
Project Number: MQP-CEW-0702

Content Management System for Online Video Publishing
A Major Qualifying Project Report:

submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
By

Christian Bryan

Greg Opperman

Drew Wilson

March 12, 2008

1. Internet
2. video
3. php

Approved:

Professor Craig E. Wills

Abstract

With the prevalence of high-speed Internet and low-cost production equip-
ment, Internet video publishing has rapidly come into the mainstream. The
original Broadcast Machine was an open-source application designed to allow
Video producers to easily publish their work on the web, but was plagued
with several problems. Through careful evaluation and the use of popular
software development techniques, we successfully rebuilt Broadcast Machine
to be stable, scalable, maintainable and usable.

1

Acknowledgements

We would like to acknowledge several people for their contributions to this
project. First, we would like to thank the Participatory Culture Foundation,
specifically Nick Nassar and Nicholas Reville, not only for allowing us to
continue to develop Broadcast Machine, but for their support and direction
in the early stages of the project. We would also like to acknowledge Professor
Craig Wills for his role in advising the project. Thanks to the developers of
Smarty, PHP, MySQL, and Apache, for the tools we needed to complete this
project.

2

Contents

1 Introduction 6

2 Background 8
2.1 Introduction . 8
2.2 Open-Source Software . 8
2.3 The Current State of Internet Video 9

2.3.1 Video Hosting Services 9
2.3.2 Content Management Systems 10
2.3.3 Wordpress . 11
2.3.4 Broadcast Machine . 11

2.4 Summary . 12

3 Design 13
3.1 Introduction . 13
3.2 Ease of Use . 13

3.2.1 Customizable . 14
3.2.2 Extensible . 14
3.2.3 Flexible . 14
3.2.4 Compatible . 15

3.3 Summary . 15

4 Implementation 16
4.1 Introduction . 16
4.2 Model-View-Controller . 16
4.3 Languages and Tools . 17
4.4 Application layout . 18
4.5 Controllers . 19
4.6 Model . 23
4.7 View . 27
4.8 Summary . 28

3

5 System in Action 29
5.1 Introduction . 29
5.2 Setup . 29

5.2.1 Clean URLs . 29
5.2.2 Settings . 30
5.2.3 First User . 30
5.2.4 Finished . 30

5.3 Channels . 32
5.3.1 All . 32
5.3.2 Show . 32
5.3.3 RSS . 36
5.3.4 Add . 36
5.3.5 Edit . 36
5.3.6 Remove . 38

5.4 Videos . 38
5.4.1 All . 38
5.4.2 Show . 38
5.4.3 Download . 38
5.4.4 Add . 38
5.4.5 Edit . 43
5.4.6 Remove . 43

5.5 Tags . 43
5.5.1 All . 43
5.5.2 Show . 44
5.5.3 RSS . 44

5.6 Users . 46
5.6.1 Signup . 46
5.6.2 Login . 46
5.6.3 Logout . 47
5.6.4 Show . 47

5.7 Summary . 47

6 Results 49
6.1 Introduction . 49
6.2 Unit testing . 49
6.3 Feedback . 50
6.4 Summary . 53

7 Future Work 54

8 Conclusion 56

4

A Former Broadcast Machine Documentation 57
A.1 Data Model . 57

A.1.1 Instances . 57
A.1.2 Stats . 57
A.1.3 Channels . 57
A.1.4 Videos . 59
A.1.5 Donations . 59
A.1.6 Users . 60
A.1.7 Settings . 60

5

Chapter 1

Introduction

With the prevalence of high-speed Internet and low-cost production equip-
ment, Internet video publishing has rapidly come into the mainstream. In-
dependent video publishers now have the ability to create professional videos
and reach thousands of viewers with consumer-level equipment and little
technical skill. There are several ways in which a video producer can pub-
lish videos online. Services like Youtube and Blip.tv offer free hosting for
videos, and many content management systems offer plug-ins for publishers
to distribute video files.

Created by the Participatory Culture Foundation, Broadcast Machine
sought to fill the gap between centralized video hosting services and tacked-on
content management system plug-ins by offering a complete video publishing
solution for independent media producers. However, Broadcast Machine was
plagued by several problems, and development was abandoned.

The main goal of this project was to take the ideas that had driven the
development of the first version of Broadcast Machine and create a piece of
software that was more usable and maintainable. The original code base
had been abandoned because the maintainers felt that it was taking up to
much time and that any further work was unlikely to be fruitful. The first
part of this project was to identify the problems that the previous develop-
ers were running into and what their underlying causes were. After in-depth
interviews with the previous developers and an extensive review of the exist-
ing code,1 we identified problems with the previous Broadcast Machine and
created a plan to prevent them in the next version.

This report details the methodologies and technologies that were used in
the re-imagining of the Broadcast Machine package. In Chapter 2 we will
introduce the background of the package and its original maintainers as well

1For documentation on the previous Broadcast Machine, refer to Appendix A.

6

as outline the deficiencies that were seen to impede the development of the
original implementation. In Chapter 3 there is a detailed discussion of the
requirements necessary to prevent these problems from reoccurring, with each
requirement analyzed and discussed in detail. In Chapter 4 we discuss the
implementation details that result from these requirements. Following the
chapters on design and implementation, in Chapter 5, we show the system
in action with a full walkthrough of the new software and a description of
the functionality it provides. Finally, in Chapter 6, our group discusses
the results of the project, as well as features that our group was unable to
implement and which ones we feel are necessary to the long-term success of
the project. The future of the project is covered in Chapter 7. Finally, in
Chapter 8, we close with a short reflection on the project.

7

Chapter 2

Background

2.1 Introduction

In this section we take a look at the history of Broadcast Machine and other
video publishing utilities. Our goal is to provide the reader with a framework
to understand the reasons for this software’s existence and the environment
in which it is being built. As many video publishing applications push for
further centralization and less transparency, Broadcast Machine has always
attempted to embody the ideals of the Open-Source Software movement.
Due to decisions made early in the software’s development and lack of funds
for continuous development, Broadcast Machine has fallen to the wayside.
Our group has come to see Broadcast Machine as important player in the
arena of Internet video and is dedicated to ensuring that it becomes viable
again.

2.2 Open-Source Software

Open source software is an important part of the movement to democratize
the media and Internet. The Participatory Culture Foundation (PCF), the
original creator of Broadcast Machine, has dedicated their work to the de-
mocratization of the Internet through Open-Source and Free Software ideals.
This common goal is what ties together PCF’s mission with that of the Free
Software Movement. The goal of the Free Software Movement is to create
software to increase the freedom of the public in general.1 Open-Source Soft-
ware accomplishes this through its transparency, which inspires community
development of software, and gives users the freedom to modify the software

1Richard Stallman, Why Software Should Be Free http://www.gnu.org/philosophy/
shouldbefree.html

8

http://www.gnu.org/philosophy/shouldbefree.html
http://www.gnu.org/philosophy/shouldbefree.html

to suit their needs. The software is free in the sense that there are no condi-
tions in distributing or using it, except that users respect the freedom of the
software.

Without free software, the Internet could not exist as a democratic medium.
Proprietary (meaning closed-source) software limits what users can or can’t
do with it, and does not give users the ability to modify code. With propri-
etary software, users cannot ‘own’ software, even if they purchase it. Instead,
users pay for the privilege of using it. Under this model, the software is less
accessible and less usable (as users cannot fix problems on their own, and
must rely on proprietary developer support). On top of this, other develop-
ers cannot learn from existing code, or base new work on it without paying
costly licensing fees.2

Open-source software aims to build a cultural community of developers
who can use each other as resources, learning from existing code, and freely
building upon it to create new technologies altogether. This culture encour-
ages technological progress in ways that competitive, closed-source software
does not.

2.3 The Current State of Internet Video

As bandwidth and storage become increasingly cheaper, the prevalence of
video on the Internet has sharply risen over the past few years. In August
2006 alone, the number of people in the U.S who streamed video via the In-
ternet totaled over 110 million people, which is comparable with the number
of households that watch traditional television.3 The Internet has allowed
independent video producers a variety of platforms by which to publish and
share their work. These platforms come in one of two forms: video hosting
services, which offer a centralized location from which users can upload and
share videos, and Content Management Systems (CMS), where users host
and maintain their own collections of videos.

2.3.1 Video Hosting Services

Video hosting services are sites that offer free hosting and sharing of video
files that users upload. These sites, such as YouTube (http://youtube.com),
Blip.tv (http://blip.tv), and Myspace Videos (http://vids.myspace.
com) also offer social networking features, such as the ability to rate and
comment on videos, as well as subscribe to videos posted by friends. The

2Ibid
3http://paul.kedrosky.com/archives/2006/10/19/fun with intern.html

9

http://youtube.com
http://blip.tv
http://vids.myspace.com
http://vids.myspace.com
http://paul.kedrosky.com/archives/2006/10/19/fun_with_intern.html

largest and most popular video hosting service is Youtube, which garners
42.94% of all traffic to online video sites.4.

Video hosting services offer a convenient solution for video publishers to
share videos with little technical expertise or resources, since bandwidth and
hosting costs are shouldered by the service. These sites also allow users to
embed videos into their own sites, giving them creative control over how the
video is displayed. However, there are several limitations to this approach.
In order to keep costs down and ensure that services remain possible under
heavy traffic, most video hosting sites impose limitations that affect the
quality of uploaded content. Having to service over 50,000 uploads a day,
YouTube transcodes all of its videos to a lower resolution, and imposes a
limitation on the length of video clips 5.

None of the major video hosting services allow adult or objectionable con-
tent. Many sites regularly censor videos they deems inappropriate, including
YouTube, who retains the right to control any and all content on its servers.
Often, videos aimed at displaying legitimate discourse or expression are lost
to this censorship6. For many publishers, the only way to ensure that their
videos are presented correctly is to host them independently, using a content
management system.

2.3.2 Content Management Systems

A Content Management System, or CMS, is a blanket term referring to
the wide array of pre-packaged software used to manage website content.
CMSes can encompass software to create wikis, forums, and several other
collaborative mediums. In general, CMSes provide a simple user interface for
adding, editing, and removing content, while obfuscating technical details.
Using a CMS, it would be possible to build and manage an entire site without
having knowledge of the underlying technologies and code. Most CMSes also
offer robust theming engines, allowing users confortable with HTML and CSS
to easily customize the look and feel of their site. Currently, the two most
popular CMSes are Drupal and Wordpress.

4http://www.hitwise.com/press-center/hitwiseHS2004/videosearch.php
5http://www.youtube.com/t/fact sheet
6http://www.nytimes.com/2006/10/09/technology/09link.html?ex=

1318046400&en=e311caef3c3cf222&ei=5090&partner=rssuserland&emc=RSS

10

http://www.hitwise.com/press-center/hitwiseHS2004/videosearch.php
http://www.youtube.com/t/fact_sheet
http://www.nytimes.com/2006/10/09/technology/09link.html?ex=1318046400&en=e311caef3c3cf222&ei=5090&partner=rssuserland&emc=RSS
http://www.nytimes.com/2006/10/09/technology/09link.html?ex=1318046400&en=e311caef3c3cf222&ei=5090&partner=rssuserland&emc=RSS

Drupal

Drupal allows users to easily set up, create, and moderate blogs, forums,
webpages, newsletters, and picture galleries7. Written in PHP, it requires
either MySQL v3.23.17 or PostgreSQL 7.2 or above8. Thousands of popular
sites use Drupal9, including The Onion10 and MTV’s UK site11.

2.3.3 Wordpress

Wordpress one of the most popular weblogging applications, or a CMS de-
signed specifically for posting text and image content by a small group of
users. Wordpress is built with PHP 4.2 and uses MySQL 3.23 as its database
back-end. It was created with the vision of creating a powerful GPL-licensed
Internet publishing platform based on open standards. The first version was
released in 2001. Wordpress is blogging software designed to be installed on
an individual’s web host, either their own computer connected to a broadband
connection or a commercial web host like Dreamhost or 1and1. Wordpress
also offers hosted installations of its own software on their website.12

Wordpress and Drupal both offer plug-ins for video publishing. However,
there are currently no CMSes that directly address the needs of online video
producers. There is a clear need for an easy to use, open-source, alternative to
centralized video hosting service or complicated CMS plug-ins. With this in
mind, the Participatory Culture Foundation (PCF), a Worcester-based non-
profit, created Broadcast machine, an open-source video publishing platform.

2.3.4 Broadcast Machine

Broadcast Machine is a content management system for video publishing
designed to deliver videos via several different methods. Primarily, it acted
as video blogging software, where users could organize videos into channels.
Users could also subscribe to these channels using any RSS reader or desktop
video software, such as Miro (http://getmiro.com). Broadcast Machine
targeted users with little technological experience to offer a simple, easy-
to-use user experience, and promoted alongside Miro (formerly Democracy

7http://drupal.org/about
8http://drupal.org/requirements
9http://drupalsites.com

10http://theonion.com
11http://mtv.co.uk/
12http://wordpress.org

11

http://getmiro.com
http://drupal.org/about
http://drupal.org/requirements
http://drupalsites.com
http://theonion.com
http://mtv.co.uk/
http://wordpress.org

Player) as part of a multi-tiered Internet video platform, Broadcast Machine
developed a strong following of users13

Despite its popularity, Broadcast Machine was plagued by a number of
problems due to poor architectural decisions and sloppy programming prac-
tices14. The original Broadcast Machine stored data in one of two ways:
a MySQL database or a flat-file. However, model-layer logic was poorly
abstracted from the rest of the application, and small differences between
the two data-layer implementations caused several irreconcilable bugs. Since
the program relied on a complicated and difficult to understand architecture,
tracking down and fixing these problems became nearly impossible. Poor doc-
umentation, especially concerning Broadcast Machine’s complex data struc-
tures made it especially difficult for others developers to work on the project.
Due to the aforementioned issues and lack of funding, development of Broad-
cast Machine was abandoned in 2006, to the dismay of its dedicated users.

2.4 Summary

In this chapter we take a look at the factors that have led to the work on
this project. We make sure to discuss the importance of open source and the
role that this plays in the the success of this software. We then go on to talk
about other solutions which aim to solve the same problems that Broadcast
Machine attempts to address. There is a good comparison between these
proprietary systems and the open solution that we have provided. In spite
of the positive light in which the initial version is presented, we make a case
that Broadcast Machine is buggy and unmaintainable. Due to the lack of
development and the importance of this software, we felt that there was a
need to continue work on this package.

13A Google search of the phrase Powered by Broadcast Machine returns approximately
6,700 results.

14PCF’s bug tracker reports 67 serious, unfixed bugs as of the time of this writing.

12

Chapter 3

Design

3.1 Introduction

Many of Broadcast Machine’s current problems stem from its poor archi-
tectural implementation. To prevent these problems from happening in the
future, the new Broadcast Machine must have a carefully-planned architec-
ture that meets several design requirements.

3.2 Ease of Use

The most important requirement for Broadcast Machine is that it be easy to
use. Broadcast Machine’s target user, people who produce videos, should not
need extensive technical knowledge in order to deploy and use the program.
Just as a developer has almost no knowledge of how to shoot or edit a video,
we should not expect the user to have any knowledge of PHP, RSS, or any of
the technologies employed. Without being privy to any of the inner workings
of the program, the user must be able to easily and intuitively publish videos
and video channels via a simple administrative interface. Without any in-
formation besides their web server log in and password, the user should be
able to set up Broadcast Machine by dropping the application into a folder
accessible by a web server. The program should auto-configure itself on the
first-run with a few simple clicks, even if the user is completely unaware
of how his or her web server is set up. The application must detect server
configurations that may interfere with its behavior, and handle those special
cases gracefully. Likewise, viewers with any level of computer proficiency
must be able to easily browse and download videos, and subscribe to their
favorite channels.

In order to ensure the best user experience possible, the new Broadcast

13

Machine must be stable. In addition, it should preserve all of the function-
ality of its previous incarnation, while containing none of the unpredictable
behavior.

3.2.1 Customizable

A major feature of both the former Broadcast Machine and many other
CMSes is the ability to customize the look and feel of an installation that fits
the user’s own personal style. As before, the application must be designed
with a robust theming engine so that a user with only basic HTML and CSS
knowledge can easily customize the website to suit his or her needs. Each
users’ site layout, or theme, will have the potential to look drastically different
from each other with only minimal modifications to CSS and template code.
The templates must be abstracted from the functional code, so that users
need not worry about breaking the logic of the application or having to dig
deep into obscure files to modify the layout. Users should also have the
ability to easily switch between layouts.

3.2.2 Extensible

Similarly, the application logic of Broadcast Machine must be structured so
that it may be easily modified and maintained by any developer with rele-
vant skills. The layout of the application should appear logical and concise,
with a modular architecture to encourage programmers to freely add onto
Broadcast Machine’s feature set in order to meet their requirements. The
architecture should be transparent and have a well-documented API so that
theses developers can start extending Broadcast Machine without exhaus-
tive knowledge of the program, but merely a solid grasp of the documented
data structures and class layouts. When features need to be added, the de-
velopers should be able to do so while maintaining the same architectural
pattern and preserving the structure of the application, by adding only a
few functions or classes. A well-structured, extensible architecture will pre-
vent poor programming practices by encouraging developers to replicate the
design patterns used to create the foundation of the application.

3.2.3 Flexible

Broadcast Machine must be flexible enough so that it can be re-factored eas-
ily. Functionality should be abstracted and delegated so that major changes
to one part of the code will not affect another. For example, we may decide
later that we would like to use a different type of database. We should be able

14

to swap out the back end without having to modify the entire application,
and without significantly affecting the user experience. In the event that
bugs occur, localizing them to a specific section of code and implementing a
fix should be possible without the fix appearing to be makeshift. Developers
should not need to dig through a large amount of application code before
finding the section that they need to edit.

3.2.4 Compatible

The new Broadcast Machine must work across several different platforms.
While impossible to guarantee compatibility with all web server configura-
tions, Broadcast Machine most work on the most common web server setups.
This includes any Apache web server with a minimal amount of installed
modules, and most major hosting services (Dreamhost, 1And1, etc).

3.3 Summary

The target audience for Broadcast Machine is primarily non-technical users
who have experience with video editing, but who are not necessarily familiar
with web-programming or web-design. By evaluating the needs of this group,
we were able to come up with a broad set of design requirements for the
software. Despite the need for a simple interface, the system needs to be
customizable. For this reason, a robust templating engine is necessary to
allow users to change the layout of BM without affecting other vital parts of
the software. Since the each install of Broadcast Machine is separate and the
system is not central maintained, it is also important to have a consistent
code structure that allows for third party developers and more technical
users to write extensions. Flexibility and compatibility are two additional
requirements of the system. The software must be able to have components
removed or replaced without compromising the entire code base. Finally,
the system needs to be designed with the most common web host platforms
in mind. It is essential that Broadcast Machine be compatible with most
web hosting services. These requirements have informed our decisions when
implementing the software.

15

Chapter 4

Implementation

4.1 Introduction

Based on the aforementioned design requirements, it is clear that Broadcast
Machine needs an architecture for abstracting the code into multiple layers.
In this chapter, we discuss the implementation of Broadcast Machine. We ex-
plain the Model-View-Controller architecture and how it was applied in order
to satisfy the requirements for the application. We discuss the programming
languages and technologies utilized. This chapter goes into detail about the
various controllers, the database model, and the templating engine.

4.2 Model-View-Controller

It became clear that the program architecture needed to be modularized into
three separate parts. First, the presentation layer needed to be separated
from program logic in order to create a templating system by which users
with basic HTML and CSS knowledge could customize the style of their site.
In order to make the program both extensible and flexible for developers
looking to add onto or modify existing Broadcast Machine code, it became
necessary to further abstract data storage to be independent of both the
presentation layer and the rest of the program architecture. This separates
the program into three layers, following the Model-View-Controller design
pattern, or MVC1, as shown in Figure 4.1.

In a pure Model-View-Controller architecture, all data is represented by
the Model layer. The layer that the user interacts with, namely user-interface
of the application, is represented in the View layer. The Controller layer rep-

1http://www.martinfowler.com/eaaDev/uiArchs.html

16

http://www.martinfowler.com/eaaDev/uiArchs.html

Figure 4.1: Interaction between layers in MVC

resents the logic of the application, and in most cases, handles interactions
between the Model and View layers. These interactions are shown in Figure
4.1, with solid lines representing direct interactions, and dotted lines repre-
senting indirect interactions. Although in the general definition of this design
pattern, the view can take user input and push it directly to the model, in
most implementations it passes input to the controller for processing (input-
validation), which in turn pushes the input to the model. Likewise, the view
can also request data from the controller, who queries the Model layer. The
query is then passed to the View for display and further user interaction.

4.3 Languages and Tools

There are several frameworks for implementing Model-View-Controller web
applications, currently the most popular of which is Ruby on Rails. Ruby on
Rails provides advanced features that allow automatic, rapid-prototyping of
MVC applications, and object-relational mapping for controller interaction
with the model layer, meaning that all data is automatically assigned to a
class object based its structure.2 However, as a relatively new language,
Ruby on Rails has not been as widely adopted as other, more established
languages. Few basic web hosting plans support Ruby on Rails.

To satisfy the requirement that Broadcast Machine be compatible with
as many hosting and web server configurations as possible, we chose to write
the application in PHP3 running under Apache web servers4. PHP is cur-
rently one of the most popular web scripting languages, while Apache is also
the most prevalent web server amongst low-cost web hosts and developers
running personal web servers. 5 Another advantage is that it is common for

2http://rubyonrails.org
3http://php.net
4http://apache.org
5http://news.netcraft.com/archives/2007/01/05/january 2007 web server

17

http://rubyonrails.org
http://php.net
http://apache.org
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html

PHP and Apache to be installed alongside one another. Apache’s support for
per-directory configurations via an .htaccess file make it easy for users and
developers to customize the environment without specialized administrator
access; PHP offers object-oriented programming features that allow for the
development of a MVC application that adopts many of the design principles
and features of a Rails framework.

Similarly, MySQL is an open-source Database Management System (DBMS)
that is one of the most widely-used Structured Query Language (SQL) im-
plementations for data storage, alongside enterprise-level applications such
as Oracle. Like PHP, MySQL comes installed by default with most hosting
plans, and many hosts offer user-friendly interfaces to set up and manage
databases. After a database has been created by the user with one of these
tools, deploying the data layer of the application would be automated by
a script. In terms of scalability, MySQL’s performance rivals that of many
enterprise-level DBMSes, especially when executing simple queries to create,
read, update and delete small amounts of data. PHP offers several functions
to interact with MySQL, making it the ideal choice for the data layer of the
application.

4.4 Application layout

Using the aforementioned languages and tools, the traditional Model-View-
Controller pattern was modified slightly for Broadcast Machine, in order for
each layer to logically handle requests and delegate responsibilities as best
as possible, as shown in Figure 4.2.

Figure 4.2: Interaction Between Application Layers

First, Broadcast Machine receives an incoming HTTP request and invokes
the dispatcher. The dispatcher is a kind of meta-controller for Broadcast

survey.html

18

http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html
http://news.netcraft.com/archives/2007/01/05/january_2007_web_server_survey.html

Machine, that takes in a URL request and any POST data from the user, and
does any work necessary before the requested controller is instantiated. The
dispatcher first checks to make sure that Broadcast Machine’s .htaccess file,
configuration file, and database are properly set up before invoking the proper
controller. If Broadcast Machine is found to be not set up, then the dispatcher
automatically ignores the URL request and invokes the setup controller to
initiate the proper step of the set up process. If the application is set up, then
the dispatcher parses the URL request and invokes the appropriate controller.
The dispatcher expects URLs in the following format:

http://baseurl/[controller]/[param]/../[param]/

If no controller is given, the dispatcher by default invokes the Channel
Controller. Beyond the type of controller requested, the dispatcher delegates
the responsibility of interpreting URL parameters to the invoked controller.

4.5 Controllers

All of the application logic for Broadcast Machine resides in the controller
layer. Controllers are classes of objects that perform a set of related tasks.

View Controllers

View Controllers are the most common type of controller in Broadcast Ma-
chine, and are responsible for handling all of the requests that result in
template rendering. All view controllers inherit some functionality and re-
quirements from the ViewController Abstract Class. The ViewController
aggregates (contains) the DatabaseController, whose specific implementation
is defined by a configuration variable and automatically instantiated.6 In a
similar fashion, the ViewController automatically aggregates an instance of
Smarty, the default templating engine of choice.7 ViewControllers also inherit
the ability to determine permissions and assign alerts from their abstract
parent. The ViewController also provides a uniform interface for invoking a
template.

As shown by Figure 4.3, the ViewControllers are responsible for taking
in an array of URL parameters8, and invoking the correct method and pa-
rameters. For example, if the ChannelController is called with the following

6By default, Broadcast Machine uses the MySQLController.
7For more information on Smarty, see the View section below.
8Recall that URLs are parsed by the dispatcher into an array before instantiating a

ViewController

19

Figure 4.3: ViewController API

parameters:

[0] = channel, [1] = cowboys, [2] = edit

The Channel Controller, in the dispatch() method, assumes that ‘cow-
boys’ is the name of the channel, and invokes the edit method with ‘cowboys’
as the target channel. There are five classes that implement the ViewCon-
troller interface: the Setup, Channel, Video, Tag, and User Controllers.

SetupController

The SetupController is responsible for completing a Broadcast Machine
installation, as well managing site and database settings after BM has been
set up. The SetupController has the following methods (corresponding URL
parameters in parentheses):

index (/setup/): calls settings() by default when there are no parameters,
if a user is logged in and has admin privileges.

write htaccess (/setup/cleanurls/): The first step of setup, sets up the
.htaccess file for proper URL handling.

settings (/setup/settings): Allows an admin to set up or modify site
and database settings.

write bm2conf: Writes BM’s configuration file.

20

firstuser (/setup/firsuser): Allows user to create the first admin log-in.

ChannelController

The ChannelController is responsible for aggregating and managing data
related to channels, or collections of videos. The ChannelController has the
following methods:

index (/channel/): Calls all() by default when there are no parameters.

all (/channel/all): Displays all channels, as well as a short list of videos
in those channels and associated tags.

add (/channel/add): Adds a channel to the database.

edit (/channel/channelname/edit): Modifies channel channelname.

show (/channel/channelname/): Shows details for a channel.

RSS (/channel/channelname/RSS): Displays a channel’s RSS feed.

remove (/channel/channelname/remove): Deletes a given channel
from the database.

VideoController

The VideoController is responsible for aggregating and managing data
related to videos. The VideoController has the following methods:

index (/video/): calls all() by default when there are no parameters.

all (/video/all): Displays all videos, as well as associated tags.

add (/video/add): Adds a video to the database.

edit (/video/videoname/edit): Modifies video videoname.

show (/video/videoname/): Shows details for a video.

download (/video/videoname/download): Increments a video’s down-
load count and serves up the video file.

remove (/channel/videoname/remove): Deletes a given video from
the database.

21

TagController

The TagController is responsible for aggregating and managing data re-
lated to tags, or categories for videos and channels. The TagController has
the following methods:

index (/tag/): calls all() by default when there are no parameters.

all (/tag/all/): Displays all tags for channels and videos.

show (/tag/tagname/): Shows all videos and channels tagged with
tagname.

RSS (/tag/RSS/): Displays an RSS feed for videos tagged with tagname.

UserController

The UserController is responsible for aggregating and managing data re-
lated to users. The UserController has the following methods:

index (/user/): calls show() for current user by default when there are
no parameters, or presents a login screen if there is no active session.

signup (/user/signup/): Registers a user.

login (/user/login/): Begins a session with proper user credentials.

all (/user/all/): Shows all users (admin-only).

show (/user/username/show): Shows information for user username.

edit (/user/username/edit/): Allows a user to edit their own informa-
tion.

remove (/user/username/remove/): Allows a user or admin to re-
move an account.

Database Controllers

Database Controllers are controller classes that manage queries to the model
layer. In implementing MySQL database support for Broadcast Machine,
several abstraction layers were created to make it easy to add new DBMS
support to the application.

22

Figure 4.4: MySQLController Inheritance Diagram

As you can see in Figure 4.4, the abstract class DatabaseController
defines the API by which all database controllers are expected to behave,
witch functions to configure, connect, and disconnect from database sessions,
as well as to create, read, update, and delete data, as well as to parse record
sets into arrays and retrieve the unique ID of the last inserted record.

The SQLController extends the Database controller by providing the
create, read, update, and delete functions to build and execute SQL queries
for all of these functions. This abstraction provides these functions for any
developer writing controllers for any other SQL implementation (such as
SQLite or PostgreSQL) automatically, so long as their implementation ex-
tends the SQLController class.

Finally, the MySQL controller is a concrete implementation of the DBMS
used in Broadcast Machine. It implements functions to maintain database
connections by calling MySQL-specific functions in PHP, allowing other Broad-
cast Machine controllers to interact with the model layer.

4.6 Model

Data for Broadcast Machine can be broken down into five main entities:
Channels, Videos, Tags, Users, and Settings. This is shown in Figure 4.5.
Settings, a group of data with no relation to the other entities, are stored
in the file bm2 conf.php, while the rest of the data is stored as a relational
MySQL database (see Languages and Tools above). The entities and their
relationships are shown below.

23

Figure 4.5: Entity-Relationship Diagram

24

Channels

Channels used to organize videos into collections. Users can either view
channels through Brodcast Machine, or subscribe to Channels via RSS or
Miro. Each channel has the following attributes:

title: The name of the channel. Must be unique.

description: A short summary of what the channel contains.

website url: An optional link to the channel homepage.

icon url: The address of a channel icon, or logo.

Each channel can have several videos published to it, meaning those videos
will appear as part of the channel. Channels can also be tagged with descrip-
tive keywords (see Tags).

Videos

title: The name of the video. Must be unique.

description: A short summary of what the video is about.

website url: An optional link to the video publisher homepage.

modified: A timestamp of the last time a video was updated.

release date: When the video was uploaded to Broadcast Machine.

runtime: The length of the video, in seconds.

file url: The location of the video file.

downloads: The number of times the video has been downloaded.

mime: MIME-type of the video.9

size: Size of the video.

9MIME is an international standard that defines what kind of content a file contains.

25

Tags

Tags, or categorical words that describe another entity, are represented by
two database tables, channel tags and video tags. Each tag contains the
unique ID of the channel or video it refers to, as well as the one-word tag itself.
Tags allow channels and videos to be aggregated and organized by category
or theme, allowing videos and channels to belong to several categories at
once.

Users

Users are members of a Broadcast Machine site, and fall into one of two
categories. Administrators, or admins, are users who manage the site and
are responsible for adding, updating, and removing content. It’s possible for
site admins to restrict all or some videos on their site to be viewable only by
registered members. Information needed to represent users is as follows:

username: The nickname that a user logs in as.

name: User’s real-life name.

pass: A hash of the user’s password.

email: User’s e-mail address.

admin: Whether or not the user has administrative privileges.

Settings

Site settings pertain to global information about the specific Broadcast Ma-
chine installation. They typically include information needed by the dis-
patcher before connecting to the database or instantiating a controller. Site
settings include:

baseURI: The URI of the root location of the BM installation. Used to
dynamically generate links.

baseDir: The base directory of the BM installation. Used to properly
include classes and files.

site name: The name of the site.

site description: A brief summary of the site.

26

site iconurl: A link to the logo of the site.

Database connection settings are specific to the Database Management
System being utilized. As such, each Database Controller is responsible for
knowing which variables are set in the settings file and including them. By
convention, all database settings are prefixed with ‘cf’ and are in the form
$cf varname. An example of typical database settings (in this case for the
MySQLController):

cf hostname: The URI through which the database can be reached.

cf database: The name of the database.

cf username: Username needed to access database.

cf password: Password needed to access database.

All settings, both for the Site and Database, are stored in bm2 conf.php
in Broadcast Machine’s base directory.

4.7 View

The implementation of the presentation layer in Broadcast Machine is han-
dled by Smarty, an open-source PHP templating engine. Smarty was chosen
because it provides users with an easy way to create dynamic webpages with-
out requiring that template developers deal directly with application logic
or PHP, while still allowing users to customize each dynamically-generated
views. In Smarty, data is assigned to templates via variables, much like
in PHP. The View Controller assigns these variables before calling a tem-
plate to be rendered, and Smarty automatically inserts the variables when
rendering the template, fully removing the data presented from SQL or Con-
troller logic. Smarty also allows for simple flow control and special variable
modifiers. These variable modifiers allow the presentation layer to retain
some control over how the data is filled, while keeping a suitable amount of
abstraction. For example, they can be used to capitalize strings, alternate
colors of rows, or escape special characters. Smarty then takes in the tem-
plates for the presentation layer and compiles them into PHP. The Smarty
templates together and the View Controller are the components of the the
user interface.

27

4.8 Summary

In keeping with the requirements for a successful implementation of Broad-
cast Machine, we utilized A modified Model-View-Controller architecture to
abstract the application into three main parts. With the bulk of the ap-
plication logic written in PHP, a widely available web scripting language,
A MySQL database was chosen to represent the Model layer. In order to
implement a customizable templating engine, we incorporated Smarty, and
open-source theme plug-in. In the next chapter we will walk through the
system and show it in action, from a user’s perspective.

28

Chapter 5

System in Action

5.1 Introduction

This section details how installation and use of Broadcast Machine works,
with a pictorial walkthrough of the various views and pages of Broadcast
Machine. Through these concise illustrations of the software we hope to
convey the full range of Broadcast Machine’s features.

5.2 Setup

In this section we are going to take a look at how Broadcast Machine is
initially set up on a user’s server. The initial step is downloading the archive
that contains the software. In the future, the software will be available
through the project’s home page.1 After the user downloads the file, they
upload it to their server and unpack it into some directory that will be
accessed by a web server.

5.2.1 Clean URLs

Figure 5.1 shows the first screen that a user encounters when installing Broad-
cast Machine displays a simple greeting. In the background, the application
is detecting the current server settings and is attempting to set up Apache’s
.htacces file, which allows for clean, user-friendly URLs using mod rewrite.
A few settings such as the permissions on directories and the type of PHP
modules installed are also detected.

1http://code.google.com/p/broadcastmachine

29

http://code.google.com/p/broadcastmachine

Figure 5.1: Broadcast Machine Greeting Page

5.2.2 Settings

Figure 5.2 shows the second setup step, where the basic information about
the installation is entered. We collect information such as the title and
description of the site, as well as all of the information we need to connect
to the database.

5.2.3 First User

On the third page, the user is prompted to enter in information for their first
user. This is shown by Figure 5.3. This user will be the ‘superuser’ and has
the right to add other users or to escalate user permissions.

5.2.4 Finished

Figure 5.4 shows the fourth and final page is a simple confirmation that tells
the user that they have successfully finished setting up the software. From
here, we provide prompts for the user to add a new channel or to take a look
at their new front page.

30

Figure 5.2: Site Settings Page

Figure 5.3: User Creation

31

Figure 5.4: Finished Page

5.3 Channels

The main component of Broadcast Machine are channels. Channels offer a
convenient way to group together videos. Most people immediately under-
stand the goal of a channel as a collection of thematically related content.
Our software provides an easy way for users to create, categorize and manage
large amounts of video.

5.3.1 All

Figure 5.5 shows the default display for the channels section, which is to show
a few recent channels and a small sampling of videos from each channel.

5.3.2 Show

Each channel can be viewed individually, as shown in Figure 5.6. This allows
the user to take a more in depth look at the channel. In this view we display
all of the information we have about the channel and then display a few of
the recent videos.

32

Figure 5.5: Viewing All Channels

33

Figure 5.6: Showing a Channel

34

Figure 5.7: Viewing a Channel’s RSS Feed in Miro

35

5.3.3 RSS

All of the channels have an associated RSS feed. The ten most recent videos
that have been posted to the channel become a part of the RSS feed. These
feeds are important for integration with desktop clients such as Miro. Fig-
ure 5.7 shows the RSS feed for a given channel shown in Miro. With this
technology Broadcast Machine users can easily integrate their content with
other services and clients.

5.3.4 Add

Figure 5.8: Adding a Channel

None of this would be of much use if the software was lacking an interface
through which to add channels. Figure 5.8 shows the interface for adding
a video. With this dialog, an administrator can add a new channel and
associate a few pieces of meta data. We currently allow titles, descriptions,
tags and icons to be attached to a channel.

5.3.5 Edit

The channel edit form (shown in Figure 5.9) is much like that of the add
dialog, but this form comes pre-populated with the data from an existing
channel. Any piece of data that can be added can also be edited.

36

Figure 5.9: Editing a Channel

37

5.3.6 Remove

Nothing needs to be displayed for the remove action. Instead, when an
administrator goes to remove a channel, we simply alert them that their
channel has been removed and then we forward them to the default channel
page.

5.4 Videos

Videos are at the core of Broadcast Machine. They are the most basic com-
ponent of this application. The video section of this software allows for all
of the basic operations on a video.

5.4.1 All

Figure 5.10 shows the all videos view, which displays a number of the recent
videos that have been added to the database. This page serves as a good
entry point into some of the videos that the user(s) have made available.

5.4.2 Show

The show page, shown in Figure 5.11, displays a single video and all of the
information associated with it. This page gives the user a way to view meta
data and to download the video itself. It also serves as a jumping point to the
channels that the video belongs to and to the tags that have been associated
with the video.

5.4.3 Download

While the download portion of each video does not have a traditional HTML
view, this is the most important part of the application. This page redirects
the user to a URI where the video file can be downloaded.

5.4.4 Add

If a user is logged in and has sufficient privileges to add a video, they are
presented with a form that allows them to fill in meta data. This is shown
in Figure 5.12

38

Figure 5.10: All Available Videos

39

Figure 5.11: Showing a Video

40

Figure 5.12: Adding a Video

41

Figure 5.13: Editing a Video

42

5.4.5 Edit

This view is much like the add view. It is visually similar except for it comes
populated with data associated with the video. This view is shown in Figure
5.13.

5.4.6 Remove

There is no discrete XHTML view associated with the remove functionality,
but an alert is passed onto the administrator who removes the video.

5.5 Tags

Tags are a convenient method for users to attach information to their videos.
Broadcast Machine offers the the ability to associate a group of single mean-
ingful words to each video and channel. These words allow the viewer to
more easily pick through the content that is being presented. Regardless of
the channel or video, a viewer can immediately key in on some specific term
and be able to retrieve a stream of content relevant to that term.

5.5.1 All

Figure 5.14: All of the Tags

43

As shown in Figure 5.14, this is raw tag output that allows users to see a
bunch of the tags currently being used by channels and videos.

5.5.2 Show

Figure 5.15: Showing a Tag

As you can see in Figure 5.15, in this view there is a small sample of the
channels and videos that have been associated with the given tag.

5.5.3 RSS

This view functions exactly like the previous channel RSS view that was
discussed earlier. Instead of keying in on channel data, this simply keys on
tag data. See Figure 5.16.

44

Figure 5.16: Viewing an RSS feed

45

5.6 Users

The users controller allows users and administrators to manage their and
other’s accounts. This controller provides authentication mechanisms and a
portal to certain amounts of user information.

5.6.1 Signup

Figure 5.17: Signing Up

As you can see in Figure 5.17, the super-user has control as to whether
or not the signup pane is available to the public, but this dialog adds a
simple way for users and administrators to add new accounts. Each person
is required to have a username and a password and we would prefer if they
associated an email address and a name.

5.6.2 Login

On the login page, as shown in Figure 5.18, the current user is prompted
for their credentials. Their username and password are requested and then
authenticated. If the credentials are correct, the user is marked as ‘trusted’.
If not, then no mark is associated.

46

Figure 5.18: Logging In

5.6.3 Logout

This is another piece of important functionality that is without an XHTML
view. The function is simple, it erases all of the session data currently set
and alerts the user that they have logged out. The user is then redirected to
the home page.

5.6.4 Show

In Figure 5.19 you can see that at this point users are given the chance to
view a single user and all of the data that is associated with that user.

5.7 Summary

In this chapter we guide a user through all of the use-cases an average user
would be expected to encounter. We have aimed to give a straightforward
representation of the software and its capabilities.

47

Figure 5.19: Showing a User

48

Chapter 6

Results

6.1 Introduction

Broadcast Machine has many components that work together to create a
rich user experience. It is important to ensure that everything works as
expected, both in terms of functions as we–the developers–had planned and
how typical users would expect the system to function. Quality Assurance
for Broadcast Machine was an ongoing process that began early on in our
development cycles, in order to provide empirical benchmarks for code and
layout correctness. An extensive system of unit tests were developed in order
to rigorously test that all controller logic and model interactions in Broadcast
Machine, while we later relied on user testing in order to verify that the
presentation logic was also sound.

6.2 Unit testing

In order to ensure that Broadcast Machine’s controller logic was (and is) con-
sistently functional amongst dozens of revisions made by multiple developers,
we developed a comprehensive set of unit tests that execute every controller
function and verify that they return expected results. In order to perform
these tasks, we implemented tests using SimpleTest, a PHP unit testing
framework. SimpleTest uses basic assertions to prove that a given function
behaves correctly, and then generates a simple report with the number of
test case successes or failures.

Unit tests for Broadcast Machine can be found in the unit tests folder, and
may be executed simply by navigating to the test file in any web browser,
as shown in Figure 6.1. While not entirely test-driven, our development
process benefited greatly from good unit testing practices. Ensuring that

49

Figure 6.1: ChannelController Unit Test

all controllers passed their respective unit tests before checking in major
portions of code helped prevent the introduction of bugs, as well as helped
localize bugs to specific portions of code when they did occur.

Although convenient for basic testing, Simpletest has several limitations
that prevented us from testing all of our code through unit tests. Sim-
pletest is unable to properly emulate persistent PHP sessions, which means
that we had to test user authentication manually. However, since so many
aspects of Broadcast Machine rely on authentication, we became confident
that user-testing through our extensive use of Broadcast Machine throughout
development was sufficient to ensure that the feature was working correctly.
Similarly, unit tests are not able to make judgements about the correctness
or aesthetic value of presentation logic.

6.3 Feedback

In order to test Broadcast Machine’s layout and usability, we relied on user
testing and feedback. On February 23, 2008 we met with Mike Benedetti,
the webmaster from Worcester’s Community Cable Access (WCCA) Channel
13. Mike is a part of the Internet video publishing community, as a member
of Worcester Indymedia and as an independent journalist. Mike publishes
the Snow Ghost Community Show1 online for WCCA. We introduced Mike
to Broadcast Machine, and asked for some feedback on the user experience.
Our major goal was to determine if his expectations for the interface meshed
well with the existing feel of the application. Because of his experience with
Internet video publishing, he was in a unique position to provide feedback
on Broadcast Machine.

1http://www.wccatv.com/snowghost

50

http://www.wccatv.com/snowghost

WCCA has recently begun putting all of their video content online, using
Drupal with a number of modules as their content management system. Mike
explained that there were a number of drawbacks with his current setup.
Mike stressed that there was not yet a one-stop video content management
system, although he did point out that there exist plugins and modules for
existing CMS’s that transforms them into a make-shift video CMS.

We started our discussion by having Mike describe WCCA’s video pub-
lishing process:

1. A content producer records a show in their studio.

2. The show is edited and cut down to fit the time-slot.

3. The show is aired on the cable station.

4. Mike uploads a high-quality copy of the video to archive.org. He must
input various attributes of the video, including the title, text descrip-
tion, director, producer, production company, keywords and informa-
tion about the audio and visuals.

5. Archive.org’s servers then convert the video into a number of file sizes
and formats and make the files publicly available.

6. Mike embeds a lower-quality version of the file in a post using Drupal.
Mike must re-enter all of the video attributes at this point.

7. The video is posted to the WCCA site and Drupal handles adding an
entry to the video RSS file.

After we talked with Mike about his setup, we opened up a browser and
had him explore Broadcast Machine. At this point we asked him to follow
links and describe what his exceptions for the pages were and compare his
expectations to the content of our pages. It was valuable to hear that Mike’s
expectations for the views were somewhat different than what we had. There
were a few specific UI suggestions that he had, but most important suggestion
on how to visually present our data. More broadly, Mike gave us a feel for
where Broadcast Machine fits into the landscape of Internet video publishing.

He seemed to be hopeful about our project and it might be a good fit for
his needs.

Mike explained that it made more sense to him to have the videos appear
in a more traditional blog layout, with clear differentiation between posts,
and with a publish date clearly indicated. He also pointed out that we
needed to make it clear that the RSS feeds were video feeds that could

51

be used with programs like Miro. To bring attention to this feature, we
moved icons for RSS and Miro subscription links to be more prominent on
pages where feeds are available, and also updated several templates to clearly
differentiate between video posts with better-presented information. Mike
indicated that he was confused about what data was in the RSS feeds, based
on their placement. We discovered that it needed to be made more clear that
the video feeds had enclosures, and moved the RSS icons to a location on the
page that more clearly indicated their content. In accordance with Mike’s
suggestions, we also edited templates for consistency in ordering videos and
channels.

As was mentioned earlier, WCCA uses archive.org as their long-term
storage. Mike suggested that Broadcast Machine would be a more appealing
piece of software if, in a future release, it incorporated an easy mechanism for
external storage solutions. We looked at WCCA’s account and found that
there is an XML API provided for archive.org to integrate with external soft-
ware. The XML API would make the implementation of a function to scrape
data from archive.org an easy task for future releases of Broadcast Machine.
Having Broadcast Machine automatically grab data from archive.org would
streamline WCCA’s process for uploading files. Mike also suggested inte-
gration with several other storage providers, including Amazon’s S3 service.
While certainly a good idea for the future, implementing robust integration
with several different services is a major task, and was outside the scope of
this project’s time constraints.

Mike recalled that the previous version of Broadcast Machine was based
on BlogTorrent, an implementation of the BitTorrent transfer protocol for
blogs. However, he also noted that he was unable to get BitTorrent support to
work with previous installs of Broadcast Machine, an experience that several
other users of the earlier BM often shared. Mike suggested we add some sort
of BitTorrent integration. While the current Broadcast Machine does allow
users to upload or link to .torrent files and share them, we identified the need
for an integrated BitTorrent server in order to automatically seed, or upload
videos. We had previously considered adding this feature. However, we found
that most hosting providers do not allow server-side sharing of torrents in
any regard. Due to this constraint, we decided to abandon implementation
of this feature, but are now reconsidering it for advanced users running their
own web servers.

52

6.4 Summary

Our team utilized a number of metrics in order to assure that Broadcast
Machine worked well. Unit tests insured that all of the application and
model logic worked properly, while user feedback from Mike Benedetti gave
us a good perspective on how video publishers would react to Broadcast
Machine. While we did not incorporate all of his suggestions, we did make
a number of changes based on his ideas. It was encouraging to hear that
Broadcast Machine could grow to fill a vital niche in the video publishing
field, and might even be utilized by WCCA in the future.

53

Chapter 7

Future Work

While this project has done much work to make Broadcast Machine a piece
of modern video management software, there are many features that should
be implemented in order to provide the best user experience possible. For-
tunately, Broadcast Machine will live on longer than this current project.
Our group hopes to continue to cultivate this application as an open-source
project after this MQP. Opening this code-base to a community and encour-
aging all types of hobbyists to contribute will allow us to implement a few of
the features that we think would be beneficial to the software.

One of the first features that this project did not implement was BitTor-
rent support. The initial version of Broadcast Machine was hailed as being
one of easiest ways to distribute content via this de-centralized network, but
few people were able to take advantage of this, due to numerous bugs. We
think that this feature is still important to goals that Broadcast Machine
tries to accomplish. The ability to save bandwidth and provide free redun-
dancy is immensely important. These features should be relatively easy to
implement as most of the code for these features is available in the initial
version of the software.

With the rise of online video, many content providers have decided to
make their video viewable online through the use of a Flash applet. The use
of this embeddable program allows the provider to make video viewable on
almost any computer on any platform. If the user has encoded their video
using the FLV codec or the H.264 codec, a well-designed SWF can provide
the playback interface. While this interface can only be provided through the
use of a closed-source application framework, it is perhaps the most usable
method for providing a video player. Fortunately, with the use of file-type
detection and the adaptation of open-source Flash applications we feel that
this feature would be important to provide.

The next feature that would be most beneficial to the user-base would be

54

robust internationalization support. The computer world largely deals with
English as the default language in which to implement software, the majority
of the world does not function in English. There are a large number of users
who would benefit through the existence of a multi-language framework.
The ability for Broadcast Machine to be translated into multiple languages
would be a tremendous boon to users across the world and would increase
the number of people that our package would be immediately usable to.
This feature would be relatively easy to implement as well. Because of the
architectural decisions that we have made, the translation would only take
a few hours to a native speaker of any language. Given that we are able to
find people willing to volunteer for this job, this feature would be of great
benefit.

The last feature that our team thought useful was AJAX support. AJAX
has become popular for use in web applications lately as it allows for asyn-
chronous functions that are often found in desktop applications. Through
the use of these methods we would be able to allow administrators to edit
the content on their pages without having to refresh the page. All of the
necessary information changes hands in the background. This feature would
be a bit harder to implement. Many changes would be needed to properly
interpret the new flow of information, and integrating these client-side pro-
grams would likely take a long time. The benefit would be increased ease of
use; Broadcast Machine would ‘feel’ much like a desktop application.

All of these features are certainly within reach. The benefits to the users
afforded by their implementation versus the effort required is certainly rea-
sonable. Hopefully Broadcast Machine sees these features added to its code
base in the coming months. Its life as an open source project and the ad-
dition of other contributors should speed the addition of these features that
we have not had time to add.

55

Chapter 8

Conclusion

Internet video is one of the fastest growing information mediums in society
today. Advances in communications technology has allowed video publishers
to share their work with thousands across the world. Several centralized host-
ing services currently exist for hosting videos, but none give publishers full
control over how their work is presented and distributed. Broadcast Machine,
an abandoned open-source project by the Participatory Culture Foundation,
attempted to fill this niche, but ultimately failed due to instability.

By examining the architecture and downfalls of the previous Broadcast
Machine, we were able to thoughtfully design a stable successor that enables
video producers to easily publish their work on the Internet. We have created
a robust architecture that is easy to use for publishers, viewers, designers, and
developers alike. The new Broadcast Machine allows publishers to share high
quality video on their own terms, and without special technical knowledge.

We hope that this new version of Broadcast Machine enjoys the same
amount of popularity as its predecessor. Our team feels that this software can
be a useful tool and has the possibility to change the current environment for
Internet video. As an open source project, we hope our continued dedication
will attract additional developers so that this software may progress long
after this project is over.

56

Appendix A

Former Broadcast Machine
Documentation

A.1 Data Model

A.1.1 Instances

The instance table was used to prevent two versions of Broadcast Machine
from using the same database. In the previous version of Broadcast Machine,
if more than one site was using the same database, a warning was displayed
on the main page of the administrative interface. The table consists of a
hash string of the hostname (id), and a timestamp for when the instance was
created (time).

A.1.2 Stats

The stats table allowed the user to keep track of the number of user downloads
for each video. It contained a unique hash of the filename (id), and an
integer for the number of downloads (downloads). The table has a one-to-
one relationship with files.

A.1.3 Channels

The channels table was used to store metadata about specific RSS video
feeds, or channels. This data was used to generate the channel view and RSS
feeds for each channel, which is how most users interact with the application.
It contained a unique integer identifier (ID, the primary key), A text expla-
nation of the channel (description), and integer number for when the channel
was made (Created), a text title for the channel (name), fields for URLs of

57

linked icons, libraries, and the channel’s main website (Icon, LibraryURL,
and WebURL, respectively), a field to designate the publisher (Publisher).
In addition to this, it has several tiny int values that served as settings flags,
with 0 being false, and the default value, and 1 being true. This includes
OpenPublish, RequireLogin, and NotPublic. OpenPublish allowed adminis-
trators to designate whether or not non-administrative users were allowed to
publish videos to a channel. RequireLogin was used to determine whether
or not users must be logged in to view the channel. If NotPublic was set,
the channel itself would be hidden from anonymous users. It also contained
CSSURL, which would store a link to an external style sheet to be used in
rendering the channel page.

The channel options table keeps track of the individual settings for a given
channel. Each record in the table contains an integer reference to the channel
it refers to (ID). Several boolean flags determined which information about
a video would be shown on the channel view: Creator, Description, Filesize,
Keywords, Length, Published, Thumbnail, Title, Torrent, URL. There is also
a tiny int field called SubscribeOptions, whose default value is 7. This value
determines which subscription links will be made available to users (RSS,
Democracy, and iTunes, which requires direct URLs to be enabled in the
site settings). In this field, RSS is represented by a value of 1, Democracy
by a value of 2, and iTunes by a value of 4. Adding together the values
of available subscription links determines the field’s value. For example, A
value of 7 means that all links are available for use, while a value of 1 would
mean that only RSS could be used. A value of 6 would mean that iTunes
and Democracy subscription links should be made available.

The channel files table records associations between the channels table
and the files table (see below). In other words, it allows Broadcast Machine
to keep track of which files belong to which channel, which is essential to the
channel view and RSS feeds. It contains a reference to the channel in question
(channel id), the hash of the file (hash), and integer timestamp (thetime).
The primary key is channel id and hash, meaning that there can’t be more
than one record for any channel and file pair.

The channel sections table allows channels to be split up into several
subsections. From experience, this seems to be widely unused by BM’s user
base, and is also not implemented in the RSS view. As such, it may be
deprecated. The table itself contains an integer reference to the channel the
record refers to (channel id) and the name of the section (Name). The table
also shares a one-to-one relationship with the channels table.

Like channel files, the section files table tracks which files are associated
with which sections. The table contains a reference to channel id, a reference
to the name of the section, and the hash of the file. The combination of those

58

three fields are a primary key and must be unique.

A.1.4 Videos

The table for storing video information is the files table. This information
is used to render the details page for each individual video. The files table
contains a unique integer identifier for each video (ID), an ineger for when
the file was created (Created), the name of the file (FileName), the name
of the person who created the channel (Creator), a text summary of the file
(Description), a title (Title), an optional link to a transcript for the hearing-
disabled (transcript), a link to a website for more information(Webpage),
an optional donation code (donation id), boolean flags for Excerpt, Explicit,
ignore mimetype, and External properties, and URL, in case the file was
linked to externally. It also contains a link to an image thumnail of the video
(Image), name and URL of the license used to distribute the video (License-
Name, LicenseURL), the MIME-type of the file (Mimetype), an integer for
the date published (Publishdate), and the date of the video release via three
fields: ReleaseDay, ReleaseMonth, and ReleaseYear (all are integers). Also
included is a short string called Rights, which is slightly redundant due to
the License field.

Records of people who have contributed to the making of a video were
stored in the file people table. This allowed administrators to include con-
prehensive credits for anyone working on the video. The table contained an
identifier for which video the credit refers to (ID), their name (name), and
what they were credited for (role). The combination of these three values
were required to be unique as a primary key.

T̈ags̈, or categories to classify videos by, were stored in the file keywords
table. This allowed administrators to classify videos by category, so that
users could browse videos in that category across many channels. This table
contained an ID reference to the video, and then the keyword that the video
would be tagged by. Although one video may have had many tags, no video
could have two identical tags.

A.1.5 Donations

The donation table stores information on how users can contribute to the
makers of a video. This allowed the generation of donation links to be dis-
played alongside a video in the video view, as well as from within Democracy
and the RSS feed for the channel. Users could use these links to contribute
to the makers of the video. Each donation record had a unique ID, an e-
mail address (email), a short description (title), and a longer text donation

59

pitch (text). Putting this information in its own table allowed publishers to
frequently associate videos with the same donation info, as this info rarely
changed.

The donation files table links together donation info with video info. The
table conatined the id of the donation info, as well as the hash id of the video
(hash). Each video could only be linked to one set of donation information,
so id and hash are both primary keys.

A.1.6 Users

The user table contained information about registered users. This table con-
tained an alias for each user (Username), the user’s real name (Name), their
encrypted password (Hash), their e-mail address (Email), when they regis-
tered (Created), and their permissions information (IsAdmin, IsPending).

The newusers table tracked only those users who have not verified their
account. This allowed functionality to prevent scripted bots to spam Broad-
cast Machine installations with open registration, by requiring that all users
verify their e-mail address. The table included a filehash, their password
(Hash), their e- mail address (email), IsAdmin, and when they created the
account (Created).

A.1.7 Settings

Settings for the website itself was stored in a B-Encoded flat file. This allowed
users to customize site security features, as well as which features they wanted
to use. This is also where essential information such as database connection
settings were stored. These fields include whether or not new user registra-
tion was allowed (AllowRegistration), whether or not they required approval
(RequireRegApproval), whether or not they needed to verify their account
(RequireRegAuth), whether or not users could upload or download anony-
mously (UploadRegRequired and DownloadRegRequired, respectively), the
default channel (DefaultChannel), whether the site has channels that anyone
could modify (HasOpenChannels), their current site layout (theme), title of
the site, the site description, an image associated with the site, the base url
for the site (baseurl), database connection settings (mysql prefix, mysql host,
mysql username, mysql password, mysql database, and mysql verified), and
BitTorrent sharing settings (Ping, sharing enable, sharing auto, sharing python,
sharing actual python, minport, maxport).

60

	Introduction
	Background
	Introduction
	Open-Source Software
	The Current State of Internet Video
	Video Hosting Services
	Content Management Systems
	Wordpress
	Broadcast Machine

	Summary

	Design
	Introduction
	Ease of Use
	Customizable
	Extensible
	Flexible
	Compatible

	Summary

	Implementation
	Introduction
	Model-View-Controller
	Languages and Tools
	Application layout
	Controllers
	Model
	View
	Summary

	System in Action
	Introduction
	Setup
	Clean URLs
	Settings
	First User
	Finished

	Channels
	All
	Show
	RSS
	Add
	Edit
	Remove

	Videos
	All
	Show
	Download
	Add
	Edit
	Remove

	Tags
	All
	Show
	RSS

	Users
	Signup
	Login
	Logout
	Show

	Summary

	Results
	Introduction
	Unit testing
	Feedback
	Summary

	Future Work
	Conclusion
	Former Broadcast Machine Documentation
	Data Model
	Instances
	Stats
	Channels
	Videos
	Donations
	Users
	Settings

