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Abstract 

 

The Turning Point Method (TPM) for the evaluation of ion scattering in a sheath of a 

biased probe immersed in an unmagnetized plasma is reviewed.  The TPM implemented 

originally in a computer program for spherical probes is expanded to include cylindrical 

probes as well as the evaluation of the turning angle of the charged particle (repelled or 

attracted) around the probe.  TPM results have the potential to provide a standard against 

which to compare more complicated current collection simulations. TPM results are 

validated by comparing with Laframboise’s earlier work for current collection in the 

Orbital Motion Limited  regime. Calculations of the turning angle of a charged particle 

with specific energy and angular momentum revealed that higher plasma shielding limits 

the range of impact parameters that experience significant scattering, and that attracted 

particles entering tangent to the sheath experience increased scattering. The TPM results 

also show that there are significant changes in orbital trajectories between different space 

charges within the Orbital Motion Limited limit. 
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1. Introduction 

 

1.1 Plasma Probe Theory Review 

 

Modeling and prediction of current collection by a surface immersed in the space plasma 

finds important applications.  A spacecraft immersed in a space plasma resembles a 

Langmuir probe – it collects charged particles from the plasma onto its surface, and that 

current collection depends on the spacecraft’s geometry and charge.  Current collection 

onto a spacecraft surface can have negative consequences for the spacecraft, including 

surface charging, deep dielectric charging and material degradation [Hoyt, 2005]. 

Modeling and predicting the interaction between a plasma and a spacecraft is critical to 

ensuring the health of a spacecraft and the success of its mission.  

Langmuir first proposed using a metal electrode (or probe) to measure the 

electron and ion currents in a plasma when various voltages are applied to the electrode 

as a way of analyzing the plasma’s basic characteristics – the current versus probe 

voltage curve that is produced is called the probe characteristic [Langmuir, 1926]. 

Langmuir probes of various shapes and sizes have been used for decades to analyze the 

characteristics of laboratory and space plasmas. [Hutchinson, 1987 and references 

therein].  The plasma characteristics of primary interest are the plasma charge and current 

density (or the collected probe current) and temperature. These parameters can be 

determined by analysis of the probe characteristics. A probe sheath is a charge boundary 

around the probe that separates the bulk of the plasma from the probe surface. The probe 
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sheath thickness and the sheath potential distribution are directly related to the plasma 

characteristics and can be used to determine properties of the plasma.  

Understanding current collection by biased surfaces in space plasmas is also an 

important issue for successful operation of electrodynamic tethers. A space tether is one 

mass connected to another mass through a tether that serves to transfer either momentum 

or energy, or both, from one mass to the other in order to generate space propulsion 

without expending fuel, or to generate power from the radiated space environment 

[Tethers Unlimited, 2004]. An electrodynamic tether, or EDT, is a wire that extends from 

a spacecraft and collects and emits particles as it travels through the earth’s magnetic 

field, from which the satellite can either generate thrust or power as necessary by 

exploiting the electro-dynamic interactions between the tether and the Earth’s magnetic 

field. By understanding the probe sheath that forms around the EDT, one can determine 

how much current the tether is able to collect from the surrounding plasma and hence the 

efficiency of the tether. 

Besides providing propulsion and power to a spacecraft, tethers also have the 

ability to deflect particles that enter the vicinity of the probe sheath. Charged particles 

from the sun or other radiation sources that enter the vicinity of the Earth will often drift 

and bounce between the poles along the Earth’s magnetic field lines, effectively keeping 

the particles trapped between high boundary of low earth orbit (LEO) and 

geosynchronous earth orbit (GEO), a phenomenon known as the Van Allen radiation 

belts [Hoyt and Minor, 2005]. When a particle interacts with the sheath surrounding the 

tether, the particle is “turned” and the trajectory is altered. If the particle is deflected 

enough that its trajectory falls below a certain pitch angle (the angle between the velocity 
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vector and the geomagnetic field vector), known as the “loss cone”, it will follow the 

field lines down into the Earth’s upper atmosphere and scatter into the atmosphere. 

Knowing the turning angle of a particle in a sheath provides information about the 

efficiency of a tether’s particle deflection efforts and the strength of a tether needed to 

deflect particles of a certain energy into their loss cones.  

Since Langmuir’s early work, other modern theories for predicting plasma/probe 

interactions have been proposed, including a widely used theory by Laframboise 

[Laframboise, 1966]. Laframboise’s theory states that, in a symmetrical central force, a 

particle’s initial energy and angular momentum are conserved along the particle’s orbit, 

enabling the two-body central-force equations to be used to determine the trajectory of a 

particle for different temperatures. This approach is used as the basis for the Effective 

Potential Method that Laframboise later developed, and the Turning Point Method 

developed by Parker [1976]. The two methods are physically identical and differ only in 

the order of the mathematical operations. The application of the Turning Point Method, 

or TPM, is the focus of this paper as a relatively simple and self-consistent method for 

analyzing plasma properties and particle trajectories.  

 

1.1.1. Planar Langmuir Probes and the Planar Sheath 

    

There are two well-known limits into which plasma probe theory falls. The first limit is 

when the sheath surrounding the probe is thin compared to the probe geometry and all, or 

nearly all, particles that enter the probe sheath hit the probe and contribute to the 

collected probe current. This limit is known as the planar limit. The second limit is when 



the sheath is large, and only particles with an angular momentum below a certain 

threshold will intersect with the probe and contribute to the probe current. Both cases are 

illustrated in Figure 1.1.   

  

Figure 1.1. Thick- vs Thin-Sheathed Probes 

 

To begin to understand probe theory and how the plasma potential, current 

density and sheath radius are related, it is first convenient to start with the simple case of 

a planar probe in a collisionless, isotropic and stationary plasma. A collisionless plasma 

refers to a plasma where the mean free path of the plasma particles is greater than the 

probe radius, rp. A stationary and isotropic plasma refers to a plasma with an equal 

number of electrons and ions that are initially uniformly distributed, with no random 

thermal motion [Dendy, 1990]. Probe theory in a collisionless plasma is based on 
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combining two equations to produce one self-consistent solution. The first equation is 

Poisson’s equation: 

2

0

4 ( )e ie N N ρπ
ε

∇Φ = − = −                                         (1-1) 

where  is the electrical potential of the plasma, Φ ρ  is the net charge density, 0ε  is the 

permittivity of space, e is the electron charge, Ni is the ion density and Ne is the electron 

density. The second equation is Vlasov’s equation (the collisionless Boltzmann equation) 

that describes the evolution of  the distribution function ( , )f R V  

0x V
f V f a f
t

∂
+ ∇ + ∇ =

∂
i i                                            (1-2) 

where, x∇  and  denote the gradient operator with respect to position and velocity 

space, and V  and are the velocity and acceleration of the particle, respectively. The 

zero-th moment of the Vlasov equation is defined as the density of a particle species 

(charged or otherwise) whose distribution of velocity is described by 

V∇

a

( , )f R V , and is 

given by 

( ) ( , ) pN R f R V d V= ∫∫∫                                          (1-3) 

where p is equal to 2 for a cylindrical probe, and 3 for a spherical probe [Parker, 1980]. 

The current density of a plasma, I, is defined as the first moment of the Vlasov equation 

and is given as eq. (1-4), using the same velocity distribution and terminology as eq.(1-

3): 

( ), pI f R V Vd V= ∫∫∫                                               (1-4) 
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With the proper boundary conditions, it is possible to use Vlasov’s equation to solve for 

the charge and current density given a known potential. Conversely, Poisson’s equation 

can solve for the electric potential given a known charge density; hence, solving 

Poisson’s and Vlasov’s equations simultaneously will yield the current density and 

plasma potential. 

When the sheath is very thin compared to the probe dimensions, a probe of 

cylindrical or spherical geometry can be modeled as a one-dimensional planar diode. In 

this case an analytical approximation of the plasma temperature and density can be made 

using what is called the Child-Langmuir Law [Leiberman and Lichtenburg, 1994]. 

Conservation of energy states that 

2
0

1( ) ( )
2

E e R mu x E= Φ + +  .                                          (1-5) 

m and u(x) are the particle mass and the average velocity, and E0 is the initial energy of 

the particle. Because the particle mass appears only once with the average velocity in eq. 

(1-5), both ions and electrons gain the same energy falling through the same potential 

field. Let’s consider the case of a negatively charged probe, with ambient ions that have 

an initial energy that is negligible compared to the probe potential. The conservation of 

energy equation reduces to 

21( ) ( )
2 i ie x m u x− Φ = .                                                 (1-6) 

Inside of the sheath the ion flux is constant, and is defined as 

0 ( ) ( )iI eN x u x=                                                      (1-7) 

where I0 is the constant ion current. Solving for Ni(x) and using Poisson’s equation and 

the conservation of energy, we have 
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1
2 2

0
2

0

2

i

Id e
dx mε

−
⎛ ⎞Φ

= − −⎜ ⎟
⎝ ⎠

Φ .                                              (1-8) 

At the sheath edge (where 0x = ), we can assume that the sheath potential is zero ( 0Φ = ) 

as well as the electric field ( 0′Φ = ). With these boundary conditions, integrating eq. (1-

8) yields 

12 2
0

0

1 2
2 i

Id e
dx mε

⎛ ⎞Φ −⎛ ⎞ = − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

Φ . 

If the equation is integrated again over x, the result is 

1
23 3 04 4

0

4 2
3 i

Ix
m ε

⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
. 

Letting  = -ΦΦ p when x = s results in a relationship between the sheath thickness, s, 

current density, I0, and probe potential, Φp, known as the Child-Langmuir Law, which 

states 

1 3
2 2

0 0 2

4 2
9

p

i

eI
m s

ε
Φ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 .                                               (1-9) 

Since the flux of ions is constant, the flux at the sheath edge is  

, ,i i i sheath i sheatheN u eN u= .                                                  (1-10) 

Equation (1-10) is known as the conservation of flux. When the ions are accelerating into 

the sheath, the ion density must decrease in order to maintain a constant flux. Since the 

sheath must maintain a positive charge in order to remain stable, the decrease of ion 

density must be slower than the decrease in electron density. Ion density is obtained by 

solving eq.(1-6) for  and substituting the result into eq.(1-10):  2 ( )iu x
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, ,

2
i sheath i sheath

i

i

N u
N

e
m

=
Φ

.                                                     (1-11) 

Since the electrons are repelled, they remain in equilibrium to the density everywhere, 

and the electron density at any point in the sheath is given by the Boltzmann relation: 

, expe e sheath
e

eN N
kT

⎛ ⎞Φ
= ⎜

⎝ ⎠
⎟                                                  (1-12) 

where k is the Boltzmann constant and T is the particle temperature; in this case Te is the 

electron temperature. By imposing the condition that the ion density must fall off slower 

that the electron density, we can take the derivative of equations (1-11) and (1-12) (in 

relation to x) and set them equal when Φ  = 0 (at the sheath edge), and solve for the 

minimum ion velocity necessary for a positive sheath at the sheath edge [Leiberman and 

Lichtenburg, 1994]: 

e
sheath B

i

eTu u
m

≥ = .                                              (1-13) 

Equation (1-13) is known as the Bohm sheath criterion. The continuity of ion flux (eq.1-

7) at the sheath edge can be rewritten using u(x) = usheath as  

0 2
e

e
i

kTI N
mπ

=  .                                                   (1-14) 

The Debye length is a characteristic length scale of a plasma over which a single 

charged particle has a significant influence on another charged particle. Beyond the 

Debye length, it is assumed that the cumulative effects of the surrounding plasma have a 

dominating influence over a charged particle located in that region. The Debye length is 

defined as 
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0
2
e

D
kT

N e
ελ

∞

=                                                        (1-15) 

[Leiberman and Lichtenburg, 1994]. When the ion flux is given explicitly as eq.(1-14), 

the Child Law can be manipulated to give the sheath thickness in terms of the Debye 

length, λD, as 

3
42

3
p

D
e

e
s

kT
λ

Φ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.                                                (1-16) 

By determining the sheath thickness, it is possible to simultaneously solve for the plasma 

potential and collected probe current. 

   The Child Law is only valid when potentials inside the sheath are much larger 

than the surrounding ion and electron temperature, thereby contracting the sheath around 

the probe so that probes of varying geometries have sheaths thin enough that they can be 

modeled accurately as a planar diode. There are often situations where the Child law, 

which predicts 
3

4
p particles ∝ Φ −Φ , is not applicable; for instance, when Ti  T≥ e, or the 

probe voltage is low. In these cases, more general methods must be used to analyze the 

plasma that take into account different and more complex probe geometries. 

 

1.1.2. Spherical and Cylindrical Langmuir Probes 
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Although the planar probe is a good starting point, all probes are finite and commonly 

have either spherical or cylindrical geometries because their symmetry allows for a 

mathematically tractable model. Specifically, a cylindrical Langmuir probe can be 

modeled as a wire of semi-infinite length (in the sense that edge effects can be ignored) to 



ease analysis, and can accommodate sheath thicknesses that are much larger than the 

Debye length, in which the probe area, A, does not satisfy the condition 2A s  

[Leiberman and Lichtenburg, 1994].  

  The geometry of a spherical and cylindrical probe with respect to an incoming 

charged particle is shown in Figure 1.2, where R is the distance from the center of the 

probe to the particle, Rp is the probe radius and Rsheath is the sheath radius. Vθ is the 

angular velocity component, tangential to the radial velocity component VR. 

 

 

 
Figure 1.2. Trajectory of a Positively Charged Particle Around a Negatively Charged Probe 

 

 

In each case the third dimension can be eliminated by symmetry – the z-direction along 

the cylinder and the azimuthal ρ -direction for the sphere. Thus we are left with the two-

dimensional problem illustrated in Figure 1.2. By assuming that the plasma being 
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analyzed is isotropic and stationary, simplifications can be made that make evaluation of 

the plasma much simpler. With these assumptions all particle orbits, when traced back to 

infinity, have the same velocity distribution and retain their total energy throughout their 

entire orbit [Laframboise, 1966]. If the particle is also part of a two-body central-force 

system, the energy, E, and the angular momentum, L, remain constant throughout the 

entire trajectory of the particle, and are therefore considered constants of motion. L is 

defined as 

L mRVθ=                                                      (1-17) 

and eq.(1-5) can be rewritten in terms of L as 

    
2

2
2

1( )
2 2R

LE e R mV
mR

= Φ + + .                                  (1-18) 

Not all of the orbital trajectories of each charged particle that enters the sheath 

will intersect with the probe surface if the sheath radius, Rsheath, is significantly larger 

than the probe radius, Rp, and Vθ is sufficiently large; therefore, a method must be 

developed that defines the boundaries of the constants of motion, E and L, that will result 

in a contribution to the charge density and therefore the collected probe current. 

 

1.1.3. Plasma Analytical Methods 

 

1.1.3.1. Orbit Motion Limited 

 

When pR Dλ , the angular momentum of the particle (or its Vθ velocity component in 

Figure 1.2) is usually not important for all Φ  because the sheath contracts closer to the 
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surface of the probe as the space charge increases – this is the condition where the Child 

Law is valid. When pR  is comparable to Dλ , the non-negligible space charge is 

dominated by ions that do not hit the probe. A probe theory must be used that can 

discriminate between the plasma charge density that contributes to the probe current and 

the charge density which does not. 

One method for analyzing plasma characteristics is the Orbit Motion Limited 

theory, or OML. OML refers to the largest currents that can be collected by a perfectly 

absorbing spherical probe or an infinite-length cylindrical probe in a collisionless, 

stationary and isotropic plasma [Laframboise, 1973]. The total energy of a particle at 

infinity is 21
2

E mV=  if the potential energy at ( ) 0Φ ∞ = ; therefore, particles coming in 

from infinity can only have energies of E > 0. At any position on the particle’s orbit, its 

energy must be 21 ( )
2

E mV e R= + Φ  > 0, corresponding to a minimum speed component 

of V >
1

22 ( )e R
m

⎡ ⎤− Φ
⎢
⎣ ⎦

⎥ . This criterion provides the boundary conditions needed to derive 

expressions for the charge and current density and the plasma potential. 

A spherical probe can be modeled as a three-dimensional steady-state potential 

well, where a particle with a charge e has the potential ( , , ) 0e x y zΦ ≤ , with  as 

. The number density of the plasma at any point on the particle’s orbit 

was defined in eq.(1-3) and can be found analytically by integrating the Maxwellian 

distribution function, f, over velocity space and using the previous criteria as boundary 

conditions. Doing this, we obtain: 

0Φ→

2 2 2x y z+ + →∞
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3( ) ( , )N R f R V d V= ∫    ;  
3 22

( , ) exp
2 2

m mf R V
kT kTπ

⎛ −⎛ ⎞= ⎜⎜ ⎟
⎝ ⎠ ⎝ ⎠

V ⎞
⎟                   (1-19) 

1
2

3 22
2

( 2 / )
exp exp 4

2 2e m

m e mVN N V dV
kT kT kT

π
π

∞

∞ − Φ

⎛ ⎞Φ −⎛ ⎞ ⎛ ⎞= × ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫ .                (1-20) 

Integrating the above equation, we get the dimensionless number density, n: 

1 1
2 22 ( )Nn h

N
φ φ

π∞

1⎡ ⎤= = + ≥⎢ ⎥⎣ ⎦
                                        (1-21) 

where  

e
kT

φ − Φ
=   and  

1 2 221( ) exp( ) ( ) exp( ) exp( )
2

h erfc
φ

φ π φ φ φ
∞

= = ∫ 2t dt− .  

For a cylindrical probe, or a two-dimensional steady-state potential well, the minimum 

speed component is ( )2 2
x yV V V= + >

1
22 ( )e R

m
⎡ ⎤− Φ
⎢ ⎥
⎣ ⎦

, in which case  as 

. The resulting number density is 

0Φ→

2 2x y+ →∞

( )
1

2

3 2 22

2 /
exp exp exp 2

2 2
x

x e m

mVN m e mVn dV
N kT kT kT kT

π
π

∞ ∞

−∞ − Φ
∞

⎛ ⎞ ⎛ ⎞−− Φ −⎛ ⎞ ⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ 2
VdV  

= 1.                                                                                                                               (1-22) 

The result of n = 1 for a cylindrical probe is due to the fact that the density increase due 

to the concentrating effect of the probe geometry is exactly compensated for by the 

density decrease due to particle acceleration across the sheath [Laframboise, 1973]. 

Figure 1.3 below shows the dimensionless number density, n, plotted against the 

dimensionless potential, φ .  
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Figure 1.3: Number Density n vs Potential φ  

 

The current density of a plasma, I, was defined as eq.(1-4). For the three-

dimensional case of a spherical probe, the current is given by 

( ), pI f R V Vd V= ∫∫∫

( )1 2

3 22 2 2 3
20 0

exp sin cos exp
2 2

V

eV m

m e mVd d
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where I0 is defined as eq.(1-14). For the two-dimensional case of a cylindrical probe, the 

current is 
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For different values of current and potential, the cylindrical and the spherical probes 

exhibit the behavior shown in Figure 1.4: 
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Figure 1.4: Current Density i vs Potential φ  

 

The OML theory is useful for predicting plasma current and potential because 

numerical results are easy to obtain given the simple equations derived from the OML 

criteria. However, as we will discover in the following chapters, the OML theory has a 

significant limitation such that the method is only accurate for a probe radius either 

equivalent to or smaller than the Debye length of the plasma; for a spherical probe, the 

probe only becomes orbit-limited as 0p

D

R
λ

→ , while for a cylindrical probe the orbit-

limited case holds until 1p

D

R
λ

≈  [Laframboise, 1973]. Consequently, a more robust 

method must be used for analyzing probes in plasmas where p

D

R
λ

>1.  
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1.1.3.2. Effective-Potential Formulation 

 

It would be to our advantage to express the Poisson and Vlasov equations in terms of the 

constants of motion, since they completely characterize a particle’s orbit. Attracted 

particles in the plasma surrounding the probe will either penetrate the sheath (charge 

boundary) and be absorbed by the probe or pass by the probe; repelled particles will 

either penetrate the sheath and either hit or pass by the probe or not be able to penetrate 

the sheath at all. A method must be developed that defines the boundaries of the constants 

of motion, E and L, that will result in a contribution to the charge density and therefore 

the collected probe current. One way to define the proper boundaries for E and L is to use 

what is called the Effective-Potential Formulation developed by Laframboise 

[Laframboise, 1973]. The Effective-Potential Formulation classifies the particle orbits 

and their contributions to the charge density by defining an effective potential, 

2

22
LU e
mR

= − Φ + , for which particles must have a certain energy E greater than U in 

order to represent a particle which can strike or pass by the probe. If E is less than U, then 

the particle will not penetrate the sheath. The relation E = U is a straight line in the (E, 

L2) plane that defines which particles will strike the probe, pass by the probe, or cannot 

penetrate the sheath. When considering a sheath around the probe, the effective potential 

U varies as a function of L2 with changing R. The Effective-Potential Formulation finds 

the first two derivatives of U (with respect to R) and, plotted in the (E, L2) plane, 

classifies unpopulated orbits above the curve and populated orbits below the curve. 
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1.1.3.3. Turning Point Method 

 

Another way to determine the boundaries of E and L is to use the Turning Point Method, 

or TPM, which was developed by Parker as an alternative to Laframboise’s earlier 

Effective-Potential Formulation [Parker, 1980]. The conservation of energy equation can 

be rewritten in dimensionless terms as 

2
2

2r
JE v
r

φ= + +                                                (1-25) 

where e
kT

φ Φ
= , 

2
Vv
kT
m

= , 
2 p

LJ
kTmR

= , and 
p

Rr
R

= ; in this case, 
2

R
r

Vv
kT
m

= . The 

TPM defines a turning point as the point where the radial velocity component vr = 0. 

Consequently, a particle will not vanish or change sign (i.e. a particle will exist) as long 

as  

2

2

JE
r

φ> +                                                    (1-26) 

or 

( )2 2J g r E φ< ≡ −                                              (1-27) 

In the above equation, g is defined as the turning point function. When g is plotted 

in the (J2, r) plane, all physically possible orbits exist below the turning point function 

curve. The TPM has an advantage over the Effective Potential Formulation in that the 

turning point function g can have any number of inflections (or charge boundaries) while 

the effective potential function U contains no more than two maxima. Also, the Effective 
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Potential Formulation assumes that the potential function is monotonic, while the turning 

point function can be monotonic or nonmonotonic [Parker, 1980].  

 

1.2. Review of Particle-In-Cell Computational Model  

 

Various forms of particle-in-cell (PIC) computation have been used to perform the 

detailed numerical calculations necessary for modeling plasma physics related to current 

collection by probes. The general computational cycle of PIC is outlined below. In PIC, a 

spatial grid is used with cells on the order of the Debye length of the plasma. The charge 

density, electric field and electric potential at each point on the grid are evaluated. The 

grid also provides a smoothing effect by not including spatial fluctuations smaller than 

the Debye length of the plasma.  

The general computational cycle flows in the following order: 1) Integrate the 

equations of motion to find the particle’s position; 2) Use a system based on the particle 

position to calculate the charge density and current using the values from the equations of 

motion (called “weighting”); 3) Use the calculated charge current and density to integrate 

and solve the field equations and find the electric and magnetic fields; 4) Perform an 

inverse weighting to apply the field values on the grid to the next particle on the spatial 

grid; 5) Repeat steps 1) through 4) for every grid point [Birdsall and Langdon, 1985].  

The “leap-frog method” for calculating F, V and x is a commonly used method for 

integration of the equations of motion because it allows for the two first-order differential 

equations of motion to be integrated separately. This method is the most efficient way to 

“time center” the steps and minimize the error. The velocity and position of the particle 



aren’t known at the same time and are calculated at different time intervals (hence the 

leap-frog name), as is illustrated in Figure 1.5. 

 

Figure 1.5: The leap-frog method for calculating the force F while advancing V, and V while advancing x 

 

From the equations of motion dVF m
dt

=  and dxV
dt

= , the finite-difference equations are  

new old new old
new old

x x V VV m F
t t
− −

= → =
Δ Δ

, 

constituting the leap-frog integration method of time-centering the force F while 

advancing V, and of V while advancing x, resulting in the positions and fields being 

calculated at integer time-steps while the velocity calculations are offset from the position 

calculations by half time-steps.  

 When integrating the field equations, charges and current densities are calculated 

at the grid points using a weighting system specified by the user. The electric field, E, is 
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calculated again at each point with Poisson’s equation, eq.(1-1), using the charges and 

densities calculated in the second step. The finite-difference equations for the field 

equations are  

1j j
jE

x
φ φ −−

=
Δ

  and  1 1
2

0

2
( )

j j j
jE

x
φ φ φ ρ

ε
− +− +

∇ = =
Δ

i − . 

If the boundary conditions are known, there will be the same number of equations as 

unknowns, and the φ ’s are therefore solvable. 

 Weighting is used to calculate the charge density on the discrete grid points from 

the particle positions and, after the fields are obtained, to calculate the force at the 

particles from the fields at the grid points by interpolating between the grid points nearest 

the particle. The charge density is typically calculated inside of the cell (between grid 

points), while the force, E, is calculated at the grid points. PIC is often used to model 

charged particles subjected to electric fields and inter-particle forces, either with 

collisions (using a Monte-Carlo simulation) or without collisions, and is particularly 

applicable to modeling non-equilibrium plasmas, where the particles do not follow a 

distribution that is a constant function of the local fields. However, the drawback of using 

PIC is that it is computationally intensive, as well as being sensitive to random density 

and field variations (noise).   

 

1.3. Objectives and Methodology 

 

Current plasma models employ complicated algorithms for analyzing plasma 

characteristics as realistically as possible, taking into account many factors such as 
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particle collisions, multiple charge boundaries (multiple sheaths), trapped particles, 

interacting magnetic fields, etc., while maintaining efficiency. As a result of so many 

variables, it’s difficult to determine if a specific plasma theory or code is producing the 

“right” answer, or an answer that accurately predicts the behavior of a real-life plasma. A 

classical solution that provides a straightforward analysis of a problem is desirable to 

compare with more complicated analytical techniques. For plasma analysis, a “classical” 

model that uses a minimum of well-constrained variables for an easily reproducible 

numerical result is needed that provides standards for validation of the more complex 

models that includes space charge. This thesis seeks to provide that “classical” plasma 

model for validation of other models by creating a computer program that solves the 

Poisson and Vlasov problems with a TPM Vlasov solution. 

 The TPM provides an ability to identify the point where a particle turns in its 

orbit. By knowing where a particle turns in its orbit, the entire trajectory of the particle 

can be traced to and from infinity without having to know any other information about 

the particle’s orbit. This provides a much simpler alternative to the computationally 

intensive PIC weighting method, which must calculate the entire trajectory of the particle. 

The TPM also provides a straightforward method for determining the turning angle of a 

particle along its orbit. By definition, the TPM identifies the position at which a particle 

of a certain energy will achieve a maximum trajectory deflection angle in a potential 

field, relative to its initial trajectory, which we will refer to as the turning angle, θ. A 

particle with an angular momentum of J will make its closest approach to the probe at a 

radius r where it intersects with the turning function (below the curve), g, and continues 

out to infinity along a trajectory symmetrical to its incoming path.  
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 This thesis will specifically look at the case of a charged particle either attracted 

or repelled to a charged cylindrical probe by using a computer code originally developed 

by Cooke [Cooke, 1981], following the method outlined by Parker [Parker, 1980]. The 

original program used Fortran code to model the characteristics of particles that are either 

attracted to or repelled by a spherical probe using the TPM. In this effort, the code was 

expanded to include the analysis of cylindrical probe geometry, as well as an added 

subroutine that finds the turning angle of the charged particle (repelled or attracted) 

around the probe.  



2. Turning Point Method and Computer Program Structure 

 

2.1. The Turning Point Method 

 

 The Turning Point Method was developed by Parker [1980] to determine the 

characteristics of current collection by a probe in a collisionless, isotropic and stationary 

plasma with an arbitrary radius compared to the plasma Debye length, although it is most 

useful for probe radii that are 1 to 100 times the Debye length. To find the current density 

and potential, two governing equations are used – Poisson’s equation, eq.(1-1), and 

Vlasov’s equation, eq.(1-2). The time-independent form of Vlasov’s equation is given as 

0R R V
qV f f
m

∇ + ∇ Φ ∇ =i i                                                 (2-1) 

In eq.(2-1), q is the charge of the particle. In this analysis we assume the velocity 

distribution, f, to be Maxwellian for both electrons and ions. With the proper boundary 

conditions, it is possible to manipulate Vlasov’s equation in order to solve for the particle 

density, known as the “Vlasov Problem”; conversely, Poisson’s equation can be solved to 

yield the electrical potential given a constant particle density, known as the “Poisson 

Problem”. By solving the Vlasov Problem and the Poisson Problem iteratively on a set of 

grid points, the particle (and therefore current) density and the plasma potential can be 

determined. Once the plasma’s potential distribution is determined, the turning angle of 

any particular particle with a given energy and impact parameter can also be calculated.  

 

2.1.1. The Vlasov Problem 
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We do not solve the Vlasov equation directly; rather, we use the result which is that the 

distribution function is constant along the particle trajectory. It is important to note that 

this is true for some small interval in velocity space about the trajectory. This allows us to 

build the total distribution function at a point from a collection of distinct contributing 

functions and velocity space boundaries that classifies the particle orbits into whether or 

not they contribute to the current density measured by the probe. 

In terms of v and θ , the particle density, N, as defined in eq.(1-20) can be written 

in dimensionless form: 

( ) (
min

2 22 exp cos
v

n v v dv d )φ θ
π

∞
= − −∫ ∫                                          (2-2)             

for spherical cooridinates, and 

 

( )
min

22 exp
v

n v v dv dφ θ
π

∞
= − −∫ ∫                                               (2-3)             

for cylindrical coordinates, assuming a Maxwellian velocity distribution.  

 

In this form, the limits of integration over θ  are unknown. The goal of the 

following analysis is to define these limits and thereby derive expressions for the charge 

and current density. 
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The evaluation of the particle density can be simplified by transforming the 

integration of n over v and θ  into integration over the constants of the motion, E and J, 

so called because E is conserved in steady state motion and J is conserved in a central 

force problem. The constants of motion in dimensionless form are 



2E v φ= +     and    J = rvsinθ .                                           (2-4) 

When the dimensionless energy and angular momentum defined in eq.(2-4) are 

substituted into eq.(2-2) and (2-3), the charge density n can be transformed into  

min

2 exp( ) exp( ) ( )source nsE
n E dEM Eφ

π
∞

= −∫                                    (2-5)             

for spherical probes and 
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exp( ) exp( ) ( )source ncE
n E dEM Eφ

∞
= −∫                                      (2-6)             

for cylindrical probes. 

 

sourceφ  is the potential at the source, which is φ∞  for ambient particles and zero otherwise 

[Parker, 1980]. Mn is the “monoenergetic” contribution (contributions to the density or 

flux for a given energy) to n, defined as  
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for spherical probes and 
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for cylindrical probes, where E is held constant and the integrals are evaluated over J2. 

The factor C is unity for ambient particles and 2 for emitted particles (the factor 2 is 

associated with a half-Maxwellian of emitted particles at the surface, there being only 

outgoing trajectories when there is no electric field). The factor δ  gives orbit information 

defining what source a particle in a certain orbit will connect with. For ambient particles, 

1δ =  if the particle comes from infinity and 0δ =  if it come  the probe surface. 

Similarly, for emitted particles, 0

s from

δ =  if the particle comes from infinity and 1δ =  if it 

come om the surface. Simply put, a nonzero value for s fr δ  means that an orbit is 

“occupied”. Defining which particles have an angular momentum that contribute to the 

collected probe current and which do not makes it possible to define Mn. This is where 

the TPM comes in. 

In a symmetric, central-force potential, four types of orbits can exist as illustrated 

in Figure 2.1: 

 

Figure 2.1: The 4 Types of Orbits 
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Type 1: Orbits that include ambient particles that pass from infinity to the probe, or 

emitted particles that pass from the probe to infinity. These orbits have no turning point 

and 1δ = . 

 

Type 2: Orbits that include ambient particles that pass from infinity by the probe at a 

minimum radius without intersecting the probe surface, and back out to infinity again. 

These particles have one turning point and a delta factor of 2δ =  to account for the 

ingoing and outgoing trajectory contributions of the particle.  

 

Type 3: Orbits that comprise of particles emitted from the surface of the probe that travel 

out to a maximum radius and then return back to the probe surface. Particles in type 3 

orbits have one turning point and a delta factor of 2δ =  to account for the ingoing and 

outgoing trajectory of the particle. 

 

Type 4: Closed or “trapped” orbits where particles circle the probe indefinitely without 

making contact with the surface. These orbits are assumed to be unpopulated in 

collisionless plasmas and therefore 0δ =  for them. 

 

From analysis of the orbit types, it is evident that type-1 and type-2 orbits can 

contribute to the plasma density simultaneously, and type-1 and type-3 orbits can 

contribute simultaneously, but type-2 and type-3 orbits cannot contribute simultaneously 

(as defined by its δ  value – orbits with the same δ  value cannot contribute 

simultaneously). Also, there will always be contributions by type-1 orbits between the 
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lowest value of J2 and J2 = 0. Hence, there can be orbits populated by either type-2 or 

type-3 orbits above the minimum J2.  

From this analysis, equations (2-7) and (2-8) can be solved to define Mn for 

ambient or surface-emitted particles for either a spherical or cylindrical probe. 

 

Spherical Probe 

Ambient Mna is  

2 2 2
1 1 2( ) ( ) ( ) 2 ( ) ( )na gs B gs A gs B gs AM E M J M J M J M J⎡ ⎤ ⎡= − + + − +⎣ ⎦ ⎣

2
2 ⎤⎦

2
3 )

.               (2-9) 

                                   Type-1 orbits                          Type-2 Orbits 

Surface-emitted Mne is 

2 2
1 1( ) 2 ( ) ( )ne gs B gs AM E M J M J⎡ ⎤= − +⎣ ⎦

2
34 ( ) (gs B gs AM J M J⎡ ⎤+ − +⎣ ⎦                 (2-10) 

                                    Type-1 Orbits                         Type-3 Orbits 

where
12 21

2 2 2 21( ) ( )
2 2gs

g JM J r E J
r r

φ −⎡ ⎤= − − =⎣ ⎦
( ) .                                                 (2-11) 

 

Cylindrical Probe 

Ambient Mna is  

      .                (2-12) 2 2 2
1 1 2( ) ( ) ( ) 2 ( ) ( )na gc B gc A gc B gc AM E M J M J M J M J⎡ ⎤ ⎡= − + −⎣ ⎦ ⎣

2
2 ⎤⎦

2
3 )

                                    Type-1 Orbits                          Type-2 Orbits 

Surface-emitted Mne is  

     2 2
1 1( ) 2 ( ) ( )ne gc B gc AM E M J M J⎡ ⎤= −⎣ ⎦

2
34 ( ) (gc B gc AM J M J⎡ ⎤+ −⎣ ⎦                  (2-13) 

                                    Type-1 Orbits                          Type-3 Orbits         
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where 
1 1

2 22 2
2 1 1

2

1 1( ) sin sin
( )gc
JM J

r E gπ φ π
− ⎡ ⎤ ⎛

= = ⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝

J− ⎞

⎠
  .                                       (2-14) 

 

In these equations, 2
1AJ , 2

2AJ  and 2
3AJ  denote, respectively, the lower limit (A) of type-1, 

type-2 and type-3 orbits, and 2
1BJ , 2

2BJ  and 2
3BJ  denote the upper limit (B) of type-1, type-

2 and type-3 orbits.  

To determine the values of 2
1AJ , 2

2AJ , 2
3AJ , ,  and , the turning point 

function, g (eq.1-26), is plotted

2
1BJ 2

2BJ 2
3BJ

 in the (J2,r) plane and the minimum values of g are 

analyzed in relation to the radial position, r, at which they occur. Three cases are 

considered: case A – there is only one minimum value of g(r) (known as the “absorption 

radius”, in this case at point a), case B – there is one secondary minima value of g(r) 

before the absorption radius (point b is the absorption radius in this case), and case C – 

there is one secondary minima value of g(r) after the absorption radius (point a is the 

absorption radius in this case). The three cases are illustrated in Figure 2.2. 
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Figure 2.2: Case A, B, and C in r,J2 space 

 

In case A, the minimum of g occurs at point a, and corresponds to the minimum 

value of J2 = 2
1J . Only type-1 orbits exist between J2 = 0 and 2

1
2J J=  and, since type-2 
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orbits are outside of the absorption radius, and type-3 orbits are inside the absorption 

radius, we have 
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1 3B AJ J JCase A: For r(1,a), , 2
1 0AJ = 2 2 2

1= 2
3 ( )BJ g r=,  → no type-2 orbits =

             For r(a,∞), , 2
1 0AJ = 2 2

2 1AJ J= ,  → no type-3 orbits 2
2 ( )BJ g r=

 

In case B, the minimum of g occurs at point b with a secondary minima at r = 1, 

before point b. Therefore, 

 

Case B: For r(1,a), , 2
1 0AJ = 2 2 2

11 3B AJ J J= = 2
3 ( )BJ g a=

1 3B A

,  → no type-2 orbits 

             For r(a,b), , 2
1 0AJ = 2 2 2

1J J J= 2
3 ( )B, J= g r=

1 2B AJ J J

 → no type-2 orbits 

             For r(b, ), , ∞ 2
1 0AJ = 2 2 2

1= = 2
2 ( )BJ g r=

1 3B AJ J J

,  → no type-3 orbits 

 

In case C, the minimum value of g occurs at point a, while a secondary minima 

occurs after point a at point c: 

 

Case C: For r(1,a), , 2
1 0AJ = 2 2 2

1= = 2
3 ( )BJ g r=

1 2B AJ J J

,  → no type-2 orbits 

             For r(a,b), , 2
1 0AJ = 2 2 2

1= = 2
2 ( )BJ g r=

1 2B AJ J J

,  → no type-3 orbits 

             For r(b,c), , 2
1 0AJ = 2 2 2

1= = 2
2 ( )BJ g c=

1 2B AJ J J

,  → no type-3 orbits 

             For r(c,∞ ), , 2
1 0AJ = 2 2 2

1= 2
2 ( )BJ g r=,  → no type-3 orbits =

 



Now that the limits of J2 are defined, equations (2-9), (2-10), (2-12) and (2-13) 

can be solved. 

 

For a spherical probe, Mns is 

1 1
2 22 21

2
2( ) ( ) 2

2
m

ns
JCM E E E E
r r

φ φ φ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= − − − − + − −⎜ ⎟ ⎜⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

2
mJ
⎟  .             (2-15)       

 

For a cylindrical probe, Mnc is: 

1 1
2 22 2

1 1 1
2 2( ) 2sin sin
( ) ( )

m
nc

JC JM E
r E r Eπ φ

− −
⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= −⎜ ⎟ ⎜− −⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

φ ⎟  .                  (2-16)       

 

As described earlier, C is unity for ambient particles and 2 for surface-emitted particles. 

The subscript m in the variable Jm represents the upper boundary for the orbit type; for 

instance, m = 1 if there are only type-1 orbits, m = 2 if there are type-2 orbits 

(corresponding to ambient particles), and m = 3 if there are type-3 orbits (corresponding 

to emitted particles). For example, in the case of a probe in a plasma with monoenergetic 

ambient attracted particles similar to case A, the monoenergetic contribution to the 

particle density is as follows: 

 

For a spherical probe 

1
2 21 12
2

1( ) ( )
2ns

JM E E E
r

φ φ
⎡ ⎤⎛ ⎞⎢ ⎥= − − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

   for r in (1,a) 
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1
2 21 12
2

1( ) ( )
2ns

JM E E E
r

φ φ
⎡ ⎤⎛ ⎞⎢ ⎥= − + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

   for r in (a,∞). 

 

For a cylindrical probe 

1
2 2

1 1
2

1( ) sin ( )nc
JM E E
r

φ
π

− ⎡ ⎤
= −⎢ ⎥

⎣ ⎦
   for r in (1,a) 

1
2 2

1 1
2

1( ) 1 sin ( )nc
JM E E
r

φ
π

− ⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
   for r in (a, ). ∞

 

 

Now that the monoenergetic contribution to the particle density can be determined, it can 

be used to solve for the current density, I, the first moment of the Vlasov equation for a 

particle species with a velocity distribution function of ( )f R  is defined as eq.(1-4). 

Expressing the current density in a dimensionless form, where 

2

Ii
kTeN

mπ∞

= , yields 

min

2 3 22 exp( ) (sin )
v

i v v dv dφ θ
∞

= − −∫ ∫                                    (2-17)        

for a spherical probe, and 

 

min

2 24 exp( ) (sin )
v

i v v dv dφ θ
π

∞
= − −∫ ∫                                   (2-18)        

for a cylindrical probe. 
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Applying the same technique used to transform the particle density, the current density is 

expressed in terms of the constants of motion, E and J2, as 

min

exp( ) exp( ) ( )source isE
i E dEM Eφ

∞
= −∫                                   (2-19)       

for a spherical probe, and 

 

min

2 exp( ) exp( ) ( )source icE
i φ

π
∞

= −∫ E dEM E                                (2-20)      

for a cylindrical probe. 

 

Using the same methods to evaluate the monoenergetic contributions to current density as 

were used for evaluation of the monoenergetic contribution to particle density, Mis and 

Mic are defined as 

22
21

12 20
( )

E

is
JJM E d

r r
φ
δ

− ⎛ ⎞
J= = =⎜ ⎟

⎝ ⎠
∫                                     (2-21) 

and  

11
22 22

1
12 20

( )
E

ic
JJM E d

r r
φ
δ

− ⎛ ⎞⎛ ⎞
J= = ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ =  .                              (2-22) 

In both cases, r = 1 since the current density of interest is that collected at the probe 

surface.  

To finish solving the Vlasov Problem, the integrals over energy in equations (2-

5), (2-6), (2-19) and (2-20) must be numerically evaluated. One approach for doing this is 

to use a quadrature formula in the form 
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z
min 1

exp( ) ( ) ( )
Z

zE
z

E dEM E C M E
∞

=

− =∑∫                                   (2-23) 

where Cz is a constant that varies with the energy Ez from 1, 2, ,z Z= … . Cz and Ez are 

evaluated by establishing a minimum and maximum of the potential distribution, Emin and 

Emax. The integral can now be split up into two parts, one in the finite range of (Emin, Emax) 

and one in the semi-infinite range of (Emax,∞ ): 

max

min min max

exp( ) ( ) exp( ) ( ) exp( ) ( )
E

E E E
E dEM E E dEM E E dEM E

∞ ∞
− = − + −∫ ∫ ∫ .     (2-24) 

The finite range consists of type-3 and type-4 orbits. When only considering type-1 and 

type-2 orbits (or only case A scenarios), Emin = Emax and only the semi-infinite range 

applies. For the purpose of this paper, only a numerical solution of case A will be 

discussed here.  

For the Maxwellian case where the integrand contains a Gaussian function as a 

weighted function, the coefficients Cz and Ez can be transformed into an abscissa-

coefficient pair defined from the data of Steen et al. [Steen, 1969], and the semi-infinite 

range integral becomes 

max
max max0

exp( ) ( ) exp( ) exp( ) ( )
E

E dEM E E U dUM U E
∞ ∞

− = − − +∫ ∫  

2
max

1

2 (
Z

z z z
z

H a M a E
=

= × +∑ )

z

.                                                                                         (2-25) 

Here,  and 2z zC H a= 2
maxz zE a E= + , where Hz and az are the abscissa-coefficient pair 

defined in Steen et al. [1969]. 



This completes the procedure for solving the Vlasov Problem, which is the 

calculation of the densities and currents when the potential function is given on a set of 

grid points.  

 

2.1.2. The Poisson Problem 

 

The Poisson Problem is solved using a combination of the Newton-Raphson technique, 

Stoke’s Theorem and the finite difference method. The Newton-Raphson technique is a 

method for root finding that may be used to define the potential Φ by rewriting the right 

hand side of the Poisson equation using a Taylor series expansion in (Φ – Φ0): 

2
0 0 0 0 0

1( ) ( ) '( )( ) ''( )( ) ... 0
2

ρ ρ ρ ρΦ = Φ + Φ Φ −Φ + Φ Φ −Φ = .  

If (Φ – Φ0) is small, the series can be truncated to its first couple of terms to give:  

 0( ) ( ) d
d
ρρ ρΦ = Φ + ΔΦ
Φ

 .              (2-26) 

The densities that were calculated in the Vlasov Problem are the numerical values of 

eq.(2-26) for each grid point. The left hand side of eq.(1-1) can be defined using the finite 

difference method to discretize a partial differential equation and implement a numerical 

method, to produce the second order difference equation: 

2
1

2 2

( 2i i id
dR R

+Φ − Φ +ΦΦ
=

Δ
1)−  .                                    (2-27) 

The geometry of the problem is captured through Stoke’s Theorem, which states: 

( )
Vol Area

F dVol F d Area∇× =∫ ∫i i . 
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When Φ = , Stoke’s Theorem can be rearranged to give F

2

2

d Vol R
dR Area
Φ

Φ = Δ . 

When the Stoke’s Theorem is applied to eq.(2-27), and the geometry terms are integrated 

into Poisson’s equation, the result is: 

1 1
2

2 4 ( )i i i
e i

Vol R e N N
R Area

π+ −Φ − Φ +Φ
= Δ −

Δ
. 

In dimensionless terms, the above equation is: 

1 1
2

2i i i e

D

n nVol r
r Area 2

( )iφ φ φ
λ

+ −− + −
= Δ

Δ
.                              (2-28) 

The solution to Vlasov’s Problem gives (ne – ni), defined as eq.(2-26); therefore, eq.(2-

28) can be rearranged into a form that is equivalent to eq.(2-26): 

( )
2

1 1
1 2 (D

i i i e
Area d n n

r r Vol d
λ ρ φ φ φ+ −

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞⎛ ⎞ ⎛ ⎞ )i+ − + = − −⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟Δ Δ Φ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
.                (2-29) 

The negative value on the right hand side of eq.(2-29) accounts for the negative right 

hand side of Poisson’s equation. From here, eq.(2-29) can be evaluated as a matrix and 

the potential φ can be solved for. 

 

2.2. Turning Angle Calculations  

 

It is more intuitive to express the equation of the orbit of a particle in terms of R and θ  

while eliminating the time dependence, with E and L as constants of integration. In a 

central force problem (where the only two forces interacting with each other are the 

particle and the probe), the orbit is symmetrical about the turning point, meaning that if 
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any two turning points are known, the complete orbit of the particle can be traced 

[Goldstein, 1980]. The classical equation of motion for angular momentum states that  

2L mR θ=                                                       (2-30) 

which can be rewritten as  

2

Ldtd
mR

θ = .                                                    (2-31)  

Recognizing that R
dRV
dt

= , the conservation of energy equation as defined as eq.(1-18) 

can be rearranged to form a definition of dt:  

2

2
2

2

dRdt
LE

m m

=
⎛ ⎞

−Φ −⎜ ⎟
⎝ ⎠R

.                                       (2-32) 

Substituting dθ  from eq.(2-31) into eq.(2-32) will eliminate t and provide a solution for 

the orbit in terms of θ, R and the constants of motion, given Φ(R): 

2
2

2
2 ( )

2

LdRd
LmR E R

m m

θ =
⎛ ⎞

−Φ −⎜ ⎟
⎝ ⎠R

.                                (2-33) 

When eq.(2-33) is transformed into dimensionless units, and substituting in the turning 

function g(r) as defined in eq.(1-27), the result is 

2
( ) 1

drd
g rr
J

θ =
−

                                                      (2-34) 

In the case when ( ) pr
r
φ

φ = , such as a sphere in a vacuum, an analytical answer 

for dθ  can be calculated. The equation is 
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2

2

2

2 1
cos
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p

p

J
r

d arc
EJ

φ
θ

φ

⎛ ⎞
⎜ ⎟−
⎜= − ⎜
⎜ ⎟+⎜ ⎟
⎝ ⎠

⎟
⎟ .                                             (2-35) 

By definition, the TPM identifies the position at which a particle of a certain 

energy and angular momentum will turn in a potential field. Viewed in (J2,r) space as in 

Figure 2.2, a particle with an angular momentum of J2 (held constant throughout the 

particle’s orbit) will turn at a radius r when it intersects with the turning function (below 

the curve), g, and proceed back out to infinity along a trajectory symmetrical to its 

incoming path. dθ  must be calculated numerically because analytic solutions such as 

eq.(2-35) have been found for only a small number of cases that have simple potential 

forms, and our general numerical solution for Φ(R) will obviously be unsuitable for 

analytic integration. Therefore, we can calculate the turning angle of a particle by 

computing the dθ ’s at each grid point out to infinity (effectively the end of the grid) and 

adding them together to form one θ  value for each g function value. θ  is interpreted 

according to the geometry illustrated in Figure 2.3 for attracted and repelled particles:  
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Attracted Particle 
Trajectories 

Repelled Particle 
Trajectories 

Figure 2.3: Attracted and Repelled Particle Trajectories 

 

By examination of Figure 2.3 it is clear that for an attracted particle trajectory, the turning 

angle θ  will approach  as the impact parameter b decreases, and approach 180  as 

the impact parameter reaches infinity. The repelled particle trajectories do the opposite – 

360

θ  approach  as b decreases and converges to 180  as b goes to infinity. 0

 

2.3. Computational Implementation of the Turning Point Method 

 

2.3.1. Solution of the Vlasov and Poisson Problems 

 

Obtaining a numerical solution for the particle density, current density and electrical 

potential of a plasma requires simultaneously solving Vlasov’s and Poisson’s equations 
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through the solution of two sub-problems, the Vlasov Problem and the Poisson Problem. 

One fairly simple way to solve the two sub-problems is using an iterative procedure, 

consisting of developing radial grid points extending from the surface of the probe to an 

approximation of infinity. At each grid point, the Vlasov Problem is solved to yield the 

particle density, while the Poisson Problem is solved at the same time to yield the 

electrical potential to produce mutually consistent solutions.  

A program called “TurningPoint” was developed by Cooke [1981] that 

simultaneously solved both problems using the TPM for a spherical probe. The program 

structure is outlined below. 

 

1) Default values are set for all of the variables in the program. 

2) User values are inputted into the program. 

3) The velocity and mass grids are created, extending out from the probe surface to a 

specified end radius, usually to a distance where the potential goes effectively to zero; the 

grid cannot have more than 200 nodes (a program constraint), but it can extend as far as 

desired. More grid nodes translates into better electric potential resolution. The mass 

nodes are the cell centers, and share their index with the velocity node to the left. 

4) Specific values, based in the inputted user values, are defined to be used in the 

program, including dimensionless values. 

5) The boundary conditions are defined and the initial potentials are (usually) set to zero. 

6) The potential matrix (Poisson’s equation 2∇ Φ ) is built using the initial values. 

7) The TPM is used to find the number and current density for ambient and local 

electrons and ions, essentially solving the Vlasov Problem. 
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   7a) The g array is calculated and the min’s and max’s found (  and ).  2
1J 2

2J

   7b) The monoenergetic energies, Mn and Mi, are calculated using 2
1J  and 2

2J .  

   7c) Current and number densities for the particles are calculated using the 

monoenergetic energies and integrating over the semi-infinite energy range using seven 

(or six) different energies derived from Laframbrois and Stauffer [AAIA Journal, 1969]. 

   7d) The calculated densities are used as the right hand side of Poisson’s equation in 

order to calculate the potentials (up to this point the potentials were assumed). 

8) The potentials for the particles are calculated by solving the potential matrices (a linear 

system of equations) using Gaussian elimination, effectively solving the Poisson 

Problem. 

   8a) Gaussian elimination is a method for solving the linear system of equations 

A X B× = , where A is a tri-diagonal matrix and X and B are column vectors whose 

lengths are the total number of grid points used. Results are returned in X, while A is 

preserved and the contents of B are destroyed.  

   8b) In the TurningPoint program, B is the right hand side of eq.(2-29), X is the potential 

φ that we want to solve for, and A is a [3 × (# of grid points)] matrix, consisting of all of 

the terms on the left hand side of eq.(2-29) other than φ. The matrix form of eq.(2-29) as 

it is evaluated in TurningPoint is as follows: 

( ) ( )
1

1

i

i e

i

cleft
dcleft cright n n
d

cright

φ
ρ φ
φ

φ

−

+

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥− + − × = −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦

⎣ ⎦

i  

where D
d dr

λλ = , 
( )

2 1

1 1

1i
d

i i i

Areacleft
r r Vol

λ −

− −

=
−

, and 
( )

2 1

1 1

1i
d

i i i

Areacright
r r Vol

λ +

+ +

=
−
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[Cooke, 1981]. 

9) The old potentials (the potentials calculated in the previous loop) are mixed using a 

Picard mixing technique with the potentials calculated in step 8) to get a new, more 

stabilized potential. 

10) The grid is advanced one node and the new potentials become the old potentials for 

the next iteration. 

11) Steps 7) through 10) are repeated for each grid node. 

12) The trajectory of the particle is calculated for a given particle energy (the steps for 

this will be explained in the next section). 

13) For a floating potential, the boundary conditions are defined again and steps 5) 

through 12) are repeated. 

 

A graphical representation of the program flow is shown in Figure 2.4. 

 



 

Figure 2.4: Graphical Representation of the TurningPoint Program Flow 

 

For this thesis, the TurningPoint program that was developed by Cooke [1981] 

was expanded to include plasma analysis using a cylindrical probe as well as a spherical 

probe. The program modifications consisted of adding “IF” statements that, when the 

definition of “cylindrical” was initialized in the user inputs, the program would skip past 

the spherical definitions of the number and current density and their monoenergetic 
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contributions (equations (2-5), (2-15), (2-19) and (2-21)) and use the corresponding 

equations for the cylindrical solution (equations (2-6), (2-16), (2-20) and (2-22)).  

 

2.3.2. Turning Angle Computations 

 

The TurningPoint program by Cooke [1981] was also expanded to calculate the trajectory 

of a charged particle around either an attracting or repelling probe of cylindrical or 

spherical geometry by calculating the turning angle of the particle from its turning point 

out to the end of the grid, or an approximation of infinity. A separate subroutine, called 

“turn_angle”, was added to the end of TurningPoint that numerically calculates the 

turning angle of the particle at each grid point using the electric potential field of the 

probe defined earlier in the TurningPoint program. The steps in the subroutine are 

outlined below. 

 

1) A new g array is calculated using the previously calculated potentials and a new, user-

defined particle energy. 

2) Minimums and maximums are identified in the g array in order to exclude particles 

that don’t contribute to the angle calculation (only type-2 particles are considered). 

3) One value of dθ is calculated for each impact parameter (or each g array value at each 

grid point, given that 
2Jb

E
=  when g = J2) according to the classical dθ  eq.(2-34). 

   3a) The program starts at one g array value and calculates dθ for that specific point, 

when g = J2 results in an inverse square singularity in the calculation of dθ, using the 
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subroutine midsql. Midsql is a subroutine taken directly from Press [et.al., 1986] that 

solves the integral by using Romberg integration of an improper integral, specifically 

( )2

0
( ) 2

B B A

A
f x dx tf A t dt

−
= −∫ ∫   ,  B > A 

for a singularity at A.  

Nothing is known about the potential profile between the grid points; 

consequently, in order to integrate the dθ equation between each grid point the potential 

profile must be assumed for the g array term in eq.(2-34), as defined by eq.(1-27). For a 

spherical probe, the electric field in a vacuum varies as 2

1E
r

α ; for a cylindrical probe in 

a vacuum, 1E
r

α . Since , the potential for a spherical probe varies as E = ∇Φ
1
r

Φ =  for a  

small space charge, and  for large space charge. For a cylindrical probe, the 

potential varies as  for a small space charge and 

log( )rΦ =

log( )rΦ =
1
r

Φ =  for large space charge 

(see Figure 3.1). 

   3b) The rest of the integral is calculated using Simpson’s extended rule, which states  

1
1 2 3 4 5

17 59 43 49( ) [
48 48 48 48

Nx

x 6f x dx h f f f f f f= + + + + +∫  

4 3 2 1
49 43 59 17... ]
48 48 48 48N N N N Nf f f f− − − −+ + + + + f . 

   3c) The sum of the first integral, using midsql, and the sum of the rest of the integrals, 

using Simpson’s extended rule, are added up to return a single theta value. 

4) Step 3) is repeated for every value of the g array to produce an array of turning angles 

specific to the particle’s energy. 
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3. Results and Validation 

 

3.1. Cylindrical Probe Sheath Approximations 

 

Several runs of TurningPoint were performed using different Debye lengths and probe 

voltages to obtain a potential distribution and approximate a sheath radius for the case of 

a cylindrical probe. Most runs were done with a Debye length that was within the OML 

limit (i.e. a Debye length that is equal to or greater than the probe radius). The expected 

result is that as the space charge decreases (as the Debye length gets larger) and the probe 

voltage decreases, the sheath radius will decrease, and vice versa. The potential 

distributions of several TurningPoint runs are shown in Figure 3.1. 

 

Figure 3.1: Electric Potential vs Radius from the Probe For Different Debye Lengths 
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Figure 3.1 also shows the expected result that at large space charge (low D

pR
λ ), the 

potential profile approaches a 1
r

 characteristic, while at a small space charge (high D

pR
λ ) 

the potential profile approaches a log(r) characteristic. At the sheath edge where the 

electric field of the probe is weak, the thermal energy of the attracting species (kT) will 

have just enough energy to escape from the potential well and not contribute to the 

collected probe current; it is therefore approximated that the sheath is located at a radius 

from the probe where the particle thermal energy is equal to the potential energy of the 

plasma inside the sheath, or when 1.0
kT
Φ

≅ . The sheath radius for different potential 

distributions and Debye lengths can then be approximated, as shown in Figure 3.2: 

 

 Figure 3.2: Sheath Radius vs Probe Potential
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It is possible to extrapolate a relationship between the sheath radius and the probe 

potential by recognizing that the sheath radius plotted against the probe potential in a log-

log plot as in Figure 3.2 follows the relation 

 

ln ln( )xsheath sheath
p p

D D

R R xφ φ
λ λ

⎛ ⎞
≈ → =⎜ ⎟

⎝ ⎠
. 

 

The result is that 0.75sheath
p

D

R φ
λ

∝ , consistent with Choiniere’s work [Choiniere, 2004].  

 The results from TurningPoint were also validated by comparing Laframboise’s 

earlier work [Laframboise, 1966] with the TurningPoint results for current collection in 

the OML limit. Figure 3.3 is the dimensionless current versus the dimensionless probe 

potential for a cylindrical probe from Laframboise. 

 

Figure 3.3: Probe Current i vs Probe Potential φp for a Cylindrical Probe [Laframboise, 1966] 
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The results from TurningPoint are consistent with Laframboise, as shown in Table 3.1. 

 

Rp/λD Current, i 

1 5.17 

3 4.73 

10 3.10 

20 2.39 

 

 

 

 

 

  

 

Table 3.1: Results from TurningPoint, φp  = 20  

 

3.2. Turning Angle Approximations 

 

Several particle trajectories were defined for different amounts of space charge for both 

attracting and repelling particles in a cylindrical and spherical probe sheath. For a probe 

voltage held at +100 Volts, the turning angle for various attracted and repelled particles 

of 100 Volts for varying amounts of space charge are shown in Figure 3.4.  ±
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 Figure 3.4: Turning Angle vs Impact Parameter for Attracted and Repelled Particles where Φp = 
+100 Volts and Φparticle = ± 100 Volts 

 

 

As expected, Figure 3.4 shows the repelled particles coming towards the probe from 

infinity, where their turning angle is 180 , and being increasingly repelled from the probe 

as they approach. At a close enough impact parameter, the particles are repelled 

completely and cannot reach the probe. Figure 3.5 illustrates that a +10 Volt particle 

approaching a +100 Volt probe cannot even penetrate the probe sheath until it reaches an 

impact parameter of ~ 4 pR× , with a turning radius of  ~ 27 pR× .  
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Figure 3.5: Radius from the Probe vs Impact Parameter for Φp = +100 Volts and Φparticle = ±10 Volts 
 

An attracted particle coming into the probe from infinity will fall into the probe and 

approach . Figures 3.4 and 3.6 illustrate an interesting phenomenon as the particle 

first enters the probe sheath – the deflection angle initially jumps up, suggesting that the 

particle gains 

360

θΔ  as it transverses across the contours of the probe sheath and then slopes 

down as the impact parameter decreases and the particle avoids the sheath irregularities. 

The effect is more striking as the space charge of the plasma increases and the probe 

sheath radius decreases.  
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Figure 3.6: Turning Angle vs Radius from the Probe and Impact Parameter  

 

The behavior of the potential profile as shown in Figure 3.1 makes it possible to 

test for consistency of the numerical results by comparing the analytical solution for θΔ , 

eq.(2-35), with the TurningPoint results when the potential profile is forced to be 

( ) pr
r
φ

φ = . The results, shown in Figure 3.7, illustrates what the turning angle of a 

particle of varying energies in a plasma of high space charge would be in the absence of a 

sheath. The results from TurningPoint and Goldstein [1980] correlate very well with each 

other, validating the turn_angle subroutine. It is of interest to note that, even though this 
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probe analysis dealt with space charges within the OML limit, significant changes in 

orbital trajectories between different space charges were still observed. 

 

 Figure 3.7: Turning Angle vs Impact Parameter for Attracted and Repelled Particles for the Case 

When ( ) pr
r
φ

φ = , Φp = +100 Volts. Φparticle(Gold.) refers to results obtained using eq.(2-35), 

and Φparticle(TPM) refers to results obtained using the TurningPoint program. 

 

 

 Result so far support the common sense expectation that higher plasma shielding 

(low D

pR
λ ) limits the range of impact parameters that experience significant scattering. 

Because the analysis of orbital trajectories does not yield information about the intensity 

of the incoming particles, a discussion about the total scattering cross-section of the 

particles is not possible. However, the first moment of the orbital trajectories can be 
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calculated, as moment sheathrθ θ= × , providing a somewhat arbitrary number that reflects 

the quantity of particles that will be deflected to some degree by the probe. Table 3.2 

illustrates the result that higher plasma shielding limits the range of impact parameters 

that 

experience significant scattering. 

λD/Rp Attracted, θmom
(radians x R/Rp) 

Repelled, θmom  
(radians x R/Rp) 

1 35.6 40.6 

3 144.4 159.9 

5 264.6 294.3 

10 431.1 510.0 

30 571.2 708.5 

 

 

 

 

 

 
Table 3.2: Turning Moment, Φp = 100 Volts 
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4. Summary and Recommendations for Future Work 

 

4.1. Summary of Work and Conclusions 

 

The purpose of this thesis was to manifest the Turning Point Method (TPM), developed 

by Parker, into a computer program that models plasma interactions with charged probes 

of spherical and cylindrical geometries. The original program, developed by Cooke, was 

designed only as a spherical probe model and was expanded to include cylindrical 

geometries and particle trajectory calculations. The one-dimensional case assumes an 

infinite wire in an unmagnetized plasma with finite and equal ion and electron 

temperatures. Because particle energy and angular momentum are conserved in such a 

formulation, the results have the potential to provide a standard against which to compare 

more complicated  simulations.  

The cylindrical probe model was successfully integrated into the original 

TurningPoint program. The sheath radius and the probe potential for different space 

charges were plotted on a log-log plot in order to determine the relationship between 

them, with the result being 0.75sheath
p

D

R φ
λ

∝ . The analytically extrapolated relationship is 

consistent with Choiniere’s earlier work with the KiPS program [Choiniere, 2004]. 

Results are also validated by comparing Laframboise’s earlier work [Laframboise, 1966] 

with the TurningPoint results for current collection in the OML limit. The dimensionless 

current versus the dimensionless probe potential for a cylindrical probe as calculated in 
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the TurningPoint program are consistent with Laframboise’s graphical results of the same 

characteristics.  

Calculations of the turning angle of a charged particle with specific energy and 

angular momentum revealed that higher plasma shielding limits the range of impact 

parameters that experience significant scattering, and that attracted particles entering 

tangent to the sheath experience increased scattering. Several particle trajectories were 

defined for different levels of space charge for both attracting and repelling particles in a 

cylindrical and spherical probe sheath. Attracted particles coming into the probe from 

infinity will fall into the probe and approach a turning angle of , while repelled 

particles will approach 0° as their impact parameter decreases, eventually becoming 

unable to penetrate the sheath at all. The deflection angle of the particle also temporarily 

jumps up when the particle travels across the contours of the sheath. The results also 

show that there are significant changes in orbital trajectories between different space 

charges within the OML limit. 
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4.2. Recommendations for Future Work 

 

1. Additional subroutine into the turn_angle program that will generate a 2-D graph 

of the trajectory of the particle around the probe. This would include writing the dθ 

values for each impact parameter (step 3 of the turn_angle subroutine) into a separate file 

and plotting each file using the Unix plotting program gnuplot. By doing this, the 

trajectory of each specific particle can be tracked and an illustration of the particle’s 

interaction with the probe can be made. 
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2. Modification the turn_angle program so that it uses the midsql subroutine for the 

entire dθ integral, eliminating the need for Simpson’s extended rule. The Romberg 

integration that midsql uses is more accurate than Simpson’s extended rule because 

Simpson’s extended rule assumes equal step sizes throughout the integration, while the 

Romberg integration used in midsql calculates the exact step size between each grid point 

(dr) and uses that value in its calculations. The spatial grid used in the main program 

TurningPoint is designed to be able to expand and contract according to the 

programmer’s discretion, so the step sizes are often not equal throughout the entire grid. 

The unequal step sizes result in increased error when using Simpson’s extended rule, 

especially when the grid is programmed to expand rapidly past the sheath boundary, 

which is often the case since the potential drops off rapidly at this distance and detailed 

information about this region is not critical.  

 

3. Change the integration method used to solve eq. (2-35) for the first interval, 

where midsql is used (steps 3a)) from a method where the potential profile of the sheath 

region is assumed ( 1
r

 for high space charge, log(r) for low space charge) to a method that 

extrapolates the potential profile as the calculation proceeds. The turning angle 

calculation can be treated as an initial value problem, where the values and derivatives of 

the variables are known at some starting point but not known at some end point (in this 

case, the potentials at each grid point are known, but the potentials between the grid 

points are not known). The second order differential equation that defines the potential 

 58



profile, which is Poisson’s equation, can be rewritten as two first order differential 

equations, and those first order differential equations can be reduced down to a set of 

algebraic formulas that “step” through the function, achieving a good approximation of 

the differential equation when the step size is very small. The literal implementation of 

this is Euler’s method, which states 

( )'
1 ,n n ny y hf x y+ = + n . 

However, Euler’s method on its own is not ideal for practical use due to its inaccuracy 

compared to other methods run at equivalent step sizes and its instability [et.al., 1986]. A 

better method is the fourth-order Runge-Kutta method, as described in Press [Press et.al., 

1986], which propagates a solution of the potential profile over an interval by combining 

the information from four Euler-style steps and using that information to match a Taylor 

series expansion up to the fourth order.  

The Runge-Kutta method can be integrated into the turn_angle program by using 

the subroutine “RK4”, taken directly from Press [et.al., 1986], and calling it when the g 

array is calculated for use in eq.(2-34). As midsql loops through each step in the 

integration between two grid points, it will also loop through the RK4 subroutine and 

solve for the potential at each step. 

 

4.  Compare the results of the TurningPoint program to other more complicated 

programs.  
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