
Development of Cube Swarm for Search and Rescue

Applications

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the degree of Bachelor of Science by

William Albert (RBE), Phillip Brush (RBE/ME), Benjamin Dodge (ECE), Timothy Klein

(RBE/CS), Andrew McCammon (ME), Jason Rockmael (RBE), Dang Tran (RBE)

Project Advisors:
Professor Gregory Lewin (RBE/ME), Professor Shubbhi Taneja (CS), Professor

Reinhold Ludwig (ECE)

Worcester Polytechnic Institute

This report represents work of one or more WPI undergraduate students submitted to the

faculty as evidence of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review.

2
Abstract

Current search and rescue robots suffer from being either too large to fit into tight
spaces or too small to traverse terrain. To overcome this challenge, we developed a swarm
of interlocking, cube-shaped robots that allow the robots to explore individually and
traverse obstacles while connected. We demonstrated our solution using a centralized
Bluetooth communication network, AprilTag localization, and an efficient path-planning
algorithm. Our robots are able to navigate an arena without collisions, and then assemble
to bridge a gap.

3
TABLE OF CONTENTS

Abstract 2
Table of Contents 3
Table of Figures 5
Table of Tables 6
Chapter 1: Introduction 7
Chapter 2: Background 7

2.1 Search and Rescue Robots 7
2.2 Benefits of Swarms 7
2.3 Limitations of Swarms 8
2.4 Project Objectives 9

Chapter 3: Design and Development 9
3.1 System Overview 9
3.2 Electronics 10

3.2.1 Raspberry Pi Zero 2W 10
3.2.2 Arducam 11
3.2.3 Power Distribution 11
3.2.4 Printed Circuit Board 11

3.3 Autonomous Connection 13
3.3.1 Prototyping 13
3.3.2 Testing 17
3.3.3 Analysis 22

3.4 Locomotion 23
3.4.1 Prototyping 23
3.4.2 Testing 25
3.4.3 Analysis 26

3.5 Communication 26
3.5.1 Prototyping 26
3.5.2 Testing 27
3.5.3 Analysis 28

3.6 Localization 29
3.6.1 Prototyping 29
3.6.2 Testing 30
3.6.3 Analysis 33

3.7 Path Planning 33
3.7.1 Prototyping 33
3.7.2 Testing 34
3.7.3 Analysis 35

Chapter 4: System Testing and Verification 35
4.1 System Design 35

4.1.1 Introduction 35
4.1.2 Communication Architecture 35

4
4.1.3 State Machine 36

4.2 System Testing 37
4.2.1 Simulation 37
4.2.2 Autonomous Locking 38
4.2.3 Bridging 39

Chapter 5: Analysis and Discussion 40
Chapter 6: Conclusions and Recommendations 40
References 42
Appendix A: Static Calculations 47
Appendix B: Solidworks FEA 47
Appendix C: Physical Weight Testing Calculations 47
Appendix D: Extended Kalman Filter Calculations 47
Appendix E: ROB 16413 Data Sheet 47
Appendix F: GitHub Repository 47

5
Table of Figures
Figure 1: A single ATRON module. (Stoy et al., 2010) 8
Figure 2: ATRON modules connecting to each other to form complex structures. (Stoy et al.,
2010) 8
Figure 3: Storyboard of Final Demonstration 9
Figure 4: Cube Robot 10
Figure 5: Ultiboard Schematic of PCB with top layer ground plane removed 12
Figure 6: 3D rendering of PCB using Ultiboard 12
Figure 7: Connection Mechanism Prototype Designs 14
Figure 8: Flat Prototype Designs 14
Figure 9: External Forces on the Locking Mechanism and Cube 15
Figure 10: Prototype Autonomous Connection Mechanism 15
Figure 11a: Autonomous Connection Mechanism 16
Figure 11b: Autonomous Connection Mechanism 16
Figure 12: Misaligned Cubes 17
Figure 13: Force Values on Gripper/Cube (left) Force Values at Gear Train Teeth (right) with
Three Cube Weight Connected. TA2 and FR overlap (left) 17
Figure 14: Spur Gear Static Calculation FBD (left) and FEA From Calculation Values (right)
18
Figure 15: FEA on Spur Gear Reaching Maximum Yield with 43.5N forces Applied
Circumferentially 19
Figure 16: Physical Weight Testing Rig 20
Figure 17: Physical Weight Testing Lever Arm Fracture 21
Figure 18: Solidworks Sag Test Assembly 21
Figure 19: Three Connection Methods Tested 22
Figure 20: Motor Mount Pegs (left) Sheared Pegs (center) Motor Mount Support (right) 23
Figure 21: Prototypes of Wheels from B Term to D Term. 24
Figure 22: Friction Forces on the Wheels 24
Figure 23: Final Cube Robot Drivetrain 25
Figure 24: Simple communication diagram 28
Figure 25: Communication Stress Test 28
Figure 26: AprilTag reading gives the distance (range) and heading (bearing) 30
Figure 27: Simplified Cube Robot URDF 31
Figure 28: Back side of Robot with 1x1 inch AprilTag 31
Figure 29: Localization Testing Setup in Gazebo 32
Figure 30: Rviz Simulation of Cube Robots’ Traversed Paths 32
Figure 31: Position Error Over Time During Simulated Square Test 33
Figure 32: Before and After of CBS path-planning. Visualized with Matplotlib 35
Figure 33: Diagram Showing Communication Between Computer and one Robot 36
Figure 34: State Machine 37
Figure 35: Gazebo Simulation Demonstration 38
Figure 36: Two Cubes Locking 39
Figure 37: Three Cubes Bridging a One Robot Wide Gap 40

6
Table of Tables

Table 1: Physical Weight Testing Results Table 20
Table 2: Sag Test Results 22

7
Chapter 1: Introduction

After a natural disaster, search and rescue (SAR) teams spend several days exploring
survivable voids left in rubble (Arranz et al., 2023). To save as many survivors as possible,
qualified personnel are responsible for balancing the tasks of searching for more survivors
and rescuing the ones they have already found. A key challenge in search and rescue is
locating these survivors within a limited timeframe. In addition, some disaster sites are too
dangerous for people to go into. Stretching already limited resources thin necessitates the
development of more advanced tools for locating survivors, enabling relevant personnel to
concentrate on saving lives. Robots are capable of aiding or replacing human workers in these
situations. A swarm of robots could traverse this type of environment and autonomously
locate survivors, addressing the struggle of allocating resources in similar situations. This
project intends to demonstrate the ability of swarm robotics to solve problems and overcome
obstacles that traditional SAR robots could not. This project will serve as a foundation for
further research on swarm robotics for search and rescue applications.

To demonstrate a successful system, several agents will explore their environment,
connect to one another, and then cross a gap. Fundamentally, agents will demonstrate the
ability to both work independently and work together as a system.

Chapter 2: Background

2.1 Search and Rescue Robots

The value of search and rescue robots is to traverse environments that humans cannot
due to size and safety concerns. SAR robots can be autonomous or teleoperated and have the
capability to identify humans, hazardous materials, and flaws in a building's structural
integrity and establish lines of communication. Search and rescue scenarios inherently have a
level of uncertainty until a thorough assessment of the situation has been conducted.
Therefore, it is important that robots are adaptable to the environment and potential damage
(Delmerico et al., 2019). However, current search and rescue robots may suffer from being
either too large to fit into tight spaces or too small to traverse complex terrain.

2.2 Benefits of Swarms

A swarm of robots refers to a group of robots that can work collaboratively with one
another in order to achieve a more complex goal than an individual robot is capable of
completing (Murphy, 2004). A swarm has the potential to mitigate the shortcomings of a
singular SAR robot by providing a more cost effective and adaptable system with smaller
individual robots. Consider a scenario where a swarm is searching a site and one of the robots
becomes damaged and unusable. Having multiple robots on site means if one is lost, another
robot can replace it, exemplifying the adaptable nature of swarm robotic systems (Patil et al.,
2013). Furthermore, by using a swarm, each robot can be allocated a sub-area within the
wider area, allowing a greater total coverage of the area. Most swarm robots are typically

8
smaller than individual SAR robots, which allow for navigation in smaller spaces, but make
obstacles harder to overcome.

A swarm of self-configurable, modular robots enable dynamic changes and
adaptability to diverse tasks. The ATRON project illustrates the transformative capabilities of
modular robots (Brandt et al., 2007). This system explores modular design principles,
application versatility, and innovative control strategies, demonstrating the potential of
self-reconfigurable robots in real-world scenarios. Traditional robots are limited in the variety
of tasks they can perform by their fixed morphologies. The ATRON project removes this
limitation by introducing a swarm of modular robots capable of autonomously changing
configurations. Each ATRON module possesses basic capabilities such as connection,
disconnection, communication, sensing, and rotational movement. ATRON robots exhibit
cluster flow locomotion, a unique feature where modules move within the cluster, leading to
collective movement. While cluster flow may be slower than fixed morphology locomotion, it
offers adaptability to varying environments; however, the drawback to this functionality is
that individual modules within the system are limited in their mobility. While limited in
individual functionality, these modules form the building blocks for creating versatile robotic
swarms.

Figure 1: A single ATRON module. (Stoy et al., 2010)

Figure 2: ATRON modules connecting to each other to form complex structures. (Stoy et al.,
2010)

2.3 Limitations of Swarms

Despite its benefits, swarm robotics also comes with its respective set of limitations
and challenges that need to be dealt with. The main challenge lies in their scalability and
complexity management. For the swarm to be more cost-effective than small individual
robots, each robot within the swarm needs to be low-cost while maintaining sufficient

https://www.zotero.org/google-docs/?u4mZoc
https://www.zotero.org/google-docs/?HKDFom
https://www.zotero.org/google-docs/?vNs9bR
https://www.zotero.org/google-docs/?vNs9bR

9
functionality. Additionally, if the system is not properly designed, the possibility of failure
will increase as the number of robots increases due to error propagation. Another challenge
was ensuring robustness and fault tolerance, as the system must be designed to accomplish its
task even if individual members are lost.

2.4 Project Objectives

In this project, the aim is to demonstrate the suitability of swarm robotics in SAR
applications. There are five main design goals to be fulfilled in order to consider the swarm
successful. Individual agents will be of minimal size and weight, as well as easily
manufacturable. Agents will be able to communicate their current and desired positions with
one another. Agents will be able to localize, or self locate, with respect to the environment
and other robots. Agents will path-plan such that they can line up for autonomous connection
to other agents without collisions. Finally, agents will autonomously cross a three robot wide
gap by locking together to form a bridge.

Chapter 3: Design and Development

3.1 System Overview

The development of a swarm of robots that autonomously assemble demonstrated the
value of using robot swarms in SAR missions. To consider this swarm a success, the proposed
demonstration is shown in Figure 3. First, seven 6x6x6 inch robots will autonomously explore
their environment independently until one or more robots find a global landmark. Next, the
robots will then drive to a position in which they can line up to connect to one another. Then,
the robots will connect and drive as a unified system across a three robot wide gap. Finally,
the robots will disassemble and individually explore the environment on the other side of the
gap.

Figure 3: Storyboard of Final Demonstration

In order to accomplish this task, the system's functionality can be broken down into
five main systems: locking, communication, localization, locomotion, and path planning. A
gripper was developed for locking that attaches to a receiver on a neighboring robot.
Bluetooth was used to communicate between each robot’s Raspberry Pi Zero 2 W. For vision,

10
each robot was equipped with an Arducam. AprilTags were placed on the faces of each robot
to allow other robots to get their relative distances. Two different size AprilTags were used on
the robots. The larger 6x6 inch AprilTag was used for localization while the smaller 1x1 inch
AprilTag was used for lining up the robots for locking. AprilTags were also used as global
landmarks to allow robots to localize within the world. In order to navigate in the
environment, each robot has a differential drive base and a multi-agent path planner to find
and eliminate collisions between robots.

Figure 4: Cube Robot

3.2 Electronics

Firstly, each agent needed a platform to work off of. To this end, each agent was
equipped with a Raspberry Pi Zero 2W, an Arducam OV5647, Gaoneng 850mAh 3S LiPo
battery (3 cell series-configured Lithium-Polymer battery), a DRF 1025 buck converter, and a
printed circuit board (PCB). Additionally, the robot uses a DRV 8835 motor controller, two
MG90D servos, and two ROB 16413 hobby motors.

3.2.1 Raspberry Pi Zero 2W

Each agent needed an onboard method to control its motors and sensors. To
accomplish this task, a typical solution would be a microcontroller. However, due to the
heavy processing demand required by the Arducam and other processing needs, such as
path-planning, each robot was equipped with a Raspberry Pi Zero 2W. This device is a
system-in-package, which can be considered a micro-computer, rather than a microcontroller.
Some other benefits of the Zero 2W were: the built-in Bluetooth and Wi-Fi chips, the quantity
of general purpose input/output (GPIO) pins, and the ribbon cable connector for the Arducam.

These swarm robots needed greater processing power than those of other swarm
robots because each agent needed the ability to do image processing calculations among other
calculations. The onboard Wi-Fi and Bluetooth chips on the Zero 2W satisfied the need to
communicate with other robots and the server. The Zero 2W needed to interface with the
motors, servos, and sensors. The quantity of these sensors required a controller with sufficient

11
GPIO ports, which the Zero 2W accommodated. The built-in ribbon cable connector
simplified camera connections as well.

3.2.2 Arducam

The Arducam OV5647 was a clear choice of camera because of its affordable price,
widely available support, and compatibility with the Pi Zero 2W. Price was a major
consideration to make each agent more manufacturable and Arducams are widely available
for as little as $7. The OV5647 met the functionality requirements for this application as well.
This camera also had a large amount of support, because it is a more widely used alternative
to the Pi Camera (Raspberry Pi brand). Lastly, the OV5647 was proven to be compatible with
Zero 2W because of the aforementioned ribbon cable connector. These considerations made
the OV5647 a more suitable choice than other comparable options, like the ESP32-Cam.

3.2.3 Power Distribution

Two key challenges for this project were power supply and distribution. The choice
for the power supply was made by considering the highest voltage required and finding a
battery with suitable power capacity. The DRV8835 motor driver paired with the ROB-16413
could comfortably be operated at 11.1 volts. Therefore, a 3S LiPo with a nominal charge of
11.7 volts and a maximum charge of 12.6 volts, met this requirement along with energy
density benefits. The Pi Zero 2W, servos, and motor encoders required five volts so the
battery voltage had to be stepped down. To accomplish this, the robots have a DRF1025
selectable output DC-DC buck converter. In the future, this would be replaced with a
tailor-made DC-DC converter.

3.2.4 Printed Circuit Board

12
Figure 5: Ultiboard Schematic of PCB with top layer ground plane removed

Figure 6: 3D rendering of PCB using Ultiboard

Each agent needed efficient electronics management in order to minimize the space
taken by electronic components. The main benefit of the PCB was progress towards a
well-built system; however, some added benefits were the simplification of the design by
moving the motor driver and its reverse polarity protection circuit onto the PCB, a slight
lowering of total cost and improving manufacturability, and improved heat dissipation for the
motor driver.

a.) Protection Circuitry
The PCB shown in Figures 5 and 6 served as an alternate way to connect the

components together. It accomplished this with pin headers for the servos and motors which
allowed them to communicate with the Pi which was attached with another 40-pin header.
The PCB was intentionally designed without mounting points so that it could be mounted as a
Pi hat.

Caution had to be used when dealing with the 850mAh 3S LiPo as it had both a high
voltage and extremely high continuous discharge rate of 120c: roughly 100A at 11.1V or 1.1
kW which is more than enough to cause serious damage to components. To deal with this
there was a reverse polarity protection circuit integrated onto the PCB in conjunction with the
on-board protection circuit on the DRV 8835 motor driver. This reverse polarity circuit was
relatively simple with just a P-channel Mosfet, a reverse biased zener diode, and a resistor. It
was configured such that the Mosfet’s body diode was forward biased during normal
operating conditions and had a high gate voltage which stopped current flow if wired in
reverse. This was critical for protecting the load from improper wiring and also acts as a

13
backup protection circuit for induced current from the motors if the protection circuits on the
DRV 8835 were to fail.

b.) Cost Saving and Manufacturability
A PCB was made during the initial prototyping phase in order to consolidate

functional components onto one board. Integrating the DRV 8835 motor controller breakout
board decreases the number of subcircuits needed to be manufactured individually and allows
for some wired connections to be replaced with PCB traces.

In terms of cost, the main detriment of the breadboard approach is sourcing
components from multiple suppliers: shipping small volume orders greatly increases overall
cost. The PCB has an obvious advantage in this regard, as most individual electronic
components can be sourced from one supplier (or even from the PCB manufacturer in the
case of this project). This greatly decreases overall cost associated with shipping and
manufacturing, and further decreases the cost when the PCBs are printed in bulk.

c.) Heat Dissipation
The PCB was designed with heat dissipation in mind; specifically, the DRV 8835’s

center pad was grounded to the ground plane to dissipate the heat of the component more
efficiently. This was necessary because the DRV 8835 has thermal shutdown protection which
shuts the integrated circuit off if it exceeds 150º C. In this regard, the PCB is an improvement
over the breakout board as the larger ground plane offers improved heat dissipation.

3.3 Autonomous Connection

3.3.1 Prototyping

To cross from one side of a gap to the other, the robots will connect in a line using a
gripping mechanism to attach to an adjacent robot’s receiving end. A series of prototypes
highlighted issues with initial designs and informed the design criteria for the final gripper.
The locking mechanism must be able to lock together if perceived position and physical
position are misaligned. Loads due to cantilevering shall be borne by the components and not
require a significant torque from the servo motors when locked in place. The gripper and
receiver must also be robust in that cubes or locking components can withstand the loads
from bridging. The gripper must not block the camera’s view, which is necessary for
localization. The mechanism must sense when one cube has connected to another and
communicate this information back and forth to confirm the cubes are locked together and
ready to bridge.

The initial designs, seen in Figure 7, explored different methods of attachment,
including a screw and hole, as well as gripper arms grabbing a bar, similar to but not as robust
as the final design. The prototypes presented issues with accuracy of localization in order to
function, the required torque output from actuators, and structural integrity. Two preliminary
designs developed alternate methods of actuation to reduce the number of servo motors. One
design uses gripper arms powered by one motor and a pair of slots to achieve grabbing
motion seen on the right of Figure 7. The second design uses a gear train, left of Figure 7, to

14
actuate both arms allowing for controlled and smooth movement while minimizing the
number of actuators. Upon 3D printing prototypes, the slots created too much friction, and
tolerancing the slots to minimize play without increasing friction was infeasible. Preliminary
3D prints, seen in Figure 8, also gave insight into how the geometry between the arms and
receiver worked for vertical tolerancing and potential for unintentional detachment.

Figure 7: Connection Mechanism Prototype Designs

Figure 8: Flat Prototype Designs

Large and heavy actuators, which provide higher torque for the gripper, were not
feasible to reduce weight, footprint in the cube, and cost. To avoid heavier actuators, the
gripper and receiver geometry design ensured the force imparted on the receiver from the
gripper was inline with the point of rotation of the gripper arm. Figure 9 highlights where the
locking mechanism experiences external forces. While each design presented pros and cons,
each one was susceptible to failing if localization was inaccurate and imprecise. Thus, having
the gripper's success be independent of other subsystems became the most significant design
constraint.

15
Figure 9: External Forces on the Locking Mechanism and Cube

One of the final locking and gripper designs seen in Figure 10, has similar action to
grapples used on excavators. where one side has a gripper that grabs the receiver of an
adjacent robot allowing more vertical and horizontal tolerance for localization. The arms of
the gripper are actuated by two MG90D servo motors through a gear train. Two limit switches
are embedded in the receiver communicating the robots have successfully attached to each
other, creating a closed-loop system. The last component of the gripper assembly to meet
design constraints is the camera mount. While not critical to the movement of the gripper, the
locking design had to account for the camera to be able to see.

Figure 10: Prototype Autonomous Connection Mechanism

The final gear train uses parallel construction with 1:1 gear ratios and a servo to
actuate the gripper arms from each side. To ensure the components held the load during
bridging and not the actuators, the locking mechanism, by design, imparted minimal torque
on the servo. Therefore having a high gear ratio or bigger, heavy actuators with a greater
torque output were unnecessary. Additionally, using motors with a higher torque would have
consequently required the gripper be larger Despite the locking system applying minimal
torque on the servo, two servos were put in the gripper. Two servos better overcame friction
from being assembled and was the most weight-efficient method to increase reliability. Each
gripper arm, and all gears, were 3D printed out of PLA with two walls and 20% infill. Despite
the gripper arms being a load bearing part, they did not plastically deform or fail during
weight tests.

The gripper frame is one large piece of 3D printed PLA with two walls and 20% infill.
The part has many weight reducing holes to decrease weight while maintaining rigidity. Each
gripper frame has a mount for the MG-90Ds and pegs to hold the intermediary spur gears of
the gear train. A side plate is used on each side of the gripper frame to hold the spur gears,
gripper arms, and frame together. These components form a modular sub assembly that can be
easily installed or removed from the cube. During strength testing the gripper deformed
significantly under load. Each side plate is secured with only two screws, while ⅛” diameter
bamboo rods were added to increase rigidity at the locations in Figure 11. After adding the
bamboo rods, the gripper frame experienced no deformation when put under load.

16

Figure 11a: Autonomous Connection Mechanism

Figure 11b: Autonomous Connection Mechanism

To ensure gripping can occur with localization misalignment the gripper arms use a
complex geometry to effectively lock onto other cubes. Each gripper arm has guided slots. If
the robots are not aligned perfectly, the gripper teeth are designed such that they will
self-align the robot into the optimal position on the receiver. The slots between teeth are the
size of the side plates of the robot. The chamfers on the teeth will push the sideplates of a
robot into the slots of the gripper teeth. Therefore, the slots allow two robots that are
misaligned due to inaccurate localization to still lock together, as shown in Figure 12.

17

Figure 12: Misaligned Cubes

3.3.2 Testing

a.) Mathematical Analysis:
The mathematical analysis calculated the static forces that the locking mechanism

gear train experiences. Additionally, the analysis looks at the static forces the gripper arm,
receiver, and cube frame experience when holding one, two, and three cubes. The results from
this analysis calculate the forces that different parts of the cube experience and are used in
tandem with the digital simulation to quantify the magnitude of the forces on 3D printed and
manufactured parts.

Summarizing the results of the static analysis the more cubes that one gripper
assembly/cube try to hold up the larger the forces are on the gripper arms (TA, TA2, BA),
cube face (FR), highlighted in Figure 13 below, and gripper assembly gears (fT1, fT2, fT3,
fT4). With each additional cube added, the moment that the cubes generate on the locking
mechanism holding them increases. The more cubes, the longer the moment arm, and in turn
larger forces on the locking mechanism.

Figure 13: Force Values on Gripper/Cube (left) Force Values at Gear Train Teeth (right) with
Three Cube Weight Connected. TA2 and FR overlap (left)

The forces seen in Figure 13 above highlight the maximum possible forces the
gripper, cube, and gears would experience when bridging the three robot wide gap at various

18
cube weights. For example, at the robot’s approximate weight of 850 grams, the maximum
external forces on the gripper and the cube FR and TA2 are 120 newtons, BA is 3 newtons,
and TA is 13 newtons. Other calculations in Appendix A highlight the maximum possible
torques and forces the gripper, cube and individual components experience. For more
information on static calculations, see Appendix A. The force values seen across the plots in
Figure 13 and additional plots and tables from Appendix A were used in Solidworks FEA
explained in the next section.

b.) Digital Simulation Stress Analysis:
Digital simulations validated the locking system through the use of Solidworks Finite

Element Analysis (FEA). Using FEA informed the structural integrity of individual parts. The
FEA simulates the maximum forces that parts can endure before reaching maximum yield
stress, the max stress a part can undergo before the part can not return to its original state or
fracture. The simulations used force values from static calculations of one, two, and three
cube loads on the gripper, and additionally with the max force values it can endure before
reaching its maximum yield stress. Simulating maximum forces and static calculation forces
allows for comparison and how much additional force a part can endure before reaching
maximum yield stress and potentially break. FEA for each part assumed it was made with
PLA and had 35 MPa yield strength. PLA’s actual yield strength varies from 60 MPa to 70
MPa, meaning a factor of safety of two was a safe choice for determining the maximum yield
strength used for 3D printed parts. For example, stress analysis was conducted on one of the
transfer gears in the gear train. Using the force values from the static analysis in Appendix A,
at the locations in Figure 14 below the spur gear reached 43 MPa.

Figure 14: Spur Gear Static Calculation FBD (left) and FEA From Calculation Values (right)

However, Figure 15 highlights the spur reaching maximum yield stress (35MPa) with
the largest possible force values (43.5N) applied at the three locations. Having all three forces
from the static calculations applied to the gear in Solidworks FEA resulted in a max stress of
43 MPA, which is above the 35MPA max yield stress that was set. While noticing that the
forces exceed the parts yield, there are many factors for this part that may make the max yield
strength greater than 35 MPA. Factors affecting the yield stress results include infill density,

19
the forces acting on the pitch circle and not the end of the teeth, and various information on
the maximum yield strength of PLA.

Figure 15: FEA on Spur Gear Reaching Maximum Yield with 43.5N forces Applied
Circumferentially

The spur gear is one example of the FEA conducted on the locking mechanism
components and more detailed information on the FEA is found in Appendix B. In summary
of all the FEA, it was found that for a three cube load, three out of six locking mechanism
parts analyzed exceeded the maximum yield strength of 35MPa. However, as mentioned
previously, infill density, where loads were applied, and the factor applied to PLA’s maximum
yield strength may have caused parts to exceed the 35MPa limit.

c.) Physical Testing - Weight Test:
Physical tests conducted verified findings from static calculations and Solidworks

FEA on the locking system. The first physical test was weight testing. A lever arm was
mounted to the gripper, Figure 16, and weight was held at the end to better simulate the
moment generated by the three overhanging cubes. However, the location where the weight
was attached did not accurately simulate the center of mass locations when one, two, or three
cubes were connected. Calculations to determine what equivalent weight values on the lever
arm are to one, two, and three cubes can be found in Appendix C. The weight was measured
using a digital scale and incrementally increased weight to simulate the weight of one, two,
and three cubes held by one gripper assembly. When the weight was attached to the arm the
cube on the table was held in place on a table to act as a rigid body. In addition, the deflection
angle of the lever arm was recorded given that it would deflect as the load increased.

20

Figure 16: Physical Weight Testing Rig

The test resulted in the locking mechanism successfully holding the weight of one,
two, and three cubes. The results table in Table 1 below shows details on the weight attached
to the lever arm, how much deflection was recorded, and if the test passed. For a test to pass,
no parts of the gripper or receiver assembly could fracture. The fourth test failed as a result of
the lever arm fracturing at the base where it mounted to the gripper. The fracture is shown in
Figure 17. During testing, it was noted that the lever arm when loaded twisted the gripper’s
frame. Further inspection led to the conclusion that the bending in the frame may have caused
increased moment arm deflection angles.

Test #

Lever
Arm
Mass
(kg)

Arm
Deflection
(degrees)

Number of
Cube

Equivalent

Test
Passed Notes

1 0.25 1 1 Yes None

2 1 6 2 Yes None

3 2.5 12 3 Yes
Lever arm bending gripper frame at

base

4 3.5 DNR ~4 No Lever arm fractured during test

Table 1: Physical Weight Testing Results Table

21

Figure 17: Physical Weight Testing Lever Arm Fracture

d.) Physical Testing - Sag Test:
The second physical test for the locking mechanism was a sag test. The purpose for

this test was to measure the amount of sag the connected cubes experience when cantilevered
over an edge and compare it with the Solidworks assembly prediction. Figure 18 shows an
assembly of four cubes built and constrained to depict how the cubes were connected when
trying to cross the gap. Measuring from the base of the first cube (far right) to the lowest
point on the last cube (far left) the CAD showed that the cube had a predicted sag 0.25 inches
seen in Figure 18 below. In addition, two cubes have approximately a 0.35° angle between
them, and 1.05° from the first cube to the last cube in Figure 18 below when trying to bridge
the three cube gap. The small angle seen is the root cause for the 0.25 inches of sag and if the
angle reduced to zero, the sag amount would as well.

Figure 18: Solidworks Sag Test Assembly

The test conducted with physical cubes began by holding one cube down on a table
and letting the other three cantilever out over the edge. A series of five tests produced
measurements of the amount of sag of four robots. The tests analyzed how sag varied with
respect to the alignment of the connection. Test one had the cubes connected in an ideal state
where all the side plates were flush. Test two used the same configuration but force was
applied by hand at the furthest cube. For tests three and four the same convention is used
respectively, but instead the side plates were not perfectly flush. Test five had the cubes
largely misaligned. Figure 19 highlights the three different methods the cubes were connected
together.

22

Figure 19: Three Connection Methods Tested
From Left to Right: Side Plates Flush, Side Plates not Flush, Cubes Misaligned

By measuring the distance from the floor to the bottom of the cube on the table
(Measurement 1) and to the lowest point of the most cantilevered cube (Measurement 2), the
amount of sag the system experiences could be calculated. The measurement results for the
three variations are below in Table 2.

Table 2: Sag Test Results

3.3.3 Analysis

The initial tests for the locking mechanism were positive overall given that it did not
break under the desired load. However, the system experienced more sag over the ledge than
expected. These results inspired a redesign of the gripper arms that decreased sag and
introduced a self-aligning geometry. The new gripper design performed well during tests
using the weights in Table 1. However, one test used three cubes as the weight instead of jugs
of water, in which the system sagged up to an inch whereas only 0.25 inches was seen in the
CAD model. The cause of sag in the final design is unknown, and either a new mechanism
would need to be developed to decrease sag, or the material of each part would need to be
replaced by something more rigid than plastic such as metal or composites. However, making
the gripper and other parts from metal would significantly increase weight, requiring stronger

Test Measurement 1
(inches)

Measurement 2
(inches)

Total Sag
(inches)

1 18.25 17.4375 0.8125

2 18.25 17 1.25

3 18.25 17.25 1

4 18.25 16.875 1.375

5 18.25 17.3125 0.9375

Average 1.075

23
motors, causing a cascading effect that would necessitate a redesign of the majority of the
cube.

3.4 Locomotion

3.4.1 Prototyping

Many SAR robots use legs, treads, or whegs (wheel legs) in order to appropriately
adapt to their environments. However, this project uses a differential drive wheel design since
locomotion is not the core focus of the project. All robots are equipped with two Sparkfun
ROB 16413 hobby motors mounted towards the front and a caster mounted towards the back
of the robots base plate. ROB 16413 motors used had low cost, accessibility, built in
encoders, and acceptable stall torque. The initial drivetrain prototype used a 3D printed caster
wheel with a bearing as the wheel to balance the robot. However, this design was replaced
with a glass caster which was easier to manufacture and had a lower coefficient of friction on
wood.

Upon printing base plates and assembling the drive train, experimentation determined
that the small pegs, Figure 20 (left) that the motors mount to break under severe load from
holding three robots off a ledge, Figure 20 (center). Before the pegs fracture, the wheels cant
in at an angle negatively affect the robots ability to drive. The weight of the robot and load of
robots overhanging imparts a moment on the motor mount, causing it to deflect toward the
battery. Therefore, a support designed for the motor mount pegs around the battery ensured
the robot's drivetrain was not affected. The battery cage provides support along the length of
the motor mount and adds rigidity so the wheels do not bend in. Additionally, the support
spans between the two motor mounts, meaning the moments push against each other,
canceling each other out.

Figure 20: Motor Mount Pegs (left) Sheared Pegs (center) Motor Mount Support (right)

The initial wheel design was 3D printed out of 95A Shore hardness TPU. However,
TPU was too hard to grip the surface. TPU’s relatively high shore hardness led to using
VytaFlex polyurethane rubber for the wheels. The polyurethane rubber wheels performed well
with minimal slip given that the polyurethane has 30A shore hardness. Multiple 3D printed
wheel hub prototypes were constructed to determine which hub provided enough structural
integrity for the polyurethane rubber. However, during navigation testing the polyurethane
broke off the hubs. The final design used 3D printed wheel hubs holding rubber O-rings.

24
Rubber O-rings as tires. Rubber O-rings did not break apart like cast polyurethane while still
providing enough grip necessary to drive on a wood table.

Figure 21: Prototypes of Wheels from B Term to D Term.
The wheels maintained adequate traction while experiencing minimal deformation

due to the weight of the robot as predicted in the findings from the comparisons of materials
through static calculations seen in Appendix A. The plot in Figure 22 graphs the friction force
the wheels experience holding up the weight of one cube for different wheel material and
driving surfaces are plotted. The weight of the cube varied to highlight the change in forces if
individual cube weight was anywhere from 800 grams to 950 grams. The calculations show
that a soft rubber wheel on dry wood, Fw1 in Figure 22, has the highest friction force
allowing for higher torque output and grip while the robot drives around. These calculations
were supported during testing with rubber O-ring wheels successfully driving the robot on a
wood table without losing traction.

Figure 22: Friction Forces on the Wheels

With the ROB 16413 motors and the soft rubber wheels, one robot is able to drive
around with a load up to the weight of another robot, which is approximately 850 grams
based on calculations in Appendix A.

25

Figure 23: Final Cube Robot Drivetrain
For the swarm to localize and autonomously connect, the robots use a non-holonomic

drivetrain system to traverse the demonstration field. As discussed previously in this section,
research revealed that SAR swarms use a variety of drivetrain systems depending on their
purpose. Locomotion is not the core focus of the project, therefore the final design uses a
differential drivetrain to simplify path planning. Using a non-holonomic system also reduces
the number of actuators and thus overall weight of the robot. The final design of the cube
robots puts the axles more towards the front of the robot. Not having a centered axle for a two
wheel robot makes spinning in place and driving kinematics harder, however, due the battery
and motor cable locations, and restrictions to ensure electronics were able to be connected,
centering the wheels was not an option.

As discussed previously, the drivetrain used 3D printed wheel hubs with O-ring’s for
tires because they provided adequate traction and experienced minimal deformation under the
weight of the robots. Given that the wheels did not noticeably slip, the kinematics developed
were very accurate. Additionally, the glass caster performed better than the 3D printed caster
wheel with two bearings during testing.

3.4.2 Testing

The robots used a speed controller in order to control the wheel velocities given drive
motor efforts. Testing the speed controller involved telling the robot to go to specific wheel
velocities for a fixed amount of time and then telling the robot to stop. The measured distance
that the robot traveled, the expected distance the robot traveled, and the robot's pose estimate
were all compared. The accuracy of the robot in its position estimate was within ± 1 cm over
distances up to 30 cm. The next test conducted used the heading of the robot. The accuracy at
estimating the heading was within ± 0.1 radians in a span of 2π radians.

To test the robot's inverse kinematics, the robot was told to move to a specific pose
relative to its starting location. Tests began with simple turning by giving the robot a heading
of 90o, 180o, 270o, and 360o respectively. The final position was then compared to the desired
position for an error measurement. These tests resulted in the same accuracy as that of the
speed controller, which was about 0.1 radians or 5.7 degrees. The next set of tests conducted
consisted of exclusively linear control by giving the robot a heading of 0o and only an x
component of position. The robot was sent to positions of 10 cm, 20 cm, and 30 cm
respectively and confirmed with a tape measure for error readings. These tests resulted in an
accuracy of approximately 1 cm. An additional finding was that when there was wheel slip or
an object that the robot got caught on, it properly corrected its heading to stay at 0o. Finally,

26
tests were conducted using both the x and y components of position as well as heading. The
main test was sending the robot to 20 cm in the x direction, -20 cm in the y direction, and a
heading of 36o. This resulted in positional accuracy of 6 cm in the x, 4 cm in the y and
heading accuracy of 5.7 degrees. One thing to note as well is that if the robot does several
rotations before movement, the positional accuracy would decrease significantly due to
positional drift.

3.4.3 Analysis

The locomotion tests performed were very successful and helped minimize the
mechanical complexity of the system. The cast VytaFlex 30A polyurethane rubber wheels
with 3D printed PLA hubs resulted in no wheel slip. The lack of slip eliminated the
requirement of an Inertial Measurement Unit (IMU) to correct the robot’s heading and
position. Not only would an IMU decrease the amount of space for other electronics, but it
would also require an additional ROS node to run and additional math for the Extended
Kalman Filter. However, while the 30A shore hardness resulted in no slip, it resulted in the
wheels compressing while other robots hung off the table, which contributed a significant
amount to the sag in the overhang of three robots. A solution to this problem could be using
Flex-Foam It 23FR polyurethane foam. With a shore hardness of 80A, it allows for a similar
rigidity to TPU wheels, but with the form factor of foam, there is significantly more friction
with the ground. An additional issue with the polyurethane wheels is that they wear quickly,
and need to be replaced after minimal use. Another potential issue with the robot as a whole is
that if the robot were to flip onto one of its sides, it would be rendered useless. To combat
this, wheels on multiple sides would allow the robot to drive on its front, back, or top in ideal
conditions.

3.5 Communication

3.5.1 Prototyping

A communication network allows robots to send information to each other such as
their position or locking status, so that the system may better function as a swarm. Bluetooth
is the primary communication protocol between the individual cube robots. The
communication network is created by leveraging the Bluetooth module built into the
Raspberry Pi Zero 2 W board that is equipped on each robot.

During the testing phase, various communication methods were considered including
Bluetooth, ultra wideband, visible light, and IR light. Bluetooth was ultimately chosen due to
its low energy consumption, range, library and integration support, and the wide use of
Bluetooth chips. The bandwidth and speed of Bluetooth is more than enough for the planned
system.

For the purposes of this project, a combined centralized and decentralized architecture
reduced the required computing power for each robot. Each robot in the swarm calculates its
position onboard and then sends that position data to a central controller which handles path
planning. Offloading the computing required to plan the paths of each robot onto another

27
device on the network helps allocate power to the more intensive localization process with
AprilTags detection. More optimized paths can also be calculated from a central controller
that knows every robot’s locations rather than from each robot that only knows its neighbors’
locations.

The Bluetooth communication network worked as a centralized system, with each
robot sending data directly to a server that disseminated messages to each of the other robots.
These messages were used for a variety of purposes including localization, autonomous
connection, and path planning. Robots would attempt to connect to the server three times
before being considered unsuccessful, in which that robot would no longer be in use. The
server was always running as long as there was at least one robot connected and would
automatically shut down once all robots had disconnected.

3.5.2 Testing

To ensure that robots are able to receive messages from one another as well as the
computer, the reliability of the Bluetooth communication system had to be tested. First, as
shown in Figure 25, simple tests performed established a baseline for the maximum speed at
which messages could be sent. These tests consisted of one robot sending singular messages
to a particular target (either another robot or the computer) and verifying the accuracy of the
recipient and message contents. Additionally, these tests proved that proper communication
between all robots and the computer was established as no messages were dropped during the
process. Standard Bluetooth chips allow for up to seven connections at once, meaning that
when every cube was connected via Bluetooth, the computer’s chip was at maximum
capacity. Therefore, further stress tests on the communication network needed to be
performed in order to ensure the stability of the network. These tests began by using four
Raspberry Pi Zero 2Ws to simultaneously send messages to the server and each other at the
maximum possible message rate. This test resulted in zero messages dropped at a sampling
rate of greater than 100Hz, more than enough for the purposes of this project. The next test
consisted of the same messaging protocol, but included six Raspberry Pis instead. As shown
in Figure 25, this resulted in the same zero messages dropped at a sampling rate of greater
than 100Hz. Overall, the communication network worked as intended with no major issues.

28

Figure 24: Simple communication diagram

Figure 25: Communication Stress Test

3.5.3 Analysis

All communication tests resulted in positive results, with robots able to communicate
with each other at a sampling rate greater than 100Hz with zero dropped messages. The
communication system, therefore, is incredibly robust and the server can handle any load that
the robots would be putting on it. However, further tests must be conducted with more robots
in order to verify the limitation of the seven connections per Bluetooth chip. For future
projects, two servers could be used to double the amount of possible connections, or one
robot could have onboard communication, also effectively doubling the amount of possible
connections. Overall, the tests performed proved that each robot was able to effectively send

29
information to one another in the swarm, and the system could be used for its intended
purpose of navigation using target positions from other robots and the server.

3.6 Localization

3.6.1 Prototyping

In order for the cube robots to safely navigate, they need to localize themselves with
respect to the environment. Knowing their positions and orientations in the world is crucial
for collision free path planning and locking. The localization accuracy needs to be within the
locking mechanism’s tolerance of 0.635 cm to ensure that the cube robots can consistently
lock together.

Some tested methods for localization were UWB triangulation, as well as color LED
centroid detection. However, these methods performed poorly in their respective set of tests.
UWB had an accuracy of 30 cm, which is too inaccurate for the system. LED centroid
detection was not reliable as it is too sensitive to external lighting. Some LED colors were
very difficult to distinguish from others, adding to the unreliability. Ultimately, the
combination of the Arducam and AprilTags proved to be the most viable solution for the
system. The AprilTag observations had an accuracy of 0.5 cm range and 0.1 radians bearing.
In addition, the Arducam was able to detect different sizes of AprilTags even in different
lighting environments.

Each robot uses an Extended Kalman filter (EKF) for calculating its global position
and error correction. The Arducam and motor encoders have inherent noise that make them
inaccurate at predicting the pose of the robot. Therefore, the system uses EKF as the sensor
fusion algorithm due to its ability to handle noisy measurements from imperfect sensors..
Using EKF, both sensors are combined to improve the overall pose estimate of the robot.

The predicted location calculated from the built-in drive motor encoders allowed the
velocity of each wheel to be measured. Forward kinematics equations for differential drive
systems calculated the difference in heading and translation in both axes. Taking this
difference and adding it to the previous pose estimate allowed the robot to predict its current
pose. The EKF calculated the correction step using observations of AprilTags on other robots
or on the landmarks. Appendix D goes into more detail about the process for implementing
the Extended Kalman filter. The Arducam readings used for the correction step were
consistent in predicting the pose of the robot.

30

Figure 26: AprilTag reading gives the distance (range) and heading (bearing)

The overall system worked as follows: the prediction step using the drive
motor-encoders was continuously predicting the pose of the robot. Once a robot got a reading
from an AprilTag with the onboard Arducam, it used the communication network to get the
global position of the AprilTag. The expected readings from the Arducam were calculated
using the global position of the AprilTag and the current estimated global position calculated
in the prediction step. Using the expected readings of the Arducam and the actual readings of
the Arducam, the Extended Kalman Filter equations corrected the robots current pose
estimate. This prevented the robots' global position estimates from accumulating a significant
amount of error which could lead to failure to connect to one another and bridge the gap.

3.6.2 Testing

A simulation (discussed in section 4.3.1) of the system tested the localization and
path-planning algorithms. The Gazebo and Rviz simulation included a simplified URDF
model of the cube robot. The URDF can be seen in Figure 27 and Figure 28. The cube robot
drove around in simulation using the built-in ROS diff_drive_controller package.

31

Figure 27: Simplified Cube Robot URDF

Figure 28: Back side of Robot with 1x1 inch AprilTag

To test the accuracy of the localization system, the simulated cube robot drove in a
square using dead-reckoning and turning in place. At the end of each side of the square a
AprilTag was set to allow the cube robot to continue running the update step of the EKF as it
drives around. The Gazebo setup can be seen below in Figure 29:

32

Figure 29: Localization Testing Setup in Gazebo

Rviz visualized the paths that the cube robot traveled. For testing and validation, Rviz
displayed three paths: the true path, taken from Gazebo, the odometry path, taken from the
differential drive package, and the calculated EKF path. The odom path is shown to visualize
the location estimates using just odometry. These three paths can be seen in Figure 30. The
red cube in Figure 30 is where the cube robot thinks it is from odometry. The red arrow shows
where the cube robot thinks it is and its heading from the EKF. The yellow cone is the
orientation covariance (how uncertain the cube robot is about its orientation).

Figure 30: Rviz Simulation of Cube Robots’ Traversed Paths

33
The accuracy result from the square test can be seen in Figure 30. To calculate error

the EKF’s predicted position was compared to the actual position from Gazebo at each
timestep. Whenever the error exceeds a certain threshold, the EKF position is reset to the
Odomoetry position, offset by its starting position to match the cube robot’s actual position, to
avoid error accumulation. This reset created a noticeable dip around the 40-second mark in
Figure 31. After the run, the system resulted in an average of about 10 cm positional
accuracy, which is about ⅔ of a cube’s length.

Figure 31: Position Error Over Time During Simulated Square Test

3.6.3 Analysis

The localization tests gave important insight as to the areas in which accuracy needed
to be improved. The tests showed that the robots were able to successfully correct their
heading when spotting an AprilTag, however, an individual robot and AprilTag had an
average positional error of close to 10cm. While this is within the tolerance for simple
navigation, locking requires a sub-centimeter level of accuracy in order to properly join with
other robots. One way to solve this issue was to place one robot in front of the other. By using
the smaller 1x1 inch AprilTags on the back of the robots (Figure 29), robots were able to
correct their positional error by 80%.

3.7 Path Planning

3.7.1 Prototyping

For the swarm to lock together, it needed a solution to the multi-agent pathfinding
problem. The solution to this problem, along with the main objective for a successful
path-planning algorithm, focused on ensuring that the agents reached their destinations
without collisions or deadlocks. Time was not an important factor for success as the project
focused more on demonstrating the feasibility of the system rather than efficiency.

34
Initially, the swarm used a custom path-planning algorithm, modeled after a

greedy-first search algorithm. The system would have cube robots plan straight paths to their
desired locations. When conflicts happened between the paths, the algorithm would have one
robot continue on its path while the others wait. However, due to time constraints, the swarm
used an existing algorithm referencing an open-source GitHub repo rather than developing a
new path-planning algorithm from scratch.

As a result, the swarm used Conflict-based search algorithm (CBS) as the multi-agent
path-planning algorithm. CBS solved the multi-agent pathfinding problem by decomposing it
into a set of constrained, single-agent pathfinding problems. The key idea of CBS is to grow a
set of constraints and find paths that are consistent with these constraints. A constraint here is
a tuple (cube, timestep, x, y) where a cube robot is prohibited from occupying position (x, y)
at time step t. If a path has conflict (when 2 or more cube robots are occupying the same
positions at the same time step), this conflict is resolved by adding new constraints. So
overall, CBS worked on two levels. At the high level, conflicts are found and constraints are
added. Meanwhile, the low-level found paths for each cube robot that are consistent with the
constraints. The swarm used A* for the low-level path-finding algorithm due to its robustness
and reliability. The path planning for all cube robots was calculated on the central computer to
save computing power on the Pis.

In terms of design, CBS worked as an offline planning method. For context, online
path planning is performed in real-time whereas offline path planning is performed before
motion begins. Offline paths are calculated based on a complete prior knowledge of the
environment. This worked well with CBS, as the algorithm is always aware of the robots’
positions and goals as it simulated potential paths and conflicts. Offline planning ensured a
global optimum path for a multi-agent system as the paths could be calculated without the
need for real-time synchronization between agents.

3.7.2 Testing

The swarm implemented CBS, referencing code from a multi-agent path-planning
GitHub repo (Bose, 2021). Initial tests were done using Matplotlib and then it was later
moved to a more realistic setting with Gazebo (Section 4.2.1), similar to the simulation test
for localization.

To test the path-planning algorithm, a simplified scenario of the cube robots lining up
in preparation for locking was simulated. Each cube robot was assigned a number from one to
seven as part of their name. Their goal was to line up in ascending order based on their
assigned number. Each of them were initialized at random locations and are given a goal
corresponding to their positions in the line.

The cube robots’ name, initial positions, and goals were fed into the CBS algorithm as
a yaml file. The code output a list of dictionaries of each cube robots’ positions at each
timestep. In Figure 32, the initial and final positions of the cube robots after following the
CBS paths are shown. The cube here does not represent the actual size of the cube robots,
rather it is the size of the cube robots plus an additional 4.5in configuration space for safety.
The visualized cubes measured 15x15in. The path planning calculation took approximately
2-3 seconds.

35

Figure 32: Before and After of CBS path-planning. Visualized with Matplotlib

3.7.3 Analysis

The path planning tests conducted have helped greatly reduce the complexity of the
path planning algorithm and have yielded promising results. The CBS algorithm was able to
calculate paths for robots without any collisions consistently. Furthermore, these tests
achieved synchronous movement of the robots that matched the planned paths consistently.
One issue with this path planning algorithm, however, is the complex calculations associated
with the transformation matrices required to convert pixel coordinates to world coordinates.
Currently, one pixel represents one coordinate in the path planning simulation, meaning that
the distance between cubes lining up is dependent on this value. This pixel coordinate value is
known as the configuration-space, or cspace, and with a larger cspace, it could result in
greater positional accuracy error for the robots, but with smaller cspace, calculations will take
longer as it is more likely that there will be a conflict between paths.

Chapter 4: System Testing and Verification

4.1 System Design

4.1.1 Introduction

This project used an external computer outside of the swarm as a centralized
controller and database. While a decentralized controller would be more realistic for a search
and rescue scenario, the controller structure is not the core focus of this project. This
controller sent and received data from the robots in order to store and give desired positions
for path planning.

4.1.2 Communication Architecture

Figure 33 shows the distribution of work between each robot and the central server to
create a mixed centralized/decentralized system. On board, the Raspberry Pi Zero 2W
handled the math for localization. This includes the odometry data, camera reading, and
fusion using the Extended Kalman Filter. Additionally, the Zero 2W was running the
Bluetooth communication network, which sent the estimates of its own pose as well as those

36
of robots within its sight to the central computer. Once the computer received these pose
readings, it used the CBS path planning algorithm to generate desired poses for each of the
cube robots. The computer then sent these desired poses back to the respective robots, which
drove to the pose using the inverse kinematics calculations also being run on the Zero 2W.
Once every robot was at its desired pose it informed the central computer that it had
successfully reached the point. The computer then told the robots to start autonomous
assembly, in which they drove forward and locked together. The communication network was
able to properly send all of this data in individual steps, but was never tested back to back for
the final demonstration.

Figure 33: Diagram Showing Communication Between Computer and one Robot

4.1.3 State Machine

While the full state machine shown in Figure 34 was never fully implemented, it
shows the complete set of robot states and state transitions required to complete the
demonstration described in section 3.1. After initial setup and communication is established,
the robots will explore the area looking for the AprilTag identifying the gap. Once the
landmark is found, the robots will localize with respect to each other and the landmark to
initialize their global positions. After each robot’s position is established with a covariance
below a desired threshold, the robots will begin planning. If the covariance of their position
exceeds the threshold while the robot is following its respective path, the robot and the closest
neighbor will stop to relocalize. To relocalize, the lost robot turns in place to find the
neighboring robot's AprilTag and then recalculates its position. Once its covariance is within
tolerance again, it will continue down the path. Once all robots reach their destination they
attempt to autonomously connect, confirmed by their limit switches. If a robot does not sense
a connection, it sends a message that the robot failed and attempts to reconnect. Once all of
the robots have confirmed connections with each other, they cross the gap and disassemble,
reaching the end of the state machine.

37

Figure 34: State Machine

4.2 System Testing

4.2.1 Simulation

While physical subsystems were in the integration process, a Gazebo simulation tested
the software subsystems communication, localization, and path planning in parallel. In the
aforementioned Gazebo simulation, the cube robots were initialized at random locations,
navigated to line up, came together for locking, crossed a gap, and detached to explore
independently. Key points of this simulation can be seen in Figure 35.

The simulated gap had two tables placed in the environment with a fixed distance
equal to the length of three cube robots between them. The initial position and goals of each
cube robot were fed into the CBS algorithm that generated collision-free paths for each agent
in the swarm. The cube robots navigated along these paths using the gazebo differential drive
plugin and their true gazebo locations. The simulated cube robots locked together using a
separate plugin for attaching Gazebo models with a virtual joint.

38

Figure 35: Gazebo Simulation Demonstration

4.2.2 Autonomous Locking

The first physical integration test performed was autonomous connection, as this is the
final step required before bridging the gap. As shown in Figure 36, two robots were placed 12
inches (two robot lengths) apart and the rear robot attempted to use its gripper to attach the
front robot. The rear robot used its Arducam, reading data from the front robot’s AprilTag, to
determine the correct pose it needed to reach before closing its gripper. For this test, the front
robot remained stationary and did not have limit switches on its receiver to confirm a
successful connection. Therefore, visual inspection confirmed the successful connection of
the two cube robots. After 10 tests, the robots were able to successfully lock together 80% of
the time. One of these successes is shown in Figure 36.

39

Figure 36: Two Cubes Locking

4.2.3 Bridging

The final integration test performed to confirm the functionality of the system was the
bridging test. Three robots were placed close enough together to lock together without
moving with their grippers open. The robots then closed their grippers to connect with one
another and drove as a unit across a 7.5 inch gap, slightly larger than one robot. This test did
not use the landmark for localization and robots stopped a fixed distance from the end of the
chair so as to not fall off the other side. This test was ran five times with a 100% success rate
at this distance. Additional tests with a gap of six inches (one robot) and eight inches
respectively were performed as well. The robots successfully bridged the six inch gap all
three times this test was performed. As for the eight inch gap, the front robot in the chain got
stuck on the opposite side of the gap due to the low ground clearance of the cubes. Figure 37
shows intermediary steps of the cube robots bridging the gap.

40

Figure 37: Three Cubes Bridging a One Robot Wide Gap

Chapter 5: Analysis and Discussion
The swarm was successful in accomplishing the majority of the objectives as stated in

section 2.4. Individual agents were of minimal size and weight, as well as easily
manufacturable. Agents were able to communicate their current and desired positions with
one another. Agents were able to localize, or self locate, with respect to the environment and
other robots. Agents planned their paths such that they can line up for autonomous connection
to other agents without collisions in simulation. Finally, agents autonomously crossed a one
robot wide gap by locking together to form a bridge.

Each robot was of 6x6x6 inch size, 850 gram weight, and was manufactured in about
18 hours. Robots were able to send messages to one another without any being dropped at
greater than 100 Hz, well within the tolerance for the system. Robots calculated their local
and global poses within 5 cm position and 0.1 radians heading, within the tolerance for the
system as well. While path planning worked in simulation, the robots should be able to path
plan in physical space as well. Robots drove to a specified point, however, improper collision
avoidance resulted in inability for the subsystem to work as a whole. Finally, while a one
robot gap demonstrated success of the overall system, a three robot gap as a proof of concept
for SAR use would be a better test.

Chapter 6: Conclusions and Recommendations
Throughout the year of developing the Cube Swarm project, the team has experienced

many early setbacks and has learned a lot about completing a project of the scale of to a
senior capstone project. These learnings range from big picture to individual details about our
specific project. First and foremost the team agrees that we all learned a lot about effectively
scoping projects, and that determining a problem and effective solution could easily take
more than a year to effectively implement. Having a goal and project objectives established
before the year began would have been ideal and made implementing our solution throughout
the year more feasible. Another key takeaway was the need to communicate clearly and
effectively. Additionally, a theme present throughout the entire year was that tasks often took
longer to complete than anticipated. The team ultimately ran out of time for full system
integration, and had to complete this process in small steps given the amount of subsystems

41
the project required. This taught us the importance of proper systems engineering practices
for a project of this scale, in which many tasks can be done in parallel for more effective
integration.

This project proves that swarms of small robots can achieve the same lateral mobility
as larger robots. This project also serves as a starting point for future development of swarm
technology. Within the swarm, individual agents can act as traditional robot systems;
perception, locomotion, localization, communication, and locking; as well as swarm behavior
and a small form factor. The key advantage the swarm has over larger robots is redundancy.

This project should serve as a foundation for further research and development of
swarm robotics. Some potential areas for improvement are: the swarm path planning
algorithm, agent functionality, PCB development, and communication decentralization.

42
References

Arranz, A., Scarr, S., & Chowdhury, J. (2023, September 11). How Search and Rescue Teams
Pull Survivors from Rubble. Reuters.
https://www.reuters.com/graphics/EARTHQUAKE-RESCUE/mopajqojmva/

Beatty, B., & Ulasewicz, C. (2006). Faculty perspectives on moving from Blackboard to the
Moodle learning management system. TechTrends, 50(4), 36-45.

Bello, Samuel, et al. Beach Swarm - Phase III. Major Qualifying Project,
E-project-042822-111709, Worcester Polytechnic Institute, 28 Apr. 2022.

Blais, M.-A., & Akhloufi, M. A. (2023). Reinforcement learning for swarm robotics: An
overview of applications, algorithms and simulators. Cognitive Robotics, 3, 226–256.
https://doi.org/10.1016/j.cogr.2023.07.004

Bogue, R. (2019). Disaster relief, and search and rescue robots: the way forward. Industrial
Robot: The International Journal of Robotics Research and Application, 46(2),
181–187. https://doi.org/10.1108/IR-11-2018-0227

Bose, A. (2021). Multi-Agent path planning in Python.
https://github.com/atb033/multi_agent_path_planning

Brown, S., & Caste, V. (2004, May). Integrated obstacle detection framework. Paper
presented at the IEEE Intelligent Vehicles Symposium, Detroit, MI.

Cao, Y. U., Fukunaga, A. S., & Kahng, A. (1997). Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots, 4(1), 7–27.
https://doi.org/10.1023/A:1008855018923

Cao, Z., Chen, P., Ma, Z., Li, S., Gao, X., Wu, R., Pan, L., & Shi, Y. (2019). Near-Field
Communication Sensors. Sensors (Basel, Switzerland), 19(18), 3947.
https://doi.org/10.3390/s19183947

Chen, L., Kuusniemi, H., Chen, Y., Liu, J., Pei, L., Ruotsalainen, L., & Chen, R. (2015).
Constraint Kalman filter for indoor Bluetooth localization.
https://ieeexplore.ieee.org/document/7362717

Chen, S., Yin, D., & Niu, Y. (2022). A Survey of Robot Swarms’ Relative Localization
Method. Sensors, 22(12), 4424. https://doi.org/10.3390/s22124424

43
Chitikena, H., Sanfilippo, F., & Ma, S. (2023). Robotics in Search and Rescue (SAR)

Operations: An Ethical and Design Perspective Framework for Response Phase.
Applied Sciences, 13(3), 1800. https://doi.org/10.3390/app13031800

Delmerico, J., Mintchev, S., Giusti, A., Gromov, B., Melo, K., Horvat, T., Cadena, C., Hutter,
M., Ijspeert, A., Floreano, D., Gambardella, L. M., Siegwart, R., & Scaramuzza, D.
(2019). The current state and future outlook of rescue robotics. Journal of Field
Robotics, 36(7), 1171–1191. https://doi.org/10.1002/rob.21887

Dorigo, M., Theraulaz, G., & Trianni, V. (2021). Swarm Robotics: Past, Present, and Future
[Point of View]. Proceedings of the IEEE, 109(7), 1152–1165.
https://doi.org/10.1109/JPROC.2021.3072740

Foster-Miller unveils TALON robot that detects chemicals, gases, radiation and heat. (2005).
Industrial Robot: An International Journal, 32(2).
https://doi.org/10.1108/ir.2005.04932bab.003

Frey, J. P., Kendrick, R., Lowell, J. M., & Rothermel, J. M. (2006). Energy Profiling for
Off-Grid Energization Solutions in Namibia (Undergraduate Major Qualifying Project
No. E-project-050307-071942). Retrieved from Worcester Polytechnic Institute
Electronic Projects Collection:
http://www.wpi.edu/Pubs/E-project/Available/E-project-050307-071942

Gregg, Spencer O., et al. Beach Swarm - Phase II. Major Qualifying Project, Worcester
Polytechnic Institute, 5 May 2021.

Gordon, Rachel | MIT CSAIL. (n.d.). Self-transforming robot blocks jump, spin, Flip,
and identify each other. MIT News | Massachusetts Institute of Technology.
https://news.mit.edu/2019/self-transforming-robot-blocks-jump-spin-flip-identify-each
-other-1030

Gro, Roderich, Michael Bonani, Francesco Mondada, and Marco Dorigo. “Autonomous
Self-Assembly in Swarm-Bots.” IEEE Transactions on Robotics 22, no. 6 (December
2006): 1115–30. doi.org/10.1109/TRO.2006.882919

Hirose, S. (1991). Three basic types of locomotion in mobile robots. Fifth International
Conference on Advanced Robotics ’Robots in Unstructured Environments, 12–17
vol.1. https://doi.org/10.1109/ICAR.1991.240483

Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C. D., Tsounis, V., Fankhauser, P.,
Diethelm, R., Bachmann, S., Bloesch, M., Kolvenbach, H., Bjelonic, M., Isler, L., &
Meyer, K. (2017). ANYmal - toward legged robots for harsh environments. Advanced
Robotics, 31(17), 918–931. https://doi.org/10.1080/01691864.2017.1378591

http://www.wpi.edu/Pubs/E-project/Available/E-project-050307-071942

44
Ifenthaler, D. (2011). Multiple perspectives on problem solving and learning in the digital

age. New York: Springer.

Jahanian, O., & Karimi, G. (2006). Locomotion Systems in Robotic Application. 2006 IEEE
International Conference on Robotics and Biomimetics, 689–696.
https://doi.org/10.1109/ROBIO.2006.340290

Kelly, G. (2008). A collaborative process for evaluating new educational technologies.
Campus-Wide Information Systems, 25(2), 105-113.
doi:10.1108/10650740810866594

Leinonen, A., Orjala, M., & Finland. (2008). Feasibility study on electricity and pyrolysis oil
production from wood chips in Namibia. Helsinki: Ministry for Foreign Affairs of
Finland.

Liu, J., Wang, Y., Li, B., & Ma, S. (2007). Current research, key performances and future
development of search and rescue robots. Frontiers of Mechanical Engineering in
China, 2(4), 404–416. https://doi.org/10.1007/s11465-007-0070-2

Lu, F., & Milios, E. (1997). Robot Pose Estimation in Unknown Environments by Matching
2D Range Scans. Journal of Intelligent and Robotic Systems, 18(3), 249–275.
https://doi.org/10.1023/A:1007957421070

Marr, B. (2017). The 4 Ds Of Robotization: Dull, Dirty, Dangerous And Dear. Forbes.
Retrieved October 2, 2023, from
https://www.forbes.com/sites/bernardmarr/2017/10/16/the-4-ds-of-robotization-dull-di
rty-dangerous-and-dear/

Murphy, R. R. (2004). Trial by fire [rescue robots]. IEEE Robotics & Automation Magazine,
11(3), 50–61. https://doi.org/10.1109/MRA.2004.1337826

Murphy, R. R. (2014). Disaster Robotics. The MIT Press.
https://doi.org/10.7551/mitpress/9407.001.0001

Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., & Erkmen, A. M.
(2008). Search and Rescue Robotics. In B. Siciliano & O. Khatib (Eds.), Springer
Handbook of Robotics (pp. 1151–1173). Springer.
https://doi.org/10.1007/978-3-540-30301-5_51

NamWater. (Date Unknown). NamWater Namibia Water Corporation Ltd. Retrieved January
21, 2010, from http://www.namwater.com.na/

45
OV, S. S., & Jayaraj, D. (2012). Path planning in swarm robots using particle swarm

optimisation on potential fields. International Journal of Computer Applications,
60(13).

Paillat, J.-L., Lucidarme, P., & Hardouin, L. (2011). Evolutionary Autonomous VGSTV
Staircase Climbing. In J. A. Cetto, J. Filipe, & J.-L. Ferrier (Eds.), Informatics in
Control Automation and Robotics (pp. 173–186). Springer.
https://doi.org/10.1007/978-3-642-19730-7_12

Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication,
networking, and sensing: A survey, potential and challenges. IEEE Communications
Surveys & Tutorials, 17(4), 2047–2077. https://doi.org/10.1109/comst.2015.2476474

Patil, M., Abukhalil, T., & Sobh, T. (2013). Hardware Architecture Review of Swarm
Robotics System: Self-Reconfigurability, Self-Reassembly, and Self-Replication.
International Scholarly Research Notices, 2013, e849606.
https://doi.org/10.5402/2013/849606

Park, S., Oh, Y., & Hong, D. (2017). Disaster response and recovery from the perspective of
robotics. International Journal of Precision Engineering and Manufacturing, 18(10),
1475–1482. https://doi.org/10.1007/s12541-017-0175-4

Safar, P. (1986). Resuscitation Potentials in Mass Disasters. Prehospital and Disaster
Medicine, 2(1–4), 34–47. https://doi.org/10.1017/S1049023X00030314

Sanchez, Felix A., and Albert Jozsef Enyedy. Swarm Scaffolding MQP. Major Qualifying
Project, E-project-042619-123913, Worcester Polytechnic Institute, 26 Apr. 2019.

Sathiyanarayanan, M., Azharuddin, S., Kumar, S., & Khan, G. (2014). Command Controlled
Robot For Military Purpose. International Journal For Technological Research In
Engineering, 1(9), 1029-1031.

Seo, S.-W., Yang, H.-C., & Sim, K.-B. (2009). Behavior Learning of Swarm Robot System
using Bluetooth Network. International Journal of Fuzzy Logic and Intelligent
Systems, 9(1), 10–15. https://doi.org/10.5391/IJFIS.2009.9.1.010

Stormont, D., & Kutiyanawala, A. (2007). Localization Using Triangulation in Swarms of
Autonomous Rescue Robots. https://ieeexplore.ieee.org/document/4381290

Swarmrobot | Open-source micro-robotic project. (n.d.). Retrieved October 4, 2023, from
http://www.swarmrobot.org/Communication.html#:~:text=Directional%20communica
tion%20is%20extremely%20important,communicating%20neighbor%20and%20so%
20on)

https://doi.org/10.1007/s12541-017-0175-4
https://doi.org/10.1017/S1049023X00030314

46

Takayama, L., Ju, W., & Nass, C. (2008). Beyond dirty, dangerous and dull: what everyday
people think robots should do. Proceedings of the 3rd ACM/IEEE International
Conference on Human Robot Interaction, 25–32.
https://doi.org/10.1145/1349822.1349827

van Den Berg, J., Snoeyink, J., Lin, M. C., & Manocha, D. (2009, June). Centralized path
planning for multiple robots: Optimal decoupling into sequential plans. In Robotics:
Science and systems (Vol. 2, No. 2.5, pp. 2-3).

Venter, G., & Sobieszczanski-Sobieski, J. (2003). Particle Swarm Optimization. AIAA
Journal, 41(8), 1583–1589. https://doi.org/10.2514/2.2111

Wei, H.-X., Mao, Q., Guan, Y., & Li, Y.-D. (2017). A centroidal Voronoi tessellation based
intelligent control algorithm for the self-assembly path planning of swarm robots.
Expert Systems with Applications, 85, 261–269.
https://doi.org/10.1016/j.eswa.2017.05.048

Welsh, E. T., Wanberg, C. R., Brown, K. G., & Simmering, M. J. (2003). E-learning:
emerging uses, empirical results and future directions. International Journal of
Training and Development, 7(4), 245-258. doi:10.1046/j.1360-3736.2003.00184.x

Wood, S. (2023). The 4 Ds Of Robotisation in Construction. Construction Technology.
Retrieved October 2, 2023, from
https://www.constructiontechnology.media/news/the-4-ds-of-robotisation-in-constructi
on/8025617.article#:~:text=Likewise%2C%20commentators%20have%20given%20
much,been%20thrown%20into%20the%20mix.

47
Appendix A: Static Calculations
https://www.overleaf.com/read/mwbvqxqhddjh#06de55

Appendix B: Solidworks FEA
https://www.overleaf.com/read/mprnjjzdgxns#d36259

Appendix C: Physical Weight Testing Calculations
https://www.overleaf.com/read/drvbqpdyhgyv#fba341

Appendix D: Extended Kalman Filter Calculations
https://www.overleaf.com/project/65be79af92a24001aaaafd8b

Appendix E: ROB 16413 Data Sheet
https://cdn.sparkfun.com/assets/8/3/b/e/4/DS-16413-DG01D-E_Motor_with_Encoder.pdf

Appendix F: GitHub Repository
https://www.github.com/jdrockmael/CRoCS

https://www.overleaf.com/read/mwbvqxqhddjh#06de55
https://www.overleaf.com/read/mprnjjzdgxns#d36259
https://www.overleaf.com/read/drvbqpdyhgyv#fba341
https://www.overleaf.com/project/65be79af92a24001aaaafd8b
https://cdn.sparkfun.com/assets/8/3/b/e/4/DS-16413-DG01D-E_Motor_with_Encoder.pdf
https://www.github.com/jdrockmael/CRoCS

