi.edu/people/faculty/xhuang
https://www.wpi.edu/people/faculty/sunar
https://www.wpi.edu/people/faculty/mcneill
https://www.wpi.edu/people/faculty/rjduck

Sergey Makarov 306 https://www.wpi.edu/people/faculty/makarov

Intrested in
antennas, applied
electromagnetics
and numerical
methods.

Thomas Eisenbarth 307 https://www.wpi.edu/people/faculty/teisenbarth

Intrested in
embaded systems
security.

Kaveh Pahlavan 308 https://www.wpi.edu/people/faculty/kaveh

Intrested in body
area networking,
localization, indoor
geolocation, WIFI
localization, UWB
localization and
broadband and
location aware
wireless networks.

Jahangir Rahman 309 https://www.wpi.edu/people/faculty/jrahman

Intrested in signal
processing,
microelectronics,
communication
systems and
analog and digital
systems.

Shamsur Mazumder 310
https://www.wpi.edu/people/faculty/srmazumde
r

Intrested in
simulation-based
RF and microwave
circuit designs and
RF and microwave
circuits for radar
and wireless
communication
applications.

Faculty Conference
Room 311 http://spinlab.wpi.edu/

Signal Processing
& Information
Netwiorking
Labioratory
(SPINLab).

Stephen Bitar 312 https://www.wpi.edu/people/faculty/sjbitar

Intrested in
renewable energy,
analog, power and
atomotive
electronics.

82

https://www.wpi.edu/people/faculty/srmazumder
http://spinlab.wpi.edu/
https://www.wpi.edu/people/faculty/srmazumder
https://www.wpi.edu/people/faculty/kaveh
https://www.wpi.edu/people/faculty/teisenbarth
https://www.wpi.edu/people/faculty/jrahman
https://www.wpi.edu/people/faculty/makarov
https://www.wpi.edu/people/faculty/sjbitar

Donald Brown 313 https://www.wpi.edu/people/faculty/drb

Intrested in
communication
system and
networking, signal
processing,
information theory,
estimationdetection
and linear
nonlinear
dynamical
sysyems.

Signal Processing &
Information
Networking
Laboratory
(SPINLab) 314 http://spinlab.wpi.edu/

Interested in
development and
testing of an
acoustic
timeslotted
round-trip carrier
synchronization
system,
development and
testing of a
battery-free
wireless tire
pressure
monitoring system
and smartphone
app and
bicycle-based
low-power lighting
demonstration
system projects.

Convergent
Technology
Laboratory and
Precision Personal
Locator (PPL) 315 ????

Classroom/Laborator
y 317A ECE Laboratory

83

http://spinlab.wpi.edu/
https://www.wpi.edu/people/faculty/drb

New England Center
for Analog & Mixed
Signal IC Design
(NECAMSID) 317B http://ece.wpi.edu/analog/center.html

Interested in
projects in mixed
signal
microelectronics
typically involve
design, fabrication,
and test of
application circuitry
for mixed signal
ICs.

Wireless Innovation
Laboratory 318A http://ecewp.ece.wpi.edu/wordpress/wireless/

WI Lab has had
extensive
experience
working with
industry and
government
sponsors on
both
fundamental and
applied research
projects,
yielding
successful
outcomes that
often exceed the
expected
value-add these
projects bring to
the sponsors.

Conference Room 318B

To book a room
please ask the
ECE office in the
2nd floor.

Zainalabedin Navabi 319 https://www.wpi.edu/people/faculty/navabi

Intrested in RTL
design and test,
methodologies for
system level
design, verilog
design and
synthesis and
verilog elements of
system design.

84

https://www.wpi.edu/people/faculty/navabi
http://ece.wpi.edu/analog/center.html
http://ecewp.ece.wpi.edu/wordpress/wireless/

Center for Wireless
Information Network
System (CWINS) 320 http://www.cwins.wpi.edu/

Interested in body
area network,
indoor geolocation
and wireless local
area network
projects.

Antenna Laboratory 320C http://ece.wpi.edu/ant/

Directed by
professor Sergey
Makarov.

Appendix G: CRLB Analysis Matlab Code

%Note: This code was used to generate Figure ## CRLB Analysis for Partial Grid Deployment with 15m
%Broadcast Range. Similar code was used to generate the other CRLB analyses. The only changes
made %to generate other plots was the value of variables.

close all;clear all;clc;
%% Initialization
% Locations of Access Points
APx(1)=0;APy(1)=0;
APx(2)=15;APy(2)=0;
APx(3)=30;APy(3)=0;
APx(4)=0;APy(4)=15;
APx(5)=15;APy(5)=15;
APx(6)=30;APy(6)=15;
APx(7)=15;APy(7)=30;
APx(8)=30;APy(8)=30;
%APx(9)=45;APy(9)=0;
%APx(10)=45;APy(10)=15;
%APx(11)=45;APy(11)=30;
%APx(12)=60;APy(12)=0;
%APx(13)=60;APy(13)=15;
%APx(14)=60;APy(14)=30;
%APx(15)=75;APy(15)=0;
%APx(16)=75;APy(16)=15;

SD=9.6; % Standard Deviation of Shadow Fading
NUM=8; % Number of Access Points

% Locations of Receivers
pace=0.1;
mx=0:pace:30;
my=0:pace:30;

nxy=length(mx);

85

http://www.cwins.wpi.edu/
http://ece.wpi.edu/ant/

for yi=1:nxy
 for xi=1:nxy
 for i1=1:NUM
 alpha(i1)=2.5; % Power-Distance Gradient
 r(i1,xi,yi)=sqrt((mx(xi)-APx(i1))^2+(my(yi)-APy(i1))^2); % Distance Between Transmitter and
%Receiver
 H1(i1,xi,yi)=-10*alpha(i1)/log(10)*(mx(xi)-APx(i1))/(r(i1,xi,yi))^2; % First Column of H Matrix
 H2(i1,xi,yi)=-10*alpha(i1)/log(10)*(mx(yi)-APy(i1))/(r(i1,xi,yi))^2; % Second Column of H Matrix
 end
 H(:,:,xi,yi)=[H1(:,xi,yi),H2(:,xi,yi)];
 Covv(:,:,xi,yi)=SD^2*((H(:,:,xi,yi))'*H(:,:,xi,yi))^(-1); % Covariance Matrix of Error Estimate
 SDr(xi,yi)=sqrt(Covv(1,1,xi,yi)+Covv(2,2,xi,yi)); % Standard Deviation of Location Error
 end
end
SDr=SDr';
contourf(mx,my,SDr,40,'ShowText', 'On');
xlabel('X-axis(meters)');
ylabel('Y-axis(meters)');
title('Contour of Location Error Standard Deviation')
colorbar;%display plot legend

86

Appendix H: Coverage Analysis

Transmissio
n Power= 4
dBm

Transmissio
n Power= 0
dBm

Transmissio
n Power=
-4 dBm

Transmissio
n Power=
-8 dBm

Transmissio
n Power=
-12 dBm

Transmissio
n Power=
-30 dBm

Percent
Coverag
e

Fade
Margi
n
(dB)

Equatio
n

coverage
radius (m)

coverage
radius (m)

coverage
radius (m)

coverage
radius (m)

coverage
radius (m)

coverage
radius (m)

50%
(0.5) 0

Lp= 55+
25log(d) 47.86 33.113 22.909 15.85 10.965 2.089

70%
(0.699) 5

Lp= 55+
25log(d)
+ 5 30.2 20.893 14.454 10 6.918 1.318

80%
(0.798) 8

Lp= 55+
25log(d)
+ 8 22.91 15.849 10.965 7.586 5.248 1

90%
(0.9003) 12.3

Lp= 55+
25log(d)
+ 12.3 15.42 10.666 7.379 5.105 3.532 0.673

95%
(0.9503) 15.8

Lp= 55+
25log(d)
+ 15.8 11.169 7.727 5.346 3.698 2.559 0.511

99%
(0.99) 22.3

Lp= 55+
25log(d)
+ 22.3 6.138 4.246 2.938 2.032 1.406 0.268

87

Appendix I: LMS and Trilateration Performance Comparison

88

Appendix J: Application Performance Evaluation Test Table

Phone x Phone y Real x Real y X Error Y Error

-53.42 -39.79 -53 -28.83 0.42 10.96

-53.15 -40.44 -57 -30 3.85 10.44

-52.72 -41.41 -55 -30 2.28 11.41

-52.72 -40.05 -52.5 -29 0.22 11.05

-52.62 -48.32 -51.5 -29 1.12 19.32

-52.68 -44.62 -52 -30 0.68 14.62

-52.55 -44.47 -46 -28 6.55 16.47

-52.58 -44.62 -44 -29 8.58 15.62

-52.68 -31.45 -57 -28 4.32 3.45

-50.9 -38.25 -53 -29 2.1 9.25

-51.95 -33.31 -51.5 -29.5 0.45 3.81

-52.47 -42.74 -56 -30 3.53 12.74

-53.81 -39.75 -58 -30 4.19 9.75

-51.94 -40 -50 -28.5 1.94 11.5

-52.19 -40.11 -45 -27.5 7.19 12.61

-53.72 -48.54 -56 -29.5 2.28 19.04

-46.75 -32.01 -48 -26 1.25 6.01

-51.85 -56.29 -51 -28 0.85 28.29

-52.28 -51.26 -43 -29 9.28 22.26

-54.37 -40.01 -51 -28.5 3.37 11.51

-59.67 -11.62 -41 -23 18.67 11.38

-60.32 -10.97 -40 -25 20.32 14.03

89

-65.08 -8.88 -38 -16 27.08 7.12

-42.99 -15.99 -39 -14 3.99 1.99

-43.44 -15.99 -39 -10 4.44 5.99

-49.87 -16.04 -37 -5 12.87 11.04

-37.86 -10.58 -40 0 2.14 10.58

-31.29 -8.11 -36 -2 4.71 6.11

-37.14 -0.51 -35 0 2.14 0.51

-29.45 -1.8 -32 -1.5 2.55 0.3

-36.69 -0.53 -40 -5 3.31 4.47

-48.96 -14.42 -39 -8 9.96 6.42

-38.45 -17.31 -39.5 -17.5 1.05 0.19

-65.35 -9.09 -39 -24 26.35 14.91

-72.36 -6.23 -42 -28.5 30.36 22.27

-38.59 -28.99 -38 -26.5 0.59 2.49

-63.74 -15.29 -40 -20 23.74 4.71

-47.48 -16.07 -37 -17 10.48 0.93

-46.16 -15.71 -37 -13 9.16 2.71

-56.58 -14.07 -39 -2 17.58 12.07

-36.76 -5.06 -35 -1 1.76 4.06

-37.14 -1.45 -29 -1 8.14 0.45

-36.69 -1.21 -34 -2 2.69 0.79

-37.28 -4.51 -40 -2 2.72 2.51

-57.55 -15.33 -39 -8.5 18.55 6.83

-46.49 -15 -38 -15 8.49 0

-67.28 -8.33 -39 -27 28.28 18.67

-62.98 -12.3 -37 -21 25.98 8.7

-42.94 -16.75 -40 -13 2.94 3.75

90

-57.23 -14.58 -38 -8 19.23 6.58

-50.84 -13.02 -39 -2 11.84 11.02

-27.19 -9.13 -32 0 4.81 9.13

-38.04 -8.87 -37 -3 1.04 5.87

-36.61 1.12 -37 -1 0.39 2.12

-53.17 -14.97 -40 -9 13.17 5.97

-64.01 -9.37 -39 -19 25.01 9.63

-65.52 -9.14 -38 -29 27.52 19.86

-53.7 -39.51 -38 -29 15.7 10.51

-37.13 -30.38 -35 -28 2.13 2.38

-36.85 -31.74 -33 -28 3.85 3.74

91

Appendix K Full Path Loss Testing Dataset

RSSI (dBm) Distance (in) Distance (m) Path Loss

-87 20 0.508 -57

-92 26 0.6604 -62

-95 35 0.889 -65

-95 42 1.0668 -65

-96 48 1.2192 -66

-94 61 1.5494 -64

-92 65 1.651 -62

-101 70 1.778 -71

-100 82 2.0828 -70

-95 100 2.54 -65

-94 106 2.6924 -64

-96 113 2.8702 -66

-100 127 3.2258 -70

-75 30 0.762 -63

-67 35 0.889 -55

-64 37 0.9398 -52

-71 37 0.9398 -59

-74 39 0.9906 -62

-73 40 1.016 -61

-68 42 1.0668 -56

-60 45 1.143 -48

-69 45 1.143 -57

-70 46 1.1684 -58

-74 47 1.1938 -62

-75 55 1.397 -63

-76 63 1.6002 -64

-75 67 1.7018 -63

-80 70 1.778 -68

-86 72 1.8288 -74

-81 75 1.905 -69

-76 79 2.0066 -64

-78 85 2.159 -66

-87 85 2.159 -75

-83 93 2.3622 -71

92

-78 95 2.413 -66

-81 102 2.5908 -69

-89 102 2.5908 -77

-83 110 2.794 -71

-89 110 2.794 -77

-88 115 2.921 -76

-79 120 3.048 -67

-88 120 3.048 -76

-94 121 3.0734 -82

-95 127 3.2258 -83

-96 128 3.2512 -84

-82 130 3.302 -70

-84 132 3.3528 -72

-88 133 3.3782 -76

-79 140 3.556 -67

-88 140 3.556 -76

-81 142 3.6068 -69

-86 150 3.81 -74

-90 152 3.8608 -78

-87 160 4.064 -75

-90 167 4.2418 -78

-85 170 4.318 -73

-89 176 4.4704 -77

-81 180 4.572 -69

-95 180 4.572 -83

-98 185 4.699 -86

-87 190 4.826 -75

-101 190 4.826 -89

-86 196 4.9784 -74

-90 205 5.207 -78

-86 217 5.5118 -74

-85 232 5.8928 -73

-84 238 6.0452 -72

-90 240 6.096 -78

-88 250 6.35 -76

-98 256 6.5024 -86

-87 262 6.6548 -75

-91 265 6.731 -79

-97 275 6.985 -85

93

-92 290 7.366 -80

-93 300 7.62 -81

-68 23 0.5842 -60

-70 27 0.6858 -62

-66 28 0.7112 -58

-64 29 0.7366 -56

-66 31 0.7874 -58

-66 35 0.889 -58

-68 38 0.9652 -60

-67 38 0.9652 -59

-68 42 1.0668 -60

-65 42 1.0668 -57

-69 47 1.1938 -61

-74 52 1.3208 -66

-75 56 1.4224 -67

-69 59 1.4986 -61

-77 60 1.524 -69

-75 62 1.5748 -67

-79 65 1.651 -71

-69 71 1.8034 -61

-70 72 1.8288 -62

-77 76 1.9304 -69

-76 78 1.9812 -68

-82 79 2.0066 -74

-75 80 2.032 -67

-71 94 2.3876 -63

-76 95 2.413 -68

-54 20 0.508 -50

-63 34 0.8636 -59

-67 35 0.889 -63

-68 37 0.9398 -64

-70 40 1.016 -66

-71 41 1.0414 -67

-67 48 1.2192 -63

-75 51 1.2954 -71

-73 70 1.778 -69

-77 72 1.8288 -73

-77 80 2.032 -73

-75 85 2.159 -71

94

-76 93 2.3622 -72

-78 95 2.413 -74

-75 108 2.7432 -71

-79 121 3.0734 -75

-87 125 3.175 -83

-85 128 3.2512 -81

-74 140 3.556 -70

-80 145 3.683 -76

-82 150 3.81 -78

-84 165 4.191 -80

-80 166 4.2164 -76

-78 167 4.2418 -74

-81 190 4.826 -77

-73 205 5.207 -69

-84 220 5.588 -80

-95 221 5.6134 -91

-76 222 5.6388 -72

-83 225 5.715 -79

-79 235 5.969 -75

-82 236 5.9944 -78

-82 248 6.2992 -78

-74 250 6.35 -70

-88 263 6.6802 -84

-87 264 6.7056 -83

-84 280 7.112 -80

-94 290 7.366 -90

-81 291 7.3914 -77

-82 296 7.5184 -78

-79 300 7.62 -75

-80 301 7.6454 -76

-84 311 7.8994 -80

-87 318 8.0772 -83

-95 333 8.4582 -91

-79 335 8.509 -75

-83 345 8.763 -79

-85 355 9.017 -81

-87 371 9.4234 -83

-81 384 9.7536 -77

-92 385 9.779 -88

95

-89 394 10.0076 -85

-87 407 10.3378 -83

-90 413 10.4902 -86

-94 414 10.5156 -90

-92 415 10.541 -88

-83 415 10.541 -79

-99 420 10.668 -95

-87 421 10.6934 -83

-89 425 10.795 -85

-91 435 11.049 -87

-84 445 11.303 -80

-86 457 11.6078 -82

-92 458 11.6332 -88

-92 471 11.9634 -88

-83 472 11.9888 -79

-90 484 12.2936 -86

-91 489 12.4206 -87

-94 490 12.446 -90

-90 497 12.6238 -86

96

