
Towards a More Inclusive World: Enhanced Augmentative and

Alternative Communication For People With Disabilities Using

AI and NLP

Zachary Emil, Andrew Robbertz, Richard Valente, Cole Winsor

March 4, 2020

1

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the degree of Bachelor of Science

Authors:

Zachary Emil

Andrew Robbertz

Richard Valente

Cole Winsor

Date:

March 4, 2020

Report Submitted to:

Professor Rodica Neamtu

Worcester Polytechnic Institute

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of a degree requirement. WPI routinely publishes these reports on its website without

editorial or peer review. For more information about the projects program at WPI, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.html.

2

Acknowledgements

This project would not have been possible without the help of so many people. We would like to
thank:

• Professor Rodica Neamtu, our MQP advisor, for helping to get our project off the ground, giving
insightful feedback, and keeping our team on track.

• Carlos Pereira, CEO of Livox, for making this project possible as well as for providing our team
with invaluable feedback and suggestions.

• Andre Camara, professor at UFRPE, for his technical advice and his expertise in Machine Learning
and Natural Language Processing.

3

Abstract

For people with verbal or cognitive impairments, engaging in conversation can be tiresome and
time-consuming, limiting their educational, social, and career opportunities. Livox is a pictogram-based
alternative communication application that empowers people with a wide range of visual and motor
impairments to engage in conversations. This project incorporated a ML and NLP-based classifier to
detect specific questions and present the most relevant pictograms to users. Our newly introduced
classifier reduced the time and effort required to communicate by 68.5% and 56.4%, respectively
compared to the standard application. These results show that our work is a step towards making the
world a more inclusive place for those who are nonverbal and have motor skill challenges.

4

Executive Summary

A recent United Nations report indicates that 15% of the world’s population lives with some
form of disability. Many of these people are non-verbal or have verbal and motor challenges. For them,
engaging in conversation can require significant effort and become tiresome. Examples include those
affected by autism, cerebral palsy, stroke, or cancer. Interlocutors, or conversation partners,
additionally require an increased amount of patience due to potentially delayed responses. This leads
to a reciprocity gap for people with disabilities when communicating, which in essence refers to a
longer wait time for responses in conversation. The United Nations report indicates that the
reciprocity gap ultimately leads to challenges for people with verbal and motor disabilities in
education, social development, and careers. Therefore, reducing the reciprocity gap is paramount to
ensuring inclusiveness of all people into our society.

Augmentative and Alternative Communication (AAC) devices provide non-verbal forms of
communication to anyone who has difficulty talking. AACs have proven to be an effective tool to
reduce the time and effort required for non-verbal communication. There are many pictogram-based
AAC solutions which focus on expressing ideas and constructing sentences using pictograms, including:

• Picture exchange communication systems, that allow users to communicate by handing
interlocutors physical pictures

• Recorded speech devices, using dedicated hardware to produce a synthesized voice and speak
aloud letters, words, and messages

• Electronic tablet speech applications, running on smart devices such as tablets, smart watches,
and portable gaming consoles

(a) Picture Exchange Communication System

(b) Recorded Speech Device

Figure 1: Example AAC Devices

Our research indicated that electronic tablet speech applications are more affordable, more
portable, easier to use, and faster to communicate with, compared to other pictogram-based AAC
solutions. The largest benefit of electronic tablet speech applications over other AACs is that they are
a software based solution. This allows them to have customizable interfaces that make them useful in
dealing with a range of mental, visual, and cognitive impairments. Additionally, AAC applications can
take a step forward to incorporate machine learning (ML) and natural language processing (NLP) to
find new and creative ways to facilitate and enhance communication. In essence, such an approach
focuses on predicting the most natural course of a conversation, leading to increased interactivity from
users of the application.

Livox is a pictogram-based AAC application that also accommodates a wide range of vision
and motor impairments. Livox has a simple yet flexible interface, using a nested-folder structure for

5

organizing pictograms by category. For example, pictograms related to foods are in the Food folder,
while those related to family members are in the People folder.

Additionally, Livox uniquely incorporates artificial intelligence through a human-centric
approach to better facilitate communication for users. Livox analyzes users’ past selection and
contextual data, including the item, time of use, GPS location, touch duration, and pictogram location
on the screen. All these are used to help predict which pictograms a user is likely to need in a given
context, and prioritize presenting these items over other available pictograms. Livox also leverages NLP
technology to reduce the number of user interactions required to respond to specific, recognizable
questions. That is, Livox listens for and detects yes or no questions asked in conversation, and
facilitates the answer by presenting two full-screen buttons labeled “Yes” and “No”.

Figure 2: Livox Natural Language Sentence Classifierneausi

The goal of this project was to further reduce the time and effort required to communicate by
incorporating an NLP-based list classifier that detects open-ended questions in conversation, and
presents relevant response pictograms to users. Our approach listens for list questions, which are
questions followed by a list of responses, and presents relevant images for each response. We developed
a sentence structure to analyze questions based on Amazon Alexa skill’s command structure. Our
classifier considers three aspects of this structure, including the wakeword, the question phrase, and the
response phrase. The wakeword indicates that a question is about to be asked, and that the application
should record any speech that follows. The question phrase is a full question asked, and the response
phrase is the list of items that should be presented to users of the application.

Figure 3: List Question Structure

We identified four objectives that lead to the successful completion of our goal:

1. Classify a question as a list question

2. Separate the response phrase from the question phrase

3. Identify and extract the relevant responses from the response phrase

4. Identify the most relevant image for each response

There were two non-functional requirements of our classifier: to function in offline
environments and to run on low-end devices. The first is important because Livox is a mobile

6

Figure 4: List Classifier Stepsneausi

application and supports users both at home or school and while traveling. The second is important
because Livox is a low-cost alternative to other AAC solutions and many users rely on older and more
budget-oriented devices.

Our approach to solving these problems focused on Agile development and producing frequent
deliverables and demonstrations for Livox stakeholders. This Agile approach allowed developers and
stakeholders to co-create a successful list question classifier across many iterations and through tight
collaboration. Early iterations focused on creating an online API hosted by Amazon Web Services
(AWS), which was used for rapid development and prototyping of our classifier. Additionally, we
created a prototype Android application to interface and test the online API. We later integrated the
online solution with the existing Livox application. We created an interface alongside the standard
communication board and the yes or no classifier interface. Lastly, we ported our online solution to
work offline on the Android tablet.

We evaluated our solution using multiple methods, each targeted at measuring the effectiveness
of different aspects of our classifier. We tested our classifier for three main purposes, each with one or
more methods of evaluation.

1. Data-driven development decisions

2. Measure the accuracy of our classifier’s design

3. Measure the impact our classifier has for users of Livox

To assist our data-driven development decisions, we created a dataset of 30 targeted test
questions. We used these questions to ensure that specific functionalities were achievable and to identify
weaknesses in our implementation. We created some difficult, non-critical cases as stretch goals for our
project. We additionally included cases to test for false positives, questions that our classifier should
not parse, in order to to identify how our classifier reacted to and recovered from errors in processing.

In order to gain an objective understanding of our classifier’s performance, we developed an
unbiased, crowdsourced dataset of list questions. The dataset includes 530 list questions generated by
respondents to a Mechanical Turk questionnaire. Each respondent supplied:

1. The full list question as it was written by the respondent

2. The list of relevant responses contained within the question (the pictograms ideally presented to
users of the application)

3. The conversation topic of the question (classified as one of activity, date/time, description,
locations, object/entity, organization, number, people, or miscellaneous)

This data and its subsequent analysis was used to measure how well we achieved each of our
objectives. Each full list question was sent to our online API which returned:

7

1. Whether the question was identified as a list question

2. The split question phrase and response phrase

3. The list of individual responses that were extracted by our entity parsing service

4. The images that were related to each of the extracted responses

We used the first results to evaluate our classifier’s recognition of list questions. We compared
the list of extracted responses to those reported in the dataset in order to evaluate the accuracy of our
entity parsing service. Lastly, in order to evaluate the relevance of images presented to users, we rated
137 pairings of responses and images extracted from our crowdsourced dataset. We each rated an
image based on how well it represented the related response on a scale of one to seven (1-7). We then
calculated the mean scores of ratings to identify the overall relevancy of images presented.

(a) Question Classification (b) Entity Parsing

(c) Image Relevance Scoring

Figure 5: Crowdsourced Testing Results

In order to measure the impact our classifier has on Livox users, we conducted two sets of
studies: one focused on quantifying improvements for Livox users, and the other quantifying accuracy
for interlocutors. The user set was made up of two stages, one using our classifier and one using the
standard Livox application, to measure the time and effort required to communicate. We used the
results of these stages to quantify the improvements it provides. The interlocutor set used three stages

8

to test our classifier’s ability to detect list questions. We used the results from these stages to quantify
the ease of use and the time needed to learn the question format expected by our classifier.

The results from our crowdsourced dataset testing and image relevance scoring show that our
classifier has an overall accuracy of 94.46% for recognizing list questions, 63% for extracting the correct
responses, and 68.3% for finding a relevant image. This shows that our classifier reliably activates for
list questions and consistently presents relevant images for all response options.

The results from our interlocutor set show that interlocutors activated our classifier with 88.3%
accuracy after minimal explanation of how it functions. This shows that our classifier reliably detects
list questions, and that the format expected by our classifier is intuitive and easy to learn. The results
from our user set show that our classifier reduces the time and physical interactions required to
communicate, compared to the standard application, by 68.5% and 56.4%, respectively.

(a) Interlocutor Activation Rate (b) Resources Saved for Users

Figure 6: User Study Results

Therefore, we can conclude that our classifier achieves each of the objectives mentioned above
and meets our goal of reducing the time and effort required to communicate for users of Livox. We also
achieved the non-functional requirements of working in offline environments and on resource-limited
hardware. Our project serves as a practical example of how voice-activated functionality can assist
people with verbal and motor challenges, and is a step towards ensuring that these challenges can be
overcome by applying state of the art technologies in a human-centric implementation.

9

Contents

1 Introduction 15

2 Background 17

2.1 State of the Art AACs . 17

2.1.1 Picture Exchange Communication System . 17

2.1.2 Recorded Speech Devices . 17

2.1.3 Electronic Tablet Speech Applications . 18

2.2 Natural Language Processing . 19

2.2.1 Analyzing Sentence Structure . 20

2.2.2 Word Stemming . 21

2.2.3 Term Frequency - Inverse Document Frequency . 21

2.2.4 Word Embedding . 21

2.2.5 Machine Learning Classifiers . 22

2.2.6 Named Entity Recognition . 22

2.3 Livox Application . 23

2.3.1 Interactivity Features . 23

2.3.2 Livox Portal . 24

2.3.3 Innovations in AI/NLP . 24

3 Methodology 25

3.1 Classifying List Questions . 25

3.2 Separating Question and List Phrases . 26

3.3 Extracting Question Responses . 26

3.4 Image Classification and Retrieval . 28

4 Implementation Strategy 29

4.1 Agile Development . 29

4.2 Technology Stack . 30

4.2.1 File Organization and Task Management . 30

4.2.2 Communication . 30

4.2.3 Programming . 30

4.2.4 External APIs . 31

10

4.3 Microservice Architecture . 31

5 Evaluation 32

5.1 Targeted Testing . 32

5.2 Crowdsourced Testing . 33

5.3 Image Matching Evaluation . 35

5.4 User Study . 36

5.4.1 Interlocutor Set . 37

5.4.2 User Set . 37

6 Iterative Development 39

6.1 Question Classifier . 39

6.1.1 Iteration 1 - Hard-Coded Phrase Recognition . 39

6.1.2 Iteration 2 - SVM Question Classification Model 39

6.1.3 Iteration 3 - Heuristic Method . 40

6.2 Phrase Parser . 40

6.2.1 Iteration 1 - Common Question Words Offset . 40

6.2.2 Iteration 2 - Improved Question Words . 40

6.3 Entity Parser . 41

6.3.1 Iteration 1 - Naive Entity Extraction . 41

6.3.2 Iteration 2 - Word Embedding Vector Similarity 41

6.3.3 Iteration 3 - Database Derived Vocabulary . 41

6.3.4 Iteration 4 - Pre-processing with Word Stemming 42

6.3.5 Iteration 5 - Word Embedding Extended Vocabulary 42

6.4 Image Retrieval . 42

6.4.1 Iteration 1 - Google Vision tags Image Retrieval 42

6.4.2 Iteration 2 - Score-Based Image Retrieval . 43

6.5 Android Application . 43

6.5.1 Prototype Application . 43

6.5.2 Livox Integration . 44

7 Results 45

7.1 Target Test Results . 45

7.2 Crowd-sourced Testing Results . 45

11

7.3 Image Matching Results . 48

7.4 User Study Results . 48

7.4.1 Interlocutor Interview Results . 48

7.4.2 User Interview Results . 50

7.4.3 Exploratory Question Results . 52

8 Discussion and Related Work 53

8.1 Question Recognition Improvements . 53

8.2 Phrase Parsing Improvements . 53

8.3 Entity Parsing Improvements . 53

8.4 Image Retrieval Improvements . 54

8.5 Livox Integration Improvements . 54

9 Conclusion 56

References 57

Works Cited 57

Appendix A: Livox Code Analysis 61

Appendix B: Online Classifier Deployment 64

Appendix C: Livox Development Environment Setup 67

Appendix D: IRB Approval Letter 68

Appendix E: User Study Informed Consent 69

Appendix F: Recruitment and Screening Forms 71

Appendix G: User Study Interview Scripts 73

Appendix H: Mechanical Turk Questionnaires 77

12

List of Figures

1 Example AAC Devices . 5

2 Livox Natural Language Sentence Classifierneausi . 6

3 List Question Structure . 6

4 List Classifier Stepsneausi . 7

5 Crowdsourced Testing Results . 8

6 User Study Results . 9

7 Example AAC Devices . 18

8 Proloquo2go Application18 . 19

9 Natural Language Processing Pyramid . 20

10 Alexa Skill Command Structure25 . 20

11 Simple Vector Word Representations . 22

12 Livox Natural Language Sentence Classifierneausi . 24

13 List Classifier Stepsneausi . 25

14 List Question Structure . 26

15 Stop-Word Removal . 27

16 Tokenizing Responses . 27

17 Response Stemming . 27

18 Google Vision API Generated Labels For an Image . 28

19 Modular Model Evaluation . 33

20 Mechanical Turk Batch Results . 34

21 User Study Results . 35

22 Image Rating Topic Distribution . 36

23 Average Scored Examples . 37

24 Returned drain labeled as paw by Google Vision vs Livox tagged paw 43

25 Targeted Testing Results . 45

26 Question Classification Confusion Matrix . 46

27 Phrase and Entity Parser Results Examples . 46

28 Phrase and Entity Parsing . 47

29 Image Relevance Results . 49

30 Interlocutor Set Results . 50

13

31 User Study Results . 51

32 Resources Used . 52

14

1 Introduction

A 2018 United Nations report indicates that 15% of the world’s population lives with some
form of disability1. A large portion of these people have difficulty speaking, and engaging in
conversation can require significant effort and become tiresome. Interlocutors, or conversation partners,
additionally require an increased amount of patience due to potentially delayed responses. This can
create a reciprocity gap for people with disabilities when communicating, and limit their ability to
integrate as a member of society. The United Nations report indicates that the reciprocity gap creates
challenges for these individuals in their education, social development, and careers. In the US alone, it
is estimated that 1 in 345 children have cerebral palsy, one of many disabilities that can affect speech2.
A recent UNICEF study indicates that almost 50% of children worldwide with disabilities do not
attend a formal school, and nearly 85% have never received a formal education. Even for those who do,
there is evidence that traditional schooling methods are not suitable to meet their needs3. The
reciprocity gap for the verbally impaired must be reduced as much as possible in order to help them in
their education, social development, and careers.

Augmentative and Alternative Communication (AAC) devices have emerged as an effective
tool to reduce the time to communicate for individuals with disabilities4. However, they are not
capable of completely eliminating the reciprocity gap. Natural language processing (NLP) and machine
learning (ML) can be applied to communication between users and interlocutors using a more human
centric approach. Such an approach focuses on predicting the most natural course of a conversation to
allow quick responses.

Livox is a unique, pictogram-based AAC application to facilitate communication through a
simple, yet highly customizable interface that also accommodates a wide range of vision and motor
impairments. Livox has made great strides to implement human-centric ML and NLP tools into their
application, such as an NLP-based binary yes or no question classifier. This empowers interlocutors to
ask yes or no questions, which triggers the application to display the appropriate “YES” and “NO”
options for users to select in response. This and other features empower users to quickly and easily
communicate with interlocutors.

The primary goal of this project was to reduce the time and effort required to communicate for
people with disabilities by incorporating an NLP-based multi-label classifier into Livox’s machine
learning infrastructure. Our approach listens for list questions, questions followed by a list of responses,
and presents relevant images for each response to users. We identified four objectives that lead to the
successful completion of our goal:

1. Classify a question as a list question

2. Separate the response phrase from the question phrase

3. Identify and extract the relevant responses from the response phrase

4. Identify the most relevant image for each response

In order to achieve each of these objectives, we utilized an iterative process, focused on Agile
development and producing frequent deliverables and demonstrations for Livox stakeholders. In order
to guide or iterative improvements, we identified four design goals to focus our efforts and move
towards the most effective solution within Livox. Livox is a cost-effective AAC solution and is used in
remote and less advantaged parts of the world. Therefore we aimed for the classifier to:

• Have high accuracy for analyzing common speech,

• Encapsulate natural conversation to facilitate ease of use,

• Run in offline environments independent of internet connection,

• Run efficiently on older or less powerful devices.

15

When faced with design and implementation decisions, we considered each of these factors in
our resolution. In the following sections, we outline how NLP and ML classifiers can be used to
facilitate communication through AAC devices, as well as outline the specific steps we took to achieve
each of our objectives and design goals.

16

2 Background

Augmentative and alternative communication (AAC) systems are necessary tools for many
people with disabilities to interact and develop socially. There are several categories of AAC systems,
such as picture exchange communication systems, recorded speech devices, and electronic tablet speech
applications. Each approach comes with its own set of trade offs, which have to be weighed on a
case-by-case basis, based on the needs and preferences of the user. Natural language processing and
machine learning can be applied to electronic tablet speech applications to further reduce the
reciprocity gap and physical effort required by the user. In this section we outline the state-of-the-art
AACs within each category, and identify strategies for how NLP and ML can be used to understand
and facilitate communication.

2.1 State of the Art AACs

The goal of AAC systems is to provide non-verbal forms of communication to anyone who has
difficulty talking4. These people can include those affected by autism, cerebral palsy, stroke, cancer, or
other conditions that affect verbal communication. The use of AAC devices can range from short term,
such as during recovery, to long term, even lifelong4. The research community has collectively created a
plethora of AAC systems, with some focusing on the construction of sentences using subsets of selected
words, and others focusing on communication through pictograms. This paper strictly focuses on the
later subset of devices. Pictogram-based AAC systems’ user experience can be analysed by their
affordability, portability, ease-of-use, and time-to-communicate. Due to AAC’s usefulness to a variety
of conditions, these criteria must serve a variety of user’s individual cognitive, visual, and fine motor
skills5. The major forms of pictogram-based AAC systems were analyzed using these criteria, including:

• Picture Exchange Communication

• Recorded Speech Devices

• Electronic Speech Tablet Applications

Picture exchange communication systems are affordable and allow an extensive vocabulary, but
lack portability and take lots of time to communicate. Recorded speech devices are more portable and
quicker to communicate with, but are more expensive and have smaller vocabularies. Electronic speech
tablet applications provide a balance between these different concerns. In addition, electronic speech
tablet applications take advantage of software updates to become more customizable and make better
use of cutting edge technology.

2.1.1 Picture Exchange Communication System

Picture exchange communication (PEC), as seen in Figure 7a, is one of the simplest AAC
systems6, allowing individuals to communicate with interlocutors by handing them physical pictograms,
pictures expressing thoughts, needs, or desires. Many pictograms are needed as each picture is only
intended to communicate one concept. Due to this, transportation can be difficult and the system may
not be easily available outside of environments such as the home or school. The time-to-communicate
can be long, as the pictogram must be found and passed to the interlocutor. Despite this, PEC systems
tend to be very affordable, having many free online resources7, as well as easy to use, as the teaching
process is well documented8. This system is customizable for different visual abilities and cognitive
levels, however, users must have good motor skills because it requires handling multiple cards at a time.

2.1.2 Recorded Speech Devices

Recorded speech devices (RSDs) “produce electronic voice output, allowing the individual to
communicate” by using a synthesized voice, to speak aloud letters, words, and messages11. One

17

(a) PEC9

(b) GoTalk Express 3210

Figure 7: Example AAC Devices

pictogram-based RSD, the GoTalk Express 32, can be seen in Figure 7b10. This RSD offers 32 messages
at a time, allowing for simple communication. In addition, a background card can be exchanged with
up to 4 other pre-set cards to change all 32 messages that can be selected. GoTalk Express 32 is
designed for portability, including easy transport handles and a long battery life. Most pictogram-based
RSDs provide this same functionality, but support different amounts of messages and cards.

Pictogram-based RSDs are simple to use as they present a limited number of options in static
positions. The statically-positioned choices make RSDs easy to learn and this can speed up
communication. However, if the current card doesn’t include the desired option, swapping cards to get
the needed message can greatly increase the time to communicate. For example, if a user wanted to ask
for lunch but the card they were using was about animals, as is the case in Figure 7a, then they would
need to find and swap to a card with food options. Unfortunately, RSD systems can be expensive,
ranging from about $16512 up to $70010. These systems lack customizability for different cognitive,
visual, and motor abilities, but the variety and target user base of companies making RSDs means that
most users will be able to find a suitable device.

2.1.3 Electronic Tablet Speech Applications

Electronic tablet speech applications are a specialized type of pictogram-based RSDs which run
on smart devices such as tablets, smart watches, portable gaming consoles, and others. They are
developed both for academic purposes, as is the case with Sc@ut13 and IMLIS14, as well as in industry,
as is the case with Proloquo2go15, Snap + Core First16, and TalkTablet17. These applications provide
the same picture to speech functionality as RSDs, however the use of smart devices give several
advantages. This approach allows dynamically exchanging pictograms, letting the application display
pictograms in logical groups and allowing users to quickly navigate to relevant options. AAC
applications also allow users to create their own pictogram content. In addition, application visuals can
be fully customized to the needs of the user. Most smart-device applications use a nested-folder
structure for organizing pictograms by category.

AAC applications allow the creation of modern features which allow new approaches to AACs.
Proloquo2go is an AAC application using a fine grained approach to language, allowing them to focus
on the growth and development of an individual’s vocabulary18. This application adds extra features to
those above to achieve this focus. The application uses a tiered learning system in which users start
with a core vocabulary, words which are used most frequently. As the user develops stronger cognitive
abilities and becomes more comfortable with their core vocabulary, new words and grammatical
options are added. As seen in Figure 8, the core vocabulary is displayed on the main page, while
“fringe words”, which are used less frequently, are organized into folders for different topics on the
bottom two rows of the screen. This application also provides users with the ability to use any verb

18

tense, accessible by holding down a tile with a shaded top right corner.

Figure 8: Proloquo2go Application18

AAC applications tend to be less expensive than other RSDs, as Proloquo2go is only $25015.
In addition, the portable design of most tablets and other smart devices make these applications easy
to transport. However, smart-devices require frequent charging or constant power, decreasing
portability of the AAC solution. AAC applications provide simple and concise controls for finding
desired pictograms which can decrease the time to communicate for large vocabulary. However, the
time to communicate can still be longer than simpler RSDs, especially if the tiles are not always
arranged in the same order or if the desired pictogram is on a different page, requiring more physical
interactions from the userneausi.

The largest benefit of electronic tablet speech applications over other AACs is that they are a
software based solution. This allows them to have customizable UI’s to make them accessible to a
range of mental, visual, and cognitive disabilities. AAC applications can be continually developed, with
new features immediately available to users through software updates. Finally, AAC applications can
take advantage of cutting edge technology, such as machine learning and natural language processing,
to create new ways for AAC’s to help their users.

2.2 Natural Language Processing

Natural Language Processing (NLP) is at the intersection of the fields of computational
linguistics and artificial intelligence19. It encompasses the algorithms which allow computers to “read,
decipher, understand, and make sense of the human languages2021.

In order to understand and extract information from pieces of text, NLP algorithms typically
do analysis in four linguistic stages: morphology, syntax, semantics, and pragmatics, as seen in Figure
4 22. Morphology is analysis of the words which make up a sentence. This stage includes the process of
lemmatization, which normalizes words by removing affixes to reduce them to a base word23. The
syntax analysis stage focuses on the relationships between words22 and includes finding parts-of speech
and building a dependency tree between words2324. Semantic analysis refers to understanding the
sentence as a whole. NLP tasks at this stage include named entity recognition and sentiment
analysis22. Finally, pragmatic analysis uses surrounding sentences and phrases to identify the context
of a particular sentence and to identify the meaning of a text as a whole21. The stages used, level of

19

Figure 9: Natural Language Processing Pyramid

analysis, and algorithms used are entirely dependent on how NLP is being applied to a given task.

Specific techniques can be employed at different stages of NLP to create a larger pipeline of
processes. Analyzing sentence structure can be used at the semantic stage. Word stemming can be
used at the morphology stage. Word Embedding and term-frequency-inverse document frequency
(TF-IDF) can be used at the syntactic stage. Named Entity Recognition (NER) can be used in both
the syntax and semantics stages. Machine learning classifiers are used at many stages in NLP, and can
be used to achieve powerful pragmatic analysis.

2.2.1 Analyzing Sentence Structure

One strategy used in syntactic analysis is to define specific, expected sentence structures to be
recognized by the rest of the processing. An ideal sentence structure must fit two requirements: it must
be fluid enough to encompass natural conversation and it must be structured enough to make it easy to
identify and parse. These two goals are at odds, where one requires a more fluid structure, and the
other requires a more rigid structure.

Figure 10: Alexa Skill Command Structure25

Voice activated devices, such as the Amazon Echo26 and Google Home27, allow the use of voice
commands to interact with provided services. Amazon allows users to create custom commands, coined
Alexa Skills, which can be deployed onto any supporting device28. Each Alexa Skills command is
broken into several pieces, seen in Figure 10: the wake word, the launch phrase, the invocation phrase,
and the utterance25. Sentence segmentation breaks the sentence down into phrases, so different
information can be extracted from each phrase. The wake word precedes any command, and acts to
wake the system up. For example, Amazon uses the name “Alexa” as a wake word. The launch phrase
is what identifies the action the user is requesting. In an Alexa Skill this is a verb such as “launch”,
“ask”, or “open”. The invocation gives context to the action by identifying the intent of the action.
Alexa Skills use the skill name as the invocation which identifies what the user intends to interact with.

20

Together the launch phrase and invocation define what the command is. Finally, the utterance contains
the details of what that command should do. Below is an example of how a sample sentence is broken
up.

2.2.2 Word Stemming

Word Stemming is used to create more lightweight models that can recognize different forms of
the same word. It is a heuristic based method that attempts to remove affixes from either end of a
word29. For example the words “person”, “persons”, “personality” or “personalities” would all be
interpreted as “person”. This method has its flaws but generally works well. A more robust strategy is
to use word lemmatization. Instead of heuristic based, lemmatization is tree based, utilizing formal
root words that construct a word. Although word lemmatization is more accurate, it has higher
computational and storage requirements29.

2.2.3 Term Frequency - Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) is a method of scoring a large
number of documents when searching for a query. It can be used by search engines to rank web-pages
for specific searches. Term Frequency scoring gives a higher score to documents the more a term or a
word in the query appears. A problem arises when scoring only by Term Frequency, where a term may
appear in a longer document more than in a shorter one, causing the longer one to score higher.

Inverse Document Frequency addresses the relevance problem in Term Frequency by
accounting for the number of documents in which the term is found, determining how common and
useful it is. Inverse Document Frequency for a term is defined as idf = log(N

df),where “df” is document
frequency, the total number of documents in which the term is found, and “N” is the total number of
documents gathered. A query term will be weighted less the more often it appears in multiple
documents, but will be weighted with higher importance if the term appears in very few documents.
The Term Frequency score is adjusted using the Inverse Document Frequency simply by multiplying
the terms together. Therefore, an entire document can be searched using all terms in the query:
Score(q, d) =

∑
t∈q tft,d × idft. The documents with the highest score are selected as the most relevant

to the query text2930.

2.2.4 Word Embedding

Word embedding is the process of converting textual words into numerical vectors, sometimes
composed of 300-400 numerical dimensions. This can be achieved using a number of ML libraries,
including Word2Vec, which is trained on a large text dataset and converts a dictionary of words into
vectors. Word2Vec also considers in part the relative placement of words around their neighbors in the
text31. These vectors can be compared for similarity within the vector space.

For example take the four words: “lunch”, “hamburger”, “tree”, and “forest” . The words
“lunch” and “hamburger” would be closer in the vector space than “lunch” and “tree”. As seen in
Figure 11, this allows for the use of a domain specifier to reduce ambiguity for compound nouns. For
example, distinguishing between “hot” and “dog” versus “hot dog” would be much easier knowing the
domain is “lunch”. Word embedding can also be used to extend a vocabulary to recognize synonyms of
a word. For example, if the label of an image is “pajamas” word embedding can be used to find the
closest n words to the given phrase, allowing for recognition of slang phrases such as “jammies” to be
connected to “pajamas”. Overall word embedding allows users interacting with our protocol to use
more natural conversation and a richer vocabulary.

21

Figure 11: Simple Vector Word Representations

2.2.5 Machine Learning Classifiers

Machine learning is a branch of artificial intelligence that focuses on systems that can learn a
function without its behavior being explicitly programmed32. Machine learning is used to solve
problems with high input complexity where it is impractical to handle problems on a case by case
basis. For example, machine learning is used in Google’s Android Speech Recognition (ASR) library to
achieve speech to text capability in over 120 different languages33.

Convolutional Neural Networks (CNNs) are a type of neural network designed to leverage the
complexity of large input vectors. Typically they are used for images but have also been found to be
effective within NLP tasks. CNNs aim to mimic the brain’s visual system by implementing many
convolutional layers that are each targeted at recognizing specific features. For example, in image
processing networks, early convolutional layers may focus on simple features such as lines and curves,
while deeper layers may use lower level features to identify more complex features such as a nose or
mouth.

CNNs can also be applied to understanding language. Sentences can be represented
numerically within a vector space using TF-IDF or word embedding, and used as input to an NLP
CNN34. Larger pieces of text can be parsed and vectorized to create sentence matrices. These matrices
can be convolved to classify sentence categorizations and to gain semantic and pragmatic information.
Semantic and pragmatic analysis can then be used to identify the themes and topics of a larger text.

Long Short-Term Memory Networks (LSTMs) are a type of network commonly used for
time-series data. Similar to a Recurrent Neural Network (RNN), they allow for the maintenance of an
internal state that is persistent from previous data34. LSTMs improve upon RNNs with the addition of
a forget gate that allows for more continual usage over long sequences of data35. LSTMs are designed
to react to continuous streams of data used in cases such as autonomous driving.

2.2.6 Named Entity Recognition

Named entity recognition (NER) is the process of identifying expressions that refer to people,
places, organizations and companies36. NER adds semantic information to the sentence and can
support pragmatic text analysis. For example, “John went to California to visit Apple headquarters”
could classify “John” as a person entity, “California” as a place entity, and “Apple” as an organization
entity. In this example, NER resolves the ambiguity in the word “Apple” meaning either a fruit or the
company. By tagging John and California, NER additionally identifies that “a person went to a place”

22

rather than “a noun went to a noun”.

There are several available NER libraries, such as Stanford NLP37, spaCy38, NLTK39, and
GATE40. Stanford NLP is a powerful Java library that includes a variety of pretrained models, as well
as tools for training custom models41. This library uses a linear chain conditional random field (CRF)
sequence model37. CRF models are a type of discriminative classifier, which directly estimate the
conditional probability between the input and output classes42. CRF models are commonly used in
NLP tasks because they take context from neighboring samples when classifying each individual
sample31.

2.3 Livox Application

Livox is an electronic tablet speech application, available for Android devices, designed to
accommodate users with vision, motor, speech, and other impairments. Livox is designed to have a
simple yet flexible interface, making it quick and easy for caregivers to setup and use the
communication board. The application is highly customizable, allowing for multiple users to coexist on
the same device, each with their own specific profile with interface settings and collections of
pictograms. Users can download, create, and share additional content through a web interface. Lastly,
Livox uniquely incorporates artificial intelligence through a human-centric approach to better facilitate
communication for users. Although some features within the application might seem trivial, and are
provided by other existing AACs, the holistic collection of features included in Livox provide an
all-in-one solution that can be adapted to almost any user.

2.3.1 Interactivity Features

Livox provides a unique set of tools for caregivers to setup and maintain multiple devices, each
with their own set of user profiles that focus on the usability and simplicity for users. The application
enables seamless and instant transition between multiple profiles on a single device, allowing it to be
used for multiple users at a time. Caregivers can create profiles with basic information about the user’s
impairments, which will initially specify their interactivity options.

In order to better facilitate communication, users or caregivers can change the following
configurations at any time:

• Increase or decrease the number of rows and columns of items, effectively increasing or decreasing
the size of items on the screen.

• Present normal pictograms, black and white images, or high-contrast images to accommodate
vision impairments.

• Display pictograms at full screen size after selection, so users can validate that the correct item
was selected.

• Set a customized click interval, which forces the application to wait a specified amount of time
before recognizing successive clicks.

• Select custom navigation options including fixed or hidden buttons and gestures through swiping.

• Return to the main screen after a specified time interval so users do not have to repeatedly select
the back button.

• Maintain pictograms’ relative position on the screen, even when some pictograms are hidden, so
that the same items are in consistent locations.

Livox also includes automated imprecise touch adjustment (IntelliTouch), which tracks how
many fingers are touching the screen, if the hand was dragged across the screen, the duration of the
touch, and other factors to correct for the imperfect touch of users with motor-skill impairments. This

23

collection of features sets Livox apart from its competitors, making it one of the most adaptive and
accommodating AAC solutions.

2.3.2 Livox Portal

The Livox Portal provides a place for device managers to configure and gather statistics on
their devices. Through this portal, managers can gather information about the number of unique users
on a device, the version of software they are using, their language preferences, and their geographic
regions. Managers can additionally, if applicable to the user, monitor how users are making
improvements in their education.

The Livox store provides a place for users to create, upload, share, and download custom-made
pictogram tiles, all curated by Livox. Users can create and search for labels on specific sets of
pictograms, as well as rate content to find the most popular. By involving users in content creation,
there is no upper limit on the kinds of content that can become available for Livox.

2.3.3 Innovations in AI/NLP

Livox takes a unique approach to using artificial intelligence by focusing on a person’s context
to facilitate communication. Livox analyzes user’s past selection data, including the item, time of use,
touch duration, GPS location, and pictogram location on the screenneausi. Using this information,
machine learning algorithms are used to predict what items a user is most likely to select within a given
context. For example, if Livox detects the device at a restaurant and the time is around noon, it will
prioritize food items often selected at this time and location. If tiles must be split onto multiple pages,
it will display prioritized items on an earlier page, and normally available items on successive pages. In
this case, it will likely prioritize tiles “I want. . . ”, “to eat. . . ”, and foods often selected for lunch.

Figure 12: Livox Natural Language Sentence Classifierneausi

Livox leverages NLP technology to reduce the number of user interactions required to respond
to specific, recognizable questions asked by interlocutors. The application continuously listens for the
specified wakeword and, once recognized, activates the application’s question classification algorithms.
As seen in Figure 12, these classifiers currently recognize yes or no questions and, if detected, will
replace the current screen with two full-screen buttons labeled “YES” and “NO”.

24

3 Methodology

The primary goal of this project was to expand the use of Livox’s context-aware machine
learning and natural language processing to reduce the time and effort required to communicate for
people with disabilities. These technologies can be used to develop a suite of human-centric tools to
facilitate bidirectional, natural conversation, however, this paper focuses on the implementation of one
natural conversation tool.

Currently, users are required to manually navigate many menus to reach the desired tile when
asked a question. Our tool enables interlocutors to ask questions followed by a list of possible
responses, displaying several tiles with the most relevant images for each response. With this Livox
natural conversational tool, users will be able to immediately select their answer from a short list of
items presented.

This feature was divided into four objectives in order to simplify the development of our
natural conversation tool:

1. Classify a question as a list question

2. Separate the response phrase from the question phrase

3. Identify and extract the relevant responses from the response phrase

4. Identify the most relevant image for each response

Figure 13: List Classifier Stepsneausi

There were a number of restrictions on the project including both functional and
non-functional requirements. Functional requirements included encapsulating common and slang
speech, and encapsulating phraseology used in natural conversation. Non-functional constraints on our
implementation included running on low-end mobile devices and running without an internet
connection.

3.1 Classifying List Questions

In order to simplify classification of recorded sentences, we created a predefined sentence
structure to be recognized. This structure was designed to be rigid enough to allow for question
classification, yet generic enough to project a natural feeling when being used by interlocutors. We
modeled our approach after Amazon’s command structure in their Alexa Skills service. This included a
wakeword, a combined launch and invocation phrase, and the utterance phrase.

The first aspect of the command structure is the wakeword, used to trigger all voice
interactions within the application. In the example list question in Figure 14Livox already recognizes
the wakeword “Jill”. The wakeword in Livox can be defined and changed in the application’s
configuration, but it is most commonly the user’s name. The Livox wakeword was used in our list
question classifier without any addition or modification to the codebase.

25

Figure 14: List Question Structure

We combined Amazon’s concept of the invocation and launch phrases to define our question
phrase. In the example in 14, the question phrase is “what do you want for dinner.” It should be noted
that the question phrase does not need to be a complete statement. For example the phrase “Jill,
would you like pizza or hamburgers?” is also acceptable. Finally, we considered Amazon’s concept of
the utterance phrase to be the list of possible responses succeeding the question phrase. In the example
in 14, the response phrase is “roast beef, a pizza, or hamburgers.” This sentence structure enabled the
processing of questions within our NLP solution.

In accordance with our sentence structure, a recorded question must contain two parts after
the wakeword; the question phrase and the response phrase. First, the question phrase is identified
using a recognizable question initiator, such as “do,” “what,” or “are.” Second, the response phrase is
identified by a coordinating conjunction connecting two or more similar nouns in the list of entities.
The word “or” is an example of this in Figure 14. Our classifier detects list questions based on these
two defining factors.

3.2 Separating Question and List Phrases

In order to determine where the question phrase ends and the response phrase begins, we
developed a heuristic solution that relies on detecting two key factors of the recorded text; the question
word and a predefined offset number of words to use when looking for the response phrase. Common
question sentences follow fairly consistent patterns, such as:

• “What would you like to eat || pizza, pasta or steak?”

• “What would you like for breakfast || eggs, bacon or ham?”

Thirteen common question words such as “who”, “what”, “when”, and “where” are first
searched for, then secondary closure terms such as “for” or “to” are found in the question. The
secondary terms have offset values assigned to them, usually between 0 and 2. In the case that no
secondary term is found, we assumed an offset of 4 words until the beginning of the response phrase.
The response phrase is assumed to start after the offset value’s number of words from the secondary
term. Since there are many cases where one offset value is not always correct, conservative values were
used preventing important content from being removed from the response phrase. We believed it was
better to have potentially extraneous entities on-screen, rather than missing one or more entities from
the list.

3.3 Extracting Question Responses

After separating the question and response phrases, our classifier extracts all relevant responses
to the question. For example, given the separated response phrase from Figure 14 “roast beef, a pizza,

26

or hamburgers,” our classifier extracts the entities, “roast beef,” “pizza,” and “hamburger.” We are
able to achieve this through three steps of analysis, including:

1. Removal of stopwords

2. Tokenizing responses to find the most relevant combinations of bi-grams and trigrams

3. Word stemming

Stop-words are the most common words used in natural language, and include words such as
“the,” “at,” “for,” and “from,” along with countless others. For example, in the phrase in Figure 15 the
removal of stop-words is necessary so that our classifier does not include words such as “a” and “or” in
the list of responses presented to the user. This is easily done through a dictionary lookup of common
stop-words. Many NLP libraries, such as NLTK for Python, have built-in dictionaries for such words,
with the ability to define custom dictionaries if desired. Our solution uses a default dictionary to
transform the phrase “roast beef, a pizza, or hamburgers” to be “roast beef, pizza, hamburgers.”

roast beef a pizza or hamburgers?

Figure 15: Stop-Word Removal

In order to recognize compound word entities, such as “roast beef,” our classifier recognizes
which pairings of words in the list of responses should be grouped together. In order to achieve this we
created a dictionary of common compound word responses that are known to have images associated
with them.

Once the response phrase is cleaned, the list of responses is tokenized to extract a superset
containing each individual word, as well as all two-word and three-word combinations that include
surrounding words. We then search this superset of possible entities for known compound words
contained in our vocabulary. In this stage we give precedence to recognizing longer compound word
entities, and search for single-word responses last. For example, the cleaned phrase in Figure 16 “roast
beef, pizza, hamburgers” has subsets with “roast” and “beef”, and others with “roast beef”. The latter
are always chosen over the smaller combinations of words, in each case, just a single word.

roast-beef pizza hamburgers

Figure 16: Tokenizing Responses

Additionally, we used word embedding to augment and extend the vocabulary of entities in our
dictionary. Using a word embedding model generated by Google, we added support for ten synonyms
for each entity in the vocabulary. For example, the word “pajamas” in the vocabulary was
supplemented with words such as “pjs” or “jammies” from the word embedding model. This is used
when the extracted entity does not exactly match the Google image labels, and greatly increases the
volume and diversity of our classifier’s vocabulary.

Word stemming is the process of truncating or modifying words in the hope of reducing
complexity and finding the derivative forms of words with similar meanings29. For example, the words
“organize”, “organizes”, and “organizing” all share common meaning. This process removes plural and
possessive suffixes from words and finds the root forms of words. In our example response phrase in
Figure 17, this process transforms the phrase “roast-beef, pizza, hamburgers” to be “roast-beef, pizza,
hamburger”. For our classifier, this breaks down possible responses into more generic, recognizable
categories. Additionally, by reducing entities to their root forms our classifier is more likely to find
images for these root forms, rather than the original complex or plural forms.

roast-beef pizza hamburgers

Figure 17: Response Stemming

27

Using these strategies, our classifier is able to recognize any n-gram word response, as well as
any number of total responses in the phrase of text. We limited detected n-grams to reduce the
computation required for a real-time application, and to simplify the presentation of responses to the
user. Increasing the number of words when comparing n-grams increases the number of individual
comparisons required on an exponential scale. Therefore to improve performance, we limited the
classifier to only recognize tri-grams.

3.4 Image Classification and Retrieval

In order to present the most relevant image for each entity, our classifier queries a database of
image labels that describe what is portrayed by each individual image. Livox maintains a database
with this information, however, existing labels are not always accurate to what is in the image, and the
labels do not account for compound-word entities. Additionally, Livox has many images that portray
the same entity, with no way of finding the most relevant image for it.

We relabeled all of the images currently being used in the Livox application in order to present
images for compound-word entities and to find the most relevant among many potential images. To
achieve this, we used the Google Vision API, which applied multiple categorical labels to each image
and produced confidence levels for each label. For example, the image of a dog in Figure 18a was
classified with labels including “dog, mammal, vertebrate, and puppy” as well as confidence levels
between zero and one.

(a) Example Image

Label Confidence (%)
Dog 0.9953

Mammal 0.9890
Vertebrate 0.9851
Dog breed 0.9838

White 0.9692
Bichon frise 0.9566

Puppy 0.8547

(b) Google Vision API Generated Labels

Figure 18: Google Vision API Generated Labels For an Image

We entered these categorical labels, as well as a unique identifier for each image into an
independent database. Our classifier queries this database using each response, and finds the image
with the highest confidence in the label its querying for. For example, if it were searching for an image
of a “puppy” entity, it would not likely use the image in Figure 18a since it’s only 85% confident that
the image is indeed a puppy. However, if it were searching for an image of a “bichon” entity, we would
be very likely to select the image in Figure 18a since we’re 95% confident that the image contains a
bichon. The classifier then fetches the actual image from Livox’s existing database to be presented to
the user.

28

4 Implementation Strategy

This section focuses on the tools and general strategies our team used for research, project
management, and programming. We used Google Drive for organization and collaboration. The main
tools we used to assist with communication and task management were Slack, WhatsApp and Jira. For
programming, we utilized integrated development environments such as Android Studio and Pycharm,
and organized code through GitHub and BitBucket. For rapid prototyping and testing of our list
classification module, our team deployed a microservice architecture. This module interacted with
numerous external APIs and services such as Google Cloud and Amazon Web Services (AWS).

4.1 Agile Development

We followed an Agile Development methodology to maximize our productivity while
completing this project43. Agile development emphasizes an iterative approach to software engineering
focusing on several core values including:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

With these core values in mind, Agile developers conduct a cycle of iterative improvements to
a piece of software, each ending with a working version of code. These cycles, often called sprints,
typically last from one to four weeks depending on team size and the complexity of the project. Our
team utilized a weekly sprint schedule, with each sprint starting and ending on Wednesday. Each sprint
began with a team planning discussion, where tasks to be completed in the next week are formalized,
prioritized, and given a subjective complexity score based on the difficulty of the task.

During the sprint, tasks are organized on a kanban board which limits the number of tasks
that can be in progress at any time. This encourages developers to complete, test, and document a
single task before starting a new one. Additionally, by using specific staging areas for test validation
and code reviews, developers can ensure their code meets the highest standards of the team before
being included in a deployment to the customer. In order to ensure tasks are completed smoothly, we
conducted a scrum meeting each day, lasting no longer than 20 minutes. In each meeting we reported
our progress on tasks within the previous day as well as any roadblocks we ran into. We then discussed
the priorities of the team and set personal goals for work to be completed the next day.

At the end of the sprint cycle, developers produced a working version of their code, presented
their changelog, and gave a demonstration to project stakeholders. This sprint review served as a
chance for stakeholders to give feedback on the direction of the project and request specific pieces of
functionality within the software. This unique approach allowed developers and stakeholders to
cocreate a piece of software across many iterations, and through tight collaboration. Our teams, after
review with stakeholders, conducted a sprint retribution to identify how the team can work more
effectively and to increase the volume and quality of work in future sprints.

During sprint retribution, team members sum the complexity scores of all tasks completed
within each sprint to identify a team velocity, used to estimate the amount of work done by the team
as a whole. Team velocities can be compared between sprints to evaluate how the productivity of the
team changes over time. An ideal team would slightly increase their velocity each sprint and become
more efficient working together. However, this is extremely rare, and most teams aim to achieve a
consistent yet challenging velocity across all sprints. Finally, after gathering feedback from stakeholders
and discussing how the team can act more efficiently, teams begin the process of planning for the next
sprint cycle.

29

4.2 Technology Stack

4.2.1 File Organization and Task Management

Google Drive is a file synchronization and document authoring tool44. We used it to
collaborate on research organization, meeting notes, and code documentation. It allowed us to all have
shared and concurrent access to documents in order to collaborate in real time. Google Drive is free to
use for a limited amount of storage, which is all we needed for this project.

Jira is an issue tracking and Agile product management tool used for creating, tracking and
assigning tasks to group members45. Jira was designed for Agile development so the organization of
epics and stories is built into the framework of the task tracking software. Livox currently uses Jira for
their own task tracking, however, we created our own backlog of tasks as to track our productivity
independently from the rest of the Livox developers.

4.2.2 Communication

Slack is a convenient, real-time messaging platform designed for communication within project
teams46. We use Slack to communicate, share schedules, and organize daily activities within our WPI
student team. As students, we are all involved in multiple group projects, and Slack provides
functionality to switch between these groups in a single application.

WhatsApp is a messaging and voice over IP service47 made for both mobile and desktop
environments. We used WhatsApp as a high-priority contact method with our project sponsor Carlos
Pereira and members of his engineering team such as André Camara. Many members of the Livox team
are located in Brazil and WhatsApp is a popular solution for convenient and free international
communication.

4.2.3 Programming

GitHub is a software development version control hosting platform48. All of our code was
created and shared through a private repository on GitHub, allowing us to maintain a stable,
production version of code, while having additional branches to work on new features. We maintained
a rule that no code should be pushed straight to production in order to reduce code merging errors and
to maintain the integrity of our codebase.

Android Studio is the official Integrated Development Environment (IDE) for Android49.
Android Studio was used in developing our Java code and user interface (UI). We chose Android Studio
because it offers useful Android development tools, such as high-level UI design, Git integration,
dependency management, and instant deployment to virtual or USB connected devices.

Pycharm is an IDE for Python programming50. We used Python alongside Java to expedite
the time to completion for single-time tasks and to create quick, proof-of-concept applications. Our
image labeling was implemented using Python scripts that connected with Google Cloud and our AWS
database. We developed our proof-of-concept application and prototype list classification package using
a Python web API to develop and test solutions quickly in a language with more support for AI and
NLP tasks than Java.

Flask is a lightweight Web Server Gateway Interface (WSGI) web application framework for
python developers51. This was used so that functionality could initially be written in Python before
being implemented into Java, and data could be sent and received by the application while the code
was not local to the tablet. Our Flask API was used for almost all functionality while the program was
still online. After the application was taken offline, it was used for running tests to evaluate the
classifier and to prototype new solutions.

30

4.2.4 External APIs

Amazon Web Services (AWS) provides on-demand cloud computing, database management,
and file storage, along with many other services52. AWS offers services that allow for quick and
inexpensive deployment of MySQL databases. We used AWS to host and manage a database of image
labels created using Google Cloud’s Vision API.

Google Cloud provides a suite of cloud computing services with one of the most versatile image
labeling APIs53. We used Google Cloud to interact with the existing Livox image database and the
Google Vision API. With a new account, we received free credit to use towards cloud services. Using
this credit we labeled all images in the Livox database at no cost.

Microsoft Azure is a cloud computing service similar to both AWS and Google Cloud54. We
utilized Azure to explore the reliability of real time speaker identification for persistent interlocutor
profiles. Azure offers models that can be trained to identify up to 10 distinct voices within a user
profile.

Amazon Mechanical Turk55 is a crowdsourcing marketplace that enables the outsourcing of
simple tasks to a distributed virtual workforce. We utilized Mechanical Turk to generate a dataset of
list questions through a distributed Google Forms questionnaire. Participants gave examples of list
questions based on their own understanding of the classifier. We later used this dataset to measure the
performance of our classifier and to identify areas of improvement for the future.

4.3 Microservice Architecture

Microservice architecture is a style that splits a singular application into a set of services, with
minimal dependencies, that allow the program to be more modular56. We divided the architecture of
our list classifier into separate modules that have specific purposes: converting the speech into text,
recognizing there’s a question, splitting the question and response phrases, and isolating the named
entities. This implementation style allowed us to create minimum viable products for each section and
then iteratively test and improve each module as needed. We aimed to start with simple solutions and
expand complexity throughout our development. The list classification package as a whole also acts as
a microservice, minimizing issues while integrating with Livox’s existing codebase.

31

5 Evaluation

The primary goal of this project was to extend the existing machine learning algorithms,
within the Livox application, to further reduce the time and effort required to communicate for people
with disabilities. We aimed to create a solution that could encapsulate phraseology used in natural
conversation, and have strong accuracy for commonly asked questions.

Livox is a mobile application, and supports users both at home or school and while traveling.
Therefore, it was important to verify that our classifier functions in offline environments without an
internet connection, while users are away from their home or school. Additionally, Livox is a low-cost
alternative to many other AAC solutions, therefore our classifier should efficiently run on low-end
hardware to support older and more budget-oriented devices.

We evaluated our solution using multiple methods, each targeted at measuring the effectiveness
of different aspects of our classifier. We tested our classifier to gain understanding for three main
purposes, each with one or more methods of evaluation:

1. Data-Driven Development Decisions: To understand how our classifier can be improved and to
align with the functionality described by Livox stakeholders

• Targeted Testing of online and offline solutions

2. Quantitative Metrics: To measure the accuracy of our classifier’s design

• Crowdsourced Dataset Testing

3. Qualitative Metrics: To measure the real-world impact our classifier has for users of Livox

• Image Matching Rating

• User Studies

In this section we further describe the motivations and methodologies for each aspect of our
evaluation.

5.1 Targeted Testing

We created a dataset of 30 targeted test questions, through collaboration with project
sponsors, to ensure specific functionalities were achievable by our classifier. We used this set of
questions to identify specific milestones in our classifiers ability to handle varying:

• Types of questions: Can ignore yes or no questions and all non-list questions, and recognize all
list questions

• Sentence structures: Can parse sentences with varying phraseology and syntax

• Types of responses: Can extract compound-word and plural responses

We created a dedicated testing endpoint in our online API in order to evaluate the classifier
against this entire dataset of questions. The test endpoint executed each of the API services across the
collection of test questions and produced both detailed results for each question, as well as a summary
for all cases. Our summary results include the number of questions that were successfully parsed, failed
to be parsed, or caused an error in our processing. The detailed results include the output from each
endpoint, indicated in Figure 19 below.

We conducted tests after the completion of four stages of development including:

32

Classify input text as a list question: Question Classification
What would you like for dinner; pizza or pasta? → List Question
Do you want dinner? → Yes/No Question
Separate the question from the list of responses: Phrase Parsing
What would you like for dinner; pizza or pasta? → What would you like for dinner |
pizza or pasta
Extract the list of entities: Entity Parsing
|pizza or pasta|→ [pizza, pasta]
Retrieve relevant images for each entity: Image Retrieval
[pizza, pasta]→ images

Figure 19: Modular Model Evaluation

1. Naive phrase parsing and entity extraction

2. Dynamic phrase parsing and entity extraction through word embedding

3. Improved phrase parsing and word stemming

4. Extended word embeddings and vocabulary

Many of these questions were created to identify weaknesses in our implementation. Some
difficult cases were created, that stakeholders identified to be non critical, as stretch goals for our
project. We additionally included cases for false positives, questions that our classifier would not
recognize and parse, to identify how our classifier reacted to and recover from errors in processing.

5.2 Crowdsourced Testing

In order to gain an objective understanding of our classifier’s performance, we developed an
unbiased dataset of list questions that contained minimal influence from our own understanding of how
the classifier works. This data and subsequent analysis was used to measure how well we achieved each
of our functional requirements. We created multiple survey questionnaires which were posted through
Amazon’s Mechanical Turk (Appendix H). The goal of our survey design was to have a variety of initial
question words, n-gram frequencies, conversation topics, and sentence structures. Each entry in the
survey had three components:

1. The full question as it was written by the respondent. This excluded capitalization, punctuation,
abbreviations that are not spoken as such, and numeric or other special symbols.

2. The possible responses as written by the respondent. The tiles that should ideally appear on
screen for selection.

3. The conversation topic. These can be categorized as activity, date/time, description, locations,
object/entity, organization, number, people, or miscellaneous.

We created multiple batches of surveys, each including a brief description of how to formulate
list questions, along with two or three examples depending on the survey batch. We included minimal
information and simple examples in the description to acquire questions from individuals with minimal
knowledge of how the classifier works.

In our first two batches, we found that respondents used the same question initiators as in the
examples provided. For example, our first round used the question words “what”, “do”, and “how”
while the second used “are”, “should”, and “is.” As seen in Figure 20a and Figure 20b, the survey
responses were skewed towards the examples used in the description. We identified one exception to
this rule, the question word “do,” which is used heavily in each case despite not appearing in any
example in the second batch.

33

We also found that respondents used the same conversational topics as in the examples
provided. For example, our first batch of questions only asked about objects/entities, while the second
asked about objects/entities, people, and organizations. As seen in Figure 20c and Figure 20d, the
distribution of topics is biased towards these examples, and that varying the topics used in examples
did produce a more balanced distribution between categories.

(a) Batch 1 Question Word Distribution (b) Batch 2 Question Word Distribution

(c) Batch 1 Topic Distribution (d) Batch 2 Topic Distribution

Figure 20: Mechanical Turk Batch Results

Based on these findings, we varied the examples used in later batches as to gain a better
distribution for both question words and conversation topics. We also encouraged respondents to use a
variety of conversation topics, a variety of n-grams, and a variety of number of response options. After
making these changes, we conducted an additional three batches of questionnaires, each with varied
examples.

We collected a total of 530 list questions, each labeled with the expected responses, and the
topic of conversation. The overall distribution of question words in Figure 21a shows a balanced
frequency of words used, except for “do”, which is used far more frequently than others. The
distribution of conversation topics in 21b shows a similar distribution to Batch 2, where objects/entities
and activities are among the most common topics, description and date/time is mid-range, and
numbers and organizations are among the least common. Similarly, the distribution of n-grams in
Figure 21c shows a good variety of compound word responses provided.

Once the dataset was collected we conducted cleaning, editing and modifying the questions to
be in a format recognizable by our online API endpoint. Our cleaning modifications were limited to
standardizing capitalization, removing incorrect punctuation marks, and correcting the spelling of
misspelt words.

34

(a) Final Question Word Distribution

(b) Final Topic Distribution

(c) Final n-gram Distribution

Figure 21: User Study Results

We combined this dataset with a collection of yes or no questions from a BoolQ dataset57

collected in 2019. We included 500 samples from this dataset in order to identify how well our classifier
could recognize and ignore questions outside its capability. This augmented our evaluation dataset to
include a total of 1030 questions of varying types.

Once the dataset was cleaned an augmented, we ran the set of questions through our online
API test endpoint. We collected several metrics from the results of our test, including

• Overall Precision: Fraction of questions that are correctly parsed, and for which relevant images
are found

• Balanced Accuracy for Conversation Topics: Averaged fraction of successful tests for each class of
conversation topic

5.3 Image Matching Evaluation

In order to evaluate the relevance of images presented to users, we rated 137 pairings of
responses and images. These responses were extracted from the expected entities specified by
Mechanical Turk respondents, rather than using the entity parser endpoint of our API. This ensured
the entities matched the respondents actual intention, in the case that our API did not properly parse
the full question.

Entities were extracted from the nine possible question categories as reported by survey
respondents: object/entity, activities, numbers, description, location, date/time, organization,

35

miscellaneous, and people. At least 10 entities of each category were selected to ensure meaningful and
significant conclusions were made.

Figure 22: Image Rating Topic Distribution

We individually rated an image based on how well it represented the related response on a
scale of one to seven (1-7).

• (1-3) Ratings indicate images that do not effectively represent the response or are irrelevant to
the conversational scenario

• (4) A rating of four was reserved for the case that no image is found.

• (5-7) Ratings of five to seven indicate images that effectively represent the response in the given
conversational scenario

Our API failed to find images for some responses, resulting in the default image of a question
mark being returned. Not all entities or responses may have an image within the Livox application
which can describe them. Therefore, it is preferable that the feature present no image rather than an
inaccurate one in these scenarios.

Examples of each rating can be seen in Figure 23 below. We then calculated the mean opinion
score (MOS) across all pairings of entities and images to gain an overall understanding of our image
relevance.

5.4 User Study

We conducted two studies to evaluate the usability and effectiveness of the developed feature
for users of Livox. These studies gathered data to describe the overall reduction in the reciprocity gap
between users and interlocutors. Therefore we collected data for each involved individual in the
conversation, Livox users and interlocutors (Appendix G).

The user set was made up of two stages to test time and effort to communicate, each with our
classifier disabled or enabled, in order to measure the improvements it provides. The interlocutor set

36

Figure 23: Average Scored Examples

used three stages to test interlocutor usability, providing participants with increasing levels of
knowledge at each phase.

We recruited 20 individuals both on and off campus using a snowball sampling method. We
gathered initial participants through the use of flyers and social media communication, and used this
initial participant pool to connect us with peers who would be interested in participating in our study.

We did not recruit any participants with disabilities or impairments, although this is the
primary demographic of individuals that use Livox. We did not recruit any individuals with disabilities
because the test can still accurately evaluate the number of physical interactions and comparative time
taken to select the desired option. Both these metrics contribute to the reciprocity gap faced by Livox
users and interlocutors, therefore, the feature is successful if they are both decreased from the current
method of navigating the applicationneausi.

5.4.1 Interlocutor Set

After explaining the purpose, functionality, and intended usability of Livox, the subject was
instructed to ask the application a series of questions for our classifier to analyze. The first set of
questions was exploratory, allowing the participant to interact with the classifier, having minimal
knowledge of the sentence structures it expects. The goal of this testing was to allow the user to
explore the tool without influencing them into specific types of interactions58. In this phase, we
recorded whether the question activated our list classifier, and the number of attempts it took to do so.
We additionally recorded whether the question activated the yes or no classifier already built into
Livox when this kind of question was asked.

The goal of the second stage was to evaluate the accuracy of our classifier for known list
questions, but with varying voices and inflections from different participants. To do this, participants
were given a list of scripted questions which were read aloud. Similarly to the first phase questions, we
recorded whether the question successfully activated our classifier in the Livox application, and the
number of attempts necessary to achieve this.

The third phase was similar to the first phase, where the subject came up with three new
questions to ask. At this point in the study, we explained the sentence structure the classifier expects,
and answered any questions the participant asked about how to properly formulate list questions. We
again recorded whether the question activated our list classifier, and the number of attempts it took to
do so. We aimed to achieve similar results to our second phase from our third phase, because
participants now had a strong understanding of our classifier and how it functions.

5.4.2 User Set

For the two parts of the user set we asked the subject a series of predefined questions, and the
subject responded through the Livox interface as if they were impaired and could not communicate

37

otherwise. For the first phase, our voice-activated classifier was disabled, and the user had to select
their answer by navigating the convoluted Livox nested menus. In order to estimate the performance,
we recorded the time between asking a question and the question being answered, as well as the
number of button presses required by the user. For the second step, our classifier was enabled, and the
user responded by selecting the desired response from those returned by our classifier. The same
metrics were recorded. To evaluate the performance of this set, we compared the time and number of
button presses required to answer questions between the two phases.

38

6 Iterative Development

This section focuses on the technical evolution of our project, as opposed to the project
methodology, which covered the created solution more generally. Early iterations focused on the
development of an online API hosted on AWS for our NLP microservices. Concurrently, we created a
standalone Android application to connect to the API and connect with Livox’s current speech
recognition package. We later integrated this functionality with the existing Livox application and
ported our NLP solutions to work offline on the Android tablet. We created five microservice modules
to achieve this solution:

1. Question Classifier

2. Phrase Parser

3. Entity Parser

4. Image Classification and Retrieval

5. Android Application

In this section, we discuss the initial solution for each of these microservices, describe the
iterative improvements we made, and provide evidence for why we made the associated design
decisions. We also discuss the design and development of a standalone, prototyping Android
application, as well as a fully-integrated beta version of Livox.

6.1 Question Classifier

The question classifier recognizes if a recorded piece of speech is a list question. We developed
three different solutions to achieve this, however, we only used the last solution developed, as it is the
most accurate and aligns best with our functional requirements.

6.1.1 Iteration 1 - Hard-Coded Phrase Recognition

In the initial implementation of the prototyping application, the question classifier was limited
to recognizing hard-coded phrases made up of a question initiator phrases and prepositional phrases,
such as “what would you like” for the question initiator and “for lunch” as the prepositional phrase.
These components act as a combined question phrase, and our classifier only parsed text including
these exact question phrases. This solution obviously did not reach our functional requirement of
encapsulating natural conversation. The phrasing was too restricted to allow for intuitive interaction
with the developed feature. However, we used this solution to test and better understand the flow of
data through the Android Speech Recognition package and to familiarize ourselves with Livox’s
existing speech-to-text functionalities.

6.1.2 Iteration 2 - SVM Question Classification Model

Our next iteration focused on creating a generalized solution using machine learning. This
solution utilized a support vector machine (SVM) to classify questions. We prototyped this solution
initially using a microservice architecture through our Python web API, in order to offload the
computation to cloud computing services. We used TF-IDF vectors to represent each question, and to
transform questions into a format recogniable by our classifier. Our SVM then used the frequency
vectors generated for a question in order to identify the class of the question. We trained our model
using a UCSD question and answer dataset59, providing around 1.4 million question and answer pairs
scraped from Amazon product reviews. The dataset labeled each question as either a yes or no or an
open-ended question. We trained our model to accept all “open-ended” questions and to ignore all yes

39

or no questions since Livox already has tools implemented to recognize these questions. We trained our
model using a sample of 4,000 questions from the 80,496 questions relating to “Health and Personal
Care” products, and found that increasing the number of training questions beyond this did not
improve the model’s accuracy or generalizability. This is the same dataset Livox used to train their
existing yes or no classifier, so we believed it would give consistent performance for our application.
This solution achieved a precision of p=0.75 on our set of targeted testing questions. Although this was
relatively good performance, the classifier mislabeled many of the key examples we considered
necessary. An additional limitation of this solution was its computational complexity, meaning it may
not perform efficiently on low-end devices. The heuristic-based solution of our next iteration solved
both of these limitations.

6.1.3 Iteration 3 - Heuristic Method

In order to validate the accuracy of our machine learning model, we created a heuristic-based
model to classify text as a list question. This model searches for the word “or” and a question word,
such as “who”, “what”, or “why”. We maintain a list of question words that can be loaded as the
application starts. This allowed our team to add examples as we continued our targeted testing. The
two components searched for indicate the presence of a response and question phrase, respectively. Our
heuristic model identified every list question we generated for our targeted testing, significantly
outperforming our SVM based solution. The increased accuracy and reduced computation led us to use
this solution rather than the SVM model.

6.2 Phrase Parser

Once a question is identified as a list question, the question phrase must be separated from the
list of responses. We initially explored a machine learning solution to achieve this based off of the
Amazon product review dataset of questions. However, this solution performed very poorly and there
was no other pre-existing text dataset that could be used to train such a model. Additionally, creating
our own dataset would have been too time-consuming for the duration of this project. Therefore, we
used a heuristic-based approach, and improved it as needed to achieve our functional requirements.

6.2.1 Iteration 1 - Common Question Words Offset

The first iteration of the phrase parser relied on two steps of processing. The first phase used a
list of question words to distinguish the beginning of the question phrase. We started with five common
question words, “who”, “what”, “when”, “where”, and “how”. The second phase of parsing used a list
of prepositions and a numerical offset to distinguish the end of the question phrase. We used the
numerical offset to predict the number of words until the prepositional phrase will end after the
preposition itself. Together, this method could find the beginning and end of the question phrase, and
separate the question from the list or responses. This solution handled common phrases well, but
lacked generalizability for natural language, as it did not include many question initiators for the first
phase of parsing. Additionally, we occasionally predicted too high of a numerical offset, removing
important information from the response phrase, ultimately resulting in too few or incorrect entities
being extracted.

6.2.2 Iteration 2 - Improved Question Words

To address the issue of poor generalization in the first phase of parsing, we added more
question words to the list being used, such as ”do”, “is”, and “are”, totaling to thirteen question words.
To address the issues of entities not being included in the list of responses, the word offsets were
changed to estimate the end of the question phrase more conservatively. By including more of the text
in theresponse phrase than the question, we choose to rather recognize more rather than fewer entities.
Finally, in cases from our targeted testing without recognized questions words, we used a default offset

40

value of four words from the start of the sentence. These changes led us closer to our functional
requirements of accurately representing each of the responses in the question, and encapsulating
natural conversation.

6.3 Entity Parser

Once the question and response phrases are seperated, the entity parser is responsible for
extracting all possible responses to the question from the list. We developed five iterations to achieve
our final solution, each improving our classifier’s accuracy and performance on our targeted test
questions.

6.3.1 Iteration 1 - Naive Entity Extraction

Our first iteration removed all stop-words from the response phrase using NLTK for Python. It
then extracted an entity for each individual word in the list. The limitation of this solution was that it
did not recognize compound words as a single entity. For example, in Figure 8, it would not recognize
“roast beef” as a single entity, rather, it would recognize the two entities “roast” and “beef.”

6.3.2 Iteration 2 - Word Embedding Vector Similarity

In order to recognize compound-word entities in the response phrase, we used Word2Vec to
calculate similarity scores between single words and combinations of words grouped together. We
calculate the cosine-similarity between all single words, pairs, and triplets to find the most related
combination of the words in the response phrase. For the example phrase in Figure 10 the combination
of words “roast-beef, pizza, hamburger” makes much more sense, and is closer in the embedded vector
space, than the combination of words “roast, beef, pizza-hamburger.” The combination with the
highest similarity between entities is chosen as the final list of entities. This solution reliably identified
the correct compound-word entities in our targeted testing. However, the limitation of this solution was
that it violated our non-functional requirement to work on low-end devices. The word embedding
model took up over four gigabytes of memory which is not reasonable on low-end devices, often having
no more than 500 megabytes of memory, which was the case with our hardware used for development
and testing.

6.3.3 Iteration 3 - Database Derived Vocabulary

The goal of our third iteration was to reduce the space required by the model in memory or in
device storage, while maintaining a similar accuracy to that of the larger model. To achieve this we
derived a vocabulary from labels generated by the Google Vision API on all the Livox images. Google
Cloud’s Vision API allows for individual and batch labeling of images, as well as producing confidence
values for each label. We used this API to label the entire dataset of Livox images and created a
MySQL database structure to connect the newly defined labels to the existing Livox image database.
These labels were used to create a vocabulary of recognizable compound-word entities in the database

This approach significantly reduced the number of responses recognizable responses, because it
was limited by the number of images in the Livox database. However, this solution was still capable of
recognizing most common entities and identified all common n-grams in our targeted testing dataset.
The amount of space used in memory was reduced significantly, only requiring about 20 megabytes of
space either on disk or in RAM. This solution achieved our non-functional requirements of running on
low-end devices and in offline environments. However, the limitations of this solution were related to
the reduced vocabulary compared to the larger word embedding model and lack of recognition for
plural entities, such as “cars” or “french fries”.

41

6.3.4 Iteration 4 - Pre-processing with Word Stemming

Our fourth iteration focused on pre-processing the text data before trying to extract entities
from it. Word stemming served as a lightweight, heuristic-based addition to reduce words to their root
forms before extracting them. Using this technique, our parser could detect and remove plurals and
suffixes of stem words. This iteration brought us closer to encapsulating more natural conversation,
however, the limitation of this solution was that it still relied on the reduced vocabulary of our
classifier and could not fully attain our functional requirements.

6.3.5 Iteration 5 - Word Embedding Extended Vocabulary

The final iteration extended the vocabulary to recognize words that were not included in the
database tags, but that could be related to at least one image in the Livox database. In order to
connect responses to images that were not labeled as such, we utilized word embedding to identify the
ten most related synonyms for each entity in the existing vocabulary, from the larger four gigabyte
model previously used in our second iteration. With this addition, our vocabulary supported a much
richer variety of entities closer to Google’s own word embedding model, without the size limitations for
low-end devices. This final solution detected n-grams more accurately and was able to recognize
informal slang words, such as “jammies” more formally as “pajamas.” This solution met both our
functional requirement of encapsulating natural language and non-functional requirement of working on
low-end devices and in offline environments.

6.4 Image Retrieval

Livox maintains a database of over 26,000 images that are included in the Android application.
These images have labels associated with them, but are not accurately descriptive and cannot be used
to identify individual images. The original labels contained few descriptor words and only one word for
each label, separating n-grams into individual words. Relying only on the existing Livox labels would
have limited the vocabulary and made querying the database of images difficult.

Therefore, we created our own database of labels associated with each Livox database image
using Google Vision. We initially hosted this database through Amazon AWS, which could be easily
interfaced with our AWS online API. However, in order to meet our non-functional requirement to
work in offline environments, this database was localized on the tablet. Google’s libraries for Android
applications included an interface that could be used to initialize and interact with a database running
natively on the tablet. Therefore, this was integrated without any modifications to the existing Livox
codebase.

6.4.1 Iteration 1 - Google Vision tags Image Retrieval

The first iteration retrieved images simply by querying the response against the labels in our
Google Vision generated database. Each label associated with an image has an associated confidence
interval. The retriever simply selected the image with the highest confidence interval for labels
matching the response word.

The limitation of this solution was that it did not always present the most relevant image for
each response, as recognized during testing. For example, an image of a shower drain, seen in Figure
24, was labeled as “paws” by the Google Vision API, showing that it would occasionally wrongly
identify images. In other cases, we would know that the Livox application has images to represent
certain entities, however our labels alone could not encapsulate them. Therefore, in our next iteration,
we created a solution that retrieved images based on the labels in both our own and in the original
Livox image database.

42

Figure 24: Returned drain labeled as paw by Google Vision vs Livox tagged paw

6.4.2 Iteration 2 - Score-Based Image Retrieval

In order to retrieve the most relevant image for each response, we developed a solution based
on a relevance score for each possible image. This score is generated by querying both Livox’s existing
image labels, as well as the labels created through the Google Vision API. Each response is used to
query the Google Visions labels, and when matched, is given a relevance equal to the confidence label
provided. The relevance score is incremented further, by a constant factor, if Livox’s original labels
match the response. Finally, our classifier selects the image from the collection labeled to match
response, with the greatest combined relevance between the two databases.

This solution worked very well for our targeted testing, and could be used to find images for all
responses recognized by our entity parser, which relies on a dictionary of entities generated through the
same Google Vision labels. This solution was also efficient enough to run on low-end devices and to run
in offline environments as to meet our non-functional requirements.

6.5 Android Application

In the development of our project, we created a standalone Android application as well as a
version of Livox integrated with our feature. These two applications were created respectively in the
prototyping and integration phases of our project.

6.5.1 Prototype Application

Prior to this project, our team did not have any experience with Android development.
Although we were all confident Java developers, we did not have any experience with Android
application design and UIs. Therefore, we created a prototyping application to become familiar with
these two key parts of our project.

The design of this application focused around creating a single Java package that could
encapsulate all the code required for processing list questions and later be ported to Livox. We
designed this package using the facade design pattern, creating a single interface class that delegated
certain functionalities to other classes in the package. We used this application most heavily when
testing for specific pieces of functionality outlined in our targeted test cases, and used the results to
guide our design decisions for future weeks to improve the functionality of our API. The UI design
focused on our ability to dynamically display images for questions that were asked and processed. Our
initial UI was limited to displaying only two images for our hard-coded entity recognition. However, as
we implemented additional functionality to our online API, we increased the number of possible images
that could be displayed. Once we had created the intended Java package and UI, we began planning
how we would integrate this into the existing Livox application.

43

6.5.2 Livox Integration

We designed our integrated natural conversation tool to act as independently from the rest of
the Livox application as possible, following our microservice architecture goal. Our integration strategy
only required a slight modification of two classes within the SpeechRecognition package and the main
UI activity that coordinated launching other UI components and the multiple natural conversation
tool’s fragments. The list classification package was ported as-is to Livox, using the facade design
pattern to act as a single interface for integration (Appendix A).

We designed the UI for our integrated feature to act as similarly as possible to the existing
natural conversation tools being used in Livox. While the other tools focused on presenting static
images for users to select, our tool required displaying images dynamically for users to select. Therefore,
we modeled this dynamic behavior based on the implementation strategy used for the regular Livox
screen, displaying an N by N grid of images for users to select. We designed our dynamic grid to be the
same size and style as the user-defined Livox grid, to ensure as many of the Livox usability features can
be taken advantage of by our tool. Although we were not able to integrate all usability features into our
dynamic grid, for example, IntelliTouch and high-contrast images, we were able to integrate many and
describe to more experienced Livox developers how these additional functionalities can be achieved.

44

7 Results

We collected results for each stage of our evaluation: targeted testing, automated testing,
image relevance scoring, and our user studies. The results show that our classifier is accurate at
classifying a variety of questions, and that it does reduce the time and effort to communicate for users
of Livox. In the following section we report and discuss the results of our evaluation.

7.1 Target Test Results

Our targeted tests were conducted at the end of four iterations in order to measure progress in
the development of this classifier. We added questions to our dataset partway through the development
of our classifier to account for change in scope and to include tests more relevant to conversational
scenarios suggested by project stakeholders. Tests in early iterations showed poor results, while tests in
later iterations showed improvement.

Test # Test Questions Correct Incorrect Errors % Correct % Failed (Wrong/ Error)
1 27 1 26 0 4 96
2 27 9 10 8 33 67
3 30 18 10 2 60 40
4 30 21 7 2 70 30

Figure 25: Targeted Testing Results

Based on the results of our targeted testing, both developers and project stakeholders were
satisfied with the functionality of our classifier. The classifier was able to detect and parse all list
questions considered to be part of the core functionality of the classifier as described by stakeholders.
The remaining two questions that reported errors are not list questions. Therefore, they were rejected
by the classifier and are considered to be true negatives. The remaining incorrectly parsed questions
contained phraseology intended to be stretch goals for our classifier. We hope that the remaining
questions can be targeted and encapsulated by future work on this classifier.

7.2 Crowd-sourced Testing Results

Our crowdsourced test cases were additionally run through the online API test endpoint. The
results of these 1,030 list and yes or no questions were used to measure how well we achieved each of
our functional requirements and to identify how the classifier could be further improved.

The first part of our test endpoint ran each question through our question classifier service.
This service labeled each question as either a list question or a yes or no question. The evaluation from
this service, seen in Figure 26 show very positive results. The service successfully classified all 500 yes
or no questions correctly, and classified 473 of the total 530 list questions correctly. Therefore, we
report an overall accuracy of 94.46% for this service indicating that our classifier is very good at
recognizing list questions and ignoring all non-list questions. This is extremely important as Livox
already has a classifier to handle yes or no questions, and will implement additional classifiers to
encapsulate other aspects of natural conversation.

The second step of our test endpoint ran each of the list questions through our phrase parsing
and entity parsing services. The phrase parser split each question into a question phrase and a response
phrase. The results of our phrase parsing were categorized into three types of splits:

• Correct : The question phrase and response phrase were correctly split.

• Early : The phrase parsing split in the question phrase before it ended. Extra words from the
response phrase are then included in the response phrase. This is preferable to late splitting, as
extra incorrect responses are not considered a major problem.

45

Figure 26: Question Classification Confusion Matrix

• Late: The response phrase was cut short, part of it was put into the question phrase. This is the
worst outcome, as this could cause possible responses to be omitted.

The response phrase was then sent to the entity parser, where the possible responses to the
question were extracted. These results were categorized into four groups based on the number of
entities found. For each group, it is possible that extra entities not in the expected set were extracted.

• All : All of the expected entities were extracted.

• Majority : More than half of the expected entities were extracted.

• Minority : Less than half of the expected entities were extracted.

• None: None of the expected entities were extracted.

Figure 27: Phrase and Entity Parser Results Examples

The results of our entity parsing and phrase parsing services can be seen below in Figure 28a
and Figure 28b We found only 32.3% of questions were split correctly, however, we designed our

46

classifier to split phrases early rather than late. This strategy improved usability as minimal relevant
responses were missed. Our classifier removed relevant responses only 10% of the time, improving the
results of our entity parsing service.

We found our entity parsing service extracted all correct entities 63.3% of the time, found all
or the majority of entities 75.6% of the time. Our classifier extracted none of the responses only 12% of
the time, showing our classifier can reliably extract both unigram and bi-gram responses from list
questions.

(a) Phrase Parsing Results
(b) Entity Parsing Results

(c) Entity Parsing Accuracy by Category

Figure 28: Phrase and Entity Parsing

We further analyzed the entity parsing results based on the conversation category of the
question in order to identify topics for which we have particularly strong or weak accuracy. When
analyzing Figure 28c, the distribution of fully correct responses is balanced between categories, with
the exception of people and activities being the lowest. This is likely due to the fact that there are very
few, if any, images and labels associated with these categories. The user-defined correct responses for
activities were often verb phrases, such as “play videogames”, rather than nouns, such as “Golden
Retriever. Finally, the people category often contained full names, such as “John Doe”. These names
should be captured as a single entity similar to bi-grams, however our classifier does not have a list of
common full names as it does with common bi-grams.

47

7.3 Image Matching Results

The goal of our image matching evaluation was to measure the relevance of images presented
to users for different conversation categories. Each researcher rated the relevancy of an image to the
response on a scale from one to seven for a total of 137 pairings. The results from this are positive,
with an overall mean opinion score (MOS) of 5.20, and 68.1% of responses having a relevant image. In
addition, no image was found for a given response 13.3% of the time, and an irrelevant image was
found only 18.6% of the time.

For most response categories, the rate of irrelevant images was even lower at roughly 10% to
15%. However, locations, date/time, and numbers had a much higher rate of irrelevant images at 25%,
39.6%, and 51.8%, respectively. However, locations and date/time still had positive mean opinion
scores, 4.70 and 4.20, respectively. Only numbers had an overall negative MOS of 3.61.

The categories of organization and miscellaneous had a high rate of not finding an associated
image. This occurred 33.3% of the time for organization, and 44.6% of the time for miscellaneous
entities. These categories had MOS’s of 5.28 and 4.84. Not finding an image is not necessarily a
problem, as the application has a limited number of images that can be associated with any response.
Given these categories, it is expected that only the most common organizations have an associated
image, so the failure to find images should be more frequent than for other categories. Miscellaneous
entities included slang phrases, phrases from popular culture, or parts of speech that did not fit any
other category. It is therefore expected that the image database would not recognize or contain images
for these responses. There may be cases where no image is found, while a relevant image does exist.
However, our image matching process avoids incorrect images by preferring false negatives, finding no
image, over false positives, finding an irrelevant image.

The categories with the highest success rate were object/entity, activities, and people. These
categories had mean opinion scores of 6.14, 5.92, and 5.78, respectively. In addition, they were
associated with relevant images 90.2%, 82.8%, and 80.0% of the time. These categories are similar to
the main tiles often featured on Livox’s default home page, indicating that they are important in
day-to-day speech. However, date/time is another category featured heavily in Livox, but did not have
a definite positive mean opinion score.

Overall our image retrieval relevance shows mixed results. It is clear this aspect of our classifier
can be greatly improved in the future by allowing users to suggest modifications to the image label
database, although it is effective for common words in conversation.

7.4 User Study Results

The user study showed that our feature was intuitive to use for interlocutors and effective at
reducing the reciprocity gap for users.

7.4.1 Interlocutor Interview Results

The results from the interlocutor set of our user study show that our classifier can reliably
recognize known list questions. Additionally, the results show that participants can quickly learn how
to formulate their own questions to be recognized by the classifier.

The uninformed exploratory phase tested whether participants, with no knowledge of the
classifier, could formulate a question within its scope. In this phase, we simply had participants
formulate and ask questions based on a set of conversation topics. Participants were only told that
they were required to begin their question with the wakeword and to speak clearly without pausing.
The results from this phase indicate that participant’s questions could not reliably activate the
classifier with minimal knowledge. The overwhelming majority of questions asked in this phase caused
no actions from the list classifier within the Livox application. Some of the participant’s questions
inadvertently activated the yes or no classifier.

48

(a) Mean Opinion Score for Response Categories

(b) MOS Ratings by Category

Figure 29: Image Relevance Results

49

The scripted phase tested whether the classifier would reliably activate for known list questions
when asked with a variety of voices and inflections. This phase also served to show participants how
list questions are formulated. The results from this phase indicate that our classifier activates reliably
for known questions being asked, often on the first attempt.

The informed exploratory phase tested whether participants could formulate correct list
questions using their understanding of the classifier’s scope, given the two previous phases.
Interviewers provided participants with conversation topics, and asked them to formulate a unique
question for each topic. The results from this phase show that participants were successful at
formulating new list questions. Additionally, this shows that the classifier is easy to understand after a
brief explanation and a few examples.

Overall, the activation rate for the classifier, shown in Figure 30b, increased significantly
between the uninformed and informed exploratory phases. These results are promising and show that
the classifier can be activated by many individuals with little knowledge of the application.

(a) Interlocutor Question Results
(b) List Classifier Activation Rate

Figure 30: Interlocutor Set Results

There were several limitations on the interlocutor set of our interviews. In early studies
conducted, we noted the tablet’s microphone had poor accuracy with the included Android Speech
Recognition library. This meant that questions in the scripted phase, which should all be successful,
were not recorded properly and could never be recognized by the classifier. In order to overcome this
we used an inexpensive lapel microphone that we asked participants to wear. This greatly improved the
results of the Android Speech Recognition library, and similarly presented more accurate questions to
the classifier. Additionally, we found a bug in our code that mistakenly classified non-list questions as
list questions at regular intervals. Therefore, some of the activations recorded in Figure 30a are false
positives that would have otherwise not activated the classifier. This bug was identified and fixed in
early interviews, resulting in no false positive activations in later tests. Each of these limitations
negatively impacted our results, however neither was a limitation of our feature’s design. We believe if
we had fixed these issues before we began our study, our results would be even better, showing just how
powerful the classifier design is.

7.4.2 User Interview Results

The results from the user interview phase show that our classifier significantly reduces the time
and effort to communicate through the Livox application. The first phase of this interview had
participants use the Livox application, with our classifier disabled, to measure the baseline for the time
and effort required to answer questions in conversation. The second phase of the interview had
participants answer the same questions in conversation, but this time with our classifier enabled. For
each phase we recorded the time and number of items pressed to respond to the question.

50

(a) Time Saved (b) Number of Clicks Saved

(c) Avg Time by number of clicks

Figure 31: User Study Results

We combined the results from these phases, shown in Figure 31a and Figure 31b, to highlight
the comparative time and effort required to answer each question. The results show that far less time
and fewer clicks were required to answer all questions through the list classifier. Additionally, there is a
clear correlation between the time and number of clicks required to find a response in the standard
application, as seen in Figure 31c. For example, the final question asked in each phase took both the
greatest amount of time and clicks to respond. Similarly, we found that when responses were nested in
multiple folders within the application, the time and effort required greatly increased. Although we did
not test the application and feature with any questions requiring the participant to navigate more than
three folders deep to find a response, the number of clicks would continue to increase if responses were
nested even further within the application. We similarly found that when responses had to be located
in menus with many response options, the time to locate the response greatly increased even though
the participant did not have to navigate nested menus.

Overall the time and effort required to respond to questions was greatly reduced through using
our classifier. The total time and number of clicks required to answer all questions, shown in Figure
32a and Figure 32b, also indicates that the savings are compounded over many questions being asked
during a conversation. Participants required less than half the number of clicks, and just over a quarter
of the time to answer all questions through the list classifier compared to the standard application.
Based on this, it is clear that our classifier greatly reduces the time and effort required to communicate

51

(a) Total Time Required (b) Total Number of Clicks Required

Figure 32: Resources Used

while using the Livox application in conversation.

We noted that our interviews were conducted only with individuals without disabilities, for
which we had increased the number of visible items on the screen to a best-case scenario. Many of
Livox’s users have fewer items presented on each screen, causing some items to fall on successive pages,
requiring additional clicks or swiping between pages at the same folder level. We believe that reducing
the number of visible items, as is more common with Livox’s users, would further increase the time and
number of clicks needed to respond to questions. Under these scenarios our classifier would have an
even greater impact on facilitating conversations.

7.4.3 Exploratory Question Results

We concluded each interview with a set of exploratory questions to collect participant’s
feedback on our list question classifier and the Livox aplicaication in general. All participants reported
to have a positive experience using the application. In early interviews, before we fixed some reliability
bugs and before we found an accurate microphone, many respondents voiced concerns about the
reliability of our voice-activated feature. Although some of these concerns were alleviated with the bug
fixes we implemented, we still noticed poor reliability of the feature’s activation due to microphone
quality and the results produced by the Android speech recognition library. These challenges were
magnified when using the application in noisy or crowded environments with many people speaking at
the same time.

Because these challenges faced were not originally encapsulated in the goals of this project, we
did not put much time into their solution. Our team believed our time was best spent improving the
list question classifier given the limitations of current speech recognition libraries. We hope that the
reliability of our feature increases with further improvements to the Android speech recognition library.

52

8 Discussion and Related Work

Although the results of our evaluation show that our classifier activates reliably and presents
relevant responses for most questions, the classifier can still be improved by applying different
strategies to each service it provides. In this section, we suggest improvements that can be made to
each component of our solution: question recognition, phrase parsing, entity parsing, and image
retrieval. Additionally, We suggest several ways in which the classifier can be better integrated into the
Livox application.

Early in our project development, we linked our online API to a logging database. This
recorded each question sent to our API, a flag whether it is a list question or not, and the split question
and response phrases. While testing the classifier in the Livox application during day-to-day research
and user studies, we collected over 800 total questions. Many of these questions are repeats, as we often
tested the API using the same questions for debugging purposes. However, there are many unique
questions, including some yes or no questions that were not filtered by Livox’s existing classifier. We
believe this logged data could be used to identify weaknesses in classifier recognition, to better tune the
heuristic solutions, and used as training data for future machine learning models.

8.1 Question Recognition Improvements

Although our initial machine learning solution for list question recognition did not perform as
well as our later heuristic solution, we believe it would be worthwhile to develop another machine
learning solution to achieve this. This model could be trained in part using the data collected through
our API logs along with other question datasets, such as the Amazon product dataset used for our
initial model. We believe a more powerful machine learning solution might generalize better for
recognizing open-ended questions, which we discuss later in 8.4 Entity Parsing Improvements.

8.2 Phrase Parsing Improvements

Our phrase parsing solution, although effective for most questions asked, can be improved
upon. The offsets used to split question and response phrases occasionally remove important
information from the response phrase, causing the application to omit relevant responses. However,
because the parser estimates conservatively, is it more common that extraneous responses are
presented. There are several ways to improve these issues. Our parser decides the offsets using a
predefined dictionary of common question words and associated prepositional phrases, the values of
which were chosen to be conservative rather than based on data. The dictionary words and offset
values could be further tuned using insights from logged data and results from our crowdsourced
dataset. Alternatively, the combination of our logged data and crowdsourced dataset could be
augmented and used to train a machine learning model for this purpose. A machine learning solution
would likely be scalable and account for uncommon questions and response phrases.

8.3 Entity Parsing Improvements

Our entity parsing solution was proven to be strong based on the results from our
crowdsourced testing questions. However, we believe this can be improved. Our categorized results
show that the classifier is least accurate for responses including organizations, numbers, and people.
The organization category can be improved by adding lists of common organizations and household
brands to our vocabulary of recognizable entities. Person recognition could be improved by adding lists
of celebrities and user-generated lists of people of whom the user interacts with in daily life.

One study participant suggested, during our final exploratory question phase, presenting users
with supplemental response options in the conversation category of the question being asked. For
example, when asking “what would you like for dinner: pizza or pasta” the classifier would display

53

additional response options for dinner items not mentioned. This functionality would be beneficial to
users in the case that their desired choice was not one of the response options presented, but is very
similar.

Our team identified two ways in which this could be achieved. The simpler solution identified
is to expand the presented options by including similar responses from the word embedding model used
to derive our vocabulary. Our classifier would for example, identify a predefined number of responses
with the highest cosine similarity to each of the successfully recognized entities in the response phrase.

The more difficult solution our team identified is to classify the conversation topic of a question
as it is being processed. The same process as before can then be applied to find a predefined number of
responses similar to this category in our word embedding model. We believe this solution would be
possible through the use of a machine learning model or a semantic analysis dependency tree. The
model could be trained, in part, by our crowdsourced dataset of questions, as we instructed
respondents to label each question with it’s conversation topic. We believe the ideal solution would be
a combination of the two proposed here. By calculating similarity compared to the extracted entities,
our classifier would be more likely to present relevant options. However, in the case that our question
recognition module is improved with a machine learning solution to recognize open-ended questions, our
classifier could present generic options for the conversation category being asked about. For example, if
an interlocutor asked “what would you like for lunch: a hamburger or a hotdog,” our classifier could
present similar responses, such as pizza. At the same time, if an interlocutor asked generically “what
would you like for lunch,” our classifier could present generic response options for lunch foods.

8.4 Image Retrieval Improvements

There are several ways in which our image retrieval process could be improved as well. We
believe an important addition to our online API and our classifier as a whole, is to develop a solution to
label new images being imported into the Livox application. Currently, users and caregivers can create,
upload, and download original content through the online Livox Portal. This downloaded content can
be imported into the application, but cannot be found by our classifier, as none of the images will have
our custom labels. Labels can be dynamically built through multiple queries to the Google Vision API
for each new downloaded image. Additionally, for small packages of downloaded content, it would be
reasonable to allow users or caregivers to manually label each image in the style of our vocabulary.
This functionality would, in general, enable users and their families to use custom images within this
natural conversation tool to display ideas not currently supported by the Livox application.

Our image relevance scoring results show that errors in image retrieval are most common for
numbers, organizations, date/times, and miscellaneous entities. For the cases where no image is found
for a given response, the method described above could be used to insert additional images into the
Livox application to support those ideas or responses. For the cases where an irrelevant image is found,
there are many little improvements that can be made. For example, researches can manually modify
the labels and associated confidence scores for specific images known to be irrelevant. Users or
caregivers could similarly be able to manually identify irrelevant images when they appear, as to ensure
they are not presented again.

Image retrieval could be further improved by querying our database of images with the
question’s conversation category in addition to the response being related. For example, in Figure 23,
the image for “Score of 2” would be relevant if the conversation category were activities, however the
image is not relevant for the category date/time. Again, this relies on the ability to classify a question’s
topic while it is being processed. This addition would benefit our image retrieval for common
responses, like the example “fall,” which can be used in many contexts with different meanings.

8.5 Livox Integration Improvements

Many user study participants suggested ways in which our classifier could be better integrated
into the Livox application. Our current integration loads a new screen when questions were detected

54

that only presented tiles for the response options recognized. One participant suggested presenting the
items on the same, main screen as the rest of the standard icons. This would allow users to take
advantage of the classifier if it presented relevant options, however users would still have the ability to
navigate the application as standard if they wished to find an alternative answer to the question.
Another participant suggested adding visual feedback to the user interface showing whether the
classifier recognized any speech at all. Currently there is no feedback showing whether the question was
not heard properly, or whether there was another error in classifying the question. This would at least
show users whether their questions are being improperly formulated to be recognized, or whether there
are unrelated issues in speech recognition. We believe this visual feedback would improve the activation
rate of our classifier.

55

9 Conclusion

The deliverable of this project is a voice activated, NLP-based classifier, within the Livox
application, that facilitates natural conversation for people with disabilities. This classifier detects open
ended questions, followed by a list of response options, and presents relevant pictograms to users. The
classifier uses lightweight processes and runs well on resource constrained devices, while also working in
offline environments. It is intuitive and easy to use while also keeping a high level of accuracy for
common speech.

The feature was shown to be effective by individually evaluating each step in our pipeline. The
interlocutor set of the user study evaluated the performance of classifying questions in real world
situations, giving an 88.3% accuracy with participant-created questions. The crowdsourced dataset
enabled us to evaluate the phrase parsing, and entity parsing processes. We found that 90% of
sentences were split by the phrase parser such that all responses were included in the response phrase.
In addition, entities were correctly extracted from 63.3% of response phrases. Most entity extraction
failures were not due to missing entities, but rather compound nouns and phrases that were not
combined correctly into single entities. Finally, the image retrieval process matched relevant images for
entities 68.3% of the time and returned no image, rather than an irrelevant image, 13.4% of the time.

Most importantly, our added feature has proven to reduce the reciprocity gap in conversation
by making communication faster and easier. Results from the user study showed that there was an
average reduction of 56.4% in the number of clicks needed to answer questions. We also found a
reduction of 68.5% in the time required for users to respond compared to the standard application.
This feature serves as a practical example of how voice-activated functionality can assist people with
verbal and motor challenges, and is a step towards ensuring that verbal and motor challenges can be
overcome by applying state of the art technologies in a human-centric implementation.

56

Works Cited

[1] Division for Inclusive Social Development, “Realization of the sustainable development goals by,
for, and with persons with disabilities,” United Nations Dept. of Social and Economic Affairs,
report, 2018. [Online]. Available: https://www.un.org/development/desa/disabilities/wp-
content/uploads/sites/15/2018/12/UN- Flagship- Report- Disability.pdf (visited on
01/2020).

[2] Center for Disease Control and Prevention. (2020). 11 things to know about cerebral palsy, Center
for Disease Control and Prevention, [Online]. Available: https://www.cdc.gov/features/

cerebral-palsy-11-things/index.html (visited on 10/2019).

[3] S. Mizunoya, S. Mitra, and I. Yamasaki, “Towards inclusive education: The impact of disability on
school attendance in developing countries,” Innocenti Working Paper, vol. 2016, 3 May 23, 2016.
doi: 10.2139/ssrn.2782430. [Online]. Available: https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=2782430# (visited on 10/2019).

[4] American Speech-Language-Hearing Association. (2019). Information for aac users, [Online]. Avail-
able: https://www.asha.org/public/speech/disorders/Information- for- AAC- Users/

(visited on 10/2019).

[5] K. T. Chazin, E. D. Quinn, and J. R. Ledford. (2016). Augmentative and alternative communication
(aac), [Online]. Available: http://ebip.vkcsites.org/augmentative- and- alternative-

communication (visited on 10/2019).

[6] A. S. Bondy and L. A. Frost, “The picture exchange communication system,” Behavior Modifi-
cation, vol. 25, pp. 725–744, 5 2001. [Online]. Available: https://journals.sagepub.com/doi/
abs/10.1177/108835769400900301 (visited on 10/2019).

[7] Autism Connection of Pennsylvania. (2013). Autism tool kit, Autism Connection of Pennsylvania,
[Online]. Available: http://autism- support.org/autism- resources/autism- tool- kit/

(visited on 10/2019).

[8] L. Collet-Klingenberg. (2008). Pecs: Steps for implementation, The National Professional Develop-
ment Center on Autism Spectrum Disorders, [Online]. Available: https://autismpdc.fpg.unc.
edu/sites/autismpdc.fpg.unc.edu/files/PECS_Steps.pdf (visited on 10/2019).

[9] Pyramid Educational Consultants. (2020). Small communication book, Pyramid Educational Con-
sultants, Inc., [Online]. Available: https://pecsaustralia.com/shop/small-communication-
book/ (visited on 03/2020).

[10] AliMed. (2019). Gotalk express 32, [Online]. Available: https://www.alimed.com/gotalk-

express-32.html (visited on 10/2019).

[11] PRC-Saltillo. (2020). What is aac? PRC-Saltillo, [Online]. Available: https://www.prentrom.
com/caregivers/what-is-augmentative-and-alternative-communication-aac (visited on
10/2019).

[12] AbleNet. (2020). Quicktalker 7, [Online]. Available: https://www.ablenetinc.com/technology/
speech-generating-devices/quicktalker-7 (visited on 10/2019).

[13] M. Rodŕıguez-Fórtiz, J. González, A. Fernández, M. Entrena, M. Hornos, A. Pérez, A. Carrillo, and
L. Barragán, “Sc@ut: Developing adapted communicators for special education,” Procedia - Social
and Behavioral Sciences, vol. 1, no. 1, pp. 1348–1352, 2009, World Conference on Educational
Sciences: New Trends and Issues in Educational Sciences, issn: 1877-0428. doi: https://doi.
org/10.1016/j.sbspro.2009.01.238. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877042809002419.

[14] H. Schelhowe and S. Zare, “Intelligent mobile interaction: A learning system for mentally disabled
people (imlis),” Stephanidis C. (eds) Universal Access in Human-Computer Interaction. Addressing
Diversity. UAHCI 2009. Lecture Notes in Computer Science, vol. 5614, pp. 234–243, 2009. doi:
10.1007/978-3-642-02707-9_47. (visited on 10/2019).

[15] AssistiveWare B.V. (2020). Proloquo2go, AssistiveWare B.V., [Online]. Available: https://www.
assistiveware.com/products/proloquo2go (visited on 10/2019).

[16] T. Dynavox. (2020). Snap for windows, [Online]. Available: https://www.tobiidynavox.com/en-
us/software/windows-software/snap-for-windows/ (visited on 10/2019).

57

https://www.un.org/development/desa/disabilities/wp-content/uploads/sites/15/2018/12/UN-Flagship-Report-Disability.pdf
https://www.un.org/development/desa/disabilities/wp-content/uploads/sites/15/2018/12/UN-Flagship-Report-Disability.pdf
https://www.cdc.gov/features/cerebral-palsy-11-things/index.html
https://www.cdc.gov/features/cerebral-palsy-11-things/index.html
https://doi.org/10.2139/ssrn.2782430
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2782430#
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2782430#
https://www.asha.org/public/speech/disorders/Information-for-AAC-Users/
http://ebip.vkcsites.org/augmentative-and-alternative-communication
http://ebip.vkcsites.org/augmentative-and-alternative-communication
https://journals.sagepub.com/doi/abs/10.1177/108835769400900301
https://journals.sagepub.com/doi/abs/10.1177/108835769400900301
http://autism-support.org/autism-resources/autism-tool-kit/
https://autismpdc.fpg.unc.edu/sites/autismpdc.fpg.unc.edu/files/PECS_Steps.pdf
https://autismpdc.fpg.unc.edu/sites/autismpdc.fpg.unc.edu/files/PECS_Steps.pdf
https://pecsaustralia.com/shop/small-communication-book/
https://pecsaustralia.com/shop/small-communication-book/
https://www.alimed.com/gotalk-express-32.html
https://www.alimed.com/gotalk-express-32.html
https://www.prentrom.com/caregivers/what-is-augmentative-and-alternative-communication-aac
https://www.prentrom.com/caregivers/what-is-augmentative-and-alternative-communication-aac
https://www.ablenetinc.com/technology/speech-generating-devices/quicktalker-7
https://www.ablenetinc.com/technology/speech-generating-devices/quicktalker-7
https://doi.org/https://doi.org/10.1016/j.sbspro.2009.01.238
https://doi.org/https://doi.org/10.1016/j.sbspro.2009.01.238
http://www.sciencedirect.com/science/article/pii/S1877042809002419
http://www.sciencedirect.com/science/article/pii/S1877042809002419
https://doi.org/10.1007/978-3-642-02707-9_47
https://www.assistiveware.com/products/proloquo2go
https://www.assistiveware.com/products/proloquo2go
https://www.tobiidynavox.com/en-us/software/windows-software/snap-for-windows/
https://www.tobiidynavox.com/en-us/software/windows-software/snap-for-windows/

[17] Gus Communication Devices Inc. (2020). Talktablet, Gus Communication Devices Inc., [Online].
Available: https://talktablet.com/ (visited on 10/2019).

[18] AssistiveWare. (2020). Progressive language, [Online]. Available: https://www.assistiveware.
com/innovations/progressive-language (visited on 10/2019).

[19] P. Chandrayan. (Oct. 22, 2017). A guide to nlp : A confluence of ai and linguistics, [Online].
Available: https://codeburst.io/a-guide-to-nlp-a-confluence-of-ai-and-linguistics-
2786c56c0749 (visited on 10/2019).

[20] S. M. Palakollu. (Aug. 31, 2019). Top 5 natural language processing python libraries for data
scientist, Towards Data Science, [Online]. Available: https://towardsdatascience.com/top-
5-natural-language-processing-python-libraries-for-data-scientist-32463d36feae

(visited on 10/2019).

[21] C. Cherpas, “Natural language processing, pragmatics, and verbal behavior,” The Analysis of
verbal behavior, vol. 10, pp. 135–147, 1992. doi: 10.1007/bf03392880. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pubmed/22477052 (visited on 12/2019).

[22] H. Zulkifli. (Aug. 26, 2018). Linguistic knowledge in natural language processing, Towards Data
Science, [Online]. Available: https://towardsdatascience.com/linguistic-knowledge-in-
natural-language-processing-332630f43ce1 (visited on 10/2019).

[23] D. Sarkar. (Jun. 19, 2018). A practitioner’s guide to natural language processing (part i) — process-
ing & understanding text, Towards Data Science, [Online]. Available: https://towardsdatascience.
com/a- practitioners- guide- to- natural- language- processing- part- i- processing-

understanding-text-9f4abfd13e72 (visited on 10/2019).

[24] W. Phillips. (2006). Introduction to natural language processing, Consortium on Cognitive Science
Instruction, [Online]. Available: http://www.mind.ilstu.edu/curriculum/protothinker/

natural_language_processing.php (visited on 12/2019).

[25] K. Krishnan. (May 21, 2019). How do alexa skills work? [Online]. Available: https://chatbotsmagazine.
com/how-does-alexa-skills-works-82a7e93dea04 (visited on 10/2019).

[26] Amazon.com, Inc. (2019). Amazon echo, Amazon.com, Inc., [Online]. Available: https://www.
amazon . com / all - new - amazon - echo - speaker - with - wifi - alexa - dark - charcoal / dp /

B06XCM9LJ4 (visited on 10/2019).

[27] Google. (2019). Google home - smart speaker and home assistant - google store, Google, [Online].
Available: https://store.google.com/us/product/google_home?hl=en- US (visited on
10/2019).

[28] B. Vigliarolo. (Sep. 27, 2019). Alexa skills: Cheat sheet, [Online]. Available: https : / / www .

techrepublic.com/article/alexa-skills-cheat-sheet/ (visited on 10/2019).

[29] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cambridge
University Press, 2008, ch. 1.2.4-6.2.1, isbn: 0521865719. [Online]. Available: https : / / nlp .

stanford.edu/IR-book/html/htmledition/irbook.html.

[30] W. Scott. (Feb. 15, 2019). Tf-idf from scratch in python on real world dataset, Towards Data Sci-
ence, [Online]. Available: https://towardsdatascience.com/tf-idf-for-document-ranking-
from-scratch-in-python-on-real-world-dataset-796d339a4089 (visited on 12/2019).

[31] C. Sutton and A. McCallum, An Introduction to Conditional Random Fields. now, 2012. doi:
10.1561/2200000013. [Online]. Available: https://ieeexplore.ieee.org/document/8186901.

[32] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[33] W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. H. Austin, M. B. Beasley, L. R.
Chirieac, S. Dacic, E. Duhig, D. B. Flieder, K. Geisinger, F. R. Hirsch, Y. Ishikawa, K. M. Kerr, M.
Noguchi, G. Pelosi, C. A. Powell, M. S. Tsao, and I. Wistuba, “The 2015 world health organization
classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004
classification,” Journal of Thoracic Oncology, vol. 10, no. 9, pp. 1243–1260, 2015, issn: 1556-
0864. doi: https://doi.org/10.1097/JTO.0000000000000630. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1556086415335711.

[34] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative study of CNN and RNN for natural
language processing,” CoRR, vol. abs/1702.01923, 2017. arXiv: 1702.01923. [Online]. Available:
http://arxiv.org/abs/1702.01923.

58

https://talktablet.com/
https://www.assistiveware.com/innovations/progressive-language
https://www.assistiveware.com/innovations/progressive-language
https://codeburst.io/a-guide-to-nlp-a-confluence-of-ai-and-linguistics-2786c56c0749
https://codeburst.io/a-guide-to-nlp-a-confluence-of-ai-and-linguistics-2786c56c0749
https://towardsdatascience.com/top-5-natural-language-processing-python-libraries-for-data-scientist-32463d36feae
https://towardsdatascience.com/top-5-natural-language-processing-python-libraries-for-data-scientist-32463d36feae
https://doi.org/10.1007/bf03392880
https://www.ncbi.nlm.nih.gov/pubmed/22477052
https://www.ncbi.nlm.nih.gov/pubmed/22477052
https://towardsdatascience.com/linguistic-knowledge-in-natural-language-processing-332630f43ce1
https://towardsdatascience.com/linguistic-knowledge-in-natural-language-processing-332630f43ce1
https://towardsdatascience.com/a-practitioners-guide-to-natural-language-processing-part-i-processing-understanding-text-9f4abfd13e72
https://towardsdatascience.com/a-practitioners-guide-to-natural-language-processing-part-i-processing-understanding-text-9f4abfd13e72
https://towardsdatascience.com/a-practitioners-guide-to-natural-language-processing-part-i-processing-understanding-text-9f4abfd13e72
http://www.mind.ilstu.edu/curriculum/protothinker/natural_language_processing.php
http://www.mind.ilstu.edu/curriculum/protothinker/natural_language_processing.php
https://chatbotsmagazine.com/how-does-alexa-skills-works-82a7e93dea04
https://chatbotsmagazine.com/how-does-alexa-skills-works-82a7e93dea04
https://www.amazon.com/all-new-amazon-echo-speaker-with-wifi-alexa-dark-charcoal/dp/B06XCM9LJ4
https://www.amazon.com/all-new-amazon-echo-speaker-with-wifi-alexa-dark-charcoal/dp/B06XCM9LJ4
https://www.amazon.com/all-new-amazon-echo-speaker-with-wifi-alexa-dark-charcoal/dp/B06XCM9LJ4
https://store.google.com/us/product/google_home?hl=en-US
https://www.techrepublic.com/article/alexa-skills-cheat-sheet/
https://www.techrepublic.com/article/alexa-skills-cheat-sheet/
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://doi.org/10.1561/2200000013
https://ieeexplore.ieee.org/document/8186901
https://doi.org/https://doi.org/10.1097/JTO.0000000000000630
http://www.sciencedirect.com/science/article/pii/S1556086415335711
http://www.sciencedirect.com/science/article/pii/S1556086415335711
https://arxiv.org/abs/1702.01923
http://arxiv.org/abs/1702.01923

[35] F. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,”
English, IET Conference Proceedings, 850–855(5), Jan. 1999. [Online]. Available: https://digital-
library.theiet.org/content/conferences/10.1049/cp_19991218.

[36] A. Mansouri, L. Affendey, and A. Mamat, “Named entity recognition approaches,” International
Journal of Computer Science and Network Security, vol. 8, pp. 339–344, 2 Jan. 2008. [Online]. Avail-
able: https://www.researchgate.net/publication/238607553_Named_Entity_Recognition_
Approaches.

[37] Stanford NLP Group. (Oct. 16, 2018). Stanford named entity recognizer (ner). version 3.9.2, The
Stanford NLP Group, [Online]. Available: https://nlp.stanford.edu/software/CRF-NER.html.

[38] Explosion AI. (2019). Spacy: Industrial-strength natural language processing, Explosion AI, [On-
line]. Available: https://spacy.io/ (visited on 10/2019).

[39] NLTK Project. (2019). Natural language toolkit, NLTK Project, [Online]. Available: https://
www.nltk.org/ (visited on 03/2019).

[40] The University of Sheffield. (2019). General architecture for text engineering, [Online]. Available:
https://gate.ac.uk/ (visited on 03/2019).

[41] DataTurks. (May 2, 2018). Stanford corenlp: Training your own custom ner tagger., medium.com,
[Online]. Available: https://medium.com/swlh/stanford- corenlp- training- your- own-

custom-ner-tagger-8119cc7dfc06 (visited on 10/2019).

[42] R. Chawla. (Aug. 7, 2017). Overview of conditional random fields, medium.com, [Online]. Available:
https://medium.com/ml2vec/overview- of- conditional- random- fields- 68a2a20fa541

(visited on 10/2019).

[43] K. M. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. J. Mellor, K. Schwaber,
J. Sutherland, and D. Thomas, “Manifesto for agile software development,” 2013.

[44] Google. (2019). Google drive, Google, [Online]. Available: https://www.google.com/drive/

(visited on 08/2019).

[45] Atlassian. (2019). Jira issue and project tracking software, Atlassian, [Online]. Available: https:
//www.atlassian.com/software/jira (visited on 09/2019).

[46] Slack. (2019). Slack, Slack, [Online]. Available: https://slack.com/ (visited on 10/2019).

[47] WhatsApp Inc. (2019). Whatsapp, WhatsApp Inc., [Online]. Available: https://www.whatsapp.
com/ (visited on 10/2019).

[48] GitHub, Inc. (2019). Github, GitHub, Inc., [Online]. Available: https://github.com/ (visited on
10/2019).

[49] Google Developers. (2019). Android studio, Google, [Online]. Available: https://developer.

android.com/studio (visited on 08/2019).

[50] JetBrains s.r.o. (2019). Pycharm, JetBrains s.r.o., [Online]. Available: https://www.jetbrains.
com/pycharm/ (visited on 08/2019).

[51] Pallets Projects. (2019). Flask. version 1.1.1, The Pallets Projects, [Online]. Available: https:

//palletsprojects.com/p/flask/ (visited on 08/2019).

[52] Amazon.com, Inc. (2019). Amazon web services (aws), Amazon.com, Inc, [Online]. Available:
https://aws.amazon.com/ (visited on 08/2019).

[53] Google. (2019). Google cloud, Google, [Online]. Available: https://cloud.google.com/ (visited
on 08/2019).

[54] Microsoft Corporation. (2019). Microsoft azure, Microsoft Corporation, [Online]. Available: https:
//azure.microsoft.com/en-us/ (visited on 08/2019).

[55] Amazon.com, Inc. (2005). Amazon mechanical turk, Amazon.com, Inc, [Online]. Available: https:
//www.mturk.com/ (visited on 01/2020).

[56] N. Alshuqayran, N. Ali, and R. Evans, “A systematic mapping study in microservice architec-
ture,” in 2016 IEEE 9th International Conference on Service-Oriented Computing and Applications
(SOCA), Nov. 2016, pp. 44–51. doi: 10.1109/SOCA.2016.15.

59

https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
https://digital-library.theiet.org/content/conferences/10.1049/cp_19991218
https://www.researchgate.net/publication/238607553_Named_Entity_Recognition_Approaches
https://www.researchgate.net/publication/238607553_Named_Entity_Recognition_Approaches
https://nlp.stanford.edu/software/CRF-NER.html
https://spacy.io/
https://www.nltk.org/
https://www.nltk.org/
https://gate.ac.uk/
https://medium.com/swlh/stanford-corenlp-training-your-own-custom-ner-tagger-8119cc7dfc06
https://medium.com/swlh/stanford-corenlp-training-your-own-custom-ner-tagger-8119cc7dfc06
https://medium.com/ml2vec/overview-of-conditional-random-fields-68a2a20fa541
https://www.google.com/drive/
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://slack.com/
https://www.whatsapp.com/
https://www.whatsapp.com/
https://github.com/
https://developer.android.com/studio
https://developer.android.com/studio
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://www.mturk.com/
https://www.mturk.com/
https://doi.org/10.1109/SOCA.2016.15

[57] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova, “BoolQ: Explor-
ing the surprising difficulty of natural yes/no questions,” in Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota: Association for Compu-
tational Linguistics, Jun. 2019, pp. 2924–2936. doi: 10.18653/v1/N19-1300. [Online]. Available:
https://www.aclweb.org/anthology/N19-1300.

[58] UX For The Masses. (May 15, 2018). How to run an exploratory ux testing session, [Online].
Available: http://www.uxforthemasses.com/exploratory-ux-testing (visited on 10/2019).

[59] J. McAuley. (2020). Amazon question/answer data, [Online]. Available: http://jmcauley.ucsd.
edu/data/amazon/qa/ (visited on 11/2019).

60

https://doi.org/10.18653/v1/N19-1300
https://www.aclweb.org/anthology/N19-1300
http://www.uxforthemasses.com/exploratory-ux-testing
http://jmcauley.ucsd.edu/data/amazon/qa/
http://jmcauley.ucsd.edu/data/amazon/qa/

Appendix A: Livox Code Analysis

The Livox codebase, managed through bitbucket, originally had very limited documentation
explaining the structure of code and flow of data within the application. We started annotating and
creating documentation for the Livox application’s codebase, making the process of integrating any
features into the application easier, since we know exactly how each of the packages fit together, and
where we will add code to avoid disrupting existing features of the application. In this section, we will
discuss the general architecture of the application, as well as the architecture within the specific
packages for speech recognition and for machine learning.

General Architecture

The Livox codebase is standard for Android applications, using Java and Kotlin for back-end
control, and XML for front end views. The Livox application is designed based on the entity, boundary,
controller (EBC) architectural style. This style was developed with four main concerns in mind: data
modeling and persistence, code modularity, extensibility, and testing. The codebase is broken into
classes based on the independent pieces of functionality that the application requires. Entity classes are
identified and created in order to maintain consistent and reliable state within the application. Entity
classes are designed to represent, as accurately as possible, the real world entities that fall in the
application’s domain. Boundary classes are static interfaces that handle the direct interaction between
the user and the application. Boundary classes do not maintain any state of the system or handle any
logic of the application. Controller classes hold all of the logic of the application and implement all of
the use cases that users may wish to complete. Controller classes manipulate the front-end boundary
classes as well as modify the state of the application, so long as it is a discrete transformation from one
steady-state to another.

This categorization and separation of classes enables the modularity, extensibility, and testing
design goals. Since each use case of the application is likely to get its own controller or package of
controller classes, it is easy to implement new use cases with relatively little modification to the
existing code. Separation of classes also enables easier testing of the application, since all of the formal
logic involved in the application is encapsulated in the controller classes, which can be tested
independently of the static boundary objects.

61

Speech Recognition

The Livox application encapsulates all control for speech recognition in an independent
package of classes. The class diagram in Figure packarch shows the architecture of this package. The
package has separate controller classes for different steps in the data pipeline: speech-to-text, text
normalization, sentence segmentation, and phrase classification. This separation between preprocessing
and classification enables porting of the package to a standalone application, and modification of
specific steps in the pipeline through minimal refactoring of code. When we reintegrate this code, we
will be able to insert our own sentence segmentation without disturbing any existing code for
speech-to-text, text normalization, or phrase classification.

Figure packarch. Livox Speech Recognition Package Architecture

This package primarily uses callback functions, defined at appropriate levels of the
architecture, to pass data up the pipeline of controller classes. The controller for coordinating phrase
classification delegates to classes in the machine learning package in order to classify individual pieces
of a given question. The highest-level controller class then uses a callback to vb the main UI class
which coordinates launching the appropriate screen to respond to the question.

Machine Learning and Classifiers

The Livox application similarly encapsulates all controllers for machine learning models in a
separate package. The majority of classes in this package are used to generate recommended items for
the user based on time, location, and pattern usage. There are, however, some classes in this package
with models used to classify questions recognizable by the application. The phrase classification
controller class in the speech recognition package directly interacts with these classes. These machine
learning based phrase classification controllers also interface with the Android WEKA package’s
classifier and local data utilities classes. We will not implement our own machine learning models for
phrase classification in this package, since the package handles only binary question classification and
the overwhelming majority of classes are used for identifying recommended items. We will create a
separate package for phrase classification that encapsulates its own machine learning models. We will
design the controllers in this package based on a similar architecture to the existing binary classifier.

62

Given the existing architecture in the Livox codebase, it will be easier to expand on the speech
recognition package with our own preprocessing, and create our own package for question classification.
This ease-of-extensibility is a direct result of EBC architecture that was originally used when creating
the application, and will be maintained as new features are added to the codebase.

63

Appendix B: Online Classifier Deployment

The following documentation is for the purpose of deploying the Online Classifier on AWS. The
code for our online classifier can be found at this Github repository.
https://github.com/rcvalenteai/livox-online-classifier

Deploy Database on Amazon RDS

First create a new AWS RDS Database Instance. A simple tutorial to achieve this can be
found here: Creating an RDS Instance

Second, find your connection credential information of your instance under the ‘Connectivity &
security’ tab. Find the DB Identifier, endpoint, and password.

64

Load Data into the Database

Navigate to the “/src/db-loaders” directory in the provided git repository. The next steps will
use files in the db-loaders folder.

Edit the “credentials.json” file with the following information from Step 1

{

user: enter your DB User,

password: enter your DB password,

host: enter the rout to your RDS instance

}

Open a terminal to this folder, and run the “dbloader.py” script using python

>>> python dbloader.py

This will initialize the AWS database.

Deploy Flask API to Elastic Beanstalk

Next, deploy the Flask Application on Elastic Beanstalk. An in depth tutorial on starting an
Elastic Beanstalk instance can be found here: Deploying Flask App to Elastic Beanstalk

Once the Elastic Beanstalk Instance is deployed, Zip up the contents of the src folder to be
uploaded.

65

In order to deploy the Zipped API code:

1. Navigate to your Elastic Beanstalk deployment server, click upload and deploy

2. Upload your zipped folder

3. Done!

66

Appendix C: Livox Development Environment Setup

1. Clone the livox android repo to a local development environment

2. Open the code repository in Android Studio

(a) new project → new project from version control → git → enter above url

3. Connect an Android device to run the App

(a) Physical Device: Enable USB debugging on the Android device and connect via a USB to
your development machine

i. You may need to install Android File Transfer to access file storage on the device.
(Should be MacOS computers only)

(b) Virtual Device: Open Android Virtual Device (AVD) manager and create a new virtual
device. This should prompt you to download a virtual device driver.

4. Create a run configuration

(a) Note: If no modules are shown go to File → Project Structure → Modules → liVox and
make sure the properties are correct

(b) Make sure the correct Android Device is selected in your run configuration

5. Run the application on your Android Device

(a) Possible Error: File google-services.json is missing. The Google Services Plugin cannot
function without it.

i. The application needs to be connected with Firebase

ii. Create a firebase project here

iii. Under “Get started by adding Firebase to your app” click Android and download
google-services.json,

iv. Add the downloaded JSON file to the ‘liVox’ package folder within the ‘livox android’
repository

6. Sign in to Livox with an email address and installation key

(a) You can get installation keys from Carlos Pereira for development purposes.

7. Integration

(a) Livox used the ‘develop’ git branch for their own internal development

(b) We recommend branching off this branch when integrating any new features, and to pull and
merge from it at regular intervals as to avoid versioning conflicts in the future.

67

Appendix D: IRB Approval Letter

Institutional Review Board FWA #00015024 - HHS #00007374

Notification of IRB Approval

Date: 27-Jan-2020

PI: Neamtu, Rodica

Protocol Number: IRB-20-0335

Protocol Title:

Towards a More Inclusive World: Enhanced Augmentative and Alternative Communication
For People With Disabilities Using AI and NLP

Approved Study Personnel: Winsor, Cole;Robbertz, Andrew;Valente, Richard;Emil,
Zachary;Neamtu, Rodica

Start Date: 27-Jan-2020 Expiration Date: 26-Jan-2021

Review Type: Review Method: Expedited Review Risk Level: Minimal Risk

Sponsor:

The WPI Institutional Review Board (IRB) approves the above-referenced research activity,
having conducted a review according to the Code of Federal Regulations (45 CFR 46).

This approval is valid through 26-Jan-2021 unless terminated sooner (in writing) by yourself or
the WPI IRB. Research activities involving human subjects may not continue past the expiration date
listed above, unless you have applied for and received a renewal from this IRB.

We remind you to only use the stamped, approved consent form, and to give a copy of the
signed consent form to each of your subjects. You are also required to store the signed consent forms in
a secure location and retain them for a period of at least three years following the conclusion of your
study. You are encouraged to use the InfoEd system for the storage of your consent forms.

Amendments or changes to the research must be submitted to the WPI IRB for review and
approval before such changes are put into practice.

Investigators must immediately report to the IRB any adverse events or unanticipated
problems involving risk to human participants.

Please contact the IRB at irb@wpi.edu if you have any questions.

*if blank, the IRB has not reviewed any funding proposal for this protocol

68

Appendix E: User Study Informed Consent

Informed Consent Agreement for Participation in a Research Study

Investigator:

Richard Valente, Tel. 1-908-566-6879, Email: rcvalente@wpi.edu
Zachary Emil, Tel. 1-202-999-7726, Email: zgemil@wpi.edu
Andrew Robbertz, Tel. 1-978-793-0506, Email: alrobbertz@wpi.edu
Cole Winsor, Tel. 1-978-844-0052, Email: ccwinsor@wpi.edu

Title of Research Study:

Towards a More Inclusive World: Enhanced Augmentative and Alternative Communication
For People With Disabilities Using AI and NLP

Sponsors:

Carlos Pereira, Andre Camara

Introduction

You are being asked to participate in a research study. Before you agree, however, you must be
fully informed about the purpose of the study, the procedures to be followed, and any benefits, risks or
discomfort that you may experience as a result of your participation. This form presents information
about the study so that you may make a fully informed decision regarding your participation.

Purpose of the study:

This project focuses on the creation of a voice activated feature within the Livox augmentative
and alternative communication application. This feature enables the Livox application to listen for
questions in conversation and present relevant responses to users. The purpose of this study is to
evaluate the real world impact of this feature.

Procedures to be followed:

The following interview will take less than 30 minutes. The goal of this interview is to
determine the accuracy of the new feature as well as to determine impact to users of the feature. First,
you will be given tasks activating the new feature. These tasks will be conducted in three stages:
exploratory questioning, scripted questioning, and informed exploratory questioning. Next, you will be
given tasks to interact with the base Livox application. You will then repeat the tasks but interact
using our feature. From using the application and our feature, we will gather data on the time and
effort of using the application. The interview will be concluded with exploratory questions about the
participants experience.

Risks to study participants:

The use of a tablet could lead to possible eye-strain, migraines, or epilepsy,

Benefits to research participants and others:

There are no direct benefits to the subjects in this study.

Record keeping and confidentiality:

With permission, we would like to take written and electronic records of the interview. Records
of your participation in this study will be held confidential so far as permitted by law. However, the
study investigators, the sponsor or its designee and, under certain circumstances, the Worcester
Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect and have access to
confidential data that identify you by name. Any publication or presentation of the data will not

69

identify you.

Will you allow taking written and electronic records such as notes and audio recordings during
the interview?

Y N Initials

Compensation or treatment in the event of injury:

There is minimal risk of injury or harm by participating in these interviews. Should you be
injured during the interview, you will be cared for accordingly. You do not give up any of your legal
rights by signing this statement.

For more information about this research or about the rights of research
participants, or in case of research-related injury, contact:

Investigators: Contact information above

IRB Chair: Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu
Human Protection Administrator: Gabriel Johnson, Tel. 508-831-4989, Email:

gjohnson@wpi.edu
Advisor: Rodica Neamtu Tel (508) 831-5000 ext. 6802, Email: rneamtu@wpi.edu

Your participation in this research is voluntary.

Your refusal to participate will not result in any penalty to you or any loss of benefits to which
you may otherwise be entitled. You may decide to stop participating in the research at any time
without penalty or loss of other benefits. The project investigators retain the right to cancel or
postpone the experimental procedures at any time they see fit.

By signing below, you acknowledge that you have been informed about and consent to be a
participant in the study described above. Make sure that your questions are answered to your
satisfaction before signing. You are entitled to retain a copy of this consent agreement.

Date:
Study Participant Signature

Study Participant Name (Please print)

Date:
Signature of Interviewer

70

Appendix F: Recruitment and Screening Forms

Would you like to participate in our MQP study?

For many people with verbal or cognitive impairments, engaging in conversation can be
tiresome and time-consuming, limiting their educational, social, and career opportunities. Livox
provides a unique, pictogram-based AAC application to facilitate communication through a simple, yet
highly customizable interface that also accommodates a wide range of vision and motor impairments.
The primary goal of this project is to reduce the time and effort required to communicate for people
with disabilities by incorporating a NLP-based multi-label classifier into Livox’s machine-learning
infrastructure. Our classifier listens for and detects questions followed by a list of responses, and
presents relevant Livox images for each response to users.

The following interview will take 15 minutes. The goal of this study is to determine the impact
of the new speech-to-text feature within the Livox application. To do this, we will ask you to complete
tasks with both the current Livox application, and targeting the multi-label classifier. We will measure
the time and number of clicks necessary to complete these tasks in each scenario. We will conclude the
interview with exploratory questions on the user experience of the application. This interview will be
anonymous, and your responses will be recorded accordingly to maintain this anonymity.

How long it will take: 15 minutes

If you have any questions or are interested in participating in our study please contact our
MQP team at gr-livoxmqp@wpi.edu.

Livox MQP Team:
Zachary Emil - zgemil@wpi.edu
Andrew Robbertz - alrobbertz@wpi.edu
Richard Valente - rcvalente@wpi.edu
Cole Winsor - ccwinsor@wpi.edu
Project Advisor:
Professor Rodica Neamtu - rneamtu@wpi.edu

FULL CONSENT SCRIPT FOR SCREENING

Background

You are being asked to voluntarily answer some questions to see if you might qualify to be
enrolled in a research study. We are doing a research study in order to evaluate the effectiveness of a
newly developed voice-activated feature, developed for the Livox assistive communication system.

If you agree, we will ask you some questions about your ability to safely and efficiently interact
with the Livox application and our voice-activated feature. You may feel some discomfort or
embarrassment about answering these personal questions, but please know that you may end the
screening at any time.

Confidentiality

We will be keeping your answers on file for our records. We will store electronic files in
computer systems with password protection and encryption.

If you agree to answer our screening questions, we will share your answers with the following
groups of people:

• People who do the research or help oversee the research.

• People from Federal and state agencies, as required by law. Such agencies may include the U.S.

71

Department of Health and Human Services, the Food and Drug Administration, the National
Institutes of Health, and the Massachusetts Department of Public Health.

• Any people if you give us separate permission allowing us to give them your answers.

We might share your answers where we have removed anything that we think would show your
identity. There still may be a chance that someone could figure out that the information is about you.
Such sharing includes:

• Publishing results in a medical book or journal.

• Using research data in future studies, done by us or by other scientists.

Subject’s Rights

Saying yes to this screening and the sharing of your health information does not mean you
have to be in the study. Your participation is completely up to you. You can decide to start answering
the questions but then stop at any time. Your decision will not affect your ability to get health care or
payment for health care. It will not affect your enrollment in any health plan or benefits you can get.
However, if you don’t answer all the questions, you may not be able to be in the research study.

If you have any questions, please ask them now or at any time you can contact our research
team at gr-livoxmqp@wpi.edu. If you would like more information about your rights as a research
subject, you may call 617-358-5372 or email medirb@bu.edu. You will be talking to someone at the
Boston Medical Center/Boston University Medical Campus IRB. The IRB is a group that helps
monitor research.

Signatures

By signing this permission form, you are indicating that

• you have read this form (or it has been read to you)

• your questions have been answered to your satisfaction

• you voluntarily agree to participate in this screening

• you permit the use and sharing of information that may identify you as described

Printed name of subject

Signature of subject Date

I have personally explained the research to the above-named subject and answered all
questions. I believe that the subject understands what is involved in the study and freely agrees to
participate.

Signature of person conducting consent discussion Date

Screening Questions

Please answer the following questions honestly and to the best of your ability.

1. Do you have a history of eye strain from screen use?

2. Do you suffer from any disabilities? (For example, epilepsy, autism, cerebral palsy ...)

3. Do you believe there is any reason you should not participate in this study for your own health?

72

Appendix G: User Study Interview Scripts

Interlocutor Interview Script

Hello ,

My name is , introduce other team members present.

Thank you for agreeing to speak with us today. We are currently completing our Major
Qualifying Project, Towards a More Inclusive World: Enhanced Augmentative and Alternative
Communication For People With Disabilities Using Artificial Intelligence and Natural Language
Processing. The goal of our project is to develop a voice activated feature within the Livox
augmentative and alternative communication application. This feature enables the Livox application to
listen for questions in conversation and present relevant responses to users.

The goal of this interview is to determine the accuracy of the new feature under a variety of
situations. This interview will be anonymous, and your responses will be coded accordingly to maintain
this anonymity.

Check they have filled out consent form (Appendix C.1)

Do you have any questions for us before we begin?

If not, begin interview...

Exploratory Questioning

The first phase of this interview will have you ask questions based off a series of topics. The
goal of this phase is to discover if an individual with no knowledge of the system will ask questions in a
format which can be recognized by our system. We will provide you with the topics for the question,
and you will come up with the question.

There are several restrictions which must be followed to use this feature. It is required that
you say the name of the user, in this case “John”, before asking the question. While asking the
question speak clearly and do not pause. To help with this, take as much time as needed to create and
practice you question.

Do you have any questions for us before we begin?

Topics:

1. Lunch

2. Book preferences

3. Math question

Scripted Questioning

The second phase of this interview will have you ask scripted questions. The goal of this phase
is to test the real world accuracy of our system for known question formats. We will provide you with a
list of questions and have you read them aloud to the application.

Again, there are several restrictions which must be followed to use this feature. It is required
that you clearly say the name of the user, in this case “John”, before asking the question. While asking
the question speak clearly and do not pause. To help with this, take as much time as needed to
practice the question.

Do you have any questions for us before we begin?

73

1. What do you like better cats or dogs?

2. How are you feeling today: happy, sad, or angry?

3. What do you need to do this morning brush your teeth or go to the bathroom?

4. What is your favorite color: red, green, or maybe blue?

5. What time would you like to take a shower? 8, 8:30, or 9?

6. Do you want to go now or later?

7. What do you want for dinner: a hamburger or a peanut-butter and jelly sandwich?

Informed Exploratory Questioning

The third phase of this interview will be identical to the first, where you ask questions based
off a series of new topics. The goal of this phase is to test if an individual with basic knowledge of the
system will ask questions in a format which can be recognized. To recap, our feature expects a full
question, followed by a list of possible responses. We will provide you with a topic and the response
options, and you will formulate a question which encompasses these aspects. Again, there are several
restrictions which must be followed to use this feature. It is required that you say the name of the user,
in this case “John”, before asking the question. While asking the question, speak clearly and do not
pause. To help with this, take as much time as needed to create and practice the question.

Do you have any questions for us before we begin?

1. Ask John his opinion for lunch. You can make hot dogs, hamburgers, or pizza.

2. Ask John his opinion on which book he wants to read. He can read a mystery or adventure novel

3. As John, what the solution to 7+8 is. Give him the options of 14, 15, and 16

User Interview Script

Hello ,

My name is , introduce other team members present.

Thank you for agreeing to speak with us today. We are currently completing our Major
Qualifying Project, Towards a More Inclusive World: Enhanced Augmentative and Alternative
Communication For People With Disabilities Using Artificial Intelligence and Natural Language
Processing. The goal of our project is to develop a voice activated feature within the Livox
augmentative and alternative communication application. This feature enables the Livox application to
listen for questions in conversation and present relevant responses to users.

Livox is an Augmentative and Alternative Communication application designed to assist
people who have difficulty with verbal communication. Livox has text-to-speech that is activated by
selecting a tile on the screen. Selecting a tile causes the application to read the tile’s text out loud.
Livox is organized in a nested-folder structure, meaning that some tiles will move to a different screen
when selected, often to continue or specify a thought. If a desired tile is not on the main screen, you
will need to navigate to the appropriate topic to find it.

The goal of this interview is to determine the impact of the new Question Detection feature for
the user. To do this, we will ask you to complete tasks with both the Livox application, and the
Question Detection feature. We will be measuring the time and effort, number of clicks, necessary to
use each. We will conclude the interview with exploratory question on the user experience of the
application. This interview will be anonymous, and your responses will be coded accordingly to
maintain this anonymity.

74

Check they have filled out consent form (Appendix C.2)

Do you have any questions for us before we begin?

If not, begin interview...

Livox Application Testing

The first phase of this interview will ask you to complete tasks within the base Livox
application. The goal of this phase is to evaluate the time and effort required to use the Livox
application without our feature. For this phase we will ask you several questions. Once the question has
been completely asked, you will navigate the application to answer with one of the options we gave you.

You now have time to acclimate to the Livox application.

Explain how to use the Livox Application

Do you have any questions for us before we begin?

1. What would you like to have for lunch? Hamburgers or hot dogs?

2. Where do you want to go: School or the Library?

3. Who is your favorite sibling: your Brother or Sister?

4. When do you want to get a haircut? Today or Tomorrow?

5. What do you want to do after school: Play videogames or paint?

Question Detection Feature Testing

The second phase of this interview will ask you to complete tasks within the Question
Detection feature. The goal of this phase is to gather comparative data on time and effort when using
this feature. For this phase we will ask you several questions. Once the question has been completely
asked, you will click one of the presented response options.

Give explanation of how to use the question detection feature: Once we have properly asked a
question, you will be taken to a new page after about a second, where the only tiles are those contained
in the question. Selecting one of these tiles or pressing the back button will read the tile out loud and
return you to the previous screen. The question must be asked again for the screen to reappear.

Do you have any questions for us before we begin?

You now have time to acclimate to the Use of the Question Detection feature.

1. What would you like to have for lunch? Hamburgers or hot dogs?

2. Where do you want to go: School or the Library?

3. Who is your favorite sibling: your Brother or Sister?

4. When do you want to get a haircut? Today or Tomorrow?

5. What do you want to do after school: Play videogames or paint?

Exploratory Questions

The final phase of this interview will ask you questions in order to get your opinion on the user
experience of the Question Detection feature.

1. Did you prefer navigating the application or using our Question Detection feature?

75

2. What part(s) of the Question Detection feature did you find frustrating, if any?

3. What part(s) of the Question Detection feature did you like, if any?

4. Do you have any further comments or recommendations for the Livox application or the Question
Detection feature?

76

Appendix H: Mechanical Turk Questionnaires

Batch 1

This survey focuses on collecting examples of ”list questions”.

Examples of list questions are:

• ”what would you like for dinner pizza, pasta or a hot dog”

• ”how would you like your eggs cooked, scrambled, fried, or poached”

• ”do you want the cat, golden retriever or hamster”

You are tasked with creating 8 examples of list questions. With the following requirements.

• Use a variety of topics including different categories of objects, places, people and things.

• Don’t use the same question word such as ”what” exclusively, be creative and use a variety.

• Questions must have a list of things.

• Please attempt to use ”compound nouns” in some (not all) questions such as ”hot dog” or
”chocolate chip cookie”

• Don’t worry about punctuation or capitalization

• Lists of objects do not need to be 3 items they can be 2 or more

Example Answer Q1:

1a) List Question:

”what would you like for dinner pizza, pasta or a hot dog”

1b) List Objects:

”pizza, pasta, hot dog”

Batch 2

This survey focuses on collecting examples of ”list questions”.

Examples of list questions are:

• “are you feeling happy, sad or angry”

• “should I pick you up at eleven or twelve”

• “is your favorite restaurant, McDonalds, Subway, Burger King or Olive Garden”

You are tasked with creating 8 examples of list questions. With the following requirements.

• Use a variety of topics including (not limited to) different categories of numbers, objects, places,
people and things.

77

• Don’t use the same question word such as ”are” exclusively, be creative and use a variety.

• Questions must have a list of things.

• Please use ”compound nouns” in some (not all) questions such as ”hot dog” or ”chocolate chip
cookie”

• Lists of objects do not need to be 3 items they can be 2 or more (use a variety)

Example Answer Q1:

1a) List Question:

“are you feeling happy, sad or angry”

1b) List Objects:

”happy, sad, angry”

1c)

Description

Batch 3

This survey focuses on collecting examples of ”list questions”.

Examples of list questions are:

• “are you feeling happy, sad or angry”

• “should I pick you up at eleven or twelve”

• “is your favorite restaurant, McDonalds, Subway, Burger King or Olive Garden”

You are tasked with creating 8 examples of list questions. With the following requirements.

• Use a variety of topics including (not limited to) different categories of numbers, objects, places,
people and things.

• Don’t use the same question word such as ”are” exclusively, be creative and use a variety.

• Questions must have a list of things.

• Please use ”compound nouns” in some (not all) questions such as ”hot dog” or ”chocolate chip
cookie”

• Lists of objects do not need to be 3 items they can be 2 or more (use a variety)

Example Answer Q1:

1a) List Question:

“are you feeling happy, sad or angry”

1b) List Objects:

”happy, sad, angry”

78

1c)

Description

IMPORTANT NOTE:

Do not use question words from the examples in your answer, credit will not be given.
Specifically do not start sentences with: ”Are”, ”Should” or ”Is”

Batch 4

This survey focuses on collecting examples of ”list questions”.

Examples of list questions are:

• “what would you like for lunch, pizza, a hot dog or hamburgers”

• “how many coins do you need four or five”

• “do you want to go to, McDonalds, Subway, Burger King or Olive Garden”

You are tasked with creating 8 examples of list questions. With the following requirements.

• Use a variety of topics including (not limited to) different categories of numbers, objects, places,
people and things.

• Don’t use the same question word such as ”are” exclusively, be creative and use a variety.

• Questions must have a list of things.

• Please use ”compound nouns” in some (not all) questions such as ”hot dog” or ”chocolate chip
cookie”

• Lists of objects do not need to be 3 items they can be 2 or more (use a variety)

Example Answer Q1:

1a) List Question:

“what would you like for lunch, pizza, a hot dog or hamburgers”

1b) List Objects:

”pizza, hot dog, hamburgers”

1c)

Object/Entity

IMPORTANT NOTE:

Do not use question words from the examples in your answer, credit will not be given.
Specifically do not start sentences with: ”What”, ”How” or ”Do”

79

	Introduction
	Background
	State of the Art AACs
	Picture Exchange Communication System
	Recorded Speech Devices
	Electronic Tablet Speech Applications

	Natural Language Processing
	Analyzing Sentence Structure
	Word Stemming
	Term Frequency - Inverse Document Frequency
	Word Embedding
	Machine Learning Classifiers
	Named Entity Recognition

	Livox Application
	Interactivity Features
	Livox Portal
	Innovations in AI/NLP

	Methodology
	Classifying List Questions
	Separating Question and List Phrases
	Extracting Question Responses
	Image Classification and Retrieval

	Implementation Strategy
	Agile Development
	Technology Stack
	File Organization and Task Management
	Communication
	Programming
	External APIs

	Microservice Architecture

	Evaluation
	Targeted Testing
	Crowdsourced Testing
	Image Matching Evaluation
	User Study
	Interlocutor Set
	User Set

	Iterative Development
	Question Classifier
	Iteration 1 - Hard-Coded Phrase Recognition
	Iteration 2 - SVM Question Classification Model
	Iteration 3 - Heuristic Method

	Phrase Parser
	Iteration 1 - Common Question Words Offset
	Iteration 2 - Improved Question Words

	Entity Parser
	Iteration 1 - Naive Entity Extraction
	Iteration 2 - Word Embedding Vector Similarity
	Iteration 3 - Database Derived Vocabulary
	Iteration 4 - Pre-processing with Word Stemming
	Iteration 5 - Word Embedding Extended Vocabulary

	Image Retrieval
	Iteration 1 - Google Vision tags Image Retrieval
	Iteration 2 - Score-Based Image Retrieval

	Android Application
	Prototype Application
	Livox Integration

	Results
	Target Test Results
	Crowd-sourced Testing Results
	Image Matching Results
	User Study Results
	Interlocutor Interview Results
	User Interview Results
	Exploratory Question Results

	Discussion and Related Work
	Question Recognition Improvements
	Phrase Parsing Improvements
	Entity Parsing Improvements
	Image Retrieval Improvements
	Livox Integration Improvements

	Conclusion
	References
	Works Cited
	Appendix A: Livox Code Analysis
	Appendix B: Online Classifier Deployment
	Appendix C: Livox Development Environment Setup
	Appendix D: IRB Approval Letter
	Appendix E: User Study Informed Consent
	Appendix F: Recruitment and Screening Forms
	Appendix G: User Study Interview Scripts
	Appendix H: Mechanical Turk Questionnaires

