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Abstract 
As genome sequencing has become cheaper and research into its use in the clinic has 

advanced, clinicians have increased the use of sequencing results to diagnose and treat genetic 

diseases.  Effective clinical care is enabled by the annotation of genetic variants, including an 

accurate prediction of any pathogenic effects and the prioritization of these annotations.  The 

goal of this project is to provide clinicians and clinical researchers with a recommendation for an 

ensemble algorithm that is accurate in its predictions for pathogenicity and deleteriousness, 

satisfies clinical standards, and is compatible with clinical data.  This paper presents a 

comparative analysis of existing variant prioritization methods for pathogenicity.  A dataset of 

variants annotated for pathogenicity by clinicians is used to compare predictions of pathogenicity 

from methods and algorithms to determine accuracy and suitability for clinical settings. 
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1 Introduction 
Genome sequencing is becoming cheaper, faster, and more accurate as technology 

improves.  These new sequencing platforms are called Next-Generation Sequencing (NGS) and 

their accuracy enables wider use of genome sequencing (DNA Sequencing Costs: Data., n.d.).  

Clinicians are now able to use genome sequencing and the technology that interprets genome 

sequencing to diagnose and treat diseases (Krier et al., 2016).  Variants called from genome 

sequencing are annotated to include information about phenotype, affected gene, associated 

diseases, frequency, and more.  This rich data is important for a clinician to make an informed 

decision about diagnosis or treatment.   However, it is time-consuming for a clinician to examine 

each bit of this data without prioritization of the variants according to the annotations. 

 Prioritization of variants enables clinicians and researchers to decide which variants are 

clinically actionable.  Prioritization, for the context of this paper, is a method for determining 

which genetic variants most likely result in damaged gene function or cause a diseased 

phenotype (Eilbeck et al., 2017).  Prioritization can include processes to identify clinical 

relevancy of a variant according to pathogenicity or deleteriousness.  The American College of 

Medical Genetics (ACMG) Standards and Guidelines detail terminology to use when describing 

genetic variants, guidelines about how pathogenicity classification should be applied to variants, 

and categories for variant pathogenicity classification with requirements variants must meet for 

each classification (Richards et al., 2015).  These guidelines recommend using in silico methods, 

or predictive algorithms, to predict whether a variant is pathogenic or how deleterious a variant is 

to supplement the evidence for a final classification of pathogenicity. 

Algorithms such as CADD, DANN, MetaLR, MetaSVM, and Eigen produce scores and 

rank scores that can be translated into a pathogenicity classification (Rentzsch, P. et al., 2019; 

Quang, D. et al., 2015; Dong et al., 2015; Mccallum, K. et al., 2016).  This prediction may be a 

value on a continuous scale from 0 to 1, with 1 being pathogenic or it may be a rank score where 

higher scores are more likely to be pathogenic.  In some cases, the algorithm will produce a score 

where it predicts severity or deleteriousness of the variant instead of solely predicting 

pathogenicity.  The result of each of these pathogenicity predictor algorithms can then be 

interpreted into a classification based on clinical standards and used as prioritization methods.  

However, the reported accuracies for these pathogenicity algorithms range from 88% to 98%, 

where less accurate methods could lead to a misdiagnosis of a disease if a clinician fails to find 

other information to negate the algorithm’s prediction (Rentzsch, P. et al., 2019; Quang, D. et al., 

2015; González-Pérez, A., & López-Bigas, N., 2011; Mccallum, K. et al., 2016; Ioannidis, N. M. 

et al., 2016; Dong et al., 2016).  Software enables the annotation of these scores of pathogenicity 

so that variants can be prioritized according to the score and resulting classification of 

pathogenicity.  

 The goal of this paper is to provide clinicians with a recommendation for an ensemble 

algorithm that is accurate in its predictions for pathogenicity, satisfies clinical standards, and 

works with data that has been validated against two real world clinical data sets.  This will be 

done by first defining the project boundaries within the space of genomic sequencing and 

annotation practices.  Then, several pathogenicity algorithms will be detailed with information 

about how each is currently used, recommended, and benchmarked.  Next, data will be found 

that can be used to benchmark each of the chosen pathogenicity algorithms on the same dataset 

so that their accuracies can be compared closely.  Finally, the benchmarking results will be 

considered for a thorough review of the pathogenicity algorithms so that a final recommendation 

can be made about the pathogenicity algorithms as they relate to the clinical workplace.  By the 
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end of this paper, the reader will understand pathogenicity algorithms in the clinical setting and 

which of the chosen and reviewed algorithms from this paper are recommended for use in a 

clinical setting.  
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2 Background 
Genomic sequencing has improved recently to become more cost effective and faster.  

With NGS technology becoming widely available due to lower cost, the technology to read, 

process, and utilize that sequencing data has also improved.  Genomic sequencing can be used 

for the diagnostic sequencing of Mendelian disease, preconception carrier screening for genetic 

disease, and genetic predisposition screening (Krier et al., 2016).  Sequences must be annotated 

based on known and predicted variants that cause disease or have a damaging effect.  These 

annotations give clinicians additional information to thoroughly review and classify a variant as 

it relates to pathogenicity, or the likelihood that a variant will be damaging and cause disease.  

This chapter will explore genetic variants, variant annotation, and the standards recommended 

for genetic variant annotation, especially as it relates to pathogenicity. 

 

2.1 Genetic Variants 
Not all genetic variants are damaging.  Variants can be classified as benign, pathogenic, 

or as a “variant of uncertain significance” (Eilbeck et al., 2017).  Benign variants will ultimately 

not cause a change in the phenotype or the benign variant will not affect the function of the 

sequence or resulting protein despite causing a change in phenotype.  Other variants are known 

to be pathogenic, or deleterious, and cause a diseased phenotype (Richards et al., 2015).  

Alternatively, a variant may result in a damaged protein but is not called “pathogenic” if it is not 

implicated in a disease (Richards et al., 2015).  Variants of uncertain significance may cause 

damage to a gene but may ultimately not damage a phenotype.  It is also possible that not enough 

research has been done on a variant to form a conclusive decision about whether it is pathogenic, 

leading to a classification of uncertain significance.  Each variant can ultimately be described by 

one of these three categories, with varied confidence in that classification. 

Some variants that are typically not considered by pathogenicity prediction algorithms 

are non-coding transcript variants and synonymous variants.  Non-coding transcript variants are 

variants that occur in the non-protein encoding portions of the genome (Dhamija & Menon, 

2018).  Researchers are often unsure of how this type of variant affects overall phenotype and 

assume most of these are “silent” mutations and do not cause deleterious effects (Dhamija & 

Menon, 2018).  Synonymous variants are a product of the degeneracy of genetic code (Zeng & 

Bromberg, 2019).  These variants occur in the coding region of the genome but are ultimately 

assumed to have no effect on the resulting protein sequence.  This is due to redundancies such 

that multiple codons can code for the same amino acid, resulting in some variants coding for the 

same amino acid (Zeng & Bromberg, 2019).  The target of most annotation tools and algorithms 

to predict pathogenicity are non-synonymous single nucleotide variants or nsSNVs (Zeng & 

Bromberg, 2019).  Non-synonymous variants result in a protein that may experience more 

deleterious effects, such as a structural change.  In general, single nucleotide variants (SNVs) are 

the most common type of variant in the human genome, making them the target of most 

functional annotation software. 

 

2.2 Genetic Variant Annotation 
 Genetic variant annotation software requires the ability to handle large amounts of data.  

Genomic sequencing files from whole genome sequencing, whole exome sequencing, and other 

sequencing processes can contain millions of variants, all of which must be annotated with 

additional information (Wang et al., 2010).  Some annotation pipelines use a database to 

compare called variants against known variants (Wang et al., 2010).  These databases are highly 
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specified, so the use of many databases may be necessary, especially if multiple types of 

annotations are desired.  Archives like ClinVar enable the annotation of clinically relevant data 

and panel reviews, dbSNP databases enable functional annotation of a variant, and still more 

information is necessary to allow in silico methods to predict pathogenicity for a variant 

(Landrum et al., 2020; Wang et al., 2010).  Annotation software can annotate to specify which 

gene a variant impacts, the regional genomic information like conserved genomic regions or 

predicted transcription factor binding sites, the allele frequency of a variant, and the mutation 

prediction of that variant (Wang et al., 2010).  These scores are often precomputed, and the use 

of a pipeline and database query must be used to properly annotate called variants.  Annotation 

software allows clinicians to annotate variants with a few commands rather than curating and 

querying the databases manually. 

 One annotation tool is ANNOVAR, a free and open source tool that enables annotation of 

variants with rich data that can come from varied sources.  ANNOVAR tool can be utilized to 

annotate SNVs and insertion or deletion (indel) variants (Wang et al., 2010).  ANNOVAR can 

annotate data with information such as the functional consequence of a variant on genes, the 

functional importance score of a variant, and whether the variant occurs in a conserved region of 

the genome (Wang et al., 2010).  The tool can also annotate using any database that follows the 

Generic Feature Format version 3, meaning any available databases for a clinician can be 

downloaded and used with ANNOVAR to annotate a set of variants (Wang et al., 2010).  

ANNOVAR allows for flexible and quick annotation of genomic sequencing files. 

 

2.2.1 Variant Prioritization 

Variant prioritization is “the process of determining which variants… are most likely to 

damage gene function and underlie the disease phenotype (Eilbeck et al., 2017).”  This process 

can be completed using algorithms and predictive modeling.  Prioritization algorithms consider a 

multitude of features created from variant annotations to create a new prediction or 

recommendation about which variants are most likely to be pathogenic or important to 

researchers and clinicians.  Population allele frequency and population stratification should be 

included as features, since these can yield insight into how the variant occurs in the general 

population and if there were confounding factors in the population sampling (Eilbeck et al., 

2017).  Additionally, general gene information can yield insight into how a variant affects 

phenotype because genes can vary in size, mode of expression, and regulation (Eilbeck et al., 

2017).  Alongside variant prioritization is determining clinical relevancy, which can be predicted 

from three major factors.  Penetrance, or the probability that the pathogenic variant results in 

disease, and prevalence, or the frequency of the disease occurring, yield great insight into clinical 

relevancy for a variant (Eilbeck et al., 2017).  Pathogenic variants are not expected to be seen in 

populations at a high frequency, allowing some variants to be cast as poor candidates for variant 

prioritization due to high prevalence in a population (Eilbeck et al., 2017).  Disease prevalence 

calculations depend on penetrance and so both features should be considered in variant 

prioritization processes.  Mode of inheritance can also tell if a genetic variant will cause disease 

in progeny, which can be important information in preconception screening (Eilbeck et al., 

2017).  There are numerous features that can be considered by an algorithm when predicting the 

likelihood of pathogenicity for a variant. 

Number of features and model type can affect the algorithm’s ability to classify or predict 

pathogenicity of variants. Greater accuracy in variant prioritization algorithms is desired because 

this means that fewer variants are misclassified.  However, more accurate predictions can result 
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from greater complexity in the model and cause difficulty interpreting results or a model that is 

overfitted to the training data, resulting in poor performance on other data later on (Eilbeck et al., 

2017).  Model complexity and loss of interpretability can especially occur when machine 

learning models are non-linear and extract or create features for classification and prediction that 

the human mind cannot easily understand and relate to real-world cases.  When being used in a 

clinical setting, the need for model interpretability and model accuracy are both important, and 

one should not necessarily be sacrificed for the other. 

 

2.2.2 Current Variant Prioritization Methods 

Variant prioritization methods can vary widely in the type of model they are built on.  

Ensemble algorithms consider other pathogenicity predictions that are based on features that are 

annotated using databases that do not necessarily predict pathogenicity.  Features may include 

population frequency, possible resulting amino acids, gene information, and more.  These 

ensemble methods are complex because they consider a multitude of features and are often non-

linear.  As mentioned before, this can lead to interpretability issues.  This can be mitigated by 

choosing a model that produces a direct result that is still interpretable and accurate despite the 

intricacies of the underlying model. 

Variant prioritization methods of interest for this paper are pathogenicity algorithms.  

Pathogenicity algorithms are methods that try to predict the likelihood that a variant is 

pathogenic or deleterious.  The initial result is often a numeric result, which can then be 

transformed into a classification.  Pathogenicity algorithms like CADD, DANN, Condel, 

MetaLR, MetaSVM, and Eigen produce a number that represents a rank score or other type of 

score that does not directly represent a probability of pathogenicity (Rentzsch, P. et al., 2019; 

Quang, D. et al., 2015; González-Pérez, A., & López-Bigas, N., 2011; Dong et al., 2015; 

Mccallum, K. et al., 2016).  Instead, these scores represent the relative likelihood that a variant is 

pathogenic when compared to other variants sampled or stored in a database.  Alternatively, 

pathogenicity algorithms like REVEL and TAPES output a value between 0 and 1 that directly 

represents the probability that a variant is pathogenic, such that 1 is classified as pathogenic and 

0 is classified as benign (Ioannidis, N. M. et al., 2016; Xavier, A. et al.,2019).  Variants are thus 

labeled on a spectrum from either of these types of methods and can be prioritized as such later 

in clinician review.  These classifications should follow the ACMG Standards described in 

Section 2.3. of the background in this paper.  Variant prioritization algorithms that are ensemble 

algorithms are detailed in Table 1.  Ensemble algorithms incorporate other algorithms’ scores 

into their own scoring algorithm.  The algorithms that are used as features in ensemble 

algorithms will be referred to as feature algorithms for the remainder of this paper.



 

Table 1 - Pathogenicity Ensemble Algorithm Comparison Chart 

METHOD 

NAME 

METHOD 

APPROACH 

FEATURES DATA MODEL OUTPUT REPORTED 

ACCURACY 

AVAILABILITY 

CADD Logistic regression 63 features including: 

- conservation metrics 

- functional genomics 

- transcript information 

- protein-level scores 

- Data for training does not include 

manually curated variants, or 

variants where they are known 

pathogenic 

- Operates on assumptions that 

variants are mostly benign 

- Tuning data is manually curated for 

known pathogens 

A rank score based on 

genome-wide distribution of 

scores 

Overall AUC Score (TPR) = 

91.64% 

AUC Score for Missense Variation 

(TPR) = 93.05% 

Available for non-

commercial use via online 

query or precomputed scores 

DANN Deep neural net 

 

949 features, all Boolean, 

including: 

- conservation metrics 

- functional genomics 

- transcript information 

- protein-level scores 

- Training dataset consisted of 

observed and simulated variants 

 

A functional prediction score  Classification Accuracy = 66.1% 

ROC Curve (TPR) = 72.4% for 

testing set, 94.59% for ClinVar and 

ESP 

Precomputed scores 

available for non-

commercial use or 

repository available to run 

locally 

REVEL Random forest 18 individual pathogenicity 

prediction scores: 

- conservation scores 

- functional prediction 

scores 

- Human Gene Mutation Database 

(only missense disease variants) 

- Exome Sequencing Project 

(missense exome variants) 

- 1000 Genomes Project (missense 

exome variants) 

REVEL Score (0,1) based on 

proportion of trees in random 

forest classifying variant as 

pathogenic 

Overall AUC (TPR) = 0.908 

Sensitivity = 0.754 

Specificity = 0.891 

Precomputed scores 

available for non-

commercial use as a single 

file 

Condel Weighted Average of the 

normalized Scores of the 

individual methods (WAS) 

- LogR Pfam E-Value 

(Logre) 

- MAPP 

- Mutation Assessor 

- Polyphen2 

- SIFT 

- HumVar & HumDiv from PPH2 

website (deleterious and neutral 

variants) 

- Cosmic database (deleterious 

variants) 

- TP53 mutants 

The “consensus 

deleteriousness” score of 

missense mutations 

88% accuracy for classification Precomputed scores 

available as a tsv file with 

all available scores or scores 

can be queried online 

Eigen - Unsupervised 

- Eigen Score: Weighted 

linear combo of annotations 

based on estimated 

accuracies 

- Eigen-PC Score: 

eigendecomposition of the 

annotation covariance 

matrix 

Many annotations that each 

get a weight that 

corresponds to their 

importance, including: 

- evolutionary conservation 

scores 

- individual annotations 

- individual tool 

predictions 

- Assumption 1: blockwise 

conditional independence between 

annotations 

- Assumption 2: correlation is due to 

annotation differences 

An estimate of accuracy for 

each functional annotation 

score 

An aggregate Eigen score for 

variants of interest 

Eigen-PC has more sensitivity, 

better for non-coding variants 

Eigen performs better for coding 

variants 

Eigen Score AUC = 0.864 

Precomputed scores 

available as a .tsv and tabix 

indexing 

MetaLR Logistic regression - SIFT 

- PolyPhen-2 

- LRT 

- MutationTaster 

- MutationAssessor 

- FATHMM 

- PhyloP 

- GERP++ 

- SiPhy 

- MMAF 

- dbNSFP database (potential human 

nsSNVs) 

- 1000 Genomes project (MMAF) 

Raw score is a score between 

0 and 1 of pathogenicity 

Overall AUC (TPR) = 0.92 for 

dataset 1 

Overall AUC (TPR) = 0.94 for 

dataset 2 

Precomputed scores 

available through 

ANNOVAR  
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MetaSVM Support vector machine - SIFT 

- PolyPhen-2 

- LRT 

- MutationTaster 

- MutationAssessor 

- FATHMM 

- PhyloP 

- GERP++ 

- SiPhy 

- MMAF 

- dbNSFP database (potential human 

nsSNVs) 

- 1000 Genomes project (MMAF) 

Raw score is a score between 

0 and 1 of pathogenicity 

Converted score is a score 

between 0 and 1, where 1 is 

more deleterious 

Overall AUC (TPR) = 0.91 for 

dataset 1 

Overall AUC (TPR) = 0.93 for 

dataset 2 

Precomputed scores 

available through 

ANNOVAR 

TAPES Transforms ACMG 

classification into linear 

probability of pathogenicity 

– naïve Bayesian classifier 

A file annotated with 

ANNOVAR or VEP 

- Japanese pediatric cancer data for 

benchmark 

- ClinGen clinician reviewed and 

labeled variants for validation 

A probability of 

pathogenicity (0,1) 

AUC for Pathogenic = 0.959 

AUC for Benign = 0.957 

A GitHub repository of 

software is available online 

 

 

 



 

 Algorithms like SIFT, PolyPhen-2, MutationTaster, and FATHMM are used often as 

features in ensemble algorithms that predict pathogenicity.  The algorithms listed in the 

‘Features’ column of Table 1 are used as features because their results often predict 

pathogenicity or a characteristic of a variant associated with pathogenicity or deleteriousness.  

Ensemble algorithms leverage multiple scores to create an overall prediction for pathogenicity or 

deleteriousness.  SIFT and FATHMM predict the functional effects of a variant (Ng & Henikoff, 

2001; Shihab et al., 2013).  MutationTaster predicts the disease potential of a variant (Schwarz et 

al., 2010).  PolyPhen-2 predicts the functional significance of the variant (Adzhubei et al., 2010).  

SIFT, PolyPhen-2, MutationTaster, and FATHMM are detailed in Table 2 with their method 

approaches, model outputs, and availability. 

 
Table 2 - Pathogenicity Algorithms Used as Features in Ensemble Algorithms Comparison Chart 

METHOD NAME METHOD 

APPROACH 
FEATURES MODEL OUTPUT AVAILABILITY 

SIFT Probabilistic classifier - Position of amino acid 

substitution 

- Type of amino acid 

substitution 

Prediction of functional effects Through ANNOVAR 

and SIFT website 

PolyPhen-2 Naïve Bayes Classifier - Homologous sequences 

- Identity-based scores 

- Profile-based scores 

- Pfam domain 

Prediction of functional significance Through ANNOVAR 

MutationTaster Naïve Bayes Classifier - evolutionary conservation 

- splite-site changes 

Prediction of disease potential Through website query 

and through 

ANNOVAR 

FATHMM Hidden Markov models - Species-specific 

pathogenicity weights 

- Amino acid substitution 

consequences 

Prediction of functional effects Online web query and 

through ANNOVAR 

 

 SIFT, PolyPhen-2, MutationTaster, and FATHMM are trained on different datasets.  

Both PolyPhen-2 and MutationTaster use Naïve Bayes Classifiers to compute a prediction score, 

howerever PolyPhen-2 predicts functional significance and MutationTaster predicts disease 

potential (Adzhubei et al., 2010; Schwarz et al., 2010).  This slight difference in interpretation of 

the algorithm output is what makes it useful to use multiple of these algorithms as features in 

ensemble algorithms.  The algorithm outputs from SIFT, PolyPhen-2, MutationTaster, and 

FATHMM are all slightly different, but they also all relate to pathogenicity.  Ultimately, this 

offers diversity and a thorough consideration of a vast array of pathogenicity influences when 

creating an ensemble algorithm that uses other algorithms as features. 

 

2.3 Standards and Guidelines for Variant Prioritization 
 Standards allow for replication and can also act as guidelines to inform decisions.  The 

American College of Medical Genetics (ACMG) published standards and guidelines for genetic 

tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and 

genomes (Richards et al., 2015).  The ACMG standards are applicable to variants in all 

Mendelian genes, regardless of how that variant was sequenced prior to variant calling (Richards 

et al., 2015).  The ACMG guidelines are meant to offer guidance for classifying the 

pathogenicity of genetic variants.   

When beginning to review the ACMG guidelines and speaking about variants, there are a 

few key details to keep in mind.  The word “variant” is used to be more inclusive than the term 

“polymorphism”, which is a variant that has a frequency above 1% (Richards et al., 2015).  
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“Variant” is also the preferred term to use instead of “mutation”, which can imply pathogenic 

effects (Richards et al., 2015).   Variants can be described using the ACMG five-tier 

classification standards (Richards et al., 2015).  Some descriptions may use the terms “mutation” 

or “polymorphism”, but these are not recommended per ACMG standards.  Variant is a more 

neutral word and additional information about variant nomenclature has been put forth by the 

Human Genome Variation Society or HGVS (Sequence Variant Nomenclature).   

 In contrast to what HGVS recommends, the ACMG standards do not suggest using the 

phrase “affects function”.  Instead, the ACMG recommends the use of the term “pathogenic” 

because clinical interpretations are “typically directly evaluating pathogenicity”.  The ACMG 

classifications are as follows: Pathogenic, Likely Pathogenic, Uncertain Significance, Likely 

Benign, and Benign (Richards et al., 2015).  There is no quantitative significance in the word 

“likely” amongst these classifications, though the ACMG panel suggests that a “likely” 

classification may be used when the certainty of that classification is greater than 90% (Richards 

et al., 2015).  These classifications can be assigned when other data about a variant has been 

reviewed. 

 A variant classification and description are only as good as the research put into that 

classification.  ACMG guidelines recommend searching for databases that host quality material 

(Richards et al., 2015).  This means that the data should be well-sampled, or be a known 

sampling, and that diseased individuals are marked or noted as part of sampling.  Additionally, 

data must be quality enough to trust that the variants in the database have been sampled and 

classified correctly.  Those classifications should also relate to the HGVS nomenclature and use 

a current genome build as the reference genome (Richards et al., 2015).  Data validation for 

analytical accuracy makes a database more reliable too.  Databases offer contextual and varied 

data that can supplement and improve decisions in classification of variants. 

 Databases and contextual data are necessary to improve classification prediction.  

Contextual data can include previous research, several databases, gene information, and more.  

Computational (in silico) predictive programs are not recommended to be the only indicator of 

pathogenicity and should not be the sole way to make a clinical assertion (Richards et al., 2015).  

Using additional information to support the prediction from an in silico method more deeply 

informs a clinician as they use the standards for variant classification set by ACMG.  The 

ACMG classification standards are stringent so that there are fewer variants reported as 

pathogenic without sufficient supporting evidence (Richards et al., 2015).  There is no universal 

threshold suggested for use in using in silico predictive programs to classify a variant because 

each method produces a unique score.  Pathogenic variant classification can imply that the 

variant is “actionable” for clinicians, so the accuracy with which this classification is used should 

be high to avoid medical complications (Richards et al., 2015).  Additionally, if all in silico 

predictions agree on a classification, then the predictions should be used as evidence in support 

of that classification (Richards et al., 2015).  Otherwise, if the in silico predictions classify a 

variant differently, then these predictions should be disregarded and none should be used as 

supporting evidence in the final variant classification (Richards et al., 2015).  A thorough 

approach that reviews quality databases, academic articles, and in silico prediction methods to 

determine a variant classification achieves the best result.  
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3 Methodology 
The goal of this project is to provide clinicians and clinical researchers with a 

recommendation for an ensemble algorithm that is accurate in its predictions for pathogenicity 

and clinical relevancy, satisfies clinical standards, and is compatible with realistic data.  This 

goal is achieved completing the following objectives: 

1. Define the scope of the project and outline the history of genomic sequencing, variant 

calling, annotation, and prioritization. 

2. Define which ensemble methods are suitable for a case study for clinical prioritization 

which involves performing a comparative analysis of a variety of available ensemble 

methods. 

3. Find data suitable for testing and benchmarking the methods. 

4. Prepare the data for the methods. 

a. Annotate the data if necessary. 

b. Reformat the data if necessary. 

5. Test the methods with the case study data and assess the results with the standards for 

prioritization. 

This project begins by selecting pathogenicity algorithms for comparison and comparing the 

models, the data used, and the result of the algorithm.  Then, each suitable algorithm will be 

implemented to predict pathogenicity with a set of case study data.  A comparison of each 

prediction on a standardized scale against the same data set will be performed.  This will enable 

the final recommendation to be formulated.  Each part of this project will work towards 

satisfying the project goal and are detailed in the following section. 

 

3.1 Defining the Project Scope 
 The goal of this project is to find a pathogenicity algorithm for genetic variants that can 

be used in a clinical setting.  This means that the algorithm should be reliable, have a high 

accuracy, and should be suitable for clinician use.  There exist many variant annotations that can 

be used to calculate pathogenicity or infer pathogenicity, but the focus of this paper is 

pathogenicity algorithms that predict the likelihood and output a numeric result that can be 

classified according to ACMG standards later.  Additionally, the focus will be on recent 

algorithms, since these have access to more data, new techniques, and more features than their 

older counterparts. 

Prediction algorithms like SIFT, PolyPhen-2, MutationAssessor, and FATHMM predict 

pathogenicity from features directly relating to variant information.  SIFT, created in 2009, is an 

algorithm that predicts whether an amino acid substitution due to a nsSNV affects the protein’s 

overall function (Kumar, P., Henikoff, S., & Ng, PC., 2009).  PolyPhen-2 is a probabilistic 

classifier that assesses nsSNVs to determine the functional significance of allele replacement 

based on sequence-based and structure-based features (Adzhubei, I. et al., 2010).  

MutationAssessor also analyzes functional significance and creates a functional impact score 

calculated from evolutionary information and is recommended for use with cancer research 

(Reva, B. et al., 2011).  Like SIFT, PolyPhen-2, and MutationAssessor, the algorithm FATHMM 

uses Markov models to predict the functional effects of nsSNVs (Shihab, H.A. et al., 2013).  

These algorithms assess functional impact of an nsSNV on protein function, which can imply 

deleteriousness.  However, this paper will not focus on these algorithms and will instead use 
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them for primarily benchmarking purposes and for understanding how the ensemble algorithms 

create predictions. 

This paper will instead investigate pathogenicity ensemble algorithms that often include 

SIFT, PolyPhen-2, MutationAssessor, FATHMM, and other algorithm predictions as features to 

create a new prediction that directly represents the likelihood of pathogenicity.  These types of 

pathogenicity algorithms will be detailed and chosen for benchmarking and comparison in 

Section 3.2 of this paper. 

 

3.2 Choosing Pathogenicity Algorithms for Comparison 
 Before comparing pathogenicity scores, the scoring methods must be compared overall to 

see if their goals and results are similar enough to be compared on a standardized scale.  In Table 

1, several pathogenicity ensemble algorithms are compared.  Six characteristics are compared for 

each algorithm to later select which algorithms are suitable for a comparative study.  These 

characteristics are the underlying statistical or mathematical model, the features this model trains 

on, the data that this model was originally trained and tested on, the model output, the reported 

accuracy of the model in its respective published paper, and the availability of the algorithm.   

 The availability of the algorithm indicates if the algorithm can be studied in this project.  

To be able to use it in this comparative analysis, the algorithm tool or scores must be free or 

open-source and available for download online.  All of the algorithms researched in Table 1 

either had open-source code or availability of pathogenicity prediction scores for free for non-

commercial use. 

 The next important step in determining if the algorithm would be suitable for this study 

was the method in which it applied the pathogenicity scores to a given dataset.  CADD, DANN,  

MetaLR, MetaSVM and Eigen made their precomputed pathogenicity scores available through 

ANNOVAR, a tool which annotates VCFs.  Additionally, feature algorithms like SIFT, 

PolyPhen-2, MutationTaster, and FATHMM are available through ANNOVAR.  Since five 

ensemble algorithms and four feature algorithms researched in this paper are available through 

ANNOVAR, this tool was implemented first to compare most pathogenicity algorithms detailed. 

Not all the ensemble algorithms detailed in Table 1 are available through ANNOVAR.  

REVEL and Condel make their precomputed pathogenicity scores available through a file 

download of a tab-separated file.  Since these two ensemble algorithms are not available through 

ANNOVAR, their scores were not benchmarked in this study.  TAPES was also not chosen to be 

benchmarked because, as described in Section 3.3, its benchmarking and validation data was 

chosen to benchmark the other ensemble and feature algorithms.  Therefore, the TAPES 

algorithm did not need to be benchmarked again and was not compared to the other algorithms 

because that would have resulted in a biased score for the TAPES algorithm. 

 

3.3 Choosing Benchmarking Data 
 Knowing that five pathogenicity ensemble algorithms were available through 

ANNOVAR, the next goal was to find data suitable for a case study and compatible with 

ANNOVAR.  Specifically, the goal was to find a VCF file that included panel decisions from 

clinicians or genetic experts that adhered to ACMG criteria.  The datasets that TAPES 

benchmarked and validated their algorithm with satisfy these specifications.  TAPES used two 

datasets that are publicly available through their paper, one for benchmarking purposes and the 

other for validation purposes (Xavier et al., 2019).  The benchmarking dataset contains about 880 

variants that are labeled according to ACMG standards based on an expert panel and will be 
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referred to as the “benchmark dataset” for the remainder of this paper (Zhang et al., 2015).  

These variants are sampled from patients younger than 20 and annotated with information from 

cancer-specific and locus-specific genetic databases in order to identify germline mutations 

(Zhang et al., 2015).  These panel decisions were based on annotations, medical literature, and 

additional contextual information to form a final panel decision (Zhang et al., 2015).  Due to the 

dedicated reviews and careful labelling of each variant, the TAPES benchmarking dataset has 

been selected for benchmarking the pathogenicity algorithms in this project despite it having a 

highly specialized sample demographic. 

 TAPES used a second dataset, now referred to as the “validation dataset” in this paper, to 

validate their algorithm’s accuracy and performance.  The validation dataset contains panel 

decisions from the ClinGen repository (Xavier et al., 2019).  ClinGen is a public database where 

researchers, clinical laboratories, expert groups, clinicians, and even patients can submit variants 

along with supporting evidence of an ACMG classification to be stored in the ClinGen database 

(Rehm et al., 2015).  The TAPES validation dataset contains 530 variants from ClinGen that 

include various types of genetic diseases (Xavier et al., 2019; Rehm et al., 2015).  The validation 

dataset will be treated differently than the benchmark dataset because the ClinGen data may not 

have undergone as rigorous of a review that the benchmark dataset received by the Zhang et al. 

panel and the data was not manually reviewed and curated by this study before use in 

benchmarking the algorithms. 

 In addition to the panel decisions in the benchmark dataset and the validation dataset, 

there are related synthetic VCFs which TAPES used to annotate the variants as they relate to the 

panel decisions from Zhang et al and to the ClinGen panel decisions.  The reference genome for 

the benchmark synthetic and the validation synthetic VCF was GrCh37, which is a build 

compatible with all pathogenicity algorithms chosen that are available in ANNOVAR.  The 

synthetic VCFs were able to be annotated with ANNOVAR to get additional pathogenicity 

prediction scores to compare against the panel decisions provided by the TAPES datasets.  The 

annotated pathogenicity scores were able to be compared to the panel decisions, which are 

labeled following ACMG standards as the following: 

i. P = Pathogenic 

ii. PP = Probably/Likely Pathogenic 

iii. U = VUS = Variant of Unknown/Uncertain Significance 

iv. PB = Probably/Likely Benign 

v. B = Benign 

The TAPES datasets followed the standards and guidelines set forth by the ACMG, making 

this dataset with panel decisions and synthetic VCFs suitable for a comparative analysis of the 

chosen pathogenicity algorithms.  Of all 883 entries in the benchmark dataset, 103 variants were 

classified as P, 24 variants were classified as PP, 440 variants were classified as U, 274 variants 

were classified as PB, and 42 variants were classified as B. These classifications were assigned 

by the Zhang et al. panel (Zhang et al., 2015).  Despite most variants being classified as 

uncertain significance, the benchmark dataset has an ample number of variants classified as 

Pathogenic or Probably Pathogenic to be used as a dataset to calculate accuracy scores.  The 

validation dataset has 530 variants, where 165 variants were classified as P, 104 variants were 

classified as PP, 109 variants were classified as U, 94 variants were classified as PB, and 58 

variants were classified as B.  The benchmarking dataset also has an ample number of variants 

classified as Pathogenic or Likely Pathogenic to be analyzed further. 
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3.4 Annotating and Preparing the Data 
The TAPES synthetic VCF relating to the benchmark dataset was annotated with 

ANNOVAR.  To do this, ANNOVAR was downloaded and installed.  Since ANNOVAR is 

Linux compatible, a virtual machine was used to host this software and all necessary data.  Later, 

files were transferred remotely from the virtual machine to the local machine for benchmarking 

purposes.  Once ANNOVAR was installed, their example scripts were run to ensure that the 

software had been installed properly.  With a validated installation, the database “dbnsfp33a” 

was downloaded from ANNOVAR for hg19.  The hg19 build is the equivalent of GrCh37, which 

is what the benchmark and validation synthetic VCFs use as a reference genome.  This database 

was selected for download because it included multiple pathogenicity prediction scores, 

including CADD, DANN, Eigen, SIFT, PolyPhen-2, MutationAssessor, and FATHMM (Wang, 

K., 2019).  In addition to offering this database, ANNOVAR was chosen as the software for 

annotating the synthetic VCF because it is a free software for non-commercial use, which 

includes this project. 

 The benchmark dataset’s corresponding synthetic VCF and the validation dataset’s 

corresponding synthetic VCF were annotated with the dbnsfp33a database using ANNOVAR.  

The resulting file was a tab-separated value file (.tsv) which was downloaded into a local 

computer from the virtual machine.  Since the ANNOVAR results file was a .tsv file and the 

panel decisions were in a .tsv file, Python was used to analyze the data because the Pandas 

library allows for quick data manipulation (McKinney, W., 2010).  The ANNOVAR file and the 

file containing panel decisions were merged to create a final file.  The final file was a .tsv file 

that contained information from the panel decisions file and all the information from the 

ANNOVAR pipeline. 

 

3.5 Benchmarking the Pathogenicity Scores 
 The pathogenicity algorithms were benchmarked on the dataset against the panel 

decisions which were treated as a ground truth for classification.  To begin, box plots were 

created to illustrate the distribution of pathogenicity algorithm predictions for each classification 

of variant pathogenicity.  With knowledge of the ranges for outputs by each pathogenicity 

algorithm, the graphs were able to be analyzed to deem if the algorithm was scores that imply 

pathogenicity to variants with a ground truth of Pathogenic or Likely Pathogenic and scores that 

imply benignity to variants with a ground truth of Benign or Likely Benign.  Additionally, 

descriptive statistics were retrieved for relevant columns.  The mean, mode, max, and min were 

obtained and compared against the box plots to ensure the graphs were created correctly.  These 

descriptive statistics also validated whether the algorithms were functioning properly. 

The primary method used to benchmark the pathogenicity algorithms’ accuracy was 

Receiver Operating Characteristic (ROC) curves.  ROC curves plot true positive rates on the y 

axis and false positive rates on the x axis by testing different thresholds for the model outputs.  In 

this manner, it illustrates the tradeoff between sensitivity and specificity.  The ideal ROC curve 

is steep and follows the top left-hand border, meaning there is a great deal of accuracy in both 

specificity and sensitivity in the test.  For this project, ROC curves were calculated by using the 

panel decisions as the ground truth.  Panel decisions are the closest to a ground truth because 

they have been heavily reviewed by multiple experts in a thorough process that involves 

reviewing databases, academic papers, and other supporting evidence to reach the conclusion and 

classification.  The panel decisions were transformed from ACMG classifications to a binary 
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classification, with a positive label being the ACMG class of Pathogenic and Likely Pathogenic 

and the negative label being the ACMG classes of Uncertain Significance, Likely Benign, and 

Benign.  Then, using the transformed binary classifications as ground truth for classification, the 

true positive rate, false positive rate, and thresholds were calculated for each pathogenicity 

algorithm using the scikit-learn library (Scikit-learn: Machine Learning in Python).  

Additionally, the area under the curve (AUC) was calculated for each pathogenicity algorithm as 

a measurement of overall accuracy.  The ROC curves and AUC were compared between 

algorithms that produce similar outputs.  Therefore, the algorithms that produce rank scores were 

compared to one another, the algorithms that produce overall scores were compared to one 

another, the two Eigen scores were compared to one another because they produce results 

different from any other algorithm, and the algorithms that are not ensemble learners were 

compared to one another.  Through these comparisons, conclusions about accuracy in the 

benchmarking dataset were able to be formed. 

 

3.6 Forming a Recommendation 
 To form a recommendation, all previous data gathered in this comparative analysis was 

considered.  This included how the algorithm was trained, what the algorithm specifically 

predicts, and how the algorithm performed on the benchmarking dataset.  The performance 

comparison was completed by comparing graphs and AUC metrics between similar algorithms.  

It was important to include an analysis of each algorithm’s characteristics, such as what type of 

model it uses, the training data developers used, the features developers chose, the availability of 

the algorithm.  This analysis helped to balance any influence from the accuracy and performance 

of the algorithm in the benchmarking set, since the benchmark dataset itself was biased towards 

cancer patients and the applicability of these algorithms claim to go beyond cancer research.  The 

final recommendation of this paper was written with clinicians and clinical researchers in mind 

who may be interested in applications of in silico prediction methods for pathogenicity and 

deleteriousness. 
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4 Results and Analysis 
 The following results include an analysis of the data sets, an overview of the algorithms 

predictions once they were applied to each dataset, and the accuracies of each algorithm as it 

pertains to each dataset.  It was found that the validation dataset was insufficient for 

benchmarking capabilities in the scope of this study, so only the benchmark dataset was used to 

form the final conclusion. 

 

4.1 Qualitative Assessment of Pathogenicity Algorithms 
The pathogenicity algorithms detailed in Table 1 all produce a resulting rank score or raw 

score that corresponds to a prediction of pathogenicity or deleteriousness.  Eigen is the only 

unsupervised method in this set of algorithms, meaning it was not trained with a labeled dataset.  

The other algorithms, including CADD, DANN, REVEL, Condel, Eigen, MetaLR, and 

MetaSVM are trained on dataset(s) labeled with ground truths.  This means that the data these 

algorithms, or even algorithms like SIFT, Poly-Phen2, Mutation Taster, and FATHMM could be 

trained on mislabeled data if the datasets were pulled from an unreliable database or source.  

Additionally, labeled training data could bias algorithms towards specific dataset characteristics, 

especially if all the variants are associated with cancer or occur in a specific region of the 

genome.   

Algorithms that rely on primarily other algorithms can result in potential bias too.  If an 

algorithm only relies on other algorithms, it will be biased towards what data those feature 

algorithms trained on, what their tuned features are, and the validity of their outputs.  The 

algorithm that behave as features in ensemble algorithms need to be accurate, otherwise the 

overall ensemble algorithm score can be affected, especially depending on how much weight is 

assigned to each of the feature algorithms. 

CADD, DANN, MetaLR, and MetaSVM provide both at least a raw score and a rank 

score.  Both scores are useful to consider because they imply different things while still both 

predicting pathogenicity.  For each algorithm that produces a rank score, the higher the value, the 

more likely that variant is to be pathogenic or deleterious versus any other variant in that sample 

(Rentzsch, P. et al., 2019; Quang, D. et al., 2015; Dong et al., 2015).  For each algorithm that 

produces a score, the higher the value, the more likely that variant is to be pathogenic or 

deleterious (Rentzsch, P. et al., 2019; Quang, D. et al., 2015; Dong et al., 2015).  The threshold 

at which a score classifies a variant as Pathogenic or Benign is different for each algorithm.  

Eigen calculates two scores, an Eigen-PC score and an Eigen raw score.  The Eigen raw score is 

calculated as a weighted linear combination of annotations and the Eigen-PC score is an Eigen 

decomposition of the annotation covariance matrix.  Both Eigen-PC and raw Eigen scores will be 

higher (greater than 0, closer to 1, if not greater than 1) if the variant is pathogenic (Mccallum, 

K. et al., 2016).  The rank scores or raw scores of other algorithms may be easier to interpret than 

the Eigen algorithm’s results. 

 

4.2 Algorithm Score Distributions 
The scores from each pathogenicity algorithm were used to create a box plot to visualize 

the spread of the data.  In these plots the y-axis is the algorithm result value, and the x-axis is the 

variant classification according to the panel decision.  P is Pathogenic, PP is Likely/Probably 

Pathogenic, U is Uncertain Significance, PB is Likely/Probably Benign, and B is Benign.  These 

categories are according to ACMG standards.  Figures 1 through 16 depict the distribution of raw 

scores and rank scores for CADD, DANN, MetaLR, and MetaSVM. 
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Figure 1: Distribution of CADD raw scores per 

classification in the benchmark dataset. 

Figure 2: Distribution of CADD raw scores per 

classification in the validation dataset. 

  
Figure 3: Distribution of CADD raw rank scores per 

classification in the benchmark dataset. 

Figure 4: Distribution of CADD raw rank scores per 

classification in the validation dataset. 

  
Figure 5: Distribution of DANN raw scores per 

classification in the benchmark dataset. 

Figure 6: Distribution of DANN raw scores per 

classification in the validation dataset. 
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Figure 7: Distribution of DANN rank scores per 

classification in the benchmark dataset. 

Figure 8: Distribution of DANN rank scores per 

classification in the validation dataset. 

  
Figure 9: Distribution of MetaLR scores per 

classification in the benchmark dataset. 

Figure 10: Distribution of MetaLR scores per 

classification in the validation dataset. 

  
Figure 11: Distribution of MetaLR rank scores per 

classification in the benchmark dataset. 

Figure 12: Distribution of MetaLR rank scores per 

classification in the validation dataset. 
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Figure 13: Distribution of MetaSVM scores per 

classification in the benchmark dataset. 

Figure 14: Distribution of MetaSVM scores per 

classification in the validation dataset. 

  
Figure 15: Distribution of MetaSVM rank scores per 

classification in the benchmark dataset. 

Figure 16: Distribution of MetaSVM rank scores per 

classification in the validation dataset. 

 

Shown in Figures 1 and 2, the distribution of CADD predicted raw scores differs between 

the benchmark dataset and the validation dataset.  In Figure 1, the predicted values in the 

Pathogenic and Likely Pathogenic categories have higher means than the predicted values in the 

Unknown, Likely Benign, and Benign categories.  This implies that at a basic level, CADD is 

producing greater value predictions for variants that have a ground truth of Pathogenic or Likely 

Pathogenic, which is how the algorithm should behave.  However, in Figure 2, the mean 

predicted score is approximately the same between all categories.  This suggests that the CADD 

algorithm had more difficulty discriminating between benign and pathogenic variants in the 

validation dataset.  Looking at the boxplots of the other scores produced by DANN, MetaLR, 

MetaSVM, it is evident that this trend is present for each algorithm.  DANN raw scores are the 

only raw score algorithm product that has a similar box plot between the benchmark dataset and 

the validation dataset.  This suggests that DANN discriminated poorly between the categories 

when the algorithm produced a raw score value, shown in Figures 5 and 6, regardless of the 

dataset.  The DANN algorithm did not experience this same difficulty when asked to produce 

rank scores for the variants of the benchmark dataset, show in Figure 7. 
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The Eigen algorithm produces results different than a rank score or a raw score produced 

by one of the algorithms shown in Figures 1 through 16.  Therefore, Eigen results for the 

benchmark dataset and the validation dataset were plotted and analyzed separately than the rank 

score and raw score data.  Figures 17 through 20 show the distribution of raw Eigen scores and 

raw Eigen-PC scores for both the benchmark and the validation datasets. 

  
Figure 17: Distribution of Eigen raw scores in the 

benchmark dataset. 

Figure 18: Distribution of Eigen raw scores in the 

validation dataset. 

 

  
Figure 19: Distribution of Eigen-PC scores in the 

benchmark dataset. 

Figure 20: Distribution of Eigen-PC scores in the 

validation dataset. 

 

 Eigen raw scores and Eigen-PC raw scores both discriminated well between pathogenic 

and non-pathogenic variants in the benchmark dataset.  In the benchmark dataset, the Pathogenic 

category has a lower mean than the Likely Pathogenic category, but both are above a score of 0 

for most variants in those categories.  The variants of uncertain significance have a relatively 

neutral mean score of 0.5 with a lot of denoted outliers below the lower quartile.  The Likely 

Benign and Benign categories see scores that are well below 0, signifying more of the 

annotations the Eigen algorithm considered were negatively scoring the pathogenicity of those 

variants.  Looking at the validation dataset, there is less of a difference in the means between the 

different categories.  Also, the lower quartiles do not predict as low for Benign and Likely 
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Benign categories.  Instead, there are outliers of lower scores in the Benign and Likely Benign 

categories.  This suggests that the discrimination between pathogenicity classes was better in the 

benchmarking dataset than in the validation dataset. 

The distributions of some algorithms that the ensemble algorithms use as features were 

also plotted.  Figures 21 through 28 show the distribution of scores produced by MutationTaster, 

PolyPhen-2, SIFT, and FATHMM in both the benchmark dataset and the validation dataset. 
 

  
Figure 21: Distribution of MutationTaster converted 

rank scores in the benchmark dataset. 

Figure 22: Distribution of MutationTaster converted 

rank scores in the validation dataset. 

  
Figure 23: Distribution of PolyPhen-2 HDIV scores in 

the benchmark dataset. 

Figure 24: Distribution of PolyPhen-2 HDIV scores in 

the validation dataset. 
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Figure 25: Distribution of SIFT converted rank scores 

in the benchmark dataset. 

Figure 26: Distribution of SIFT converted rank scores 

in the validation dataset. 

  
Figure 27: Distribution of FATHMM converted rank 

scores and in the benchmark dataset. 

Figure 28: Distribution of FATHMM converted rank 

scores and in the validation dataset. 

 

MutationTaster, PolyPhen-2, SIFT, and FATHMM all performed poorly on the validation 

dataset.  The highest score in the Pathogenic category and the Benign category were 

approximately the same compared within each algorithm’s predictions for the validation dataset.  

This suggests very little discrimination between Pathogenic and Benign categories when the 

distributions that are all high or widespread across the possible scores are also considered.  

MutationTaster did not show better discrimination between Pathogenic and Benign categories in 

the benchmarking dataset.  On the contrary, PolyPhen-2, SIFT, and FATHMM were able to 

discriminate variants better in the benchmarking dataset than in the validation dataset. 

None of the algorithms, whether they be an ensemble algorithm or a feature algorithm, 

performed better at discriminating pathogenicity classifications in the validation dataset than in 

the benchmark dataset.  Using the box plots to see how the algorithms scored variants per 

classification later informed why the corresponding ROC curve and AUC measurement was poor 

or positive.   
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4.3 Benchmarking 
ROC curves were plotted for each pathogenicity algorithm and the corresponding AUC 

was calculated.  ROC curves were also plotted for each feature algorithm.  These ROC curves 

and corresponding AUC measurement were compared to each other within groups.  The 

algorithms were separated into a group of raw scores, a group of rank scores, a group of Eigen 

algorithm scores, a group of pathogenicity predictors that were used as features in the other 

ensemble algorithms.  This was done so that each algorithm being compared was producing a 

similar output so that their accuracies were measuring the same goal.  Then, each of these 

groups’ ROC curves and AUC measurements were compared to one another on two plots.  The 

ROC curves corresponding to the benchmark dataset were plotted on one graph and the ROC 

curves corresponding to the validation dataset were plotted on a second graph.  Figures 29 and 

30 show the ROC curves for CADD, DANN, MetaLR, and MetaSVM raw scores for the 

benchmark dataset and the validation dataset, respectively.  Figures 31 and 32 show the ROC 

curves for CADD, DANN, MetaLR, and MetaSVM rank scores for the benchmark dataset and 

the validation dataset, respectively.  Figures 33 and 34 are the Eigen group of algorithms, so the 

Eigen-PC raw scores and the Eigen raw scores, corresponding ROC curves for the benchmark 

dataset and the validation dataset, respectively.  Finally, Figures 35 and 36 depict the ROC 

curves for the feature algorithms, including SIFT, PolyPhen-2, MutationTaster, and FATHMM, 

for the benchmark dataset and the validation dataset, respectively.  The red dashed line in 

Figures 29 through 36 represent what a random classification would look like as a ROC curve. 

 

  
Figure 29: ROC curves for CADD, DANN, MetaLR, 

and MetaSVM raw scores with benchmark dataset, 

with corresponding AUC measurements of greater than 

0.720. 

Figure 30: ROC curves for CADD, DANN, MetaLR, 

and MetaSVM raw scores with validation dataset. 
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Figure 31: ROC curve for CADD, DANN, MetaLR, and 

MetaSVM rank scores with benchmark dataset, , with 

corresponding AUC measurements of greater than 

0.720. 

Figure 32: ROC curve for CADD, DANN, MetaLR, and 

MetaSVM rank scores with validation dataset 

 

  
Figure 33: ROC curves for Eigen-raw and Eigen-PC-

raw scores with benchmark dataset. 

Figure 34: ROC curves for Eigen-raw and Eigen-PC-

raw scores with validation dataset 
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Figure 35: ROC curves for SIFT, PolyPhen-2, 

MutationTaster, and FATHMM scores with benchmark 

dataset. 

Figure 36: ROC curves for SIFT, PolyPhen-2, 

MutationTaster, and FATHMM scores with validation 

dataset. 

 

 Like how the box plots behaved, the ROC curves and AUC measurements were better for 

the benchmark dataset than for the validation dataset.  The ROC curves for each of the 

algorithms corresponding to the validation had a range of accuracy from 0.434 to 0.517.  This is 

poor accuracy and suggests that the algorithms are approximately as good as a random guess for 

classification.  The ROC curves for each algorithm is extremely close to the red dashed line that 

symbolizes a random guess and sometimes the ROC curves dip below the random guess line.  

This can be seen in Figure 36, where the feature algorithms all had an AUC measurement below 

0.500, meaning these algorithms performed worse than a random guess. 

 Each algorithm performed better on the benchmark dataset than on the validation dataset.  

In Figure 29, MetaLR and MetaSVM performed the best at classifying variants as Pathogenic 

and non-Pathogenic, with AUC measurements of 0.880 and 0.874, respectively.  CADD and 

DANN also performed well, scoring AUC measurements of 0.759 and 0.728, respectively.  

These AUC scores are approximately the same as how these algorithms have performed on 

datasets other than their own training and testing datasets.  Similarly, in Figure 31, the MetaLR 

and MetaSVM rank scores score the exact same AUC measurement, 0.880 and 0.874, 

respectively again.  Similarly, CADD and DANN produce AUC measurements of 0.759 and 

0.725 respectively using rank scores as classifiers.  For all four of these algorithms, the AUC 

score between the raw score that the algorithm produces and the rank score that the algorithm 

produces was nearly identical or differed by 0.003.  For this dataset, the discrimination between 

Pathogenic variants and non-Pathogenic variants did not improve when considering rank score 

versus raw score. 

 In Figure 33, the Eigen raw score and the Eigen-PC raw score produce AUC 

measurements of only 0.637 and 0.580 respectively when classifying variants in the benchmark 

dataset.  Despite Eigen being an unsupervised algorithm, it did not perform better than MetaLR, 

MetaSVM, CADD, or DANN rank scores or raw scores at discriminating between Pathogenic 

and non-Pathogenic variants. 

 In Figure 35, the feature algorithms SIFT, PolyPhen-2, MutationTaster, and FATHMM 

all perform well at classifying Pathogenic and non-Pathogenic variants.  The converted rank 

score produced by FATHMM performed the best at discriminating between Pathogenic and non-

Pathogenic variants, with an AUC measurement of 0.844.  The converted rank score produced by 
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the SIFT algorithm, the HDIV score produced by PolyPhen2, and the converted rank score 

produced by MutationTaster scored similar AUCs at 0.681, 0.701, and 0.687, respectively.  

MetaLR and MetaSVM use FATHMM scores as a feature in their ensemble algorithm, which 

may imply that MetaLR and MetaSVM produced the best AUC measurements out of all the 

ensemble algorithms because FATHMM produced the best AUC measurements out of all the 

feature algorithms on this specific dataset.  On a similar note, since all the feature algorithms 

performed poorly at classifying variants in the validation dataset, this could contribute to why the 

ensemble algorithms also had difficulty and poor scores classifying the variants in the validation 

dataset.  Overall, the ROC curves and AUC measurements from testing the algorithms with the 

benchmark dataset were better than the ROC curves and AUC measurements from testing the 

algorithms with the validation dataset. 
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5 Conclusion and Recommendation 
 In silico methods, or prediction algorithms, are a useful tool in reviewing a variant’s 

pathogenicity classification.  In this study, ensemble pathogenicity prediction algorithms classify 

pathogenic variants more accurately than algorithms that do not utilize other existing 

pathogenicity prediction algorithms as features.  However, using other algorithms as features 

creates a cascading effect of dependencies on training data, features used, and tuned parameters 

for the ensemble algorithms.  Ultimately, as with any machine learning problem, the original 

training and testing dataset can cause overfitting and bias in a model, leading to poor accuracy 

when used to test more diverse datasets. 

 Based on how the ensemble algorithms performed on the benchmark dataset compared to 

the validation dataset, there are two things that could have occurred in this study.  First, the 

validation dataset may be incorrectly labeled for some variants or have missing information that 

could not be annotated based on the original given information.  This means that the validation 

dataset chosen to benchmark these algorithms was the cause of the poor accuracy, not the 

algorithms themselves.  Despite ClinGen data being reviewed before acceptance into the public 

database, it is nonetheless a public resource, and by not manually curating a dataset from their 

repository like this study failed to do, error could be introduced.  Code was reviewed to ensure 

that the annotation pipeline and graph creation was not the cause for poor ROC curves with 

regard to the validation dataset.  Should this study be repeated in testing the ClinGen data, 

variants should be curated from the ClinGen database that have ample amounts of evidence to 

inform each assertion.  This was not performed in the current methodology explained in this 

paper. 

 The other reason for poor performance on the validation dataset could be that the 

algorithms performed poorly due to the underlying algorithms used as features (i.e., SIFT, 

PolyPhen-2, etc.) performing poorly first.  This poor performance in the feature algorithms could 

be due to their original training datasets having been mislabeled, though this is unlikely due to no 

news of this occurring.  It is more likely the training data was carefully curated, and the 

validation dataset was different characteristically.  This would suggest a possible overfitting of 

the original model.  Additionally, with some of these algorithms nearly twenty years old now, it 

could be that the data they trained on would be classified differently now should it be under 

review again.  This methodology did not delve deeply into the algorithms’ original training 

datasets to examine how closely those variants compared to the benchmark dataset variants and 

the validation dataset variants used in this study.  Should this study be repeated, more time 

should be spent on manually curating datasets for benchmarking purposes and taking careful 

note of how the dataset is similar to or different than each algorithm’s original training and 

testing datasets.  

 Pathogenicity algorithms are only a piece of the puzzle.  They are a useful tool and with 

the help of a pipeline that quickly annotates data with multiple algorithms, multiple 

pathogenicity algorithms can be used to inform a final pathogenicity classification for variants.  

According to ACMG standards, pathogenicity algorithms should not be the sole influencer of a 

classification but should guide clinicians and researchers towards a possible classification that 

can further be supported by academic literature, expert opinion, and database information.  This 

is especially important if the pathogenicity algorithm was not trained on data specific to the 

dataset that a clinician or clinical researcher is dealing with.  Poor performance of an algorithm, 

such as the performance of all algorithms in this study on the validation dataset, could influence 
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a classification to be incorrect if the person reviewing the classification does not check other 

outside sources. 

 From this comparative analysis, MetaLR and MetaSVM perform the best.  They both 

also produce a rank score and a raw score for a variants’ pathogenicity, meaning either could be 

used to inform a formal classification.  CADD and DANN performed similarly, and both also 

produce a rank score and a raw score.  It is recommended that CADD, DANN, MetaLR, and 

MetaSVM be considered when investigating variant pathogenicity.  Eigen did not perform as 

well as CADD, DANN, MetaLR, or MetaSVM, but did not perform poorly enough to be 

completely discounted.  Instead, it is recommended that Eigen be used to validate other 

algorithm predictions, or to be used on diverse datasets, since it is an unsupervised algorithm.  

Additionally, if the algorithms used as features in CADD, DANN, MetaLR, MetaSVM, or other 

algorithms are available to be annotated, it is recommended that they are.  As it was seen in the 

Results section of this paper, knowing what the underlying algorithm scores are for a variant can 

support and suggest why an ensemble algorithm is behaving a certain way.  Using a diverse set 

of algorithmic predictions to inform a pathogenicity classification alongside academic literature, 

quality databases, and expert opinion will lead to the most accurate classification possible 

according to ACMG standards.  



32 

Bibliography 
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, 

A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense 

mutations. Nature methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248 

Dhamija, S., & Menon, M.  B.  (2018).  Non-coding transcript variants of protein-coding genes–what 

are they good for? In RNA Biology (Vol.  15, Issue 8, pp.  1025–1031).  Taylor and Francis Inc.  

https://doi.org/10.1080/15476286.2018.1511675 

DNA Sequencing Costs: Data.  (n.d.).  Retrieved September 1, 2020, from 

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data 

DNA Sequencing Fact Sheet.  (n.d.).  Retrieved September 1, 2020, from 

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Fact-Sheet 

Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., & Liu, X. (2015). Comparison and 

integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome 

sequencing studies. Human Molecular Genetics, 24(8), 2125–2137. 

https://doi.org/10.1093/hmg/ddu733  

Ebiki, M., Okazaki, T., Kai, M., Adachi, K., & Nanba, E.  (2019).  Comparison of Causative Variant 

Prioritization Tools Using Next-generation Sequencing Data in Japanese Patients with 

Mendelian Disorders.  https://doi.org/10.33160/yam.2019.09.001 

Eilbeck, K., Quinlan, A., & Yandell, M.  (2017).  Settling the score: Variant prioritization and 

Mendelian disease.  In Nature Reviews Genetics (Vol.  18, Issue 10, pp.  599–612).  Nature 

Publishing Group.  https://doi.org/10.1038/nrg.2017.52 

G.  C.  C.  L.  Cardenas, R., D.  Linhares, N., L.  Ferreira, R., & Pena, S.  D.  J.  (2017).  Mendel,MD: 

A user-friendly open-source web tool for analyzing WES and WGS in the diagnosis of patients 

with Mendelian disorders.  PLOS Computational Biology, 13(6), e1005520.  

https://doi.org/10.1371/journal.pcbi.1005520 

González-Pérez, A., & López-Bigas, N.  (2011).  Improving the assessment of the outcome of 

nonsynonymous SNVs with a consensus deleteriousness score, Condel.  American Journal of 

Human Genetics, 88(4), 440–449.  https://doi.org/10.1016/j.ajhg.2011.03.004 

Holt, J.  M., Wilk, B., Birch, C.  L., Brown, D.  M., Gajapathy, M., Moss, A.  C., Sosonkina, N., Wilk, 

M.  A., Anderson, J.  A., Harris, J.  M., Kelly, J.  M., Shaterferdosian, F., Uno-Antonison, A.  E., 

Weborg, A., Acosta, M.  T., Adam, M., Adams, D.  R., Agrawal, P.  B., Alejandro, M.  E., … 

Worthey, E.  A.  (2019).  VarSight: Prioritizing clinically reported variants with binary 

classification algorithms.  BMC Bioinformatics, 20(1).  https://doi.org/10.1186/s12859-019-

3026-8 

Ioannidis, N.  M., Rothstein, J.  H., Pejaver, V., Middha, S., McDonnell, S.  K., Baheti, S., Musolf, 

A., Li, Q., Holzinger, E., Karyadi, D., Cannon-Albright, L.  A., Teerlink, C.  C., Stanford, J.  L., 

Isaacs, W.  B., Xu, J., Cooney, K.  A., Lange, E.  M., Schleutker, J., Carpten, J.  D., … Sieh, W.  

(2016).  REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense 

Variants.  American Journal of Human Genetics, 99(4), 877–885.  

https://doi.org/10.1016/j.ajhg.2016.08.016 

Kim, S., Jhong, J.-H., Lee, J., & Koo, J.-Y.  (2017).  Meta-analytic support vector machine for 

integrating multiple omics data.  BioData Mining, 10(2).  https://doi.org/10.1186/s13040-017-

0126-8 

Krier, J.  B., Kalia, S.  S., & Green, R.  C.  (2016).  Genomic sequencing in clinical practice: 

Applications, challenges, and opportunities.  Dialogues in Clinical Neuroscience, 18(3), 299–

312.  www.dialogues-cns.org 



33 

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein 

function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-81. doi: 10.1038/nprot.2009.86. 

Epub 2009 Jun 25. PMID: 19561590. 

Landrum, M. J., Chitipiralla, S., Brown, G. R., Chen, C., Gu, B., Hart, J., Hoffman, D., Jang, W., 

Kaur, K., Liu, C., Lyoshin, V., Maddipatla, Z., Maiti, R., Mitchell, J., O'Leary, N., Riley, G. R., 

Shi, W., Zhou, G., Schneider, V., Maglott, D., Holmes, J.B., Kattman, B. L. ClinVar: 

improvements to accessing data. Nucleic Acids Res. 2020;48(D1):D835-D844. doi: 

10.1093/nar/gkz972. 

Li, M.  X., Gui, H.  S., Kwan, J.  S.  H., Bao, S.  Y., & Sham, P.  C.  (2012).  A comprehensive 

framework for prioritizing variants in exome sequencing studies of Mendelian diseases.  Nucleic 

Acids Research, 40(7), e53–e53.  https://doi.org/10.1093/nar/gkr1257 

Mccallum, K., Buxbaum, J., & Genet Author manuscript, N.  (2016).  A SPECTRAL APPROACH 

INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS FOR CODING AND 

NONCODING VARIANTS IULIANA IONITA-LAZA HHS Public Access Author manuscript.  

Nat Genet, 48(2), 214–220.  https://doi.org/10.1038/ng.3477 

McKinney, Wes. (2010) Data Structures for Statistical Computing in Python. Proceedings of the 9th 

Python in Science Conference, 51-56. 

Ng, P. C., & Henikoff, S. (2001). Predicting deleterious amino acid substitutions. Genome Research, 

11(5), 863–874. https://doi.org/10 

Quang, D., Chen, Y., & Xie, X.  (2015).  DANN: A deep learning approach for annotating the 

pathogenicity of genetic variants.  Bioinformatics, 31(5), 761–763.  

https://doi.org/10.1093/bioinformatics/btu703 

Rehm, H. L., Berg, J. S., Brooks, L. D., Bustamante, C. D., Evans, J. P., Landrum, M. J., Ledbetter, 

D. H., Maglott, D. R., Martin, C. L., Nussbaum, R. L., Plon, S. E., Ramos, E. M., Sherry, S. T., 

& Watson, M. S. (2015). ClinGen - The clinical genome resource. New England Journal of 

Medicine, 372(23), 2235–2242. https://doi.org/10.1056/NEJMsr1406261  

Rentzsch, P., Witten, D., Cooper, G.  M., Shendure, J., & Kircher, M.  (2019).  CADD: Predicting the 

deleteriousness of variants throughout the human genome.  Nucleic Acids Research, 47(D1), 

D886–D894.  https://doi.org/10.1093/nar/gky1016 

Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: 

application to cancer genomics. Nucleic acids research, 39(17), e118. 

https://doi.org/10.1093/nar/gkr407 

Richards, S., Aziz, N., Bale, S.  et al.  (2015).  Standards and guidelines for the interpretation of 

sequence variants: a joint consensus recommendation of the American College of Medical 

Genetics and Genomics and the Association for Molecular Pathology.  Genet Med 17, 405–423.  

https://doi.org/10.1038/gim.2015.30 

Schwarz, J. M., Rödelsperger, C., Schuelke, M., & Seelow, D. (2010). MutationTaster evaluates 

disease-causing potential of sequence alterations. In Nature Methods (Vol. 7, Issue 8, pp. 575–

576). Nature Publishing Group. https://doi.org/10.1038/nmeth0810-575 

Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp.  2825-2830, 2011. 

Sequence Variant Nomenclature.  (2020, May 1).  Retrieved October 02, 2020, from 

http://varnomen.hgvs.org/ 

Shihab, H. A., Gough, J., Cooper, D. N., Stenson, P. D., Barker, G. L., Edwards, K. J., Day, I. N., & 

Gaunt, T. R. (2013). Predicting the functional, molecular, and phenotypic consequences of amino 

acid substitutions using hidden Markov models. Human mutation, 34(1), 57–65. 

https://doi.org/10.1002/humu.22225 



34 

Wang, K. (2019). ANNOVAR Main Package. Retrieved October 13, 2020, from 

http://annovar.openbioinformatics.org/en/latest/user-guide/download/ 

Wang, K., Li, M., & Hakonarson, H.  (2010).  ANNOVAR: Functional annotation of genetic variants 

from high-throughput sequencing data.  Nucleic Acids Research, 38(16), e164.  

https://doi.org/10.1093/nar/gkq603 

Xavier, A., Scott, R.  J., & Talseth-Palmer, B.  A.  (2019).  TAPES: A tool for assessment and 

prioritisation in exome studies.  PLOS Computational Biology, 15(10), e1007453.  

https://doi.org/10.1371/journal.pcbi.1007453 

Yandell, M., & Ence, D.  (2012).  A beginner’s guide to eukaryotic genome annotation.  In Nature 

Reviews Genetics (Vol.  13, Issue 5, pp.  329–342).  Nature Publishing Group.  

https://doi.org/10.1038/nrg3174 

Zeng, Z., & Bromberg, Y.  (2019).  Predicting Functional Effects of Synonymous Variants: A 

Systematic Review and Perspectives.  In Frontiers in Genetics (Vol.  10, p.  914).  Frontiers 

Media S.A.  https://doi.org/10.3389/fgene.2019.00914 

Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al.  Germline Mutations in 

Predisposition Genes in Pediatric Cancer.  N Engl J Med.  2015;373(24):2336–46.  Epub 

2015/11/19.  pmid:26580448  



 

Appendix A – Online Sources for Ensemble Learners 
METHOD SOFTWARE LINK CITATION FOR RELATED PAPER 

CADD https://cadd.gs.washington.edu/download Rentzsch, P., Witten, D., Cooper, G.  M., Shendure, J., & Kircher, M.  (2019).  

CADD: Predicting the deleteriousness of variants throughout the human 

genome.  Nucleic Acids Research, 47(D1), D886–D894.  
https://doi.org/10.1093/nar/gky1016 

DANN https://cbcl.ics.uci.edu/public_data/DANN/ Quang, D., Chen, Y., & Xie, X.  (2015).  DANN: A deep learning approach for 

annotating the pathogenicity of genetic variants.  Bioinformatics, 31(5), 761–

763.  https://doi.org/10.1093/bioinformatics/btu703  

REVEL https://sites.google.com/site/revelgenomics/downloads Ioannidis, N.  M., Rothstein, J.  H., Pejaver, V., Middha, S., McDonnell, S.  K., 

Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., Cannon-Albright, L.  

A., Teerlink, C.  C., Stanford, J.  L., Isaacs, W.  B., Xu, J., Cooney, K.  A., 
Lange, E.  M., Schleutker, J., Carpten, J.  D., … Sieh, W.  (2016).  REVEL: An 

Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants.  

American Journal of Human Genetics, 99(4), 877–885.  

https://doi.org/10.1016/j.ajhg.2016.08.016  

Condel http://bbglab.irbbarcelona.org/fannsdb/home González-Pérez, A., & López-Bigas, N.  (2011).  Improving the assessment of the 

outcome of nonsynonymous SNVs with a consensus deleteriousness score, 

Condel.  American Journal of Human Genetics, 88(4), 440–449.  
https://doi.org/10.1016/j.ajhg.2011.03.004  

Eigen http://www.columbia.edu/~ii2135/information_eigen.html  Mccallum, K., Buxbaum, J., & Genet Author manuscript, N.  (2016).  A SPECTRAL 

APPROACH INTEGRATING FUNCTIONAL GENOMIC ANNOTATIONS 

FOR CODING AND NONCODING VARIANTS IULIANA IONITA-LAZA 
HHS Public Access Author manuscript.  Nat Genet, 48(2), 214–220.  

https://doi.org/10.1038/ng.3477 

MetaLR  

& 
MetaSVM 

http://annovar.openbioinformatics.org/en/latest/user-
guide/filter/#-metalr-annotation  
http://annovar.openbioinformatics.org/en/latest/user-
guide/filter/#-metasvm-annotation  

 Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., & Liu, 

X. (2015). Comparison and integration of deleteriousness prediction 

methods for nonsynonymous SNVs in whole exome sequencing studies. 

Human Molecular Genetics, 24(8), 2125–2137. 

https://doi.org/10.1093/hmg/ddu733  
TAPES https://github.com/a-xavier/tapes Xavier, A., Scott, R.  J., & Talseth-Palmer, B.  A.  (2019).  TAPES: A tool for 

assessment and prioritisation in exome studies.  PLOS Computational Biology, 

15(10), e1007453.  https://doi.org/10.1371/journal.pcbi.1007453  

 

https://cadd.gs.washington.edu/download
https://doi.org/10.1093/nar/gky1016
https://cbcl.ics.uci.edu/public_data/DANN/
https://doi.org/10.1093/bioinformatics/btu703
https://sites.google.com/site/revelgenomics/downloads
https://doi.org/10.1016/j.ajhg.2016.08.016
http://bbglab.irbbarcelona.org/fannsdb/home
https://doi.org/10.1016/j.ajhg.2011.03.004
http://www.columbia.edu/~ii2135/information_eigen.html
https://doi.org/10.1038/ng.3477
http://annovar.openbioinformatics.org/en/latest/user-guide/filter/#-metalr-annotation
http://annovar.openbioinformatics.org/en/latest/user-guide/filter/#-metalr-annotation
http://annovar.openbioinformatics.org/en/latest/user-guide/filter/#-metasvm-annotation
http://annovar.openbioinformatics.org/en/latest/user-guide/filter/#-metasvm-annotation
https://doi.org/10.1093/hmg/ddu733
https://github.com/a-xavier/tapes
https://doi.org/10.1371/journal.pcbi.1007453

