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Abstract

With the increase in traffic on the web, popular web sites get a large number of

requests. Servers at these sites are sometimes unable to handle the large number of

requests and clients to such sites experience long delays. One approach to overcome

this problem is the distribution or replication of content over multiple servers. This

approach allows for client requests to be distributed to multiple servers.

Several techniques have been suggested to direct client requests to multiple

servers. We discuss these techniques. With this work we hope to study the extent

and method of content replication and distribution at web sites. To understand the

distribution and replication of content we ran client programs to retrieve headers

and bodies of web pages and observed the changes in them over multiple requests.

We also hope to understand possible problems that could face clients to such sites

due to caching and standardization of newer protocols like HTTP/1.1. The main

contribution of this work is to understand the actual implementation of replicated

and distributed content on multiple servers and its implication for clients.

Our investigations showed issues with replicated and distributed content and

its effects on caching due to incorrect identifiers being send by different servers

serving the same content. We were able to identify web sites doing application layer

switching mechanisms like DNS and HTTP redirection. Lower layers of switching

needed investigation of the HTTP responses from servers, which were hampered

by insufficient tags send by servers. We find web sites employ a large amount of

distribution of embedded content and its ramifications on HTTP/1.1 need further

investigation.
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Chapter 1

Introduction

The traffic over the Internet has grown at a fast pace [1]. However, the increase in

traffic has caused a disproportionate increase in traffic to popular web sites. A single

server at such web sites cannot handle the large loads due to such traffic, which has

resulted in servers at such sites being over-loaded and becoming slow. The natural

approach to solve the problem is to scale up the number of servers at the web sites.

The challenge however lies in being able to distribute the client requests to these

servers by a suitable technique.

Some of the approaches suggested by research to distribute the load are to repli-

cate or distribute the content of a site onto multiple servers. Such a collection of

servers are called server farms or web clusters and the technique by which the client

is directed to one of the servers in a cluster is called load balancing. Load balanc-

ing techniques can be broadly classified as transparent and non-transparent load

balancing. The basis of transparency is from the client perspective. Sites that do

transparent switching do it at a layer below the application layer and hence the re-

sponse from the server to the client seems to come from the same server the request

was made to by the client. Non-transparent switching involves the use of application
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layer protocols to direct a client to one of the multiple servers forming a cluster at

web sites. Content apart from being replicated, is also divided into smaller sets and

distributed over multiple servers. In such cases locality-aware switching is needed

where the switching mechanism is aware of the content requested by clients. Servers

can also be selected to serve a client based on the Quality of Service (QOS) require-

ment of the client. We will discuss the various techniques suggested by research in

detail in the chapter on related work. One of the aims of this work is to investigate

if the techniques suggested by research are implemented by web sites.

The main motivation for our work lies in understanding the correlation between

the suggested techniques in research and actual implementations of load balancing

techniques by web sites. We were aware of the increase in traffic to popular sites

being web users ourselves. There were noticeable delays in accessing popular web

sites and sometimes such web sites became intolerably slow after being overwhelmed

by the large number of requests. It became evident that a new architecture com-

pared to a single server handling all requests is needed. Research studies provided

techniques recommending several methods to achieve scalability. Our primary in-

terest is to identify if web site implements the suggested techniques. To accomplish

the identification we run our tests in the client space and make HTTP requests on

servers. By studying the responses and investigating web pages we identify sites

that did load balancing. Once such sites are identified we are interested in under-

standing the techniques used by such sites. Based on the techniques used by the

web sites we classify the sites and study the implementations of each technique. The

study allows us to gauge the pros and cons of each implementation and potential

enhancements or issues with a particular form of implementation.

We expected to encounter difficulties in identify sites doing certain forms of trans-

parent switching and also in identifying the exact technique by which the servers are

2



being selected from a cluster. However an inability to identify these sites would be

a reflection on the correctness of the implementation at those sites. In cases where

we could identify sites that attempt doing transparent switching it would indicate

a loss of transparency to the client.

The other aims of the study are to identify problems with current implementa-

tions of load balancing with caching and newer protocols like HTTP/1.1. Clients

use tags like the last modified time and ETags to validate caches. These tags are

provided by the HTTP/1.1 and HTTP/1.0 protocols and are used by caches on

subsequent requests for servers to validate the cache. In previous studies [2] it was

found that the tags varied even though the resource remained the same. The change

in tag is a potential problem with implementations and it is necessary to identify if

the problem is due to multiple servers serving the same content due to replication of

data. The problem of varying tags is likely to occur when multiple servers are serv-

ing the same content, since the tags vary because of differences in the update time

or an improper calculation of the resource identifier tag. Problems found in caching

of content from sites doing load balancing needs to be rectified, since it would be

difficult to correctly validate the cache contents from such sites. It is interesting

to try to understand the interplay of caching, which is provided to reduce traffic

load, with methods of load balancing used at web sites. No previous work, to the

best of our knowledge, was done in understanding the correlation between caching

and load balancing schemes on real web sites. Knowing that maintaining identifiers

across multiple servers in a cluster would prove challenging, we hope to test if sites

are able to efficiently maintain content identifiers in the new architecture.

HTTP/1.1 provides a method of persistent connections for a client. Persistent

connections are provided in HTTP/1.1 so that a client can establish a persistent

connection to a web site and retrieve HTML pages with its embedded content on
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a single TCP connection. The provision for persistence in HTTP/1.1 is done to

speed up the page retrieval as compared to HTTP/1.0, where a page is retrieved by

establishing a separation connection for each object. In the initial tests that we ran

it was observed that a single page was retrieved by objects from multiple servers.

The spread of objects onto multiple servers is the case of distributed content over

multiple servers. The problem with this method of load balancing is that the client

needs to break the connection to the server and establish a separate connection to

a different server. The breakdown and reconnection causes a performance overhead

and defeats the purpose of persistent connection in HTTP/1.1. However multiple

servers provide an increased parallel processing of client requests to such sites. We

feel it necessary to study the distribution of the objects needed to render a page

in current implementations of load balanced web sites and hence gain a clearer

understanding of the issue. To study the distribution of objects we examine the

objects that form a web page and by comparing the servers needed to retrieve these

objects we get a measure of the amount of distribution.

To further understand the techniques of load balancing, tests were also conducted

to observe if the servers used to serve objects or provide a traversal link to a HTML

page changed over multiple retrievals. If different servers are seen in the such tests

it would indicate another approach to distribute client request.

The completion of the work allows us to understand the practical implementa-

tions of load balancing as compared to research work. It facilitates methods by which

future work on web sites can be based in terms of understanding the load balancing

techniques. In addition, problems identified enable us to gain insight into problems

in practical setup of load balanced web sites. The influences of load balanced web

sites on caching and HTTP/1.1 are relevant in investigating corrective actions in

future research work. In summary the work allows a deeper understanding of load
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balanced web sites and its influences on caching and HTTP/1.1 protocol.

The chapters are arranged with Chapter 2 dealing with techniques of load balanc-

ing suggested by research. It covers dynamic load balancing and mirrors. Chapter

3 covers the problems we are trying to uncover and the reasons that motivated us

to target the specific areas. Chapter 4 covers our methodology or approach in in-

vestigating the specific areas and the details of our experimental setup. Chapter 5

covers the results from our tests while Chapter 6 covers the conclusions, future work

and a summary of the thesis.
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Chapter 2

Related Work

In this chapter we discuss the related research work done in the area of load bal-

ancing. The main areas of concentration in load balancing research has been in

developing techniques to efficiently and transparently switch clients to a back-end

server and avoid overloading a server. The web content is distributed or replicated

over multiple servers. Distribution of content refers to the partitioning of a data set

on the back end, while replication refers to replication of data on multiple machines.

Redirection of clients at web sites having replicated content requires a fairly uniform

distribution of requests to replicated servers to prevent the overloading of a single

server. In the case of distributed content, the redirection mechanism must be aware

of the content requested by the client and a corresponding transfer of the client must

be made to the server providing the content. We begin by discussing the methods

by which a client is directed to a server and go on to explain the basis by which a

server is selected to serve a client and finally cover other related areas relevant to

our work.
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2.1 Redirection Techniques on Load Balanced Sites

2.1.1 Overview and Classification of Redirection Techniques

The section covers the different forms of dynamic load balancing techniques. Later

sections cover each technique in detail. Figure 2.1 provides an overview of the

classification [3] [4] of redirection techniques. There are several methods by which

redirection techniques can be classified, based on the layer the switching takes place,

the algorithm used in selecting the server etc. We use the layer at which the switch-

ing takes place, as the basis of classification. The redirection techniques can be

classified as application layer or non-transparent switching and network layer or

transparent switching. The network layer is called transparent switching because

the client making the request makes just one TCP request and the server at the

web site transparently directs the request to different servers in the cluster. The

application layer switching is more visible to the client. The client is still dynami-

cally switched to one of the servers in the cluster but it can identify that it is being

directed to a different server during the process of retrieving the web page. The

non-transparent form of switching will become clearer as we describe the various

techniques.

Application layer switching shown in Figure 2.1 has four forms of switching.

The Domain Name Server (DNS) based switching uses the DNS server to switch

among the server clusters. The DNS server resolves the URL of the site to different

IP addresses on a client lookup and hence balancing the load since the client then

makes a request to the resolved IP address. The DNS redirection is classified into

two types based on the time to live (TTL) value set by the DNS server. Client based

switching has the client browser take a more active role in the selection of a server.

The client must have knowledge of the servers that form the cluster and it then
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selects a server based on information it obtains or discovers. The dispatcher based

approach involves a single server at the cluster redirecting the client to one of the

cluster servers. The dispatcher that dispatches the client to a server in the cluster

can do so transparently, as well as non-transparently. The form of dispatcher based

redirection that falls under the non-transparent switching is the packet forwarding

scheme of HTTP redirection. The HTTP redirection method uses a 302 response

code to the client to indicate the server has moved. The fourth form of redirection

under the application layer classification is the HTTP form of redirection in the

server based redirection scheme. The scheme gives every server in the cluster the

ability to redirect the client to any other server. Similar to the dispatcher based

scheme each server can redirect the client to a different server transaparently as well

as non-transparently.

The Network layer and MAC layer switching happens at a layer lower than the

application layer and hence the client does not know that it is being redirected.

The two forms of redirection schemes are dispatcher and server based redirection

schemes. As described earlier the dispatcher forwards the client requests since every

request is send to it. The decisons are based on statistics on server load gathered by

the dispatcher. Since the server based redirection allows every server to participate

in the redirection scheme each server is aware of every other servers load condition.

The different forms of dispatcher based redirection are packet single rewrite, packet

double rewrite and packet forwarding as in Figure 2.1. The packet single rewrite

has the dispatcher rewrite the destination of the TCP packet to the IP of one of the

servers in the cluster, with the cluster server responding to the client directly. The

packet double rewrite has the dispatcher write both the incoming packet from the

client to the cluster server and the outgoing packet from the server to the client.

Packet forwarding does not involve the rewriting of packets as in the previous two

8



Figure 2.1: Redirection Technique Classification

cases. The network dispatcher form of packet forwarding involves the dispatcher

doing a MAC layer broadcast to the servers and hashing the client to one of the

MAC addresses. The ONE-IP approach involves all servers in the cluster having a

common secondary IP address and the dispatcher forwards the client request based

on the primary address or by doing a broadcast on the LAN, while the servers

respond using the secondary IP address.
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The server based packet redirection scheme rewrites packets as in the packet

single rewrite or packet double rewrite described above. The difference here is that

every server in the cluster has the ability to redirect the packet to any other server.

The following section goes into the details of each scheme.

2.1.2 Client Based Redirection

Client based redirection scheme shown in Figure 2.1 as the second type under the

Application layer switching involves the use of web client or client side proxy in

deciding the server to go to in a replicated web server architecture. The client must

be aware of the structure of the server architecture, to select a node to make a

request.

One of the methods that Netscape Communication implements is by making the

Netscape Navigator browser select a random number i between 1 and the number

of servers. It then makes a request to that particular node wwwi.netscape.com[5].

This is not implement able for all corporate intranets and is hence not considered a

useful solution.

The other method suggested involve using applets having information about the

various nodes at the web site. The basic idea lies in extending the web browser by

a downloadable applet. The applet being aware of the individual servers that com-

prise the service would select the fastest server based on network load [6]. Another

approach with the applet based scheme is by extending the server by a servlet in

addition to downloading an applet. The servlet then sends a list of URLs having

the replicated resource available. the client applet then selects one of the URLs and

makes a request for the resource [7].

Client side proxies are also used for load balancing where instead of a client mak-

ing a request the proxy makes a request to the replicated server. This however needs
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Internet component modification since the proxy must intercept all client requests

and make requests to servers as well as respond to clients while maintaining a TCP

connection to both ends. The advantages of the client based redirection schemes

are that they push the load of server selection on to the client. The disadvantage

lies in the processing and transactions needed by the server in providing the client

with the server architecture at a web site and the latency in making a final request

to the selected server and retrieving a web page from the selected server.

2.1.3 DNS Based Redirection

The cluster Domain Name Server (DNS) maps the site name or Uniform Resource

Locator (URL) to the servers IP address. The DNS based redirection scheme[3]

achieves load balancing by mapping the URL to the desired server nodes IP address.

This scheme achieves transparency at the URL level by providing a virtual interface

to the outside world. Some of the constraints in this approach is the fact that the

URL to IP mapping by the DNS server is often cached by the intermediate name

servers or by the browsers local cache. To overcome the constraint the DNS server

often sets a Time to Live (TTL) value, which sets the time for which the name

servers holds a valid address mapping for an entry. At the end of the TTL period

the address mapping is again passed on to the cluster DNS. The setting of TTLs to

expire DNS entries however does not consider non-cooperative name servers, which

ignore small TTL values.

Figure 2.2 shows the client making a request to the DNS server to resolve a URL.

The name servers between the DNS server and the client cache the resolution. The

DNS server is updated with the server states to make decisions to redirect the client

based on the server states. The client then makes a request to the server IP the

DNS server returns on a query. The DNS based redirection scheme is classified based
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Figure 2.2: DNS Based Redirection

on the constant or adaptive TTL values set by the DNS server. The DNS based

redirection scheme is advantageous since the clients need to resolve the URL of a

web site before making HTTP requests and the scheme does not incur the latency

due to additional transactions. The scheme can however be hampered by caching of

mappings at name servers, which can be mitigated by the methods described below.

Constant TTL Algorithms

Constant TTL algorithms set the TTL values based on either no state information,

a combination of client load and its location or a combination of server load and its

location. The stateless algorithm uses a round robin scheme where the DNS maps

the server nodes by a round robin algorithm. This scheme fails in avoiding excessive

loads from client requests on a server coming from a particular client domain due

to caching of the address mapping. Clients could make requests to servers that are

not operational based on cached mappings, which is undesirable. Server state based

algorithms require the DNS to maintain the load conditions on each server and assign
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lower TTL values for heavily loaded server nodes. Client state based algorithms use

the statistic of the requests coming from certain domains and assign a weighted load

index [8] for certain domains. Based on the load index values different server round

robin chains may be assigned. The TTL values are assigned such that a lower TTL

value is set for domains making large requests. Ciscos distributed director [9] uses

the proximity of the client to the server and the latency between the server and the

client is calculated by evaluating the clients location by its IP address. Schemes

using both client state and server state to set TTL values[8] are also used.

Adaptive TTL Algorithms

Adaptive TTL algorithms use some server and client state based DNS policy to select

a server and dynamically adjust the TTL values. The TTL values are changed for

each address request. The adaptive algorithm maintains a hidden load weight index

similar to the constant client state based algorithm. The adaptive algorithm is a

two step process [3]. In the first step it selects a server to service a request based on

load weights assigned to the client domain. All subsequent request are adaptively

modified such that TTL values for domains making a large number of request are

reduced.

2.1.4 Dispatcher Based Approach

The dispatcher based approach implements redirection at the IP level. The IP level

redirection is more transparent and hence hides the load balancing implementation

at web sites as compared to the DNS based redirection. The dispatcher in this

approach is assigned a single virtual IP address. The URL is mapped to this IP

address and hence all packets arrive at the dispatcher. The redirection can happen

at different levels of the TCP stack and the different dispatching mechanisms are
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classified on that basis. The dispatcher selects a server node based on various simple

algorithms such that the load is balanced evenly. The algorithms are simple in nature

to help minimize request processing. The various methods in the dispatcher based

architecture are explained below.

Packet Single-Rewriting

Figure 2.3: Dispatcher Based Redirection: Packet Single Rewriting

Figure 2.3 shows one of the methods by which a dispatcher routes a packet to

the server nodes. The dispatcher does the routing by rewriting the IP address in

the packet header. The dispatcher behaves in a manner similar to an edge router.

It changes the packet IP address from its own virtual IP address to that of the

selected destination server. The TCP router maintains a table of all established

connections so that a client is always directed to the same server. The selected

server must then replace its IP address with the virtual IP address before sending

the response packets. In this manner the client is transparent as to which server is

serving the request. This technique has high availability since a failed server can
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be removed from the table. However since all the processing happens through the

single dispatcher it could potentially become a bottleneck.

Packet Double-Writing

The packet double writing uses a dispatcher to schedule and control client requests.

It differs from the packet single rewriting in that the dispatcher changes the address

in the response packets as well as the client requests. In this manner the dispatcher

as shown in Figure 2.4 performs both functions of rewriting the IP in the headers

in the request as well as the response packet as compared to the single write in

the earlier case. This technique increases the possibility of a bottleneck at the

dispatcher. The server node can be selected on the basis of the least loaded server,

round robin mechanism or in a random manner. The local director[10] and the

magicrouter[11] architecture of Cisco uses this mechanism.

Figure 2.4: Dispatcher Based Redirection: Packet Double Rewriting

Both the packet single rewriting and the packet double writing schemes require

the TCP stack to be modified which involves modifying the kernel of the dispatcher.
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Packet Forwarding

Packet forwarding approach involves forwarding the packets to the servers without

rewriting the address. The two mechanisms this is done by are described below.

Network Dispatcher In the network dispatcher approach the servers on the

cluster LAN share the same virtual IP address. The ARP mechanism is switched

off in the server nodes and the dispatcher distributes the client requests based on

the MAC address of the server node. The architecture in this case could also be

hierarchical with the dispatcher forwarding all packets to a second level dispatcher.

The techniques requires the server to be on the same LAN if a single dispatcher is

used. Several second level dispatcher can allow for a WAN architecture with the first

dispatcher rewriting the IP address by packet rewrites, as in the first two dispatcher

techniques described above.

ONE-IP Address The ONE-IP [12] approach requires the dispatchers IP

address to be configured as the secondary address of the server nodes. The servers

set the secondary address as the virtual IP address by the ifconfig alias option in

Unix. The ifconfig alias approach command allows the user to specify multiple IP

addresses on an interface. The dispatcher sends the client requests based on the

secondary address. A hash function is applied on the client IP address to determine

the server node which will server the client requests. This eliminates the need to

maintain a table for each connection. However since the distribution is static the

loads on the servers could be skewed.

The two methods by which the ONE-IP switching is done is the routing based

approach and the broadcast based approach.

In the routing based approach the client request are forwarded to a dispatcher by
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the router. The dispatcher does a hash function on the client request and

selects a server and forwards the client requests based on the primary address

of the server. The server node receives the client requests and responds directly

to the client using its secondary address.

In the broadcast based dispatching scheme the router broadcasts the requests to

all the server nodes. The server nodes then apply a hash function on the client

IP address. A filter is applied so that just a single machine accepts the client

requests. The server node then responds like a normal web server.

The advantage of the network and ONE-IP based dispatching is that the dis-

patcher does not have to rewrite packets as in the packet rewrite schemes. The

mechanisms are transparent to the client and the algorithms used to redirect clients

are simple hash based schemes. The disadvantage lies in the requirement that all

servers are required to be in the same LAN and cannot be distributed in geograph-

ically different locations.

HTTP Redirection The HTTP redirection scheme as shown in Figure 2.5

uses the HTTP 302 response code provided for in the HTTP specifications[13].

The HTTP 302 response code was provided to indicate that a server has moved

temporarily to a new URL. Load balancing schemes use the provision to avoid

modifying the IP address of the packet. The redirected location is specified in the

“Location” field of the HTTP header. The client must then make a request to the

location specified to get the web page. The requests are directed to a server based

on the server state or the location of the client.

One of the disadvantages of this approach is the increased response time per-

ceived by the client since the client has to make a second request to the redirected

site. The advantage of the technique is that it is done at the application layer and
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Figure 2.5: Dispatcher Based Redirection: HTTP

hence the TCP/IP stack can remain unchanged unlike the previous cases.

2.1.5 Server Based Approach

The server based approach uses multiple levels of redirection. The primary DNS of

the web system assigns the client request to a web server node. Each server may

then redirect the request to any other web server. The technique allows every server

to participate in the load balancing scheme and it is an effective redirection scheme

if content is distributed such that only a small set of servers serve certain content.

The two mechanisms by which the server node redirects the client request to another

node is as below.

HTTP Redirection

In this scheme[14] the second level of redirection is done by responding with a

HTTP 302 response. The redirection mechanism may be done if the server finds
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that another server in the cluster is more lightly loaded or is closer to the client.

The mechanism can also be used in a distributed content architecture where the

content can be served by a particular server node. [15] uses the multiple level of

redirection. The DNS server in the architecture round robins the request or can make

an intelligent decision based on the servers sending in the server states. However

the state information results in increased traffic on the intranet.

Packet Redirection

Packet redirection uses a packet rewriting mechanism to direct a request to a differ-

ent server. This mechanism is transparent to the client and can use hash function

on the client IP address or base it on the servers current load state to select a server.

The advantages and disadvantages of HTTP redirection and Packet based redi-

rection are similar to the same schemes uner the dispatcher based approach. The

advantage of the server based approach is the scalability and granularity at which

the redirection can be made. The drawbacks are due to the multiple levels of redi-

rection, which results in user perceived delays.

2.2 Other Redirection Mechanisms

In the sections above we detailed the various solutions suggested in research for

redirection schemes. Research has also been done to effectively combine two or

more techniques to achieve a better load balancing strategy. A popular scheme as

shown in Figure 2.6 has been using the DNS based redirection combined with HTTP

redirection. The SWEB[15] server uses the DNS server to redirect request in a round-

robin manner. Once the targeted web server receives the request it decides whether

to process the request or forward it based on the server loads. Modules running
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on each server maintains CPU, disk loads and network traffic information for each

server in a table. The server chosen by the DNS uses the table to redirect the request

using the HTTP 302 redirection code. [16] uses a similar mechanism to SWEB. It

proposes two schemes. One where the DNS server has some state information on the

server loads and intelligently redirects the client to a suitable server. Each web server

in the cluster also has information on current client connections and the mechanism

to redirect clients to other servers using the HTTP redirection scheme. Second an

approach where the DNS server redirects using a round robin scheme wihtout any

state information. The second paper [16] extends the scheme to allow servers to drop

in and out of the cluster following which the DNS server changes its available server

list. The reason for the dual mechanism is to overcome the individual drawbacks

of each approach. The DNS redirection method suffers from the URL to IP name

caching by intermediate name servers and can effectively reduce the control the DNS

server has over the load balancing. The HTTP redirection scheme has ingrained in

it the additional latency due to the client needing to make the additional HTTP

request.

With web content becoming increasingly complex with multimedia and dynamic

services, the need to maintain quality of service (QOS) becomes important. Several

papers have worked towards achieving QOS requirements for users. A modification

of the dual method of DNS and HTTP redirection method is described in [17]. Here

increased granularity in selecting the web server is got by having a dispatcher in

between the DNS and the cluster with servers doing HTTP redirection. Similarly

[18] uses a simple architecture using DNS and dispatcher based redirection schemes

based on geographically distributed, as well as local clusters. It defines SLAs or

service level agreements between the client and server before a connection is es-

tablished. The server selection is done based on servers that can fulfill the service
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Figure 2.6: Combination of DNS and HTTP Redirection

requirements of the client.

More radical changes in server selection is done by other research which recom-

mends modifying the architecture and conventional client access to achieve QOS

requirements. [19] uses the anycast paradigm to select the most efficient server.

The methodology uses a DNS form of hierarchy among anycast resolvers. Anycast

resolvers map a domain name to an IP based on the metrics the resolver stores. The

list of available servers are maintained at the resolver by service location protocols

[20]. [21] basis its method on modifying the diffserv capable internet. A diffserv

capable network consists of domains with the intelligence of setting QOS parameter

on the ingress port of the edge router. The setup to achieve QOS is by having a

resolver in the client domain and a server agent maintaining all the server states.

The connection is established by the client by sending the request to the resolver and

the resolver, through the server agent, selecting a server and reserving the QOS re-
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quirement along the path to the server. QOS based server selection is more complex

and requires a more involved setup as recommended by current research.

2.3 Methods and Factors Used in Server Selection

In the previous section, we explained the various techniques used to redirect a client

to the server that can serve the client efficiently. We elaborate the basis on which a

particular server is selected from a cluster here and the various parameters used in

selecting a server. The selection of a server should be made such that no single server

is overloaded. Servers can be selected randomly or based on the servers proximity

to the client or a server that is least loaded. A good algorithm must strike a balance

between a server that can serve the web page the fastest under no load, due to its

proximity and other similar factors and a server that is least loaded.

Selecting a server can be based on an algorithm that can be based on different

metrics got from the client or the server. On the other hand there are several

methods in which the server is selected without using such metrics. Some of them

are

Random Selection - The server is selected randomly based on the content

requested as the seed to the random function.

Round Robin - The element selecting a server cycles client requests through a

list of available servers. Variation of the round robin scheme are probabilistic

round robin, weighted round robin (weighted based on load, proximity to

client etc.) etc. Round robin schemes use the parameters described below to

assign weights to each server and allow those factors to come into play

during the selection.
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The techniques described may help achieve efficient load balancing but most

algorithms proposed use factors that have a direct bearing on server response

times. All factors described below can be gathered proactively or reactively i.e.

they can be gathered before a client request is made in a periodic manner or can

be got on receiving a client request. The factors can be broadly put into three

categories.

Least Loaded Server - Knowledge of the server state is important to know

which servers are not available due to congestion or faults. The aim in using

these set of parameters is to direct the client to a server that is least loaded

and hence can serve the client the fastest. The parameter used are the

number of active connections, disk load, disk I/O channels, CPU idle or busy

states, load averages based on number of processes running on the system,

etc. Using one or a combination of these factors a decision is made by the

dispatcher.

Network Topology - Network topology is a crucial component to server

selection decisions. [22] does a detailed study of network topology based

factors used to make selections among replicated servers. Network factors

can be got at the application or routing layer. At the routing layer the

information can be gathered incrementally based on route updates etc.

However this information is not easily available to the application layer. On

the other hand application layer information is got at a higher network cost

due to probes and other queries made.

Routing layer information gathering happens using multicast or anycast

protocols where the client broadcasts, multicasts or anycasts the request and

the fastest server response is chosen. Anycast is preferred since it allows the
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client to query only a small amount of servers to get the information.

Among the more common factors in application layer gathering, are the hop

count from the server to the client got through functions like trace-route and

round trip times using pings. Hop counts are however preferred because of

poor clock resolutions associated with pings. Redirection based on the client

domains requesting documents, so that they can be mapped to servers close

to their domain is also frequently used. Time dependent models have also

been proposed where the client location and the time at the location is used

to direct the client. This method is based on varying client requests coming

from different regions based on the place and time there. Also Autonomous

system (AS) [23] path routing information of the Border Gateway

Protocol(BGP) is also suggested to evaluate logical distance of the network.

In addition to the server-to-client network factors, in-site network factors are

also used to monitor the state of the cluster. To do so collisions, packet

errors and traffic are measured. Network factors can be arbitrarily expanded

to consider carrier fees, routing policies etc. as well.

QOS and Content - With quality of service and location aware distribution

being studied, server selection may have to be based mainly on these factors

regardless of the ones mentioned above. However multiple machines offering

the same QOS or content can allow the use of the factors mentioned above.

QOS based server selection[24] involves the client probing different servers to

see which one meets its client requirements. Since the QOS requirement

translates to the entire path from the server to the client; for effective

service, elements along the path must be QOS enabled as well. Location

aware distribution tries to achieve high locality to the back-end caches. The
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aim to achieve localization of content is to allow for faster response from the

server, since the server can serve the content from its cache much faster. The

scheme allows every server in the cluster to serve the request as well as the

server designated to serve a particular content. Sites where content is

exclusively distributed, only a certain number of servers are selected to serve

a particular content. The fewer number of servers available to serve a

particular content, sets more limitations on the choice of nodes available to

serve content. With increasing multimedia traffic and large databases, QOS

and content based server selection play an important role.

2.4 Content Aware Request Distribution

Content aware request distribution involves the distribution of requests at web

sites based on the content requested by the client. First proposed in [25] it

recommended using the technique when the data content of the entire server

exceeded the memory cache of one node in a cluster. The solution suggested was

to partition the content of the database and distribute it across servers and then

have a content aware switch that would strip the client request, detect the content

requested and forward it to the appropriate server as shown in Figure 2.7. The

technique could also be used to employ servers designed to serve special requests

like audio and video.

The setup in content aware clusters is such that each server can serve the complete

content of the web site. The content aware distributor partitions the content based

on algorithms using hash functions on the URL of the contents, server states and

other parameters explained in the load distribution algorithm section above. One

of the challenges a locality aware algorithm is to not have a large number of
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Figure 2.7: Content Aware Request Distribution

requests directed to a single node. The increased load on a single node would

defeat load balancing strategies. Hence distributors maintain load characteristics

of the server and distribute client requests for popular content on to servers that

are not heavily loaded. Since every server is capable of handling the entire content

it would involve content being pushed out in memory and replaced by popular

content. The method by which the request is directed can be using one of the

schemes described earlier. While [25] recommends using TCP handoff to the back

end server, [26] uses packet rewriting at the dispatcher. FLEX [27] was designed as

a scalable server to do content aware switching and it pushes the dispatcher

functionality to the DNS. In their architecture the DNS using their designed

algorithm does the content hashing of a web site and also maintains the access

rates for each content so that no single server is loaded. [28] elaborates the

algorithms used by the FLEX server to replicate popular content across all server

and the caching policies like least recently used (LRU) to achieve better

performance.
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2.5 Mirrors

In understanding methods used to solve the problem with rising Internet traffic at

web sites we studied methods where clients are directed to servers best suited to

handle client needs dynamically. By dynamic we mean the architecture of the

server cluster is such that it directs the client request to the appropriate server

without the user having to manually select a server. Mirrors take a more direct

approach to client redirection. Mirrors are servers, which have replicated content

across several servers. The user is displayed a web site, listing all the available

servers with parameters of interest that they can use to select a server. Typically

the parameter involves the geographical location of the server. The user can then

select a server based on their proximity to the server. Since the process is not

dynamic and is divided into two steps with user interaction required it is much

slower than the dynamic techniques. The advantage of the method however is in

the way the servers at different geographical location can format the content based

upon the region.

Research work has been done on the performance as well as techniques to place

mirrors on the Internet. [29] uses a slightly different definition of mirrors where

they define mirroring as any replication of content across servers. The research

involves trying to understand the amount of replication by getting web pages from

a large list of urls and analyzing the amount of replication of content between

similar pages. For our purposes we stick to our previous definition of mirrors

where the user has to manually select a server from a replicated set. [30] studies

different algorithms to decide on the number and effective placement of the mirrors

on the web. The results show that beyond a number, increasing the number of

mirrors placed does not significantly increase the performance perceived by the
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client. The paper arrives at an algorithm to decide on the number and placement

of mirrors. [31] studies performance characteristics of mirrors. Their study noticed

large differences in performance between mirrors of a web site and they

recommend that clients use a small set of the total servers mirrored to decide on

the server to use for page retrieval. The popularity of a document was also found

to be independent of the server selected. Mirroring has not seen the depth of

research seen in dynamic forms of directing clients transparently to a server. The

method also entails the inherent delay in the time for the user to select a server.

2.6 Related Areas in Load Balancing

In the previous section we discussed the various techniques adopted by servers to

distribute client requests to multiple servers. Although most of the work in load

balancing has been concentrated on accomplishing the switching efficiently. A few

related issues have been looked into. Some of these issues are particularly relevant

to our work and we shall discuss them here.

2.6.1 HTTP/1.1

A significant drawback to HTTP/1.0 [32] is the multiple connections it establishes.

Web sites typically have a large number of embedded images and HTTP/1.0

breaks down and opens a new connection for each object, which causes significant

CPU processing on the server. With multiple connections implemented on popular

browsers this drawback is exacerbated. HTTP/1.1 [13] is the RFC standardized

protocol to resolve this issue. HTTP/1.1 provides for persistent connections which

allows for clients to make multiple requests on a single connection. Also the

protocol allows pipelining of requests where multiple HTTP request can be send
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before receiving a response to an earlier request. HTTP/1.1 hopes to improve

performance and several studies have been done to understand if the design goals

of HTTP/1.1 have been achieved.

[33] suggests several policies to manage TCP connections by servers with

persistent connections of HTTP/1.1. It aims to change the way servers break

down connections with holding times and LRU policies. [34] and [35] both

compare performance of HTTP/1.0, HTTP/1.1 and pipelined HTTP/1.1. [34]

studies the performance on three popular servers and details TCP performance

data. [35] studies the performance from client sites around the world to seven

hundred popular web sites. Both studies confirmed that HTTP/1.1 performs

better than HTTP/1.0 even when multiple HTTP/1.0 sessions are present.

Pipelined HTTP/1.1 had significant performance and end to end timing

improvements over both methods.

Studies at Rice University [36] were done related to effects of persistent HTTP and

cluster of servers. It mainly compares different load balancing techniques and

provides data to suggest that the back-end TCP handoff mechanism is superior.

Here the server receiving the client connection may not be able to service the

request if content is distributed and the server must handoff the TCP connection

to the other servers. The problem with HTTP/1.1 and clusters is that the load

balancing mechanism must work at the granularity of a single TCP connection.

Tearing down of connections and establishing a new connection to an appropriate

server would cause unwanted delays for the user.

2.6.2 Caching

Caching involves the storing of frequently used data to prevent the delay in

requesting for the data during subsequent requests. Caching on the web happens
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at various levels and is mainly distinguished as client side or server side caching

based on the proximity of the cache to the server or client. Server side caching

involves the cache from the memory of the server or from a co-operative server

closer to the client. Client side caching can be as close as the browser on the client

or the proxy caches on the intranet or service providers.

Caching policies[37] involves the algorithms that are used to determine which

content remains in cache and which are removed and are aimed at retaining

content that is most likely to be reused. This policy is significant in reducing loads

on servers by reuse of content which havent changed. It is of particular interest in

the context of load balancing and server clusters since both techniques must act to

complement each other. We shall not delve into caching policies and architectures

used to provide efficient caching but focus on relevant work to server clusters and

load balancing. [2] studies various web sites to understand the changes of content

on popular web sites. The study gathers header information and the possible

implication of changing content to caches and servers. A study [38] correlating

server side caching and clusters have shown that a combination of state

information of each server and design of algorithms to get high server cache hit

rate is required. Analysis was done on factors that affect good load balancing and

caching techniques. Caching plays an important part to reduce load on web servers

and hence becomes an important factor to consider in replicating and distributing

content on the web.

2.7 Summary

We discussed the various techniques used for relaying a client to a back-end server

dynamically. Broadly the techniques are classified as transparent and
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non-transparent techniques based on the layer the switching takes place. The

different techniques use the network elements along the path of a web page

retrieval process to redirect a client. Hence we see the client, the DNS server,

dispatcher in front of the cluster or the servers that form the cluster make the

redirection decison.

Due to advantages and disadvantages of these techniques we find a combination of

the techniques mentioned above employed. Newer forms of load balancing

techniques use content aware and QOS based server selection in addition to

selecting a server that can serve the client the fastest. Finally we discussed related

areas in load balancing relevant to our work. The HTTP protocol and its newer

version with the provision of persistence and pipelining and studies investigating

the effectiveness of the design goals were mentioned. Caching allows clients from

re-requesting content that have not changed and hence plays an important role in

reducing server loads.

The Approach chapter describes our motivation to investigate load balanced sites.

We discuss some of our preliminary tests and our classification scheme for the list

of web sites we test. We further detail the approach we take to investigate each of

our classified set of servers.
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Chapter 3

Approach

In the previous chapter, we discussed research work done in areas close to our

work. In this chapter we shall discuss the motivations for our work and the

approach we took to investigate the issues surrounding our research. We shall

initially discuss the motivations for our work, the initial tests we ran and the

methodology we adopted based on the results we got.

In the beginning, as we researched several papers on load balancing and content

replication, we became aware of this new area in web architecture. Being web

users ourselves we were familiar with the delay in getting to popular web sites and

resources online. To scale up to the increase in client requests web sites use

multiple servers to serve web pages. With sites using multiple servers to scale up

to client requests, research was done to propose and study alternate and newer

architectures to load balance servers. The solution on the server side involved

replicating and distributing content over multiple servers. The aim of replicating

and distributing content is to distribute client requests to multiple servers and

hence distribute the load.

Accompanying such work brings in challenges of maintaining content consistency
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across servers and providing an efficient method to redirect clients without

delaying the user response time. Using the different schemes presented we could

have done a comparison of which architecture is better. Alternatively we could

have tried to arrive at our own unique approach to improve load balancing. Since

several architectures were studied and proposed by research, we decided to

investigate the techniques used by popular web sites. In addition the aim was to

identify sites doing load balancing and if the techniques employed by such sites

matched the techniques suggested in research. In the world wide web we had all

the elements needed on the server side with popular web sites having real clients

and a large amount of traffic. Servers at such sites would need to employ some

mechanism to handle the large number of requests. The aim of our approach

became to try to act as clients and try to identify among popular web sites, sites

doing some form of load balancing. To identify such sites, elements in the chain of

getting a web page need to be investigated. These elements would be the DNS and

HTTP servers. The content being passed by them needs to be analyzed to find

hints of multiple servers serving content.

Without access to the servers at such sites or knowledge of what techniques are

being used we are constrained to analyzing data that is sent to us in response to

HTTP requests and DNS resolutions. The constraint however puts us in the same

domain in which typical web users would find themselves in and allows us to study

the web server from the point of view of the web user. The techniques like

HTTP-based switching and DNS-based redirection fall into categories which can

be detected. We can detect such techniques because querying DNS servers and

looking at HTTP return headers, are accessible methods to us.

We are limited to data at the application layer and techniques like the dispatcher

mechanism using packet forwarding or the One-IP approach, which use the
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network layer to switch clients would be transparent to us, in compliance with the

design of the redirection technique. Such sites that use network layer switching

intend to keep the user transparent to the process by which content is served from

multiple servers. Our inability to find such sites would imply a good

implementation of the switching, if in fact the web site was using the technique.

The interesting case would be with sites providing content from a single IP address

with differences in the IP, HTTP headers or web page content. Such sites,

although intending to be transparent, allow clients to identify the differences on

retrievals and potentially the differences could prove to hamper the aim of

reducing load at such sites. The differences in content would point to an

implementation that is not entirely true to its design aims.

In addition to the aim of finding sites that do load balancing, we were also

targeting areas which are used as alternative methods in reducing load at web

servers.

3.1 HTTP/1.1 and Load Balancing

HTTP/1.0 was designed for the early days on the web where the number of users

was low. Clients have to make individual request for each object, hence a client

needs to make a request for the web page followed by each embedded object within

the page. This approach results in multiple TCP connection and consequently

increases processing and response time to the user. HTTP/1.1 was designed to

correct this situation by providing for persistent HTTP connections. Persistent

HTTP allows users to make requests sequentially over one TCP connection.

Clients are also allowed to pipeline requests without having to wait for a response

to a previous request.
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Studies detailed in the related work chapter have shown that HTTP/1.1 performs

better than HTTP/1.0 and HTTP/1.1 with pipelining provides a much better

performance than that of HTTP/1.0. Although pipelining is not always supported

on all HTTP/1.1 servers, it is important that load balancing techniques aim to

ensure that this protocol works in complement to the cluster architecture, in

helping reduce loads at servers. The main aim is to allow a client to set up a TCP

connection and maintain it. After looking at various load balancing techniques

proposed, we found that some techniques could potentially defeat the client

maintaining a persistent connection.

Techniques like the dispatcher-based packet redirection where the TCP connection

is handed off allow users to maintain a single TCP connection through HTTP

transactions. However techniques that did HTTP redirection or distributed

embedded content like images across different servers cause the client to break an

active connection and establish additional connections. Sites that distribute

embedded content over several servers work against the design intent of

HTTP/1.1, which is a cause for concern.

3.2 Caching and Load Balancing

Caching can be of two forms, server side and client side caching. Server side

caching is to allow servers to move frequently accessed content on to servers closer

to the clients. Such servers store and respond to clients making requests for the

content. For our purpose we look at client side caching. Client side caching is the

process by which clients store content they have accessed, in the hope that a

subsequent request for the same content would allow the client to serve it out of

the local storage. This storage may be in the form of the local disk or a machine
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close to the client (typically on the same LAN).

There are several algorithms by which clients decide to keep and remove content

from the storage to maximize content reuse or cache hits. To identify content

which is not stale, the client requests the web server for object in cache with the

relevant tags attached to the request. The servers then use ETags, Last modified

times (LModT) or other header tags to validate the object in cache. ETags are

unique identifiers to the content on a web site and the last modified time is the

last time the server changed the content. These tags are used to validate cache

content. On a client request for a cached content the cache makes a request to the

server with the unique tags corresponding to the object. To avoid sending the

entire response, the server responds with a HTTP code 304, indicating the content

is not modified. On changes to the content the server should send a complete

response with HTTP code 200 and newer tags. Similarly the ETag and last

modified time remaining the same would indicate that the objects present in the

client cache are still valid, verified by the 304 response from the server and the

content can be re-used instead of retrieving them again. This process reduces loads

on the server by not requiring them to send all the objects forming a web page to

a client caching such objects.

Load balancing results in content being replicated and distributed across several

machines. Web sites store the same content across all servers in a cluster. If the

unique tags in the header of such content do not remain consistent it defeats

caching. Clients have to retrieve the entire content even though the content has

not changed. In our methodology we filter out relevant tags from HTTP responses

to identify if the issue exists.
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3.3 Initial Tests

To sanity test our approach we set up a preliminary test to observe if we can

identify at least some form of load balancing. The test was done as a proof of

concept to our research proposal. The tests were done in September 1999 and the

web sites used were different from the ones finally used. The results from the tests

allowed us to formulate the final test suite described in future sections. The final

test suite was run twice in April, 2000 and in May, 2002.

The early tests were on a list of 122 most popular sites rated by

www.100hot.com[39]. To get data on each web site we ran client requests on the

web-sites using the “GET / HTTP/1.0” request. We resolved the URL of the web

site and then studied the number of IP addresses mapped to the URL. The

returned header on the packet returned by the server on the GET request was also

studied. The “GET / HTTP/1.0” request is used by HTTP clients to request for

the root HTML page of the URL.

We identified at least 33 sites using some form of load balancing. We saw 17

instances of HTTP redirection using return code 302 to direct the client to a

different location. On checking the locations returned by the server we confirmed

one site using HTTP redirection to direct the client to a different server each time.

Further investigation and tests were required to investigate the remaining servers

to see if the redirected site do load balancing in some form. The scripts to test the

redirected sites were written in the final test suite.

The remaining instances were of servers with a single IP address and showed no

indication of load balancing techniques. Further investigation was required in the

cases where the load-balanced servers could have been using transparent routing.

To find sites doing transparent switching, we needed to identify if there are
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multiple servers behind a single server. Entity Tags was decided as one possible

method that could be used to detect transparent routing. In a previous study it

was found that the ETags of some resources were changing even when the

resources remain the same [2]. We planned to study the sites to see if this effect is

due to resources being obtained from different servers and we wrote test scripts

that extracted content of interest from the web pages. Some of the other possible

methods to detect transparent routing was to look at the headers from the various

servers and look for changes in the information returned by the servers over

multiple requests.

Thus with our initial tests we were able to ascertain that it was possible to at least

detect some form of load balancing and it provided us with the grounds for further

tests and analysis.

3.4 Test Methodology

In this section we list out the tests we conduct and the motivations behind having

them. We divide our tests into two parts with data collection and then the

analysis.

The general process of getting a web page given a URL is as follows.

1. Retrieve the IP address associated with the URL through a DNS.

2. Establish a TCP connection to the IP address on port 80, which is the

standard HTTP port.

3. Make a GET request with the web page path in the request e.g. “GET

/URL HTTP/1.0”, where URL is the complete path to the resource being

requested. The HTTP 1.0 indicates the 1.0 protocol, to make an HTTP/1.1
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request we replace the 1.0 with 1.1. We conducted all our tests with the

HTTP 1.0 requests.

4. We receive the response into a buffer until the entire web page is received.

The response includes the HTTP headers and body. The HTTP header has

the various tags which are not displayed on browsers. The browser interprets

the HTML tags if present and displays the web page. For our test purposes

we wrote a HTTP client which made the GET requests and stored the

responses in the server. The responses were stored as received and hence

provided us with the HTTP headers and other HTML tags inline with the

web page content.

After describing the process to access a web page we describe below the steps we

take in arriving at our approach to investigate load balanced sites.

Our first step is to collect a list of web site URL’s which are popular. We used the

www.100hot.com web site to get a list of these sites. The web site provides a

ranking of the most popular web sites on the web. We understand that a ranking

of popular web sites can be open to discussion but the aim is not to test against

the top 100 web sites on the web but to get a list of web sites, which we can expect

to have a large traffic because of their popularity. Based on the rankings done by

www.100hot.com we, use their top 100 sites as a list of highly popular sites with

large client traffic. The popular sites are more likely to employ some scheme of

load balancing and hence we stand a better chance to investigate the mechanisms

used by testing such sites.

Having got a list of such sites we need to find out if DNS based redirection is being

done. By doing resolves on the list of web site URL’s we found the IP address

returned by the DNS was different each time. This result indicated load balancing
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is happening based on DNS based redirection. Nslookup is a command line tool on

Unix based systems which reolves a given URL with a default DNS server. We

were able to validate our results using the tool, since we found that a list of IP

addresses mapped to the URL was got. This list was the one used by the web site

to round robin between different IPs for each consequent retrieval attempt. On

investigation into functions in the C programming language library we found a

function gethostbyname(), which resolved the URL to a similar list of IP addresses

as nslookup. As with our initial test on the 122 sites we were able to identify DNS

based redirection policies using this call. In our preliminary tests we used the

three methods to retrieve and validate that sites use multiple IPs mapped to a

single URL. Our final scripts used the C function call gethostbyname() to

automate the resolution.

After resolving the URL to the IP addresses we have a classified set of sites whose

URLs mapped to multiple IP addresses and sites that whose URLs mapped to a

single IP address.

Once the IP addresses to which the URL maps is obtained we can deal with the

multiple IP set and single IP set differently. Our interest in the single IP set is to

find out if some form of transparent redirection mechanism is being used to

redirect the client. While our interest in the multiple IP address set is to

investigate the headers in the HTTP response, identify differences and infer if the

differences would affect the client.

During the initial testing for the proof of concept, we identified servers that

returned 302 return codes. This response code is provided as part of the HTTP

protocol to indicate that the content has temporarily moved. The 302 code value

is returned by servers doing load balancing using HTTP-based redirection. The

difference lies in the location tag in the HTTP header pointing to a different
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machine on multiple requests. The subset of servers returning the 302 code is

interesting and needs to be investigated to identify sites that use the response code

to load balance using HTTP-based redirection. To do this we had to make

multiple HTTP request on servers that returned the code and observe if we are

being directed to the same site or a different site. If we are being redirected to

different sites it indicates the HTTP-based redirection scheme for load balancing.

By the end of the first phase we classify our set into three sets, namely single IP,

multiple IP and the 302 response set. With each of these three sets our steps of

investigation were different.

Single IP Address Set - The single IP set constituted the set of servers the

DNS server mapped the URL to a single IP and a HTTP request on the

server gave a 200 response (the HTTP OK response when no error is

encountered in executing the GET). This set of IP addresses needed to be

further investigated to identify if load balancing is being done at the network

or lower layers. The method we adopted to investigate this set was to do

multiple retrievals of the web page from the single IP address. We then

compared the header and the links constituting the HTML page to

understand if load balancing is being done.

A web page consists of several links. These links are references to other

locations that can be manually clicked by the user to go to a different page

or an inline link, where the object referenced by the link form part of the

page. We call the links that requires users to select and be directed to, as

traversal links. We call the links like images and other objects that form the

web page and need to be retrieved after the main body of the page is got, as

embedded links.
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We were aware of companies like Akamai[40] that provided content

distribution. Web sites having heavy traffic could have the embedded links

placed on Akamai servers. The Akamai servers would place the embedded

content geographically distributed across the globe. They would then modify

the web page being served to the client by changing the links of such objects

to be served by a server closer to the client or using other heuristics. The

modification allows the main page to be served by the web server at the site

and the components that form the web page to be served from the image

servers close to the client. The process places less load on the web site and

can achieve load distribution.

If web sites use different servers to provide a single embedded object or

reference a different server for a traversal link on the same page for multiple

requests, the server is doing a form of load balancing by rotating the server

providing the embedded object or the content pointed to by a traversal link.

We investigate the embedded and traversal links to verify if the servers

serving embedded and traversal links are in fact being changed on multiple

requests. Providing distributed content like Akamai has implications for

HTTP/1.1, since clients has to now break down the connection to the server

from the main web site and establish connections to the servers providing the

inline objects. While the distribution of the embedded objects reduces traffic

on the main web site, it defeats the HTTP/1.1 design, which allows

sequential and pipelining of requests over a single connection.

To understand caching implications of getting different content from the

server we look for changes in content in the web page. As mentioned earlier

caches are validated by clients by looking at the header tags like ETags and

Last Modified Times. On request of the content, by the client, the server
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returns the entire content if the tags vary. A change in ETag values or the

LModT times would mean that the server would need to resend the content

again.

When we make multiple requests to a single IP addresses and if the web site

is indeed implementing a transparent switching mechanism, we have a

situation where the site must update each of the servers in its clusters with

the content. Depending on how the ETag or the last modified time is

calculated on the web server software, these values could be different since

the content is put on different machines at different times. So in the case

that we do find that the content retrieved on the web page remains the same

but these tags have changed, it would indicate that either the single HTTP

server is generating new tags for each request or more likely that we are

being directed to a different server and the change in tags is caused because

of the content being added on to a different server at a different time. If this

is found to be true we identify the sites that do load balancing for the single

IP address as well as find a negative impact of load balancing to caching.

The negative effect of tags changing with the content remaining the same are

on caching. Clients will not be able to validate the caches correctly and

servers will resend the cached content again. The re-sending because of

change in tags, in some ways, hampers an efficient load balancing scheme.

The server noticing the change in tag values would resend content again,

while in reality this is not needed, since the content has remained the same

and the client has requested content from a different server than it made a

request to earlier causing the change in tags. To identify cases where content

remained the same with tags changing, we did a checksum on the body of

the web page on multiple retrievals and compared the tags mentioned above.
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If we did find ETags or Last Modified Times change with the checksum on

the body remaining the same we most likely have a site that does load

balancing using a transparent mechanism of redirection. Also the negative

effects on caches due to the erroneous tags as described above would apply to

clients accessing the site.

To understand the amount of content distribution, we looked at the number

of servers the client would have to access to retrieve embedded content from

a non-base server. The content distribution on multiple servers has negative

effects as described earlier.

The single IP address sets form the most difficult of our server sets due to

the possibility of switching done at lower layers, distributing load at clusters.

The investigation to discover sites that do load balancing and the effects on

clients become subsequently more difficult at such sites.

Multiple IP Address Set - For the multiple IP set we already identify the sites

that are doing DNS based redirection. Since we identify the set as doing a

form of load balancing we can investigate the different servers forming the

cluster for issues more clearly than the single IP address set. Although the

steps are similar to the single IP address, the tests are done on each

individual IP address returned by the DNS server as compared to

investigating the differences in multiple retrievals from the single IP address

in the above set.

To collect the web pages we make HTTP requests to each of the IP addresses

that form part of the cluster. Once the web pages are retrieved we try to

identify if some form of further load balancing is done. The testing is done in

a similar manner to the one mentioned above. We extract the embedded
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links and compare if the same embedded link on the page retrieved from one

IP address is different from the page retrieved from the another IP address

part of the cluster. Similarly we extract the traversal links and apply the

same methodology. If we do identify differences it indicates that each of the

servers are further using different servers to serve its embedded content and

reference the traversal links. This result indicates multiple levels of load

balancing and also carries the negative implications to HTTP/1.1 and

distributed content as explained above.

We investigate caching issues by comparing the content retrieved from each

IP address returned by the DNS. The retrievals are done sequentially and

the time between retrievals are minimal. The difference between retrievals is

limited to the time to get a web page from the server. The content can be

expected to be almost similar, except for changes like objects in the HTML

page that change dynamically on each retrieval. Advertisement images are

one such object and typically web sites rotate the advertisements on each

retrieval. However if we do find the content remaining the same and the

HTTP headers like ETags and last modified time used to validate caches

changing it indicates a negative effect on caching. In the multiple IP set it

also confirms our hypothesis that the change in tags is because the contents

are being placed at varying times on different machines and hence cause the

HTTP server software to generate a different tag.

Similarly, we also investigate the number of embedded objects the client has

to retrieve from a server different from the one serving the web page. A large

set of servers used to serve a page would help in reducing traffic to the main

web server but could have negative effects for HTTP/1.1 as described earlier.
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302 Redirection Set - The set forms the set that respond with a 302 response

code. This HTTP code indicates that the resource requested has moved from

the present location. The set is interesting because the servers responding

with the 302 response could potentially be doing load balancing using HTTP

based redirection. In this method the server could redirect the client to a

different server with the 302 response and hence achieving a distribution of

load. The mechanism is known for the client perceived delayed, in having to

establish a second HTTP connection to the redirected server to retrieve

content.

This set is investigated by making multiple requests to the server and

extracting the URLs that we are redirected to. We compare the different

URLs to see if we are being directed to a different server and subsequently

doing load balancing. When we find cases that the server we are directed to,

responds with another 302 response, we continue making requests to the

redirected location until we get a server from which we get a 200 (OK)

response. These sites could potentially be doing HTTP redirection at

different levels. By making several attempts at finding the server we obtain

the 200 response from, we can identify if the HTTP-based redirection is

being used to do load balancing.

The problems with HTTP redirection is that it defeats HTTP/1.1, with the

client needing to break the connection for a redirection. Also with several

levels of HTTP redirection, the client perceived delay increase by having to

form a new connection and make multiple requests. The issues of caching

and distribution of embedded content on the server serving the web page still

exist.

46



3.5 Summary

This chapter described how we approached our investigation of web sites

replicating and distributing web content. The reasons to decide on investigating

sites that do load balancing was to understand the techniques being used and to

find similarities with techniques suggested in research as well as investigate

potential issues with implementations.

To arrive at our test suite we did a preliminary investigation on 122 sites. We were

able to classify the sites into three categories, Multiple IP set, Single IP set and

302 Redirected set. For each of the sets we formulated a different approach. For

the single IP set we make multiple retrievals on the server and attempt to detect

transparent load balancing. With the multiple IP set we know that the site does

DNS based redirection and we make retrievals on each of the IP addresses of the

cluster to determine issues with content from multiple servers. Finally with the

302 set we try to identify if the server we are being redirected to changes on each

request.

The next chapter details our implementation by going into the details of our test

setup, scripts and steps in the investigation.
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Chapter 4

Implementation

In the previous chapter, we discussed our approach and our motivations for

selecting the methodology to collect and analyze web sites for load balancing. This

chapter concentrates on the details of our test setup, the algorithms for collection

of the data and for analyzing the data. The chapter is divided with flow charts

detailing each phase of testing. The ordering of the sections starts with our test

setup and our first run of tests on a list of sites. The first run provides us with

data to classify our set of sites into different sets based on the redirection method

that was used. Once the sets are identified we indicate separate procedures for

data collection for each set and subsequently the analysis phase for each set.

4.1 Test Setup

The tests were conducted on a Sun Microsystems Ultra Sparc 2 machine running

SunOS version 5.7 at the Worcester Polytechnic Institutes computer science

department. The machine hardware or the operating system is not expected to

affect the tests and the tests can be run on any machine with a reasonable data

connection to the Internet. The machine is not particularly relevant due to the
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fact that we do not do any time or performance analysis on the web site. Instead,

we are interested in the content returned by the web sites and as long as the data

connection is reasonably fast to ensure fairly quick retrievals from web sites, the

integrity of the data is achieved. The setup involved the test programs acting as

the client to the web servers. The web servers consisted of the machines providing

the services at a list of popular sites from www.100hot.com. The complete list of

sites numbered 123 and the entire test suite was repeated with a gap of two years.

The first test run was conducted in April of 2000 while the second set was

conducted in May of 2002. The repetition of tests conducted over the same set of

web sites with a gap of two years allowed us to understand the changes in the

replicated and distributed content at the web sites over two years. The results

would indicate if a greater number of sites do load balancing and if the issues we

see in the first set of tests is corrected the second time over.

We used two different programming languages and Unix shell scripts to automate

the entire test suite. The languages were the C programming language and Perl.

The reasoning behind using different languages was to harness the power that each

of the languages offered. The use of the C language is due to the well used network

libraries that enabled us to do sockets programming for our HTTP client to

retrieve web pages and to make DNS resolutions. Perl is known for its parsing

abilities and our use of the language was to take advantage of that power to parse

and extract content of interest from the web pages. Since all our programs were

run on the SunOS and it being a Unix based machine we used shell scripts under

the tcsh shell. The entire test suite of programs could be written in Perl if needed

with its available socket library and its close growth in Unix environments but the

path of using multiple languages was chosen.

The entire test suite consists of an initial run and classification, data collection
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and analysis for single IP, multiple IP and 302 redirection and data collection and

analysis of distributed content. The test suite was run in the two periods

mentioned above.

4.2 Initial Run and Classification

The first step in the test process was to run the initial tests on the list of 123 sites

got from www.100hot.com. In this stage the following steps are followed as shown

in figure 4.1

Figure 4.1: Initial Run and Classification of Web Sites

1. The web site list is in the form of a URL and a DNS lookup is need to find

the URL to IP mapping.
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2. The C function gethostbyname() is done on each server name and the

structure passed into the function returns a list of IP addresses the DNS

server resolves. The IP address list may contain just one IP address or a list

of several IP addresses. When a list of IP addresses are returned it indicates

the web site is doing DNS based redirection and the DNS server either uses

some heuristics or a round robin policy to return a different IP on each

resolution.

3. The HTTP client, written in C, is then used to do a GET / HTTP 1.0

request on the URL. We use HTTP 1.0 since servers implementing HTTP

1.1 are backward compatible with HTTP 1.0 clients. Also we were not

interested in pipelining requests, since the interest was in the content

returned by the web server and we did not retrieve the inline objects in the

HTML page returned.

4. Based on the response we get from the GET request above, we classify the

list of servers into two sets. If we find a HTTP redirection response with the

302 code on a request to a particular web site we put it into the 302 server

list. The response and the URL the web site redirects us to, is got by parsing

the HTTP response using a Perl script. A typical 302 header response is as

shown below.

HTTP/1.1 302 Found

Date: Wed, 12 Apr 2000 03:24:19 GMT

Server: Apache/1.3.6 (Unix) mod_ssl/2.2.8 SSLeay/0.9.0b

Location: http://lc3.law5.hotmail.passport.com/cgi-bin/login

Connection: close

Content-Type: text/html

This list may have multiple or single IP addresses mapping to the URL but

we analyze the set differently from the multiple and single IP set.
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5. The web sites that do not fall in the above category are examined for the IP

addresses returned by the DNS server on resolution. For URLs that returned

a list of IP addresses we put the web site into the multiple IP address list.

The remaining set of web sites have a single IP address mapping to its URL

and is put in the single IP list.

After classifying the web site list based on the methodology used above, we have

three lists namely the single IP list, the multiple IP list and the 302 list. We

divided the further tests into two parts the data collection and the analysis phase.

The following section contains the data collection steps for the single IP, multiple

IP and the 302 list and the analysis steps for the same.

4.3 Data Collection - Single IP Set

The single IP list form an interesting set of web sites, since there is no clear form of

identifying which form of redirection scheme is being used. We try to look at the

response from multiple retrievals to find differences and investigate these sites. The

data collection and formatting steps are as follows and are shown in Figure 4.2.

1. For each server in the Single IP list we make 5 consecutive GET / HTTP 1.0

requests to the IP address the server name maps to and store the responses

in separate files. The C client is used to request and retrieve the response.

2. For each of the 5 responses we follow two paths.

3. We split the HTTP response into its header and body. The header contains

the IP address of the server responding, the HTTP protocol used, response

code, date and other tags allowed by the HTTP protocol. While the body
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Figure 4.2: Data Collection from the Single IP Set of Web Sites

contains the HTML page that is displayed by browsers and contains the

content of interest to a user. A Perl script does the splitting.

4. We compute an md5 checksum on the HTTP body. The md5 checksum is

done using the Unix based “md5sum” command. The md5sum computes an

128 bit md5 checksum digest. The checksum is highly likely to be unique to

the content of the file, that in this case is the HTTP body. We use the

checksum as a unique identifier to the HTML page content and it is

appended to the HTTP header for later analysis.

5. The other path we follow is to extract the embedded and traversal links in

the web page. The links are removed to separate files. A Perl script does the
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extraction. The traversal links are links that reference objects outside of the

displayed web page and are intended for users to select, to retrieve the object

associated with the link. The tags in the page are identified by searching for

the following pattern ‘‘< a href=‘‘linkname’’>reference name</a>’’.

Embedded links are objects to be retrieved as part of the web page to render

the page. They are characterized by the following tags “img”, “link”,

“body”, “frame”, “input” preceded by the less than sign ‘‘<’’.

6. Once the embedded links and traversal links are extracted, we extract the

base server from the link. For example for the link

“image1.yahoo.com/img23.gif” we remove all text following the first forward

slash and retain “image1.yahoo.com”. The reasoning behind extracting just

the base servers is to identify the set of servers in the HTML page used for

embedded and traversal links.

7. To get a unique set of servers we sort and remove the duplicates from the set

of base servers from above. The sorting is done by applying the “sort” Unix

command to the files containing the embedded and traversal base server lists.

The sort command sorts the list of servers alphabetically. After sorting the

base server list, we have all the same base servers bunched together on

consecutive line. We eliminate the duplicates by running the “uniq” Unix

command. Uniq goes through a file and replaces lines which are duplicates

with a single instance of the line, thus eliminating the duplicate base servers

for the embedded and traversal set.

After the completion of the data collection phase for single IP we have three files

for each retrieval. The first one contains the HTTP header and the md5 checksum

on the HTTP body appended to it. The second and third files consist of the unique
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set of base servers used in the HTML page retrieved on the multiple retrievals to

the single IP. These files are then used for analysis as explained in the later section.

4.4 Data Collection - Multiple IP Set

The steps taken closely follow that of the single IP list. Instead of making multiple

requests to a single IP, we make a request to each of the IP addresses returned by

the DNS server. We then make a request to the URL after doing a DNS lookup.

The DNS lookup of the URL would return one of the IP addresses part of the list.

We then compare the response from that IP to the responses from the list of IP’s.

The Figure 4.3 shows the algorithm followed for the Multiple IP set.

Figure 4.3: Data Collection from the Multiple IP Set of Web Sites
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The details of each step in Figure 4.3 follow the steps in the single IP set. The

difference is that the comparisons are made between retrievals from different IPs

that form the cluster in the multiple IP set as compared to multiple retrievals on a

single IP in the single IP set. After the completion of the data collection phase for

multiple IP, we have three files for each retrieval. The first one contains the HTTP

header and the md5 checksum on the HTTP body appended to it. The second and

third files consist of the unique set of base servers used in the HTML page

retrieved from the IP list and the URL. These files are then used for analysis as

explained in the later section.

4.5 Data Collection - 302 Set

The 302 set consists of sites that returned a 302 response on a GET request. We

separate them into a different set, to identify if the redirection is to a different web

site on multiple GET requests or if the resource is indeed moved to a different

location. Following is the algorithm we use to collect data from the 302 set.

1. For each web site part of the 302 response set we make a GET /HTTP 1.0

request as shown in Figure 4.4. The response as expected, from the first

attempt, is a 302 response.

2. The redirected URL is presented as a new link in the “Location” tag in the

HTTP header. We extract the link and make a GET request to the link. If

we get a 200 response, we go to step 3, else we continue making HTTP GET

requests to the link we are directed to until we get a 200 response.

3. Once we get a 200 response from a URL, we use the URL that returned the

location of the final content for further testing. Essentially we consecutively
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Figure 4.4: Data Collection of 302 Web Sites

make 5 GET requests on the last link that returned a valid location. The

reasoning behind doing the multiple requests, is to find out if by making

consecutive GET attempts, we are in fact directed to different sites and if

the site does HTTP redirection to achieve load balancing by distributing

users to different servers. We collect the responses from the 5 GET requests

and store it in a file for further analysis

4.6 Analysis - Single IP Set

The analysis section explains the analysis we do on the data gathered in the

previous section. The data collection on the single IP set gives us three files each,

for the 5 retrievals for every single site. The files include the unique set of

embedded and traversal link base servers. It also includes the HTTP header and

the md5 checksum on the body for each retrieval. The list below indicates the

steps done for the analysis and the report we generate from the analysis. As in the
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case of the data collection test suite we automate everything in the analysis section

using Unix and Perl scripts. Figure 4.5 shows the steps we take for analyzing this

set.

Figure 4.5: Analysis of Single IP Set of Web Sites

1. From point A in Figure 4.2, for the single IP set we obtain two files

containing the unique set of base servers used by the HTML page. We diff

the files obtained from the embedded base servers got from the first retrieval

to that of the 2nd, 3rd, 4th and 5th retrieval. We do a similar comparison for

the traversal links. The “diff” utility is a Unix based command that

compares two files on a line by line basis and outputs the differences. Since

we have sorted and removed duplicates, the server list should be similar on

multiple retrievals. A difference in the servers served between two retrievals

would indicate that the server rotates the servers that are used to server the
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embedded and traversal links. The difference found are output to a report

for the site.

2. From point B in Figure 4.2 for Single IP set we have the HTTP header and

the checksum for the body in the HTTP response for each retrieval. We

compare the Header tags and the checksum of the first retrieval from the

server to that of the 2nd, 3rd, 4th and 5th retrieval. Specifically we look at

the ETag and LModT tags and compare it between retrievals to the MD5

checksum. This test is to understand the implications on caching and

replicated and distributed content. If we find that the ETag or LModT

differs and the md5 checksum on the body remains the same it indicates that

on consecutive retrievals the content has not changed, while the tags used by

caches to validate cache content has changed. Although not needed, the

change in tags causes the server to send the a complete response to a client.

Also the change in ETag and LModT with the checksum remaining the

same, indicates a transparent form of load balancing.

The reason for the conclusion is because the multiple retrievals are done

consecutively, with little time delay, and a response that does not change in

content but changes in tags most likely indicates a retrieval from a different

server. If this phenomenon is seen in the single IP set and is also seen in the

multiple IP set, we can validate the difference in tags being, because of going

to multiple servers. We use a Perl script to extract and compare the tags and

checksum. We print into the report that we did find a difference in the tags

with the checksum remaining the same. In addition to the caching

implication of the above changes, we also looked for changes in the software

the server runs and the date returned. A major change in the date in
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consecutive retrievals could indicate that we have been routed to a different

server in which the date and time is not the same as in a previous attempt.

The change would also help us identify sites that do transparent load

balancing.

With the report containing the results for the analysis, we have a report containing

the relevant information from the data collection and the analysis phase. The

compilation of the results allows us to easily go through the results from the data

collection and the analysis phase pretty easily at the end of the tests.

4.7 Analysis - Multiple IP Set

The analysis section for the multiple IP set is similar to the Single IP set, as with

the data collection section for the two sets. The data collection on the multiple IP

set gives us three files each, for the retrievals from every IP in the list resolved by

the DNS and the response from the URL of the multiple IP set. The files include

the unique set of embedded and traversal link base servers. It also includes the

HTTP header and the md5 checksum on the body for each retrieval. The steps

described in the single IP set indicates the steps done for the analysis in the

multiple IP set and the report we generate from the analysis. As in the case of the

data collection test suite we automate everything in the analysis section as well

using Unix and Perl scripts. Figure 4.6 shows the steps we take for analyzing this

set. The comparisons are done with the retrievals from each of the IPs that form a

cluster in the multiple IP set.

With the report containing the results for the analysis we have a report containing

the relevant information from the data collection and the analysis phase. The

compilation of the results allowed us to easily go through the results for the
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Figure 4.6: Analysis of Multiple IP Set of Web Sites

analysis at the end of the tests.

4.8 Analysis - 302 Set

Figure 4.7: Analysis of 302 Web Sites

At the end of the data collection section in Figure 4.4, we have a file containing

the responses from the 5 GET requests to the last link we are directed to. This is
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indicated by point A in the Figure 4.4. The analysis for this set as indicated by

Figure 4.8 compares all the responses and outputs a report if we do find a

difference in the server we are directed to. Difference found in multiple responses

indicate that we have found a site doing HTTP redirection for load balancing in

the set of 302 response sites.

4.9 Data Collection and Analysis - Distributed

Content

These tests are used to understand the amount of distribution of objects found in

the site list we used. The objects we look at are the embedded objects, which are

needed to display the web page and are retrieved by the client to render the web

page. As explained earlier the retrieval of embedded objects are done by making

subsequent requests for the particular objects that form part of the page. The

steps shown by Figure 4.8 for the embedded objects are done.

1. For each URL in the 123 site list, we make a GET / HTTP 1.0 request to

retrieve the content. In our case we reused the files we retrieved from our

initial run and classification tests.

2. Once the web pages are retrieved, we extract the embedded links that are

part of the web page and store it into a file. The Perl script used earlier to

extract the embedded objects is used here.

3. Once the embedded links are extracted we remove the base server from the

link and sort the servers without removing the duplicates unlike the earlier

tests. We do not eliminate duplicates, since we wanted to understand the

number of embedded images that needed to be retrieved from each server.
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Figure 4.8: Analysis of Distributed Content on Web Sites

4. We then go through the list of embedded base servers and write out the base

server and embedded object count pairs for each base server in our list. At

the end of this test we have a list of base servers used by the web page and

the number of objects needed to be retrieved from each server.

5. Finally we scatter plot a graph, with the number of embedded objects

retrieved from the server other than the server we retrieved the web page

from, to the total number of objects on the web page.

The graph allows us to understand the number of objects that needs to be

retrieved from a server, other than the server we make the initial request. The

larger the number of non-base servers used, the larger the number of connections

we have to make to completely retrieve the web page.
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4.10 Summary

The test programs written used C, Perl scripts and shell scripts. The initial tests

in each test run, classify the results into three sets of web sites, the single IP set,

multiple IP set and the 302 redirected set. For each of the sets a different test plan

is formulated. The single IP set is studied for changes in header tags to indicate

transparent switching. Changes in ETag and LModT tags are looked for with the

checksum on the HTML body remaining the same. Similar tests to the single IP

set are done on the multiple IP set except that the comparisons are done between

retrievals from different IPs returned on the name resolution of the URL.

The 302 redirected set is investigated by looking for servers that redirect the client

to different servers on multiple requests. Finally the number of embedded objects

served from a server, other than the base server is gathered for the server list.

In the next chapter we compile the results obtained from the test run.
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Chapter 5

Results

The last chapter explained the test scripts we ran and what we aimed to achieve

with each test suite targeted at specific classes of web sites. The classification was

done based on the sites doing HTTP or DNS redirection or sites mapping to a

single IP address. We summarize the results from our tests in the following

sections. Each section deals with the classes we defined. Also the section will be in

two parts based on the two runs we did. Part one will cover the first set of tests

done in April 2000 and the second part will cover the tests run in May 2002.

5.1 Initial Run and Classification Results

The first step in our tests was to classify the set of servers we were running. To do

this we did DNS lookups on the URL, to see if it mapped to multiple or single IP

addresses. We then made a single GET request on each URL and retrieved the

web page from each of the 123 servers(Appendix A). Based on the responses we

classified the sites that gave us a 302 response into a separate list and from the

remaining servers classified the list into multiple and single IP address servers.

The results of the phase one of our test run in April 2000 gave us the distribution
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shown in Table 5.1.

Table 5.1: Classification of Web Sites: April 2000

Web site classes Number of sites out of 123
Single IP set 83
Multiple IP set 22
302 response set with Multiple IP 4
302 response set with Single IP 14
Total 123

Out of the 18, 302 responses, we had 4 web sites that had their URL mapped to

multiple IP addresses and they should belong to the multiple IP set based on our

classification. We however investigate such sites in the 302 response set, to detect

if they do load balancing using HTTP redirection

Phase 2 of the test run in May 2002 produced the following classification.

Table 5.2: Classification of Web Sites: May 2002

Web site classes Number of sites out of 123
Single IP set 78
Multiple IP set 22
302 response set with Multiple IP 4
302 response set with Single IP 19
Total 123

As we see the results changed slightly with there being five web sites not part of

the single IP set in the second run. The test was conducted on the same list of

sites and we notice that the classification resulted in a total of 123 sites. Also we

see an increase in the sites doing the 302 based HTTP redirection. Among the 23

servers that do 302 redirection 4 mapped to multiple IP addresses. The set of

servers in the 302 response set that mapped to multiple IP addresses are different
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from the previous test run. Appendix A has detailed classification of each site

between each run.

Table 5.3 indicates the changes in server classification between the two runs. By

adding up the diagonal we find that 92 out of the 123 sites remained in the same

set between the two runs. The major shift between the two runs, are the 9 sites

that formed the single IP set that started doing 302 redirection in the second run.

Table 5.3: Change in Web Classification Between the Two Test Runs
Test Run May 2002

April 2000

Classified Set Single IP Multiple IP 302 set Total
Single IP 67 7 9 83
Multiple IP 7 13 2 22
302 set 4 2 12 18
Total 78 22 23 123

After identifying the sets we perform individual tests on each set. The results are

presented in the next three sections.

5.2 Multiple IP Set

In the multiple IP set we perform the tests, as described in the previous chapter,

in the data collection and analysis section of the multiple IP set. We retrieve web

pages from the URL, as well as the list of IP addresses it maps to. We then extract

the embedded and traversal links and the base server of those links to identify if

the web site rotates web servers to serve the HTML references in the page. Also we

compare the checksum of the content and the ETag and LModT tags in the header

of each pages, to see if there are negative caching effects due to load balancing.

In addition, we also look for changes in server software and date since we wanted

to identify if going to different servers in a cluster results in instances where these

values change. The tests are used to validate the cases of change in the server
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software or date values for the single IP set, where the sites could transparently

direct us to different servers.

5.2.1 ETag and LModT Variations with the Same Content

In the phase 1 of our testing we found the following web sites returning the same

content with a different ETag value.

Table 5.4: Multiple IP Set - Variation in ETag with Same Content: April 2000

Sites with variations in ETag with content remaining same
www.hp.com
www.dell.com
www.wwf.com
www.monster.com

While in phase 2 we found no sites doing ETag or LModT tag changes with content

remaining same. We noticed an increase of web sites modifying content on each

request and hence a relative change in ETag and LModT time is to be expected.

Below is an example of the ETag remaining the same with content changing. The

example is taken from our tests www.dell.com in the April 2000 run. The response

is a typical header response and the last line indicates the checksum computed on

the body of the HTML page by our scripts. The results indicate the checksum

remaining the same while the ETag varies.

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://143.166.82.52/index.htm

Date: Mon, 10 Apr 2000 16:34:33 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Sun, 26 Mar 2000 11:51:49 GMT

Etag: "7a9dacab1997bf1:809"

Content-Length: 567
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HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://143.166.82.53/index.htm

Date: Mon, 10 Apr 2000 15:30:42 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Sun, 26 Mar 2000 11:51:49 GMT

Etag: "7a9dacab1997bf1:7ec"

Content-Length: 567

We were curious to identify the changes that happened to servers that showed

ETag changes in the April 2000 run with the content remaining same, to what

they are returning now. We list all the servers and the change in their operation

over 2 years.

Table 5.5: Multiple IP - ETag Server List Variations from April 2000

Sites with variations in ETag
with content remaining same

Changes in second test run

www.hp.com Content consistently changes with ETag
www.dell.com Content consistently changes with ETag
www.wwf.com Site permanently moved to www.wwe.com
www.monster.com Content consistently changes with ETag

Since we did not find any ETag variations in the second run, all sites

demonstrating the behaviour in the earlier test run fixed the issue.

5.2.2 Change in Server Software

Similarly we looked for server software changes and the following were the web

sites, where changes were seen during the April 2000 run.

In the May 2002 run we found only www.microsoft.com with changes in server

software.
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Table 5.6: Multiple IP - Variation in Server Software: April 2000

Sites with variations in server software on multiple retrievals
home.netscape.com
www.sportsline.com
www.gamespot.com

Table 5.7: Multiple IP - Variation in Server Software: May 2002

Sites with variations in server software on multiple retrievals
www.microsoft.com

Although changes in server software in multiple retrievals does not affect the client

to the best of our knowledge, we use the change in server software as a gauge to

identify sites in our next set doing transparent redirection. Below is an example

response from www.microsoft.com where the server software changes from IIS

version 5 to IIS version 6.

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

P3P: CP=’ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo OUR SAMo

CNT COM INT NAV ONL PHY PRE PUR UNI’

Content-Location: http://tkmsftwbw16/default.htm

Date: Sat, 18 May 2002 23:09:06 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Fri, 17 May 2002 23:56:14 GMT

Etag: "1095d76dfefdc11:8a7"

Content-Length: 27749

HTTP/1.1 200 OK

Content-Length: 27749

Content-Type: text/html

Content-Location: http://207.46.197.113/default.htm

Last-Modified: Fri, 17 May 2002 23:56:14 GMT

Accept-Ranges: bytes
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Etag: "1095d76dfefdc11:efe1"

Server: Microsoft-IIS/6.0

P3P: CP=’ALL IND DSP COR ADM CONo CUR CUSo IVAo IVDo PSA PSD TAI TELo OUR SAMo

CNT COM INT NAV ONL PHY PRE PUR UNI’

Date: Sat, 18 May 2002 23:09:09 GMT

Connection: close

As in the previous section we observed the sites showing a change in the software

in the previous run and found the following results.

Table 5.8: Multiple IP - Server Software Changes from April 2000

Sites with variations in server
software

Changes in second test run

home.netscape.com Consistent Server Software
www.sportsline.com Consistent Server Software
www.gamespot.com Site is now single IP and responds

with consistent server software

We also identified that www.microsoft.com, which shows server software changes

in the May 2002 run, displayed consistent software in the April 2000 run as shown

in Table 5.9.

Table 5.9: Multiple IP - Server Software Behaviour in April 2000

Sites with variations in server
software in May 2002

Behaviour in earlier test run

www.microsoft.com Consistent Server Software

5.2.3 Changes in Date

The other tests done for the multiple IP set was related to looking for significant

changes in date of retrieval. We did not see any significant change in this respect.
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5.2.4 Changes in Embedded and Traversal Link Servers

Also we inspected for changes in the traversal and embedded link servers that

could potentially be used for a form of load balancing. We found no major changes

in the servers used to service the embedded and traversal links. The changes found

were of servers serving images related to advertisement. In such cases we found

some instances where different ad servers were being used. Also there were

instances where the servers did change between retrievals. On a detailed inspection

the changes were limited and did not indicate any signs of load balancing being

done.

5.3 Single IP Set

The single IP set consisted of 83 sites in the April 2000 run and 78 sites in the

May 2002 run. As part of the tests, we tried to identify sites doing transparent

redirection and for issues with caching as in the case of the multiple IP set. The

tests involved getting the web pages 5 times consecutively from the site and

comparing the headers and links forming the web page. We looked for header tags

like ETags, LModT, server software and date in the headers. We extracted

embedded and traversal links to identify if servers used to serve the links on the

web page are rotated. Following are the results of the tests.

5.3.1 ETag and LModT Changes

We tried to identify sites that returned different ETag and LModT values with the

content remaining the same. Following were the web sites displaying the changes

during the April 2000 run.

In the May 2002 run we found www.download.com showing changes in ETag with

72



Table 5.10: Single IP - ETag Variation with Same Content: April 2000

Sites with variations in ETag with content remaining same
www.spedia.net
www.entrypoint.com
www.ebay.com

content remaining same, while www.usa.net showed changes in LModT and ETag

with content remaining same.

Table 5.11: Single IP - ETag Variation with Same Content: May 2002

Sites with variations in ETag
or LModT with content re-
maining same

Tags changed

www.download.com ETag
www.usa.net ETag and LModT

With the above list, we find that these sites cause problems for cache validation

because of an incorrect implementation of the ETag and LModT tags. Because the

content is retrieved from the same IP address, we infer that the sites do some form

of transparent load balancing. The inference is further validated with the way

Apache, a popular web server, calculates the ETag value. It concatenates the

inode value of the file, last modified time and size of file to compute the ETag [2].

Since the content and hence the modified times remain the same, the varying

parameter would be the inode value, which would change if the file is moved or is

retrieved from a different server.

Investigating sites that changed between the two runs gave us the following results

For the two sites showing ETag and LModT changes in the May 2002 run we

looked at the responses from April 2000.
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Table 5.12: Single IP - ETag Variations since April 2000

Sites with variations in ETag
with content remaining same

Changes in second test run

www.spedia.net The URL now maps to the multiple IPs
www.entrypoint.com No ETags are sent and content keeps changing
www.ebay.com The URL now maps to the multiple IP

Table 5.13: Single IP: ETag and LModT Variation - Behaviour in April 2000

Sites with variations in ETag
with content remaining same

Behaviour in earlier test run

www.homestead.com The URL mapped to multiple IPs and no ETag was sent
www.usa.net No ETag or LModT sent

5.3.2 Server Software Changes

We looked at sites that showed differences in the server software and in such cases

the response clearly indicates a change in the server we are getting a response from.

In the April 2000 run we found www.women.com showing a different software

version, while the May 2002 run Table 5.15 showed changes in server software.

Table 5.14: Single IP - Server Software Variations: April 2000

Sites with variations in server software on multiple retrievals
www.women.com

The site www.women.com still shows a change in server software. The set of sites

indicate transparent redirection done to clients making a request to such sites.

The two sites in 2002 that showed changes in server software behaviour showed

consistent server softwares in 2000.
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Table 5.15: Single IP - Server Software Variations: May 2002

Sites with variations in server software on multiple retrievals
www.homestead.com
www.apple.com
www.women.com

Table 5.16: Single IP: Server Software - Behaviour in April 2000

Sites with variations in server
software in May 2002

Behaviour in earlier test run

www.homestead.com Consistent server software in response
www.apple.com Consistent server software in response

5.3.3 Date Changes

To further identify sites showing significant changes in date, we inspected the

changes in date over multiple request. Significant changes in date was measured as

large changes in time in relation to the time intervals at which requests were made

by the client. Such changes would indicate a different server serving the requests.

We found no change in the dates that were returned on both runs.

5.3.4 Content Location Differences

Content location is a header tag provided by HTTP/1.1 and we found these tags

in certain responses from servers implementing the HTTP/1.1 protocol. Although

we did see cases of changes of content-location for the multiple IP set they

corresponded to the IP address we were requesting the content from and hence was

not of interest. The content-location is described by the RFC [13] as below.

“The Content-Location value is not a replacement for the original requested URI;

it is only a statement of the location of the resource corresponding to this
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particular entity at the time of the request. Future requests MAY use the

Content-Location URI if the desire is to identify the source of that particular

entity.”

We found the following sites showing a change in content-location among multiple

retrievals in the May 2002 run.

Table 5.17: Single IP - Variations in Content-Location: May 2002

Sites with variations in content-location
www.homestead.com
www.usa.net

The results indicate that the sites retrieve content from another machine. Consider

below an example response from www.usa.net where the content-location changes

and is different from the IP we make the request to. Also the site shows a change

in the entity tag with content remaining same.

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://165.212.22.66/index.html

Date: Sun, 19 May 2002 00:54:43 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Sun, 19 May 2002 00:52:47 GMT

Etag: "12d8327ecffec11:90b"

Content-Length: 19916

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://165.212.22.65/index.html

Date: Sun, 19 May 2002 00:56:24 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Sun, 19 May 2002 00:54:27 GMT

Etag: "7c622fbacffec11:a0e"

Content-Length: 19916
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Content-location across retrievals must remain same for transparency. The table

below indicates the behaviour of the two sites in the earlier test run. Both sites

did not respond with the content-location tags in earlier runs.

Table 5.18: Single IP: Content-Location - Behaviour in April 2000

Sites with variations in con-
tent location in May 2002

Behaviour in earlier test run

www.homestead.com No Content-location tag returned in response
www.usa.net No Content-location tag returned in response

5.3.5 Changes in Embedded and Traversal Link Servers

We inspected for changes in the traversal and embedded link servers that could

potentially be used for a form of load balancing. We found no major changes in the

servers used to service the embedded and traversal links. The changes found were

of servers serving images related to advertisement. In such cases we found some

instances where different ad servers were being used. Also there were instances

where the servers did change between the retrievals. On a detailed inspection the

changes were limited and did not indicate any signs of load balancing being done.

5.4 302 Response Set

The 302 response set involved sites that returned a 302 response and sites that do

a HTTP redirection. The set also indicated the largest increase between the two

test runs from 18 to 23 sites responding with a 302 response.

The tests run on this set was to continuously make requests to the URL we were

being redirected to until we got a 200 response. We then make 5 consecutive
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requests to the URL we got the last URL from to see if we are being redirected to

a different server and if the site is doing some form of load balancing.

In the first test run we found the following sites responding with a 302 response

and redirecting the client to a different URL on multiple attempts

Table 5.19: Sites using HTTP Redirection for Load Balancing: April 2000

Sites load balancing by HTTP redirection
www.hotmail.com
www.msnbc.com
www.fidelity.com
www.mail.com

In the May 2002 run we had the following sites that did HTTP redirection to

different sites.

Table 5.20: Sites using HTTP Redirection for Load Balancing: May 2002

Load balancing sites using HTTP redirection
www.msnbc.com
www.fidelity.com
www.passport.com

We found an similar set of sites doing load balancing in the May 2002 run. An

interesting case is www.hotmail.com, which redirected the client to the same URL

during the May 2002 run of tests but had a special tag “HMServer” in the

response. The HMServer returned a URL which seemed to indicate that the site

was internally redirecting the client and serving the request from a different server.

Shown below are tags when we make a request to the redirected URL

“http://lc2.law13.hotmail.passport.com/cgi-bin/login”.

‘‘HMServer H: LC3-LFD82.law5.internal.hotmail.com ...’’
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‘‘HMServer H: LC2-LFD96.law5.internal.hotmail.com ...’’

‘‘HMServer H: LC1-LFD51.law5.internal.hotmail.com ...’’

Following is an example 302 response from www.fidelity.com.

HTTP/1.0 302 Moved Temporarily

Server: WebSpective Interceptor 3.0

Location: http://www100.fidelity.com:80/

HTTP/1.0 302 Moved Temporarily

Server: WebSpective Interceptor 3.0

Location: http://www300.fidelity.com:80/

The drawbacks of HTTP redirection lies in the delay perceived at the client. The

delay is due to the additional time needed to break a connection and re-establish a

new connection to the redirected URL. The breaking and re-establishment of the

connection also defeats the persistent connections available with HTTP/1.1. The

Tables 5.21 and 5.22 indicate the behaviour of the web sites in the other test runs.

Table 5.21: Sites Load Balancing using HTTP Redirection - Behaviour in May 2002

Site load balancing in April
2000

Behaviour in May 2002

www.mail.com URL mapped to multiple IPs and returned a 200 response

Table 5.22: Sites Load Balancing using HTTP Redirection - Behaviour in April 2000

Site load balancing in May
2002

Behaviour in earlier test run

www.passport.com URL mapped to a single IP and returned a 200 response
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5.5 Distributed Content

Finally we ran tests on the server list to identify the amount of distributed content

we see on web pages. The server list consisted of servers that formed the multiple

and single IP set. The two sets are chosen because the 302 response set only

return the HTTP header with the 302 response with no body and hence no

embedded content is present. By distributed content we mean embedded objects

that are part of the HTTP page and that need to be retrieved to completely

render the page. The analysis is needed to understand the number of objects the

client have to retrieve from the server other than the server it initially made the

HTTP request for the web page.

In gathering the statistics, we measured the average and median of the number of

embedded objects retrieved from servers other than the base server, the total

number of objects needed to be retrieved and the number of non-base servers used

to get the embedded objects. The average of the total number of embedded

objects used on sites increased, while the number of embedded objects retrieved

from non-base servers doubled. In terms of the number of non-base servers used

there was a shift towards using at least one external server to serve the objects .

The shift is validated by the distribution in the results in Tables 5.25 and 5.26.

Table 5.23: Embedded Object Distribution - Statistics on 105 Sites: April 2000

Measured Parameters Average Median
Embedded objects retrieved from
non-base servers

4.55 0

Total number of embedded ob-
jects

14.84 12

Number of non-base servers used 0.94 0

To further understand the distribution of objects on servers we extracted the
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Table 5.24: Embedded Object Distribution - Statistics on 100 Sites: May 2002

Measured Parameters Average Median
Embedded objects retrieved from
non-base servers

9.47 2

Total number of embedded ob-
jects

20.27 18.5

Number of non-base servers used 1.38 1

distribution of the number of servers used to serve embedded objects by sites.

From the results we find that in the first run, as shown in Table 5.25, about half

the sites did not use an external server and served the embedded objects from the

base server. However there is a shift with more number of sites requiring clients to

go to at least one other server to retrieve the embedded objects to render the web

page. Tables 5.25 and 5.26 show the percentage of servers going to one, two or

three servers other than server used to get the base HTML page.

Table 5.25: Embedded Object Distribution- Non-base Servers: April 2000

Number of servers other than
base server to get embedded
objects

Percentage of total test sites
displaying content distribu-
tion

0 51
1 17
2 21
3 8
4 3
Total percentage 100

We saw more of content distribution. We identified the data points for analysis by

extracting all the embedded images and plotting a graph of the number of objects

needed to be retrieved from non-base servers to the total number of objects for the

web page.
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Table 5.26: Embedded Object Distribution- Non-base Servers: May 2002

Number of servers other than
base server to get embedded
objects

Percentage of the test sites
displaying content distribu-
tion

0 33
1 30
2 21
3 12
4 1
5 2
9 1
Total Percentage 100

The two graphs in Figure 5.1 and Figure 5.2 show the embedded object

distribution of the two runs of our tests.

Figure 5.1 and Figure 5.2 indicate a large number of embedded objects present at

sites. The graph will have no objects above the diagonal splitting the graph

because the objects retrieved from different servers will never exceed the total

number of objects. A data point on the diagonal indicates that all the embedded

objects had to be retrieved from a server other than the server the connection was

made to. A data point on the x-axis indicates that all objects are retrieved from

the base server.

We see an increase in the embedded objects on sites between the two test runs.

The number of servers on the diagonal of Figure 5.2 over that on Figure 5.1

indicates that an increasing number of web sites require clients to retrieve most of

the embedded objects from a server other than the base server. The instances are

of sites which have image servers to serve the client with embedded content.

Although the number of embedded objects are large, the number of servers the

client has to go to is quite small. In the April 2000 run, we tested 104 servers
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Figure 5.1: Relative Distribution of Embedded Objects on Web Sites: April 2000

constituting the single and multiple IP list. Out of the 104 servers, 51 showed

content distribution by going to a server different from the base server to retrieve

content. Similarly in the second run out of a total of 100 sites tested we found 64

sites doing content distribution. Figure 5.2 displays the relation of objects

retrieved from distributed servers to the the total content needed to be retrieved.

The large amount of distribution is clearly negative for the persistence of

HTTP/1.1, although it helps in reducing load on servers. With studies done to

show the benefits of pipelined HTTP connections it would be worthwhile for sites

doing this form of load balancing to rethink the strategy.
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Figure 5.2: Relative Distribution of Embedded Objects on Web Sites: May 2002

5.6 Summary

In this chapter, we discussed the results from our tests explained in the previous

chapter. We run the preliminary tests to classify the sites into three groups. We

found that sites doing 302 redirections increased, while the number of sites having

a single IP reduce. However the increase did not result in an increase in instances

of sites using 302 redirection for load balancing.

In our tests with the Single IP set and Multiple IP set we found cases where ETag

and LModT time changes with the content remaining same. Caches would

invalidate content from such sites and hence it has a negative effect. The negative

effects is an offshoot of content replication among multiple servers. The results

also indicate transparent load balancing in the case of sites with a single IP

address. We found sites showing changes in server software and content location,
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again indicating transparent switching in the single IP set. Finally we investigated

if sites use embedded and traversal links to rotate servers serving the links but

could not find any conclusive results indicating load balancing. We analysed

content distribution in our set of sites and the results indicated about half of the

sites using content distribution.
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Chapter 6

Summary and Conclusion

At the start of our research into distributed and replicated web content, we were

aware of active research happening in the area of load balancing. Being web users

ourselves the delay at popular web sites was apparent. Our preliminary tests

indicated the use of multiple servers by web sites. With increasing web traffic it

becomes apparent that the incidence of such architectures would increase. We

realized the importance of content replication and distribution as an area in

research and although research was being done and techniques were suggested

there was a lack of real data on what was being done at web sites. With our

previous research background and interest in caching and the HTTP protocols, the

interplay between these techniques and load balancing caught our interest. All

three techniques aimed at improving performance for web servers and yet no study

was done to study the effects of one techniques over the other.

In our approach we decided to test sites most likely to use replicated and

distributed content to reduce load. Our aims were to identify sites that do load

balancing, to understand the implementations at such sites and the issues with

such implementations on clients and in relation to other techniques like HTTP and
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caching. Early tests showed that a large number of sites in our set mapped to

single IP addresses. Sites using application layer switching were easy to detect

since the client is involved in resolving the URL and in making the HTTP

connections in the DNS based and HTTP based redirection schemes. Sites using a

virtual IP and switching clients transparently required closer scrutiny of the

responses to identify them as doing load balancing. Further we were interested in

understanding if there are any issues with replication or distribution, on the

HTTP/1.1 protocol and caching.

To test web sites, our test setup involved making requests to servers, collecting the

responses and analysing them. We ran client programs against the web servers and

automated scripts to parse and retrieve relevant content from the responses. The

responses were checked for changes in server software, date, content-location and

other such tags, which change based on the server the content is retrieved from. We

looked for changes in ETag and LModT, which are unique cache validators with

content remaining same. We looked for sites doing 302-based redirection for load

balancing. Finally we understand the extent of distribution of content on servers.

We were able to identify sites that do application layer load balancing like DNS

and HTTP based redirection quite easily. Sites that had URLs mapped to a single

IP address were more challenging and needed to be identified by looking at

responses. A small set was identified by looking at the server software,

content-location, entity tag and last modified time identifier tags in the HTTP

header. Cases where entity tags and last modified time change with content

remaining constant have a negative effect on caching. With replication of content

the challenge in maintaining unique validators for contents increases. Having found

such issues of negative caching it would be useful to study methods by which

identifiers can be generated independent of the machine the content comes from.
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There is a large amount of distribution of embedded content that form the web

page at sites. Although the servers needed to retrieve the embedded content is a

small set the distribution of content works against the design of persistence in

HTTP/1.1 protocol. With studies showing the benefits of pipelined HTTP/1.1

web sites must try to understand the benefits and disadvantages of distributing

content on the HTTP/1.1 protocol performance. The degree of distribution

increased between the two runs of tests.

Our tests did not show any load balancing done by sites by rotating the servers

used to serve embedded and traversal links on web pages. Although a more

distributed location of our test clients, might have shown better results. Sites not

sending several tags in the HTTP header hampered the investigation. A future

step would be to standardize on tags that must be sent by servers.

The approach used to investigate replicated and distributed content at web sites

and the test methodology can be used as a model for future investigations of load

balancing or of distributed and replicated web content. Running of tests with a

gap of two years allowed us to see several sites resolving issues with caching that

we saw in our first test run. There has been an increase in distributed content over

the period and a need to understand the effect of the content distribution and the

provision of persistent connections and pipelining of requests in HTTP/1.1 has

become pertinent. Several sites that displayed changes in software, IP and other

tags change in the second run. There is however no clear indication within our test

set that load balancing at sites are increasing.

Following are the some of the probable directions a researcher can follow up based

on our work. More studies can be done placing clients in geographically distributed

locations and making requests to web sites. Since servers use techniques to gauge

the geographical proximity of clients we might see different behaviour at load
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balanced sites. Specifically there might be cases where sites using servers like

Akamai distribute content such that they are closer to the location of the client.

The interplay of caching with content replication and distribution was explained.

Tests indicated issues with caching content from multiple servers. The challenges

in providing clients with consistent cache identifiers in a multiple server

environment increases over a single server environment. Web servers cannot tie

identifiers to the any unique server parameter and the tags used to validate caches

must be a function of the content being served. A useful study would be to further

understand how effective caching can be done on such sites and in maximizing the

clients cache hits.

Large number of web sites distribute content and with the benefits of HTTP/1.1

persistent connections and pipelining of requests, a study is needed to understand

the impact of both methods. A new architecture based on the study is needed to

take advantage of bothe techniques.

In conclusion we hope our study filled a gap in the understanding of techniques

used by sites to balance load and replicate and distribute content. We believe the

results highlights several issues in current implementation of load balancing, which

need to be addressed and fixed. Future work in terms of further investigation and

better architectures can be done based on the findings and issues we faced. We

hope our approach and test methodology provide a model for studying sites doing

content replication and distribution.
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Appendix A

Server List

Following is the list of servers used during the test runs in April 2000 and May
2002. The table indicates the classification of each site in April 2000 and the
change in May 2002

Table A.1: Server List: Classification for April 2000 and May 2002 test run

Site name Classification in
April 2000

Classification in
May 2002

www.yahoo.com Multiple IP set Multiple IP set
www.four11.com Single IP set Multiple IP set
www.microsoft.com Multiple IP set Multiple IP set
www.msn.com Multiple IP set Multiple IP set
www.linkexchange.com 302 Response set 302 Response set
www.aol.com Multiple IP set Multiple IP set
home.netscape.com Multiple IP set Multiple IP set
www.go2net.com 302 Response set 302 Response set
www.lycos.com Multiple IP set Single IP set
www.hotmail.com 302 and Multiple IP

set
302 and Multiple IP
set

www.whowhere.com 302 and Multiple IP
set

302 and Multiple IP
set

www.excite.com Single IP set Single IP set
www.mckinley.com Single IP set Single IP set
www.city.net 302 Response set Single IP set
www.webcrawler.com Single IP set Single IP set
www.altavista.digital.com Multiple IP set Single IP set
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Table A.2: Server List: Classification for April 2000 and May 2002 test run

Site name Classification in
April 2000

Classification in
May 2002

www.compaq.com Single IP set Single IP set
www.tandem.com Single IP set Single IP set
www.go.com Single IP set Single IP set
www.xoom.com 302 Response set Multiple IP set
www2.bluemountain.com Single IP set 302 Response set
www.mtv.com Single IP set Multiple IP set
www.bbc.co.uk Single IP set Single IP set
www.amazon.com 302 Response set 302 Response set
www.quote.com Single IP set 302 Response set
www.msnbc.com 302 and Multiple IP

set
302 Response set

www.cnet.com Multiple IP set Multiple IP set
www.search.com Multiple IP set Single IP set
www.news.com Multiple IP set Single IP set
www.download.com 302 and Multiple IP

set
Single IP set

www.spedia.net Single IP set Multiple IP set
www.snowball.com Single IP set Single IP set
www.burstmedia.com Single IP set Single IP set
www.usa.net Single IP set Single IP set
www.entrypoint.com Single IP set Single IP set
www.cnn.com Multiple IP set Multiple IP set
www.real.com Single IP set Single IP set
www.sony.com Single IP set Single IP set
www.station.sony.com Single IP set 302 Response set
www.scea.sony.com Single IP set Single IP set
www.sportsline.com Multiple IP set Multiple IP set
www.ebay.com Single IP set Multiple IP set
www.theglobe.com Single IP set Single IP set
www.homestead.com Single IP set Single IP set
www.macromedia.com Single IP set Single IP set
www.webjump.com Single IP set Single IP set
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Table A.3: Server List: Classification for April 2000 and May 2002 test run

Site name Classification in
April 2000

Classification in
May 2002

www.nettaxi.com Single IP set Single IP set
www.snap.com Single IP set 302 Response set
www.tucows.com Single IP set Single IP set
www.freethemes.com Single IP set Single IP set
www.looksmart.com Single IP set Single IP set
www.beseen.com Single IP set Single IP set
www.fool.com Single IP set Single IP set
www.fortunecity.com 302 Response set 302 Response set
www.ugo.net Single IP set 302 Response set
www.gamepen.com 302 Response set Single IP set
www.game-revolution.com Single IP set Single IP set
www.gamedemo.com Single IP set Single IP set
www.ecircles.com 302 Response set 302 Response set
www.etrade.com Single IP set 302 Response set
www.chek.com Single IP set Single IP set
www.collegeclub.com Single IP set 302 Response set
www.cjb.net Single IP set Single IP set
www.hp.com Multiple IP set Multiple IP set
www.zdnet.com Single IP set Single IP set
www.hotfiles.com 302 Response set 302 Response set
www.pathfinder.com 302 Response set 302 Response set
www.freevote.com Single IP set Single IP set
www.onelist.com Single IP set 302 Response set
www.apple.com Single IP set Single IP set
www.shareplay.com Single IP set Single IP set
www.datais.com Single IP set Single IP set
www.talkcity.com Single IP set Single IP set
www.nasdaq.com Single IP set Multiple IP set
www.dell.com Multiple IP set Multiple IP set
www.nasa.gov Single IP set Single IP set
mars.sgi.com Single IP set Single IP set
mpfwww.jpl.nasa.gov Single IP set Single IP set
www.eudoramail.com Single IP set Single IP set
www.mapquest.com Single IP set Multiple IP set
www.simplenet.com 302 Response set Single IP set
www.weather.com Multiple IP set Multiple IP set
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Table A.4: Server List: Classification for April 2000 and May 2002 test run

Site name Classification in
April 2000

Classification in
May 2002

www.about.com Single IP set Single IP set
www.nih.gov Single IP set Single IP set
www.recycler.com Single IP set Single IP set
www.realtor.com Single IP set 302 Response set
www.classifieds2000.com Single IP set Single IP set
www.tminterzines.com Single IP set Single IP set
www.ircache.net Single IP set Single IP set
www.wwf.com Multiple IP set Single IP set
www.100free.com Single IP set Single IP set
www.infospace.com Single IP set Single IP set
www.web1000.com Single IP set Single IP set
www.sun.com Single IP set Single IP set
java.sun.com Multiple IP set Single IP set
www.dash.com Single IP set Single IP set
www.usatoday.com Single IP set Single IP set
www.developer.com Single IP set Single IP set
www.cisco.com Single IP set Single IP set
www.internet.com Single IP set Single IP set
www.mail.com 302 Response set Single IP set
www.bloomberg.com Single IP set Single IP set
www.mp302 Response set.com Single IP set Single IP set
www.ibm.com Multiple IP set Multiple IP set
www.passport.com Single IP set 302 Response set
www.dai.net Single IP set Single IP set
www.noaa.gov Single IP set Single IP set
www.schwab.com Single IP set Single IP set
www.winamp.com Single IP set Single IP set
www.fidelity.com 302 Response set 302 Response set
www.uproar.com 302 Response set 302 Response set
www.mplayer.com Single IP set Single IP set
www.gamespot.com Multiple IP set Single IP set
www.monster.com Multiple IP set Multiple IP set
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Table A.5: Server List: Classification for April 2000 and May 2002 test run

Site name Classification in
April 2000

Classification in
May 2002

www.Headbone.com Single IP set Single IP set
www.women.com Single IP set Single IP set
www.cdworld.com Single IP set Single IP set
www.infosel.com Single IP set Single IP set
www.scu.edu Single IP set Single IP set
www.berkeley.edu Single IP set Single IP set
www.nai.com Single IP set Multiple IP set
www.uolmail.com Multiple IP set 302 and Multiple IP

set
www.fbcgi.com Single IP set Single IP set
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