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Abstract 

The field of educational and research robotics is alight with development platforms that 

fall short of being interesting and novel. Our goal was to create a quadruped for use as 

an entry level research project for students and educators. Reducing cost through the 

use of commercially available parts combined with rapid-prototyping, we built a platform 

that can be used to teach and learn legged locomotion for less than $600 (half the price 

of a Turtlebot 2 from OSRF). Our robot was able to walk in basic form using limited 

actuation; this was limited by the components we chose - specifically the motor 

controllers for part of the actuation. We expect that using components better suited to 

the task could accomplish what we set out to achieve.   
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Executive Summary 

Introduction 

The field of educational robotics both in higher education and personal research 

focuses heavily on the following two areas: wheeled, holonomic robots and multi-DOF 

(Degree of Freedom) serial manipulators. Experimentation in fields outside of these 

areas requires a significant investment of experience and resources. By decreasing the 

required investment, we reduce the cost of entry to legged robotics. Combining low cost 

components with a modular design, we designed a quadruped whose primary purpose 

is to be an advanced research tool.  

Novelty 

The current domain of research robotics for undergraduate students is dominated by 

two types of robots: hardware produced for commercial sale, and low quality handmade 

hardware. Legged robots haven’t yet found their way into undergraduate labs. The 

absence of these robots is a key tell on the progress of coursework in the area. For two 

reasons, legged robots have been unavailable in the undergraduate domain, the lack of 

good hardware, and the challenge required to program such devices.  

 

In developing a low-cost hardware solution, we hoped to solve both of these issues at 

the same time. By integrating commercial off the shelf parts and an easy to produce 

rapid prototyping components, our robot is able to be made and modified by anyone 

with 3D printing experience. Furthermore, using controls systems that require entry level 

skills makes programming the robot accessible to a large audience. Producing the 

device with components familiar to anyone with basic experience was key to making it 

approachable.  

Design 

The hardware design is focused around building a device that is inexpensive to produce 

and maintain, and powerful enough that it has room to grow. By prioritizing parts that 

can be manufactured with rapid-prototyping machines and commercial off the shelf 

components, we proposed a system that could be built and programmed by anyone with 

minimal application-specific knowledge. 
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We began our design work with an initial Solidworks model and evaluated its feasibility 

using kinematic and dynamic analyses. These analyses allowed us to predict the motion 

of the robot's legs and the resultant torque the actuators must overcome. Once our 

design was verified, we began manufacturing components. By obtaining commercial off-

the-shelf parts for fastening, mounting, control, and computation, we were able to 

increase production rates at minimal cost. 

 

Integrating “Sense, Think, Act” into our robot is a key goal to making a device useful to 

robotics research. Developing hardware capable of joining the three, and a software 

suite to demonstrate is the basis of the design. 

Results 

Although initial testing with using Pololu motor controllers showed that they would be 

sufficient, they ultimately entered failure state due to overcurrent and were inadequate 

to drive the VEX 393 motors. As a replacement, Vex 29 motor controllers were chosen 

for their availability and after passing initial tests for current handling. In practice, 

however, the Vex 29s did not stand up to the demands of the Mutt robot. In the end, the 

upper limbs became inactive to focus on the rest of the system.  

 

The lower joint of each limb was actuated by a series elastic tendon controlled by a 

high-torque servo motor mounted on top of the robot. Upon initial testing, the servos 

reached their maximum torque while driving the lower limb. Increasing the force on the 

tendon by reducing the radius of the cams resolved this issue.  

 

Although the project initially planned on using an Arduino Due, limited ability for I2C 

communications with daisy-chained encoders caused us to use an Arduino Mega. This 

issue could have been caused by many reasons, but we believe that the Arduino Due 

was unable to provide the necessary voltage and current to communicate with four 

encoders. Overall, the performance of the Arduino Mega was suitable for the robot’s 

needs. The team was surprised and impressed with the performance of the Arduino 

Mega. Operating with a 10ms interrupt rate, the device was more than capable of 

handling the tasks required for smooth operation of the robot.  

 

The circuits designed and built functioned as expected, after a short debugging period. 

The hardware emphasized modular design and minimized the number of connection 

points; this made the device easy to maintenance and robust during testing. Another 
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important feature of the circuitry was protection installed on the power bus. The primary 

purpose of this was to protect the logic circuitry from the electrical noise generated by 

the motors and servos. After adding the capacitance and changing control boards to a 

more robust Arduino Mega 2560 zero components were damaged or destroyed.  

 

The gaits we produced to demonstrate the ability of the robot were limited by the quality 

of the components we chose for our actuators. The robot was still able to demonstrate 

its potential with partial functionality operational. Demonstrating the ability of the robot to 

move with only partial actuation proves that the system has the potential to operate at 

full capacity with moderate changes to the system.  

 

In order to demonstrate the functionality of the robot, we created an Android app to 

communicate between an Android phone and the robot. The app had a series of buttons 

that, when pressed, transmitted a Bluetooth message to the onboard Raspberry Pi. The 

Raspberry Pi then transmitted the message to the Arduino through serial 

communications. This process did not have a noticeable amount of delay in transmitting 

messages and was simple and effective for showing off the robot’s functionality. 

Future Work 

Future work on this project should revolve around replacing the motor controllers and 

motors. As previously stated, the robot was incapable of moving the upper limbs. We 

hypothesize that the root cause is a combination of factors causing the motors to be 

unable to produce the force required. The motors chosen were specified to produce 

what was thought to be enough force to actuate the robot, in reality, those forces were 

likely much higher than expected. In order to cut costs, the motor controllers that were 

used were cheap and were being run at voltages higher than they were rated. Because 

of this, the controllers often entered failure modes unable to drive the motors. Replacing 

the actuators and drivers on the upper limb is key to making the robot fully functional. 

 

Furthermore, additional work can be done on the Matlab scripts that generate the 

trajectories. Although the scripts were useful in visualizing the trajectories, joint angle 

transformations between the Matlab visualization and the robot movements was not 

entirely accurate. Refining the motion planner, developing additional planning and 

control tools, and better integrating them with the robot are important improvements to 

make the robot more effective. 
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Conclusions 

Solutions for legged robotics research fall into one of two categories: too simple to be of 

merit, or too expensive to be available to novice roboticists. Our project sought to 

eliminate both of these barriers with an inexpensive solution to legged robot research. 

We designed and constructed a robot whose programming interface is simple and 

available to all, and whose hardware was readily reconstructed from inexpensive 

components. Through this challenge, we demonstrated the effectiveness not only of 

modern low-cost computation hardware, but also the ability to develop an accessible 

solution to a problem typically reserved for well-funded research laboratories. 
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1. Introduction 

The field of educational robotics both in higher education and personal research 

focuses heavily on the following two areas: wheeled, holonomic robots and multi-DOF 

(Degree of Freedom) serial manipulators. This prominence is evidence of a scarcity of 

interesting, low cost robotic platforms. 

 

Experimentation in fields outside of these areas requires a significant investment of 

experience and resources. By decreasing the required investment, we can reduce the 

cost of entry to legged robotics. Feasibly, this could mean an acceleration of 

development by creating an environment in which working with advanced robotic 

systems requires neither a large capital investment nor an advanced degree. Frustrated 

with the current environment, we seek to address the scarcity of such a system.  

 

Indeed, current platforms for educational robotics represent a solved problem; 

holonomic drive is a well-defined study. While there are nuances in its application, 

students working with these systems find themselves regurgitating well established 

solutions. As students ourselves, we are driven to advance the field of studying robotics 

so that individuals may apply a more diverse solution set.  

 

 
Figure 1: Design Requirements 

 

Design requirements (illustrated above) for completion of this goal are as follows: 

● A legged robot 
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● Total cost below $600 

● Low barrier of entry to further development 

● Walk - The robot will be able to walk at a standard pace along flat or slightly 

inclined terrain. Uneven or heavily inclined terrain are not within the scope of this 

project. 

● Navigate - The robot will be able to perform SLAM and be able to navigate from 

one point to another based off of human input. 

● Avoid obstacles - As part of its navigation, the robot will be able to avoid 

obstacles and replan its path if needed to avoid any obtrusions. 

 

Combining low cost components with a modular design, we designed a quadruped 

whose primary purpose is to be an advanced research tool. The functionality provided 

by this platform will be a framework on which development can occur. Modularizing the 

system may make future development easier. Using commonly available components, 

our robot will be easily adopted by new users. 
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2. Background 

2.1. Why Legs? 

The current field of robotics is dominated by static, wheeled, and tracked 

platforms, in each case connecting the platform to the ground in a known association. 

This coupling lends itself to a stable platform that is simple to control and -in the case of 

wheels and treads- offers some ability to traverse terrain. The use of tracks and wheels 

also exploits the experience of decades of research into manned wheeled mobility. The 

result being a commanding presence of these mobility systems in products currently on 

the market of mobile robots, such as the Qinetiq Talon below (Castner, 2013).  

 
Figure 2: The Qinetiq Talon Robot 

 

Tracked robots such as the Talon tradeoff speed for stability and terrain handling. 

Treads give a robot the ability to traverse diverse terrain, commonly at the cost of 

speed. Using wheels, a robotic system’s speed can be improved in some cases. 

Specifically in cases with even, static terrain, wheels can increase the speed (and in 

some cases stability) of a robotic platform. Cars are a good example of this increase in 
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speed given some assumptions about the terrain; able to reach higher speed, at the 

cost of being unable to conquer more complex terrain features. 

 

 
Figure 3: A Google self-driving car goes on a test drive in California (Higgins, 2016) 

 

Where automobiles trade terrain for speed, and tracks trade speed for terrain, legs offer 

to bridge the gap, providing medium speeds across diverse to challenging terrain. 

Where wheeled and tracked vehicles maintain (for the most part) a consistent contact 

with the ground, legged systems are able to be mostly independent from the specific 

roughness of the ground (Raibert, 1986). “Aside from the sheer thrill of creating 

machines that actually run,” legs hope to provide effective, powered ground 

transportation across any terrain (Raibert, 1986). 

2.2. Current Field of Quadrupeds 

Decades of refinement and engineering have built automobiles to the popularity 

they currently hold, and to some extent, the world in which they operate has grown 

around them as much vice versa. Legged vehicles, on the other hand, are still in a 

mostly investigatory phase. With a still-developing commercial market for pedal robots 

and vehicles, applications have since tended to be focused in three markets: Research, 

Military, and Toys; each to a lessening extent. 
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Figure 4: The General Electric "Walking Truck" stood eleven feet tall (Raibert, 1986) 

 

Possibly because of the novelty of the approach, quadrupeds are most commonly found 

in research laboratories, both public and private. In the 1960’s, Ralph Mosher at 

General electric built what is known as the “Walking Truck.” The walking truck was a 

human carrying and controlled machine with impressive, but limited effectiveness. 

Honda entered in the year 2000 with its Asimo robot, a self-controlling humanoid robot. 

Early leg actuated machines such as this are known as “static crawlers,” machines 

whose forward velocity is slow enough to maintain a stable base of support on the 

ground at all times (Raibert, 1986). Static walking provided a relatively simple starting 

point to get legged platforms off the ground -- so to speak -- and further developing the 

field is even until now, done mostly in research laboratories.  

 

Research labs were the first to demonstrate that autonomous mobile platforms could 

operate using legs. The results produced in research, while effective breakthroughs in a 
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young field, lacked practical purpose. In 2005, Boston Dynamics (a research firm 

started by Marc Raibert) produced BigDog: a capable, dynamic walking platform that 

has been deployed with United States Marines (Diaz, 2014). This BigDog robot, and its 

Boston Dynamics cousins are examples of research robotics blending into potential 

military application of pedal robotics. Boston Dynamics regularly accepts funding from 

government sources such as the Defense Advanced Research Projects Administration 

(DARPA) and the United States Marine corps to develop potential military applications 

of robotics.  

 

 
Figure 5: Sony Aibo (“Aibo..,” 2016) 

 

Profitable quadrupeds are yet to find a solid foothold in the commercial market. 

Attempts at civilian market entry have been made, primarily in the toy and entertainment 

market. Sony’s AIBO pet dog was the main entrant to this field, winning multiple awards 

for its design and technical featureset. Aibo was sold as a toy, with a complex artificial 

intelligence driving its decisions and actions (“Aibo..,” 2016). Initially sold in 1999, this 

companion was a demonstration primarily in the interactions it was able to have with 

people. It demonstrated a potential market that yet remains unexploited after Sony 

stopped supporting Aibo in 2014.  

2.3. Project Novelty 

A multitude of platforms exist for relatively low-cost entry into wheeled robotics. 

However, no such standardized platform has been developed for the experimentation 

and development of legged robots. While mechanical legs and manipulators may be 
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found online, there is no standard way that a high level experimentation may be done in 

a controlled environment.  

 

By creating a modular platform that is primarily focused on 3D printed parts, this robot 

may drive the cost of experimentation down so that even hobbyist roboticists may learn 

from its design and manipulation. It will also allow for higher level control and data 

collection at a much lower cost compared to corporations which spend millions 

developing such robots.  

2.4. Current Solutions and Assumptions 

Associated with the advancement of legged robotics are new and more complex 

problems. These problems include properly modeling systems for accurate design, 

selecting functional actuators for movement, determining correct sensor packages to 

recognize the various changes in environmental elements, and creating algorithms to 

run all of these features, and more. Fortunately, there has been research in all of these 

areas that help to simplify the design and creation of legged robots. 

 

2.4.1. Mathematical Modeling 

To properly guide the development of robotic platforms, a number of 

mathematical models must be produced. These models include the kinematics, kinetics 

and dynamics involved with the manipulation of robotic elements (Murray, 1994). The 

study of kinematics includes the study of motion without regard to forces, whereas 

kinetics describes the forces acting on a system in motion (Norton, 2012, pp. 3). Both of 

these areas of study are branches of the larger study of dynamics (Hibbeler, 2016, 

pp.3). Using the equations for motion derived using these mechanical methods, it is also 

possible to determine the necessary electrical requirements to power the robotic 

system. This information can then be used for actuator selection and motion control 

(Niku, 2011, pp.175). 

 

“One principal aim of kinematics is to create the desired motions of the subject 

mechanical parts and then mathematically compute the positions, velocities, and 

accelerations that those motions will create on the parts (Norton, 2012, pp.4).” In 

robotics, this is completed using two different methods, forward and inverse kinematics. 

These two computation methods are simple inverses of each other; forward kinematics 

implements given joint angles to determine end-effector positions, while inverse 
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kinematics determines the values for the joint angles given desired end-effector position 

and orientation (Spong, 2004, pp.61). 

 

Finally, following the kinematic analysis of the system, a dynamic torque-force analysis 

is completed to determine the torques present in moving the mechanism. In this 

analysis, using given or desired masses, velocities, and accelerations, the reaction 

torque at each joint is able to be computed (Norton, 2012). 

2.4.2. Materials 

Proper material selection for the construction of a robot is a major task. A number 

of significant parameters come into play such as mechanical properties, wear, 

manufacturability, and cost (Jayakoda, 2011). Metals, plastics, and composites tend to 

be the most used materials for the structural elements of robots. Metals have very good 

mechanical properties and certain metals, such as aluminum, stand up well against 

corrosion. Plastics, while not as strong as metals, can be used very effectively for small 

robots so long as their temperature remains below roughly 100 C. Plastics are also 

much easier to machine and their cost can be dramatically less than most metals. 

Composites, while exhibiting material properties matching or exceeding those of metals, 

unfortunately are much more expensive, as they are more difficult to manufacture 

(Department of C.S.: University of Rochester, n.d.). 

2.4.3. Joint Actuation 

Joint actuation is one of the most important facets of legged robotics. Proper 

actuators must be selected based on power/mass, torque/mass, and overall efficiency 

(Hollerbach, 1992). When large robots are being designed, or when a large force output 

is required, hydraulic actuators excel. Robots like Boston Dynamics BigDog use 

hydraulics to propel itself over terrain (Boston Dynamics, 2016). 
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Figure 6: Ghost Robotics: Minitaur 

 

For smaller robots, however, electric motors can prove to be quite powerful. Such an 

example is Ghost Robotics’ Minitaur. This medium-sized robot features powerful 

outrunner motors that allows it to not only run, but jump over difficult terrain. Each leg is 

driven by two of these motors that allow it to run at speeds reaching 2.0 m/s, and jump 

to a vertical height of 0.48m (Ghost Robotics, 2016). 

 

As showcased by the previous examples, actuation is an important facet of robot 

design. With new actuators being created and tested, such as shape memory alloy, 

piezoelectric, or magnetostrictive actuators, the limits are being pushed past the 

traditional capabilities of robotic actuation (Hollerbach, 1992). 

2.4.4.  Computation  

The field of computation has taken major strides in recent years, led in part by 

the miniaturization of processors and computers for consumer mobile devices. 

Manufacturers such as Nvidia and Intel are producing devices smaller than ever before, 

with greater computational power and lower electrical consumption than previously 

available (Shaller, 1997). 

 

The Ghost Minitaur, mentioned previously, uses onboard a Raspberry Pi 3 mini-

computer (Ghost Robotics, 2016). This system-on-a-chip is a lightweight device that 

offers similar functionality to a full computer, for extremely low cost, and an equally 

small form factor. While the Raspberry Pi trades size and cost for computational power, 

more expensive (and more powerful) solutions exist to fill the market for high 

performance needs.  
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2.5. Current State of the Art 

In the years since 1969, with General Electric’s Walking Truck, technological 

advances have led to the creation of highly sophisticated and specialized robots to aid 

humans with a multitude of tasks (Raibert, 1986). Three such specialized robots include 

Boston Dynamics’ Spot, MIT’s Cheetah, and Ghost Robotics’ Minitaur. Additionally, 

legged robots provide an excellent platform for subsumption architecture developed by 

Rodney Brooks in 1967. 

 

 
Figure 7: Boston Dynamics SpotMini 

 

Boston Dynamics’ Spot was built to develop from its predecessor, LS3. Spot was built in 

a partnership between Boston Dynamics and the US Defense Advanced Research 

Projects Agency to assist the US Marine Corps with missions. Although Spot must rely 

on an operator for instruction, it was designed to navigate terrains such as hills, 

woodlands, and urban areas in order to assist Marines via scouting possibly dangerous 

areas as well as carrying small items alongside Marines. SpotMini, the most recent 

iteration of Spot, is a 55lb robot that has a 5DOF arm attached to the front of its body 

which contains a camera (Boston Dynamics, 2016). Unlike its predecessors, SpotMini 

does not include any hydraulic actuation so its movements are quieter and could 

feasibly assist US Marines in risky stealth operations (Ackerman, 2016).  
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Figure 8: MIT Cheetah 2 

 

Another such robot is the MIT Cheetah II, which was designed as a platform to study 

dynamic locomotion in quadrupedal robots while modeling a cheetah. Not only can this 

robot run at speeds of 6m/s, but it can also automatically detect and avoid objects up to 

80% of its leg length by jumping over them. (Bosworth, 2015). The object detection is 

done by a 2D distance sensor mounted at the front of the robot which determines both 

how far and how tall the closest object is. The robot then readjusts its step placement in 

order to leap over the object while not hitting it. At lower speeds, the Cheetah can 

navigate through uneven terrain.  
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Figure 9: Ghost Robotics Minitaur 

 

The Minitaur, developed at the University of Pennsylvania in collaboration with Ghost 

Robotics, is a quadruped robot with symmetrically driven 5-bar linkages used as directly 

driven legs, meaning there are no gears or other mechanisms between the legs’ drive 

motors and the legs themselves. (Kenneally, De, and Koditschek, 2016). This leads to 

an increased power efficiency as compared to motors with gears which may only have a 

maximum of 90% efficiency. This lead to the Minitaur being able to bound at a speed of 

1.5m/s and jump about 50 cm vertically. The precise nature of the Minitaur allows for 

control across a variety of terrains while also being able to make small and precise 

movements.  

 

Biomimicry is becoming more common in robotics. It’s an obvious source of insight, 

delegating design decisions to thousands of years of evolution (Haberland, 2015). It is 

worth noting, however, that while inspiration can come from nature, application specific 

decisions must still be made to optimize the solution. 
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Figure 10: An example application of subsumption architecture 

 

In 1967 Rodney Brooks developed a software architecture called subsumption which 

simplifies a system to layers of finite state machines. Depending on the state of the 

robot and its surroundings, this architecture would help choose which action is the most 

important to act upon. One application of this architecture was a robot developed by 

Brooks called Allen. The first layer of this robot was to avoid obstacles. If approached, 

the robot would move to avoid the oncoming object. Otherwise it would stay in place. 

The second layer was to have the robot wander around its surroundings and decide a 

new direction every 10 seconds. The third and final layer of this robot was to use its 

sonar sensor to detect far away objects and move towards them. Using this architecture 

allows a robot to give priority to different tasks depending on its surroundings, allowing 

an alternative application to modeling animal behaviors than traditional AI systems. 

Upon adding more layers, a system becomes more complex in its ability to react to its 

environment (Brooks, 1991). 

  



 

 

 

27 

 

3. Project Strategy -- Design Specification 

3.1. Hardware Design 

The hardware design is focused around building a device that is inexpensive to 

maintain, flexible enough that it has room to grow, and able to “Act” (actuate the system 

properly). By prioritizing parts that can be manufactured with rapid-prototyping 

machines and commercial off the shelf components for computation and control, we 

proposed a system that could be built and programmed by anyone with minimal 

application-specific knowledge. 

3.1.1. Material 

The robot's design with regards to material selection can be divided into three 

component classifications: moving components, ‘stationary’ components, and 

springs/dampers. Each classification has different requirements for general material 

properties, structural properties, and mechanical properties. These requirements are 

defined as follows: 

 

1. General Material Properties: The material must be cost effective against its 

structural and mechanical properties as well as against its own properties. (e.g. 

Material Cost vs. Density, Material Cost vs. Max Stress, Material Cost vs. 

Manufacturing Cost) 

2. Structural Properties: These are properties that define the design of the 

structure. (e.g. for 3D printed parts structure geometry and fill percentage 

dramatically affect the strength of the part.) 

3. Mechanical Properties: These properties define the material itself. (e.g. 

Young’s Modulus, Shear Strength, Density, Thermal Expansion, Melting Point) 

 

One goal for this project was to make our robot cost effective, using low-cost, yet high 

quality, materials to achieve high-performance motion. To achieve this, our design must 

have a relatively low weight, yet have the strength to withstand forces exerted during 

motion. We found the most reasonable materials to be 3D printed PLA and aluminum. 

These materials have comparable densities and strengths, depending on the in-fill of 
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the 3D printed part. Their material costs were also relatively low, and they were easy to 

manufacture. Our selection for materials based on the component classifications can be 

found below. 

1. Moving components: These components include the legs and gearing. The legs 

were made almost solely out of PLA with a mid-to-high range in-fill density and a 

honeycomb structure. The gearing system was tested with plastic VEX gears. 

2. Stationary Components: These components comprise the body of the robot. This 

includes the actuator nacelles, electrical component housings, and the main 

torso. These parts were 3D printed to keep the system lightweight and because 

there are no extreme forces acting on the body. It also decreased manufacturing 

costs. 

3. Springs/dampers: The springs added to the design were used for retracting the 

leg to its initial position. Damping was done by adding ‘soles’ to the bottom of the 

feet. This helped reduce the forces on the PLA and reduced the chance of 

material failure. These ‘soles’ were rubber no-slip shoe pads. 

 

Along with these three subsets of components were miscellaneous fasteners. These 

were mostly common stainless steel fasteners either from typical VEX hardware kits or 

from a hardware store. 

3.1.2. Actuation 

Actuation of the legs occurs at two locations, as shown in Figure 9: at the 

shoulder joint and just below the elbow joint. Actuation at the shoulder was the result of 

a simple electric DC motor. Our torque analysis in Section 3.3.2 indicated that a VEX 

393 motor has the capability to actuate the lower leg, and further tests conducted 

verified this claim. The secondary actuator is a servo mounted on the body and 

connected to the lower leg via cable system. As the position of the servo is changed, it 

turns a cam affixed to the output shaft, putting tension on the tendon cable. The tendon 

is part of a series elastic system, with a tensioning elastic tendon providing force 

opposite the servo. 
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Figure 11: Leg Actuator Locations 

 High torque servos for hobbyist use exist that can provide the necessary torque, 

as determined using our dynamic equations, to actuate such a tendon system. One 

such type designed for use in sailboats is known as an RC Winch. Able to provide up to 

1.7N/m of torque and 180 degrees of rotation, significant redesign here can be a failsafe 

for the lower limb control. 

3.1.3. Electrical Design 

 Another part of the “Act” division of the system, the electrical design distributes 

power to the different sections of the robot. Included in the electrical design is a 

metaphorical bridge between the “Think” and the “Act” in the embedded controller that 

communicates with the onboard computer. The electrical system is the connection 

between the controls system and the actuation of the robot. 

Power Distribution 

The electrical subsystem is comprised of separate parts: Actuator power, Controller 

power, and Battery. While a single battery system will provide power for the entire 

system, it is possible that the control systems will require a different provided voltage 

than the driver circuits of the motors. Accommodating supply voltages for each 

component in the system is important to maintain proper operation of each device; but 

can be done independently of any battery. 
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Figure 12: Electrical Diagram showing Actuator Power (Black), Controller Power (Red), and Signal (Green) 

 

The battery has five important attributes on which it should be selected: Operating 

Voltage, Energy capacity, discharge rate, weight, and price. The weight of these factors 

varies, and each has its own importance. Most important across all of them, however, is 

availability; the battery must be available both in availability to ship, and price to 

purchase. In preliminary research, available batteries typically had the following 

characteristics: 

 

● Voltage:  7.4V->11.1V 

● Capacity:  4Ah->7Ah 

● Discharge: 10c->90c 

● Weight: 350g 

● Price:  $25->$65 

 

Lithium Polymer batteries are a well-established technology with a strong backing of 

investment and use in the hobbyist market. Better performing than NimH cells, and 

weighing less, these cells will work well for our application. Calculating the discharge 

rating we require from the battery pack is approximated easily with the current draw of 

our system. Approximating maximum current draw from our system: 

 

Σ(power) = Σpower(motors) + Σpower(servos) + Σpower(computation) 

 

Power draw for computation is expected to remain below 15W, the main draw on the 
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battery will come from the servos and the motors. Peak power rating for the motors is 

listed as 3 Amps at 7.2V, or 21.6W per motor, peak rating for the servos is 10W. 

Assuming full peak power consumption, then, the following can be said: 

 

Σpower(servos) = 40W 

Σpower(motors) = 86.4W 

Σpower(computation) <= 15W 

Σ(power) = 141.4W 

 

Rated discharge capacity is the maximum current draw allowable from the battery, as a 

factor of its ‘c-rate’ discharge capacity. For instance, for a battery rated at 5.2Ah and 

10c, the maximum current discharge is 52 Amps. From the above calculation of 

theoretical peak power draw from the platform we can calculate the maximum 

operational current draw from an 11.1V battery would be approximately: 

 

Σ(power) / Voltage =141.4W / 11.1V = 12.1A 

 

This indicates that a 10c battery is within the minimum requirements for the current 

specified actuation, and leaves headroom for further modifications to the specification.  

Circuit Design 

Other important considerations that are left to the specifics of the design, are that 

the layout of the electrical system should emphasize cleanliness of cable routing, and 

modularity of the segments of the robot. Disassembling and reassembling the robot will 

be a common action, and coupling between layers should be low. 

The low voltage power distribution will be managed primarily by the circuitry of the 

robot. Using a DC-DC converter to step down the voltage from the 11v of the battery 

and then distributing the low-voltage. The current on this bus will be limited to primarily 

logic-level distribution, so the primary concern will be to design for modularity. 

Sensor Package 

In order to make the robot both modular in design and flexible in application, 

many different sensors were considered. These sensors were broken up into two 

categories; sensors required for basic motion and sensors required for more advanced 

functionality. The sensors available for each category are as follows: 

● Movement  

○ Encoders - Encoders need to be attached to the motors in order to 
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determine the angle of the motor. Knowing the angle that the motor is 

currently at allows the software to know the position of the robot and all of 

its limbs. From this, it can plan its next step and execute its movements 

properly and accurately. 

○ Inertial Measurement Unit (IMU) - An IMU can be used onboard the robot 

to determine the rotation of the robot. From the IMU, the tilt of the robot 

can be determined, and can enact any movements needed to prevent the 

robot from tipping over. In addition, the IMU can provide useful information 

regarding velocity that can be used when different gaits need to be 

executed. 

● Advanced Functionality 

○ Camera - In order to run SLAM, a camera capable of producing 3D data is 

needed. While there are many options when it comes to camera, for the 

purpose of this project, an RGB camera is recommended due to their low 

cost vs. overall performance. 

■ By having an RGB camera, it opens up other possible avenues of 

Human-Robot Interaction to explore with this platform, such as face 

detection and object recognition. 

○ Motion Sensors - While an RGB camera such as the Kinect or Xtion Pro 

provide infrared information, it may also be beneficial to have additional 

infrared motion sensors on other parts of the platform to enable more 

functionality such as further object detection and security features. 

○ Audio Inputs - By having audio inputs, the robot can be programmed to 

respond to various voice commands that can enhance the interaction 

between the user and the robot. 

○ Bump/Touch Sensors - Bump/Touch sensors can also be integrated to 

further engage the end user into interacting with the robot. Bump sensors 

on the body or the head can be used to represent a form of “petting”. 

○ LCD/LED display - While not technically a sensor, an LCD/LED display 

can be added to the robot in order to relay information about the current 

state of the robot. This information can pertain to the robot’s functionality, 

or can be used to depict the robot’s level of interaction with the user and 

portray moods, much like the Sony AIBO. 
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3.2. Control System Design 

Our specification calls for a divided control system, separating higher level 

command into an onboard computer and with motion and hardware control relegated to 

a coprocessor board and interface. This design distributes the required computation, 

preventing any single processor from being overtaxed. Each system performs the tasks 

that it is suited for and relays information to the other systems when done. The higher 

level system performs the “Think” aspect of robotics, deciding how the robot should act 

based on its exteroceptive sensors (the vision system and human interface). The lower 

level embedded system then bridges the “Think” and the “Act,” issuing electrical 

instructions to the actuators. 

 

 
Figure 13: Control System Architecture 

Embedded Controls System 

Robotic systems require a motion controller to interface higher level systems with 

the real world. This controller has to maintain real-time processing during motion 

execution in order to ensure smooth operation of the robot. Real-time processing in this 

case is defined as the microcontroller completing all previous calculations before the 

next interrupt or time slice (sample time) occurs.  

 

To achieve this, two limitations are defined: 

1. The number of instructions to be executed must be small. 

2. The clock rate must be fast enough to accommodate the instructions that 

must be executed. 
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Another consideration in choosing a microcontroller is the ease of integration to the 
system. System modularity can be improved by using commercially available controller 
boards. 

Input and Behavior Controls System 

Controlling the onboard camera, and processing its input is computationally 

expensive. Typically, higher level computation, such as computer vision and SLAM 

algorithms require significant computing resources to operate at the rate required for 

robot operation.  

 

In order to implement the desired behaviors, the robot itself will operate the low cost but 

still reasonably powerful Raspberry Pi 3 to manage exteroception (the vision system 

and user input). The Raspberry Pi will process the relevant data and perform the 

necessary computation and then communicate with the embedded controller to perform 

actions with the robot. By separating the computation and adding a low cost computer, 

the robot is not limited by its hardware, thus allowing for a greater range of applications 

to be developed. 

3.3. System Analysis  

 To ensure that the system operates correctly, analyses were completed to 

evaluate various parameters involved with movement, namely: kinematics and kinetics 

analyses. These analyses provided the information necessary to determine the 

positions, velocities, and forces for the robotic limbs. These computations were 

completed with a focus on the legs, using the shoulder joint as a ground link (Figure 13). 

Using this assumption, the legs could undergo the calculations for a modified 2-DOF 

planar arm manipulator. Any values mentioned in this section are estimated and the 

results are representative of the system at a static state. 
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Figure 14: Working Model for Robotic Leg Kinematics 

3.3.1. Kinematics 

 To describe the positions of our robot’s leg links, forward kinematics were used. 

Because our leg design is not that of a simple 2 DOF planar mechanism, custom 

equations needed to be developed. These equations were focused on determining the 

position of the lower leg utilizing the rotation of the upper limb and the servo’s rotation 

as inputs. The process for determining these positions included, first, creating the 

variable model for evaluation shown in Figure 13. Next, equations of planar motion were 

applied for the given variables.  

 

Then, the equations were developed to include the change 𝜃2 as the servo was rotated. 

This involved determining the length of the tendon cable and relating its change in 

length to a change in angle at the knee joint. The cable length was found using the 

following equations. 
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The change in cable length was then changed into a change in angle around the knee 

which, in turn, specifies a change in angle of the lower leg. This was included in the 

kinematic equations and resulted in the following final equations. 

 

These equations were verified to be accurate to within 0.125 in. These equations allow 

for various angles to be tested to determine end-effector positions. For example, using 

𝜃1=3.50 in, 𝜃2=4.6352 in, 𝜃1=195 deg, φ=15 deg results in an end-effector position of 

(x, y)=(-2.89 in,-5.515 in). 

 

3.3.2. Dynamics 

 The dynamic analysis involved applying the equations for a simple two degree-

of-freedom robotic arm using Lagrangian mechanics. This evaluation was necessary to 

ensure that the actuators will have enough torque to move the limb, and also so we can 

ensure that the joints do not tear themselves apart. The system was modeled as shown 

in Figure 13. The assumptions were made that the two links have distributed masses 

and the center of mass of each link is at the exact center of each link. Furthermore, the 

links were modeled as a link rotating about a fixed axis and a link rotating about a 

moving axis. 

 

After solving the kinematic end effector positions, equations for torque in the two limbs 

were obtained by applying the kinematic equations to the Lagrangian energy equation. 
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The derivatives of the Lagrangian were taken and resulted in the following torque 

equations. 

 

 
 

 where 

 

 

and 

. 

 

From these equations, we determined the torques necessary to actuate the limbs, and 

identified and applied servos and motors which met these torque specifications. 
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4. Specific Application Parameters 

4.1. Controls Processing 

 Managing the motion controls of the robot will require an embedded processor 

able to maintain real-time computation under our required load that is also able to 

analog and digital I/O. For our purposes, an Arduino Mega will provide sufficient 

capacity in both regards.  

 

This Arduino device has onboard 54 Digital I/O pins, 12 Analog inputs, 2 Analog 

outputs, and an operating voltage of 7-12v. Current designs for the platform include 

minimum requirements for 10 digital inputs, 8 digital outputs, two analog inputs, and 1 

analog output (speaker). Using the Arduino Mega leaves plenty of General Purpose I/O 

(GPIO) pins for expansion of sensors and controls.  

 
Figure 15: Electrical Subsystem layout 

 

Discussion has been raised about the fact that the Arduino operating system is not a 

“hard real-time” system. This brings concerns of the ability of the device to process all of 

the required calculations and handle all interrupts inside of a given time division. In 

theory, the time required for a processor to execute a computation can be calculated 

from the number of instructions required for a given architecture to complete it and the 
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rate at which those instructions are handled. In practice, it is much simpler to time the 

execution of a given set of computations. Using the GPIO to indicate the start and end 

of computation, it was found that the Arduino Mega is capable of handling the required 

calculations in real-time. 

4.2. Electrical Subsystem Design 

As our main energy source, we will look to the hobbyist market for an 

inexpensive battery. Our team debated between the factors discussed in 3.1.2 and 

selected a Lithium Polymer battery pack rated for 5.2Ah at 11.1V. The specific battery is 

not the highest rated of those from our initial assessment, but was selected instead for 

its lower price and standard form factor. For instance its energy storage of 5.2Ah and 

discharge rate of 10C is outpaced by similar mass battery packs of 7.5Ah and 90C; our 

purposes won’t require 90C of discharge, however, and at less than half the price, we 

can purchase multiple to obtain the same run time. Choosing a mid-grade battery will 

afford us the performance we need at a price we can manage. 

 

Providing the required operating voltage for all of the components on the platform is 

dependent on the voltage of the battery selected. The most pressing constraint being 

the operating voltage of the Raspberry Pi onboard the robot. The Raspberry Pi has an 

operating input voltage of 5v. Voltages outside this range would have to be converted to 

suit. Given the battery specified above, a DC-DC converter is required to provide the 

computer with the correct voltage.  

 

The motors we’ve specified, the Vex 393, have a rated operating voltage of 7.2V. In our 

experimentation, they were found to be resilient to an input voltage of 11.1V.  
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Figure 16: Robot Subsystems 

The robot subsystems are divided among the top, inside, and bottom of the torso as 

shown in Figure 15. The battery is located beneath the device, motors, motor 

controllers, and the Arduino are located inside, and RaspberryPi and camera are on the 

top layer. Wiring onboard the device will be divided appropriately from the inner level to 

the outside to maintain a direct and clean distribution. Connectors between levels is 

important, to aid in the modularity of the system during maintenance, disconnecting all 

of the connections at the same time is an important feature. Furthermore, heat 

dissipation in the components will have to be monitored to ensure that overheating does 

not occur, especially in a heat-intolerant structure (ABS/PLA plastic). Our goal will be to 

make the sections as decoupled as possible, making maintenance easier and a better 

device. 

 

4.3. Hardware Architecture Design 

In order to decrease computational load and increase the modularity of the robot, 

the system hardware will comprise of 3 different controllers. Due to price constraints, it 

was decided that the system will be comprised of a RaspberryPi 3 as the main 

computer controlling the robot, its sensors, and its high level functionality, an Arduino 

Mega to control the motion of the robot, and a base station that will compute the more 

computationally intensive aspects of the robot. Each controller and the sensors they 

manage is described herein. 
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4.3.1. RaspberryPi 3 

The Raspberry Pi 3 will act as the main computer for the robot. Between the 

Arduino and the Pi, it has the better processor, clocks at a faster speed, and supports a 

series of peripherals and libraries that will be needed, thus making it the better choice. 

The main sensor that the Raspberry Pi will manage is the camera. Since we will 

process SLAM onboard the robot, the robot will have perform the SLAM algorithm and 

any other high level planning on the Raspberry Pi.  

4.3.2. Arduino Mega 

 The Arduino Mega will manage all sensors and hardware associated with motion. 

The Mega will manage the following items: 

● Potentiometers 

● VEX Encoders 

● VEX Motors 

● Servos 

 

One complication we foresee is complexity in the application of the Vex Encoder 

Modules. Open source libraries for communication with these encoders are available, 

and will make their integration easy to do. As stated before, the Arduino Mega has 

enough computational power to process the sensors and controllers that it will manage.  

4.3.3. Base Station 

 One possibility would be to operate a base station to manage the most 

computationally expensive programs. This would reduce the burden of the onboard 

computer, and increase the total availability of computational power.  

 

The main functionality of the base station would be to run SLAM and any interfaces that 

will be needed to test and run the robot. During operation, the robot will transmit all of its 

camera information to the base station. The base station will then run SLAM and any 

other algorithms needed, and then transmit this information back to the robot. 

 

Although SLAM algorithms do differ in execution requirements, the base station requires 

at least 4GB of RAM, a modern processor and be running a version of Linux compatible 

with ROS. It also requires wireless capability to communicate over Wi-Fi or Bluetooth to 

the robot’s main computer. Many mid to high-range laptops will satisfy this need, and 

most desktop PC’s that can be found at WPI are also able to fulfill the hardware 
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requirements. 

 

Our application, however, will operate without a base station due to cost restraints and 

the ability of the Raspberry Pi to handle the processing we require. 

4.4. Software Architecture Design 

4.4.1. Software Flow 

In Section 4.3, we discussed the various hardware systems that the robot will 

include. Each system will run its own software and execute its tasks based off of shared 

information. The intended software flow is as follows. The robot will be turned on, and 

will begin to take in data from its camera sensor.  

 
Figure 17: Robot State Diagram 

 

The Pi will then process this information and transmit distances, orientations, headings, 

etc. to the Arduino Mega. Since the Mega’s software will control all of the various 

motors and encoders, it will then actuate the robot accordingly. The Raspberry Pi will 

actively process input, so if an obstacle approaches or there is some disturbance, the 

robot will be able to replan and react immediately. 
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4.4.2. Operating System 

To make the robot modular, flexible, and accessible, it was decided that we 

would use ROS as the primary operating system. Utilizing ROS creates a familiar 

environment for software development for future work on the system. It also makes it 

easy to integrate software written by other software developers, including 

implementations of SLAM and user interface. ROS also trivializes communication 

between different platforms on the system, abstracting network communication. Using 

ROS also opens the system to future integrations of offboard computation and hardware 

modification. 

 

4.4.3. SLAM 

 One of the desired application goals for the robot is the ability for it to avoid 

obstacles and navigate around its environment. In order to do this, the robot must run a 

computer vision system and an algorithm that allows the robot to localize itself in its 

environment. In order to do this, we plan on using the SLAM algorithm. There are 

various considerations that need to be reviewed when selecting a SLAM algorithm to 

use. While many are the same, some differ in overall performance. Specifically, some 

SLAM algorithms work better than others when there are height or rotation variances 

between frames. Some algorithms such as RGBSLAM are able to continue operating 

correctly despite these variances, while other SLAM implementations yield highly 

inaccurate results. Various SLAM algorithms will be implemented and tested in order to 

fully understand the mapping capabilities of the robot. 

 

4.4.4. Image Correction 

Due to the movement of the robot, and how it may be angled to one side or the 

other depending on the number of points of contact, the images obtained from the 

camera may need to be filtered and manipulated in order to make the SLAM algorithm 

work properly. The images will be filtered using data from an IMU. The IMU will provide 

the program with the orientation of the robot. The images will then be offset to adjust for 

the change in orientation, thus giving us accurate images to use. This is important 

because if the images are skewed, then the SLAM algorithm will think that the features 

that were extracted have moved or are further away than they are. If that happens, then 

the robot will not be able to properly localize itself and may end up in a “locked” state 

where it does not have any idea where it is at. Implementation of the image correction 
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can be found in Section 5.6. 

4.5. Gait 

Walking is done by actuating the legs in order and position to form a gait. Our 

design calls for two types of forward motion: static walking, and dynamic running.  

 

Inspiration for these motions will come from the investigation of animal gait. 

Investigation into the gait of moving animals has been recorded since 1870, when 

Eadweard Muybridge first photographed the gait of a horse (Williams, 1992). We hope 

to mimic the motion of animal gait in our robot for our dynamic and static walking. An 

important note here is that the current design of the legs is such that a full stepping 

motion as found in many living quadrupeds will likely be impossible; this design was 

chosen regardless because the added complexity to adding an additional degree of 

freedom would be restrictive in cost and design. Accounting for this, however, will 

require innovative planning in the actuation of the upper limb.  

 

Dynamic walking will likely be able to draw more closely from biology. Likely not 

in direct motion mimicry, but rather through a comparison in the timing of the legs. 

Equestrian gaits are grouped based on speed and stability, some having been trained 

into horses by humans (Harris, 1993). Our initial goal is to reproduce two gaits with the 

quadruped: Trot and Galloping. Further experimentation could produce results in other 

gaits, but starting with these two will provide a base to demonstrate the ability of our 

platform.  

4.6. Behavioral Control 

Behavior control is the thematic integration of “Think” and “Act.” Based on a 

given input, the robot’s main controller, in this case the Raspberry Pi, will decide the 

action it wishes the robot to produce. The Raspberry Pi then will issue movement 

commands (distance and direction controls) to the embedded controller onboard the 

platform. While the Arduino Mega will control the specifics of motion on the robot, the 

Raspberry Pi will determine through its defined criteria which of those motions should 

be executed.  

 

User interface will be managed through a mobile application programmed for a 

smartphone. The smartphone is connected to the Raspberry Pi through a wireless 

protocol such as Bluetooth, allowing for an interface between the person and high level 
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control of the robot such as position, gaits, speed. Having this interface will permit 

control of the robot and dynamic changes of its behavior during tests. Additionally, 

images from the on-board Xtion Pro camera can be streamed to the user interface so 

the operator would not need to be in the same room as the robot, but could still gather 

information of the robot’s surroundings.  
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4.7. Bill of Materials 

 The final step for our team was generating a bill of materials. This list specifies 

the components necessary for the construction of the system from actuators, to 

sensors, and to the miscellaneous nuts and bolts. Our resulting bill of materials is 

shown in Table 1. 

 
Table 1: Bill of Materials 

Component Name Quantity Price (per unit) 

PLA Filament PLA Filament 1 kg $22.99 

Battery Multistar High Capacity 1 $25.99 

Motor Vex 2-Wire 393 4 $14.99 

Motor Encoder Vex 393 Encoder 4 $15.00 

Motor Controller Vex 29 4 $10.00 

Servo Turnigy 1501 4 $15.94 

Camera ASUS Xtion Pro Live 1 $187.58 

Computer RaspberryPi 1 $35.70 

Processor Arduino Mega 1 $32.13 

Assorted Hardware COTS Hardware (nuts, 
bolts, pins, etc.) 

1 $60.00 

 
Total 

   
$588.11 
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5. Application 

5.1. Rapid Prototyping  

5.1.1. Appropriate Clearance for Parts 

To ensure that the interacting parts can move with little hindrance, proper 

clearance among parts is necessary. Furthermore, during rapid prototyping, the 

dimensions of a part can change due to the heating and cooling of the building material. 

For most interacting components, a clearance of roughly 0.1” was applied in the CAD 

models. This allowed for expansion or contraction of the material during production as 

well as provided room for possible lubricants or friction reducing components. A few 

parts, however, were designed to have a tight or even press fit, such as the bearings or 

the cam. This fit type was necessary when motion between interacting parts was not 

wanted such as slip between the cam and servo output gear. 

5.1.2. Part Design for Rapid Prototyping 

When designing the parts to be created using rapid prototyping, care was taken 

to ensure proper functionality between the mechanical, electrical, and computational 

aspects of the system. Originally, we designed the system to seemingly keep these 

three systems separate. However, this idea was quickly discarded, and a more modular, 

and integrated system was developed.  

5.1.2.1. Original Design 

Body 

The original design for the body of our quadruped, as shown in Figure 17, was a 

multi-layered assembly whose layers consisted of a battery compartment, a drive bed, 

and a computation platform. While this design provided a rigid working platform, it made 

it difficult to swap out single parts in case of malfunction. It also drastically increased the 

production time by increasing the number of parts that needed to be made by rapid 

prototyping methods. Our final realization was that the body was too large to produce 

using any of the rapid prototyping methods easily accessible to us. 
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Figure 18: Original Robot Design 

Legs 

The original leg design, shown in Figure 18, used a two-piece driven ‘bone’ 

attached to a lower leg. These pieces featured trusses in their design to lower weight 

while retaining strength. The driven bone was fitted with two 36-tooth Vex gears which 

were actuated by a 12-tooth gear driven by a Vex motor. The lower leg had two 

attachment points for motion actuation. The first, seen in the figure below, was linked by 

a spring to the underside of the driven bone, as its function was to return the leg to its 

static position. The second point is in the back of the lower leg directly behind the first 

point. This attachment was for the cable which was to be actuated by a Servo. Areas of 

concern about this design were mainly due to friction between joint interfaces or where 

the cable for actuating the lower leg passes over the driven bone-lower leg joint. 
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Figure 19: Original Leg Assembly 

Nacelle 

Our nacelle was originally designed as a housing for the servo which was being 

considered for lower leg actuation. The nacelle can be seen as the structure which 

leans toward the rear of the system in Figure 17. These designs were also quickly 

eliminated due to their lack of functionality. Their design would require a pulley to be in 

place to allow a cable to be properly attached to both the servo and the leg assembly. 

5.1.2.2. Final Design 

Our final system design, shown in Figure 19, was much more practical in its 

integration of our three subsystems. They were moved closer together as the main body 

was reduced to a single main torso to reduce production time, cost, and effort. 
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Figure 20: Final Robot Design 

Body 

The body was designed to increase the modularity of the system as well as 

improve access to components in case of malfunction. The three-layer system was 

scrapped and replaced with a single, main torso contained by two, thin, outer layers for 

support. The body was then split into four quarters, as shown in Figure 20, to make the 

system more modular and to allow for rapid prototyping methods to be implemented. 

The outer layers are pieces of high density fiberboard, which provide mounting 

platforms for components, as well as framing for connection of the four quarters. The 

fiberboard provides some flexibility, however its strength is expected to securely hold 

the body together. 

 
Figure 21: Final Body Assembly Design 
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Legs 

The legs received very minimal changes to their design. Major modifications 

included adding a channel at the intersection of the driven bone halves to align the 

guiding sheath for the cable, removing the trusses from the driven bone, and adding a 

counterbore for a bearing to the driven bone. The final design can be seen in Figure 21. 

 
Figure 22: Final Leg Assembly 

Nacelle and Cam 

The lower leg system received the most dramatic alterations with the nacelle 

being designed to now hold a servo motor, and including a custom cam for leg 

actuation. The nacelle assembly is shown in Figure 22. The nacelle has a very simple 

design, with risers to securely hold the servo in place and an attachment point at which 

the guide sheath for the cable is terminated. The cam was designed to account for the 

change in cable length as the driven bone is rotated downward. As the driven bone 

rotates down, the cam will rotate toward the rear to provide the needed cable to prevent 

the lower leg from actuating. When the lower leg needs to be moved, the cam quickly 

reverses its direction to provide the necessary output motion. 
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Figure 23: Nacelle, Servo, and Cam Assembly 

 

The nacelle located at the front of the robot also serves as a mounting point for the on-

board camera, as can be seen above in Figure 19. 

5.2. Interfacing Rapid Prototyping and COTS 

While the parts to be produced by rapid prototyping were designed with longevity 

in mind, stronger commercial-off-the-shelf (COTS) parts were required to reduce wear 

on the parts. These COTS parts were also required to keep the costs for attachment 

mechanisms and fasteners low. 

Shafts and Bearings 

Our designs are made to use commercial parts to increase the life of the system. 

This includes using connecting rods or shafts that reduce friction on the parts, and 

including bearings at the contact points for any rotating components. For example, the 

elbow joint at the intersection of the driven bone and lower leg includes a hole for a 

keyed shaft in the lower leg, and counterbored holes for rotary ball bearings in the 

driven bone. The keyed shaft prevents rotation of the lower leg about the shaft, while 

the bearing reduces friction at the joint. Similar configurations occur at the connection 

points for the gears, where common Vex flat bearings are used to hold the square 

shafts used in Vex models. 



 

 

 

53 

Cables and Fasteners 

To join the various structural to moving components in the system, commercially 

available wire rope and fasteners were selected for use. Specifically, stainless steel wire 

rope was selected to connect the servo/cam to the lower leg. As for fasteners, hex head 

screws were selected as the main fastening components, varying in length and head 

type as required by their application. For example, at the end of the nacelle are holes 

that allow for a counterbore which can accommodate the head of a hex head cap screw, 

however when the head is to sit flush with the top of the hardboard frame, hex flat or 

rounded screws may be necessary. 

5.3. Actuator Testing and Integration 

5.3.1. Initial Test Results 

 Original design of the leg called for a dual-type actuator system, DC motor with 

encoder on the upper joint, and an electromagnetic solenoid actuating a tendon to the 

lower limb.  

 

These designs were updated after initial testing showed that the motor on the top joint 

was effective for controlling the top of the system. It was surprisingly effective, in fact, 

given the limited precision in the encoders attached to the motors. Position control 

testing was affected using analog inputs on the microcontroller to read the position of a 

potentiometer that was then sent to the motor and leg system. This was used to tune 

the system’s PID loop as discussed in 5.3 below.  
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Figure 24: Leg testing configuration 

5.3.2. Test Results and Redesign 

The upper joint functioned effectively per the initial design. It was the lower joint of the 

leg that caused issues in our initial revisions of the hardware. The solenoid specified for 

control of the lower limb was simply unable to provide enough force to actuate the limb 

when extended to a meaningful distance. After a short period of testing, the solenoid 

was scrapped for a high torque servo connected to the tendon by a cam.  

 
Figure 25: Redesigned Servo and Nacelle 

A redesign resulted in the above design for affixing the servo to the main drive-bed 

assembly. Further testing with this assembly showed excellent results in torque and 

direct position control of the lower limb. 
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5.4. Controls Programming  

Initial testing and construction of the controls software suite progressed with one 

quarter of the robot for testing and debugging purposes.  

5.4.1. Application of Control System 

 Using the microcontrollers outlined in previous sections, initial testing progressed 

with the installation and application of basic position control of both joints on a single 

quarter of the robot. A single PID position control loop controlled the upper joint motor 

output, with input from the encoder system affixed to the motor shaft. The PID constants 

were adjusted to conform to the mechanical properties of the system, and tuned 

experimentally.  

 

Control of the servo is done not through PWM as initially hypothesized, but rather 

through Pulse Position Modulation, changing the frequency of pulses instead of the duty 

cycle. Open source libraries exist to easily control such systems with the given 

microcontroller, and were implemented in our system to control the upper joint of the 

robot. This was integrated into the system due to the modular nature of the controls 

software; a change in only one place changed the lower limb control from binary to 

position based.  

5.4.2. Trajectory 

The codebase implements a trajectory control system that provides a datatype 

and execution parameters for position “frames” that are executed sequentially. These 

frames have parameters for positions for each joint on each limb, and the timing for its 

execution. To reduce execution time for the process, the trajectory relies heavily on 

memory pointers to reduce memory bus overhead retrieving data from storage.  

 

 In code, a frame is a datatype that is composed of an array of 8 integers. These 

integers represent the angles of the upper and lower motors/servos at a specific time 

slice. In order to execute a series of frames, a trajectory data type was created that 

contains a list of frames. Each trajectory object that is created represents a gait to 

execute. Since a trajectory can contain many frames, it is important to note the memory 

requirements for a trajectory. Each frame consists of 8 integers, so one frame takes up 

16 bytes, therefore a trajectory that has more than 200 frames can take 3200 bytes of 

storage space. This becomes a problem when the Arduino Mega only has 8000 bytes of 

SRAM available to store all of the code. Exceeding the 8000 bytes available results in 
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unexpected crashes and errors when executing the code. 

 

Because of their size, Trajectories had to be stored in Flash memory and read into 

SRAM only when needed during operation. The Arduino’s architecture cannot abstract 

the memory hierarchy in the same way that traditional pointers do in a desktop 

programming environment. AVR provides function calls for reading from Flash memory 

during execution and instructing the compiler to store data in Flash memory (and not 

read it into SRAM at execution). 

 

These functions are performed with the keywords PROGMEM in the type definition, and 

read_pgm_near() when reading the data from memory. Our control algorithm functions 

by buffering the next frame to execute before it is required to send the frame to the 

controllers, reducing the load on the I/O bus of the chip. In this way, only one frame is 

stored in SRAM at any given time, the rest being retrievable from Flash memory as 

required. 

5.4.3. Gait Programming 

 To aid in the development of motions for the robot, a Matlab script was devised 

to output arrays of joint angles to be interpreted as trajectories. The Matlab script 

creates trajectories by interpolating between goal poses set by a user. It then outputs a 

moving graph of the motion that can be used by the programmer to refine the motion as 

desired. 

 
Figure 26: Gait planning graphic output. 

 

Used to interpolate between joint positions, the script uses as input desired positions for 

each at a given state and the time between each state of the robot. The script then 
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generates trajectory data types for upload to the robot based on the states and times 

given by the user. The Matlab script was eventually refined to output header files that 

could be directly uploaded to the robot. The development of gaits can then be the 

simple process of refining the goal positions desired for the limbs and testing them on 

the robot.  

 

5.5. Electrical Systems  

The electrical system divides the robot into quarters and a central distribution 

board (Figure 11: Electrical Diagram, pg. 21). The quarters are connected to the central 

board in power and signal with multi-conductor cables and quick connectors. This 

allows the device to be disassembled or repaired with ease. 

5.5.1. Electrical Design 

 Preliminary designs of the electrical system called for two power buses, one high 

voltage rail for primary motor output power, and a lower voltage source for signal and 

logic control. Component selection drove this design because the logic system of the 

Arduino and the motor controllers operates at a voltage much lower than battery output. 

Reducing the voltage of the lower bus was initially proposed using a DC-DC converter. 

Implementation, however, found that developing a converter circuits would be too 

expensive for use on this project. Instead, a commercial, off the shelf converter was 

acquired. Typically used for hobbyist applications, the switching converter provides a 

single circuit, rated for 7 Amps. 

 

The 5 volt bus will be used to power both the control circuitry and the servo motors 

mounted on the nacelles. The servo motors are expected to produce electrical noise on 

this bus. To protect the control circuitry from damage due to this noise, capacitors will 

be added to the DC bus to clean the signal.  

5.5.2. Wiring Design 

 The complex cabling required for the multicomponent system is designed to 

provide clean connection between components while maintaining modularity and ease 

of maintenance. To achieve this, the wiring is divided like the system itself, into four 

quarters. Each quarter of the robot requires two connections to be made: one for the 

high voltage bus, and one for the low voltage and signal.  
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Figure 27: Molex Microfit and the XT60 Connector 

 

The high power connection is made with XT60 connectors in each corner of the robot. 

These connectors are rated for high current and provide a low impedance connection 

for the main drivers of the leg. The low power connection is provided from a breakout at 

the microcontroller. This breakout produces looms of six wires that run directly to each 

of the quarters. These looms are connected to each quarter using Molex Micro-fit 

connectors, a locking connector that provides a secure connection even with some 

amount of force applied by inertia in the robot’s movement. 

 
Figure 28: TE Connectivity Connector Assembly 

For connecting the signal cables between the Arduino and the breakout board, we 

chose panel mount punchdown connectors, pictured above. Using the stripless 

connectors on this assembly, wire harnesses were made in groups of four between the 

two boards. The goal is to make the process of replacing the microcontroller or servicing 

the electrical boards as easy as possible; instead of having to reroute every connection, 

simply placing four connectors into the Arduino completely integrates the system. One 

concern is that the connectors do not have a matching locking mechanism on the 

Arduino, it’s possible that during operation or maintenance the connectors could come 
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loose.  

 

5.6. Camera Correction Software 

A problem that was encountered previously was the expectation that the camera 

sensor would tilt when the quadruped is moving. The movement of the camera sensor 

can likely cause issues with any mapping or vision algorithms employed on the robot. 

While the rotation may not be noticeable at slow speeds, at higher speeds it may rotate 

the images enough to the point where certain features are not discernable between 

image frames, which would result in those image scans leading to bad localization. In 

order to combat this, a ROS node was written to transform the images based off of the 

change in angle. An IMU was installed on the robot to detect the current angle of the 

robot. Because the only thing of interest is the current angle and not a continuous total 

change in angle, the issue of drift did not need to be taken into account. In addition, the 

IMU used pairs a magnetometer, gyroscope and accelerometer with all data 

automatically merged on an off-board chip for very accurate results. 

 

With the IMU data, the images can then be translated appropriately to account for the 

rotation. If the rotation from one frame to the next is 5 degrees, the image is then 

rotated -5 degrees to line up with the previous image. The image is also cropped 5% on 

both the top and bottom, as rotating a skewed image will result in image loss along the 

horizontal borders. By doing so, 10% of the image is lost, but ultimately the loss in 

image is worth the performance benefits that it offers. 

Code Implementation 

Implementing the above image correction in code required interaction between various 

hardware and software components. The image correction process begins when an 

image is captured through the Asus Xtion Pro sensor that is connected to the 

RaspberryPi. When an image is captured, the RaspberryPi checks the data coming in 

through the serial port. The accelerometer that was mentioned above is connected to 

the Arduino Mega, and is transmitting the tilt of the robot every tenth of a second over 

serial. The message being sent has a specific header which is “IMU Data” followed by 

the angle. The RaspberryPi parses this information and stores the current angle of the 

robot. It then compares the current angle to the previously stored angle of the robot. 

The difference between the angles becomes the amount to shift the picture in degrees. 

The image is then cropped 5% from the top and bottom using built in image functions to 
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account for the changes that may occur when the image is rotated. 

 

This implementation produces a stream of images that are all translated to maintain a 

general baseline despite the system undergoing various changes in height and angle. 

 

5.7. Raspberry Pi 3 Setup  

In order to get started with the Raspberry PI, an operating system must be 

installed on the device. There are various operating systems that can be installed such 

as Raspbian, Ubuntu MATE, Android, etc., but it was decided that the two operating 

systems that would be reviewed were Raspbian and Ubuntu MATE. These two 

operating systems were selected because they are the best supported. The pros and 

cons of each will be discussed below. 

5.7.1. Raspbian Jessie 

 The current Raspbian LTS version is Raspbian Jessie. Raspbian Jessie is a very 

lightweight operating system (OS) that is the officially supported OS for the Raspberry 

Pi. As such, it has a significant amount of community support. Raspbian Jessie can be 

downloaded from the official Raspberry Pi website. The operating system is Debian 

based, meaning that it is Unix-like in operation. Experience using other Linux based OS’ 

will transfer over to Raspbian Jessie.  

5.7.2. Ubuntu MATE  

 Another popular OS to install on the RaspberryPi is Ubuntu MATE (currently in 

version 16.04). Ubuntu Mate is a stripped down version of the regular Ubuntu 

distribution that has been heavily configured and modified to run on the Raspberry Pi’s 

ARM processor. The OS has also been configured to interface with the onboard 

peripherals on the Raspberry Pi such as the Wi-Fi card without any further 

configuration. (previous versions did not work so well with the Raspberry Pi 2). Ubuntu 

MATE takes up about 10% more system resources when idle compared to Raspbian 

Jessie, but offers benefits in other areas such as ROS integration (will be discussed 

later). It also works almost identically to the regular Ubuntu distribution when it comes to 

commands and interfaces. Thus, if the end user has experience with Ubuntu, Ubuntu 

MATE is a convenient and effect choice for Raspberry Pi integration.  
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5.7.3. ROS Integration  

 The biggest factor in determining which OS to use is ROS. It was decided early 

on that ROS would be used to handle various functions related to the robot and also 

communication between devices. ROS installation is extremely different between 

Raspbian Jessie and Ubuntu MATE, so careful consideration should be made when 

deciding how to proceed. The process for ROS installation on each OS will be 

discussed below: 

5.7.3.1. ROS Integration on Raspbian Jessie 

 Installing ROS on the Raspberry Pi is a very long process that takes several 

hours to complete. ROS has yet to make prebuilt binaries for Raspbian Jessie. As such, 

all of the code and packages must be built from source. The ROS website has provided 

extensive documentation on how to install the base ROS components on Raspbian 

Jessie. Installation of the base ROS components is very straightforward and only takes 

about an hour to install. However, the installation only covers the base ROS packages, 

and does not include many of the packages required for this project. Specifically, the 

base installation does not come with the Turtlebot packages. The base ROS installation 

is comprised of about 50 packages. When the Turtlebot packages are downloaded and 

added, the number of packages goes up to around 600-700. Many of these packages 

are large programs, such as OpenCV, and require a significant amount of time to build. 

Specifically, trying to build the ROS base with the Turtlebot packages can take roughly 

6 hours. In addition, the build may terminate due to various dependency issues that may 

occur, or simply because the Raspberry Pi runs out of memory when it tries to build the 

larger packages. Furthermore, if the build does succeed and then another package is 

added to ROS, the entire process must be repeated and all of the packages will need to 

be built again. Because of the significant amount of time required to build the packages 

and ROS, it is not recommended to use Raspbian Jessie as the OS, as it will result in 

losing a significant amount of time in waiting for the packages to be built. 

5.7.3.2. ROS Installation on Ubuntu MATE  

 Since the release of ROS Kinetic, several ROS binaries have been compiled for 

various Ubuntu distributions. This means that ROS Kinetic (previous ROS versions are 

not supported) can be used on an installation of Ubuntu MATE. Installation of ROS on 

Ubuntu MATE is the same as how ROS would be installed on a standard computer OS. 

Instructions on how to install ROS Kinetic can be found on their website. Installing the 

base ROS packages will take roughly half an hour on a 300KB/s download speed. After 

http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Indigo%20on%20Raspberry%20Pi
http://wiki.ros.org/kinetic/Installation/Ubuntu
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the base packages are installed, the Turtlebot packages must be obtained.  

Documentation on installing the Turtlebot packages can be found on their 

website, but it is important to note that the instructions on their website only show how 

to install the packages for ROS Indigo. In order to install the ROS Kinetic Turtlebot 

packages, all of the commands must be changed to reflect the ROS distribution you are 

using if a ROS distribution is specified. For example, the documentation on the website 

specifies to use the following line: 

 

sudo apt-get install ros-indigo-Turtlebot 

The ROS Kinetic variant of this line would be: 

 

sudo apt-get install ros-kinetic-Turtlebot 

 

Once the Turtlebot packages are installed, ROS should be fully configured to work. 

5.7.4. Operating System Installation and Configuration  

Once the operating system has been chosen, it is time to install it on the 

Raspberry Pi. In order to install the operating system, the image file of the OS must be 

written to a microSD card. The operating systems and ROS combined will take about 

7GB worth of space on the microSD card, so it is recommended to use a 16GB 

microSD card for the project, as this will allow for ample storage space to be used for 

various applications. Furthermore, additional storage space can be used as swap space 

(discussed below) in order to ensure that the Raspberry Pi does not run out of memory. 

For first time setup, a display will be needed to see what the RaspberryPi is currently 

doing. Please note, when the OS is not installed, it is not possible to use many 

applications such as SSH or VNC to connect to the Pi. Therefore, a display should be 

used to show the end user what they need to do to install. When the Pi is booted with 

an OS, there will be an option allowing the user to install from the SD card. After some 

time, the OS will be installed on the Pi and the user will need to go through the 

configuration steps for the OS they are using. Once the OS is installed, many packages 

will need to be updated and installed. It is important to pay attention to the 

documentation provided by ROS when it comes to installing packages, as many of the 

packages are not available when the OS is installed. Failure to install the packages will 

result in various packages not working. 

 

http://wiki.ros.org/turtlebot/Tutorials/indigo/Turtlebot%20Installation
http://wiki.ros.org/turtlebot/Tutorials/indigo/Turtlebot%20Installation
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5.7.5. Swap Space 

In order to maintain efficiency and prevent any crashes, it is important to enable 

swap space on the Raspberry Pi. The Raspberry Pi 3 comes with 1GB of RAM, which is 

a significant amount of RAM for most functionality. However, because this project 

requires the use of computationally heavy applications such as GMapping and SLAM, it 

is important to allocate swap space. Swap space is storage space that the device uses 

as virtual memory. As the device nears its RAM limit, it stores unused files in the swap 

space, effectively releasing some RAM and preventing the device from crashing due to 

too much consumption. On the RaspberryPi, the swap space can be allocated from 

unused space on the SD card. It is important to note that constantly writing to the SD 

card can burn it out (they have a limited number of read/write cycles), so caution should 

be given when creating swap space. For the purposes of this project, only 100MB of 

swap space were added. This resulted in less crashes and memory errors when 

building large files or running mapping algorithms. Therefore, it is recommended to use 

swap space on the device. A good resource for allocating swap space can be found 

here. 

5.8. GMapping 

After various tests with different mapping algorithms, it was determined that the ROS 

provided GMapping package will work best with the robot. However, the GMapping 

package takes up a significant amount of system resources. On the Raspberry Pi 3, 

RAM usage increased to 95% while mapping a room and crashed occasionally when 

the system ran out of memory after about 13 minutes. In order to prevent this, various 

changes to the GMapping package must be made to the specified GMapping attributes 

below: 

 

throttle_scans (5) 

 

This attribute tells GMapping to process 1 out of this many scans 

 

angularUpdate(1.5) 

linearUpdate(2) 

 

These attributes specify when to process new scans. The angularUpdate attribute 

processes a new scan after the robot’s angle changes this many degrees, while the 

linearUpdate attribute processes a new scan when the robot moves this many inches. 

https://www.digitalocean.com/community/tutorials/how-to-add-swap-space-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/how-to-add-swap-space-on-ubuntu-16-04
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map_update_interval(7) 

 

This attribute specifies after how many seconds to update the map in applications such 

as RVIZ. Setting this to a higher number results in better performance as the node is not 

transmitting all the data it obtained, but results in RVIZ updating even slower than usual. 

 

Changing these values, as well as enabling swap space, resulted in a total of 70% RAM 

usage, which leaves enough RAM to run almost any other application needed and 

prevents the Raspberry Pi from crashing. Yet, by changing these values, a loss in 

accuracy might occur. Initial tests with the above values resulted in no noticeable 

accuracy loss. If the accuracy loss is significant, it is best to modify the angularUpdate 

and linearUpdate attributes, as those will affect how the odometry interacts with the 

laser scans. 

 
Figure 29: GMapping Results from Outer RBE Lab Room 

 

 

The above image shows the map generated from driving a Turtlebot around the outer 

room in the RBE lab with the aforementioned settings. The mapping of the room is fairly 
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accurate and does not have any glaring, immediate issues. An important factor in the 

accuracy of the room is the odometry data. Although GMapping can work without 

odometry data, it is encouraged to use odometry data. When GMapping is run without 

odometry, it only uses LaserScans to generate the map. Many times, the scans do not 

match up, which results in the robot not being able to localize itself. In addition, if sharp 

turns are made, the LaserScans will fail due to the fact that the rotation was too large for 

the LaserScanner to keep up with. If this happens, the robot will believe it turned a 

greater/lesser amount than it actually did. Therefore, some form of odometry data is 

needed. The quadruped that is being developed is not a wheeled robot, so an 

alternative way of tracking how far the robot has walked needs to be implemented. 

Since the robot provides feedback on where all of its joints are (we are using two servos 

with ranges 0 to 180, effectively), calculations can be made to determine how far the 

limbs have moved. This data can then be transmitted through ROS to the GMapping 

node to use as supplemental information. Even if the data is not precise, it will still be 

very useful to the GMapping algorithm, as the GMapping algorithm uses the odometry 

data to calculate the error from the LaserScans. 

 

GMapping on MUTT 

As mentioned above, the GMapping package works best when odometry data is 

supplied. In order to test the image correction and mapping capabilities of the robot, an 

experiment was designed to map a small enclosure using the MUTT robot with 

odometry data from the Turtlebot. The purpose of this experiment is to validate the 

previous findings that the robot would be able to map a room despite the changes in 

position and angle that it undergoes when walking around. 

 

The design of our experiment was as follows. One tester hovered over the Turtlebot 

with the MUTT robot in their hands. The Turtlebot base was connected directly to the 

RaspberryPi and driven from a base computer by another tester. The odometry data 

produced by the Turtlebot was broadcasted to the GMapping package in the standard 

way. As the Turtlebot moved forward, one of the testers rocked the MUTT robot from 

side to side and also moved forwards, inducing motions similar to what the robot would 

undergo if it was in motion. When the turtlebot turned, the tester also rotated with the 

MUTT robot and continued rocking it back and forth. The result of this experiment was a 

mapping of the small enclosure. 
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Figure  SEQ Figure \* ARABIC 30: GMapping 
Results from Mutt Robot 

 

5.9. VisualSLAM 

VisualSLAM is another method of performing SLAM on a robot. VisualSLAM is 

different from GMapping in that it relies more on hard feature extraction instead of filters 

and particle weights like GMapping. VisualSLAM offers superior performance in 

unstable environments or in situations where the frames between samplings change. 

This superior performance is attributed to the fact that VisualSLAM detects more 

prominent landmarks/features instead of randomly sampling like GMapping does. 

Because of this, it is a viable mapping algorithm for the MUTT robot, as the camera 

frames can be very inconsistent. 

 

While there are many VisualSLAM algorithms out there, RGB-D SLAM is among the 

most popular, well documented, and supported by ROS. Therefore, RGB-D SLAM will 

be tested on the MUTT platform. 

 

 

5.10. BreezySLAM 

BreezySLAM is an open source, beginner level, GUI oriented approach to SLAM. It was 
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designed as an introduction to SLAM and contains modular features that allow it to 

adapt to various mapping situations easily. The algorithm was created with 

microcontrollers in mind and is thus very lightweight and can be implemented in four 

different programming languages. The algorithm works like GMapping but handles 

updating and particle weights differently in that it does not readily delete particles that 

have low probabilities/weights. With this implementation, many changes can be made to 

the particle filters and their characteristics, and the package even allows for new filters 

to be created. Using the standard BreezySLAM implementation, the following mapping 

of the same enclosure using the same experiment was created. 

 

 
Figure 31: Map generated by BreezySLAM 

5.11. HectorSLAM  

Before the design was switched to using two servos, it was not believed that 

proper odometry data would be provided from the robot. Therefore, SLAM alternatives 

that did not rely on odometry data were researched in order to find a SLAM solution that 

could work with our design. Of the many SLAM algorithms that work without odometry 
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data, HectorSLAM produced the best results. The image below shows the results from 

mapping the first floor hallway of Atwater Kent: 

 

 

 
Figure 32: Mapping from HectorSLAM 

 

We can see that the hallway itself was mapped properly when running HectorSLAM. 

However, issues were encountered when attempting to turn corridors. HectorSLAM 

relies solely on the LaserScans, so when the robot rotates at a fast degree, the 

LaserScans do not match up as it cannot recognize the same features as in the 

previous frames due to the rapid change in angle. Because of this, the robot loses its 

position and thinks it rotated or translated into another area. We can see this happening 

in the image above in the image above. The end of the hallway is indicated by the blue 

circle. At this point, the robot can either turn right and enter the room to the right or turn 

left and continue down another hallway. In this case, the robot was turned to the right. 

When it turned, it lost track of its positions and the result of this error is what is shown in 

red. Due to the rotation, HectorSLAM thought it had traveled a significant amount and 

generated an incorrect mapping of its environment. Many attempts were made to try 

and mitigate this error, such as changing the frequency of sampling, changing the 

maximum rotation angle allowed, and simply lowering the angular velocity of the robot. 

Despite these changes, rapid changes in angle still continued to affect the mapping 

adversely.  
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Despite the issue with rotating, HectorSLAM should still be considered a viable 

alternative to GMapping. The mapping algorithm was tested using an ASUS Xtion Pro, 

which is an RGB-D camera. As stated by the documentation, HectorSLAM works best 

when it is run with LIDAR. When run with LIDAR, large changes in angle do not seem to 

cause as many problems. In addition, an IMU can be paired with the HectorSLAM 

algorithm as supplemental information. The IMU would transmit the current angle of the 

robot. If the current angle changes quickly, it can inform the SLAM algorithm and the 

algorithm will use this information to map the room based off of where it thinks the 

LaserScans match up given the current angle. Further work in this area should consider 

using a low-cost LIDAR sensor for mapping. 

 

5.12. Voice Commands 
 

        The control schema behind many robots revolves around point and click controls 

on a GUI interface like RVIZ. While this method is effective and gives precise control 

and visualization of what the robot will do, it is lacking in terms of personal control. 

Having to open up a GUI program like RVIZ, enable screens and topics, and point and 

click where the robot should go is counterintuitive and goes against the mental model 

that many people have regarding robots. Many people perceive robots as intelligent 

machines that can be voice controlled and require little human in the loop control. This 

is the path that many robots are taking, and in order to make the system modular and 

easy to use as a research platform, it was decided that voice control would be 

implemented. Voice control was implemented in the following way: 

Speech Parsing 

The main difficulty with implementing voice commands revolves around parsing the 

speech input. In order to parse speech, the microcontroller/computer needs to be 

constantly listening and storing incoming speech onto the disk in the form of some audio 

file. This audio file then has to be decoded and deconstructed, and every word or series 

of words needs to be parsed and checked against valid commands. While this is largely 

a solved problem, it requires time and disk space which in a microcontroller can be quite 

costly. There are many libraries and API’s that automatically do the parsing either on 

the device or by off-loading it to a cloud service, such as Google Speech API or 

Amazon Web Services (AWS). There is a tradeoff that must be considered; either the 

computation is done on the device which takes up disk space and processing time, or 

the parsing is done on a cloud service, which requires a constant internet connection 



 

 

 

70 

and is asynchronous. Each method has its merits, but ultimately, it was decided that in 

order to make the robot more modular and have extended applications, all of the 

parsing would be sent through Amazon’s artificial intelligence, Alexa. 

 

Alexa Integration 

Alexa is an artificial intelligence that runs on the Amazon Echo products. Alexa is 

capable of performing various tasks that are beneficial to the user such as setting 

alarms, ordering food, checking the weather, playing music, etc. The artificial 

intelligence is controlled through voice commands and an app. Amazon released the 

Alexa AI to the public and allows developers to create “skills” (functions) for the AI 

through their developer network. The Alexa app works by constantly listening for a wake 

word that triggers the device to turn on. In this case, the wake word is “Alexa”. Once 

Alexa is triggered, she begins to record all communication after the wake word for a 

short period of time. This recording is then sent to AWS for parsing, and the parsed 

input is then sent back to the device to be used in whatever manner desired. At this 

point, we can integrate the functionality that is needed to control the robot. 

 

Integrating Alexa with the Raspberry Pi 

Amazon released source code with full instructions on how to install Alexa on the 

Raspberry Pi. This information was released to allow developers to implement Alexa on 

a host of devices, however, the documentation does not cover exactly how to integrate 

this functionality with low level control through the Raspberry Pi. In this section, we will 

not discuss how to install Alexa as there is already strong documentation available for 

said procedure on the internet. Rather, we will focus on how to obtain input on the 

Raspberry Pi from Alexa. 

 

Setting up the Alexa Skill 

In order to control the robot, we first need to know what kinds of commands will be 

issued. By signing into the Amazon Developer Network and navigating to the Alexa 

portal, new skills can be added. Every skill has a custom trigger phrase that tells Alexa 

to interpret voice input relative to that skill. In the case of the MUTT robot, the trigger 

phrase is “Alexa, ask MUTT to…” where the following voice input is the command to 

run. Any trigger phrase can be used as long as it follows the restrictions set by Amazon. 

Every skill has a custom “interaction model” which is a specification of the allowable 

https://github.com/alexa/alexa-avs-sample-app
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inputs and functions that the Alexa AI can pick up on and interpret. An example of the 

MUTT robot’s interaction can be seen below: 

 

 
Figure 33: Interaction Model 

 

In this model, the intent (function) is “GetMode”, which has a variable called “mode” that 

is made up of a type called “LIST_OF_MODES”. The LIST_OF_MODES is a list of 

strings that represent the modes that the robot has such as start, stop, initialize, walk, 

etc. The interaction model can be seen as a template for what the user can ask the 

Alexa AI. 

 

Utterances 

Utterances are the sentences or words that users say in order to invoke functionality 

through the skill. Some sample utterances for the MUTT robot are “Alexa, ask MUTT to 

initialize” or “Alexa, ask MUTT to walk forward 10 feet”. Amazon makes it easy to make 

generic utterances by allowing the developer to map variables and functions to 

expected input. A list of utterances available for the MUTT can be seen below: 
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Figure 34: List of Utterances 

As portrayed by the figure above, many utterances can be and should be written to 

maximize the coverage of all of the possible input from the user. 

 

Communicating with AWS and Alexa 

With the basics covered on what goes into a skill, we can now talk about how to 

communicate with AWS and Alexa. Every Alexa skill requires a host address, meaning 

it needs a place to send its requests to and from. Most publicly available Alexa skills 

have a custom domain that requests are sent to, but this requires a capital investment 

to host and comes with a significant amount of overhead. In order to bypass this, we will 

be hosting our skill through our own internet connection via localhost. We can do this by 

exposing a port that the skill listens for. This can be accomplished in many ways, but 

this document will focus on using ngrok due to its open source and free nature. Ngrok is 

a tool that exposes tunnels to localhost to be used by the outside world. Running the 

ngrok took provides the user with a URL that can be accessed from anywhere. This is 

needed as the Amazon skill requires an endpoint to be set when the skill is being setup, 

as this is where all of the data parsed will be sent to. Once the tunnel has been 

exposed, there will be a connection between AWS and the user that Alexa can 

communicate through. 

 

Setting up the Communication Server 

Once the tunnel is open, a web server needs to be run on localhost. This server is 

responsible for sending POST requests to and from the Alexa device and AWS and 

parsing the returned input from AWS. This web server can be implemented using a 

python library called Flask-Ask. The Flask-Ask library facilitates communication 
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between the Alexa device and AWS by managing sessions between the two 

components and allowing the user to send direct intents and queries through HTTP 

requests. It also allows for the data that is being sent back from AWS to be parsed 

easily as all the data is stored within the session and can be called at any time. When 

the right data is obtained by the session, it can then transmit the proper serial 

commands to the Arduino in order to control the robot’s motion. For example, once the 

session obtains the “initialize” phrase, the RaspberryPi can send a serial message to 

the Arduino in order to start the robot up. 

 

5.13. Navigation 

A navigation stack was written for the robot to aid in navigation and mapping. 

The navigation stack was written to work in the ROS environment. It takes incoming 

data from the map being generated by GMapping, and generates a grid of nodes based 

off of the height and width of the map. Each grid cell represents a node and has a 

certain weight attached to it that indicates whether that node is an obstacle, open 

space, or unknown. A global list of nodes is generated and all nodes that are obstacles 

are removed from the list in order to ensure that those nodes do not obstruct with the 

path planning algorithms. Once the list of nodes is generated, any nodes that fall on or 

near the boundary between known and unknown areas are added to a list of frontiers, 

which are areas that have yet to be explored by the robot. These areas are important to 

explore as they allow the robot to find the locations it needs to path to in order to fully 

complete the map of its environment. Once a frontier is found, the robot searches for a 

path to get to that frontier. The search algorithm used in this case is A*, as A* allows for 

the fastest path to be found in a grid. Other search algorithms can be used such as 

Dijkstra’s Algorithm, but since A* uses an admissible heuristic it was believed that it 

would produce the best results. 

  

Once the path has been generated, a series of waypoints are extracted from the path 

that the robot must navigate to before reaching the goal, and then from that waypoint, 

the path to the end goal is computed again. These waypoints are typically areas in 

which the robot must turn to get to the next goal. The reason for doing this is that by 

navigating to the intermediate waypoints instead the end goal, the amount of errors are 

reduced. For example, when navigating to to the end, if an obstacle appears in the 

environment that obstructs a portion of the path, then the robot will not be able to 

continue on till the end goal since the path was never calculated. By navigating to the 
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waypoints, once the robot reaches its first waypoint, the path to the end goal will be 

recalculated and would create a new path that goes around the new obstruction. This 

approach ensures that even with a dynamic map, the robot will still eventually be able to 

navigate towards its end goal. 

Navigation with Alexa 

Alexa was integrated with the navigation stack in order to allow the robot’s position to be 

controlled. The user can give the robot a distance and direction to travel to, and also an 

angle to turn to. The navigation code takes the current map data and determines the 

width and height of each cell. With this data, the distance to travel by is then divided 

down by the dimensions of the grid cell. Using trigonometric functions, the amount of 

nodes to travel in the X and Y dimensions is obtained based on the robot’s current 

position and location. With this information, the correct node can then be pulled from the 

list of nodes that is closest to the distance that was input by the user. If the node 

selected is an obstacle, the user is informed and asked to give another distance. 

 

Patrol Mode 

As a way to expand upon the functionality of the robot, a patrol algorithm was 

generated. The patrol algorithm works by interfacing with RVIZ. The user selects a 

series of points to navigate using a special topic (pGoal). The user can select an 

arbitrary amount of points to patrol. The navigation stack takes these nodes and tries to 

generate a path between each node selected. If no path could be generated, an error 

message is displayed. If a path was found, the robot will begin to navigate to the end 

goal. Once the robot reaches its end goal, it will update the weights of the nodes in the 

path it took to random values. By doing this, the A* algorithm will try to take an 

alternative path since A* takes the weights of each node into account when generating 

a path. The result is a different path to the end goal every time the robot completes one 

cycle of the entire path. This navigation mode ensures that an area can be patrolled in a 

dynamic way. 

5.14. Facial Recognition & Following  

As a way to demonstrate the computer vision capabilities of the robot, facial 

recognition code was written. Using OpenCV and the ASUS Xtion Pro camera, a facial 

recognition node was created. OpenCV is a collection of open source libraries for 

computer vision. One of the libraries it provides is the HaarCascades library. The 
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HaarCascades library is a series of functions and filters that can be applied to images in 

order to detect various features. One filter that it provides extracts all detected faces 

from an image. The filter was created by running machine learning on hundreds of 

images. From these images, the creators constructed several filters that determine 

whether or not something is a face. Because the filter was created through machine 

learning, it is able to determine if something is a face from different angles which means 

that the people in the image do not to be directly looking at the image.  

 
Figure 35: Facial Recognition Output 

 

These filters are applied to the image data streams coming from the ASUS Xtion pro, 

and the bounding boxes of the detected faces are rendered to the screen. In addition, 

we apply filters to the eyes in order to determine if the user is looking directly at the 

camera. The end result is having a node that processes the data coming from the image 

sensor and determining whether or not there are people that are looking at the robot. 

The node could be used for various Human-Robot applications such as following a 

human face, determining mood, or determining if the user is paying attention to the 

robot. 

5.14.1. Following 

 The intended purpose of the facial recognition node was to use it to follow a 

human face. Many studies show that dogs recognize faces and can differentiate 

between known faces and unknown faces. In addition, dogs recognize humans through 

sight and smell. Since the robot is designed and modeled to mimic a dog, it was 
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determined that facial recognition would be used to create a program that would move 

the robot towards the human that it detected. In order to do this, the robot needs to 

know how far to travel and when to stop. The distance to travel can be determined by 

analyzing the image frames. At time t, the bounding box of the detected face will be at a 

certain position. At time t + 1, the bounding box can either be further away (smaller), 

closer (bigger), remain the same, or be gone. If the bounding box of the detected face is 

becoming larger, this means that the user is moving towards the robot. If the bounding 

box of the detected face is moving away and becoming smaller, then that means the 

user is moving away from the robot. At this point, we then trigger the robot to start 

moving in the direction of the face. The rate at which the robot moves can be calculated 

from the images. If the sampling time of two consecutive frames is known and the 

change in position in pixels is known, then using simple algebra, the general speed of 

which the person is moving can be estimated. The robot is then passed the value and 

moves at that speed until a certain threshold is reached. The threshold in this case is 

whether or not the face is getting smaller. If we are moving at the same rate or faster 

than the end user, then at a certain point, the bounding box of the detected face will 

either stay constant or reach a certain dimension that can only be achieved when the 

end user is a close distance away. When these conditions are reached, the robot either 

stops or slows down. 

 

While the above method worked during initial tests, there are a lot of problems with the 

system. The camera that is being used can only accurately detect faces up to 6 feet 

away. In addition, overhead lights seem to cause issues with the depth maps that are 

used to determine the distance/dimensions. However, the biggest problem comes from 

the static camera sensor. On the Turtlebot and the quadruped, the camera sensor will 

be mounted statically. This means that it cannot pan or tilt in any direction. Therefore, if 

the detected face goes out of frame in any direction, there is not much that can be done 

besides rotate in place or move backwards/forwards in order to try and locate the face 

again. This problem can easily be solved by installing a pan and tilt system on the robot 

and mounting the camera on top. This would provide the robot with a “neck” that would 

allow it to rotate the camera sensor much like humans do when looking around.  
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6. Results 

6.1. Actuators 

6.1.1. Motors and Controllers 

During the initial rounds of testing, problems were encountered using the Pololu 

motor controllers. The motor controllers were found to consistently enter their shutdown 

state due to overcurrent protection mechanisms. The controllers failed to provide 

adequate current to drive the Vex 393 motors. Testing to find a suitable replacement 

was done with on hand materials. The Vex 29 motor controllers were chosen as a 

replacement due to their availability. Results of initial testing showed current handling in 

excess of 3A for time greater than 5 seconds.  

 

In practice, however, the Vex 29s did not stand up to the demands of the Mutt robot. 

This is likely attributable to three characteristics of the system: operating voltage, 

current requirement, and duty cycle. To start, the Vex 29’s are technically rated to 

operate at 8.5v, the typical voltage for most vex equipment. While testing showed that 

the controller were able to operate at 12.5v (the voltage of our system), it seems that 

extended use forces the devices into a similar shutdown state as the Pololu controllers, 

with symptoms of reduced output and total shutdown. This was likely exacerbated by 

the excessive current drawn by our motors and the duty cycle of their operation; at 

times resting the vex motors for several seconds at stall. The total power going through 

the controllers being in excess of 40 Watts, thermal shutdown is the conclusion we drew 

from the symptoms of the controllers.  

 

The effect of the failing motor controllers was that the upper limbs remain inactive at this 

part of the project. It was decided to exclude their use entirely, to ensure that the system 

as a whole was as reliable as was feasible.  

6.1.2. Servos 

The lower joint of each limb was actuated by a series elastic tendon controlled by 

a high-torque servo motor mounted on top of the robot. The servos were typically strong 

enough to drive the desired position of the lower joint. Initially it was found that the 

servos reached their maximum torque while driving the lower limb. In order to better 

actuate the joints, the cams attached to the servos were reduced in radius to apply a 
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greater force for the given torque of the motors. After reducing the radius of the cams, 

the force was enough to properly actuate the joints for most cases.  

 

In testing gaits, the wire rope used for the tendons held together under the applied 

loads. Because guides were made to direct the cabling, minimal scoring of the plastic 

occurred. Issues did arise, however, as the force on the cable sometimes caused the 

shaft collars used to slip. This led to an increase in cable length and, thus, a decrease in 

available pulling tension to the lower leg. The collars were simply re-situated on the 

cable and tightened again during testing. After the final desired length of the cable was 

determined, the collars were replaced by copper swages just as were installed at the 

cams on the other end of the cable. 

 

In the case that the robot rests primarily on one of the legs, the servos were not strong 

enough to realign the robot to level. Instead, the gaits were adjusted to reduce the 

weight on any one leg.  

 

6.2. Microcontrollers 

6.2.1. Arduino Due 

Problems were encountered with using the Arduino Due for I2C communications 

with the encoders. The encoders that were used were daisy-chained together. The 

initial encoder was tied to the Arduino Due SDL and SCLK lines, which were the primary 

lines for communication. We found that the signal coming from the SDL lines on the 

Arduino Due was not sufficient to address the series of encoders. The first encoder in 

the chain would initialize properly, but the rest remained in an indeterminate state due to 

the fact that they were not receiving an initialization address. 

 

This issue could have been caused by many reasons, but we believe that the Arduino 

Due was unable to provide the necessary voltage and current to communicate with four 

encoders. The Arduino Due, unlike many of the other Arduino boards which operate at 

5V, operates at 3.3V. As a result of the lower voltage, the board may not have been 

outputting the proper signal. In order to verify that the board was indeed the problem, 

we tested the system on an Arduino Mega. We found that the Arduino Mega was able to 

properly address and initialize all of the encoders using the exact setup that was being 

used before. Because of the aforementioned issues, it was decided that the Arduino 
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Due would be switched for an Arduino Mega. There were some concerns with making 

this switch such as memory space and overall system performance that will be 

discussed below. 

6.2.2. Arduino Mega 

Overall, the performance of the Arduino Mega was suitable for the robot’s needs. 

This was evaluated and confirmed as follows. 

Clock Speed 

There were initial concerns that the Arduino Mega would not be able to execute 

fast enough to run in real-time. The Arduino Mega is rated to run at 16 megahertz, while 

the Due operates at 84 megahertz, so there was a considerable downgrade in clock 

speed. However, during initial rounds of testing, the Mega was able to execute all of the 

system needs in time. The main concern in using the Mega was if it would be able to 

manage the calculations required to operate the robot in less time than the required 

interrupt period.  

  

The team was surprised and impressed with the performance of the Arduino Mega. 

Operating with a 10ms interrupt rate, the device was more than capable of handling the 

tasks required for smooth operation of the robot. Testing showed, in fact, that the 

primary delay in operation of the code was communication with the I2C encoders on 

each quarter. It was found that addressing and communicating with each encoder took 

1.6 milliseconds, so in total, communicating with the encoders took up 6.4 milliseconds, 

which left the Mega with enough to execute the other portions of the software. 

Electrical Characteristics 

 The Arduino Mega operates at 5 volts natively, meaning that it could interface 

directly with the DC-DC converter specified for the Mutt. The nature of the other logic 

level components involved also meant that the Arduino would have to interface with 

these components at 5v. It was found with the Arduino Due - whose operational voltage 

was 3.3v - that communication with the other components would not behave correctly. 

The Arduino Mega, however, functioned exceptionally well with the other components, 

both over I2C and PWM. 
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Architecture and Trajectories 

 The Arduino Mega has 8KB of SRAM and 256KB of Flash memory. The Arduino 

architecture is such that data stored before system boot is stored in the Flash memory, 

and any data allocated during operation is stored in SRAM. All memory management 

desired during execution of the code must be handled manually by the user. For basic 

operation of the Arduino, the 8KB of SRAM is plenty to work with; longer trajectories, 

however, measure in the KB individually and loading an entire trajectory into memory 

would crash the processor. Our use of Flash memory to store and read only the portions 

of the trajectory needed immediately successfully managed to store large data types.  

6.3. Electrical 

 The circuits built functioned as expected, after a short debugging period, the 

primary focus being the breakouts for each quarter, and the main distribution board on 

the bottom panel.  

 
Figure 36: Electrical Diagram 

 

The design showed to be especially useful during the debugging period due to the 

frequency with which the device was disassembled and reassembled. The ease with 

which we were able to do this can be attributed directly to the use of multi-conductor 

connectors between the quarters and the main board. Because only four, secure 

connections had to be broken to open the device, little work was required to 

maintenance it. The connectors were assembled by hand, which would typically be an 

undaunting task; this team, however, did not have access to the tools required to 

properly terminate the ends of the wires entering the connectors, and had to do so 

manually. Properly crimping pins onto the rather small wires was not without challenge, 
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but in the long run, the connections were secure and sturdy. 

 

Also installed as part of the circuit was capacitance inline with the DC voltage supply 

both at the quarters and at the main board. The primary purpose of this capacitance 

was to protect the logic circuitry from the electrical noise generated by the motors and 

servos. During initial testing it was theorized that backEMF from the noisier components 

caused damage to control circuitry. After adding the capacitance and changing control 

boards to a more robust Arduino Mega 2560 zero components were damaged or 

destroyed.  

 

One thing worth noting is the success of the punchdown connectors for interfacing the 

Arduino with the main breakout board. The modular connector system made it easy to 

replace boards during iteration changes, or to service the main breakout during 

debugging. Initial concerns on the security of the connections were alleviated after 

several weeks of testing without issue.  

6.4. Motion and Motion Planning 

The motion planning done in Matlab was able to effectively produce motion in the 

robot. The ease with which they could be produced, however, varied with the complexity 

of the motion desired. While the basic framework of the motion planner made it trivial to 

push incremental updates to the robot, actually building motions in the planner was 

challenging due to the nature of the goal setting. This version of the planner requires the 

user to manually set the joint positions of each of the limbs, a challenging task for any 

but the most experienced user.  

 

Gait experimentation on the Mutt platform was hindered by the performance of the 

primary actuators on the upper limb. The inability of the motors to support the inertia of 

the robot meant that the actuation was limited to the lower portion of each of the limb, 

driven by tendon-elastic connected to the servos on top of the robot. Furthermore, it 

was found that while the servos driving the lower limb were strong enough to lift the 

robot when working together, when the robot knelt to one leg in the middle of a step, 

that joint was not strong enough to realign the robot. This meant that the gaits had to be 

designed around the ability of these joints to actuate the weight of the robot as well as a 

static upper joint.  
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Figure 37: Gait planning output, with numbered legs 

 

 

After some experimentation the robot was able to take a step. Further optimization of 

the gait was able to produce a steady forward motion of the robot using only the lower 

portion of each of the limbs. Two different gaits were tested in development, 

differentiable by the order in which the limbs are moved forwards. The first motions 

attempted were based on the trotting motion of a dog, wherein the normal forces on the 

robot's legs are centered on limbs 1 and 4, as labeled in the diagram above. The 

second were based on the amble, where the robot would lift one side (i.e. legs 1 and 3), 

then move the front leg forwards while pushing with the rear leg. 

 

The diagonally aligned forces of the trot were meant to afford the limbs the ability to 

swing freely in the air. It was found, however, that the robot was not strong enough to 

realign the torso after tilting towards one of the legs. This meant that the trot gait 

produced little forward motion, the average displacement being forced by the grip of the 

foot pads.  

 

6.5. Mapping 

6.5.1. GMapping 

 Overall, the maps produced by GMapping were the best results that were 

obtained. The image below shows the initial results from mapping a small environment 

using our method and the mapping obtained from a Turtlebot: 
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From the image above, we can see the accuracy of the mapping when the robot is 

moving. Overall, the robot was capable of mapping the same general outline of the 

enclosure it was in, but there were two instances where the mapping clearly went 

wrong, as indicated by the red arrows in the images. At these two points, the robot was 

trying to turn in place, which introduces the most amount of error into the mapping. This 

is because the robot’s camera is moving back and forth quickly while rotating slowly, 

which results in the robot believing that it not only rotated but also translated in some 

direction. There are also instances where the scans do not match up between frames 

and so GMapping ignores the incoming laser data and relies solely on odometry, which 

also can introduce error. This is the main problem with GMapping and many of the other 

SLAM algorithms because of how much the frames are changing, even with the image 

correction in place. 

 

After obtaining these initial results, various other changes were made to the GMapping 

configuration to try and obtain better results. These changes included modifications to 

the angular rotation values, number of particles, and the minimum score needed in 

order to consider a scan as being “good” so that less scans are thrown out due to 

rotation of the camera. This resulted in slightly better results which can be seen below: 
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The results from this second test were much better than the first, but there are still 

issues with turning. As seen in the image, there was a slight error in how the top portion 

of the enclosement was mapped. However, the results produced were much better than 

previous attempts and show that GMapping can be successfully done on the MUTT 

platform. 

6.5.2. HectorSLAM 

HectorSLAM, while being very useful when no odometry data exists, produced 

very poor results for our application. The HectorSLAM algorithm was able to properly 

map the corridor with the image correction software, but once the camera begins to 

rotate in place, the algorithm gets trapped in a locked state and immediately starts 

mapping incorrectly as it cannot deal with the change in angle. HectorSLAM produced 

the worst results of all of the SLAM algorithms because of this. However, if a LIDAR 

module is obtained and a proper IMU is incorporated into the project, HectorSLAM 

could still be a viable method of performing mapping. 

6.5.3. RGB-D SLAM 

 VisualSLAM algorithms like RGB-D SLAM, while being very powerful, require 

large amounts of computational resources in order to properly function. Unfortunately, 

RGB-D SLAM could not properly run on the Raspberry Pi. The algorithm took up nearly 

all of the system resources and resulted in the Raspberry Pi shutting down, which 
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makes it difficult to obtain results. Normally, visual SLAM algorithms are run on 

computing clusters due to the amount of resources they need to process the data going 

through. Many Visual SLAM algorithms keep a database of images/features that were 

obtained from previous frames and process them heavily in order to obtain the most 

prominent features/landmarks. The Raspberry Pi GPU and CPU is not powerful enough 

to handle the amount of computation and data lookup that is associated with running 

these packages. 

6.5.4. BreezySLAM 

 The results from BreezySLAM (Figure 31)  were not very different from what was 

obtained by  the GMapping package. The BreezySLAM algorithm did not deal with the 

robot rotating any better than the GMapping package did.This is most likely because 

both algorithms work in the same way and both use particle filters; they vary in how they 

discard older data and points with low probabilities, so better results were not entirely 

expected. However, the BreezySLAM package required less computational resources 

and offered more functionality. More modifications can be made to the BreezySLAM 

algorithm than the GMapping package, which makes it an area where significant future 

work can be done. Various filters and configuration changes can be made to 

BreezySLAM that might increase overall mapping results. 

6.5.5. Navigation 

 Due to the functionality that was developed into the navigation stack, the robot is 

capable of autonomously navigating its environment. The robot will navigate around a 

map until there are no frontiers left, which indicates that the entire map was explored. 

However, attempting to navigate an entire room autonomously will take a significant 

amount of time. Navigating a small, closed environment like the one depicted in the 

GMapping experiment could take up to 20 minutes. Therefore, navigating a large room 

could take up to an hour. In addition, there are times when the robot can enter a locked 

state. If the robot moves into an unknown area or outside the bounds of the known 

nodes, then it will not be able to calculate its current position or its current position won't 

be a known node in the global list of nodes. Because of this, it may not be able to path 

from the robot current position as it will be undefined. This error can only occur if the 

robot moves too far into an unknown area when it is traveling to a frontier node. Besides 

this error, the navigation functionality of the robot is sufficient for mapping purposes and 

will be useful for further work in mapping. 
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6.6. Control Interface 

6.6.1. Raspberry Pi to Arduino Communications 

 In order to send commands between the Raspberry Pi and the Arduino, a USB 

serial connection was made to facilitate communication. The Raspberry Pi and Arduino 

were connected through a standard USB connection. From its serial port, the Raspberry 

Pi would transmit messages to the Arduino. The Arduino would wait until it had received 

a message in its buffer, and then execute a case based on that input. The Arduino had 

various commands that it would execute based on the input such as homing the robot, 

clearing the encoders, sitting up, or executing a gait. Serial communications between 

the Raspberry Pi, Arduino and the computer made testing easier and more robust. 

6.6.2. Android App Control 

As a means of controlling the robot when it was untethered, an Android app was 

designed to relay messages to the robot. Since the robot would be walking, a standard 

USB connection to the robot would not work. Therefore, a mechanism for controlling the 

robot was needed. Due to the capabilities of the Raspberry Pi, there were two options 

that were explored. The first option was connecting the Android app to the Raspberry Pi 

through a Wi-Fi connection. The Raspberry Pi is able to act as a router, which means 

the Android device could connect to the network and send standard messages over a 

Wi-Fi connection. Additionally, the Raspberry Pi has a Bluetooth module. It was decided 

that the Android app would communicate using Bluetooth due to the fact that 

transmitting a Wi-Fi signal on the Raspberry Pi has a short range and requires 

purchasing an external component. 

 

 With the communication protocol decided, the Android app was designed. On 

startup, the app would ask to connect to a nearby Bluetooth device. Once the device 

was paired, the Android app could begin to transmit messages. Several buttons with 

descriptive text such as “Forward” and “Back” were created and added to the main 

activity of the app. When clicked, these buttons transmitted a Bluetooth message to the 

Raspberry Pi. The Raspberry Pi would then compare the incoming message and 

compare it to a list of stored messages and execute the proper function that 

corresponded to the message. This process was useful in communicating with the 

Arduino. If a message that dealt with moving the robot was received, the Raspberry Pi 

would transmit a message over serial communications to the Arduino to begin 

movement, since the Arduino oversaw all of the low level motor controls.  
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Figure 38: Initial Android App Design 

 

6.6.3. Voice Control through Alexa 

 The integration of Alexa was a huge contributing factor to the overall functionality 

of the robot. By integrating Alexa onto the robot, communication between the user and 

the robot became a lot easier. As mentioned before, the main method of communication 

was the Android app. The app could tell the robot to startup and start executing its 

functionality after connecting through Bluetooth and clicking the right buttons. 

Integrating Alexa onto the device cuts out that portion of the process and allows the 

user to directly control the robot without having to install an app. Voice control removes 

a significant amount of overhead both from the user and the developer. From the user, 

It removes the need to have a smartphone, have an Android device, and have to 

navigate an app. Speaking is much more natural and intuitive to the end user. On the 

development side, new functionality can be added quickly by updating the skill’s 

interaction model and utterances, and by adding new conditions to the input parser on 

the Raspberry Pi, which is significantly easier and less time consuming than having to 

modify an Android app, recompile, and deploy it. 

 

In terms of controlling the robot’s motion, the voice control performed well. It properly 

parsed the input given to the Alexa device and passed it through the communication 

pipeline to the Raspberry Pi. Because of the utterances and interaction model, many 
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different phrases can be given that all produce the same output from the Raspberry Pi. 

This is very useful because it makes it easier to engage with the user and doesn’t 

require them to follow a strict format when they interact with the user. Overall, the 

implementation of the voice control was beneficial and simplified the overall control 

process in ways that couldn’t have been done through the Android app. 

7. Future Work  

7.1. Motion Planning  

 Updating the scripts that were used to generate the trajectory files would be 

beneficial to the end user when designing gaits. Although the Matlab script made it easy 

to visualize the trajectory that was being developed, transforming between the Matlab 

visualization and the robot movements was not entirely accurate. There are issues with 

how the robot interprets the Matlab angles that were generated, and there are various 

variables and equations that can be modified to obtain more accurate results. 

Specifically, future work in this area should focus on verifying proper transforms 

between the cam angles generated and the movement of the lower limbs. 

 

Also important in this area is the user interface for the motion planner. The challenging 

nature of programming new gaits for the robot limits the effectiveness of the robot and 

the system. Future work should take time to make a more advanced motion planner, in 

Matlab or otherwise. Important features to include are: Inverse kinematic solvers for 

both the individual legs and the platform whole, graphical input for the robot motion, 

equation driven input for robot motion, and direct real-time control of the robot. 

Likewise, there exist motion planners built for ROS and other environments that 

interface with Unified Robot Description Format file. Generating a URDF and interfacing 

with more advanced motion planners such as Klampt or OpenRave would be a key 

development to more effectively control the robot. 

7.2. Actuation 

Replacing the motors and motor controllers used to actuate the upper portion of 

the leg are a top priority for any future work. Choosing a model of motor that is a bit 

sturdier than the Vex 393s is a must, as a major problem with the Vex brand motors 

was the fragility of the internal transmission. Replacing these motors is as simple as 

redesigning the quarter panels to fit a different model of motor and reprinting them from 
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the updated models. 

 

Furthermore, replacing the motor controllers is a must, as the ability of the Vex 29’s 

(while an improvement from the Pololu MD10a’s) was not quite consistent enough to 

provide the motors with the current they needed. An excellent replacement is possibly 

the Fergelli Linear Actuator controller, which includes inputs for quadrature encoders. 

These controllers are rated for 20amps continuous and so should be well matched to 

provide the required energy. The ability of these controllers to interpret quadrature 

encoders is also a boon to the replacement of the motors. The Vex encoder modules 

were found to be fragile devices prone to damage on an active motor electrical system. 

Using more standard quadrature encoders integrated with these controllers would 

produce a more robust system  

7.3. Mapping 

Due to the robot not being able to move consistently, full stack mapping on the 

robot alone was not able to be tested. We had to rely on odometry data from the 

Turtlebot to map an environment. However, due to all of the configuration that was done 

on the Raspberry Pi, the robot should have the capability to perform different mapping 

algorithms. In order to do this however, some data needs to be integrated into the 

odometry topics that the robot broadcasts over ROS. Most of the mapping packages 

require odometry data to return accurate results. Due to the mechanical nature of the 

robot, it is difficult to estimate exactly how far the robot has moved without integrating all 

of the encoder data and applying equations of motion. An alternative to doing this would 

be to simply estimate the distance that a gait travels and broadcast that distance 

whenever the robot finishes executing one full cycle of the gait. The data should be 

more than sufficient when running the various packages and will supplement the 

algorithms when the laser scans fail. 

 

Additional future work could also revolve around implementing new filters and improving 

upon BreezySLAM. BreezySLAM is very modular and allows for many changes to be 

made, and so future students could devise new filters that better deal with the problems 

that the robot currently has in regards to turning. 

7.4. Voice Control 

 With Alexa constantly growing and becoming more popular, there is significant 

amount of work that can be done in this area. Voice control opens up various areas of 
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Human-Robot Interaction beyond the navigation purposes that were described in this 

paper. With Alexa on-board the robot, the user can now verbally communicate with the 

robot and talk to it like it would a dog and the robot could respond appropriately. If for 

example, the user asked the robot to bark, the robot could in fact perform that 

functionality if coded in. In addition, the robot could be tasked with other functionality 

like settings alarms, reminding the user to do things, playing music, etc. This makes the 

robot more personal to the user and makes it more than just a machine. Future work in 

fixing the movement of the robot and expansion of the robot’s language capabilities 

could result in a robot that has significant meaning and use to the user. 

7.5.  Mechanical Design 

An interesting use of this project in the future may not only be in robotic 

development, but also for the development of basic design and analysis skills, focusing 

on its mechanical systems. This robot required the development of custom kinematic 

and dynamic equations and could thereby be used as a helpful teaching aid in 

coursework to develop student’s analytical skills. Furthermore, the design of the system 

could be evaluated to determine if the design can be simplified to include less fasteners, 

more space for electronic components, or less useless print material. Due to the nature 

of our project, it present numerous opportunities for students in multiple disciplines to 

develop new skills with regard to robotic systems. 

8. Project Insights 

8.1. Mechanical Design 

 During the design and production stages of our printed parts, we found proper 

clearance to be of paramount importance. Improperly toleranced parts needed to filed or 

modified by other means to reduce friction at moving joints. This became difficult, 

however, since we used multiple 3D printers to produce the parts for our robot, and 

each printer had their own tolerance capabilities. To avoid this, it may have been wise to 

make small test prints on each machine to observe their tolerances. 

 

Furthermore, the use of standoffs for mounting electrical components, when applied 

properly, was more useful than originally thought. They not only helped secure our 

electrical components, but by raising the electronics, they created path through which 

wires could be run and they acted as securement points to hold wires in place. This 
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helped to free up space when assembling the robot. 

 

Finally, we found it was important to design above our calculated limits. After 

determining our limits for torque or motion as discussed in Sections 3.3.1 and 3.3.2, we 

should have given ourselves a two or three times factor of safety to ensure that our 

chosen actuators were sufficient for running for an extended period of time. Finally, the 

plastic gears used both within and in conjunction with the motors failed under the 

applied load of our robot, and therefore alternative gearing should have been 

determined. 

8.2. Electrical Design 

This team underestimated the value of good motor controllers. Our attempts to 

construct a system without motor controllers designed and built for the power we’d be 

putting through them resulted in a crippled robot. While a priority on this project was to 

develop a robot that could be made for significantly less than similar quadrupedal 

competitors, spending more money on the motor controllers may have brought the 

project to further fruition than making the attempt with underrated components.  

 

The use of quick connection points between the different components was an excellent 

decision. Two recommendations for future projects learned herein, reduce the number 

of connectors even further, and make the securements on the end not crimped into a 

plastic connector more secure. On the first point it was found that even as few as four 

connectors was a challenge to connect and disconnect each time the robot was 

disassembled. There is a balance to be struck between modularity and convenience 

here, and perhaps one connector per half (split lengthwise) would be more effective. On 

the second, we used screw terminals on our main breakout to terminate the looms onto 

the board. These screw terminals consistently damaged the wires to the point of 

breaking on multiple occasions. A more effective solution might mean using ferrules on 

the cable ends to protect the stranded wire (our advisor suggested this at the beginning 

of the project, and we forewent his recommendations to our own demise). 

 

Another successful application of quick connectors was the blue punchdown connectors 

used to bridge the Arduino and the main breakout. The connectors removed the need to 

design and construct a shield for the Arduino, but future teams might also consider 

swapping an offboard breakout panel for a shield (or develop a shield to connect the 

two with some form of cable). A shield offers similar modularity for the system (if 
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restricting to a specific form factor of board) while also securing the attachments more 

thoroughly.  

 

One surprise on this project was the successful application of the Arduino 

microcontroller. Against the recommendations of our advising team we went forward 

constructing the project around the Arduino, and to the surprise of perhaps both of us, 

after a short adoption period it performed admirably. There were hardly any issues with 

performance in using the Arduino (even after swapping the board for a less powerful 

model), and programming the device was specifically easy.   

8.3. Software Design 

8.3.1. Arduino Software 

The software design on the Arduino system worked very well for what it was 

designed for. The design followed an object oriented approach in order to keep the 

software simple. The most complex part of the software was creation and execution of 

gaits. Each gait that was created was placed in its own header file. In the file was a 

series of constants such as size and an array of integers. Each row in the array 

contained 8 values, which were the angles for each servo/motor. These values could 

either be generated by hand or exported from the Matlab script that was created to 

generate trajectories.  

 

Separation of the gaits was crucial as some of the gaits became exceptionally large, 

and containing them all within one aggregate file would make things unreadable and 

would decrease overall efficiency when trying to code in that file. Instead, using the 

declarations that were made in the header files, trajectory objects that referenced the 

gait files were created. These trajectory objects read in all the data and converted them 

to frames. A frame object contained all of the angles for the robot at a specific time 

slice. When the robot executed a trajectory, it was really executing a series of frames 

over a given duration. This approach worked well and allows for a dynamic way of 

creating trajectories. By adding to or taking away rows in the gait files, the time duration 

of the gaits can be modified to fit within specific application requirements. 

 

An interesting aspect of the software was the size of it in terms of memory space. 

Previous projects on the Arduino boards did not require too much memory space as the 

programs being written were rather small. Because the gaits were so large, the software 
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had to be written and stored in different ways (Flash memory as opposed to SRAM) 

which was an interesting occurrence because memory management was a topic that 

was taught but until this point was never applied because it was not needed. 

8.3.2. Raspberry Pi Software 

The software on the Raspberry Pi worked exceedingly well in conjunction with 

the Arduino system. Many of the scripts that were written for the Raspberry Pi dealt with 

communication between the Android app and the Arduino microcontroller. It was 

interesting to see how well it could execute multiple scripts at once that were quite 

intensive on their own. The Raspberry Pi was running communication, computer vision, 

and its own OS operations all at once with no delay. However, there was a significant 

amount of work needed to get everything working together. In order to start all of the 

needed scripts, several launcher shell files had to be written to launch all of the 

programs. In order to get functionality like Bluetooth or ROS, several packages and 

libraries had to be installed. This required a substantial amount of overhead work to be 

performed, which can be very tedious and frustrating to get right, especially for huge 

systems like ROS. Despite the substantial setup, this portion of the project gave a 

significant amount of insight into how embedded computers work and their strengths 

and limitations, as well as ways to modify and push them to operate according to the 

necessary standards. 
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9. Conclusion 

 Solutions for undergraduate robotics research fall into one of two categories: too 

simple to be of merit, or too expensive to be available to novice roboticists. Our project 

sought to eliminate both of these barriers with an inexpensive entry to legged research. 

We designed and constructed a robot whose programming interface is simple and 

available to all, and whose hardware was readily reconstructed from inexpensive 

components. This robot integrated the ability to sense, think, and act; a demonstration 

of its ability as a robotic platform. Through this challenge, we demonstrated the 

effectiveness not only of modern low-cost computation hardware, but also the ability to 

develop an accessible solution to a problem typically reserved for well-funded research 

laboratories. Future teams wishing to develop such a system should be able to improve 

on our design significantly, advancing this robot further.  
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