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Abstract

A combination of experimental and compuiabal methods is used to explore the

microstructure and mechanical behavior of cold sprayed 6061 aluminum alloy -&Ad4V

alloy and their substrate materials. A variety of microscopic methods are used for
characterization of the microstructure. The gmtation size effect and characteristic length of
strain gradient plasticity for the substrate materials are determined. An FEA simulation
describes the behavior of a worn Berkovich nanoindenter. Stress strain is studied
experimentally in the substrate matials for future comparison with bulk cekprayed

materials. Abaqus FEA models are used to simulate a single particle impact for a particle with
an oxide layer using a linear Johngbook plasticity model and a bilinear Johngdmok

plasticity model. Th@mplications of the results are discussed for cold spray processes.
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Chapter 1 Background and Scope

1.1 Background

1.1.1Cold Spray Overview

Cold sprayCS)also called Cold Gas Dynamic Spray (C&D) additive manufacturing
technology which alloys for dense deposition of materials at temperatures below the
respective melting pointsThe process accelerates miesized particles to high velocities
(typically 300 m/s to 1200 m/s, but dependent upon the material) to adhere to various
substrates (Moridi et al. 2014, Schmidt et al. 2006). C$healsenefit ofavoidingresidual
tensilestresses and oxidation issues for various materials which may be produced using
thermal energy technologies. The techogy is also able to approaghnoduce deposits
approaching%% density in some materials and can have meclapioperties near that of
wrought materialfChampagne and Helfritch 2014)CS has been used in industry to coat
various metal substrates with thin layers of otheetals as well as dimensional repair in
corroded or damagedetal parts(Champgne 2008) Research has been conducted into use of
CS technology for composites, polymeaad ceramicgMoridi 2014) The CS process has much
higher deposition rates than most other additive manufacturing techniques and has been
employed for the creation of near nehape partgPattison et al. 200)7 Cold spray has the
disadvantages of poor surface finish and dimensional control as well as high cost of helium used
for the higher velocity sprays.

High Laser
N Sintering CGDM
Powder A
> Cladding
- Wire
.“‘_2 Cladding
o
L~
& Spray
A D Plasma
Welding Spray
HVOF
Low s"ay Osprey ﬂ
Low High

Deposition Rate

Figurel: Relative deposition efficiency apdrt fidelity of various additive manufacturing processes
(Pattison et al. 2007)

1.1.2Powder Production

The powders produced for cold spray make use of many of the existing methods of powder
production for thermal spray and sintering process&mmizdion processes are often used for
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metallic and polymer powderf®r a more consistensphericalshape, whilemechanicatrushing
processesre frequentlyused for high temperature alloys and ceramics (Niekov, 2009).

Thermocouple

Stopper Rod
Induction Coils
Alloy Melt
Crucible
Atomizer Nozzle

High Pressure
Inert Gas

Atomized Droplets

Exhaust Gas

T

i 1

47— Cyclone Separator

m— Atomized Powder

Figure2: GasAtomization ProcesZheng et al. 2009)

Production of refractory metal powders typically involves hydriding for purposeful
embrittlement and crushing or milling of the bulk material. The subsequent powders have
oxides removed by heating with magnesiundahe hydrides removed by chemical leaching

(Yang, 2019Neikov, 2009
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1.1.3Cold Spray Parameters

Cold Sprays a technology Wichallows for the deposition of various materials at a high rate
and high density through the use of a fine particle spralyigih velocities. This process deposits
the solid state particles at well below their melting points and only provides extremely localized
heating to the substrate surface being sprayed onto. In order to adhere to the surface of a
substrate the particle vektity must hit a critical velocity which is high enough to keep the
particle from rebounding from the surfac¥elocities above the critical velocity will provide
better adhesion to the surface up to a limitaféicles in experiments with explosives anccrot
asteroid impacts with velocities from 10@B000 m/s have caused supdeep penetration
(defined as penetration distances 300 times the particle diameter) and damage to the
surfaces they contact (Klinkov et al. 2005). Typically critical veloGtige from 300 to 1200
m/s depending upon the specific properties of the powder feedstock and the substrate. The
basic components of cold spraechnology are the followindVoridi et al. 2014Champane

and Barnett2012 Kay and Karthikeyan 2016)

1 Solidpowder feedstock
1 High pressure supplyag
1 Nozzletypicallyconvergenidivergent to increase gas and particle velocity

Gas Control

Electric Heater

Module
N, or
2 > Coating and
He gas Substrate
'_.....»---”"""-—'. |
> = -
2 DRI TR cm
Powder Supersonic Nozzle
Feeder

Figure3: Simplified diagram of components in cold spray prog@sampane 2010). See appendix Al
for morecomplete diagram

Each of these inpsican be changed in order to alter the process depending on the desired
outcome. For examplehe nozzle type can be solely convergent for lower speed impacts such
as those usedor polymer depois (Champgne and Bamett 2012). Additionally, the supply gas

is commonly changed between air, nitrogen, and helium depending upon the desired speed and
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constraining costs. Particle size, shape, araderial type can be chaed in orderto fit the
desired application, but typal size ranges are report@uFigure4 below.
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Figured: Typical powder diameters for different materiéiRaoelison et al. 2018)

1.1.4Mechanism of Cold Spray Bonding

The mechanism r@®nsible for bonding in the cold spray of metals is still under del¥dte.
impact phenomena differ at varying particle sizes antbcities ashown inFigureb. At very
low velocities (<100 m/s), the particles miag collected on the surface due to van der Walls
and electrostatic forces, but strong bonds are not formed. At faster speeds still below the
critica velocity, the particles simphebound from the substrate surface. Larger particles are
more likely to rébound at these low speeds, but very largelmm) particles may leave plastic
prints on the surface after rebounding. 8alled hypervelocity impacts turn particles to liquid
upon impact and form severe shockwaves. At these speeds the damage done &y small
particles is less than by larger particles. Super deep penetration (defined as penetration
distances 10304 times the particle diameter) is possible at velocities of 8000 m/s
(Klinkov 2005).
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Experiments observe a criticatlacity for bonding in which theitketic energy of the patrticle is
usually much lower than the energy which would be required to melt the particle. As a result, it
is believel that the bonding is mostly or entirely solatiate (Grujicic 2004). The critical velgcit

for a perpendiculaCSmpactis primarilya function of the spray material, powder quality,

particle size, and particle impact temperature (Schmidt 2006)o primary theoriesfor the

bonding mechanisrhave emerged. One school of thought believes adiabatic shear instability is
responsiblg/Assasi 2003, Grujicic 2004vhile the other believea hydrodynamic plasticity

process is responsibind adiabatic shear ingpdity is not necessary. In the latter theory,

jetting removes oxides and surface asperities to enable metallic borfHmssaniGangarai

2018 2019. In the second theorythe bulk speed of sound in the material provides a strong
correlation with the criical velocity.

saf (T)g(d
) _(H-mf( P )_1>"f~2am)g(d)"f
. 7

s k

l. Attached Shock Il. Shock Detaches. IIl. Jet Forms. 1000
Particle —_ @ In-Situ Measurements
Shock Wave Shock Wave Shock Wave %’ 800 /117)
= 017" Al
2 A
‘G 600F < Ni
(5}
o ®
o) ’/Cu
> 400+ Zn
©
©
T 200f
(@]
Compression 0 g n 5 x A
Substrate Tension 0 1000 2000 3000 4000 5000 6000

Bulk Speed of Sound (m/s)

Figure6: Proposed shock wave bonding mechanigtassaniGangarai 2018)
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1.2Unresolved Issues

There are many boundaries to be overcome before cold spray can be used to its full potential as
a method for spraying stictural materials. The cost of spraying with helium can be prohibitive
for many applications, while spraying with other gases such as nitrogen often result in inferior
mechanical properties. Many new materials continue to be sprayed through CS processes.
However, development of the optimal spray parameters is still often a trial and error process.
Better understanding of the bonding process and modeling of that process will allow for
optimal spray parameters and mechanical properties to be predicted. Mstiabéshed cold

spray materials such as aluminum and copper have tweaked process parameters to get better
tensile properties, but fracture, fatigue, corrosion, and wear are just beginning to be studied
(Moridi 2014). For repairs and additively manufactupedts to be used in structural situations,
fracture and fatigue properties in CS must be understood. Likewise, for CS coatings to be
trusted for long term service on critical components (Keech et al. 2014), wear and corrosion
properties must be well undstood.

1.3Scope of Current Work

1.3.1 Microstructureof Wrought and Powder 6061 Aluminum Alloy anéAi4V

1.3.2 Indentation Size Effect and Strain Gradient Plasticity Length Scales for 6061 Aluminum
Alloy, CFTi, and FbAF4V

1.3.3 FEA Simulation of Nanodentation and R&su Pileup

1.3.4 StressStrain Behavior of 6061 Aluminum Alloy anéAr4V

1.3.5 FEA Simulation of Cold SpRgwder Impact With Oxide Layers and Bilinear Johnson
Cook Plasticity Model

1.3.6 Fatigue Crack Growth in Wrought 6061 Alumindhoy

1.3.7 Machine Learning of Hardss Images
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Chapter 2 Literature Survey

2.1 Microstructure and Physical Metallurgy of Aluminum Alloys

2.1.1Bulk 6061 AluminurAlloyMetallurgyand Microstructure

6061 aluminumalloyisa wrought alloycomprised offace centered cubic (fceJuminum
primarily alloyed with éementsCu, Fe, Mg, and Si. Differevit- Yy dzF | ColerzNBINMEve
slightly different percentages dlfiose alloying elements and typicatigntain small amounts of
other elements such as Cr, Mn, Zn, anABTM B209M 4).

Tablel: Composition of Wrought 6061 Aluminurho Rate

Chemical Composition 6061 AluminuAiloy Plate/Sheet ASTM Specification B209N 4

Others (each

Main Alloying Elements 0.05)

Al Mg Si Fe Cu Cr Mn | Zn | Ti Total
0.8 | 040 0.15 0.04

Remainder| 1.2 0.8 |0.7| 0.40 0.35 | 0.15|0.25|0.15 0.15

As with the rest of the 6000 series aluminum alloys, 6061 primarily useSiMygprovide
precipitation strengthening. Some 6000 series aluminum dissolve nearly all tf&,Ndgt 6061

often has supersatrated solution at the solutionizing temperature. 6061 aluminum alloy is age
hardenable by controlling the size and number of precipitates. Iron, manganese, and chromium

secondary phases (F&bAb, (Fe, Mn, CgBiAl2) often form as inclusions in the matal (Hatch,

1984).

(@)

Figure7: 6061T6 sheet th insoluble(Fe,CrSiAl» (lighter gray color) and excess soluble M8gparticles
(darker color)Etched with 0.5% hlyofluoric acid (a)(Lyman 1972).6061- T651 Aluminum ehed with
AaK2¢6 Ay 3 3INI pyVakiar VOOSIDEINE 2 F

2501 Qa NB3ISY
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Grain sizes in aluminum alloys are heavily dependent upon the processing techniques and heat
treatment. Different crosssections of material which has been streds@an cause order of
magnitude differences in grain size (Nakai and Itoh, 2dme specially processed aluminum
alloys have grain diameters which drendreds of nanometerd_ge et al. 200 but most

range from a few micromters to hundreds of micromets asseen inFigure7b (Easton and St

John, 2008)6061-O alloy undergoes and annealing heat treatment process aP@16r 23

hours to reduced stress concentrationdareduce precipitation strengthening so ththe alloy

is weaker but more ductilASM Volume 4, 1991C¢ontrarily, 6061T6 is precipitation

strengthened tats maximum point.

2.1.26061 AluminunAlloyPowder Microstructure

Aluminum alloy powders for use in cold spray are frequently preduxy agas atomization
process, which can produce spherical powders with chemical compositions similar to the bulk
alloys.For 6061 gas atomized powderketparticle sizgypicallyvaries from less than 5 um to
around 80um, but average diameters for a giveretistock are typically aroun2b-40 pum

(Rokni et al. 2013, Bedard et al. 20Gavras et al. 2018

Mean Particle Size: 25.3 Hm
Standard Deviation: 15.3 pm

Particle Size (pm)

Figure8: 6061 Aluminunalloy powder particle size distributigi@avras et al. 2018)

Different powder size distributions can peoduced by sifting the powders or by altering the
gas atomization process parameters if desifBaoughthe chemical composition of 6061
powders is similato that of wrought 6061 the microstructure has significant differences.
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Figure9: 6061 Aluminunalloy powder morphology and microstructu¢Bokni et al. 2013)

Rokni et al. (2013) found the powder subgrains were primarily equiaxed but contained high
dislocation densities as a result of residual stresses from rapid co@nagn boundariesere
typically low angle andlso have digher concentration of Mg, Si, and Fe (Bedard et al. 2018)

2.1.3Buk Cold Sprayed 6061 AluminutoyMicrostructure

As the particles undergo significant plastic deformation upon impact, digateters generally
increase from the diameter of the original particl€he boundaries between splats can be
clearly identified after etching and deposition porosities have been found around 2% by area
for pure aluminum(Rech et al. 2010%incecritica velocity and quality arsignificantly affected

by oxides present in the particle€lfampagn@018,HassaniGangarai 2019), it is possible that
proper powder handling can further reduce this porosity.
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Figurell: Cross section of cold sprayed 6061 alumialloy deposit with red arrows highlighting voids
and porosity between particléRdkni et al. 2017)

A bimodal microstructure and grain size distribution has been reported due to the deformation
of the particles. Grain diameters in the center of the cold spray sprayed wdi@ [ Am, similar

to that in the powder before spraying. Howevére boundaries of the particle splats contained
pancaked and ultrafine grains down to around 100 nm (Rokni et al. 2013, 2014, and 2017).
Lower pressure sprays had expectedly less particle deformation and weaker bonding (Bedard et
al. 2018). If the deposin was inspected before any peseattreatment, a high level of stress,
dislocations, and crystal lattice distortions were reported, while annealing and T6 heat
treatments reduced dislocations, grew larger precipitates, and increased grain size (Ralkni et
2014). Lamellar grains in the y directions were found be high angle, while the grains in the z
direction were found be a mix of high and low angles (Rokni et al. 2013). Finally, nanoscale
precipitates have been detected within the 6061 cold spray degpos

Figurel2: Nanoscale precipitates in cold spray dep@3idkni et al. 2013)
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2.14Bulk Cold Sprayed 6061 AluminAttoyMechanical Properties

The results have shown that CS deposits of 6061 powder with helium feedstocavgatensile
strengths comparable or exceeding that of wrought 6061, while the percent elongation is
typically only a few percent in comparison with the2%% typically seen in wrought 6061
(Champagne and Helfritch, 2014, Rokni et al. 2017). Other res&a have found

approximately 10% reductions of yield strength and tensile strength for CS 6061 compared with
wrought 6061 (Gavras et al. 2018). Work by Rokni et al. (2018) found that tensile properties
within a 5056 CS deposit have significant diffeesydepending upon the direction. The best
properties were found in the direction or the path of the spray nozzle, while the worst were in
the layer direction (z). Micrpillar compression tests found the yield and ultimate tensile
strengths of the sprayedeposit to be approximately double those in the powder (Bedard
2018). Fractography conducted on tensile samples 6061 CS deposits found a combination of
ductile void coalescence and smooth partiplrticle separation (Rokni 2017).

400 30
350
== 25
300
20
o 250
-9
E‘ 200 ' iy 15 &
< ‘ 2
o3 ]
“ 150
5 | - 10
100
5
0 = E=n =l o e 0
annealed T4-1451 T6-T651 cold sprayed cold sprayed &
annealed
m Ultimate Tesile Stress (UTS) m Yield Stress (YS) Percent Elongation (EL)

Figurel3: Tensile properties of wrought and ca@prayed 6061 aluminumlloy (Champagne and
Helfritch, 2014)

Nanohardness testing has revealed that particle interfaces are harder than particle interiors
(1.8 GPa vs 1.4 GPa), but both are harder tharpowder before spraying (1.0 GPa) (Rokni et
al. 2017) Other researchers have founldd hardness and elastic modulus of the CS deposit to
be similar to that of the wrought material.
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Table2: Comparison of 6061 aluminuaiioy CSdeposit mechanical properties with that of wrought
6061 (Gavras et al. 2018)

Alloy Microhardness Ovoz2w  Uurs Elongation E
[HV 100] (MPa)  (MPa) (el%) (GPa)
Cold-spray 6061 | 105.0 262.0 286.8 2.0 67.5
T As-sprayed
Cold-spray 6061 65.7 147.5 195.1 13.0 64.1
i Annealed
Cold-spray 6061 | 120.0 203.4 216.5 1.8 65.1
T T6
Rolled 6061-T6 107.0 291.6 317.1 17.0 70.3

2.2Microstructure and Physical Metallurgy of Titanium Alloys

2.2.1 Commercially Pure Titaniukhetallurgyand Microstructure

Titanium at bom temperature exists in a hexagonal close packed (¢twgs}al structure called

h LIK | @rperaturasof 888°Cand abovethe hcp crystal structuref titanium converts

into a body centered cubic (bocystal structus OF £ € SR I LIKD. Ednmér&allyy | OK A S
LJzZNE GAGF yAdzY Aa O2YyAARSNBR |y h LIKFaS SGANdGEYA
stahbilizing elements (Wanhill and Bart2012).

Table3: Composition of grade 2 commercially pure titanium

Chemical CompositioGrade 2 CP Titanium (R50408)STM SpecificatioB265- 15
Main Alloying Elements Others (each 0.1
Ti C (max)| O (max)| N (max) | H (max) Fe (max) Total
Remainder, 0.08 0.25 0.03 0.015 0.30 0.4

Oxygen content controls the tensile properties of CP titanium to a large extent, with larger
concentrations increasing the tensile strength. Iron serves asadiabilizer (Donachie, 2002).
Grain size can vary depending upon the processamglition and the microstructure is sensitive
to external factors such as hydrogen or strasseen in the comparison figurel4. Hydride
needles can often form through hydrogen absorption, producing a veryreiftestructure

shown inFigurel5 below.
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Figurel4: Varying grain structure of CRanium etched with Kb £ Qa NXB I ISy i akK2gAy 33 f
alpha grains and dark spots of irastabilized beta phasASM Micrograph Database ti0100 and ti0308)

Figurel5: Hydrice needles formed in CRanium (ASM Micrograph Database ti0310)

2.2.2 Bulk TH6AHYV Metallurgy

TE6AF4V (also shortened as TiG4)a commort - titanium alloy in which vanadium serves as a

i LIKFaS aidloAf Al SNE ¢ K OtheSeleméntiz¥ra gtaiable todnmad A £ AT S &
percentages which are almost impossild eliminate but can be reduced. The Ti64 with

reduced levels of other interstitial elements is called ELI (extra low interstitial).
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