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ABSTRACT 

With the reserves of fossil fuel declining worldwide, interest has been revived in search of alternative 

energy sources and in developing cost effective processes. Jatropha Curcas is a plant that has the 

capability of growing in harsh tropical climates, and is a good renewable source for biofuel production 

for countries such as Haiti. This report analyzes different biofuel production processes that have been 

developed and that can convert Jatropha Curcas into biodiesel usable in transportation. From the 

comparison of processes on a basis of energy consumption, yield and cost of the processes, the viability 

of one of these biodiesel production methods to be introduced in the Haitian community was 

established. 
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INTRODUCTION 

As countries grow and become more industrialized their energy needs grow with them. One of 

the most readily available and economical sources of energy is fossil fuels. While abundant and 

inexpensive, fossil fuels are a finite source of energy that some estimates state will last only 40 more 

years [1]. In addition, combustion of fossil fuels produces harmful pollutants that are exhausted into the 

atmosphere.  Many of these pollutants contribute to detrimental phenomenon such as acid rain and 

health problems which are caused respectively by an increased amount of sulfur emissions and smog 

production [2]. Although, global climate change from increased green house gas emissions remains one 

of the most prominent debatable issues today, the concentration of CO2 in the atmosphere has almost 

doubled in the last 60 years, see Figure 1. This recent controversy has sparked more research in 

alternative and renewable energy sources [3]. 

 

Figure 1: Concentration of Carbon Dioxide in ice cores taken in Antarctica[3] 
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Clean Energy can be generated from many sources; solar power collects radiation from the sun 

and converts it directly into electricity, wind power uses moving air masses to drive large propellers on 

electric generators, and hydroelectric power uses moving water to drive turbines. Another alternative 

has been the replacement of gasoline and diesel fuels with biofuels derived from plants. Some examples 

of biofuels are pyrolysis oil and methyl esters, commonly known as biodiesel. Biodiesel is combustible 

liquid fuel similar in properties to regular petroleum diesel. Biodiesel is produced from oils derived from 

plants such as coconut, soybeans, and more recently, Jatropha Curcas. Pyrolysis oil is similar to regular 

petroleum crude oil and is produced by thermally decomposing carbon feedstocks like corn stover, 

switchgrass, or Jatropha Curcas. Through past research and experience, biofuel has been proven a viable 

substitute for standard diesel fuel in motor vehicle engines and other machines due to a cleaner burn 

and its renewable sources [4].   

Some agricultural societies have benefited politically, economically, and socially from the 

exploitation of biofuels. In Malaysia, an estimated 500,000 jobs associated with the production of palm 

oil for biodiesel were created. Meanwhile, it generated a taxable domestic product that lowered the 

dependency on foreign oil. This led to an overall strengthening of their economy and government [5]. 

Haiti, a predominantly agricultural society, could potentially reap the same benefits given that 66% of 

the employed population works in the agricultural sector; see Figure 2. With only one third of the 

nation’s population engaged in formal employment [6], large biofuel production industries could create 

local jobs while lowering Haiti’s reliance on imported foreign oil in the same way as in Malaysia.  
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Figure 2: Distribution of the labor force by occupation in Haiti [6] 

 

Jatropha Curcas offers many qualities that make it both a good biofuel source and a beneficial 

business venture for Haiti. One interesting quality is that Jatropha is toxic to most mammals; this means 

that it would not be eaten by local wildlife or used as a food source, allowing it to be used solely in oil 

production. Also, Jatropha grows best in warm, rainy climates and in Haiti the temperature is 60o F in 

the winter and 80o F in the summer, while the rainfall is about 55 inches annually [7]. The Jatropha 

Curcas plant has also been shown to slow or prevent land erosion which would benefit Haiti as much of 

its land has been affected by deforestation. In the 1920s, approximately 60% of Haiti was forested while 

today less than 2% of the country remains forested [8]. Since this has led to a loss of arable land, 

perhaps the best quality of Jatropha is its ability to grow in lands that are not suitable for other crops. 

Since about 60% of Haiti’s land is not agriculturally profitable, Jatropha would allow a large portion of 

land to become economically viable through the production of biofuels.  

One of the most widely used processes to produce biodiesel is batch transesterification. Its 

popularity is due to its low start up cost and ability to be used on a small scale. On the other hand, batch 

transesterification is slower than some newer and more innovative processes. A variation of batch 
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transesterification uses supercritical methanol to accelerate the reaction. Fast pyrolysis is a process that 

submits carbon-based feedstocks to a series of extreme conditions of temperature and pressure. This 

process mimics the natural way that oil was produced beneath the surface of the earth over thousands 

of years [9].   

This report analyzes the standard batch transesterification using Jatropha oil at low temperature 

and transesterification using methanol at a supercritical temperature and pressure, and compares them 

to the thermal process of Pyrolysis followed by Hydrotreatment. The comparison is on a basis of the 

following parameters: yield, energy requirements, reaction time, raw materials, capital and operating 

costs of production. The results were obtained using a computer simulation called ASPEN PLUS to model 

of all the processes and through comparison of literature results. A cost analysis was done using current 

major studies to provide perspectives on the feasibility of large scale production in a country like Haiti.  

In order to achieve these goals, computer simulations were carried out in a computer laboratory 

in Goddard Hall. The results were compared to past research while analyzing the best option for biofuel 

production from Jatropha Curcas in Haiti.  
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BACKGROUND 

In the following section, we will present the energy situation of Haiti and examine one of the 

alternatives for the oil dependency which is biodiesel from the Jatropha plant. We will then establish 

some processes used to make the biodiesel from the seeds of the plant which in turn will set the ground 

for the evaluations of these processes.  

HAITI ENERGY EVALUATION  

In 2005, Haiti imported approximately 11,840 barrels of oil per day (B/day) while the 

consumption was estimated to be above 12,000 B/day[6], and it is paid for by a majority of the country’s 

income[10].  The Illinois Sustainable Technology center has broken down the energy consumption of 

Haiti, see figure 3. 

 

 
Figure 3: Energy sources in Haiti [11] 

 

In recent years, gasoline prices in Haiti have been approximately 5 US dollars per gallon [11]. 

These facts show that the energy consumption of the country is neither economical nor profitable. 

Because of this, there has been increased interest in developing alternative sources of energy for the 

wood
9%

Charcoal 
14%

Gasoline
27%Kerosene

13

Diesel
37%



6 
 

Haitian people. There has been research to locally produce biodiesel, diesel fuel obtained from plants 

that could potentially replace the imported diesel fuel used for transportation and electricity generation.   

JATROPHA 

Jatropha biodiesel 

Unlike ethanol, biodiesel could be used pure in a diesel engine once it meets ASTM diesel 

criteria. Although, due to biodiesel’s solvent properties, some parts such as hoses, valves and gaskets 

within a diesel engine may have to be replaced for those made of a different material [12]. The quality of 

Jatropha biodiesel surpasses that of petroleum diesel on several levels. For instance, the Cetane 

number, which is the measure of combustion quality, is 52 for Jatropha biodiesel and 47.5 for petroleum 

diesel. Jatropha biodiesel also has a higher ignition point which is good for transportation safety.  To 

appreciate the quality of this alternative, a more thorough comparison between Jatropha diesel, 

petroleum diesel and the established norms for diesel fuels can be seen in table 1.   

Table 1: Comparison of biodiesel quality against diesel standards[13][14] 

 Standard for ester fuel Petroleum biodiesel Jatropha Biodiesel 

Density (g/ml) >0.8 0.85 0.88 

Flash point (o C) >55 55 192 

Cetane number >48 47.5 57 

Carbon residue <0.1 0.35 0.024 

Sulfur Content <0.55 0.5 0 

 

The Jatropha plant is a relatively new crop to the biodiesel market and various sources have 

reported different yields of fuel per hectare, depending on the extent of irrigation of the area. For the 

purpose of this analysis, the lowest recorded yield, 375 gal/ha and the average value of 499 gal/ha were 

used. Haiti’s reported 2005 oil consumption estimate of 12,000 B/day is 57.8% diesel. When considering 
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a 375 gal/ha yield it would take 2094.2 km2 of land to satisfy the diesel needs of the country. For 499 

gal/ha, the land needed is 1573.8 km2. In the 1980’s the United States Department of Agriculture 

evaluated that 11.3 percent or 3114 km2 of land in Haiti was used for crops and close to 50 percent of 

that land, or about 1567 km2, is situated on steep slopes that are vulnerable to soil erosion [15]. If 

Jatropha were planted on all of the steep, vulnerable lands, enough oil could be produced to satisfy 

Haiti’s diesel fuel needs. Growing Jatropha on these highlands would help in the reduction of soil 

erosion and make these lands more profitable. 

The Jatropha Plant 

In Haiti, Jatropha is considered a viable biodiesel raw material because of its low cost of 

production and its effects on society and the environment. However, Jatropha has not been recently 

discovered. Its oil has been used since 1930s in parts of Africa, including Mali and Egypt where 

shipments were made to France for use as fuel for cooking. More recently, the oil from the plant has 

been used for electricity production by mixing Jatropha oil with Petroleum and pure vegetable oil. It has 

also been used in soap production [16] and for many years as a source of medicine for diseases such as 

cancer. It is also believed that the bark of the plant prevents the reoccurrence of cancer after it has gone 

into remission [17]. 

 The plant also produces several useful byproducts. For example, the pruned branches are used 

for dye production. Once they are cut off from the plant, their bark is scraped off and used for 

production of a blue colored dye. The Jatropha oil presscake contains high compositions of nitrogen, 

phosphorous and potassium which make it a useful organic fertilizer for the rest of the Jatropha plants. 

The seeds of Jatropha have recently been discovered to produce a chemical that can help the human 

body repel parasites. This in turn has allowed this product to be used in areas like Brazil as an insecticide 
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for fumigating houses against household pests such as bedbugs. In other parts of the world, it has been 

used for fish nets and lines [17]. 

Jatropha as a biodiesel crop 

The Jatropha plant is native in most tropical parts of the world including Central America, India and 

Africa. The plant is resistant to drought and pests, and it produces seeds that contain about 27-40% oil 

[18]. Additionally when compared to other oil producing crops, Jatropha offers certain advantages: 

• It can be cultivated in different types of soil and in areas that have low rainfall. 

• When grown, Jatropha will not be disrupted by animal activity, as it is harmful to most animals, 

although, small insects help in pollinating the female flowers to produce seeds that will be used 

for oil production. 

• It is among the best non-edible seeds that produce high yields of oil, and thus does not compete 

with the food industry. None of its products are used for human food consumption unlike 

soybeans and other oil producing crops. 

• Growing the Jatropha plant reduces the amount of carbon dioxide that is in the atmosphere. 

Since it grows much faster than other bushes, carbon dioxide is removed from the atmosphere 

in larger quantities. “1 acre of Jatropha plantation absorbs and reduces 500 kg of CO2 every 

year. A 1 hectare plantation (2500 plants) will reduce the CO2 in the atmosphere by 20 tons 

yearly for 40 years” [19]. 

• After pressing the seeds to extract the oil, the presscake, which is 65% of the seed, can be 

burned and used to produce methane which could replace the wood or kerosene that are 

commonly used in cooking in Haiti [19]. 
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Growing Conditions 

The Jatropha plant requires 4 to 5 yrs to fully develop into an adult bush, but can start producing 

seeds for oil in the first 2 yrs of cultivation if the plantations are well irrigated.  It grows well in poor soil, 

thus establishing its existence in sub-Saharan parts of Africa that don’t receive adequate amounts of 

rain. The plant can withstand drought for three consecutive years and will still produce seeds. Without 

special care and attendance, a Jatropha plant can last for an average of 25 years, but with care it can last 

for over 40 years producing seeds and, in turn, oil for biodiesel [17]. 

 The best Jatropha selection is the Jatropha Curcas. This species is drought resistant and holds 

well in desert-like ground. However, if planted in irrigated areas or on land with a sufficient amount of 

rain, the oil yield from the seeds is much higher than when planted in arid conditions.  

 
Yield and water footprint  

Jatropha produces about 0.35 to 0.375 gallons of oil per tree every harvest, which is equivalent 

to an oil content of about 37 wt %. Different parts of the plant have various oil contents. For the seed 

itself, the oil produced is about 25-30 wt% but if the kernel of the seed is used this oil content would 

increase to 50-60 wt %. Thus, it would be wise to allow the seeds to ripen in order to let the oil content 

grow.  

  
Figure 4: Jatropha ripe fruits, Fruits in the tree and the seeds [17] 
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When the plant is well irrigated, the amount of oil obtained from each plant increases to about 

0.79 to 1.3 gallons. This will be over 375 gallons per hectare of land [17]. Since Jatropha oil is not used 

for any other human consumption, comparison is made between Jatropha and other edible plants oils 

that have been tested as biodiesel feedstock Coconut and palm tree. Jatropha ’s oil production potential 

is close to the  production value of the others.  

Table 2: Oil yield comparison of Jatropha to other edible plants [17][20] 

CROP KG OIL/HA LITRES OIL/HA 

Jatropha 1590 1892 

Coconut 2260 2689 

Palm Oil 5000 5950 

 

A major controversy in the use of Jatropha as a biodiesel source is its water footprint. Well 

known professors and scientists such as Gerbens-Leenesa, Arjen Y. Hoekstraa and Theo H. van der 

Meerb argue that though Jatropha is a viable plant for biodiesel, its water consumption is higher than 

other competing plants. Jatropha’s water footprint is calculated to be 1,400 gallons of water for every 

gallon of Jatropha oil produced [21]. When compared to sugar beets, a plant that is known for its high 

consumption of water, Jatropha’s water footprint is found to be higher by 92500
𝑔𝑔𝑔𝑔𝑔𝑔
𝐺𝐺𝐺𝐺

. When compared to 

rapeseed, a plant also favorable for biodiesel production, Jatropha water footprint is higher by 

53000
𝑔𝑔𝑔𝑔𝑔𝑔
𝐺𝐺𝐺𝐺

. Still some scientists refute these allegations, because none of the institutions have been able 

to provide evidentiary calculations to come to these conclusions. Prof. E.N.van Loo and his colleague 

H.H.G. Savenije strongly contest the methods used for calculation of water footprint for Jatropha. They 

believe that this method has brought about wrong conclusions and bias to the integrity of this plant. 

They believe that the water footprint should be calculated by relating “the energy yield of the crop to its 

actual water use under actual climatic conditions” rather than just depending on precipitation and 



11 
 

irrigation crop water requirements [22]. Compared to the other crops that have been employed to 

produce oil, Jatropha’s research is still at an early stage and since Jatropha has not been properly 

domesticated and studied the controversy over its water footprint is ongoing.  

From fruit to biodiesel 

Each Jatropha tree can produce 15 to 20kg of fruits per harvest and can be harvested between 3 

to 5 times per year[23].  According to Achten etal it is safe to estimate a yield of 4 to 5 tonnes per 

hectare[24]. After the harvest, the fruits are sun dried then de-hulled, which removes the seeds 

protective layer [18]. The seeds are then either solar heated for several hours or roasted for 10 minutes 

to fluidize the contained oil before the extraction.  The oil could be extracted by mechanically pressing 

the seeds or using a chemical solvent process. 

Mechanical extraction 

The mechanical extraction that uses a press to squeeze the oil out of a pack of seeds is 

recommended for plantation sizes smaller than 5,000 hectare, approximately 50 km2. The seeds are 

crushed then humidified before being sent into a press that will squeeze the seeds until the oil sieves 

through. The remaining solid matter is called the presscake and will be processed in another stream 

where it will be pressed further before being collected and used as a fertilizer. According to the African 

Centre for Plant Oil Technology, three to four kilograms of Jatropha seeds yields one liter of oil and two 

to three kilograms of valuable presscake rich in Nitrogen and phosphates[25]. A screw press is the 

machine of choice with a capacity of processing up to 100 tons of seed per day. Some accounts say the 

mechanical method’s limit is in the machine overheating and breaking, and a lower oil yield than with 

other methods. The oil content of the presscake is around 12-15 wt %.[14] 
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Solvent extraction 

For solvent extraction, the seeds would be pressed as well but the presscake that still contains 

around 15% of oil would be treated with a solvent [26]. The final treated presscake would have a 

residual oil content of less than one percent when the mechanical extraction allows higher than 4% to 

remain in the presscake. The solvent of choice for Jatropha oil has been determined to be hexane 

because of the high solubility of oils and fats in it [27].Even though the solvent extraction is the most 

efficient and preferred form of oil extraction, it adds one more step of product preparation before the 

biodiesel conversion; the separation of Hexane and oil through distillation is easily done downstream, 

because hexane evaporates at a very low boiling point. For these reasons, it is used on plantations that 

are larger than 50 km2. 

BIODIESEL PRODUCTION PROCESSES 

Batch Transesterification         

The most widely used process to produce biodiesel is batch transesterification. 

Transesterification is the reaction of alcohol and triglycerides to form the methyl esters that are used as 

the biodiesel, and a byproduct of glycerol.    

Separation 
of seed and 
dried skin 

Presscake 
repressed 

Press of 
crushed seeds  

Seeds are 
heated 
crushed and 
humidified 

Oil to biodiesel 
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Figure 5: Transesterifiction reaction [28]  

 

The incoming oil is filtered to remove any solids while the levels of free fatty acids and water are 

monitored. Free fatty acids are unbound hydrocarbon chains with a –COOH group on one end. First, the 

oil is pumped into a reaction vessel. Next, the catalyst, usually lye (NaOH), is mixed with the alcohol, 

usually methanol, to form sodium methoxide that is charged into the closed reaction vessel with the oil. 

The system from here on is totally closed to the atmosphere to prevent the loss of alcohol through 

evaporation. The vessel is stirred with an impeller while being heated to temperatures of 55o – 70o C in 

order to speed the reaction. After 1 -4 hours of reaction, the liquid phases are separated [29]. The two 

preferred methods to separate the methyl esters from the other byproducts are decanting or 

centrifuging. When decanting, the heavier glycerol is allowed to settle and will sink to the bottom where 

it can be drawn off along with the residual catalyst. To accelerate the rate of separation of the liquid 

phases, a centrifuge can be used for high volume processes. The glycerol byproduct is treated to remove 

the unused catalyst and excess free fatty acids. The glycerol is stored to be sold to other industries.  

After the separation, the methyl esters are distilled to remove the unreacted alcohol which is 

collected to be recycled back into the methoxide feed. The biodiesel is then washed, generally with 

warm water, to remove any residual impurities and unused catalyst. Another method to purify the 

biodiesel is to use a dry wash system that consists of a packed column of magnesium silicate powders or 
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some sort of resin[30]. The dry wash can be done continuously to reduce production time.  A schematic 

diagram of the process can be seen in Figure 5. 

 

 

Figure 4: Schematic of a batch process 

 
Supercritical Methanol Transesterification 

The supercritical methanol method has the same basic principles as batch transesterification. 

The reaction is methanol and triglycerides combine to form methyl esters. There are two main 

differences with this process and the standard batch process. First, the methanol being used is at a high 

enough temperature and pressure that it is considered supercritical, a state where it is neither liquid nor 

gas but retains properties of both. For methanol, the critical temperature and pressure are 240 o C and 
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1140 PSI (7-8 MPa) respectively. One of the main advantages is that this process is faster than the 

normal batch transesterification. It is able to react similar amounts of oil as the standard batch process 

in as little as 6 minutes. Another advantage to using supercritical methanol is that the reaction is 

completely spontaneous, meaning no catalyst is needed. A third advantage is that this process is much 

more tolerable of excess water and free fatty acids in the feedstock. That means that the supercritical 

process can accept and successfully react a much wider range of feedstock since the quality does not 

need to be as high [31]. 

Pyrolysis 

The direct use of vegetable oil as transportation fuel is impeded by several undesirable 

properties of those oils. This includes the absence of aromatics when diesel fuel has between 20-40% 

and a lower energy/volume burning capacity of 20MJ/L when diesel releases 40MJ/L.    

Pyrolysis is the thermal decomposition and transformation of a compound in an oxygen free 

environment and at high temperatures from as low as 170oC for things like sugars to as high as 2000oC 

for making coke used in metallurgy. In the case of vegetable oil, the triglycerides are cracked because 

the average length of the molecular chains is of 57 carbon groups and for diesel that acceptable number 

usually goes from 4 to 25. A study from the Chemistry Institute of the University of Brazil reports that 

the pyrolysis of palm, castor and soybean oils was conducted and produced a diesel-like fuel [32]. In 

2003 Ozlem Onay et al. found a gas-swept fixed-bed tubular reactor, when fed with ground rapeseed 

gave a diesel like oil as well. 

However, due to the variety of results possible, and the ASTM standard for diesel components, 

the pyrolysis oil cannot directly substitute diesel fuel. One of the primary issues with the pyrolysis oil, 

often referred to as bio-oil, is the amount of oxygenates which makes the mixture acidic and unstable. 

There have been processes to upgrade the bio-oil by converting the undesired components. The two 
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main ones we have analyzed are catalytic cracking using an aluminosilicate zeolite HZSM5 and 

Hytrotreatment HDO.   

 
 

 
Figure 6 Thermal decomposition Mechanism [33] 

 

Several studies on the thermal decomposition of triglycerides have shown that the 

decomposition of the protein is done via many mechanisms to yield a variety of components.  Due to 

the fact that vegetable oils have both saturated and unsaturated chains of molecules, the 

decomposition of triglycerides can yield to the formation of aromatics, hydrocarbons and carboxylic 

acids, as shown in figure 4. In the case of Jatropha oil, there are several double bonds, approximately 

two per branch. The acidity of the product is to be corrected, because it could react with the interior of 

the car fueling system, rapidly damaging the engine. In Wisniewski et al. a standard of gasoline 

composition can be compared with the biodiesel product. 

There have been several types of reactors for the pyrolysis however the “circulating fluidized 

bed CFB” reactor is the one that has been scaled up to tens of tons per day of feedstock throughput[34]. 
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Hot sand is conveyed by compressed air from a heater to a chamber where it is mixed with fluidized dry 

grinded pieces of biomass. A gaseous mixture of evaporated oil, flue gas and water as well as ash and 

sand are then conveyed to a cyclone that recuperates the sand and ash particles. The gases are then 

condensed and separated into incondensable gases and the oil. The incondensable gases that include a 

significant amount of carbon monoxide, carbon dioxide, propylene, and hydrogen are partially used as 

fluidizing gas and recycled as fuel gas for the sand heater.  The condensed oil represents between 70 to 

76% wt of dried inlet biomass and is moved to the next treatment step of the process.   

Catalytic cracking  

HZSM-5 zeolites are crystalline aluminosilicates, rich in silica used for their catalytic character. 

Their high thermal stability and their acidity allow them to react with oxygenated compounds to form 

hydrocarbons, aromatics and gasoline like products effectively [35]. Structurally, they are networks of 

tetrahedra of silica and aluminum linked together by shared oxygen atoms. It has been proven that the 

selectivity of the catalyst is dependent both on the product and on the shape. In a study by Adjahe and 

Bakshi, HZSM-5 was found to have a good catalyst effectiveness ( 
1

𝑌𝑌𝑌𝑌𝑌𝑌𝑔𝑔𝑌𝑌 ∗𝑆𝑆𝑌𝑌𝑔𝑔𝑌𝑌𝑆𝑆𝑆𝑆𝑌𝑌𝑆𝑆𝑌𝑌𝑆𝑆𝑆𝑆
) in conversion of bio-

oil to hydrocarbons, aromatics and in minimal coke formation [36].   

One pyrolysis was conducted using tires as feedstock and showed that HZSM-5 increased the 

overall yield of gases and favored the formation of tar with the hydrocarbon formation lower to the 

non-catalytic simulation. Martin Olazar et al. reported 18% wt of organic liquid which is about half of the 

yield without a catalyst [37]. However the oxygen content was significantly lower- from 36% without the 

catalyst to 18% with HZSM-5.    

Hydrotreating 

Presently, the most effective way to remove the excess oxygen from the pyrolysis oil is a process 

called hydrotreating which is a high pressure hydrogenation treatment for the oxygen rich bio-oil. The 
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oil is put through a packed-bed catalytic reactor operating at high pressures and temperatures where 

the hydrogen reacts with the oxygen to form water. There are several different catalysts that can assist 

this process; the most common ones are made of a Ni/Mo silica [38]. Some of these newer catalysts are 

able to lower the amount of organic acids, aldehydes, ketones, and ethers, and raise the amounts of the 

desired products: phenolics, aromatics, and alkanes.  

 

 
Figure 7: A detailed PFD of a hydrotreatment process[39]  

 

Mild-hydrotreating allows the removal of O2 in the pyrolysis oil which then can be used as crude 

oil to be refined into gas and diesel, while using less hydrogen to help keep costs down. Heavy duty 

pumps are needed to boost the oil and hydrogen to high pressures, while heat exchangers and furnaces 
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are needed to raise it to high temperatures. Then, the deoxygenated oil passes through two flash stages 

to remove the fuel gases and excess carbon dioxide. The fuel gas is sent to the steam reformer unit to 

produce more Hydrogen [39]. 
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METHODOLOGY 

The goal of this study was to compare standard transesterification, supercritical 

transesterification and pyrolysis on a basis of energy consumption/efficiency, yield, capital and 

operating costs and quality of the out coming fuel. For the transesterification processes, Aspen was used 

to simulate the reaction in a batch setting. For the pyrolysis process, information was gathered from 

major works including a wood pyrolysis design case submitted to the US Department of Energy [39]. 

From the results of the simulations and research, the processes were compared to each other in a 

decision matrix in order to get an appreciation of their different parameters.   

Transesterification using Aspen 

The Aspen simulation for the transesterification was done using  R-batch reactor. Table 3 shows 

Table 3: Input in ASPEN for transesterification 

Components Triolein, Methyl ester named Methyl Oleate, 
glycerol, water 

Property model  RK-Soave 
Input stream 25oC, methanol and triolein ratio varied  
Reactor Constant temperature 

Stop criteria :0.95 conversion of triolein 
Reaction 1 triolein+3 methanol3 FAME + 1 glycerol 

Pre-exponentional factor ko=2.2*106  
Activation Energy E= 85kj/mol 

 

From the MSDS of Jatropha Oil, triolein was determined to be the main triglyceride which is why 

its transesterification was closely analyzed. The pre-exponential factor and the Activation Energy values 

were found in a study of the kinetics of triolein transesterification from the Chemical Engineering 

Department of Tsinghua University in China [40].  

For the purpose of the simulation the catalyst was left out of the chemical equation. As for 

supercritical and subcritical transesterification, the main difference was temperature. 
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Heat Balance 

In order to calculate the heat balance for the respective processes it was assumed that the 

separation stages would have similar heat duties in all processes and therefore the energy balance was 

focused around the reactor. The general balance equation used allowed for the calculation of total heat 

input required for the reaction or for the heat loss. 

𝐻𝐻𝑌𝑌𝑖𝑖 + 𝐻𝐻𝑔𝑔𝑌𝑌𝑖𝑖 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑆𝑆 + 𝐻𝐻𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 + 𝐻𝐻𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 

Transesterification 

𝐻𝐻𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻  was attributed to conduction through the stainless steel reactor shell with an overall heat 

transfer coefficient:   𝑈𝑈 = ∆𝐻𝐻
∆𝑇𝑇∗𝐴𝐴

= 14.4 𝑊𝑊
𝑚𝑚2.𝑘𝑘

 

𝐻𝐻𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌   was the energy used to heat up the oil from an initial temperature of 25 degrees to the 

reaction temperature of 700C for normal transesterification and 2500C for super critical 

transesterification. 𝐻𝐻𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌  also considered the amount of heat needed to drive the reaction. This 

required the calculation for 𝐶𝐶𝑝𝑝, the specific heat of triglycerides by using the following Rowlinson-Bondi 

equation for vegetable oils [41].   

𝐶𝐶°𝑝𝑝  𝑆𝑆𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖 = �𝑔𝑔 + 𝑏𝑏𝑇𝑇 + 𝑆𝑆𝑇𝑇2 + 𝑌𝑌𝑇𝑇3 

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  = 𝑔𝑔𝑇𝑇 +
𝑏𝑏𝑇𝑇2

2
+
𝑆𝑆𝑇𝑇3

3
+
𝑌𝑌𝑇𝑇4

4
 

𝑚𝑚𝐶𝐶𝑝𝑝(𝑇𝑇) = 𝛥𝛥𝐻𝐻 
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Pyrolysis and Hydrotreatment 

For the Pyrolysis and Hydrotreatment processes, the heat balance was done around each 

individual reactor. The heat duties of each stream 𝐻𝐻𝑌𝑌𝑖𝑖 , 𝐻𝐻𝑜𝑜𝑜𝑜𝑆𝑆  as well as 𝐻𝐻𝑔𝑔𝑌𝑌𝑖𝑖 , which was the heat duty of 

the furnace, were all found in the appendix PFD stream sheets resulting from the Aspen simulation of 

the process found in the Design case of “Gasoline and Diesel Production Through Pyrolysis” [39].  

Several assumptions were made for the heat calculations: 

• The similarity between Canola oil (from rapeseed) and Jatropha oil was noticed. The literature 

on the pyrolysis of rapeseed confirmed the feasibility of the process for crushed seeds [42]. With 

a similarity in seed oil composition between rapeseed and jatropha- approximately 40%wt of oil 

in both seeds [32] the composition of the rest of the fruit was assumed to be 16% cellulose 22% 

protein and 22% hemicelluloses and lignin. 

• To calculate the heat used to raise the temperature of the mixture from 66o C to 500o C, the 

average specific heat cp for triglycerides was found to be 1800 
𝐽𝐽

𝑘𝑘𝑔𝑔  𝐶𝐶
 and for molasses the value 

was found to be 2512 𝐽𝐽
𝑘𝑘𝑔𝑔  𝐶𝐶

.   

𝐻𝐻𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 = (𝑀𝑀𝑜𝑜𝑌𝑌𝑔𝑔 𝑆𝑆𝑝𝑝 𝑜𝑜𝑌𝑌𝑔𝑔 +  𝑀𝑀𝑀𝑀𝑜𝑜𝑔𝑔𝑔𝑔𝐻𝐻𝐻𝐻𝑌𝑌 𝑆𝑆𝑝𝑝𝑀𝑀𝑜𝑜𝑔𝑔𝑔𝑔𝐻𝐻𝐻𝐻𝑌𝑌 ) ∆𝑇𝑇 

Therefore, the Heat loss was calculated as the Heat remaining after the balance. 

For the Hydrotreating process, the balance differed by the importance of the heat of reaction.                                        

𝛥𝛥𝐻𝐻𝑓𝑓  𝑝𝑝𝑡𝑡𝑜𝑜𝑌𝑌𝑜𝑜𝑆𝑆𝑆𝑆𝐻𝐻 − 𝛥𝛥𝐻𝐻𝑓𝑓 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑔𝑔𝑖𝑖𝑆𝑆𝐻𝐻 = 𝛥𝛥𝐻𝐻𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖  
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Table 4: Reactants and their heat of formation 

 

 

 

 

 

 

Table 5: Products and their heat of formation 

 

                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛥𝛥𝐻𝐻𝑓𝑓  for cellabiose came from sucrose, a similar molecule in size, shape and chemical make up. 

In addition to the heat of reaction, the heat of vaporization was calculated because of the 

amount of water formed during hydrogenation. The Heat of vaporization of water at temperatures of 

240 and 371 degrees Celsius were 13650BTU/lb.mol and 7868 BTU/lb.mol, respectively. The total heat 

used for the vaporization of water was given by 𝑀𝑀𝑤𝑤𝑔𝑔𝑆𝑆𝑌𝑌𝑡𝑡 ∗  𝐻𝐻𝑆𝑆𝑔𝑔𝑝𝑝  . 

 
 

Amount 
used(lbs/hr) 

𝛥𝛥𝐻𝐻𝑓𝑓 (kJ/mol) 

Lignin 64000 -1092 
Cellaboise 23000 -2226 
Furfural 12000 -151 
Acetic Acid 8000 -483 
Hydrogen   

Product Amount 
created(lbs/hr) 

𝛥𝛥𝐻𝐻𝑓𝑓 (kJ/mol) 

Water 40000 -241 
Carbon Dioxide 9000 -393.5 
Methane 3000 -74.9 
Ethane 2000 -83.8 
Propane 1500 -104.7 
Butane 1500 -125.6 
2-5Xylenol 8000 -237 
Heptane 3000 -187 
Cyclohexane 10000 -156 
Cis-Decalin 3000 -207 
Biphenyl 4000 -182 
Diamantane 9000 -193 
Phenanthrene 6000 -201 
Chrysene 6000 -152 
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 Comparison of Processes 

After analyzing each of the parameters for the comparison, the importance of the parameter 

was rated on a scale from 1 to 10 and it was later determined how well each process performed on that 

scale. The weights for each parameter were determined by team members brainstorming for educated, 

reasoned judgments. For each parameter a maximum score of 10 was possible, meaning the parameter 

would be very important . For example, capital cost was assigned a score of 8.5 which means that it is 

important, but not as critical as the yearly operating cost a recurring cost which was assigned a 10. The 

same reasoning was applied to determining the weight of the other parameters. Table 4, shown below, 

will help to visualize the comparisons made later for the various parameters. 

Table 6 Matrix table for comparison of processes 

 Wt  Transesterification 
subcritical  

Transesterification 
supercritical  

Pyrolysis + 
Hydrotreating  

Wt % yield of 
biofuel  

5     

Energy 
used(MMBTU/hr)  

5     

Utilities MM$/yr  5     

Speed of 
reactions  

4     

Complexity of 
process  

4     

Byproducts  4     

Capital cost  8.5     

Operating cost 
$MM  

10     

Total RM cost  7     

Total  52.5     

 

The performance of the process for the corresponding parameter was rated from 0 to 1, 1 being the 

ideal condition.  This value was also determined from reasoning of the team.  
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Although the results might be considered subjective, a decision matrix is used in industry to 

evaluate and compare multiple processes, or factors, taking into account a variety of pros and cons. We 

also note that this process was applied consistently to each of the three processes. This is why this 

method was used in this case. 

The economical values that were entered in the comparison sub-section of the results are a 

combination of three major papers: the Design Case by PNNL, a Technoeconomic Study of Supercritical 

Biodiesel production Plant and The Centre for Jatropha Promotion in India. 
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RESULTS AND ANALYSIS 

Transesterification Results 

Transesterification results were acquired by running simulations with the program Aspen PLUS. 

Standard and supercritical transesterification processes were both simulated in order to compare both 

processes. Data were acquired about how the processes varied by fluctuating the molar ratio, the 

temperature and the pressure of both systems. By varying these three parameters, an analysis was 

made to find out how each of the parameters changed the reaction time of the processes, and heat of 

the process. 

In most published papers, such as “Comparing Cost of Biodiesel Production from 

Transesterification” [43], the authors investigated the effect of varying the operating parameters on the 

total yield. Significantly, the data recovered from our Aspen Simulations differed greatly from published 

information due to the fact that for the purpose of the simulation a constant 95% conversion of 

Triglycerides had to be maintained. This was the only way that significant errors and fatal warnings 

would not be generated.  

Additional assumptions made in the Aspen simulation were that the reactor was completely 

adiabatic and conversion was constant at 95% of the triglycerides. Perfect mixing within the tank was 

assumed while pure components were theorized to have been used in the process.  

Molar Ratio 

Reaction Time 

Figure 8 represent a comparison of molar ratio to the reaction time. In both processes, the 

reaction time decreased as the ratio of methanol to triglyceride increased. At a molar ratio of 5 to 1, the 

trends that had been similarly linear underwent a significant decrease in reaction time for both the 

standard and the supercritical transesterifications. In the standard process, the reaction time dropped 
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by about 10 min while in the supercritical process, the reaction time decreased by about 2 min. By 

increasing the amount of methanol, the transesterification reaction is accelerated and thus time 

required to acquire a 95% conversion is lessened. 

 

Figure 8: variation of reaction time with changes in molar ratio for standard and supercritical transesterification 

 
Several published journals available today agree that as molar ratio of methanol to oil is 

increased the reaction time decreases. In “Development of mathematical correlation for 

the transesterification reaction” [44], the researchers used a real world assumptions and actual 

reactions and also found that an increase in the molar ratio of methanol to triglycerides from 5:1 to 10:1 

resulted in an increase in the yield from 88% to 97 %. “Alternatively as molar ratio increases, reaction 

time decreases, but higher molar ratio requires higher amount of methanol which reasonably increases 

the cost of transesterification” [44].  Also, as the methanol is increased, it becomes harder for the 

methanol to be totally separated from the methyl esters downstream [44]. 
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Heat Load 

The molar ratio affects the heat duty in a way similar to the reaction time. The heat duty 

decreased following the same trend in both processes with a sudden drop at a molar ratio of 5 to 1. It 

can be noticed in Figure 8, 9, and 10 that the heat load varies in the same trend as the reaction time; 

this shows the close relationship that reaction time and heat load have in that less time reacting means 

less heat will be needed 

Since increasing the amount of methanol utilized reduces the reaction time, one can infer the 

system uses less heat to drive the reactions and carry out the transesterification. These results are 

consistent with reaction kinetics because adding methanol in greater excess allows the triolein to be 

reacted faster.  

                            

Figure 9: Variation of heat load with changes in molar ratio for standard transesterification 

 

Figure 10: Variation of heat load with changes in molar ratio for supercritical transesterification 
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Temperature 

Reaction Time 

From the Aspen simulation, it resulted that as the reactor temperature increased, the reaction 

time decreased significantly. Eventually in both cases, it will reach a point that the temperature will 

increase but the reaction time would approach zero, and thus the reaction will be almost instantaneous. 

As temperature increases, the time for the reaction to reach a certain conversion decreases, though not 

as drastically as shown in figure 11. According to data obtained, a 10 degree Celsius increase in 

temperature more than decreases the reaction time to a  95% conversion by over 50%; in the first 10 

degree temperature elevation the time varied from 23 minutes to 8 minutes in supercritical 

transesterification and from 169min to 84 min for standard transesterification. Another increase of 10 

degrees Celsius would bring the standard transesterification reaction time to less than 1 minute, which 

is neither a realistic nor an achievable result in real world conditions. 

 

Figure 11: Variation of reaction time with change in the reaction temperature for both standard and supercritical 
transesterification 
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Heat Duty 

Aspen simulations showed that as the temperature is increased in the transesterification 

systems, the reaction time decreases while the heat duty increases.  Data acquired signifies that the 

heat duty increases linearly. As reaction time decreases, the time to heat up the reactor decreases, 

although there is more energy put into the system per time.  

 

Figure 12: Variation of Heat load with respect to Reactor Temperature 

 

 

Figure 13: Variation of Heat load with respect to Reactor temperature                   
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Pressure 

Reaction Time 

As the pressure was varied in the standard transesterification process, the reaction time did not 

noticeably change. The reaction time dropped from 61.05 min to 60.94 min, a difference of about 0.11 

min which is less than a 0.2% decrease.  

For supercritical transesterification, varying the pressure had little effect on the reaction time, 

with a difference of about 0.004 min from the highest reaction time to the lowest. The difference is so 

small that it can be assumed to have no effect in reaction time. Tang et al in their “Transesterification of 

the crude Jatropha curcas L. oil catalyzed by micro-NaOH in supercritical and subcritical methanol” [40] 

established that pressure had no significant effect on yield of methyl ester. 

 

Figure 14: Variation of reaction time with change of pressure in standard transesterification  

                        

Figure 15: Variation of reaction time with change of pressure in supercritical transesterification process 
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Pyrolysis results 

Results on Composition of bio-oil and Effect of catalyst 

As predicted, the pyrolysis oil had a significant variance from the ideal diesel fuel liquid 

standard. From the pyrolysis of wood, this trend can be observed, where the amount of oxygen 

detected is around 40% when the acceptable range is below 3 % [16].  

The total bio-oil yield of the pyrolysis of a Jatropha Curcas cake was 64wt% in a fluidized bed 

reactor at 500oC using Nitrogen as fluidizing gas with particle diameter of 1mm [45]. For the pyrolysis of 

wood in the PNNL design, the bio-oil represented 83% of the incoming dried biomass, 20% of which was 

water.  The bio-oil composed of 35-40 wt% of oxygenates with significant amounts of furfural, acetic 

acid, hydroxyacetone and levoglucosan. The levoglucosan is from the depolymerization of 

cellulose/hemicellulose which represents more than 50% of wood material. These products would 

therefore be present in the bio-oil of Jatropha seeds since close to 40% of its weight is composed of 

hemicelluloses and cellulose. 

 In the PNNL experiment, hybrid poplars were used because of their high carbohydrate 

composition, of more than 70% [46]. In an experiment conducted where the pyrolysis bio-oil from beech 

wood [47] was followed by a hydrotreatment, showed significant improvement of the bio-oil quality 

when treated with Ru on carbon catalyst table 7. 
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Table 7 Chemical composition of different stages of pyrolysis[47] 

                                       

 

 

 

 

 

 

 

 

 

 

 

Table 7 demonstrates the improvement in bio-oil oxygenate content when hydrotreated. 

Generally mild-hydrotreating occurs in several in-line reactors operating at pressures around 100-200 

bar and temperatures ranging from 175oC to 400oC [48]. The hydrotreating used in the PNNL industrial 

model is a two step process in which the bio-oil goes through a hydrogenation at 2200C followed by a 

decarboxylation at 3710C.  

There are several different catalysts that can assist this process, the most common ones are 

made of a Ni/Mo alumina (Ni-Mo/ -Al2O3, 3% NiO, and 15% MoO2) [38]. According to a study by 

Wildschut, et al, other catalysts such as Ru/C performed better than traditional catalysts, raising yields 

and allowing for better deoxygenation[48][49]. Table 7 demonstrates catalysts effect on the 

concentration of both undesired and desired products, all of which affect the fuel’s quality and 

properties.   

 Pyrolysis  
Beech 
oil 

Expected 
Conversion 

HDO Pd-C 
catalyst 

HDO Ru-C 
catalyst 

Acid 8.3 less 7.8 7 

Aldehydes 18.7 less 10 4.2 

Furans 5.3 less 0.3 0.2 

Guaiacol & Syringols 19.7 less 4 1.9 

Sugar 21.4 less 0 0 

Phenolics 7.4 higher 9.2 15 

Alkylbenzenes 1.8 higher 29.5 24.7 

Hydrocarbon 0.4 higher 3.3 10.9 

Not classified 5.3 less 9.9 9.5 



34 
 

Effect of operating pressure and temperature 

  Putun’s 1996 studies proved that the hydrogen’s pressure impacted the hydrodeoxygenated oil 

yield and content.  A hydrogen input of 15MPA and reaction of 550 degrees gave the best results for 

that study. PNNL’s model had the hydrogen enter at about 15 MPA and in the reactors the highest 

temperature used is 3710C. The temperature was chose to be less than 550, because subsequent studies 

found that the severity of the process, which is the operating temperature, has an effect on the 

products and byproducts made.  

In general a more severe hydrotreatment will give better deoxygenation, but also results in a 

higher average molecular weight and more residual coke.  Ardiyanti, Venderbosch and Heeres found 

that as the temperature increase or as the space velocity decreased, the oxygen content of the product 

decreased[48]. While the oxygen content became more favorable, the average molecular weight and 

the coke residue increased. The optimal operating conditions were found to be at either 350 or 400 

degrees Celsius, which allowed for a final oxygen content of 14.2 wt% from an original of 40.1 wt% while 

keeping the bio oil from polymerizing or excess coke residue to be formed [48]. 

        
Figure 16 Effect of temperature on oxygen content of bio-oil during hydrotreating [48] 
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Results of properties at each stages 

From a study conducted in the Netherlands in association with BTG, 2 stage hydrotreated oil 

catalyzed by Ru/C was tested on an engine and showed no sign of corrosion or erosion like the non-

treated bio-oil did over a period of 30minute period[50]. This can be explained by the similarity in 

composition and properties shown by the treated oil to ASTM diesel standards tabulated in Table 8. The 

second stage oil is the closest to the Diesel fuel properties but still needs improvement.  Put table 8 on a 

single page. 

Table 8 Properties of bio-oil and different stages of upgrades [50] 

Properties Diesel Beech Bio-Oil HDO1 HDO2 

HHV (MJ/kg) 49 15.7 31.8 37.5 

LHV (MJ/kg) 46 13.9 30.1 35.6 

Density at 20 °C (kg/l) 0.8 1.2 1 0.9 

Flash point (°C) 66 40-65 31.1 30.4 

Viscosity at 40 °C 
(mm2/s) 

5.0 33.3-83.3 1000 144.4 

Water content (%) 0.007 27.8 4.3 1.6 

pH n.a. 2-3 5 6 

Elemental comp. (dry) 

C (%-wt. ) 86.4 39.95 71.6 79 

H (%-wt. ) 13.7 8 7.8 9 

N (%-wt.) 0 0.04 0.29 n.a 

O (%-wt.) 0 52.05 20.31 12 

 

It is believed that by removing the naphthalene, and butane and refining the crude treated bio-

oil in the same manner in which petroleum crude oil is refined, the properties could be further 
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enhanced[39][50].The viscosity of HDO2 is approximately 33 times higher than that of diesel fuel. It was 

found that the viscosity of the bio-oil was dependent on the biomass type [51]. From Heeres, the 

viscosity was found to decrease linearly with decrease of oxygen content lower than 20%.  

However, it is important to specify that the scope of the project that resulted in the property 

table above was to test the different stages of pyrolysis beech oils. The hydrotreatment was done in a 

batch setting with a reaction time of 3-4hr.  

 

Comparison of Three Processes 

 

Heat Balance 

Table 9 Energy balances around the reactors (in MMBTUs) 

Processes Subcritical 
Trans. 

Super critical 
Trans. 

Pyrolysis HDO 

Heat in 
(MMBTU) 

398 1003 6141 494 

Heat out   6192 533 
Heat generated    +40 
Heat of vap 21.26 627 1165 21 
Heat of 
reaction 

377 377 46 +77 

Heat loss/acc 0.01 0.05 1160 57 
 

The energy balance around the different reactors gave the results tabulated in table 9. From the 

heat balances, the energy need of each process was identified for processing an equal amount of 

183,000 lb/hr dry seeds. Although the numbers for the pyrolysis might seem unfavorable, approximately 

5000 MMBTU that are carried by the sand particles will be recycled back from the reactor to heater. The 

net heat loss comes down to a significant 35 MMBTU, perhaps dissipated during the residence of the 

sand in the cyclone recovery units. The fuel for the heating unit of the pyrolizer is a byproduct of the 

reaction. Glushkov V. A. estimated that the gas fuel obtained from the combustion of 1kg of cellulosic 

matter has a calorific value of 6-9MJ of energy [52]. Considering that the amount of 183,000lb/hr of 
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plant matter processed, the gas fuel could provide as much as 550 MMBTU of energy per hour 

significantly decreasing the fuel expenses for the plant.  

The energy demand of the transesterification reactions vary from low for standard 

transesterification to significant for the supercritical transesterification. From standard to supercritical, 

the heat duties of the heating apparatus will triple as well as the need for a more sophisticated reactor 

able to withstand the pressure build-up and minimize energy loss. Marchetti et al. related that annual 

utilities cost in operating the transesterification goes from $305,000 to $1.5 million[53]. On the energy 

basis, the press cake can be burned to produce energy with a calorific value of 11.1MJ/kg burned[54]. 

Since the cake represents 60 wt% of the seed, on a basis of 183,000lbs/hr of dry seeds there is a 

potential of 524 MMBTU/hour.  

 
Byproducts 

  A recent research paper by Elliott et al. [39] projected that the byproducts created by the 

production of crude oil through fast pyrolysis are a fuel gas mixture and ash. The fuel gas stream 

contains mostly methane, ethane, propane and butane; it also contains a large amount of carbon 

dioxide. Elliott et al. showed that these fuel gas streams that come from several different parts of the 

process including pyrolysis and hydrotreatment can have a total flow rate of 12wt% of the feedstock 

input. The gas is rerouted to fuel the steam reformer and the heaters elsewhere in the process. By using 

the off gas, a large pyrolysis plant can significantly decrease its need for an outside source of fuel for 

heat and power in the steam reformer and heaters. The same study found that 13wt% of the feedstock 

would be converted into an ash and char mix, this char mixture can be used as soil amendment, allowing 

for better growth and yield from the land [55] Karayilderim et al. found that 20 wt% of the feedstock 

was converted into a gaseous product and 40% was converted to char [56]. The two experimental char 

yields differed because the latter resulted from the semi-batch fixed-bed pyrolysis of mixed waste water 
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treatment sludge while the first one resulted from the continuous fluidized bed pyrolysis of fresh ground 

poplar wood.  

The process of transesterification produces two distinct byproducts, glycerol and a feedstock 

presscake. The presscake, left over from the extraction of the oils, accounts for about 60% of the weight 

of the original feedstock. This presscake is fairly energy rich and could be burned to produce much of 

the power and heat needed for the biodiesel production process or used as a nutrient rich fertilizer. 

Assuming a good conversion in the transesterification reaction, 10 wt% of the oil feedstock will be 

converted into glycerol [57]. Glycerol can be used in the production of soap or in the food industry to 

produce mono and di-glycerides, it also has many uses in today’s pharmaceutical industry. Today prices 

of glycerol can be as much as 600 dollars per ton [58]. However, with increase biodiesel production will 

come an increased glycerol production and the market would soon become depressed as the need for 

glycerin in the cosmetic industry, soap industry and food industry lessens. 

 
Raw Materials 

The first material needed for the pyrolysis process is the carbon feedstock, in many cases wood 

or another biocrop. A common cellulosic feedstock such as poplar can cost $50 per ton, although others 

like corn stover and sugar cane begasse may cost as little as $30 per ton [59].Jatropha on the other hand 

costs about $140[60]. The other resources needed for pyrolysis are hydrogen, natural gas and certain 

catalysts. Hydrogen today cost about $1 per kg [61], but in a large scale pyrolysis plant the hydrogen will 

most likely be produced on site, powered by the off gas from earlier in the process, which will lower 

costs significantly. The natural gas used in the steam reformation process in the PNNL design case 

estimated the cost at almost $3000 per hour for a large scale production facility. The catalysts used in 

the pyrolysis process as well as the hydro treating process are expensive, some estimates have been at 

$15 a pound, and that the life span of the hydrotreating catalyst about one year [39]. In a large scale 
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facility a buildup of impurities would occur much faster than in a laboratory scale experiment, this would 

cause the cost of the catalyst to increase over time.  

The raw materials used in standard transesterification are the bio-oil, methanol and NaOH. The 

oil is extracted from the seeds in one of several different methods: with solvents, or through mechanical 

extraction. The cost of hexane, a common solvent used for oil extraction, is about $14 per gallon, and 

along with the added equipment cost and operating cost of an extra distillation step, solvent extraction 

would be better suited for a large scale operation. Mechanical extraction is less costly, but also less 

efficient and possibly more dangerous. It requires a piece of machinery that would generally be run by a 

gasoline motor and cannot handle as great a load as a solvent extractor could, meaning that several 

would be needed for an operation of decent size. The second important reactant is methanol, which 

when purchased on large scale can cost as low as 1.15 dollars per gallon [62]. Since only 1/8 gallons of 

methanol is consumed for every gallon of oil, costs would be low, especially if an efficient distillation 

step is employed to recycle the unused methanol. The catalyst, usually NaOH, goes for a more than 2 

dollars per pound [62].Unfortunately this catalyst is very difficult to recapture and reuse, so it needs to 

be replaced at the beginning of every run.  

 
Emissions 

According to Searchinger and Hiemlich, the production and use of biodiesel through 

transesterification, cuts the total green house gas emissions by 54% in comparison to the production 

and use of diesel fuel. The energy input needed to prepare the land, pretreat the Jatropha feedstock and 

transesterify the oil into biodiesel is larger than the energy input needed to extract and refine petroleum 

diesel. This is due to the energy intensive pretreatment of the land for planting, the oil extraction, the 

lengthy transesterification, and washing and distillation process.  However, the carbon dioxide drawn 

out of the atmosphere by developing Jatropha plants greatly reduces the net gain of greenhouse gases 
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in the air[57]. Table 10 gives a numeric value of the emissions for biodiesel and petrodiesel production 

and use. A study from the Center for Industrial Ecology at Yale University reported that the net savings 

of green house gas emissions was approximately 540 kg per year per hectare [63]. Another paper by 

Prueksakorn and Gheewala, report that the net gain of GHG emissions are 27% of that of petroleum 

diesel [64]. The Prueksakorn article used a life cycle assessment to calculate the net CO2 reduction. The 

life cycle assessment included a more detailed view of the processes, activities, materials, use and 

disposal of waste products associated with the transesterification process. They found the most energy 

consumed came from transesterification, irrigation and fertilization respectively accounting for 40%, 

23% and 22 % of the total energy used. This is why Prueksakorn’s analysis gives a lower reduction value 

of the greenhouse gases. When biodiesel is burned in a diesel motor the carbon dioxide emissions are 

almost identical. The burned biodiesel exhausted 595.7 grams of CO2 per horsepower for every hour the 

engine was running. By comparison, the diesel motor exhausted 595.12 g/hp*hr [63]. Since the 

greenhouse gas emissions from the burning of the fuel are so similar, the net CO2 reduction comes from 

the fact that the biodiesel is derived from a renewable source that replenishes itself from the carbon 

dioxide in the atmosphere.  

Table 10 Petrodiesel and biodiesel life cycle CO2 consumption in grams of Greenhouse Gasses CO2 /mile 

 

A study by Roberts et al. shows the pyrolysis of several feedstocks, such as, corn stover, can 

reduce the overall green house gases through  slow pyrolysis by over 800 kg of CO2 per metric ton of 

feedstock, this shows an 80% recycling of CO2 [65]. Consequently, the plant designed by The Pacific 
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Northwest National Laboratories that processes about 2000 metric tons of dry poplar wood feedstock 

per day, could theoretically lower carbon dioxide emissions by almost 620,000 metric tons per year, 

0.1% of the total CO2 emissions of the US. [62]The theoretical reduction in CO2 emissions predicted by 

the PNNL paper may have been less than that of Roberts et al. study, because it took into account more 

parts of the process, such as the production of hydrogen through steam reformation and the cracking 

and refining of the hydrotreated bio-oil. From “Experimental Studies on the Performance of Catalytically 

Hydrotreated Fast Pyrolysis oil in a Stationary Diesel Engine” it was concluded that the CO2 emissions of 

a treated pyrolysis diesel were similar to that of a fossil fuel diesel emission [50]. 

Potential as substitutes for diesel fuel in engine 

The value of the biofuel as diesel replacement will be evaluated based on how it measures to 

the ASTM standards from 2010 and on various results comprised in this analysis.  

Table 11 Typical properties of wood pyrolysis bio oil and heavy fuel oil 

Physical property 

2010 
ASTM 

Standards 
Diesel 

Sample Bio-oil 
From jatropha  

[45] 

HDO2 
[49] 

Jatropha 
Methyl ester 

[66] 

2010 ASTM 
standards  

B100 methyl 
ester 

Moisture content 
(wt%) 

1 max 15–30 1.6 - 0.05 

Acid value 
(mgKOH/g) 

0.2 87.84 Ph=6 0.24 0.50 

Specific gravity 
(20oC) 

0.85 1.2 0.9 0.87 - 

Ash 0.01 0–0.2   0.02%max 
Flash point 52 140 30.4 191 93 

HHV (MJ/kg) 42 16–19 37.5   
Viscosity (at 50o C) 

(mm2/s) 
2.6-4 7.4 6 4.84 1.9-6.0 

Pour point -20 4    
 

None of the renewable fuels can directly replace petroleum diesel because they come short in 

satisfying the established requirements for transportation fuel. The viscosity as well as the pour point is 
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higher than that of petroleum diesel which would cause damage and clogs to the fueling system. The 

high acidity tends to erode the interior of the car. From an engine test conducted by J. Florijn [49]  using 

the double hydrotreated bio-oil from beech tabulated as HDO2, there seem to be coke residue in the 

engine as well as visible erosion on the nozzle hole when the oil was fed at a low inlet air temperature. 

Since the B100 product cannot be used in the diesel engines alone, it is often mixed with diesel to 

produce B10 and B20 fuel. 

Matrix for the evaluation of the processes 

All processes were scaled to a production of approximately 2000 ton per day with a 350 day/24h 

per day plant operations. This would include the cultivation of 8.27 field s of 10 000ha per year which 

produces about 5811 Barrels per day. This is around half of the diesel consumption of Haiti for the year 

2006 and 827 square kilometers is approximately 3% of the nation’s land area. The economical values 

are a combination of three major papers: the Design Case by PNNL [39], Technoeconomic Study of 

Supercritical Biodiesel production Plant [53] and The Centre for Jatropha Promotion in India [60]. 

 

 

 

 

 

 

 

 

 

 



43 
 

Table 12 Matrix for comparison of transesterification and pyrolysis processes 

 Weight  Transesterification 
subcritical 

Transesterification 
supercritical 

Pyrolysis + 
Hydrotreating 

Wt % yield of biofuel 5 37.6  (0.6) 36.2 (0.5) 36 (0.5) 
Energy used(MBTU) 5 398   (0.9) 1003  (0.2) 1300 (0.2) 
Utilities MM$/yr 5 2.42 (0.9) 7.97 (0.4) 12.4 (0.2) 
Speed of reactions 4 60mn (0.2) 15-28mn (.5) <10 s (1) 
Complexity of process 4 (0.7) (1) (0.1) 

Byproducts  
4 

Glycerol 
Presscake 

Soap 
(0.6) 

Glycerol  
Presscake 

 
(0.7) 

Ash  
Tar 

Fuel Gas 
(0.8) 

Capital cost 8.5 $45,500,000  
( 1 ) 

$151,000,000 
( 0.6) 

303,190,000 
 (0.4) 

Yearly operating cost  10 $143,000,000  
(0.1) 

$293,000,000  
(0.05) 

$102,000,000  
(0.8) 

Methanol 
NaOH 

Natural Gas 
catalyst  RM costs 

Hexane 
Total RM cost 

 
 
 
 
 

7 

$32,000,000 
$4,7000,000 

- 
- 

$11-45,000,000 
$47-81,600,000 

   (0.3) 

$32,000,000 
 
 
 

$11-45,000,000 
$43-77,000,000 

(0.4) 

0 
0 

$26,300,000 
$10,850,000 

 
$37,150,000 

 (0.6) 
Total points achieved 52.5 27.4 23.3 28.7 

 

For the transesterification process, even at the lowest scales, the operating costs compete with 

any revenue from the sale of the biodiesel produced. To confirm the numbers calculated in this report, 

several studies have estimated that the cost of production of transesterification biodiesel has been the 

main obstacle to the development [13] [53].The US department of Energy Information Administration, 

evaluated that Methyl Ester biodiesel’s cost of production is higher than that of petroleum diesel; when 

made from soybean, the cost of production is $2.54 when for diesel it is $0.76 [67]. Unlike the 

transesterification, the pyrolysis process is profitable, with a minimal selling price of the diesel of $1.80-

2.04 depending on the source when biodiesel’s cost of production alone is $2.54[57] [31].Although the 

pyrolysis process appears to have a heavy initial cost it can be compared to the investment for a new oil 

rig which can cost anywhere between $200million and over 1 billion dollars [68][69].  
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Additionally, when talking about the complexity of the process, it was only considered the 

amount of different stages the process included.  Having a batch system could be most inconvenient and 

inefficient for a production of this scale. For a reaction of 1 hour and a well-mixed solution, the size of 

the reactor would be limited and the number of reactors would depend on that volume. It can already 

be predicted that this number would be large and the process would become complex in the 

management of that many more pieces of equipment.    
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CONCLUSION AND FUTURE WORK 
 

This report analyzed the processes of standard transesterification, supercritical 

transesterification and pyrolysis in order to compare them to one another on a basis of the following 

parameters: yield, energy requirements, reaction time, raw materials, capital and operating costs of 

production. From the matrix created, pyrolysis scored only slightly higher than standard 

transesterification, and the supercritical transesterification was least favorable. For pyrolysis, the energy 

demand and equipment sophistication weighed most for that process. For transesterification, the yearly 

cost of production due to raw material needs like methanol and NaOH, made this process economically 

unattractive on a large scale. Additionally, the pyrolysis diesel fuel can be used independently of the 

petroleum diesel, which makes this option ideal for Haiti considering the desire to reduce the burden of 

imported transportation fuel on their economy. 

Although the method of determination is relatively subjective, as noted in our description of the 

matrix analysis, our team recommends that further investigation be done on the feasibility of 

establishing a large scale fast pyrolysis operation in Haiti, since it was established to be the most 

economical process. It is recognized that there is still a great deal of research to be attended to. We 

recommend that the following be the focus of studies and experiments to come.  

• Design lab scale unit for Pyrolysis and Hydrotreating of Jatropha Curcas oil and of 

crushed seeds with in-line Chromatography to study conversions  

• Investigate Changing World Technologies treatments after their pyrolysis as an 

alternative to Hydrotreatment. 

• Address the pherbol ester content (toxicity factor) of Jatropha and how that affects the 

quality of the outcoming fuels and design extraction treatment for this element.   
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• Test long term reactivity of the biodiesel and pyrolysis fuels as well as engine 

performance evaluations to decide on which fuel is superior. 

• Contact companies, like BTG, Dynamotive, PYNE.co.uk, leaders in the pyrolysis industry 

for collaboration in future projects.  

While we recommend pyrolysis as the best option for this application, we recognize that 

transesterification has attractive characteristics including low capital investments and low energy 

demand. However, for the production of Haiti’s oil needs, the cost of raw materials would significantly 

decrease profitability. Therefore in the domain of standard transesterification, more research should be 

conducted towards 

• Diminishing the raw material needs of the process 

• Lowering reaction time in a non energy intensive manner 

• Minimizing negative byproducts such as soap  
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Appendix: Calculations and Data 

I).TRANSESTERIFICATION HEAT DUTY CALCULATIONS: 
All values assume a 1 hour reaction time 

Since all calculations will be estimated to the amount used in Pyrolysis Process, our Triolein will 

come in at about 78,800 𝑔𝑔𝑏𝑏𝐻𝐻
ℎ𝑡𝑡

, which is 40% of the feed going into the pyrolysis process where 

197,000 𝑔𝑔𝑏𝑏𝐻𝐻
ℎ𝑡𝑡

 of seeds are used. This is because the Jatropha oil takes up only about 40% of the 

seed itself. 

The ratio used for the transesterification processes was a 1:6 molar ratio which is in comparison 

to a ratio of 0.238:1 in weight magnitude. 

Since the weight ratio is about 0.238:1 and we have Triolein coming in at78,800 𝑔𝑔𝑏𝑏𝐻𝐻
ℎ𝑡𝑡

, then 

Methanol the other component in the process will come in at  

78,800
𝑔𝑔𝑏𝑏𝐻𝐻
ℎ𝑡𝑡

∗ �
1

0.238
� =

331,100𝑔𝑔𝑏𝑏𝐻𝐻
ℎ𝑡𝑡

 

Energy Needed to Drive Reaction 

 𝐸𝐸𝑖𝑖𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆 𝑖𝑖𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 𝑆𝑆𝑜𝑜 𝑌𝑌𝑡𝑡𝑌𝑌𝑆𝑆𝑌𝑌 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖 = 𝐴𝐴𝑆𝑆𝑆𝑆𝑌𝑌𝑆𝑆𝑔𝑔𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖 𝐸𝐸𝑖𝑖𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆 � 𝑘𝑘𝐽𝐽
𝑘𝑘𝑚𝑚𝑜𝑜𝑔𝑔

� ∗ 𝑚𝑚𝑜𝑜𝑔𝑔𝑌𝑌𝐻𝐻 𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 𝑌𝑌𝑖𝑖 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖 

𝐸𝐸𝐴𝐴 = 84100 𝑘𝑘𝐽𝐽/𝑘𝑘𝑚𝑚𝑜𝑜𝑔𝑔 [40]   

Total moles in the feed stream: 

Triolein =     
𝟕𝟕𝟕𝟕,𝟕𝟕𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖

𝒉𝒉𝒉𝒉
∗ 𝟖𝟖.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

𝟖𝟖𝟖𝟖
∗ 𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒
∗ 𝒎𝒎𝒎𝒎𝟖𝟖
𝟕𝟕𝟕𝟕𝟒𝟒.𝟒𝟒𝟒𝟒𝟒𝟒

= 𝟒𝟒𝟖𝟖,𝟒𝟒𝟒𝟒𝟕𝟕 𝒎𝒎𝒎𝒎𝟖𝟖𝒎𝒎𝟖𝟖/𝒉𝒉𝒉𝒉 
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Methanol  =  
𝟒𝟒𝟒𝟒𝟏𝟏,𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖

𝒉𝒉𝒉𝒉
∗ 𝟖𝟖.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒

𝟖𝟖𝟖𝟖
∗ 𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖𝟒𝟒

𝟏𝟏𝟒𝟒𝟒𝟒
∗ 𝒎𝒎𝒎𝒎𝟖𝟖
𝟒𝟒𝟑𝟑.𝟖𝟖𝟒𝟒𝟒𝟒

= 𝟒𝟒,𝟒𝟒𝟕𝟕𝟕𝟕,𝟒𝟒𝟕𝟕𝟒𝟒 𝒎𝒎𝒎𝒎𝟖𝟖𝒎𝒎𝟖𝟖/𝒉𝒉𝒉𝒉 

Total Moles  = 𝟒𝟒𝟖𝟖,𝟒𝟒𝟒𝟒𝟕𝟕 + 𝟒𝟒,𝟒𝟒𝟕𝟕𝟕𝟕,𝟒𝟒𝟕𝟕𝟒𝟒 = 𝟒𝟒,𝟕𝟕𝟑𝟑𝟕𝟕,𝟕𝟕𝟒𝟒𝟏𝟏𝒎𝒎𝒎𝒎𝟖𝟖𝒎𝒎𝟖𝟖 

Energy needed to drive reaction is: 

= 
𝟕𝟕𝟒𝟒𝟏𝟏𝟖𝟖𝟖𝟖𝟖𝟖
𝒎𝒎𝒎𝒎𝟖𝟖

∗ 𝟒𝟒,𝟕𝟕𝟑𝟑𝟕𝟕,𝟕𝟕𝟒𝟒𝟏𝟏𝒎𝒎𝒎𝒎𝟖𝟖𝒎𝒎𝟖𝟖 = 𝟒𝟒.𝟗𝟗𝟕𝟕𝟒𝟒 ∗ 𝟏𝟏𝟖𝟖𝟏𝟏𝟏𝟏𝟖𝟖 = 𝟒𝟒𝟕𝟕𝟕𝟕𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑 

Calculation of Specific Heat 

 Specific Heat of Methanol: 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  = �𝑔𝑔 + 𝑏𝑏𝑇𝑇 + 𝑆𝑆𝑇𝑇2 + 𝑌𝑌𝑇𝑇3 

𝑔𝑔 = 21.152 ∶ 𝑏𝑏 = 0.07092 ∶ 𝑆𝑆 = 2.59 ∗ 10−5 ∶ 𝑌𝑌 = −2.85 ∗ 10−8 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  = �21.152 + 0.07092𝑇𝑇 + 2.59 ∗ 10−5𝑇𝑇2 + (−2.85 ∗ 10−8)𝑇𝑇3 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  = 𝑔𝑔𝑇𝑇 +
𝑏𝑏𝑇𝑇2

2
+
𝑆𝑆𝑇𝑇3

3
+
𝑌𝑌𝑇𝑇4

4
 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  = 21.152𝑇𝑇 +
0.07092𝑇𝑇2

2
+

(2.59 ∗ 10−5𝑇𝑇3)
3

+
−2.85 ∗ 10−8𝑇𝑇4

4
 

Integrate from 25 degrees Celsius which is 298 K to Reaction Temperature. 

Specific Heat from 25 Degrees Celsius to 70 Degrees Celsius: 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  70𝐶𝐶 = 11676.737− 9624.567 =
2052.17𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

=
2052𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  70𝐶𝐶 =
2052.17𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

∗
1𝐾𝐾𝑔𝑔

1000𝑔𝑔
∗

32.04𝑔𝑔
𝑚𝑚𝑜𝑜𝑔𝑔

=
65.75𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘
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Specific Heat from 25 Degrees Celsius to 250 Degrees Celsius: 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  250𝐶𝐶 = 21463.091− 9624.567 =
11838𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

=
11840𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

 

𝐶𝐶𝑝𝑝𝑚𝑚𝑌𝑌𝑆𝑆 ℎ𝑔𝑔𝑖𝑖𝑜𝑜𝑔𝑔  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  250𝐶𝐶 =
11838𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

∗
1𝐾𝐾𝑔𝑔

1000𝑔𝑔
∗

32.04𝑔𝑔
𝑚𝑚𝑜𝑜𝑔𝑔

=
379.306𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘

=
379.3𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘

 

 Specific Heat of Triolein: 

At 70 Degrees Celsius from paper: 

𝐶𝐶𝑝𝑝  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑇𝑇  𝑔𝑔𝑆𝑆  70𝐶𝐶 =
2.10𝐽𝐽
𝑔𝑔.𝑘𝑘

∗
885.45𝑔𝑔
𝑚𝑚𝑜𝑜𝑔𝑔

=
1859𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔.𝑘𝑘

 

Specific Heat Calculated: 

𝑇𝑇𝑆𝑆 = 954.1𝐾𝐾 

𝜔𝜔 = 1.6862 

𝐶𝐶𝑝𝑝 = �𝑥𝑥𝑌𝑌 ∗ 𝐶𝐶𝑝𝑝𝑌𝑌°  

𝑇𝑇𝑇𝑇 𝑔𝑔𝑆𝑆  70𝐶𝐶 =
𝑇𝑇
𝑇𝑇𝐶𝐶

=
343

954.1
= 0.3595 

𝑇𝑇𝑇𝑇 𝑔𝑔𝑆𝑆  250𝐶𝐶 =
𝑇𝑇
𝑇𝑇𝐶𝐶

=
523

954.1
= 0.54816 

𝐶𝐶°𝑝𝑝  𝑆𝑆𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖 = �𝑔𝑔 + 𝑏𝑏𝑇𝑇 + 𝑆𝑆𝑇𝑇2 + 𝑌𝑌𝑇𝑇3 

𝑔𝑔 = 5.9592 ∶ 𝑏𝑏 = 0.269695 ∶ 𝑆𝑆 = 1.5379 ∗ 10−4 ∶ 𝑌𝑌 = 0.033981 ∗ 10−6 

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  = �5.9592 + 0.269695𝑇𝑇 + 1.5379 ∗ 10−4𝑇𝑇2 +  0.033981 ∗ 10−6𝑇𝑇3 
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𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  = 𝑔𝑔𝑇𝑇 +
𝑏𝑏𝑇𝑇2

2
+
𝑆𝑆𝑇𝑇3

3
+
𝑌𝑌𝑇𝑇4

4
 

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  = 5.9592𝑇𝑇 +
0.269695𝑇𝑇2

2
+

(1.5379 ∗ 10−4𝑇𝑇3)
3

+
0.0033981 ∗ 10−6𝑇𝑇4

4
 

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  70𝐶𝐶 =
4984.948𝐽𝐽

(𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘)  

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  70𝐶𝐶 =
4984.948𝐽𝐽
𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘

∗
1𝐾𝐾𝑔𝑔

1000𝑔𝑔
∗

885.45𝑔𝑔
𝑚𝑚𝑜𝑜𝑔𝑔

=
4413.92𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘

=
4414𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘

 

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  250𝐶𝐶 =
32284.2836𝐽𝐽

(𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘)  

𝐶𝐶°𝑝𝑝𝑇𝑇𝑡𝑡𝑌𝑌𝑜𝑜𝑔𝑔𝑌𝑌𝑌𝑌𝑖𝑖  𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚  25𝐶𝐶 𝑆𝑆𝑜𝑜  250𝐶𝐶 =
32284.2836𝐽𝐽

𝑘𝑘𝑔𝑔 ∗ 𝑘𝑘
∗

1𝐾𝐾𝑔𝑔
1000𝑔𝑔

∗
885.45𝑔𝑔
𝑚𝑚𝑜𝑜𝑔𝑔

=
28586.12𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘

=
28590𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 𝑘𝑘

 

Calculating Enthalpy for the System: 

Using a 1 to 6 oil to methanol molar ratio, and 𝟒𝟒,𝟕𝟕𝟑𝟑𝟕𝟕,𝟕𝟕𝟒𝟒𝟏𝟏𝒎𝒎𝒎𝒎𝟖𝟖𝒎𝒎𝟖𝟖 

mols of oil:    

   𝑚𝑚𝐶𝐶𝑝𝑝𝛥𝛥𝑇𝑇 = 𝛥𝛥𝐻𝐻 

 At 70 Degrees Celsius: 

                            𝟒𝟒𝟖𝟖,𝟒𝟒𝟒𝟒𝟕𝟕𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 4414𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔𝐾𝐾

∗ (343𝐾𝐾 − 298𝐾𝐾) = ( 8.02 ∗ 109)𝐽𝐽 

                           𝟒𝟒,𝟒𝟒𝟕𝟕𝟕𝟕,𝟒𝟒𝟕𝟕𝟒𝟒𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 65.75𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔𝐾𝐾

∗ (343𝐾𝐾 − 298𝐾𝐾) = (1.39 ∗ 1010)𝐽𝐽 

                                   ( 8.02 ∗ 109)𝐽𝐽 + (1.39 ∗ 1010)𝐽𝐽 = 2.192 ∗ 1010𝐽𝐽 = 𝟑𝟑𝟖𝟖.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕  
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 At 250 degrees Celsius: 

                          𝟒𝟒𝟖𝟖,𝟒𝟒𝟒𝟒𝟕𝟕 𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 28590𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔𝐾𝐾

∗ (523𝐾𝐾 − 298𝐾𝐾) = ( 2.60 ∗ 1011)𝐽𝐽 

                         𝟒𝟒,𝟒𝟒𝟕𝟕𝟕𝟕,𝟒𝟒𝟕𝟕𝟒𝟒𝑚𝑚𝑜𝑜𝑔𝑔 ∗ 379.306𝐽𝐽
𝑚𝑚𝑜𝑜𝑔𝑔𝐾𝐾

∗ (523𝐾𝐾 − 298𝐾𝐾) = (4.00 ∗ 1011)𝐽𝐽 

( 2.60 ∗ 1011)𝐽𝐽 + (4.00 ∗ 1011)𝐽𝐽 = 6.60 ∗ 1011𝐽𝐽 = 𝟒𝟒𝟑𝟑𝟒𝟒𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕  

Energy loss out of the reactor 

Assumptions: 

• That the reactor is a cylinder 8ft by 41 ft which translates to 2.4384m by 12.4968m which is the 

same dimension specifications as used in the pyrolysis process. 

• The Area of the Reactor thus becomes: 

𝐴𝐴 = 𝜋𝜋 ∗ 𝑡𝑡2 =
𝜋𝜋 ∗ 𝐷𝐷2

4
 

  

𝐴𝐴 =
 𝜋𝜋 ∗ 2.43842

4
= 4.6698𝑚𝑚2 = 4.670𝑚𝑚2 

Temperature Changes: 

                                                 𝛥𝛥𝑇𝑇 𝑔𝑔𝑆𝑆 70 𝐷𝐷𝑌𝑌𝑔𝑔𝑡𝑡𝑌𝑌𝑌𝑌𝐻𝐻 𝐶𝐶𝑌𝑌𝑔𝑔𝐻𝐻𝑌𝑌𝑜𝑜𝐻𝐻 = 343 − 298 = 45𝐾𝐾  

𝛥𝛥𝑇𝑇 𝑔𝑔𝑆𝑆 250 𝐷𝐷𝑌𝑌𝑔𝑔𝑡𝑡𝑌𝑌𝑌𝑌𝐻𝐻 𝐶𝐶𝑌𝑌𝑔𝑔𝐻𝐻𝑌𝑌𝑜𝑜𝐻𝐻 = 523− 298 = 225𝐾𝐾 

Therefore Heat Loss : 

𝛥𝛥𝐻𝐻 = 𝑈𝑈 ∗ 𝛥𝛥𝑇𝑇 ∗ 𝐴𝐴 

𝑈𝑈(𝑇𝑇𝑖𝑖𝑆𝑆𝑌𝑌𝑡𝑡𝑖𝑖𝑔𝑔𝑔𝑔 𝐸𝐸𝑖𝑖𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆 𝑓𝑓𝑜𝑜𝑡𝑡 𝑆𝑆𝑆𝑆𝑌𝑌𝑌𝑌𝑔𝑔 𝑇𝑇𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑜𝑜𝑡𝑡) = 14.4
𝑊𝑊

𝑚𝑚2.𝑘𝑘
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 70 Degrees Celsius is: 

𝛥𝛥𝐻𝐻 = 𝑈𝑈 ∗ 𝛥𝛥𝑇𝑇 ∗ 𝐴𝐴 

𝛥𝛥𝐻𝐻 =
14.4𝑊𝑊
𝑚𝑚2.𝑘𝑘

∗ 45𝑘𝑘 ∗ 4.6698𝑚𝑚2 = 3026.03𝑊𝑊 = 10 324.814𝑏𝑏𝑆𝑆𝑜𝑜 = 𝟖𝟖.𝟖𝟖𝟏𝟏𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑 

 250 Degrees Celsius is: 

𝛥𝛥𝐻𝐻 = 𝑈𝑈 ∗ 𝛥𝛥𝑇𝑇 ∗ 𝐴𝐴 

𝛥𝛥𝐻𝐻 =
14.4𝑊𝑊
𝑚𝑚2.𝑘𝑘

∗ 225𝑘𝑘 ∗ 4.6698𝑚𝑚2 = 15130.15𝑊𝑊 = 51 624.072𝑏𝑏𝑆𝑆𝑜𝑜 = 𝟖𝟖.𝟖𝟖𝟒𝟒𝟑𝟑𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑  

Total Heat needed for the reactor to operate: 

 70 Degrees Celsius is: 
377 + 20.78 + 0.01 = 𝟒𝟒𝟗𝟗𝟕𝟕.𝟕𝟕𝟗𝟗𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑 = 𝟒𝟒𝟗𝟗𝟕𝟕 𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑 

 

 250 Degrees Celsius is: 
377 + 626 + 0.052 = 𝟏𝟏𝟖𝟖𝟖𝟖𝟒𝟒𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑 
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II).PYROLYSIS HEAT DUTY CALCULATIONS: 

Assumptions 

• The values from heat input are taken from an Aspen Simulation run on a continuous fluidized 

bed with sand.  

• Assumptions were made using the similarity between Canola oil( from rapeseed) and Jatropha. 

For the energy generated, the biomass composition of rapeseed was used as a basis that we 

believe is close to Jatropha seed as well.  

• Approximately 40%wt of oil in both seeds “lima et al and msds” which is similar for both (Onay). 

We assume 16% cellulose 22% protein and 22% hemicelluloses and lignin based on rapeseed 

info and they are considered molasses in these calculations. 
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E-3

E-4
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Biomass feed
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P-6
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Hot combustion gas

Recycled gas product

Pyrolized biomass

P-10

ASH

 

                  Figure 17: Pyrolysis Reactor 
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Energy Balance around Reactor: 

𝐻𝐻𝑌𝑌𝑖𝑖 + 𝐻𝐻𝑔𝑔𝑌𝑌𝑖𝑖 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑆𝑆 + 𝐻𝐻𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 + 𝐻𝐻𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 

Hin = Heat in biomass(575)+Heat of incoming fuel gas (294+33)= 902MMBTU 

H gen= 5322 MMBTU (PNNL simulation) 

 Hused=( triglyceride breaking (activation energy 84.1MJ) and evaporation/heating of mass) 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 𝑆𝑆𝑜𝑜 𝑏𝑏𝑡𝑡𝑌𝑌𝑔𝑔𝑘𝑘 𝑆𝑆𝑡𝑡𝑌𝑌𝑔𝑔𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑡𝑡𝑌𝑌𝑌𝑌𝑌𝑌𝐻𝐻 = 𝐸𝐸 ∗ 𝑚𝑚𝑜𝑜𝑔𝑔 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑌𝑌 

84.1
𝑀𝑀𝐽𝐽
𝐾𝐾𝑚𝑚𝑜𝑜𝑔𝑔

∗ �40% ∗ 2.1 ∗ 106𝑘𝑘𝑔𝑔 ∗
1

885
𝑘𝑘𝑚𝑚𝑜𝑜𝑔𝑔
𝑘𝑘𝑔𝑔

� = 46552 𝑀𝑀𝐽𝐽 𝑜𝑜𝑡𝑡 𝟒𝟒𝟒𝟒.𝟏𝟏𝟑𝟑𝟒𝟒 𝟑𝟑𝟑𝟑𝑴𝑴𝑴𝑴𝑴𝑴 

𝑯𝑯𝒎𝒎𝑯𝑯𝟑𝟑 𝟑𝟑𝟖𝟖𝒎𝒎𝒖𝒖 𝟑𝟑𝒎𝒎 𝒉𝒉𝒎𝒎𝑯𝑯𝟑𝟑 𝒎𝒎𝒎𝒎𝒎𝒎𝟑𝟑𝟑𝟑𝒉𝒉𝒎𝒎 𝒇𝒇𝒉𝒉𝒎𝒎𝒎𝒎 𝟒𝟒𝟒𝟒 𝟑𝟑𝒎𝒎 𝟒𝟒𝟖𝟖𝟖𝟖 𝑫𝑫𝒎𝒎𝟒𝟒𝒉𝒉𝒎𝒎𝒎𝒎 𝑪𝑪𝒎𝒎𝟖𝟖𝟖𝟖𝒎𝒎𝟑𝟑𝟖𝟖 

                                                      𝐻𝐻 = (𝑀𝑀𝑆𝑆𝑝𝑝 𝑜𝑜𝑌𝑌𝑔𝑔 +  𝑀𝑀𝑆𝑆𝑝𝑝𝑀𝑀𝑜𝑜𝑔𝑔𝑔𝑔𝐻𝐻𝐻𝐻𝑌𝑌𝐻𝐻 ) ∆𝑇𝑇 

              𝐻𝐻 = �40% ∗ 2.1 ∗ 106 𝑘𝑘𝑔𝑔 ∗ 1800 𝐽𝐽
𝑘𝑘𝑔𝑔0𝐶𝐶

+ 60% ∗ 2.1 ∗ 106 𝑘𝑘𝑔𝑔 ∗ 2512 𝐽𝐽
𝑘𝑘𝑔𝑔0𝐶𝐶

� ∗ 4340𝐶𝐶 

                                  𝐻𝐻 = 362𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 + 759 𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 = 𝟏𝟏𝟏𝟏𝟑𝟑𝟏𝟏𝟑𝟑𝟑𝟑𝑴𝑴𝑴𝑴𝑴𝑴 

Total Heat Used: 

1121𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 + 46.123𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 = 𝟏𝟏𝟏𝟏𝟒𝟒𝟕𝟕𝟑𝟑𝟑𝟑𝑴𝑴𝑴𝑴𝑴𝑴 

Heat Loss 

𝐻𝐻𝑌𝑌𝑖𝑖 + 𝐻𝐻𝑔𝑔𝑌𝑌𝑖𝑖 = 𝐻𝐻𝑜𝑜𝑜𝑜𝑆𝑆 + 𝐻𝐻𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 + 𝐻𝐻𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 

𝐻𝐻𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 = 902𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 + 5322𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 − 937𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑈𝑈 − 1167 

𝐻𝐻𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 = 𝟒𝟒𝟏𝟏𝟑𝟑𝟖𝟖𝟑𝟑𝑴𝑴𝑴𝑴𝑴𝑴 
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II).ENERGY BALANCE AROUND HYDROTREATING OF BIO-OIL : 

 

 

Figure 18: Hydrotreating of Bio-Oil 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑌𝑌𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆 𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚 𝐻𝐻𝑆𝑆𝑡𝑡𝑌𝑌𝑔𝑔𝑚𝑚 203 =
533𝑀𝑀𝑏𝑏𝑆𝑆𝑜𝑜

ℎ𝑡𝑡
 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑔𝑔𝑌𝑌𝑖𝑖 = 𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑡𝑡𝑌𝑌𝑔𝑔𝑌𝑌𝑔𝑔𝐻𝐻𝑌𝑌𝑌𝑌 𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚 𝑆𝑆ℎ𝑌𝑌 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖 (𝐶𝐶𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔𝑔𝑔𝑆𝑆𝑌𝑌𝑌𝑌 𝑀𝑀𝑌𝑌𝑔𝑔𝑜𝑜𝑤𝑤) 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑜𝑜𝑜𝑜𝑆𝑆 = 𝐸𝐸𝑖𝑖𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆 𝑌𝑌𝑖𝑖 𝐻𝐻𝑆𝑆𝑡𝑡𝑌𝑌𝑔𝑔𝑚𝑚 213 =
494𝑀𝑀𝑏𝑏𝑆𝑆𝑜𝑜

ℎ𝑡𝑡
 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌 = 𝐸𝐸𝑖𝑖𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆 𝑆𝑆𝑜𝑜 𝑡𝑡𝑔𝑔𝑌𝑌𝐻𝐻𝑌𝑌 𝑆𝑆ℎ𝑌𝑌 𝑆𝑆𝑌𝑌𝑚𝑚𝑝𝑝𝑌𝑌𝑡𝑡𝑔𝑔𝑆𝑆𝑜𝑜𝑡𝑡𝑌𝑌 𝑜𝑜𝑓𝑓 𝑆𝑆ℎ𝑌𝑌 𝐻𝐻𝑆𝑆𝑡𝑡𝑌𝑌𝑔𝑔𝑚𝑚 𝑔𝑔𝑖𝑖𝑌𝑌 𝑆𝑆𝑜𝑜 𝑆𝑆𝑔𝑔𝑝𝑝𝑜𝑜𝑡𝑡𝑌𝑌𝑣𝑣𝑌𝑌 𝑆𝑆ℎ𝑌𝑌 𝑤𝑤𝑔𝑔𝑆𝑆𝑌𝑌𝑡𝑡 𝑓𝑓𝑜𝑜𝑡𝑡𝑚𝑚𝑌𝑌𝑌𝑌 

 

Seeing that the partial vapor fraction corresponds to the amount of water created in the system. From 

15% vapor entering the reactors to 70% of stream exiting in the vapor phase. With temperatures going 

from 240 to 341 degrees C 

With cp of water above 533K is 89 kJ/kmol K 

 

533 

494 
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For water in reactor1  

𝑀𝑀 ∗ 𝐻𝐻𝑆𝑆𝑔𝑔𝑝𝑝 = 6.698 ∗ 106𝑘𝑘𝐽𝐽 = 6.3 𝑀𝑀𝑏𝑏𝑆𝑆𝑜𝑜 

For water in reactor 2 

𝑀𝑀 ∗ 𝐻𝐻𝑆𝑆𝑔𝑔𝑝𝑝 = 1.616 ∗ 107𝑘𝑘𝐽𝐽 = 15𝑀𝑀𝑏𝑏𝑆𝑆𝑜𝑜 

Heat of Reaction 

The heat of reaction was determined by finding the difference of the heat of formation of the products 

and the reactants. Using the stream information tables and the pfd in the Pacific Northwest National 

Labs paper by Jones et al tables 1 and 2 were made. Only components with a major change were 

accounted for.  

Table 13: Enthalpies of the Reactants 

Reactant Amount 
used(lbs/hr) 

Molecular 
weight(g/mol) 

Amount 
used(mols/hr) 

𝛥𝛥𝐻𝐻𝑓𝑓 (kJ/mol) Total 𝛥𝛥𝐻𝐻 kJ 

Lignin 64000 196 148200 -1092 -1.62E8 

Cellaboise 23000 342 30500 -2226 -6.79E7 

Furfural 12000 96 56800 -151 -8.58E6 

Acetic Acid 8000 60 60500 -483 -2.92E6 
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Table 14: Enthalpies of the Products 

Product Amount 
created(lbs/hr) 

Molecular 
weight(g/mol) 

Amount 
created(mols/hr) 

𝛥𝛥𝐻𝐻𝑓𝑓 (kJ/mol) Total 𝛥𝛥𝐻𝐻 kJ 

Water 40000 18 1010000 -241 -2.43E8 

Carbon Dioxide 9000 44 92900 -393.5 -3.66E7 

Methane 3000 16 85100 -74.9 -6.37E6 

Ethane 2000 30 30300 -83.8 -2.54E6 

Propane 1500 44 15500 -104.7 -1.62E6 

Butane 1500 58 11700 -125.6 -1.47E6 

2-5Xylenol 8000 122 29800 -237 -7.06E6 

Heptane 3000 100 13000 -187 -2.43E6 

Cyclohexane 10000 110 42300 -156 -6.60E6 

Cis-Decalin 3000 138 9900 -207 -2.11E6 

Biphenyl 4000 154 11800 -182 -2.15E6 

Diamantane 9000 136 30000 -193 -5.79E6 

Phenanthrene 6000 178 15300 -201 -3.08E6 

Chrysene 6000 228 11900 -152 -1.81E6 

 

Numbers for cellabiose came from sucrose, a similar molecule in size, shape and chemical make up. 

Using the equation:  

𝛥𝛥𝐻𝐻𝑓𝑓  𝑝𝑝𝑡𝑡𝑜𝑜𝑌𝑌𝑜𝑜𝑆𝑆𝑆𝑆𝐻𝐻 − 𝛥𝛥𝐻𝐻𝑓𝑓 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑔𝑔𝑖𝑖𝑆𝑆𝐻𝐻 = 𝛥𝛥𝐻𝐻𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖  

 𝛥𝛥𝐻𝐻𝑓𝑓 𝑝𝑝𝑡𝑡𝑜𝑜𝑌𝑌𝑜𝑜𝑆𝑆𝑆𝑆𝐻𝐻 = −3.22𝐸𝐸8 𝑘𝑘𝐽𝐽 

                                                               𝛥𝛥𝐻𝐻𝑓𝑓 𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑔𝑔𝑖𝑖𝑆𝑆𝐻𝐻 =  −2.414𝐸𝐸8 𝑘𝑘𝐽𝐽 
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The enthalpy of the reaction is  

                                                                 𝐻𝐻𝑡𝑡𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑌𝑌𝑜𝑜𝑖𝑖 = −8.123𝐸𝐸7 𝑘𝑘𝐽𝐽
ℎ𝑡𝑡

= −𝟕𝟕𝟕𝟕𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑/𝒉𝒉𝒉𝒉  

Heat Loss 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑇𝑇𝑜𝑜𝐻𝐻𝐻𝐻 = 𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑇𝑇𝑜𝑜𝐻𝐻𝑆𝑆 𝑆𝑆ℎ𝑡𝑡𝑜𝑜𝑜𝑜𝑔𝑔ℎ 𝑆𝑆ℎ𝑌𝑌 𝑇𝑇𝑌𝑌𝑔𝑔𝑆𝑆𝑆𝑆𝑜𝑜𝑡𝑡 𝑔𝑔𝑖𝑖𝑌𝑌 𝑃𝑃𝑌𝑌𝑝𝑝𝑌𝑌 𝑊𝑊𝑔𝑔𝑔𝑔𝑔𝑔𝐻𝐻(𝐶𝐶𝑔𝑔𝑔𝑔𝑆𝑆𝑜𝑜𝑔𝑔𝑔𝑔𝑆𝑆𝑌𝑌𝑌𝑌 𝑓𝑓𝑡𝑡𝑜𝑜𝑚𝑚 𝑆𝑆ℎ𝑌𝑌 𝑌𝑌𝑌𝑌𝑓𝑓𝑓𝑓𝑌𝑌𝑡𝑡𝑌𝑌𝑖𝑖𝑆𝑆𝑌𝑌) 

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 = 𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑔𝑔𝑌𝑌𝑖𝑖 + 𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑌𝑌𝑖𝑖 − 𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑜𝑜𝑜𝑜𝑆𝑆 − 𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆𝑜𝑜𝐻𝐻𝑌𝑌𝑌𝑌  

𝐻𝐻𝑌𝑌𝑔𝑔𝑆𝑆 𝑔𝑔𝑜𝑜𝐻𝐻𝐻𝐻 = 77.04 + 533 − 494− 21.3 = 𝟏𝟏𝟖𝟖𝟕𝟕𝟑𝟑𝟑𝟑𝟖𝟖𝟑𝟑𝟑𝟑/𝒉𝒉𝒉𝒉 
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