
1. statistics
2. teaching
3. Java

k,...RN .. 03D05 I

Project Number: 51-JP-0202

STATISTICAL TEACHING AIDS

An Interactive Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

7Jszfht-

Brian P. Gottreu

Jeremy A. Slater

Date: April 24, 2003

Approved:

NC

Professor Joseph D. Petruccelli, Major Advisor

Our project group designed, constructed and implemented two new web-

based labs for introductory statistics courses. We incorporated the latest

research on computer-based pedagogy into their design. The Java applets

we created dynamically link graphs and data in an interactive, real-time

environment. Student feedback obtained by using the labs in MA 2611 in A

term, 2002, validated the efficacy of the labs and resulted in modifications

and improvements.

i

Contents

1

2

Introduction

Literature Review

1

3

2.1 Previous Work 	 3

2.2 Techniques 	 5

2.3 Project Alternatives 	 8

2.4 Current Issues 	 9

3 Procedure 12

3.1 Project Methods 	 12

3.1.1 	 Planning 	 12

3.1.2 	 Development Cycle 	 12

3.1.3 	 Our Design 	 13

3.1.4 	 Our Implementation 	 14

3.1.5 	 Our Testing 	 15

3.1.6 	 Alternatives 	 15

3.2 Research Methods 	 16

4 Lab Descriptions 17

4.1 Lab 2.2 	 17

4.2 Lab 2.3 	 23

5 Programmers Reference 28

5.1 Lab 2.2 	 28

5.2 Lab 2.3 	 31

ii

6 Results 	 33

6.1 Student Results 	 33

7 Conclusion 	 37

A Appendix 	 41

A.1 Survey 	 41

A.2 Summarized Suggestions Table 	 43

iii

List of Figures

1 	 Lab 2.2 Applet 	 20

2 	 Lab 2.3 Webpage 	 23

3 	 Lab 2.3 Applet 	 24

iv

List of Tables

1 Lab 2.2 Results Summary 	 34

2 Lab 2.3 Results Summary 	 35

3 Lab 2.2 Suggestions 	 43

4 Lab 2.3 Suggestions 	 43

1 Introduction

The introductory statistics courses at WPI, MA2611 and MA2612, have

a set of labs associated with them. Most of the labs involve the computer

to analyze data or demonstrate statistical concepts. The original computer-

based labs utilized SAS statistical software.

SAS is a large scale software system for statistical analysis. It has many

features that allow it to perform almost any computation that one would be

inclined to perform. It was not originally designed to be used in an educa-

tional environment, though it has successfully been used for such purposes.

For statistics labs at WPI students use only a few portions of the larger SAS

system, namely SAS/INSIGHT and SAS/EIS. This makes their interaction

with SAS simpler, but students still find SAS difficult to learn and use. There

are setup costs involved with using SAS, which are tolerable, but there are

usually problems even after SAS has been correctly initialized. The chief

among these problems are human computer interaction errors. These are to

be expected with users new to a piece of software, but should be minimized,

especially when the goal is not software competency, but learning other con-

cepts. In this regard, a more specialized piece of software should allow for

fewer errors during operation and easier acquisition of statistical concepts.

Another problem with SAS is that it is only available on campus. Students

would benefit if they could run the labs from off-campus locations.

The goal of this project was to create two new, educationally sound statis-

tics labs that would eliminate the difficulties of SAS-based labs. To achieve

this result we used advances in computational technology since the creation

of the original SAS labs. "The web has the potential to transform traditional

1

models of teaching."' A key force behind such potential is the use of Java.

We used Java extensively in the creation of applets for the new labs. The

applets allow for real-time interactive graphics and greater accessibility of

the labs. Through this real-time interactivity, we created labs that allow for

easier and more effective learning of the statistics concepts and removed a

number of the difficulties with using SAS as lab software.

Java is a fairly new programming language produced by Sun Microsys-

tems. It was designed to be platform-independent and to allow for simpler

user interface implementation. To achieve this, Java programs are usually

run on a virtual machine(VM). The advantage of running software on a VM

is that once a piece of software is written, it can be run on any platform that

supports a VM. Practically, this means that any software written in Java

can run on most opeiating systems, including Windows, MacOS, and most

varieties of Unix.

Earlier projects at WPI adapted existing SAS-based labs for the web

using Java and other web-based solutions. 234 For our project, we designed

and implemented new labs for the material in chapters 1 and 2 of Applied

Statistics for Engineers and Scientists.' Lab 2.2 introduces students to data

transformations and their effect on data distributions. Lab 2.3, based on

the famous Deming funnel experiment, 6 explores process tampering and its

effects.

1 David G. Brown, ed., Interactive Learning, (2000), Anker Pub. Co., p. 56.
2 Liesen, Eric and Whitfield, Paul, Statistical Teaching Aids, (2001)
3Kawato, Takeshi, Statistical Teaching Aids, (2003)
4 Clein, Robert and Holmes, Samuel, Online Statistics Labs, (2003)
5 J. D. Petruccelli, B. Nandram, and M. Chen, Applied Statistics for Engineers and

Scientists, (1999), Prentice Hall.
6W. Edwards Deming, Out of the Crisis, (1986), Massachusetts Institute of Technology.

2

2 Literature Review

2.1 Previous Work

At the time that we began our project there were other project groups

that either had done or were in the process of developing web-based statistics

labs. These projects all entailed converting existing labs to a web environ-

ment or developing new labs for introductory statistics courses. Not all of

these groups were developing Java applets, but for all of the projects the

main goal was to design a web-based lab that can be accessed over a broad

range of platforms. These projects were all of particular interest to us be-

cause we planned to design similar products and we essentially had the same

goals. By evaluating these existing projects we were able to get an idea of

the desired outcome and gain a better understanding of our task. We were

also able to critique these designs to incorporate some of the innovative ideas

while improving on their weaker features.

At the time of our implementation there were three available web-based

labs at WPI7 , with others in development. These three web-based labs were

all made by the same group and so their design characteristics are relatively

similar. However, these labs were still helpful in providing us with ideas

for our implementation. Following the link to any of these labs brings up

an "Introduction" window which introduces the lab and supplies links to an

applet, a glossary, printing and saving instructions, and a set of questions

connected with the lab. The applet window includes the computerized part

of the lab along with instructions for conducting the lab. Placing the lab

7located at http://www.math.wpi.edu/Course_Materials/SAS/lablets/statlab.html

3

instructions in the applet window so that they can be viewed as the lab is

conducted represents a good pedagogical layout and is one key advantage of

the web-based labs over the SAS labs. Overall these previous labs are well

developed and proved useful to us as a guideline.

Another helpful source from WPI are web labs 4.1, 4.2 and 4.38 . These

labs, which were still under development during most of our project, imple-

ment some of the features that we considered useful in professional statistical

Java applets. Since the author of these labs provided extensive source code

and customized packages, we were able to build upon material that already

existed. This allowed for more advanced development of our own web-based

labs.

Outside WPI there are a large number of applets pertaining to statistical

analysis and education. Many Java applets are hosted on web sites as either

labs coordinated with a class or as open-ended statistical tools available for

free or for purchase. One site of particular interest is the Statlets site located

at http://www.statlets.com . This web site specializes in Java-based statistics

applets encompassing a broad range of functionality. This site includes many

examples of functions that we intended to develop. Some key features include

data entry fields, tabbed windows for switching between data entry and other

views, and pop-up tip windows. While the applets on this web site are very

well built, they are more complex than what we intended to build. These

applets are good tools, but due to their lack of instruction are bad examples

of an educational lab. This site is beneficial as a good example of interface

design.

8 These labs provided by Takeshi Kawato

4

2.2 Techniques

The key to good software is proper design. We implemented an interac-

tion design methodology to construct our web-based labs. Interaction design

differs from interface design by specifying more than where windows and

icons are located. This design method describes how the user interacts with

the software, how the user will use the mouse and keyboard to affect and

control the software, and how the software will lead the user through its use.

Interface design is stationary, but interaction design is temporal; it describes

the user experience through time.

Incremental development is a widely-approved method of design imple-

mentation. However, when using this method it is tempting to also use

incremental design, instead of the preferred method of interaction design.

Incremental design has the user design the software in pieces which leads to

problems when sections of code fail to interact correctly in the future. In-

teraction design, however, requires that the software be completely designed

before development with user interaction in mind. This means that there

will be fewer problems in the development stage.

Incremental development requires every piece of software to be designed

beforehand. By designing this way, the interaction specification is followed

during each step of design and development. This avoids the situation where

a fundamental portion of code is created incorrectly and features are then

added which are dependent on that code. When the original code is fixed to

make it adhere to the interaction specification, newer features can be made

inoperable. Adherence to the methodologies of interaction design ensures

that the program code does not deviate from specification, and thus addi-

5

tional code never becomes invalidated.

A large problem in software development is having a specification that

continues to change during implementation. Changes in the design that in-

validate large portions of the code base should not occur. This only delays

the project and dampens the spirits of the coders, thus making future de-

velopment slower. For our project, development time was at a premium, so

changing the design and throwing away work was not an option.

Generally, when developing a computer-based educational tool, there are

many user psychological attributes to consider in designing for effectiveness.

A well thought out and properly implemented cognitive design will provide

the most beneficial experience for a user. Some considerations in design

include the users' knowledge of computers and knowledge of the material

being taught. An understanding of browser mentality' is necessary so that

the developer can create a captivating experience, while still maintaining

the educational goals. Aesthetics such as text characteristics, window sizing

and screen clutter all need to be considered to create a successful learning

environment.

In any multi-user educational tool certain assumptions need to be made

about the students' knowledge of computer concepts and task concepts'. A

lab should only include material covered up to the date of the lab. Ideally,

the student will have already gone over the material in class, and will at the

very least know the terminology. The lab design must be kept intuitive and

provide adequate instructions on its use. The difference between the actions

the user assumes are necessary to complete the project and the actual actions

9 lnstructional and Cognitive Impacts of Web-Based Education, p.49

10Instructional and Cognitive Impacts of Web-Based Education, p.43

6

available is referred to as the gulf of execution". To minimize the size of this

`gulf' a student needs the tools necessary to complete the assignment, such

as a tutorial or glossary. If any student begins the lab and is uncertain of

a lab instruction, or how the instructions relate to the Java applet, then

that student will be at risk of not learning the material. With a simple

tutorial a lab can contain some advanced features without the risk of losing

the students' interest.

One danger of a web-based educational tool lies in a user's browser men-

tality. By "browser mentality" we mean a web user's inherent desire to

merely skim web pages rather than fully read them. The risk then, is that

with this attitude a user may attempt to race through a lab without fully

comprehending the steps involved. Browser mentality is one of the more

serious cognitive considerations that must be taken into account during the

design process. The software must require the user to progress at a pace

at which the lesson will be useful. One solution is requiring interactivity

between the Java applet and the lab instructions. For example; a certain

section of the instructions can be designed to pause and wait until the user

has successfully performed a task. Another solution is requiring the student

to do some of the less redundant work by hand, such as typing in initial

conditions or results. Similarly, the student could be required to perform an

operation by hand that would then be repeated by the computer over many

iterations. This way the student learns what is going on, but also has the

power of the computer for efficiency.

Psychology and behavior also play a key role in the graphical layout

of the applet. There are many factors that can aid or harm the students'

11 Human Computer Interaction, p.106

7

productivity. While one main focus is on developing a web-based tool, the

underlying lesson is taught with a lab description including step by step in-

structions. These instructions need to be located in an appropriate location

on the screen, they need to be written coherently, and they should be dis-

played in a legible font. This last point is actually an issue with one of the

previously completed labs due to a bad font used on the lab machines. Over-

all, the text should be relatively low in density, so that the statements are

short and easily read. At most, text should be split into screen-sized chunks

such that the user does not need to scroll within a window. This is imple-

mented in our lab description through the use of short sections of text tied

to each other with forward and backward buttons. Bold and logical headings

are helpful and well written instructions are necessary.

2.3 Project Alternatives

The Java language is not necessarily the only or the best option for pro-

ducing a web-based lab. Other popular web languages exist, such as CGI,

Javascript and PHP. These languages differ not only in their implementation,

but also in their execution. Both CGI and PHP run on a server while Java

and Javascript run on the client computer. All three of these alternatives

are far less capable than Java, but because they are simpler, they are easier

to implement and they maintain a better level of cross platform compati-

bility. A drawback of the server-side languages PHP and CGI is that real

time graphical manipulations are infeasible due to client-server latency. A

client side language is superior with respect to response time, especially for

the quick data manipulation that our statistical labs require.

8

2.4 Current Issues

The current statistics labs are implemented using SAS. SAS is a powerful

general purpose statistics tool designed for professional data analysis, but for

statistics labs, such a powerful and general tool is not needed. SAS has a

large number of features, but for the labs only a small subset of the features is

used. The large number of unused features still remain, taking up space, and

only hinders the use of the other features. The more windows and menus that

are available, the slower the progress is through a program. SAS is a perfect

example of this with its five default windows plus more for each macro. Alan

Cooper' states that one of the key rules of software design is to not make

the user feel stupid. From personal experience, SAS can and will do this.

SAS does have some strengths however. Since SAS is a general tool,

students are free to try new things, perhaps gaining new insights. SAS can

be adapted to perform many operations on any user-defined data. When an

educator creates a new lab, it is possible that only the lab instructions need

to be created. The features of SAS may be sufficient to implement the lab;

however, new macros may need to be created if the lab is to be accessible to

the average student.

When the labs are moved to a web-based solution, some of the features

associated with SAS are lost. The flexibility and power of SAS is no longer

at the disposal of the students or educators, but since most of the power of

SAS is never used in a lab setting, this is not a major loss. An educator who

wishes to change a web-based lab or create a new one, is most likely unable

to do it alone. Programmers will need to be brought in to create or alter

12 The Inmates Are Running the Asylum, p. 25

9

the Java applet. The cost of creating web-based labs is higher than that of

SAS-based labs.

However, the strengths of web-based labs significantly outweigh the weak-

nesses. Since it is known exactly what is needed for the lab as the software

is coded, only the features necessary for the lab are included. This lowers

cognitive friction and creates a better environment in which the students can

learn, which is one of the main goals of this conversion.

One of the best features that can be implemented with Java, but not

with SAS, is real-time interactive graphics. For example, in a SAS-based lab

dealing with data summaries, the student is asked to change the data value

in a spreadsheet. The student watches as a set of graphical and numerical

summaries change in response. This lab was adapted to the web by a previous

project team. The web-based lab does the SAS version one better in that the

user can change any data point in a graph by clicking and dragging with the

mouse while the summary statistics and graphs update in real-time. Java

brings interactive graphics to another level, which we feel allows students to

more quickly get a feel for the concepts involved.

Another benefit of using web-based labs is that students can access them

from any computer having internet access. With the SAS labs, students must

use the CCC machines to complete the lab.

For students, the switch to web-based statistics labs will make it easier

to perform the lab and understand the statistics behind the labs. Educators

will need to use more resources to create new labs. However, this cost will

lessen over time. Eventually most of the labs will be web-based, and the need

for more labs will not be great enough to warrant the creation of new labs,

10

until a new technology comes along that has a greater potential for making

computer-based education more effective.

11

3 Procedure

3.1 Project Methods

3.1.1 Planning

Early in the project, we worked with Professor Petruccelli to develop

outlines of the two new labs. From these we created storyboards detailing

the layout of the labs and the way students would interact with them. When

we designed the layout and interface of the labs, we used the recently-learned

principles from our background research. Professor Petruccelli reviewed the

storyboards and suggested changes. After incorporating these changes, we

moved on to the design and implementation phases of this project.

3.1.2 Development Cycle

Before discussing the specifics of our development effort, we will describe

the development cycle we used. There were three main phases of the devel-

opment cycle: Design, Implement, and Test.

Design

Since the labs had already been laid out and all the main features speci-

fied, we knew what features or components we needed to create and we knew

what they should do. From these criteria, we designed the internals of each

component in turn so that it would perform its function.

Implement

Using the design we created, we implemented the component using the

language we had decided upon, Java. Sometimes Java did not allow things

to be implemented easily, if at all. When this occurred (and it did so more

12

frequently than we would have liked), we returned to the design phase to

rework the design so that it could be implemented in Java. When the com-

ponent was fully constructed, we placed it in the larger system and moved

on to testing.

Test

To test the component we placed it in both the system and a special

framework specifically created for testing the component. With the testing

framework, we could easily see if the component met the specification. This

was because the component in question was the only unknown. All the other

variables, the other parts of the system, had been removed.

Even if the component worked flawlessly in this initial testing, it needed

to be tested in the end system. Only in the actual system could all the

subtleties of its interaction with the rest of the system be tested.

When a problem occurred, the design and/or implementation phase was

revisited, depending on the origin of the fault. With many design problems,

one could avoid fixing the faulty design and just add more code to work

around the problem and hopefully make things function properly. We steered

away from that technique and tried to do things the right way, which is to

redesign the component and then implement the updated design.

3.1.3 Our Design

From the storyboards, we designed the overall framework of the labs

and the most basic features. We started with Lab 2.2. Only after serious

progress had been made did we start parallel development of Lab 2.3. The

key advantage of this was that everything we learned from Lab 2.2 could be

13

applied to Lab 2.3.

3.1.4 Our Implementation

Considerable portions of code from Lab 2.2 were reused for Lab 2.3,

namely code for the histogram, box and whiskers plot, and slider bar. We

reused code for the instructions at the bottom of the labs, which came from

a previous project group. We also tried to reuse code from another project

group that implemented the histogram and box and whiskers plot, but were

unable to achieve proper functionality with it.

When the labs began to take shape, we started testing them and Professor

Petruccelli reviewed them regularly. As the labs materialized, we encountered

some issues that we had been unable to imagine when they had existed only

on paper. The storyboards were updated as these problems arose.

Two of the initial requirements for the labs were that students should be

able to print and save the various graphs and tables in the labs. With Java,

printing and saving are both possible, but due to difficulties only saving was

implemented in the final version of the labs. Our main difficulty was having

the labs print correctly across all platform, browser, and printer combina-

tions. While we were working on a solution to this, we learned that the

newer versions of Internet Explorer had an incompatible interface for print-

ing and would not work with our labs. Since printing would have worked

for fewer users as time went on, Professor Petruccelli decided that printing

was not worth the additional effort and removed that feature from the list of

requirements. Students can still achieve the same end result by first saving

the graph or table then printing it from a new browser window or any other

14

image viewing program.

3.1.5 Our Testing

Throughout this process we continually tested each component and fea-

ture thoroughly. Since one of the main aims of this project was to create

a cross- platform teaching tool, we tested the labs on several combinations

of hardware, operating systems, and web browsers. Professor Petruccelli re-

viewed and tested our work regularly, twice a week if not more often. He

provided much needed feedback, giving us suggestions for improvements and

new features.

3.1.6 Alternatives

We could have done the programming of the labs in another language

instead of Java. The main contenders were JavaScript, Perl, and PHP. Both

PHP and Perl suffer from the same problems and have the same benefits. It

would have been possible that they would simplify printing and saving from

the labs, but interactive graphics would have been enormously difficult to im-

plement, if not impossible. The problem of compatibility between machines

would have been much less of an issue, however, since all the processing for

the labs would have taken place on the server, not on the users' machines.

The downside to this is that during a lab section when 20 students would

try to run the labs, the load on the server could have caused a noticeable

performance hit.

JavaScript would have allowed the interactive graphics, but printing and

saving from the labs would still have been an issue, even more so than with

15

Java. JavaScript implementations are not standardized, so large portions

of code might have required rewriting to support two browsers. From a

compatibility and feasibility standpoint, JavaScript is like Java but worse.

3.2 Research Methods

In order to determine the effectiveness of our labs we gauged the reactions

of student users. Besides testing the basic compatibility of our software, we

also tested the ability of our labs to teach the lessons. We had the students in

the A term introductory statistics course, MA 2611, test our labs during one

of their weekly lab sections. The software performance was essentially bug

and incident-free. A survey was administered after each lab, asking students

various questions about the lab and their experience with it. The survey

inquired about both pedagogical and technical issues. Our observations and

student responses to a questionnaire suggested features that could be added

or improved, and the labs were subsequently modified in response.

16

4 Lab Descriptions

4.1 Lab 2.2

Data having a unimodal symmetric distribution is easier to analyze than

non-symmetric data. Because of this, data analysts often transform non-

symmetric data to obtain a more symmetric distribution. Lab 2.2 introduces

the students to this concept of transforming data with a unimodal distribu-

tion in order to make its distribution more nearly symmetric. The lab looks

at the class of power transformations: transformations that raise data values

to a power (or, for the power 0, take the logarithm), and explores their effect

on data with non-symmetric unimodal distributions.

The main website provides a basic introduction that informs the student

of the lab objectives, and examples of real life applications. A frame on the

left side of the lab window contains a menu with links to the lab introduc-

tion, a description of power transformations, the applet, a glossary of terms,

instructions on saving and printing graphs, a set of questions to answer for

the lab report, and instructions for installing a Netscape certificate needed

for saving graphs when using the Netscape browser.

The menu is constantly visible so that students can access these resources

conveniently while doing the lab. Thus, students can refresh their memories

about what a power transformation is, or look up the definition of the median

at exactly the moment they need to while doing the lab. The ability to access

information as it is needed enhances the instructional power of the lab.

The website layout is designed so that each page only contains information

vital to the immediate topic. This way, there are clearly-defined menu items

17

on the left of the window and a clean content frame on the right. By clearly

defining sections and keeping the content short and neat, we adhere to proper

pedagogical and psychological norms. The student can navigate the web

portion of the lab with greater ease and maintain interest in the material.

The applet window contains an information panel with an instruction

panel below it (Figure 4.1). The instruction panel displays only a few lines

at a time, but can be scrolled to display further text. The initial text in

the instruction panel provides a more detailed introduction to the lab and

applet and gives explanations of the lab controls. The instruction panel then

provides step-by-step instructions for the student.

At the top of the applet window is a menu bar with two menus: File

and Preferences. From the File menu, the student can select Save to save

the graphs or select Exit to close the applet window. The Preferences menu

contains three items: Customize Colors, Font Options, and Scaling Options.

The first two are for aesthetic purposes only and allow the student to change

the colors and font used in the graphs. There are three scaling options that

can be selected: Auto Scaling, Static Scaling, and Zero Left. Auto Scaling

sets the range of the histogram to be the current extremes of the transformed

data set. This provides the most 'zoomed in' view of the histogram. The

Static Scaling option sets the range of the histogram to be the maximum and

minimum values that the data can obtain through the entire transformation

range. The Zero Left option is similar to Static Scaling except that the

histogram's minimum range value is set to 0 regardless of the value of the

data set's minimum.

Performing this lab consists of navigating the instruction panel, sliding a

18

power transformation bar and examining the information panel. This instruc-

tion panel provides the students with a concise introduction to the material,

and short 'to the point' instructions. The slider bar shown in Figure 4.1

provides a quick method for selecting the power of the power transformation

used to transform the data. As the data are transformed the applet updates

the histogram, box-plot and a summary statistics table. The histogram win-

dow provides a range along the x-axis which is helpful in determining how

the power transformation varies the data maximums and minimums. The

box-plot assists in viewing the symmetry through the quartile ranges from

the median. The summary statistics box contains the mean, standard de-

viation, first and third quartiles, median and the interquartile range (IQR):

the range of the middle 50% of the data. These summary statistics comple-

ment the graphs nicely: as they make transformations, the students can see

how the graphs and summary statistics vary together. So at the same time

the lesson on transformations is learned, student understanding of graphical

and numerical summaries is enhanced. Using the graphical information and

summary statistics, the student can analyze the data to generate symmetric

histograms.

The data are generated by clicking on the 'New Data' button. This

process generates a set of pseudo-random data from a normal distribution.

The normal distribution has a mean of 5 and a standard deviation of 1. In

the unlikely case that a negative data value is generated, it is discarded and a

new value is generated. Each data value is then raised to a randomly selected

power, q. To select q, a number is first randomly selected from the range

of values that the transformation slider can select, which is every one-tenth

19

on

ishrodlocam

,rot ,nram a tat,r. sto ...Awl ...a 0,4 	 4ur<w wet. A.6. F., 	 Ole .5f DVS, t. rel,we

CONTROL
SLIDERS

HISTOGRAM

BOX-PLOT SUMMARY
STATISTICS

INSTRUCTIONS

Figure 1: Lab 2.2 Applet

from -4 to 4. This number is then inverted to determine q. In the case

where 0 is first selected, the data values are not raised to a power, but are

exponentiated.The student sees the transformed data as a skewed unimodal

histogram displayed in the applet window along with its accompanying box

plot and summary statistics. The goal is for the student to transform the

data using the transformation slider to restore the histogram to a unimodal

symmetric appearance. Moving the slider is an easy way to quickly get close

to the appropriate power. When the transformation is visually symmetric the

student can use the provided summary statistics to evaluate the symmetry by

comparing the quartile symmetry from the median. At this point the student

saves the image and creates a new set of data that is skewed differently from

the first set. The student then finds the best transformation for this second

data set. The students are required to write a lab report detailing how the

objectives were attained and how power transformations work. They may

20

be asked by their instructor to answer the questions linked to the main lab

menu.

Intuitive functionality and pedagogical soundness were important consid-

erations in the design of our labs. The student should be able to determine

the function of controls by merely looking at the layout, or through very sim-

ple instruction. The instructions in lab 2.2 are clearly listed at the bottom

of the screen, with intuitive forward and backward buttons. The student

knows that the next button will bring up sequentially-listed instructions per-

taining to the current lab, and likewise, the back button will bring the user

to the previous instructions. Not only is the simple navigation through the

instructions essential, but also the format of the instructions themselves is

integral to student learning. Each instruction is at most a few sentences and

maintains a clear point. Brevity and clarity of instruction helps maintain

student interest.

Another key design feature is the instantaneous feedback in the histogram

and box plot when the power transformation slider is moved. The student

not only immediately recognizes how the slider operates, but also quickly

sees how transformations affect data distributions. The real-time display

shows not only the histogram and box-plots, but also range information. If

the original data set is between 0 and 1, then the range displayed under the

histogram shrinks as the values are raised to powers greater than 1. When

this type of data set is raised to powers between 1 and 0, then the range

increases. When the original data set contains values greater than 1, then

the range changes in an opposite manner. Powers greater than 1 increase

the range, and powers between 0 and 1 decrease the range. With the small

21

incremental levels of power, the data is only modified slightly for each tick

of the slider, and this brings a very educational visual dimension to power

transformations.

By default, the number of bars displayed in the histogram is automatically

determined. This does not always make the histogram viewable through

the entire range of transformations. To overcome this, the student can use

the vertical slider bar to select the exact number of bars to display in the

histogram. The fewer bars that are displayed, the wider and more visible

they are.

The summary statistics are also updated in real time as the slider bar

is modified. The summary statistics also help inform the student about the

symmetry of the data distribution: the values of the quartiles and com-

parison of the mean and median are particularly helpful. Only the values

essential to the histogram and box plot are displayed, and so the student

is not overburdened with inconsequential information. Overall, lab 2.2 has

clear instructions and a natural user interface.

22

http://users ..pLedui,ottreuMIPX.b2.3/ndex.htrri
Ton?.

Strategies

Applet

Savinq and Printing

Ouestions

Netscape
Certificate

Web-Based
Statistics Labs

Introduction

It Is very common for people supervising a process to try to adjust inputs or operating

conditions to compensate for an unusual (and most often undesirable) result If the process is

stationary and on target, such "process tampering' will almost always make the process worse by

increasing process variation, by making the process nonstationary, or by doing both.

Objectives

In this lab, you will use tools and concepts you have learned in chapters 1 and 2 to explore

what happens when a stationary process is tampered with

4.2 Lab 2.3

The main ideas behind Lab 2.3 are process variation, process stationarity,

and how they are affected by process tampering. The calibration of a cannon

is used to show how adjusting a stationary process can cause it to become

nonstationary or increase the variation.

Figure 2: Lab 2.3 Webpage

When a user selects a link to the Lab 2.3 web page, they are greeted

with the page in 4.2. In the left frame are links to the various sections of

the supporting web pages. In the right frame is the selected section. The

student begins by reading the necessary background information contained

in the Introduction and Objectives sections (selected by the "Intro" link).

More detailed background information is contained in the Strategies section,

which the student is directed to read during the course of the lab exercise.

Once the lab has been completed, the student is to answer the questions

23

22

•
• •

. . .

Oidw

contained in the Questions sections and include the answers in a lab report.

To start the applet, the student clicks the Applet link in the left frame. A

new window containing only the applet will appear, leaving the supporting

web pages unchanged. 4.2 shows what this window looks like. At the bottom

of the applet window are the lab instructions. The instructions were placed

in the applet window as opposed to the supporting web pages so that the

user does not need to constantly switch between windows.

Oil Ctn. Am IN 	 Last Hi 12263 	 New Am 10
Staley i r She,a2,2 r Staley 3 r st.9,4

Introdudlon (1112)

Any process with measurements taken over time, a target value for those measurements, and adjustable inputs or operating condstions is suitable to Illustrate the

concepts involved

[Back] [Next]
15

-17

Figure 3: Lab 2.3 Applet

As can be seen in 4.2, six tabs run along the top of the applet. The first

tab, labeled "Cannon", is where most of the interaction between the user

and applet occurs. The graph at the top is a time series plot of the locations

of all the previous shots for the selected strategy. Beneath the graph is an

24

animated cannon that exists mainly for aesthetic reasons. Next are three

fields describing the current aim of the cannon, the last location hit by the

cannon, and the new location to aim the cannon. Finally, there are four radio

buttons from which the user selects the strategy to use.

The next four tabs contain graphs and summary statistics for their re-

spective strategy. In each tab are a time series plot, a box and whiskers plot,

and a histogram. Also provided are the mean, median, standard deviation,

and interquartile range for the data generated for the given strategy.

The last tab, "Comparison", contains one time-series plot for each strat-

egy. This should allow the student to easily see the differences between the

various strategies.

After the applet window has opened, the student begins (hopefully) by

reading the instructions and performing the operations indicated. For Lab

2.3, this involves calculating the new position at which to aim the cannon

for a few data points for each strategy.

Strategy 1 is to leave the cannon completely alone. The aim is left at

zero for all shots. This strategy is the best strategy to use for a stationary

process, such as the one in this lab. The distribution of the shots of the

cannon if it is not tampered with is a standard distribution with a mean of

0 and a standard deviation of 10. Strategy 2 is to change the aim of the

cannon by -y units given that y is the location of the previous shot. This

strategy keeps the process stationary, but it does increase the variation in the

process. Strategy 3 is to aim the cannon at location -y given that y is that

previous shot's location. This strategy greatly increases the variation of the

process, while also making it nonstationary. Strategy 4 is to aim the cannon

25

at location y given that y is the location of the previous shot. This strategy

also causes the process to become nonstationary while also increasing the

variation. This strategy produces a random walk.

For each strategy, the student is asked to calculate the first five shots

manually. The student is then instructed to press the "Automate" button

to fire the cannon 495 more times. This combination of manual calculation

followed by computer automation allows the lab to use the power of the

computer to demonstrate the consequences of each strategy, while both en-

suring that the student understands what each strategy does, and keeping

the student involved in the process.

Once data have been generated for all four strategies, the student can

select the "Comparison" tab and easily compare the strategies visually. The

consequences of the different strategies can be easily compared since each

strategy tab contains various summary statistics along with the box-and-

whiskers plot, histogram, and time series plot. The summary statistics in-

cluded are the mean, the median, the standard deviation, and the interquar-

tile range.

Most of the graphs in the applet may be saved to files. For the "Strategy"

panels, the three graphs and the summary statistics will be saved to a GIF

file. For the "Comparison" tab, the four time series plots will be saved to a

GIF file. Nothing on the "Cannon" tab can be saved. This is because the

graph for the selected strategy can be saved from its appropriate "Strategy"

tab and because none of the other visible elements in the "Cannon" tab

would be useful to save.

The graphs cannot be printed directly from the applet, but they can still

26

easily be printed. To print them, one has only to first save the desired graphs

then open the image in a new browser window. Once loaded, the image can

be printed in the same manner as any other online content. The image could

also be opened in any standard image viewing or editing software if the user

wishes to edit the image or customize the printing more than is allowed by

the browser's printing options. The image can also be imported into word

processing software for direct inclusion in a lab report.

27

5 Programmers Reference

5.1 Lab 2.2

The main class for Lab 2.2 initializes the visual components and settings

of the applet. The initialization routine begins by sizing the applet window

dynamically to the user screen size. The applet window then takes up only

a percentage of the screen. Standard menus are added to implement image

saving and customization options. A tabbed pane created by Takeshi Kawato

is inserted in the main window along with step-by-step instructions at the

bottom of the applet. The instruction panel is mostly borrowed from previous

labs with the exception of the slider bar, and is in the source provided by

Takeshi Kawato. 13 The tabbed pane consists of two windows; one containing

the plots and summary statistics and the other with the data set. The rest of

Lab22.java implements object listeners which wait for mouse commands to

change values of slider bars, instruction pages and the tabbed display. As the

slider bars change the power transformation value, the data are forwarded

to the histogram, box-plot, summary statistics and data table functions.

Selecting different tabs brings to focus the two different tabbed window panes.

The summary statistics are immediately controlled by the top class Lab22.

This is a simple six by two celled table containing the mean, standard devia-

tion, first and third quartiles, the median and the interquartile range. These

values are updated whenever the data is power-transformed and displayed in

the table.

The data table located under the detailed data tab is also directly con-

13Kawato, Takeshi, Statistical Teaching Aids, (2003)

28

structed with the 1ab22 class. This table displays a title for the original data

and for the transformed data. There are cells for 18 values under each cat-

egory which display the whole data set through the use of a control slider

bar.

The data are manipulated using the power transformation scrollbar. This

scrollbar is created using the Slider class which generates a scrollbar in the

allotted space. This scrollbar can be oriented vertically or horizontally using

the setOrientation command. Automatic or manual tick marks and labels can

be added. The maximum and minimum values are set using the setMinimum

and setMaximum commands. Moving the slider results in a value being

stored, which can be read with getValue. By polling these values, the power

transformation value and number of bars value are changed.

The instruction panel is created with the DirectionPanel.java class which

is in the package we were provided with. Setting up the instruction panel

only requires adding new directions with the addDirection command. This

command automatically increases the size of the instruction array, so that the

scrollbar object knows the size of the instructions at all times. Directions are

added with a title and a description. When the instruction panel is displayed,

the first instruction appears, along with forward and back buttons in each

frame and a scrollbar so the user can jump to any specific frame quickly.

The tabbed panels class allows many windows to be utilized in a relatively

small location. Users can select from various tabs, to display the screens they

want to display. Setting up the tabbed panels requires creating new panels

with the addTabbedPanel function with a content panel and tab caption

passed as parameters.

29

The plots window incorporates a histogram that shows the transformed

data. The histogram is set to display the data by using the setData function.

When this occurs, the histogram calculates the most extreme values that

can occur when transforming the data. This is used when the Static Scaling

option is selected. The number of bars in the histogram and their values are

calculated when a new data set is provided, the data set is transformed, or

the number of bars is manually selected. To improve visibility, the heights

of the bars are automatically scaled to be large as possible.

The plots window also includes a box-plot directly above the histogram,

displayed on the same scale. This plot is provided with the same data as

the histogram through the setData function. The range is also set in the

same way as the histogram with the setRange option, and supports zero-

left, variable and fixed range options. The data processing is handled in the

graphics update routine and consists of displaying the outliers, +A and -A,

first quartile, third quartile and the median. Most of the processing occurs

in resizing the data so that they are applicable to the screen size that the

box-plot uses.

30

5.2 Lab 2.3

From a maintainability and reusability standpoint, Lab 2.3 would be a

better choice than Lab 2.2 as a starting point for new web-based labs. Since

substantial portions of Lab 2.2 had been completed when the implementation

of Lab 2.3 began, we were able to use the lessons we had learned when coding

Lab 2.3.

When the applet begins initialization, it first sets up the window and

frame in which it will sit. It then calls a number of initialization functions,

each of which initializes a group of related components. There are functions

to setup each tab, to create the menu at the top of the window, and to create

the directions at the bottom of the applet.

When the cannon tab is selected, nothing occurs until one of the Reset,

Fire, or Automate buttons is pressed. When the Reset button is pressed,

the data set for the selected strategy is removed and aiming information is

reset. When the Fire button is pressed, the current aim is first checked for

correctness. If it is incorrect, a message is displayed to the student. If it is

correct, the cannon is aimed at the location and a shot is 'fired'. This is done

by taking the current aim of the cannon and adding a random value. This

random value comes from a normal distribution with mean 0 and standard

deviation of 10. After the shot has occurred, the last hit field is updated.

When the Automate button is pressed, the same things occur as when the

Fire button is pressed, except that correct data is generated even if the next

aim is incorrect. The Automate button generates as many data values as are

needed to have a total of 500 data points including the manually fired shots.

When a new strategy is selected from the strategy radio buttons, the

31

aiming and last hit information are updated as well as the time series plot

above the cannon.

To be more computationally efficient and to keep the applet from becom-

ing sluggish, the graphs that are not in the Cannon tab are not updated

until the tab in which they reside is selected. When the student switches

to a strategy or comparison tab, a callback function is invoked. To register

the callback, the tabs' constructors are passed an object, which contains a

single method when the tabs are created. This object's method updates all

the graphs contained in its associated tab.

32

6 Results

6.1 Student Results

A key step in developing software of any type is the testing phase, during

which time a developer receives suggestions on improving different aspects

of the software. With our labs complete except for finishing touches, we

scheduled a test day for the web-based labs. During this day, the regular

statistics students performed our lab instead of the standard SAS lab. Using

a questionnaire, we were able to get opinions of the overall usefulness of our

lab from nearly 100 students. We were also able to address the students'

concerns on a more personal basis, because the 100 students were divided

into four small groups split up over the day. Using this collected information

we were able to determine the key areas of our lab in need of improvement.

In our survey (Appendix page 41) we decided to use a majority of short

answer and numeric value questions. Due to our volume of surveys, 100 stu-

dents with two surveys each, it would have been too difficult to interpret

many short answer opinions. Our first six questions are all answered with a

numeric value representing the level of various attributes of our lab. Ques-

tions 10 and 11 and the lab-specific question were simply answered with a

choice. The numeric and multiple choice answers were then inserted into an

Excel sheet (see attached disk) along with other information such as the stu-

dent's section number, sex, major and year of graduation. These data were

then analyzed for trends and patterns using SAS, so that we would know the

general student opinion of our labs.

We had the students evaluate how successfully the lab achieved each of

33

five goals, using five questions (one per goal). The responses were on a scale

of 0 to 10 with 0 indicating complete lack of success and 10 complete success.

These questions ask about the user interface, clarity of instructions, clarity

of objectives, adherence to objectives and the general level of conceptual

knowledge gained. The sixth question asks about the level of complexity of

the lab, with a 0 being too easy and a 10 being too hard. The remaining

three multiple choice questions ask about the student's previous statistical

education, the usefulness of the labs' portability and either about the pre-

ferred scaling option in lab 2.2 or whether or not the strategy check boxes

were confusing in lab 2.3.

Tables 1 and 2 show the basic summarized results of our survey. With

a quick glance, we can determine that the student opinion of both labs was

positive. The data from Lab 2.2 shows high responses for questions 1 through

4, and a somewhat lower response for question 5. The response for question

6 is slightly lower than its ideal value of 5. This response to question 5

suggests that the students did not feel the lab was as successful at conveying

the concepts as it should have been. The response to question 6 along with

comments provided by the students shows that the lab was a bit too easy.

This could be improved with a more involved lab, but cannot be entirely

avoided with introductory material. Lab 2.3 scored well on all the questions,

dipping only slightly on question 5.

Table 1: Lab 2.2 Results Summary

Question:

Mean:

Std. Dev.:

Q1 Q2 Q3 Q4 Q5 Q6 Q10 Q11 Scaling

8.8 8.7 7.7 8.1 6.5 4.7 %37.5 %92.9 %82.1

1.6 1.5 2.3 1.7 2.4 2.0 % Yes % Auto

34

Table 2: Lab 2.3 Results Summary

Question:

Mean:

Std. Dev.:

Q1 Q2 Q3 Q4 Q5 Q6 Q10 Q11 Confusing

8.6 8.2 8.0 8.5 7.7 5.2 %35.7 %89.9 %7.1

1.7 2.1 2.3 1.7 2.2 1.7 % Yes

Our questionnaire also contained three questions where the students could

elaborate on any suggestions they had. These questions involved the stu-

dent's likes, dislikes and ideas for improvement. We summarized the stu-

dent's answers in order to concentrate on the main categories of each sugges-

tion. This way we were able to group many similar thoughts together and

see where exactly our lab excelled and where we needed improvement. This

summary can be seen in the appendix on page 43. Some trivial and possibly

sarcastic comments have been omitted from this table. This should not affect

our analysis in any way as only one or two students answered the questions

this way.

The tables list the suggestions for labs 2.2 and 2.3 in order of most im-

portance and so it is easy to see which issues should be addressed first. For

example, the students think that the most important fix for lab 2.2 would be

to improve the clarity of the instructions. The students feel that we need to

resolve some ambiguity of the instructions and possibly the interface for lab

2.3. For both labs, sections explicitly stating the objectives were added. The

background material was also expanded for both labs, especially the section

explaining the various strategies for Lab 2.3.

Many students responded that the issues with printing should be resolved.

They were resolved, but not in the manner the students had probably in-

tended. Due to implementation issues, direct printing was dropped from the

35

lab. Students can still print graphs, but only after first saving them to a

graphics file.

36

7 Conclusion

Our implementation of a web-based lab proved to be very successful.

Based on the observed lab sessions and survey results, it is clear that the

students are very satisfied with labs 2.2 and 2.3. The labs provide clear

objectives for the students and then clearly and concisely help the students

through the labs. In an entry level educational environment, the web-based

labs have a major advantage over SAS labs in respect to their quick learning

curve and tailored interface. SAS is definitely the more powerful and versatile

tool, but a custom web-based lab provides the students with a more accessible

and targeted lesson.

In order for our labs to be successful, we needed to provide the students

with at least the same educational quality provided by the previous SAS labs.

Clear objectives ensure that the students know exactly what material they

should extract from our lab. The objectives are listed on the introductory web

page for the lab, and are then described in depth in the lab instructions. From

our survey results we can conclude that the students feel the lab objectives

are well met. Assuming that our objectives are well defined and represent the

same material covered by a SAS lab, it is safe to assume that our labs provide

the same level of learning that a SAS lab provides. The custom web-based

lab can cover the same lesson as a SAS-based lab, without the overhead of

learning the software.

Defining clear objectives is not the only requirement for a good lab. The

student needs to interact with the software, rather than just merely viewing

a non-interactive lesson. By requiring that the student manually manipulate

pertinent data we ensure that our objectives will be learned. In lab 2.2

37

the user must move a slider bar to transform the data while a histogram

updates in real time. This presents the student with a clear image of how the

transformation is altering the data. Lab 2.3 allows the student to perform

five operations by hand which gives the student an interactive experience

with process tampering. The automation that occurs afterward shows the

student trends in the different tampering methods. This interactivity keeps

the student's attention and requires the student to really learn the lesson.

One advantage of the web-based labs over the SAS-based ones is that

a lesson is completely self-contained and customized for the material. The

web-based approach contains the instructions and interactive lesson all neatly

contained in one window. Unlike SAS, the web-based approach requires

no setup time for initializing the software or configuring printers, during

which the student can lose interest and become frustrated. In addition, the

customizable nature of the web-based approach allows for the creation of

a solid pedagogical layout maximizing the student's efficiency. While SAS

is powerful and complicated, the web-based labs contain a straightforward

lesson in a custom environment. Finally, since the labs are all hosted on

the WPI math server, they are accessible to the entire campus at any time.

Not only does this mean that the students can complete the assignment

from anywhere, but specifically, the students do not need access to the SAS

software.

SAS has two main advantages over the web-based solution. The first is its

power as a highly developed statistical analysis program. An endless amount

of data manipulation can be performed for many different combinations of

data sets. The web-based solution is clearly not a replacement in any way

38

for SAS, but is best used as a lab instruction tool. The second advantage

that SAS has over web-based labs is its macro tools. Labs can be constructed

relatively easily in SAS by writing instructions and generating a macro, as

opposed to developing an entire application with the web-based approach.

However, if a lab toolkit were to be developed, the web-based labs could be

easily created with a specific layout standard.

Labs 2.2 and 2.3 proved successful because they effectively teach the stu-

dent their respective lessons. These labs, along with the SAS-based labs

are pedagogically sound and adhere to a basic standard layout which keeps

the students familiar and comfortable. There are clearly-defined objectives

provided for the students. The web-based approach is superior to a SAS

lab because it communicates a custom lesson with less confusion and greater

accessibility.

39

References

[1] Abbey, Beverly, Instructional and Cognitive Impacts of Web-Based Ed-

ucation, (Hershey, PA: Idea Group Pub., 2000).

[2] Brown, David G., ed., Interactive Learning, (Bolton, MA: Anker Pub.

Co., 2000).

[3] Cooper, Alan, The Inmates Are Running the Asylum, (Indianapolis, IN:

Same, 1999).

[4] Clein, Robert and Holmes, Samuel, Online Statistics Labs, (2003).

[5] Deming, W. Edwards, Out of the Crisis, (Cambridge, MA: Mas-

sachusetts Institute of Technology, 1986).

[6] Dix, Alan J., Human Computer Interaction, (London: Prentice Hall

Europe, 1998).

[7] Kawato, Takeshi, Statistical Teaching Aids, (2003).

[8] Liesen, Eric and Whitfield, Paul, Statistical Teaching Aids, (2001).

40

A Appendix

A.1 Survey

Name: 	

Lab Number: q 2.2 = 2.3

Sex: 	 Major: 	 Class year: 	

For both labs:

1. How easy was the interface to use (on a scale of 0 to 10, 0 being Not at All,

10 being Very Much)? Describe any problems you had.

2. How easy were the instructions to follow (on a scale of 0 to 10)?

3. How clear were the objectives (on a scale of 0 to 10)?

4. How well were the objectives met (on a scale of 0 to 10)?

5. To what extent did the lab aid in your understanding of the concepts (on a

scale of 0 to 10)?

6. Was this lab too easy, at right level, or too complex (on a scale of 0 to 10,

0 being too easy, 10 being too complex)? Why do you feel so?

7. What did you like about this lab?

8. What did you dislike about this lab?

9. How can this lab be improved?

10. Prior to this course, did you have any previous statistical education?

11. Is the option of being able to use these labs on any computer with Internet

Explorer or Netscape beneficial? Why?

For lab 2.2 only:

Which scaling option did you find most useful: Auto scaling, Static scaling, or

Zero left? Why?

41

For lab 2.3 only:

Was it confusing having both check boxes and tabs labeled 'Strategy 1' through

`Strategy 4' ?

42

A.2 Summarized Suggestions Table

Table 3: Lab 2.2 Suggestions

Likes Frequency Dislikes Frequency Improvements Frequency

Simplicity 28 Triviality Clarity

0
0

 t...
 •71.4 C

'eD C
V

 C
q

1
-1

1
-4

 Visualization 16 Boring Saving

Length 12 Clarity More Complex

Interface 10 Simplicity None

Clarity 8 Printing Issues
C

O
 Printing

Ease of Use 5 Saving Issues Functionality

Organization 4 Too Short More Examples

Lack of SAS 4 Too Long Relative Data

Table 4: Lab 2.3 Suggestions

Likes Frequency Dislikes Frequency Improvements Frequency

Visualization Ambiguity

.71.,
lt--

•

7r.
d

''
V

D
 V

D
 C

V

1
-1

 Ambiguity 13

Ease of Use Clarity None 13

Simplicity Too Few Cannons Clarity 7

Concepts Bugs Automation 5

Interface

IC
J
 Repetition Animation 4

Lack of SAS Boring More Cannons 2

Interesting Interface Visualization 1

Organization • : Sound 1

Length

43

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49

