
DEVELOPING A COGNITIVE RULE-BASED TUTOR

FOR THE ASSISTMENT SYSTEM

By

Kai Rasmussen

A Thesis

Submitted to the Faculty

Of

WORCESTER POLYTECHNIC INSTITUTE

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

In

Computer Science

December 2006

Approved:

Professor Neil Heffernan, Thesis Advisor

Professor Dave Brown, Thesis Reader

Professor Michael Gennert, Head of Department

2

Abstract

The ASSISTment system is a web-based tutor that is currently being used as an eighth
and tenth-grade mathematics in both Massachusetts and Pennsylvania. This system
represents its tutors as state-based "pseudo-tutors" which mimic a more complex
cognitive tutor based on a set of production rules. It has been shown that building pseudo-
tutors significantly decreases the time spent authoring content. This is an advantage for
authoring systems such as the ASSITment builder, though it sacrifices greater expressive
power and flexibility. A cognitive tutor models a student's behavior with general logical
rules. Through model-tracing of a cognitive tutor's rule space, a system can find the
reasons behind a student action and give better tutoring. In addition, these cognitive rules
are general and can be used for many different tutors. It is the goal of this thesis to
provide the architecture for using cognitive rule-based tutors in the ASSITment system.
A final requirement is that running these computationally intensive model-tracing tutors
do not slow down students using the pseudo-tutors, which represents the majority of
ASSISTment usage. This can be achieved with remote computation, realized with SOAP
web services. The system was further extended to allow the creation and implementation
of user-level experiments within the system. These experiments allow the testing of
pedagogical choices. We implemented a hint dissuasion experiment to test this
experimental framework and provide those results.

3

Table of Contents

ABSTRACT .. 2

TABLE OF CONTENTS .. 3

1. INTRODUCTION.. 4

1.1 THESIS OBJECTIVES... 5

2. ASSISTMENT SYSTEM ... 7

2.1 EXTENSIONS TO ASSISTMENT SYSTEM ... 8

3. ASSISTMENT ARCHITECTURE.. 9

4. MODEL TRACING TUTORS... 13

4.1 BACKGROUND.. 13
4.1.1 Cognitive Tutors.. 13
4.1.2 Constraint-based Tutors ... 14
4.1.3 Pseudo-tutors .. 15
4.1.4 Comparison of Tutor Types .. 17

4.2 IMPLEMENTATION.. 19
4.3 RESULTS... 21

5. WEB SERVICES ... 22

5.1 BACKGROUND.. 22
5.1.2 SOAP Web Services .. 24

5.2 IMPLEMENTATION.. 25
5.3 WEB SERVICE EXTENTIONS... 26

6. EXPERIMENTAL FRAMEWORK ... 28

6.1 BACKGROUND.. 28
6.1.1 Runtime Experimentation ... 29
6.1.2 Learning Effects of Scaffolding .. 29
6.1.3 Gaming Behavior Prevention ... 30

6.2 EXPERIMENTAL FRAMEWORK... 31
6.2.1 Curriculum Level Experiments... 31
6.2.2 User Level Experiments.. 32

6.2.2.1 User Profile ..32
6.2.2.2 Experiment Driver and Assignments ..32

6.3 HINT DISSUASION EXPERIMENT.. 33
6.4 RESULTS... 35

7. CONCLUSIONS .. 39

8. REFERENCES... 42

APPENDIX I – JESS ADDITION TUTOR.. 44

APPENDIX II – HINT EXPERIMENT RESULTS.. 54

APPENDIX III – WEB SERVICE INTERFACE (WSDL).. 58

4

1. Introduction

Intelligent Tutoring Systems (ITS) can be defined as the use of computer tutors, which

mimic one-on-one human tutoring. Through the use of artificial intelligence the ITS

community hopes to achieve, through the use of computer systems, tutors that are as

effective as human tutors. The term Intelligent Tutoring Systems covers a wide range of

possible computer-based tutors, from cognitive model tracing tutors [6], constraint-based

tutors [14], to pseudo-tutors. A pseudo-tutor is a simplified cognitive model based on a

state graph. State graphs are finite graphs with each arc representing a student action, and

each node representing a state of the problem interface[10]. Cognitive model tracing

tutors use models of possible student actions to infer the reasoning behind a student’s

answer. Through this model, the system can build effective tutoring. Constraint based

tutors use a series of constraints to comprise a problem. A student’s input is checked

against these constraints. An action is considered correct until it violates a constraint.

The ASSISTment system is a web-based ITS used within schools throughout central

Massachusetts [20]. Its goal is to both assist students while assessing them. This

systems primary mission is to provide practice for 8th and 10th grade student for the

MCAS state-wide assessment exam. Currently researchers working on this project are

exploring how to best extend the ASSISTment system to allow for new and potentially

more effective tutor types. In order to do this, a system must be put in place to allow for

testing pedagogical choices made in development. Testing of these pedagogical choices

can be made through random experimentation of the behavior of the system’s runtime

behavior.

This thesis will explore the extensibility of the ASSISTment system. First the types of

supported tutors will be discussed. This thesis will explain how the ASSISTment system

was extended to allow cognitive tutors. Further extensions will be described through the

use of web services. Finally, this thesis will describe an experiment framework for

testing the ASSISTment system’s pedagogical choices. Through this experimentation,

the effectiveness of one runtime behavior over another can be discovered. This is a

needed tool in the development of any ITS and is especially useful when designing

5

extensions to your system. An experiment which used this framework will be used to

show its functionality and usefulness.

1.1 Thesis Objectives

The objective of this thesis is to extend an existing Intelligent Tutoring System to allow

tutors that are more expressive. In order to achieve this I first looked at the different

types of tutors available and compared them to the supported tutors of the ASSISTment

system, a web-based math tutor. My first goal was to extend this system to allow the use

of more expressive cognitive rule-based tutors. Currently the ASSISTment system and

builder only support pseudo-tutors, which use no AI techniques. Pseudo-tutors are

emulations of cognitive tutors. Cognitive tutors are tutors based upon a student model,

realized through some production rule set. It was my goal to extend the current system to

support the use of cognitive tutors as well as pseudo-tutors.

Secondly I set about putting in place the means for easily extending the ASSISTment

system even further. This was accomplished with web services. I will show how web

services can be used to increase an ITSs extendibility, as well as foster inter ITS

collaboration.

Lastly, I put in place a framework for testing the design choices made within an ITS.

There are a myriad of pedagogical choices to be made while designing an Intelligent

Tutoring system. For example, a designer must make concrete choices on how and when

to provide tutoring intervention to a student. Often research questions arise surrounding

these design choices. We are proposing an architectural framework for dynamically

changing the runtime behavior of these systems. With the proper controls, a researcher

would be able to experimentally determine if their pedagogical choices are more effective

then others as well as determine their tradeoffs.

In this experiment I aimed to determine if dissuading students from requesting help too

quickly would affect the time student’s spent reading hint messages. Students have many

approaches to gaming Intelligent Tutoring Systems. One possible gaming method that

6

students have found in our system is requesting assistance quickly until they reach a

‘bottom-out’ hint where the answer is revealed. Students who request help unusually

quickly are disengaged and are found to achieve less learning. By dissuading this behavior

I found that students spent longer reading hints. I found that this effect is more significant

when more obvious gamers are dissuaded. With more aggressive styles of dissuasion, we

found a negative correlation and students spent less time on hints.

7

2. ASSISTment System

The ASSISTment system is a web-based algebra tutor that teaches 8th and 10th grade math in

the state of Massachusetts. The system is used by students to prepare for the MCAS state

assessment test (a test required to graduate). The goal of the ASSISTment project is to

provide both assistance as well as assessment to students. It has been shown that, in

addition to classroom instruction, the ASSISTment system has a significant affect on

student learning [8]. In addition, we have built a range of reporting tools to provide

accurate assessment for teachers.

Content is given to students in a manner similar to the MCAS exam. First students are

given an original question and then, if a student provided an incorrect answer, they are

given follow-up scaffolding questions, which provide directed line of reasoning on the

original question’s core skills. Assistance is given to students in both the form of these

scaffolding questions and bug messages relating to common incorrect answers. Figure 1

shows an example of what the ASSISTment system looks like for a student. Above you

see an original problem, followed by a scaffolding problem and some requested hint

messages.

8

Figure 1: ASSISTment System

2.1 Extensions to ASSISTment System

This thesis is broken into three main sections, each describing an extension I made to the

ASSISTment system. Each section has an individual background and results section as

well as sections describing the work I’ve done in that area. First I will discuss extending

the ASSISTment system to include cognitive Model Tracing tutors. Next, I will discuss

implementing web services to extend the system even further, as well as deal with some

performance issues of Model Tracing tutors. Lastly, I will discuss a framework I

developed for this system for testing design choices. I will discuss a test I implemented

using this framework and it’s results.

9

3. ASSISTment Architecture

In this section, we will briefly discuss the ASSISTment runtime architecture, explaining

its strengths and limitations. The ASSISTment system is a web-based math tutor built as

a Java 2 Enterprise Edition (J2EE) application and was designed to assist students, using

scaffolding questions and hint messages, as well as to assess students, through reporting

pages and data analysis. Kodanganallur et al describes the high level ITS architecture as a

system that contains a problem domain with tutor remediation through a student model

component [12]. The student model could be a set of constraints in the case of a

Constraint Based tutor, a set of production rules in the case of a Model Tracing tutor, or a

state machine in a pseudo-tutor. The abstract view of this architecture, shown in Figure

2, has a wrapper around the Student Model to control tasks such as problem selection.

The student’s actions are inputted through the user interface and evaluated against the

student model. The student model would then offer tutoring back through the runtime

engine and to the user interface.

Figure 2: High Level ITS Architecture
The backbone of the ASSISTment system is the eXtendable Tutor Architecture [19].

This architecture can be conceptually broken into a runtime engine component and a

student model component. In current literature this has been called the outer loop and

10

the inner loop of an ITS architecture [25]. The runtime engine (outer loop) is responsible

for task selection while the student model (inner loop) is concerned with evaluation of

student input from within a task and for providing feedback.

The runtime engine is composed of a curriculum component and a dynamic agenda stack.

Content is rooted in curriculum components, which represent a series of problems. The

curriculum is composed of one or more sections, with each section containing problems

or other section. The agenda controls the ordering of problems outside of the curriculum

and the order of tutoring. Problems contain strategies that can change the agenda. This

provides an innovative dynamic staging of problems.

The student model is comprised of problem objects. The problem component represents a

problem to be tutored, including questions and answers required to solve the problem.

Each of these questions are represented by a problem composed of two main pieces: an

interface and a behavior. The interface definition is interpreted by the runtime and

displayed for viewing and interaction to the user. The behaviors for each problem define

the results of actions on the interface

11

Figure 3: ASSISTment Architecture

The ASSISTment system roughly follows the same architecture as the inner loop/outer

loop model. Figure 3 shows a more detailed view of this architecture. The backbone of

the ASSISTment system is built upon the Common Tutor Object Platform (CTOP)

objects. The task manager component is built upon an agenda stack. The agenda controls

the ordering of problems and tutoring objects such as scaffolding, buggy messages, and

hint messages. The runtime receives tutoring messages from the student model

component, and uses to dynamically change the agenda.

12

Once a student’s input is passed through the runtime engine, it is sent to the current

student model on the top of the agenda. This student model is problem component, which

represents a problem to be tutored, including questions and answers required to solve the

problem. Each of these questions are represented by a problem composed of two main

pieces: an interface and a behavior. The interface represents the problem’s text, images,

and various inputs while the behavior contains a model-tracing engine. The vast majority

of problems within the ASSISTment system contain a pseudo-tutor student model.

Pseudo tutors are emulations of full cognitive tutors realized through a state machine.

Each state represents a step in a problem and the transitions from one state to the next

represent student input. Transitions can be marked as incorrect or correct and can be

tagged with hint or buggy messages. These tutors can be created without AI and

cognitive science training and are much less expensive to run.

13

4. Model Tracing Tutors

4.1 Background

In this section I will describe different tutor types including cognitive tutors such as

Model Tracing and Constraint Based tutors as well as pseudo-tutors. I will then make a

comparison of these tutor types and draw conclusions about their strengths and

weaknesses.

4.1.1 Cognitive Tutors

When talking about Intelligent Tutoring systems, one is describing a system that uses

artificial intelligence techniques to bring computer-aided instruction to the level of

human tutors. The “intelligence” is the use of cognitive theory in order to develop a

model of these human tutors. The theory is that through the use of these cognitive

models, computer’s can best simulate one-on-one human tutors. These models are

typically based on a cognitive theory such as ACT-R [1] or SOAR [28], and realized by a

production rule system.

A fundamental principle of the ACT-R theory is that “Acquiring cognitive knowledge

involves the formulation of thousands of rules relating task goals and task states to

actions and consequences.” This statement introduces the idea that all knowledge can be

represented as either syntactic or general world knowledge. All information that can be

verbally described is called declarative knowledge while all information that can be

inferred from behavior or actions is called procedural knowledge. For example, consider

the knowledge that composes multicolumn addition. Some pieces of declarative

knowledge would be “There is a column that has not been added” and “in that row there

are two digits and no carry”. The procedural knowledge would be “In that column, add

those two digits. If the sum is greater than 10, then put the carry in the next column”.

Another conclusion of the ACT-R theory states that all cognitive skills are realized

productions rules. This simple statement implies that all human actions can be described

14

by a set of rules, though perhaps a uniquely complex one. An example of a production

rule is this abstract algebra rule:

IF goal is to find an angle in an isosceles triangle ABC
and AC = AB and angle A is known
THEN set the value of angle B to A

It would be said that the knowledge of the existence of the isosceles triangle, and

knowing the equality of the side lengths are all declarative knowledge. Knowing to set

the value of an angle in this instance is procedural knowledge. All of this combined is a

production rule.

One type of tutor that is based on cognitive models is a ‘model-tracing’ [6] [2] tutor,

which follows a learn-by-doing approach. These tutors represent the knowledge domain

as a series of production rules using some cognitive theory, with each production rule

representing an implicit or direct action that can be performed. It is important to note that

these productions are generalized based on the declarative knowledge state. The student

‘learns by doing’ by taking actions within the tutor’s interface. The tutor will then track a

student’s progress through the series of production rules. This is called model-tracing.

Upon receiving an action, the tutor can search the set of all possible actions and

determine a series of productions that matches the student model. It is then possible to

determine if it was a correct action or an incorrect action. On the case of an incorrect

action the tutor has a detailed record of the reasons for that action (the set of followed

productions) and can give feedback.

4.1.2 Constraint-based Tutors

Another cognitive approach is constraint-based tutors [14]. These tutors allow a student

more freedom to their actions but impose subtle constraints to their inputs. An example

of this is allowing a student to input any number as long as it is prime and smaller than

100. The next input would also follow another set of constraints. The student will work

towards some problem goal, and will receive tutoring if they violate any constraints.

15

Constraints in these tutors are comprised of a pair of values. These values are the

relevancy constraint (Cr) and the satisfactory constraint (Cs). Constraint satisfaction

matches the formula: IF Cr THEN Cs. If in a problem step a Cr is true and a student

enters a value, which invalidates Cs, then the student is said to be incorrect. Otherwise, a

student is free to perform any action. An example of one of these constraint pairs is as

follows:

Cr : A Base angle of an isosceles triangle is known as X and
the student has calculated the size of the other base angle
as Y
Cs: The size of Y is X

If a student enters a size of Y, which is not equal to X when X is known, then the

student’s answer is said to be false and the tutor will provide feedback.

4.1.3 Pseudo-tutors

A full cognitive tutor provides a great deal of flexibility and generality for intelligent

tutoring systems, though they are costly to build. They require a great deal of both

domain knowledge and knowledge in artificial intelligence programming and cognitive

theory, often at a PhD level. It has been shown that it typically takes 200 hours to author

one hour of content [16]. Because of this there was a push to develop a simpler form of

tutor that can match the same behavior of a cognitive tutor. This is called a ‘pseudo-

tutor’ [10] because it emulates an intelligent tutor without requiring AI code.

Where in cognitive tutors a problem’s steps are generalized among production rules that

operate on a set of working memory, pseudo-tutors describe a problem with a set of

states. Each state represents a step in a problem, i.e. the working memory, and the

transitions from one state to the next represent student input. Transitions can be marked

as incorrect or correct and can be tagged with hint or buggy messages. Figure 4 shows an

example of what a pseudo-tutor state-graph looks like conceptually. This is a pseudo-

tutor for an algebra multi-column addition problem.

16

Figure 4: A Pseudo-tutor State Graph

The main advantage of pseudo-tutors is that they do not require any AI-knowledge to

create. This allows domain experts to build tutors without expensive training. The

Cognitive Tutor Authoring Tools application (CTAT) [10] builds pseudo-tutors by

allowing the user to visually create the state diagram through the use of a behavior

recorder. This recorder watches an author run through a problem, creating states at each

action. The ASSISTment builder [24] creates pseudo-tutors implicitly and does not have

any state editor. Because of this, the ASSISTment’s pseudo-tutors are an even more

generalized state graph.

17

Figure 5: State Graph's interface

4.1.4 Comparison of Tutor Types

The strength of cognitive tutors is its flexibility, through production rules that generalize

across problems and problem-solving states. These tutors allow subtle constraints on

the ordering of problem steps as well as naturally allow many alternative paths through

the problem state. This is also possible with a pseudo-tutor, but all alternative paths must

be explicitly written. In a reasonably complex problem, the state diagram could become

unwieldy. For example, the implementation of a constraint-based tutor would require

states for each possible input of a constraint. The sub-states from these would only vary

slightly, containing mostly duplication. These kinds of problems are native territory for

cognitive tutors.

Cognitive tutors lend itself naturally to a more complex and flexible problem space. It is

also important to note that because the ASSISTment builder only produces a simple state

diagram, a full emulation of a cognitive tutor is not possible. The ASSISTment builder

does not support problems with alternative inputs and paths through the problem state.

18

Model Tracing tutors are the most computationally expensive tutor of all the tutor types

we have discussed. It requires a full search of a student model. Some would argue that

this expensive a trade-off for it’s strengths including generality and flexibility. Because it

is based on a student model written by, hopefully, a domain expert, it is able to give very

fine-grained tutor response on student input. Also, because it is able to solve a problem,

the tutor is able to give planning advice to a student. One criticism is that Model Tracing

tutors force a student to follow a fixed approach.

Constraint based tutors are much less efficient to run then Model Tracing tutors. They

are limited by their constraint set. Because the model has no concept of a goal, it is not

possible for the tutor to provide planning advice. The best equivalent constraint based

tutors can offer is a list of all unsatisfied conditions and conditions that could be satisfied.

A Model Tracing tutor will mark an answer incorrect if it cannot be found in the model,

while a constraint based tutor treats all answers correct until proven incorrect. Because

of this, if the constraint model is incomplete then it is possible for incorrect solutions to

be treated as correct. This goes against the goal of Intelligent Tutoring Systems, which is

to impose correct methods for solving problems and attacking misconceptions and

possible faulty productions a student may have.

The big advantage of pseudo-tutors is that an author does not need any AI programming

background in order to create content. Also, the time to author pseudo-tutors is

significantly less then to create cognitive tutors. There has been some work in using

automatic production rule generation [9] with the CTAT tools but they are not yet at

useable state.

The addition of cognitive tutors to the ASSISTment system would provide ample benefit.

It is true that pseudo-tutors can provide the same behavior as cognitive tutors, but the

current ASSISTment builder cannot create pseudo-tutors of this complexity. Also,

cognitive tutors are general and can be used among many different problems. These are

our motivations for integrating full cognitive tutors into the ASSISTment system.

19

4.2 Implementation

Earlier, I have pointed out some weaknesses in the ASSISTment system. A trade-off was

made early on in development to support pseudo-tutors to encourage rapid-development

of student content. Here in year two of the project, there is a healthy database of eighth

and tenth grade problems, with a regularly used builder to author content on a daily basis.

The focus now is to extend the flexibility and expressiveness of ASSISTment tutors.

I extended the system to allow the basic authoring and assignment of full cognitive tutors.

This will require extending the Behavior classes to allow a cognitive model to be used

instead of the current state-based behavior. A production system must be chosen that

both is computationally reasonable and operates on a strong cognitive theory. A model-

tracing algorithm must be developed to search this model space while tutoring. A set of

authoring tools must be built to author and edit these tutors within the ASSISTment

system.

The Java Expert Shell System (JESS) is a forward-chaining production system founded

on a cognitive theory much like ACT-R. Knowledge is stored as declarative “facts” and

procedural “rules”. The main difference between JESS and other cognitive theories is

that is has no model for long-term and short-term memory, which is not a concern for the

types of problems in our system. Our cognitive tutors will be written in the JESS

production system.

Each CTOP unit comprises of interfaced components, and thereby naturally lends itself to

extension. The Behavior interface provides the methods for performing hints and

performing actions. I created a new JessRuleBehavior component, which implements the

behavior interface. It contains a JESS engine for storing facts and rules. The perform

action methods will run a model trace on the current state of the problem, using the

incoming action from the student. Therefore a model-tracing engine must also be used by

this new JessRuleBehavior to determine the correctness of a students input and provide

strategies when an input is incorrect.

20

The model-tracing algorithm must create a full search tree of all possible actions from the

current problem state. This includes possible buggy (incorrect) productions, which a

student might have performed. Because this search space could become quite large, we

limit our search to a certain number of productions. Also, some productions occur

between explicit actions, such as “need to carry” occurs before “add with carry”, so we

will end a trace when a production that produces an action is reached. The average

number of productions fired until an action is performed changes between tutors.

Therefore, we perform an iterative deepening search on the number of productions to fire.

To test this new addition, I created a full cognitive tutor that worked within the

ASSISTment system. This tutor was a multi-column addition tutor. It forces students

through each step from choosing the right column to add, to making and adding carries

from column to column. I choose this tutor because it is a classical example of a

cognitive tutor, supported and implemented and many Carnegie Mellon University ITSs.

I had to convert the typical interface into one supported by the ASSISTment system,

write the JESS rules to perform multi-column addition within this interface, write typical

buggy rules. I then had to import these rules into a JessRuleBehavior object that I created

for the ASSISTment system. Figure 6 shows this addition tutor. The Appendix contains

the JESS rules for this problem.

Figure 6: Addition Tutor

21

4.3 Results

The ASSISTment system now supports a full Model-Trace tutor based on a cognitive

model. In the ASSISTment system, the Java Expert Shell System (JESS) rule engine

powers our cognitive student model. The Model Trace algorithm is not a scalable solution

for web-based tutoring systems. Through the use pseudo-tutors, the ASSISTment system

has been estimated to support 600 concurrent users, though the system can only support

about 20 concurrent users using the Model Tracing tutors. The result of this stress test is

that if a single classroom of students are using a Model Tracing tutor, no other students

can use the system, whether they use Model Tracing tutors or the normal pseudo-tutors.

In the next section we will look at one way of creating a scaleable solution for using

cognitive tutors within a web-based ITS. The solution we found was by offloading the

Model Tracing algorithm through web services. This would effectively isolate students

running through cognitive tutors, leaving the performance uneffected for the majority of

students using pseudo-tutors.

Also, I found because there were no tools to assist me in creating this tutor, authoring was

a very difficult process. There are no tools outside of the ASSISTment builder for

creating interface objects that can be used for problems. Also, testing and editing of this

problem once the rules had been created was very difficult. As stated earlier, the ratio of

time spent created a cognitive tutor versus tutoring time it offers is about 200:1, while the

same ration for pseudo-tutors is about 20:1. I did not perform any assessment on the ratio

to build cognitive tutors within the ASSISTment system (because it was all done by

scratch by me with not tooling) but my estimate is a ratio of at least 200:1 or greater. The

one benefit of cognitive tutors is that they are general over a large problem space. Once a

tutor is created, it can be used many times. These problems will be unique, though

isometric, and all use the same production rules.

22

5. Web Services

Existing Intelligent Tutoring Systems (ITS) are the cumulative effort of a community

dedicated to the research question: can intelligent computer tutors successfully mimic

human tutors? There have been many approaches such as cognitive Model Tracing

tutors [2][6] and Constraint-Based tutors [14] implemented in various languages, with

highly varying pedagogical methods and interfaces. With a strong community it would

seem beneficial for these researchers to be able to work together by using content and

tutoring methods from within other existing systems. With this collaboration, tutors can

reach broader audiences. The question remains: how do two seemingly different tutors

cohabitate peacefully? This paper will define a method for achieving this through remote

computation implemented with web services. This section will also show the benefits of

web services, such increasing a system’s scalability and extendibility.

We will briefly described remote computation and some of its benefits in terms of

Intelligent Tutoring Systems and provide some examples of how web services can be

used to extend systems. In the next sections we will discuss SOAP web services and

their implementations in more detail. Next, we will briefly describe a high level view of

the ASSISTment architecture and then provide a detailed description of how it was

extended to use web services in a first step towards a full Service-Oriented Architecture.

Finally, we will discuss our results, in terms of successful extensions to the ASSISTment

system using web services, and our conclusions.

5.1 Background

Remote computation is the ability to offload a piece of a tutor’s runtime component to a

separate system through distributed computation mechanisms. This computation could

range from evaluation of student input to problem selection or even a request for content

itself. This allows collaboration between two ITS researches and between an ITS

researcher and content providers who do not have the background to create their own

tutoring framework.

23

For example, there has been interest in using the front-end of the ASSISTment tutor to

host content from fellow researches with unsupported tutor-types within the ASSIstment

system. An example of such tutor-types is a programming language tutor, which is

capable of compiling and evaluating Java or Scheme code. To achieve this new goal,

structure would need to be implemented in the runtime to ensure that this service will not

interfere with students working on ASSISTment content. This service must run at the

collaborator’s system to maintain performance and to ensure reliability. If the service,

running on a collaborator’s system, cannot be reached, or dies while in the middle of

computation, the ASSISTment system (being used as a portal) could then give an

appropriate error message stating that, for example, ‘Prof. Heinemann’s Java service is

experiencing difficulties’. It would then allow the student to skip the problem. The

ASSISTment project has also been approached by content providers with no ITS

background. They wish to also use the ASSISTment’s portal for their own content,

which possibly cannot be built using our authoring tools. An implementation of remote

computation would allow this as well.

Additionally, remote evaluation can be used to offload potentially expensive services to

external systems to provide new features without the performance trade-off. Model

Tracing is an example of one of these operations. Because Model Tracing tutors are more

expensive to execute, they are a prime example of the usefulness of remote computation

in an ITS. This is especially true in the ASSISTment system, where cognitive Model

Tracing tutors are used significantly less often then faster pseudo-tutors. External

evaluation of the Model Tracing algorithm will not affect the quality of service for the

majority of students using pseudo-tutors.

These forms of remote evaluation can be implemented through web services. A web

service is a platform independent application that is called over Internet protocols such as

HTTP and is driven by XML data. Because of its platform independence, it is possible to

create web service front-ends to new and legacy systems. A large application built using

many web services is said to have a Service-Oriented Architecture.

24

5.1.2 SOAP Web Services

Web services are defined as a piece of logic hosted somewhere on the Internet, accessible

by standard protocols such as HTTP, and based upon an XML standard for

communication, data transfer, service discovery, and interface publishing [17][5].

Because XML is used for the data representation layer, it remains platform and

technology independent.

Web services are powered by three main standards-based technologies: Simple Object

Access Protocol (SOAP), Web Service Description Language (WSDL), and Universal

Description, Discovery, and Integration (UDDI). SOAP is an XML packaging structure

for web service communication, which defines an interoperable form of data transfer

between web services. WSDL is a standard description of web service interfaces,

including input and output representation of methods. It also describes the binding

protocols needed for connecting to a service. This allows clients to understand how to

communicate to discovered services. UDDI is a set of technologies for publishing and

discovering published services. Figure 7 shows an example of how these technologies are

used in tandem. A typical system would interrogate a UDDI registry for information

about a given web service and obtain a WSDL of the discovered service. The client

would then use this WSDL to communicate to the service using SOAP messages.

A system built upon using web services is said to employ a Service Oriented Architecture

(SOA). The strength of SOA is having a very loosely coupled system built upon

independent and replaceable components. The web services that compose SOA can be

executed without knowledge of the language that the service is written in or even where

the service will run.

25

Figure 7: Typical Web Service Architecture

5.2 Implementation

In this section we will describe the process of implementing web services within the

ASSISTment system. Because our goal was to extend the student model for remote

evaluation of input, the behavior module was the choice for extension. In this new

architecture, the student input is sent to a SOAP web service and a tutor response is sent

as a reply. A generic, architecture general interface is essential to ensure cross-tutor

collaboration.

We added two new behavior types; a state-less web service behavior and a state-full web

service behavior. The main difference is the state-full services maintains a full student

model and can therefore provide tutoring over an entire problem where the state-less

service can only provide tutoring over a single problem state.

The state-less service has no record of a tutoring ‘session’ and represents a single step in

a full problem. It’s implementation is based upon the ASSISTment pseudo-tutor’s state

machine but it’s interface is generic enough to provide a wide range of tutoring. We will

show how it was used for pseudo tutors as well as a tutor on the programming language

Scheme. We hope to expand these services in the near future. Through XML

communication, the web service accepts a unique identifier of the current problem step

26

and the student action. This action describes a student input and action type. The web

service’s response is a generic strategy, which represents the tutor response to this input.

This strategy could be a bug message, a scaffold, or a uniquely new strategy type. The

web service also allows the problem step to be interrogated for available hints.

State-full web services keeps a problem ‘session’ and can therefore represent an entire

problem or set of problems. Runtime engine’s that wish to use this state-full web service

as their student model would be required to start a session and use that session in all

subsequent communications to the web service. This is the main difference between these

two web service types as both state-full and state-less services accept student action and

return tutor strategies. Use of a problem session allows more complex tutors to be used

in a web service. For example, the JESS Model Tracing tutors cannot be fully described

without this state-full service.

Because the interfaces for these web services are platform and implementation

independent, they support a wide variety of uses. The client code for these services

where easily incorporated into the ASSISTment system by extending our student model

component. Since SOAP web services are built upon a standard, external tools exist that

consume WSDL descriptions of web services and generate skeleton code for both the

service and the client. Example of these tools are the Eclipse Web Tools Platform [7]

and the Apache AXIS project [3]. Once the client code is in place in an ITS, a myriad of

new tutor types are available and the systems can achieve new levels of extendibility.

5.3 Web Service Extentions

In this section we will discuss three new extensions to the ASSISTment system using a

web service based student model. As a proof of concept we developed a services for

ASSISTment pseudo-tutors, which mimics our runtime architecture. Next the JESS

Model Trace tutor was implemented as a web service to help scale the model tracing

algorithm. Finally, we’ve developed an entirely new tutor type that the ASSISTment

27

system cannot currently support in order to show how web services can improve

extendibility and collaboration between intelligent tutoring systems.

The first tutor that implemented our web service student model was a replication of the

ASSISTment pseudo-tutor. This service used the state-less web service and is offered as

a way to host ASSISTment content to external ITSs as well as serve as a proof of concept

of web services usefulness.

As previously stated, our largest motivation for moving to SOA was the ability to run

Model Tracing tutors without effecting the quality of service for the majority of students

being tutored with our pseudo-tutors. With two full classrooms running a JESS tutor, our

system starts to hit a bottleneck with our current server setup. With the Model Tracing

engine running as a web service we have increased the number of simultaneous running

students dramatically. This number can be increased even further if there are multiple

services running and our runtime can load-share among them.

To show how web services can be used to provide additional extendibility and increased

collaboration, we are developing an entirely new tutor previously unsupported by the

ASSISTment system. At the time of writing this tutor is still in development but will

soon be completed. We are working with the TeachScheme [23] program to provide a

programming language tutor. The web service is wrapped around a scheme evaluator and

is focused on teaching both syntax and proper coding procedures, such as test cases and

pre-condition and post-condition contracts.

In the future we can foresee easily adding new types of collaborations. This includes

running a Java tutor or hosting homework assignments from the physics department.

Because these tutors are compartmentalized as web services, their runtime does not affect

system performance of the ASSISTment system. We can also foresee wrapping a web

service over the entire ASSISTment system, allowing all of our 8th and 10th grade math

content available for us for other ITS.

28

6. Experimental Framework

Gaming behavior is the intentional misuse of an Intelligent Tutoring System in order for a

student to proceed with as little effort as possible. Examples of this behavior include

exhausting provided help and using unnecessary guesses. A designer of an ITS must

walk a fine line between providing necessary tutoring for engaged students who actively

need assistance when they reach an impasse, and not allowing easy exploitation of this

help structure for gamers.

We wished to explore the effects of dissuading gaming behavior within our system.

Recent experimentation has been performed, demonstrating that a simple delay on hint

requests could dissuade students from requesting unnecessary help, and thus have a

positive effect on learning [13]. We wondered if we could dissuade students in a similar

way.

We implemented a dissuasion experiment that, through calculated reading rates of hint

messages, prompted students to slow down and reread the previous hint. We tested the

hypothesis that a dissuasion of this nature would slow students down while they are

reading hint messages. In addition, we describe a framework that was built in our system

for quickly implementing and controlling these kinds of randomized experiments.

6.1 Background

The use of experiments within an Intelligent Tutoring System can be used to discover the

effects of changing the runtime behavior of that system. All systems must go through an

iterative process of testing and evaluation. Through a process of evaluation, an ITS will

evolve into more effective versions. Koedinger describes an ITS design as one that is

motivated by specific pedagogical hypotheses and informed by user testing [11]. When

user testing fails, it must lead first to redesign and possible change to the underlining

theory. This ‘experimental manipulation of tutor components’ is described by Albert

Corbett as a parametric evaluation of an Intelligent Tutoring System [6]. The types of

29

behavior these parametric evaluations target are mostly pedagogical in nature (such as

feedback and content control).

6.1.1 Runtime Experimentation

Previously, in literature, effects of pedagogical design decisions were tested through the

comparisons of separate systems. In an example of this, Jeff Rickel designed four

independent pedagogical agents to discover the strengths of different approaches to task-

oriented tutoring [22]. Douglas Merrill compared three distinct Lisp tutors to determine

which types of scaffolding guidance leads to superior performance [15]. In addition,

Koedinger compared distinct versions of a prototype algebra tutor to determine the effect

of algebraic symbolization [11].

We are proposing an ITS architecture for performing such experiments without the need

of comparing different systems. This architecture will provide the framework for

dynamically changing the behavior of the systems runtime. These changes can be

randomly controlled at a user level (behavior changes depending upon the running user)

or at a problem level (behavior changes depending upon the problem being tutored).

6.1.2 Learning Effects of Scaffolding

Through the lifetime of the ASSISTment system, we’ve had positive results in the

effectiveness of our tutor [20]. The question remained if students were performing well

because the intelligent tutoring system’s ability to give fine-grained tutoring, or was it just

an effect of having more practice with math problems. Razzaq [21] ran an experiment over

the ASSISTment system to help understand if our tutor was more effective then problem

practice alone. Razzaq found through this experiment that students who received tutoring in

form of scaffolding questions performed better then those who did not

The experiment Razzaq performed in order to determine the effectiveness of the

ASSISTment scaffolding is an example of a pedagogical experiment. In this experiment, 11

MCAS items on probability were given to 8th grade students. Some students were given

30

items, which contained hint and bug messages but no scaffolding where the other students

received the scaffolding version. It was found that students that received the scaffolding

questions did better on a post-test of related problems. This is considered to be a curriculum

level experiment because the behavior change of the system was determined by which

problem a student was assigned.

6.1.3 Gaming Behavior Prevention

Gaming within an ITS can be defined as exploiting the feedback and help mechanisms in

order to complete a task with little or no work. It has been shown that gaming behavior

leads to substantially less learning [4]. Within the ASSISTment system, gaming detection

and prevention were recently explored using this experiment framework. Walonoski created

profiles of student gamers through a combination of classroom observation, previous

literature, and logged student data; these profiles included information about the speed of

hints requested, number of hints given, and speed of guesses [26].

Figure 8: Passive Intervention

From this information, we conducted an experiment where the system intervened when it

detected gamers; classes received active intervention, passive intervention, or no

intervention at all. Passive intervention was provided through a chart, which was visible to

students with a representation of their gaming score and effort within the system. This is

shown if figure 8. Active intervention was providing through pop-up messages informing

the student that they were gaming. This is shown in figure 9. It was concluded that active

intervention was effective at reducing gaming behavior [27]. This is considered a student

level experiment because the behavior of the system changed depending on the student that

was using the system—not because of the problem currently being worked on.

31

Figure 9: Active Intervention

6.2 Experimental Framework

In this section, we will discuss the proposed framework within the ASSISTment system

that allows for that addition of controlled experiments and provides the means for

parametric evaluation of our system. We will provide examination of both experiments

run at the curriculum level and experiments run at the user level.

6.2.1 Curriculum Level Experiments

Curriculum level experiments are run with a special type of curriculum section. This section

contains many different sets of problems that a student could receive. On entering an

experimental section for the first time, the student is randomly assigned one set of problems

from the possible sets. This experimental curriculum will typically contain a set of

problems, which are designed to answer a research question, and a normal control set of

problems. This experiment section is also typically book-ended with a shared pre- and post-

test section for correlation.

Once an experiment has been completed, an analysis tool is used for mining data related to

the curriculum and the experiment. This tool collects data for all students who completed

the experiment curriculum. Typical data includes performance on each completed problem

32

and how much time spent on each problem. The experiment analysis tool is also able to

automatically compare a student’s performance on particular items and sections

6.2.2 User Level Experiments

The differentiations between user level experiments and curriculum level experiments

include a difference in the code being run for each student in the experiment; user level

experiments are also assigned by a user basis and are not dependant upon the problem

being tutored. Curriculum level experiments are conducted by changing a core element

of the content that is presented to a student, and that content is encapsulated within an

experimental curriculum section. In user level experiments, the underlying code

branches for each experiment condition. This provides a dynamic change of the system’s

behavior at runtime. The gaming detection and prevention experiment previously

mentioned is an example of a user level experiment.

6.2.2.1 User Profile

Users within the ASSISTment system are organized within a hierarchy of groups.

Students belong to a class group or a series of classes. Classes belong to a school group.

School groups belong to a District, which belongs to a State, which belongs to

everything. Because of this strict hierarchy, we can build a model of every group of each

type to which a student belongs. User level experiments can be assigned to individual

groups. The User profile is a collection of every experiment assigned to groups the

student directly or indirectly belongs. This profile is used at runtime to determine which

experiments to conduct for the student, as what values to assign to any experiment

parameters.

6.2.2.2 Experiment Driver and Assignments

User level experiments are powered by an experiment driver. This driver specifies a

driver-code, a scope, a select type, and a set of legal values for the experiment. The

driver-code is a unique identifier for each experiment type, and is searched for in the user

33

profile during runtime at points where an experiment could be run. The scope is the

group at which the experiment applies. For example, if an experiment has a scope of

MA, the experiment would be activated in all of Massachusetts. The select type

determines how the experiment will be controlled. If the select level is by class, then

each class within the scope of the driver could have a different experiment value. This

value controls the experiment; for instance, it could be as simple as true or false (in which

case the experiment is either on or off), or it could be a list of permitted numbers. The

tool, which can be used to control these experiment drivers, can be seen in figure 10.

Figure 10: The Experiment Driver Manager

An assignment is a particular instance of an experiment. Each assignment has an

experiment value, from the driver’s list of legal values, associated with it. To which

groups get an assignment is determined by the select type. When an experiment driver is

added, an assignment is created for each group of the select type under the scope of the

experiment. The ASSISTment system will randomly give each experiment assignment a

value from the driver’s list of legal values. In this case, the creation of a driver

effectively creates a random experiment. If randomness is not desired, the user can

change these experiment values manually.

6.3 Hint Dissuasion Experiment

Gaming prevention has been a strong focus of the ASSISTment system. Some early work

was done with the intervention experiment previously mentioned. One form of gaming

possible within the ASSISTment system is the exploitation of our reactive help system. A

34

student can request hints on the current problem step at any time. In order to guarantee that

student will not be ‘stuck’ on a problem, every series of hints includes a ‘bottom-out’ hint,

which provides the current solution.

An example of gaming behavior with the hint system is quickly exhausting all available hint

messages until the solution is provided. Gamers of this type spend little to no time engaged

in the problem, and will therefore show little to no learning. We implemented an

experiment to test if we could have these types of gamers spend longer on each hint, with

the intent that the longer spent reading a hint message the more engaged the student will be

with the help system.

This experiment is a slightly modified replication of a recently published experiment run

by Charles Murray and Kurt VanLehn. In this experiment, they wished to correlate

performance with the number of student hint requests [13]. Two groups of student were

each given the same calculus tutor. In one class, the tutor provided a significant delay

when a student requested a hint, and in the other group, there was no hint delay. The

hypothesis of the experiment was that dissuaded students would ask for less unnecessary

help and would therefore learn more. Their results stated that dissuaded students

requested help less often and the number of help requests were negatively correlated with

post-test scores.

Our experiment is slightly different from Murray and VanLen’s. We wished to determine

if dissuading ‘speed-hinting’ would cause students to spend more time reading hints. We

did this by calculating a ‘words-per-minute’ reading rate on each hint request, using the

number of words in a hint message, and the speed at which it took a student to ask for

another hint. Problem difficulty and hint complexity were not taken into account. This

reading rate is calculated for all students in the system for comparison against students

who are run in this experiment. Instead of a hint delay, we decided to a use a different

dissuasion tactic. If a student asks for a new hint faster then a set reading rate, the will

system respond with the message, “You asked for a hint quickly. Have you read the last

35

hint?” rather then provide a new hint. This message will be repeated until a student

slows their hint request rate.

For this experiment, we choose to aggressively penalize students for reading hints too

quickly. A reading rate of 3 words-per-second was chosen as a maximum speed for

reading hint messages. If a new hint was requested faster then this reading rate, the

dissuasion message would be given to the student. One hundred and forty-eight students

in various classrooms in the city of Worcester, MA conducted this experiment. Students

were randomly selected into two groups. Either students were penalized with the

dissuasion message or no form of dissuasion was used. Reading rates were calculated

and logged for all students for comparison. Of the total number of students in the

experiment, 75 received dissuasion messages and 73 did not.

6.4 Results

The following data represents an aggregation of our experiment’s data. For each student

we calculated his or her reading rate at a point where the student would have received our

dissuasion. After completing the problem, we then calculated their reading rate when

they next requested help. We have come to the following conclusions

Aggressive Dissuasion Discourages Active Students

Table 1: 3 Words-per-second Results
Greater then 3 wps (Second attempt)

Dissuaded FALSE TRUE Grand Total

TRUE 28 47 75
FALSE 30 43 73

Grand Total 58 90 148

Of the 75 students who received a dissuasion message, 63% of these students continued

to read hints faster then the desired rate. Of the 73 students who were not dissuaded, 51

% of the students continued to game the system. These results were weakly significant,

with a p value of .64. This is the opposite effective then we wished would occur. This is

shown in table 1.

36

We then attempted to understand this effect. We understood that three words-per-second

would perhaps be too tight a definition of ‘too fast’. If we accept 3 words-per-second as

an aggressive rate, then we must accept that non-gamers are being penalized. To

understand what the effect of our dissuasion on true gamers, we then looked only at

students who demonstrated unusually fast hint reading rates.

Students who Read Hint Messages Faster are More Dissuaded

Figure 11: Mean Values for 6 Words per Second test
Table 2: 6 Words per Second Test Results

Greater then 6 wps (Second Attempt)

Dissuaded FALSE TRUE
Grand
Total

FALSE 17 19 36
TRUE 24 13 37
Grand Total 41 32 73

We looked at our data again, reclassifying gamers as students who had a hint reading rate

of greater then 6 words-per-second. This is a looser classification of hint gamers and

became a more accurate assessment of the data. Of the 148 students who were classified

as gamers under the aggressive 3 words-per-second rate, 73 were classifiable under the

new 6 words-per-second rate. The data shows that 64% of student’s who were given

37

dissuasion messages and had a reading rate greater then 6 words-per-second, slowed

down below this classification. Only 47% of the students who did not receive the

dissuasion slowed their reading rate to below this new classification. This result is mildly

significant with a p-value of .134. This is shown in Figure 11 and table 2.

Following this trend we looked at students would were classified as gamers with a

reading rate greater then 8 words-per-second. We found an even greater dissuasion effect

for these students with unusually fast hint reading rates: 73% of the dissuaded students

slowed down below this classification while only 56% of the non-dissuaded students

decreased their reading rates. Though this is a stronger support to our claim, the result is

less significant with a p value of .2. This is shown in table 3 and Figure 12.

Table 3: 8 Words per Second Test Results
TooFast8First TRUE

Count of
STUDENT TooFast8Second

DUSSUADED2 FALSE TRUE
Grand
Total

FALSE 17 13 30
TRUE 19 7 26

Grand Total 36 20 56

38

Figure 12: Use of 8 words per second as Classifier

39

7. Conclusions

The ASSISTment system allows the rapid development and deployment of pseudo-tutors.

Cognitive tutors provide a more flexible, generalized tutor based on a production rule

system. Cognitive tutors provide a more expressive tutor with the trade-off of increased

development time and higher computational expense. One purpose of this thesis was to

integrate cognitive tutors into the ASSISTment system. We were successful in extending

the ASSISTment system to support full cognitive tutors implemented in the JESS

production system. We performed stress testing of these tutors and found them much

more expensive in terms of performance then pseudo-tutors. The ratio of simultaneous

supported users for pseudo-tutors against cognitive tutors was about 10:1. We then

investigated using web services in an attempt to make the use of cognitive tutors more

scalable. Web services also allowed the ASSISTment system a higher level of

extendibility and collaboration.

We have described the motivation and execution of changing the ASSISTment system to

a Service Oriented Architecture. We showed that through its use we would be able to

dampen the effect of running expensive Model Tracing in a web-based system. Also we

demonstrated that SOA allowed the ASSISTment system to increase its extendibility. We

illustrated these extensions with three new web service tutors. These services are

platform and implementation independent which allows for a wide-variety of uses.

Because they are open web services they offer a new form of collaboration in the ITS

field. Through the offloading of expensive forms of evaluation, such as model tracing,

were able to increase our systems scalability. We hope to expand our use of web services

even further in the near future with new tutor types and collaborations.

Design of an Intelligent Tutoring System is an iterative process. Pedagogical choices in the

design should be constantly evaluated and tested through experiment. If the test failed to

match the theory that represents the design choice that was made, a system should go

through redesign. In this paper, we have proposed an architectural framework for designing

40

and implementing these types of experimentation. This framework was then tested with an

experiment involving hint dissuasion.

We found that students with unusually high reading rates of hints were more likely to slow

down from our dissuasion message “You asked for a hint quickly. Have you read the last

hint?” though this data is only mildly statistically significant. We found that using a

classifier of 3 words-per-second to tag hint gamers had a negative effect on students

reading rate. This leads us to the conclusion that our choice was too aggressive and

dissuaded engaged students from asking for hints. Real gamers failed to slow down

below this rate because it is too tight. It is an easy ready rate to exceed.

Classifying and dissuading students with looser and more unusually fast reading rates had

a better effect on reading rates. We were successful in dissuading students from reading

hints too quickly when looser definitions of 6 words-per-second and 8 words-per-second

were used as a gamer’s reading rate.

These results are not as conclusive as we would like, though they show promise for future

experiments. We’d like to rerun this experiment with different methodology to determine

if we can find a stronger correlation between dissuasion and reading rates. We have

discovered that a rate of 3 words-per-second is too aggressive and should no longer be

used in our experiments; instead, we should perhaps look at values of 5, 6 and 8 words-

per-second as the rate to classify gamers. This is still a work in progress. We will be

conducting a more convincing experiment using all the experiment tools at our disposal in

order to obtain more convincing results.

For the purpose of this research, we wished to test the user level experiments only and on

that level, we believe that the framework is useful for evaluation of pedagogical design

choices. The results of this experiment could have been stronger if used in conjunction

with a curriculum level experiment where the students are given a pre and a post-test, and

are given the same problem content. This is still a work in progress. We are will be

41

conducting a more convincing experiment using all the experiment tools at our disposal in

order to obtain more convincing results.

I would like to thanks all the people associated with creating the Assistment system listed

at www.assistment.org including the investigators Kenneth Koedinger, and Brian Junker

at Carnegie Mellon. We would also like to acknowledge funding from the US

Department of Education, the National Science Foundation, the Office of Naval Research

and the Spencer Foundation.

42

8. References

[1] Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum

[2] Anderson J.R., Pelletier, R., A developmental system for model-tracing tutors. In Lawrence Birnbaum,
editor. The International Conference on the Learning Sciences. Association for the Advancement of
Computing in Education. Pages 1-8, Charlottesville, Virginia, 1991

[3] Apache Axis http://ws.apache.org/axis/

[4] Baker, R.S., Corbett, A.T., Koedinger, K.R. (2004) Detecting Student Misues of Intelligent Tutoring
System. Proceedings of the 7th International Conference on Intelligent Tutoring Systems, 531-540

[5] Cappel, D., Jewell, T. (2002) Java Web Services, O’Reilly & Associates, Sebastopol, CA

[6] Corbett, A. T., Koedinger, K. R., & Anderson, J. R. (1997). Intelligent tutoring systems. In Helander,
M. G., Landauer, T. K., & Prabhu, P. V. (Ed.s) Handbook of Human-Computer Interaction, (pp. 849-
874). Amsterdam, The Netherlands: Elsevier Science B. V.

[7] Eclipse Web Tools Platform http://www.eclipse.org/webtools/

[8] Feng, M., Heffernan, N.T., & Koedinger, K.R. (2006). Addressing the Testing Challenge with a Web-
Based E-Assessment System that Tutors as it Assesses. Proceedings of the Fifteenth International
World Wide Web Conference. pp. 307-316.

[9] Jarvis, M., Nuzzo-Jones, G. Heffernan, N. T. (2004) Applying Machine Learning Techniques to Rule
Generation in Intelligent Tutoring System. Proceedings of the 7th Annual Intelligent Tutoring System
Conference, Macceio, Brazil. Pages 541-553

[10] Koedinger, K.R., Aleven, V., Heffernan. T., Mclaren, B. & Hockernberry, M. (2004) Opening the
Doors to Non-Programmers: Authoring Intelligent Tutor Behavior by Demonstration. Proceedings of
7th Annual Intelligent Tutoring Systems Conference, moaceio,, Brazil. Page 162-173

[11] Koedinger, K. R., & Anderson, J. R. (1998). Illustrating principled design: The early evolution of a
cognitive tutor for algebra symbolization. Interactive Learning Environments, 5, 161-180.

[12] Kodaganallur, V. Weitz, R. Rosenthal, D. (2006) Tools for Building Intelligent Tutoring System.
Proceedings of the 39th Hawaii International conference on System Sciences

[13] Murray, C. VanLehn, K. (2005) Effects of Dissuading Unnecessary Help Requests While Providing
Proacting Help. Proceedings of the 12th International Conference on Artificial Intelligence In
Education 887-889. Amsterdam: ISO Press.

[14] Mitrovic A, Ohlsson, S. Evaluation of a constraint-based database language. Internationl Journal of
Artificial Intelligence in Eduation, 10(3-4):238-256, 1999

[15] Merrill, D., Reiser, J. (1994) Scaffolding Effective Problem Solving Strategies in Interactive Learning
Environments. From the Proceedings of the 16th annual Conference of the Cognitive Science Society

[16] Murray, T., Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art International
Journal of Artificial Intelligence in Education, 0, pp. 98-129

43

[17] Newcomer, E. Lomow, G. (2005) Understanding SOA with Web Services , Pearson Education, Inc.
Upper Saddle River, NJ

[18] Nuzzo-Jones., G. Macasek M.A., Walonoski, J., Rasmussen K. P., Heffernan, N.T., Common Tutor
Object Platform, an e-Learning Software Development Strategy.
http://www.assistment.org/portal/project/papers/www/nuzzojones_etal.pdf

[19] Nuzzo-Jones, G., Walonoski, J.A., Heffernan, N.T., Livak, T. (2005). The eXtensible Tutor
Architecture: A New Foundation for ITS. In C.K. Looi, G. McCalla, B. Bredeweg, & J. Breuker
(Eds.) Proceedings of the 12th International Conference on Artificial Intelligence In Education, 902-
904. Amsterdam: ISO Press.

[20] Razzaq, L., Feng, M., Nuzzo-Jones, G., Heffernan, N.T., Koedinger, K. R., Junker, B., Ritter, S.,
Knight, A., Aniszczyk, C., Choksey, S., Livak, T., Mercado, E., Turner, T.E., Upalekar. R,
Walonoski, J.A., Macasek. M.A., Rasmussen, K.P. (2005). The Assistment Project: Blending
Assessment and Assisting. In C.K. Looi, G. McCalla, B. Bredeweg, & J. Breuker (Eds.) Proceedings
of the 12th International Conference on Artificial Intelligence In Education, 555-562. Amsterdam:
ISO Press.

[21] Razzaq, L., Heffernan, N.T. (2006). Scaffolding vs. hints in the Assistment System. In Ikeda, Ashley &
Chan (Eds.). Proceedings of the 8th International Conference on Intelligent Tutoring Systems.
Springer-Verlag: Berlin. pp. 635-644. 2006.

[22] Rickel, J., Ganeshan, R. (2000) Task-Oriented Tutorial Dialogue: Issues and Agents. In AAAI Fall
Symposium on Building Dialogue Systems for Tutorial Applications, pages 52-67.

[23] TeachScheme, ReachJava! http://www.teach-scheme.org/

[24] Turner, T.E., Macasek, M.A., Nuzzo-Jones, G., Heffernan, N..T, Koedinger, K. (2005). The Assistment
Builder: A Rapid Development Tool for ITS. In C.K. Looi, G. McCalla, B. Bredeweg, & J. Breuker
(Eds.) Proceedings of the 12th Artificial Intelligence In Education, 929-931. Amsterdam: ISO Press.

[25] VanLehn, K. (2006) The Behavior of Tutoring Systems. International Journal of Artificial Intelligence
in Education. 16, pages not determined yet.

[26] Walonoski, J., Heffernan, N.T. (2006). Detection and Analysis of Off-Task Gaming Behavior in
Intelligent Tutoring Systems. In Ikeda, Ashley & Chan (Eds.). Proceedings of the 8th International
Conference on Intelligent Tutoring Systems. Springer-Verlag: Berlin. pp. 382-391.

[27] Walonoski, J., Heffernan, N. T. (2006). Prevention of Off-Task Gaming Behavior in Intelligent
Tutoring Systems. In Ikeda, Ashley & Chan (Eds.). Proceedings of the 8th International Conference
on Intelligent Tutoring Systems. Springer-Verlag: Berlin. pp. 722-724.

[28] Young R.M. & Lewis, R.L., The Soar Cognitive Architecture and Human Working Memory (1999),
Chapter 7 of: A. Miyake & P. Shah (eds), Models of Working Memory: Mechanisms of Active
Maintenance and Executive Control, 224-256. Cambridge University Press.

44

APPENDIX I – JESS Addition Tutor
;; FOCUS-ON-FIRST-COLUMN
;; IF
;; The goal is to do an addition problem
;; And there is no pending subgoal (i.e., we've just started the problem)
;; And C is the rightmost column of the table
;; THEN
;; Set a subgoal to process column C
(defrule focus-on-first-column
; (addition
; (problem ?problem))

?problem <- (problem
(subgoals)
(interface-elements $? ?table $?))

?table <- (table
(columns $? ?right-column))

?right-column <- (column
(cells $? ?first-addend ?second-addend ?result))

?first-addend <- (cell
(value ?num1))

?second-addend <- (cell
(value ?num2))

?result <- (cell
(value nil))

?special-tutor-fact <- (special-tutor-fact-correct)
=>

(bind ?current-sub-goal (assert (process-column-goal
(column ?right-column)
(first-addend ?num1)
(second-addend ?num2))))

(bind ?work-to-do (assert (finish-problem-goal
(begin-rule focus-on-first-column))))

(modify ?problem
(subgoals (create$?current-sub-goal ?work-to-do)))

(modify ?special-tutor-fact
(hint-message (construct-message [Start with the column

on the right. This is the ones column])))
; (printout t "Focus-on-first-column." crlf)
)

;; FOCUS-ON-NEXT-COLUMN
;; IF
;; The goal is to do an addition problem
;; And there is no pending subgoal
;; And C is the rightmost column with numbers to add and no result
;; THEN

45

;; Set a subgoal to process column C

(defrule focus-on-next-column
; (addition
; (problem ?problem))

?problem <- (problem
(subgoals ?work-to-do)
(interface-elements $? ?table $?))

?work-to-do <- (finish-problem-goal)
?table <- (table

(columns $? ?next-column ?previous-column $?))
?previous-column <- (column

(cells $? ?previous-result))
?previous-result <- (cell

(value ?val&:(neq ?val nil)))
?next-column <- (column

(name ?col-name)
(cells ?carry ?first-addend ?second-addend ?result)
(position ?pos))

?result <- (cell
(value nil))

?carry <- (cell
(value ?num0))

?first-addend <- (cell
(value ?num1))

?second-addend <- (cell
(value ?num2))

?special-tutor-fact <- (special-tutor-fact-correct)
=>

(bind ?current-sub-goal (assert (process-column-goal
(column ?next-column)
(carry ?num0)
(first-addend ?num1)
(second-addend ?num2))))

(modify ?work-to-do
(begin-rule focus-on-next-column))

(modify ?problem
(subgoals (create$?current-sub-goal ?work-to-do)))

(modify ?special-tutor-fact
(hint-message (construct-message [Move on to the ?pos column

from the right.This is the ?col-name
column.])))

; (printout t "Focus-on-next-column." crlf)
)

;; ADD-ADDENDS

46

;; IF
;; There is a goal to process column C
;; THEN
;; Set Sum to the sum of the addends in column C
;; And set a subgoal to write Sum as the result in column C
;; And remove the goal to process column C

(defrule add-addends
; (addition
; (problem ?problem))

?problem <- (problem
(subgoals $?sg1 ?subgoal $?sg2))

?subgoal <- (process-column-goal
(carry ?carry)
(first-addend ?num1&:(neq ?num1 nil))
(second-addend ?num2&:(neq ?num2 nil))
(column ?column)
(sum nil))

?special-tutor-fact <- (special-tutor-fact-correct)
=>

(bind ?sum (+ ?num1 ?num2))
(modify ?subgoal

(sum ?sum))
(modify ?special-tutor-fact

(hint-message (construct-message [You need to add the
two digits in this column. Adding ?num1 and ?num2
gives ?sum .])))

; (printout t "Add addends." crlf)
)

;; ADD-CARRY
;; IF
;; There is a goal to write Sum as the result in column C
;; And there is a carry into column C
;; And the carry has not been added to Sum
;; THEN
;; Change the goal to write Sum+1 as the result
;; And mark the carry as added

(defrule add-carry
; (addition
; (problem ?problem))

?problem <- (problem
(subgoals $? ?subgoal $?))

?subgoal <- (process-column-goal
(sum ?sum&:(neq ?sum nil))

47

(carry ?num0&:(neq ?num0 nil))
(first-addend ?num1)
(second-addend ?num2))

(test (neq ?num0 nil))
?special-tutor-fact <- (special-tutor-fact-correct)

=>
(bind ?new-sum (+ ?sum ?num0))
(modify ?subgoal

(sum ?new-sum)
(carry nil))

(modify ?special-tutor-fact
(hint-message (construct-message [There is a carry in to

this column so you need to add the value carried
in. This gives ?sum + 1 equals ?new-sum .])))

; (printout t "Add carry." crlf)
)

;; MUST-CARRY
;; IF
;; There is a goal to write Sum as the result in column C
;; And the carry into column C (if any) has been added to Sum
;; And Sum > 9
;; And Next is the column to the left of C
;; THEN
;; Change the goal to write Sum-10 as the result in C
;; Set a subgoal to write 1 as a carry in column Next

(defrule must-carry
; (addition
; (problem ?problem))

?problem <- (problem
(interface-elements $? ?table $?)
(subgoals $?sg1 ?subgoal $?sg2))

?subgoal <- (process-column-goal
(sum ?sum&:(neq sum nil))
(carry nil)
(column ?column))

(test (numberp ?sum))
(test (> ?sum 9))
?column <- (column

(name ?column-name))
?table <- (table

(columns $? ?next-column ?column $?))
?next-column <- (column

(position ?next-pos))
?special-tutor-fact <- (special-tutor-fact-correct)

48

=>
(bind ?new-sum (- ?sum 10))
(modify ?subgoal

(sum ?new-sum))
(bind ?write-carry-goal (assert (write-carry-goal

(column ?next-column)
(carry 1))))

(modify ?problem
(subgoals (create$ $?sg1 ?write-carry-goal ?subgoal $?sg2)))

(modify ?special-tutor-fact
(hint-message (construct-message [The sum that you have ?sum

is greater than 9. So you need to carry 10 of the
?sum to the ?next-pos column. And you need to write
the rest of the sum at the bottom of the ?column-name
column.])))

; (printout t "Must carry" crlf)
)

;; WRITE-SUM
;; IF
;; There is a goal to write Sum as the result in column C
;; And Sum < 10
;; And the carry into column C (if any) has been added
;; THEN
;; Write Sum as the result in column C
;; And remove the goal

(defrule write-sum
; (addition
; (problem ?problem))

?problem <- (problem
(subgoals $?sg1 ?subgoal $?sg2))

?subgoal <- (process-column-goal
(sum ?sum&:(neq ?sum nil))
(column ?column)
(carry nil))

(test (< ?sum 10))
?column <- (column

(position ?pos)
(cells $? ?result))

?result <- (cell
(name ?cell-name))

?special-tutor-fact <- (special-tutor-fact-correct)
=>

(modify ?result
 (value ?sum))

49

(modify ?problem
(subgoals (create$ $?sg1 $?sg2)))

(retract ?subgoal)
(modify ?special-tutor-fact

(selection ?cell-name)
(action "UpdateTable")
(input ?sum)
(hint-message (construct-message [Write sum ?sum at the

bottom of the ?pos column.])))
; (printout t "Write sum." crlf)
)

;; WRITE-CARRY
;; IF
;; There is a goal to write a carry in column C
;; And there is no result that has been recorded in the previous column
;; And sum has been calculated in previous column P
;; THEN
;; Write the carry in column C
;; And remove the goal

(defrule write-carry
; (addition
; (problem ?problem))

?problem <- (problem
(subgoals $?sg1 ?subgoal $?sg2)
(interface-elements $? ?table $?))

?subgoal <- (write-carry-goal
(carry ?num)
(column ?column))

?column <- (column
(position ?pos)
(cells ?carry $?))

?carry <- (cell
(name ?cell-name)
(value nil))

?table <- (table
(columns $? ?column ?previous-column $?))

?previous-column <- (column
(position ?pos-previous)

 (cells $? ?sum))
 ?sum <- (cell
; (value ?val&:(neq ?val nil))

)
?special-tutor-fact <- (special-tutor-fact-correct)

=>

50

(printout t crlf "Selection: " ?cell-name " Action: 'UpdateTable' Input: " ?num crlf)
(modify ?carry

(value ?num))
(modify ?problem

(subgoals (create$?sg1 ?sg2))) ; the remaining subgoals
(modify ?special-tutor-fact

(selection ?cell-name)
(action "UpdateTable")
(input ?num)
(hint-message (construct-message [You need to complete

the work on the ?pos-previous column.]
[Write carry from the ?pos-previous

to the next column.]
[Write ?num at the top of the ?pos column

from the right.])))
(retract ?subgoal)

; (printout t "Write-carry." crlf)
)

;; BUGGY-FOCUS-ON-FIRST-COLUMN
;; IF
;; The goal is to do an addition problem
;; And there is no pending subgoal (i.e., we've just started the problem)
;; And C is a column of the table but NOT the rightmost column
;; THEN
;; Set a subgoal to process column C
;; Set an error message "Start with the column all the way to the right, the ones column.
You've started in another column.

(defrule BUGGY-focus-on-first-column
; (addition
; (problem ?problem))

(declare (salience -100))
?problem <- (problem

(subgoals)
(interface-elements $? ?table $?))

?table <- (table
(columns $? ?wrong-column $? ?right-column))

?wrong-column <- (column
(cells $? ?wrong-cell $?))

?right-column <- (column
(cells $? ?first-addend ?second-addend ?result))

?wrong-cell <- (cell
 (name ?wrong-cell-name)

(value nil))
?first-addend <- (cell

51

(value ?num1))
?second-addend <- (cell

(value ?num2))
?result <- (cell
 (name ?cell-name)

(value nil))
?special-tutor-fact <- (special-tutor-fact-buggy)

=>
(bind ?current-sub-goal (assert (process-column-goal

(column ?right-column)
(first-addend ?num1)
(second-addend ?num2))))

(modify ?problem
(subgoals ?current-sub-goal))

(modify ?special-tutor-fact
(selection ?wrong-cell-name)
(action DONT-CARE)
(input DONT-CARE)
(buggy-message (construct-message [Start with the column all the way to

the
right, the ones column. You've started in another

column.])))
)

;; BUGGY-WRITE-CARRY
;; IF
;; There is a goal to write a carry in column C
;; And sum has not yet been calculated in previous column P
;; THEN
;; Write the carry in column C
;; And remove the goal

;(defrule Buggy-write-carry
; (addition
; (problem ?problem))
; (declare (salience -100))
; ?problem <- (problem
; (subgoals $?sg1 ?subgoal $?sg2)
; (interface-elements $? ?table $?))
; ?subgoal <- (write-carry-goal
; (carry ?num)
; (column ?column))
; ?column <- (column
; (position ?pos)
; (cells ?carry $?))
; ?carry <- (cell

52

; (name ?cell-name)
; (value nil))
; ?table <- (table
; (columns $? ?column ?previous-column $?))
; ?previous-column <- (column
; (position ?pos-previous)
; (cells $? ?sum))
; ?sum <- (cell
; (value ?val&:(eq ?val nil)))
; ?special-tutor-fact <- (special-tutor-fact-buggy)
;=>
; (modify ?carry
; (value ?num))
; (modify ?problem
; (subgoals ?sg1 ?sg2)) ; the remaining subgoals
; (modify ?special-tutor-fact
; (selection ?cell-name)
; (action "UpdateTable")
; (input ?num)
; (buggy-message (construct-message [You need to write the
; sum before doing the carry.])))
; (retract ?subgoal)
;)

;(defrule Done
; ?problem <- (problem
; (subgoals ?subgoal)
; (interface-elements $? ?table $?))
; ?subgoal <- (finish-problem-goal
; (begin-rule ?beginning-rule))
; ?table <- (table
; (columns $? ?a-column))
; ?a-column <- (column
; (cells $? ?first-addend ?second-addend ?result))
; ?first-addend <- (cell
; (value ?num1&:(neq ?num1 nil)))
; ?second-addend <- (cell
; (value ?num2&:(neq ?num2 nil)))
; ?result <- (cell
; (name ?cell-name)
; (value ?num3&:(neq ?num3 nil)))
; ?special-tutor-fact <- (special-tutor-fact-correct)
;=>
; (printout t crlf "Problem done; began with rule " ?beginning-rule crlf)
; (modify ?special-tutor-fact
; (selection done)

53

; (action ButtonPressed)
; (input -1)
; (hint-message (construct-message [Click on the Done ;Button.])))
;)

54

APPENDIX II – Hint Experiment Results

STUDENTDUSSUADEDReadingRate1WPSRateWordPerSecond
1 21971 TRUE 12.81337 0.220216
2 22982 TRUE 14.22222 3.2
3 24699 TRUE 6.42978 9.940358
4 26982 FALSE 18.2704 27.64977
5 27756 TRUE 6.930289 6.021409
6 31340 TRUE 13.2626 10.39501
7 31689 FALSE 7.943925 9.742519
8 31693 FALSE 6.605691 1.180538
9 31695 FALSE 3.263052 26.49007
10 31703 TRUE 6.622517 5.032022
11 31714 FALSE 25.15244 1.178711
12 31741 FALSE 21.33333 16
13 31748 FALSE 23.28289 18.70079
14 31762 TRUE 4.74193 0.577717
15 31765 FALSE 7.735584 2.942258
16 31767 TRUE 3.14095 5.91716
17 31770 FALSE 12.70151 8
18 31783 TRUE 7.246377 13.33333
19 31801 FALSE 4.385965 3.228647
20 31810 FALSE 16.26898 2.434077
21 31825 FALSE 4.074784 5.611672
22 31835 TRUE 10.26856 0.75
23 31862 FALSE 5.452821 1.463823
24 31887 FALSE 6.5 2.448409
25 31895 FALSE 3.199606 10.27668
26 31907 TRUE 6.178288 0.787557
27 31911 TRUE 4.962779 5.235602
28 31942 FALSE 4.062976 1.656658
29 31958 FALSE 5.33224 2.881251
30 31969 TRUE 3.294118 1.36854
31 31974 TRUE 12.26667 6.900878
32 31981 FALSE 20.55197 3.9783
33 31986 TRUE 6.402049 14.04056
34 32001 TRUE 21.33333 16.34877
35 32010 TRUE 5.118362 9.017133
36 32014 TRUE 4.706199 1.50922
37 32016 FALSE 10.88348 4.415011
38 32018 FALSE 13.41589 13.76421
39 32020 FALSE 3.271028 0.042414
40 32022 FALSE 22.35772 3.670687
41 32023 FALSE 5.317054 5.646173
42 32058 TRUE 3.412969 2.82657
43 32059 FALSE 9.299781 1.416932

55

44 32065 TRUE 5.014749 10.29748
45 32066 TRUE 13.37154 1.71809
46 32073 TRUE 14.49275 4.889976
47 32076 FALSE 3.827228 2.031635
48 32078 TRUE 3.594536 0.927321
49 32095 TRUE 7.556675 3.434951
50 32128 FALSE 11.55556 0.755144
51 32134 TRUE 3.428571 0.156826
52 32137 FALSE 19 1.635497
53 32153 FALSE 4.150284 1.212268
54 32158 TRUE 8.633824 0.023751
55 32172 TRUE 3.748558 14.21801
56 32178 TRUE 5.538462 4.649499
57 32183 FALSE 3.575259 6.993007
58 32184 TRUE 8.347245 3.615329
59 32199 TRUE 4.583715 1.081617
60 32213 FALSE 8.858268 21.65354
61 32223 FALSE 3.067485 1.806942
62 32255 TRUE 7.705193 2.885624
63 32260 FALSE 17.05757 5.847953
64 32275 TRUE 5.271084 1.222179
65 32281 TRUE 3.764706 4.547044
66 32311 TRUE 18.89535 15.05646
67 32321 FALSE 3.699593 11.15023
68 32324 TRUE 13.07639 11.29235
69 32326 FALSE 12 8
70 32332 FALSE 16.85393 7.049892
71 32335 FALSE 4.205607 6.956522
72 32342 FALSE 4.697592 27.86885
73 32352 FALSE 9.918846 28.07018
74 32353 FALSE 8.726568 0.311883
75 32358 TRUE 22.22222 5.858495
76 32385 FALSE 8.830022 19.68827
77 32392 FALSE 4.096262 2.540835
78 32396 FALSE 5.445882 2.526316
79 32405 TRUE 4.055881 8.758141
80 32413 FALSE 8.87199 8.411215
81 32419 FALSE 4.740658 3.534884
82 32443 TRUE 18.66667 4.922644
83 32445 FALSE 14.36969 1.457938
84 32456 FALSE 4.210526 3.333333
85 32466 TRUE 9.040334 3.488019
86 32474 FALSE 4.724409 0.619323
87 32480 FALSE 31.14187 65.97938
88 32507 FALSE 9.057971 8.626887
89 32645 TRUE 3.076923 5.225343

56

90 32655 TRUE 4.991192 2.091175
91 32656 FALSE 3.333333 12.26158
92 32663 TRUE 4.666667 5.938634
93 32686 TRUE 3.11311 0.355037
94 32721 TRUE 12.5638 3.702724
95 32724 FALSE 27.35711 7.143899
96 32729 TRUE 5.003882 50.55292
97 32730 FALSE 5.707297 1.438159
98 32732 TRUE 9.501188 0.135651
99 32733 TRUE 14.15246 24.98048
100 32734 TRUE 4.923255 0.875226
101 32738 TRUE 5.025126 0.750751
102 32739 FALSE 5.230769 0.588192
103 32741 TRUE 3.725025 1.896409
104 32742 FALSE 4.934845 13.60202
105 32744 FALSE 5.293551 0.559284
106 32747 FALSE 6.121313 0.681558
107 32748 FALSE 4.413793 1.578947
108 32749 FALSE 4.237288 3.512195
109 32750 TRUE 20.86231 1.858736
110 32751 TRUE 4.18556 0.958641
111 32754 FALSE 4.232804 0.655503
112 32758 TRUE 11.46679 4.197272
113 32759 TRUE 3.236246 1.189189
114 32761 FALSE 3.886113 6.330992
115 32763 FALSE 5.293673 1.09529
116 32766 FALSE 9.020619 2.5
117 32767 FALSE 4.07767 36.45833
118 32769 TRUE 5.214506 0.151748
119 32861 TRUE 11.7712 3.103181
120 33153 FALSE 5.375381 3.515521
121 33155 TRUE 3.005658 0.417116
122 33163 FALSE 7.92752 7.824726
123 33701 TRUE 3.272727 7.616146
124 33716 TRUE 3.571429 3.502627
125 33782 TRUE 6.966434 0.339664
126 34885 FALSE 5.733945 5.204719
127 34886 TRUE 9.864365 4.263256
128 34889 FALSE 3.557568 5.005776
129 35025 FALSE 3.368421 3.104519
130 35624 TRUE 3.425275 1.66579
131 35661 TRUE 6.157965 4.725086
132 36004 TRUE 6.650042 23.13167
133 36009 FALSE 18.7638 8.858268
134 36092 FALSE 16.15911 0.725426
135 36094 FALSE 21.33195 15.84022

57

136 36095 FALSE 10.82056 21.34831
137 36096 TRUE 4.518072 13.46801
138 36097 FALSE 5.544355 0.84246
139 36101 TRUE 19 4.653869
140 36104 TRUE 4.978663 13.02378
141 36105 TRUE 10.03764 8.891523
142 36107 TRUE 10.66983 2.012477
143 36247 TRUE 10.67169 19.89619
144 36271 TRUE 3.815176 24.19984
145 36399 TRUE 4.592423 4.222081
146 36404 TRUE 4.339964 3.871681
147 36405 TRUE 3.995108 12.96071
148 36408 TRUE 5.33049 9.6

58

 APPENDIX III – Web Service Interface (WSDL)
<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://stateservice.webservices.assistment.org"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://stateservice.webservices.assistment.org"
xmlns:intf="http://stateservice.webservices.assistment.org"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.3
Built on Oct 05, 2005 (05:23:37 EDT)-->
 <wsdl:types>
 <schema elementFormDefault="qualified"
targetNamespace="http://stateservice.webservices.assistment.org"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="getStateName">
 <complexType>
 <sequence>
 <element name="id" type="xsd:long"/>
 <element name="action" type="impl:Action"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="StrategyProperty">
 <sequence>
 <element name="name" nillable="true" type="xsd:string"/>
 <element name="value" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfStrategyProperty">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
type="impl:StrategyProperty"/>
 </sequence>
 </complexType>
 <complexType name="Action">
 <sequence>
 <element name="elementID" nillable="true"
type="xsd:string"/>
 <element name="properties" nillable="true"
type="impl:ArrayOfStrategyProperty"/>

59

 <element name="type" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="getStateNameResponse">
 <complexType>
 <sequence>
 <element name="getStateNameReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getStateStrategy">
 <complexType>
 <sequence>
 <element name="id" type="xsd:long"/>
 <element name="action" type="impl:Action"/>
 </sequence>
 </complexType>
 </element>
 <element name="getStateStrategyResponse">
 <complexType>
 <sequence>
 <element name="getStateStrategyReturn"
type="impl:Strategy"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="StrategyChild">
 <sequence>
 <element name="data" nillable="true" type="xsd:string"/>
 <element name="index" type="xsd:int"/>
 <element name="type" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfStrategyChild">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="item"
type="impl:StrategyChild"/>
 </sequence>
 </complexType>
 <complexType name="Strategy">
 <sequence>
 <element name="children" nillable="true"
type="impl:ArrayOfStrategyChild"/>
 <element name="properties" nillable="true"

60

type="impl:ArrayOfStrategyProperty"/>
 <element name="type" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <element name="getDefaultStrategy">
 <complexType>
 <sequence>
 <element name="id" type="xsd:long"/>
 </sequence>
 </complexType>
 </element>
 <element name="getDefaultStrategyResponse">
 <complexType>
 <sequence>
 <element name="getDefaultStrategyReturn"
type="impl:Strategy"/>
 </sequence>
 </complexType>
 </element>
 <element name="getHintStrategy">
 <complexType>
 <sequence>
 <element name="id" type="xsd:long"/>
 </sequence>
 </complexType>
 </element>
 <element name="getHintStrategyResponse">
 <complexType>
 <sequence>
 <element name="getHintStrategyReturn"
type="impl:Strategy"/>
 </sequence>
 </complexType>
 </element>
 <element name="emptyState">
 <complexType>
 <sequence>
 <element name="id" type="xsd:long"/>
 </sequence>
 </complexType>
 </element>
 <element name="emptyStateResponse">
 <complexType>
 <sequence>

61

 <element name="emptyStateReturn" type="xsd:boolean"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <wsdl:message name="getStateNameResponse">
 <wsdl:part element="impl:getStateNameResponse"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getHintStrategyRequest">
 <wsdl:part element="impl:getHintStrategy"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="emptyStateRequest">
 <wsdl:part element="impl:emptyState" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="emptyStateResponse">
 <wsdl:part element="impl:emptyStateResponse"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getHintStrategyResponse">
 <wsdl:part element="impl:getHintStrategyResponse"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getStateNameRequest">
 <wsdl:part element="impl:getStateName" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getDefaultStrategyRequest">
 <wsdl:part element="impl:getDefaultStrategy"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getDefaultStrategyResponse">
 <wsdl:part element="impl:getDefaultStrategyResponse"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getStateStrategyResponse">
 <wsdl:part element="impl:getStateStrategyResponse"
name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getStateStrategyRequest">
 <wsdl:part element="impl:getStateStrategy"
name="parameters"/>
 </wsdl:message>

62

 <wsdl:portType name="StateBehaviorService">
 <wsdl:operation name="getStateName">
 <wsdl:input message="impl:getStateNameRequest"
name="getStateNameRequest"/>
 <wsdl:output message="impl:getStateNameResponse"
name="getStateNameResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getStateStrategy">
 <wsdl:input message="impl:getStateStrategyRequest"
name="getStateStrategyRequest"/>
 <wsdl:output message="impl:getStateStrategyResponse"
name="getStateStrategyResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getDefaultStrategy">
 <wsdl:input message="impl:getDefaultStrategyRequest"
name="getDefaultStrategyRequest"/>
 <wsdl:output message="impl:getDefaultStrategyResponse"
name="getDefaultStrategyResponse"/>
 </wsdl:operation>
 <wsdl:operation name="getHintStrategy">
 <wsdl:input message="impl:getHintStrategyRequest"
name="getHintStrategyRequest"/>
 <wsdl:output message="impl:getHintStrategyResponse"
name="getHintStrategyResponse"/>
 </wsdl:operation>
 <wsdl:operation name="emptyState">
 <wsdl:input message="impl:emptyStateRequest"
name="emptyStateRequest"/>
 <wsdl:output message="impl:emptyStateResponse"
name="emptyStateResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="StateBehaviorServiceSoapBinding"
type="impl:StateBehaviorService">
 <wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getStateName">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getStateNameRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getStateNameResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>

63

 </wsdl:operation>
<wsdl:operation name="getStateStrategy">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getStateStrategyRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getStateStrategyResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getDefaultStrategy">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getDefaultStrategyRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getDefaultStrategyResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getHintStrategy">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getHintStrategyRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getHintStrategyResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="emptyState">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="emptyStateRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="emptyStateResponse">
 <wsdlsoap:body use="literal"/
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="StateBehaviorServiceService">
 <wsdl:port binding="impl:StateBehaviorServiceSoapBinding"
name="StateBehaviorService">
 <wsdlsoap:address
location="http://nth6.wpi.edu/StateBehaviorService/services/State

64

BehaviorService"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

