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Abstract 

The WPI Robot Mascot MQP is designing and building a robot goat to be a 

companion mascot to Gompei. Robotics is a signature program of WPI, and this MQP 

seeks to further represent the iconic robotics work done by students and faculty. It 

would be impossible in one MQP to develop a mascot robot that reflects the 

impressive robotics achievements at WPI. This preliminary MQP involved design 

and prototyping work for 5-DoF head and neck assembly. This includes work on the 

mechanical, electrical, and software systems of the robot, as well as the initial 

requirements and project planning done in collaboration with various stakeholders 

at WPI. Future MQP teams will further develop the robot, and it will serve as a 

continuously evolving platform to showcase the traditions and experiences at WPI. 
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Authors’ Note 

This report is not the final iteration for the WPI Mascot Robot MQP. Some 

members of the team will be continuing the project in subsequent term(s). As such, 

this MQP report reflects the work done up to the end of the fourth project term 

(D20). The work herein has been presented such that, to the extent possible, its 

content is consistent in isolation. However, some of the team is still focused 

primarily on project work, so there may still be section stubs that are yet to be 

completed. Where appropriate, some sections note their incomplete status if it is not 

self-evident. Note that this is also not the first version of the report published for 

some team members’ completion of degree requirements. 

 

COVID-19 Response 

 This MQP, like many others, was affected by the coronavirus (COVID-19) 

pandemic. This segment of the project was originally intended for the integration, 

testing, and validation of the work produced during the A19, B19 and C20 project 

terms. Unfortunately, health safety concerns as well as most of the team traveling 

home from WPI meant access to project materials and resources was highly limited. 

To cope with this, adjustments were made to the term goals as well as the intended 

deliverables. Relevant sections in this report to affected project elements include a 

statement on how they were affected, and, if applicable, how they will continue to be 

handled in subsequent project term(s).  

Though the impact to the project was large, the team saw an opportunity to 

frame the experience as learning to work in a horizontal integration environment. 

Reviewing materials or transferring work was no longer as simple as walking to an 

office. In the same way that design firms must work with overseas manufacturers 

and suppliers, collaboration had to be done remotely. The team members learned to 

effectively communicate ideas asynchronously and developed their ability to work 

with unpredictable schedules.    
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1 | Introduction 

Robotics is a signature program of WPI, however, there is still an opportunity 

to further integrate robotics into WPI’s image. While it is not the only important part 

of WPI’s identity, the robotics work its students and faculty produce are iconic and 

recognizable to people both in and out of STEM fields. The goal of this project is to 

design a prototype of a mascot robot for WPI that anyone can interact with to see 

and feel what WPI is all about. 

However, WPI already has a mascot－Gompei the Goat. Gompei is ingrained 

in the WPI tradition and loved by many, so it would be a huge loss to replace him. 

The aim of this project is not to replace Gompei, but to add to the Gompei experience 

with a little robot flair, as is WPI tradition. This robotic mascot will be able to 

operate in a wider variety of circumstances such as a semi-permanent display, being 

part of admissions tours, and events during unsuitable weather. 

The current design of the robot sees the robot taking the form of a goat, with 

proportions like those of a British Alpine goat. The robot will have 2 modes: 

teleoperated and autonomous. In the teleoperated mode, a user will control the 

robot with a remote control, capable of making the robot move its head and limbs. 

In the autonomous mode, the robot will stand in place and be capable of interacting 

with people. It will be able to track the movement of hands, turn its head to face 

people talking to it, react to being pet, and make noises in response to what is 

happening around it. However, this project will not be creating the full robot. A full 

robot of this scale requires an immense amount of work, not possible with the given 

time. Instead, this project will serve as a proof-of-concept for a mascot robot that 

future projects may build upon and complete. This project will primarily focus on 

designing the head and neck mechanisms, as well as the accompanying AI and basic 

circuitry for motor control and sensors. 

Over the course of A-Term, this team spoke with potential stakeholders in 

the project, including Admissions, Athletics, and the SAS to get their thoughts on 

what the robot will be used for and what it should be capable of doing. Using the 

requirements created from those responses, a character design was drafted and 
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finalized, and initial designs for the mechanics and software of the robot began. 

During B-Term, the requirements and designs were further refined. Prototype 

versions of both the mechanisms as well as the software were produced, analyzed, 

and integrated. Requirements for sensors were created, and applicable sensors 

were identified. In C-Term, the implementation details for the mechanisms and 

software were determined. The first version of the software for the robot was 

written with the functionality to actuate physical motors to dynamically created 

positions; production of physical mechanisms also began with additional focus 

being put into electrical design. This report will highlight what options were 

considered, analyzed, and selected for the first version of the mascot robot.  
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2 | Background 

2.1 |  Mascots 

Mascots are an important part of organizational branding. A strong brand 

communicates an image that builds trust and loyalty with its consumers. Mascots 

help create an emotional bond between the customer and the brand, as they now 

have an anthropomorphized character they can associate with the brand [1]. This in 

turn helps engage customers with that brand. Of course, mascots are also an 

important part of the brand of schools. Many high schools and colleges have mascots 

that help people and alumni identify with the school. For example, WPI has Gompei 

the goat, Penn State has the Nittany Lion, and MIT has Tim the beaver. These 

mascots appear in their respective school’s marketing, merchandising, and at events 

as costumes worn by people to bring the mascot to life.  

 

Figure 2.1 2020 Tokyo Olympics mascot robots Miraitowa (center right) and Someity (center left). 

Mascot robots, in comparison, are a new concept. The only public mascot 

robots are the robot versions of Miraitowa and Someity, the mascots for the 2020 

Tokyo Summer Olympics designed by Toyota (Figure 2.1) [2, Fig. 1]. These mascot 

robots take the form of small, toy-like robots that will welcome athletes and guests 

to venues, as well as interact with children [2]. Although these mascot robots do not 

replace the original mascots, they provide an opportunity for their creators to show 

off their technical prowess and interact with the audience in new ways. Due to the 
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lack of other mascot robots, there is a large design space open for new mascot 

robots with different capabilities and appearances. 

2.2 | Human Interactive Robots 

One design space of robots that is currently seeing a lot of experimentation is 

human interactive robots. Several robots today are being built with the intention of 

interacting with humans. These range from companion robots such as Jibo and Blue 

Frog Robotics’ Buddy to robots used for therapy and understanding human-robot 

interactions. These robots interact with people in various ways, some respond to 

audio cues, others move or react to stimuli; some even show emotions. As the field 

of robotics advances, we will inevitably see human-robot interactions become more 

frequent. One important development that we will likely see as social robots 

advance, is the ability to display empathy. Empathy requires one to be able to 

“perceive, understand, and feel the emotional state of others” [3]. A robot with this 

ability would need to be able to understand the context surrounding a situation, 

then decide on what to do.  

2.3 | Goat Anatomy 

Before any mechanisms can be researched or design work done, it is 

important to first understand the anatomy of the animal that this robot will be 

based around—that being a goat. The anatomy of any animal can be broken down 

into multiple subsystems [4]. When studying the model animal anatomy to inform 

the design of a robot, two obvious systems to start with are the skeletal and 

muscular system. Together, these biological systems form the foundational 

structure of the animal and provide a means for articulating it [4], [5]. 
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Figure 2.2 Anatomy of a Goat Knee 

As with most animals, goats have joints with both single and multiple 

degrees of freedom (DoF). Unlike mechanical systems, these joints typically do not 

have consistent instant centers. For example, the knee joint appears to simply be a 

single DoF joint with a fixed point of rotation. However, the rotational axis of this 

joint is variable due to the structure and alignment of the fibula, tibia, and the many 

support bones (Figure 2.2) [4], [5]. Evidently, in order to translate these biological 

systems into mechanical ones, simplifications will need to be made. These 

simplifications are the functional degrees of freedom [6]. 

  

Figure 2.3 Goat Skeletal Structure 

For this project, the important joints to examine are the ones that influence 

head and neck movement. Goats, like most other animals, have six degrees of 

freedom of positioning capability for their head relative to their shoulders [6], [7], 
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[8], [9]. Functionally, this is accomplished through their 7 cervical (neck) vertebrae 

(Figure 2.3) [4, Fig. 1] [4], [5]. This chain of vertebrae is constructed from seven 

3DOF joints chained together by the neck ligaments. Some of these vertebrae are 

underactuated, and instead serve as intermediate pivot points along the chain. 

Notably, these vertebrae tend to be fully articulated about the transverse and 

sagittal axes, but minimally about the longitudinal axis [6], [9]. Rotation about the 

sagittal, transverse and longitudinal axes corresponds to a goat ‘looking’ left/right, 

up/down, and tilting, respectively.  

2.4 | Animatronics 

With the anatomy of a goat established as a reference point, considerations 

for how to translate that into a mechanical system can be explored. Traditional 

robotic systems do not always have the requirement of mimicking or resembling 

biological creatures. It makes sense, then, to turn towards the field of animatronics, 

and to understand how they can simulate organic movements.  

Animatronics is effectively a form of puppetry, using mechanisms and 

robotics to simulate a living being moving and sometimes interacting with the world 

around it. Animatronics often see use in filmmaking, theme parks, and other forms 

of entertainment. One of the benefits of animatronics is the life-like appearance they 

can take. Instead of animating something using computer graphics, the animatronics 

look real in comparison [10]. In animatronics, a lot of work and care goes into the 

controls and mechanisms to make the subject and its movements as realistic as 

possible.  

Mechanical design for animatronics brings with its new design 

considerations compared to traditional robotics. One of the biggest differences in 

requirements between robotics and animatronics is that animatronics usually do 

not need to physically interact with users or their surroundings. This means that not 

only can mechanisms be lightweight, but less overall system rigidity is required. 

Additionally, less power is generally required to actuate a given join, so mechanisms 
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can be designed to use complex systems of cables, pulleys and linkages that do not 

provide much mechanical advantage at the effector [11]. 

The ability to focus mostly on desired movements and speeds gives more 

options for actuating joints with multiple degrees of freedom. For example, when 

designing a neck, there are many routes one can take. If simple, jerking motions are 

okay, a series of bevel gears driven by motors and servos will suffice. For more 

intricate motions in smaller applications, the neck can be actuated by two shafts 

with u-joints attached to servos [15]. For more complex applications, a tentacle 

mechanism can be used which utilizes a series of cables and u-joints to make the 

neck move in complex patterns. When one cable shortens, other cables lengthen, 

bending the neck [16]. These mechanisms do address the problem of creating a 

neck, however the abilities and range of motion vary between them. Therefore, it is 

important to always design for the problem at hand, and not for what would be the 

most versatile. 
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3 | Project Conceptualization and Planning 

3.1 | Outline the Project 

 The conceptualization of this project stemmed from our previously planned 

project to develop a robot mascot for the Worcester Red Sox, however because of 

this, much of the initial project needed to be dedicated to identifying the project 

goals themselves. After deciding to continue with the robot mascot idea, this time 

for WPI, we began discussing how to translate it for our new target audience. 

Though we did have a rough initial plan based on previous planning with our 

contact at the Worcester Red Sox, we did not have a clear overall goal for the project 

and needed to outline a plan and a set of goals. To facilitate this planning, we used a 

set of guidelines laid out in Systems Engineering for Capstone Projects [17] to 

inform our process. This framework guided us through the process of identifying 

stakeholders, determining their needs, developing the concept for the robot, 

translating those needs into requirements, and then developing a robot character 

and design from them. 

The first phase, the stakeholders and needs analysis, ultimately became an 

ongoing process rather than an initial step. This was particularly important as we 

were frequently faced with situations where we needed to evaluate our needs 

regarding previously nonexistent project elements. All the requirements and 

specifications for this robot are derived from conversations with our stakeholders, 

namely the WPI Athletics and Admissions departments, as well as our own 

brainstorming and discussions on usability and behavior. Some of these initial 

conversations led to similar discussions about unpredictable behavior from the 

users, particularly children and rowdy college students. Those points laid the 

foundation for how we would need to think about the rest of the design process. 

Safety would need to be an integral part of the final product, along with usability 

and predictability. 

We needed to first have conversations with our stakeholders about how they 

would like to see the robot used, and the types of environments it would be placed 
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in. While we did not strictly adhere to each step, it was an invaluable starting point 

to help us formulate our project goals. 

Every project requires stakeholders who are interested in using the final 

product. As this project was conceptualized by the team, there were no initial 

stakeholders. Therefore, the team had to find and market the project to potential 

stakeholders that would be interested in seeing the project’s success. Potential 

stakeholders were chosen based on their perceived potential usage for the robot 

(Table 3.1). 

Table 3.1 Stakeholder Identification and Involvement 

Stakeholder Involvement/ Type Met by ... Rationale 
WPI Athletics 
Department 

Direct, Consulted, 
Informed 

 Periodic meetings 
with Dana Harmon 
(director)  

Mascot present at 
sporting events 

WPI Student Body Indirect, Consulted, 
Informed, 

Informed through 
social media (future) 

Will interact with the 
robot during events 

WPI Robotics 
Department 

Indirect, Consulted, 
Partner, Informed 

Presenting project 
during project 
presentation day 

Must satisfy the 
department's 
requirements for 
MQPs 

WPI Alumni, SAS Direct, Consulted, 
Informed, Approver 

Compliance with 
guidelines set for 
acceptable use of 
Gompei, Periodic 
updates with Herd 
Chair 

Will manage the 
robotic mascot’s 
involvement in events. 

Fans of WPI Sports, 
Programs 

Indirect Shown the robot at 
events. 

Will interact with the 
robot during events 

WPI Admissions Direct, Engaged Periodic meetings 
with Isabella 
Camasura 
(Admissions 
Counselor). Financial 
Aid. 

Will present the robot 
at certain locations as 
a display. 

 

Three major stakeholders at WPI were identified‐ Admissions, Athletics, and 

the Student Alumni Society (SAS). Each of these stakeholders were identified as 

possible parties that would be using the robotic mascot in the future. Admissions 

expressed interest in showcasing the robot during admissions tours as a 

demonstration of all the different engineering fields at WPI. During meetings, 

Athletics considered having the robot as an additional moral and spirit source－ the 

robotic mascot was envisioned interacting with the crowd during breaks or posing 
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whenever the WPI sport team scores. The SAS is the organization responsible for 

managing the appearance of the Gompei the Goat mascot and would be the 

organization that would take care of this robotic mascot including the storage, 

maintenance, and supervision. During the requirement gathering phase, the team 

met with each of these stakeholders to help determine the functionality 

requirements of the robot. 

3.2 | Stakeholder and Needs Analysis 

Table 3.2 Stakeholder Needs 

Stakeholder Needs Stakeholder Considerations 

Athletics • The system should emote or 
react during sports game 

• People can take photos of it (put 
their arms around it) 

• Celebratory pose/action on 
goals, touchdowns, runs, etc. 

• The system should be relatively 
easy to transport 

The system will be at sporting 
events, so it should be able to 
interact with and hype up the 
crowd. The system will also have to 
not track debris onto the basketball 
courts. 

Admissions • The system should interact with 
visitors and inform them about 
WPI 

• The robot could be placed in the 
upcoming Bartlet Center lobby 
museum 

• Visitors can take selfies with it 
• Robot could have a fake 

smartphone in one of its hooves 
that takes selfies 

The system will be on display for 
visitors, so it should be visually 
appealing and safe for visitors to 
approach. The system may also be 
used to inform visitors about WPI. 

SAS • The system should be able to 
create screaming goat sounds 

• The system should be able to act 
as a sound system 

• The system should be able to 
launch merchandise 

• The system should be able 
emote 

• The system should have a soft 
exterior 

• The system should not speak 

SAS will handle the arrangements 
for the system. They will also have 
some approval over the appearance 
and manner of the system. 

Each major stakeholder identified a different set of needs based on their 

expected use (Table 3.1). Athletics pointed out that given the robot would have to be 
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transported across campus, it was imperative that the robot be easily movable; 

doors, curbs, elevators, and other obstacles would have to be overcome during 

transportation. Admissions brought up the idea that people might like posting about 

the robot on social media and the mascot must have the size and configuration for 

people to be able to take photos with it. SAS shared a list of guidelines for the 

Gompei the Goat Mascot which included some needs that were not initially 

considered. For instance, a mascot should not speak or express any views on any 

subject other than support for the current sports team. 

Table 3.3 Stakeholder Need Priority 

Need Statement Validation Priority 

Safety The robot should be safe to approach and 
operate 

Robotics 
Department, SAS, 
Admissions 

1 

Interaction The robot should be able to react to audio, 
physical, and visual stimuli 

SAS, Admissions, 
Marketing 

1 

Photo taking The robot should be able to take photos of 
itself with another person. 

Admissions, 
Marketing 

2 

Movement The robot should be able to move to another 
location without external forces 

Athletics, SAS 1 

Remote 
Control 

The robot should be able to be controlled by 
external controls 

Athletics, SAS 1 

Head 
Movement 

The robot should move its head in multiple 
directions 

Admissions, SAS, 
Athletics,  

2 

Autonomy The robot should have an autonomous mode 
that reacts to external stimuli 

Admissions, SAS 2 

Visually 
Appealing 

The robot should appear as a cartoonish goat 
not a robot. 

SAS, Admissions, 
Athletics 

2 

Waterproofing The robot should be able to handle some rain 
exposure 

Athletics, SAS 2 

Overheating The robot should not overheat due to 
internal heating issues 

All 1 

Replaceable 
feet 

The robot should have replaceable feet to 
avoid tracking dirt inside buildings 

Athletics 2 
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 The initial stakeholders in the list were then used to create a prioritized 

version that indicates which stakeholders have the greatest stake in the project. 

From this we could then see which stakeholder needs should be focused on to 

develop the requirements for the robot. The derived prioritized list of needs (Table 

3.3) has information about the need itself, along with a note on which stakeholder it 

originates from, and an indication of its relative priority. In the table, needs of the 

highest relative priority are marked at a “1”, and secondary priorities at a “2.” These 

rankings were largely subjective and were based on our own intuition and synthesis 

of the concerns of our stakeholders, as well as our advisors. This list of needs was 

then used to build a more detailed, formal list of robot requirements that used more 

technical language (Appendix C). 

3.3 | Character Concept 

Developing the character of the robot we would be creating was the first real 

step towards designing the robot itself. After initial meetings with our stakeholders, 

we gathered our ideas and drafted up some initial designs. At this stage, we also 

considered how the robot might be manufactured, and what materials could be used 

for the outer ‘skin’ of the robot. What we ended up with was a collection of sketches 

and listed ideas that we then took back to our stakeholders for feedback. While none 

of the team members proclaimed to be artists, we worked with what we had and 

ultimately created a set of ideas that convinced our stakeholders that this robot 

could be a potentially interesting addition to the tradition of WPI.  
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Figure 3.1 Character Sketches of the Robot 

 

 

Figure 3.2 Digital character sculpt 

The character that was created was Robo-Goat (name pending). It would look 

and behave similarly to a real goat. Robo-Goat would still be able to appeal to 

people, without overshadowing Gompei as a character. The process of sketching our 

results was not easy for us as we did not have much prior experience in freehand 

drawing. With our sketches, we also created a first version digital sculpt (Figure 3.2) 

of the character to get a better understanding of what it would look like and how we 

might go about manufacturing it in the future. The final design (Figure 3.1) we 

arrived at was based on things we liked from our various initial sketches, and 

represented what we felt would create an inviting character, but that still 

maintained a distinctly robotic appearance.  

The reasoning for going with this design is it is distinctly a robot; however, it 

still retains the organic visual characteristics of a goat. Also, and almost more 
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importantly, it does not exude an uncanny creepiness or appear to be dangerous, 

which is crucial for inviting spontaneous interaction. We also noted that if 

something looks dangerous, there’s a good chance it probably is, so we avoided 

classical robot design tropes involving exposed moving components and jagged 

edges. A cleaner design, on the other hand, appears more visually inviting, and lends 

itself well to designing for safety.  

As mentioned, we also considered the physical materials and 

manufacturability of the robot at this stage. In this design, the head and upper body 

will be covered with a thin, continuous silicon sleeve that is placed over a solid 

under-shell. The hard under shell will both add solid form to the robot, giving it a 

goat-like appearance, as well as protect the internal components from users, and the 

users from internal components. The soft, silicone outer sleeve will give the robot its 

details, as well as a more inviting texture that also protects against injuries at pinch 

points.  

4 | Robot Design 

4.1 | Mechanical Design 

 As the mechanical design of the robot was done concurrently with the 

software and electrical design, we took an iterative design approach. Particularly, 

designs needed to accommodate the designed power budget, as well as the sensors 

on board. Rather than constructing functional prototypes after a round of design 

was completed, we prototyped elements of the mechanical systems throughout the 

process. Despite the increased time investment on revisions of physical products, 

this approach was necessary to perform periodic testing of co-dependent systems. 

This integrated design strategy ultimately reduced the need to redesign dependent 

components at various stages of development.  

 The mechanical design process was facilitated by a set of digital tools as well 

as rapid prototyping hardware. Two CAD packages were used during this project. 

The cloud based solid modeling software, Onshape (recently acquired by PTC), was 
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used for the initial concept designs and prototyping. Onshape was chosen here for 

its collaborative editing functionality. This always gave each team member access to 

CAD models and sketches and made working together to quickly prototype designs 

easy. Dassault Systèmes SolidWorks, along with its stress simulation tools were 

later used for the final design and analysis. While Onshape is very robust in its 

current state, it does not offer the same product maturity as SolidWorks, including 

its analysis suite. Most of the prototyping work for this project was done using FDM 

3D printers. Though these machines dramatically reduce time spent iterating on 

prototypes, 3D printed parts alone could not provide us with the functionality 

needed. Most prototypes consisted of a combination of 3D printed parts and OEM 

components such as bearings, fasteners, and actuators. In some cases, these designs 

were also supplemented with more rigid materials such as extruded aluminum 

beams.  

      In most cases, parts were designed with their final materials in mind. The nature 

of 3D printing meant that we could produce a working prototype of a part 

eventually intended to be machined out of aluminum, for example, minimizing the 

design steps required before final production. Due to the coronavirus pandemic, we 

were not able to reach a point where we could produce final components. 

4.1.1 | Initial Design Parameters 

 The mechanical work required for this robot encompasses a range of design 

areas, including mechanism design, structural design, as well as the accompanying 

kinematics and analysis for them. Given the large scope of the overall project, it was 

necessary for us to focus in on a smaller set of design goals. Furthermore, most of 

our decisions are further focused on the design of everything from the neck up. Our 

initial work focused on identifying the key design constraints that would govern the 

rest of the development of the robot. We outlined the degrees of freedom the neck 

and head assembly would have, the sizing and scale of the robot itself, the strength 

requirements of various components, and the speed and acceleration needed for 

fluid motion of each joint. It was important that we consistently consider a set of 

common factors to ensure the robot could perform its tasks both safely and reliably. 
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As such, failure modes of many different types were considered throughout the 

design process and were driving factors in the decision-making process for the 

design constraints. The following sections provide details on each of these design 

decisions.  

˧ Degrees of Freedom  

 

Figure 4.1 Kinematic outline of the neck and head mechanism 

The current robot is designed around a 5DoF head and neck assembly along 

with a base chassis that acts as the frame of the body. The head will be capable of 

three rotational degrees of freedom about the top of the neck, and the neck will have 

two rotational degrees of freedom about the shoulders. Figure 4.1 shows a rough 

kinematic outline of the neck superimposed on an image of a goat. Note that Figure 

4.1 depicts a serial kinematic chain, whereas our final design has a parallel joint 

controlling the head, as detailed later. Currently, our design is focused on everything 

from the shoulder up. In this way, the robot will be able to look up, down, left, and 

right in an organic fashion, along with the ability to tilt its head for added 

expressiveness. Later projects can add additional capabilities to the body and legs.  

Though a real goat has many more links and joints in its neck than our robot, 

replicating them would add a large amount of complexity, increasing development 

time and introducing many more failure modes. Added complexity further increases 

the difficulties of designing a moving system intended for use by inexperienced 
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users. We determined that five degrees of freedom for the neck and head would 

provide a good balance between simplicity and expressiveness. 

˧ Sizing and Scale 

 The physical sizing and scale of the mascot robot was a critical early step in 

the design process. This affects not only the interaction experience, but also relates 

heavily to decisions that need to be made concerning safety. 

Initially we used a real goat as a size reference. This would make the robot 

roughly the size of a large dog, with its head presenting itself at about waist high on 

an average person. However, after interacting with several real goats and taking our 

own measurements, as well as discussing with our stakeholders about how the 

robot would be used, we determined this to be too small to meet project needs. The 

robot needed to be large enough such that users would feel as though they are 

interacting with something substantial. We could not make it too large, however, as 

we wanted the robot to feel unintimidating and approachable. 

Of course, an increase in size also brings an increase in associated costs due 

to longer moment arms and thus large power requirements of the actuators and 

strength requirements of the structure. Additionally, we have not yet discussed the 

relative scaling of the anatomical analogues to our corresponding robot sections. 

Like how we determined that five degrees of freedom would give us our desired 

expressiveness, we needed to consider how the relative sizing of the various robot 

components would affect the character we were creating. Instead of designing with 

the goal of maintaining accurate relative scaling, we instead focused on ensuring our 

character was both exaggerated, but still lifelike and recognizable. Taking these 

design liberties also allowed us to modify the sizing of different components to 

better handle the loadings we needed to account for, so designing for strength and 

rigidity would be much easier.  
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˧ Strength and Rigidity 

In discussions with our stakeholders, it became apparent that our robot 

would need to be capable of withstanding a fair amount of abuse. Discussions with 

our stakeholders and our own intuition were used to examine potential issues the 

mascot robot might encounter from users. For example, the robot will inevitably 

experience physical disruption from a child. This not only meant that we need to 

design with structural rigidity and integrity in mind, but also design for safety. 

Injuring a child is a less than ideal outcome, so we set our safety factor for critical 

components at 6. More properly, components that may potentially experience 

additional loading from a user, or components whose failure could result in injury, 

must have a yield stress of at least 6 times higher than their maximum expected 

stress under those conditions. This decision was primarily based on 

recommendation from our mechanical engineering advisor, Professor Holly Ault.  

A safety factor of 6 is indeed quite large, so we needed to carefully consider 

which components needed to be held to that standard. To maintain consistency in 

design, we needed to outline a set of loading conditions to test various components 

under. These test conditions needed to be useable for both the designs as well as 

using the eventual manufactured parts. Furthermore, we needed to maintain 

consistency between the different tests, and develop a framework that can be used 

to track results.  

˧ Range of Motion and Joint Speeds 

 Determining the physical limits of articulation for each joint was crucial to 

identifying possible mechanical joint designs, and it also determined the 

expressiveness and what types of behaviors the robot would be capable of 

exhibiting. Initially, our goal was to simulate the movement of a real goat as closely 

as possible. In fact, we started by using some of the footage and images collected 

from our interactions with real goats to measure observed limitations of their 

ranges of motion. Additionally, we were already aware that convincingly emulating 

the organic movements of a known animal is difficult. After discussing with our 
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stakeholders, namely the WPI Athletics and Admissions departments, we decided 

our goal should instead be to create a caricature of a goat rather than a lifelike 

representation of one (as detailed earlier in sections 3.2 | and 3.3 |). Now that we no 

longer needed to accurately represent the movement capabilities of a real goat, we 

instead decided on motion ranges for each joint that would give us the freedom 

needed for the expressiveness that we wanted. To do this we simply estimated what 

kind of motions we thought would be expected, and then added some additional 

articulation range as a margin of error.  

 Joint speeds were determined in a similar way of estimation. We used 

techniques such as moving our arms in a sweeping motion at a speed that felt 

natural and measuring the time it took to complete it. We also factored in the 

location of the joint along the kinematic chain and how large the part of the robot it 

would be moving. In most cases, movements would be completed by more than one 

joint, which in many cases increases the resultant angular velocity of the head. This 

meant we could reduce our specified speeds for the upper head joints, which 

provided benefits such as reduced weight requirements.  

4.1.2 | Upper Neck and Head Design 

As the entire neck and head assembly of the robot would ultimately create 

one long moment arm, we decided it best to start the design at the head and work 

backwards. The neck structure and the joint at the base of the neck must be able to 

support not only our prescribed test loadings, but also the weight of the various 

upper components themselves. As stated, the head joint must be capable of three 

degrees of freedom. To start, we focused on the pitch and yaw motions of the neck. 

The roll action will be added later. We identified several mechanisms that could 

potentially fulfill requirements and performed some surface level analysis to narrow 

down our selection. First, we will discuss some general decision factors used, then 

we will detail the current design, and finally we will provide information on the 

other options we considered.  

In addition to the loading requirements we determined (pg. 32), we 

considered mechanism complexity and control requirements when selecting a 



34 
 

suitable design. These impact design difficulty and manufacturability, as well as how 

computationally expensive the mechanism would be to control. The design 

complexity would also affect the difficulty of the analysis required to prove the 

design capable of safely withstanding our prescribed loadings.  

To actuate the joint at the base of the head, we decided that a pulley actuated 

differential mechanism would best suit our requirements. Our decision was made 

after considering a variety of different multiple degrees of freedom mechanisms and 

how they would satisfy our requirements. Namely, we focused on selecting a base 

mechanism that could provide us with our specified articulation angles (see section 

4.1.1 |), was possible to design to be reasonably compact, and would successfully 

meet our loading requirements. With the base mechanism selected, we designed our 

implementation of it. 

˧ Head Joint Kinematics 

At this point in the project, we have two versions of the differential 

mechanism in use (discussed later in section 5.1 |), however they both operate 

under the same kinematic principle.  

  
(a) (b) 

Figure 4.2 Simultaneous (a) and differential (b) input rotation of the differential mechanism 
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Figure 4.2 illustrates the rotational kinematics of the mechanism. Simply, by 

driving the inputs at the same angular velocity (same magnitude and direction) will 

cause the output carrier (gray) to rotate about the same axis as the inputs, shown as 

the red dashed line in Figure 4.2. Driving the inputs with opposing angular velocities 

(same magnitude, opposite direction) will drive the output (blue) about its own axis 

at that angular velocity, shown as the blue dashed line in Figure 4.2. By varying the 

relative angular velocities of the inputs, combinational outputs are achieved. The 

inverse kinematic relationships for this mechanism are then described by 

  (1) 

  (2) 

Where  and  are the pitch and yaw angular velocities,  and  are the input shaft 

velocities, and  is the ratio between the input wheel diameter(s) and the output 

wheel diameter. As shown, the kinematic relationships are simple and linear, 

making the mechanism computationally efficient to control. 

˧ Head Mechanism Transmission  

Our implementation of the differential mechanism uses a transmission 

system of pulleys and cables, which we selected after reviewing the different 

transmissions that can be used. The three transmission methods we identified are 

the chosen pulley-cable system, friction wheels [48], as well as bevel gears, which is 

the most commonly recognized differential implementation. 
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Figure 4.3 Diagram of Friction Wheel Differential 

The friction wheel-based differential (Figure 4.3) [48] uses drive wheels 

forced against an output plate to drive the mechanism. The maximum loading 

capabilities of a friction wheel-based system is dependent on the preload force 

between the input and output wheels to generate adequate friction. That force 

required is quite high [48], which means that materials with high coefficients of 

friction would be needed. There are many materials that we could use to achieve 

this, however, the friction interface presents a suboptimal point of failure. If the 

friction surfaces become dirty, or as the materials wear over time, the frictional 

force will decrease. For this reason, the safety factor would need to be increased to 

account for this, which further increases the initial preload requirements. While it is 

the most mechanically simple of the three options, the reasons outlined make it a 

less than ideal choice. 

Bevel gears provide a rigid transmission between the inputs and outputs and 

are only slightly more complex than friction wheels. However, backlash and cost 

become problematic. Extra design work would need to be done to mitigate backlash 

such as implementing a preload method, and/or higher tolerance parts would be 

needed. The cost of using bevel gears would not be small as higher precision parts 

would be needed, and at relatively large sizes. 
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The last option is to use what we ultimately decided on: pulleys and cables. 

There are two different ways in which pulleys and cables can be implemented, 

which we will call the Continuous Cable and Anchored Cable Segments variants. The 

Continuous Cable variant is articulated by a single, continuous cable routed around 

each of the pulleys of the mechanism. The Anchored Cable Segments variant is 

conceptually the same as the Continuous Cable variant, however the cable is instead 

broken into four parts, each one anchored on both ends.  

For our purposes, we decided that the Multiple Cable variant was the best 

option. The Single Cable variant is mechanically simpler; however, it suffers from 

similar issues as the friction wheel transmission discussed previously. Additionally, 

it requires a single, closed loop cable, which would be difficult to source. 

˧ Head Mechanism Cables and Routing 

 
 

 

(a) First Prototype (Standard Winding) (b) CAD model of “switchback” version (c) Prototype “Switchback” version 

Figure 4.4 Differential Mechanism Cable Designs and Routing 

In our design, we are using a UHMWPE fiber rope, which is routed using 

what we are calling a “switchback” configuration. Figure 4.4a shows the initial 

winding option, which does not employ this “switchback” design, and Figure 4.4b 

and Figure 4.4c show the CAD model of the current mechanism, which utilizes our 

“switchback” routing, along with the prototype version used for evaluation. The 

prototype allowed us to test different cable materials.  

The cable material needed to have a high strength, low elasticity, as well as a 

relatively small minimum bend radius (i.e. low stiffness). Too large of a bend radius 



38 
 

would increase the pretension required to keep the cable taut and would also 

introduce additional torque requirements to actuate the mechanism as more force 

would be required to bend the cables around the pulleys. When evaluating our 

prototypes for the mechanism, we also found that the cable needs to have low 

friction with the pulleys for smooth operation. We found that UHMWPE (Ultra-high-

molecular-weight polyethylene) fiber rope [50], [51] was a suitable option for us 

due to its low cost, high strength, low stiffness, and low stretch. Typical UHMWPE 

fiber rope has a breaking strength of Additionally, UHMWPE has low friction and 

high abrasion resistance, so minimal or no lubrication is required, reducing 

maintenance [50], [51], [52], [53]. We had also considered steel wire rope, however, 

we found that the minimum bend radius was too large for our purposes. More on 

this in section 5.1 |. 

˧ Additional Head Mechanisms Considered 

In addition to the cable driven differential, we also considered some other 

mechanisms before we could select it as an effective solution. Our investigation 

focused on four mechanisms: a Bowden cable transmission-based gimbal, Omni-

Wrist III [54], a U-Joint Supported platform, and the ultimately chosen cable driven 

differential. The U-Joint Supported 2DoF platform was originally designed in the 

previous project term; however, design modifications were made this term based on 

previous findings. Each of the three mechanisms not chosen were initially analyzed 

for some unique property they had that would benefit the system, however they 

were dismissed once we determined they were not the most effective solution. What 

follows is a discussion of each mechanism, along with our rationale for their initial 

consideration as well as their ultimate dismissal.  
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 Bowden Cable Transmission Gimbal 

 
 

(a) CAD model of a pulley pair  (b) CAD model of a gimbal implementation 

Figure 4.5 Our Bowden Cable Transmission CAD Model 

 This mechanism, or rather transmission (Figure 4.5b) that we have 

conceptualized a gimbal mechanism implementation (Figure 4.5b), uses a continuous 

cable (gray, Figure 4.5a) fed through a Bowden tube (black, Figure 4.5a) to couple the 

rotation of two pulleys. Unlike a traditional pulley transmission, the Bowden tube 

removes the need to tension the cable by fixing the distance between the pulleys. The 

pulley can be moved around freely, and motion still transmitted from the input to the 

output. This property was worth investigating as it could potentially alleviate some 

design difficulty with transmission routing for other mechanisms. It would also allow 

us to combine multiple degrees of freedom into a relatively compact space by 

‘stacking’ the output pulleys, as shown in Figure 4.5b.  

 Despite the potential benefits, the Bowden cable transmission proved to have 

enough difficulties associated with it that it would be problematic to implement. The 

first was that the cable would have considerable friction on it by the Bowden tube. 

This resulting decrease in efficiency could be mitigated by selecting a cable and 

Bowden tube with correct relative diametric tolerances, however it would be 

considerably difficult to do so [55]. Additionally, we identified that designing a 

method for tensioning the cable would be difficult, but not impossible. With more 

time available for testing, the Bowden cable transmission might still be a viable 

option, however development time is an important criterion for us.  
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 Omni-Wrist III 

  
 

(a) Neutral Position (b) Partial Articulation, Single Axis  (c) Full Articulation, Both Axis 

Figure 4.6 Our Omni-Wrist III CAD Model 

 The Omni-Wrist III (Figure 4.6), developed by Ross-Hime Designs, Inc, is an 

elegant 2DoF mechanism, however it is not very mechanically simple, and it also has 

a complex set of kinematic equations [56],[57],[58]. What led us to initially consider 

it was its large range of motion, offering up to, or even greater than 180 degrees of 

articulation in both rotational axes. While our requirements did not necessitate this 

large range of motion, it meant that there would be considerable possible range of 

motion left even after making the mechanism more compact and mechanically 

robust. What ultimately drove us to dismiss the mechanism was the difficulty of 

controlling the mechanism. Ross-Hime Designs has not released a complete set of 

kinematic control parameters, and the research that we found on analysis of the 

mechanism described a complex set of equations that were very computationally 

expensive [58]. 
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 U-Joint Supported 2DOF Platform 

 

 
 

(a) (b) 

Figure 4.7 U-Joint Platform CAD models 

This parallel mechanism operates similarly to the ubiquitous Stewart 

platform; however, the design has been modified such that it is constrained to only 

two degrees of freedom by utilizing U-Joints to link the control rods with the 

effector platform. The U-Joints prevent rotation along any axis other than those of 

the control actuators. Two variations of this mechanism were considered (Figure 

4.7). We discovered that the first version of the mechanism (Figure 4.7a) was over 

constrained. The second version (Figure 4.7b) incorporates an additional rotational 

joint (the interface between the two red members). The reason for initially 

considering this mechanism was because the control rods (purple) could serve as 

both the support structure for the neck in addition to transmitting motion from the 

base of the neck to the head.  
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(a) (b) 

Figure 4.8 U-Joint Platform Nomenclature 

To determine the practicality of this mechanism, we first started by 

examining its geometric properties. Importantly, we needed to understand how the 

magnitude of the induced rotation (Figure 4.8, red) is affected by different 

parameters of the mechanism. Additionally, this analysis gave us a function that we 

could use to compensate for the rotation with a serially attached roll stage, mounted 

on the effector frame. 

Our analysis began by introducing the induced angle of rotation  about the 

roll axis, , of the effector platform,  

  (3) 
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where  and  are the control link lengths shown in Fig. 1a, and  and  are the 

control angles about the y and x axis, respectively, as shown in Figure 4.8b. We 

define  as the position vector from 𝑅1to 𝑅2, and  as the position vector from 

𝑅3to 𝑅4. Note that 𝑅1is projected to the xz plane, and 𝑅3is projected to the yz plane. 

 

 

(4) 

 

To find our angle, , we will simply use the law of cosines. First, we find the 

distance, , between  and , which is equivalent to the distance between 

position vectors  and .  

   

We can now apply the law of cosines to find the total internal angle between the 

platform,  

 
 

 

We are concerned with the rotation of the platform relative to the platform x-axis, 

rather than the internal angle, so we say 

 
 

 

Finally, composing the above work yields 

 

 

 

Simplifying the above shows that the angle of rotation about the roll axis does not, in 

fact, depend on  or . Thus, our final equation for  is 

 
 

(5) 
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(a) (b) 

Figure 4.9 Zoomed View of U-Joint Platform Joint. Shown: yoke (purple), spider (yellow), platform pin (red) 

Seeing that the induced roll is reasonably correctable, we continued our 

evaluation by examining what geometric elements of the components would affect 

its motion range. We first looked at the effects of the U-Joint geometry. Zoomed 

views of the components in question are shown in Figure 4.9; (b) illustrates the 

configuration in question. The Platform will reach its angular articulation limit when 

the yoke contacts the platform. The pin is assumed to be long enough, so the yoke 

does not contact the platform. In a real implementation, the pin need only be long 

enough for the spider, and the remaining required pin length may be of different 

geometry. 
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(a) (b) 

Figure 4.10 U-Joint Platform Cross-Section Geometry 

The maximum articulation angle, denoted , will depend on the radius, 

, of the platform pin, the base width, , of the yoke, and the base clearance,  of 

the yoke. To start, we divide  by a line, , connecting the rotational center of the 

yoke and the point of contact. We say that 

   

From the Pythagorean theorem, we have 

 
 

 

Using some trigonometry, we find 

 
 

 

Finally, we arrive at the desired expression 

 

 

(6) 
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4.2 | Electrical Systems Design  

It would not be possible for the robot to interact with users and its 

environment without a way to process input. This includes audio, physical, and 

visual stimuli. To achieve this, the robot needs a set of sensors and processing 

components that enable it to sense the world around it and act accordingly. While 

careful design can reduce the potential for failure, it is still possible for external 

issues or unexpected input to cause a fault. This understanding is what drove our 

component decisions and designs.  

We started the process for the design of the electrical systems by 

determining sensor and processing requirements. This was done in coordination 

with the mechanical designs as they influenced the location of the touch sensors, 

camera and microphones, as well as the camera field of view. We also worked with 

the designs of the mechanical systems to determine actuation requirements. After 

researching and selecting suitable component candidates that could meet our 

specifications, we determined the system power requirements, and set a power 

budget.  

We then used all this information to draw a comprehensive electrical system 

schematic, which included the necessary circuitry for a fully functioning system. 

Namely, we needed to design the power distribution and protection circuits and add 

in components to maintain signal integrity. Our schematic also included necessary 

auxiliary components as specified by various component manufacturers that ensure 

proper component settings and function. Schematic outlining was first done on 

using a web-based diagraming software provided by Digi-Key, our primary source 

for electrical components and hardware. Though the software does not offer all the 

features offered by dedicated circuit design software, its small learning curve and 

integration with their parts catalogue made it a time saving tool.  

Despite the convenience, Digi-Key’s diagraming software was ultimately not 

suitable for our final designs. Upon recommendation from students in the ECE 

department, we considered Autodesk Eagle and KiCad. While both offer similar 

capabilities, Autodesk Engle proved to be an easier solution to learn. As an industry 
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standard, it is likely Eagle will also be more familiar to future teams. More 

information on that can be found later in the results section.  

4.2.1 | Processors 

This robot processor must be capable of collecting and processing input from 

sensors and peripherals, and then using it to compute and rapidly execute dynamic 

actions. More importantly, the robot must be able to do this reliably and consistently 

to maintain its animated character. Skips or lags due to lack of adequate CPU time 

might incorrectly indicate malfunction to the user, breaking the ‘character,’ or 

possibly causing more adverse reactions resulting in harm. While careful design can 

reduce the potential for failure, it is still possible for external issues or unexpected 

input to cause a fault. This understanding is what drove our component decisions 

and designs.  

As a robot designed for a dynamic production environment, we recognized 

that our processor needed to be fault tolerant and easy to reset. To address this, we 

outlined several requirements. First, the processor needed a boot-up time of no 

longer than 30 seconds. This requirement was deemed a reasonable period the 

average person would wait for a computer to restart. The robot must also have a 

position control bandwidth of 7.5Hz and a vision system bandwidth of 15Hz. The 

bandwidth of a system is the response time of that system. The position control 

bandwidth requirement was determined based on the value used for a similar 

multi-DOF robot [18]. The vision system bandwidth was determined as a reasonable 

bandwidth to handle the larger amount of information images require as compared 

to positional values. Finally, it is preferred that the processor does not utilize an 

operating system. With an operating system comes boot time, so the robot would 

need to take time to restart. An operating system also runs the risk of crashing, 

forcing the robot to restart and waste precious time, which would be especially 

problematic during a public event or presentation. However, a processor without an 

operating system would be able to restart nearly instantly should something go 

wrong.  
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As a starting point, we specified that all the onboard processing was to be 

handled by a single real-time MCU, in this case an ESP32. The ESP32 is a low-cost, 

yet still very capable MCU from Espressif Systems [19]. While it is most popularly 

used for its full onboard hardware networking stack, its fast (base 160MHz, 240MHz 

configurable) dual core architecture makes it an attractive option for the tight 

timing requirements of our robot. It additionally has many of the hardware 

peripherals that make robot development easier, such as multiple serial interfaces 

as well as hardware ADCs, DACs, and a host of signal processing functions built right 

onto the silicon. Development for the ESP32 is also made more accessible by its 

integration of FreeRTOS, an open source real time operating system [20]. This 

alleviates the often-cumbersome job of designing task schedulers and ISRs for low 

level, timing critical applications without adding the unpredictable overhead of a full 

OS. For general robot applications, the ESP32 is capable of handling sensors and 

motor control, both autonomously and tele-operated. The ESP32 MCU does have its 

limits, however, and it lacks the processing power to handle complex AI calculations. 

While the ESP32 performs well under reasonably deterministic conditions, there are 

limitations to its capabilities.  

To address the weaknesses of the ESP32, an external processor such as a 

laptop or Raspberry Pi, that would wirelessly connect to the ESP32 was considered. 

However, as the design evolved, it was decided that a Raspberry Pi would directly 

connect to the ESP32 boards inside the robot. While Raspberry Pi utilizes an 

operating system, which we initially sought to avoid, it was ultimately decided that 

the unpredictable nature could be dealt with, as it would perform only bulk 

operations. Having an OS, in this case a Linux distribution, means creating user 

interfaces (in our case simply over the command line), is much faster. Although not 

as powerful as a laptop or PC, the Raspberry Pi is still a versatile computer despite 

its small size. While the ESP32 boards would handle the I/O of the sensors and 

motors, the Raspberry Pi would handle the AI of the robot. 

 Espressif Systems offers the ESP32 as an integrated surface mount 

package, or as part of a number of development board options, each tailored for 

different applications. Two ESP32 development boards were considered－the 
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DevKitC and the WROVER-VB. Unlike the other development boards offered by 

Espressif, the DevKitC is a general-purpose development board designed to be 

easy to use and integrate with a breadboard. Its low cost of $10-$18 made it an 

affordable option. Meanwhile, the WROVER-VB is a more advanced version of 

the DevKitC. It includes features such as PSRAM, support for LCD and microSD, 

and a multi-protocol USB bridge. However, these extra onboard devices also 

mean the WROVER-VB is more expensive than the DevKitC at $40. However, 

these features are not necessary for our purposes, making the standard DevKitC 

the most sensible option. 

 Similarly, two Raspberry Pi models were considered, the Raspberry Pi 3 

Model B+, or the Raspberry Pi 4 Model B. The two processors have similar 

specifications, with the Raspberry Pi 4 having a slightly better processor and 

memory options, running at 1.5GHz with RAM of up to 4GB [21], compared to the 

Raspberry Pi 3’s 1.4 GHz with only a 1 GB RAM option [23]. However, a common 

complaint with the Raspberry Pi 4 is that it experiences hardware problems. Among 

other issues, a particularly concerning issue with the Raspberry Pi 4 is that it gets 

hotter and more prone to temperature throttling than the Raspberry Pi 3 [23]. 

Meanwhile, the Raspberry Pi 3 is well documented and still supported and does not 

have the same hardware issues. This difference in reliability was the deciding factor 

in using the Raspberry Pi 3 Model B+. 

The design we used for the processor became a combination of the 

Raspberry Pi and ESP32 communicating through SPI protocol. Initially, the 

Raspberry Pi would act as the SPI slave and handle the AI and visual sensor of the 

robot, while an ESP32 would act as the SPI master, taking information from the 

motors and sensor and sending them to the Raspberry Pi to be processed. 

Commands for how to move the motors would be sent back from the Raspberry Pi, 

and the ESP32 would act accordingly. This would allow the robot to have a safety 

net if the Raspberry Pi crashed, allowing the robot to continue operating should the 

Raspberry Pi fail as the ESP32 could be designed to not rely on the Raspberry Pi.  

The design changed along the way, as we soon realized the ESP32 would not 

be capable of handling all of the motors and sensors, due to lacking the physical pins 
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to support both the Raspberry Pi and the sensors and the amount of information 

that would need to be transferred. We revised the design in two ways. The first was 

to make use of two ESP32’s - this allowed for more connections to sensors, and each 

ESP32 could be given a specific role. One ESP32 would collect data from the sensors. 

The other ESP32 would handle the motors. The second revision was to make the 

Raspberry Pi a SPI master and the ESP32s SPI slaves. Although this contradicts the 

preferred requirement to not rely on an operating system, the better performance 

and physical pins of the Raspberry Pi made it much easier to work with. With the 

split roles of the ESP32s, we were concerned that making one ESP32 a SPI master 

would overcomplicate the system. With the higher processing power of the 

Raspberry Pi, it would likely be able to handle the communication much better than 

a single ESP32 could. 

4.2.2 | Imaging and Computer Vision 

 As a part of interacting with people in front of it, the robot needs visual 

sensors to see what the world around it is. For this robot, it needs to be able to 

identify people within its viewing range, and seek out people based on faces, bodies, 

or hands. For this reason, cameras are necessary to detect the finer details of people. 

For this reason, vision systems such as ultrasound, infrared, and LIDAR are not 

viable options.  

The camera of the robot has two must-have requirements. The first 

requirement is that the camera should have about 120° of horizontal FOV and 40° of 

vertical FOV.  Although an actual goat’s FOV is significantly higher at 320°－340°, it 

is unlikely that all those degrees are necessary for the operation of the robot. Most 

of the interaction with the robot will occur almost directly in front of the robot 

probably within the front 90° as this is where much of the interaction between 

humans happens. Any excess beyond that would mostly be used to look for people 

to interact with. For instance, if the robot is seeking someone to interact with and 

someone is spotted in the FOV, the robot will turn to that person. Therefore, any 

more degrees beyond 90° are rarely being used, and will require more processing 

power, and camera view blending. Given available models, 120° was determined to 
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be an appropriate number that allows the robot to still notice movement outside the 

area directly in front of it but also balanced with the necessary processing power for 

one or two cameras. However, 120° is a large FOV for standard cameras. Therefore, 

two cameras, each with about 60° of horizontal FOV, would also be an acceptable 

solution as together they would provide the desired FOV.  

The second requirement is that the camera needs to have a minimum frame 

rate of 30 FPS. This was decided to be a reasonable requirement, as 30 FPS still 

generates images where objects can still be tracked. Any lower may make the 

footage too choppy to track a single object without mixing up objects, and no higher 

bound was set as the FPS of a camera can be lowered as necessary. Finally, a 

preferred capability of the camera is that allowing the robot was capable of being 

able to see the ground at a minimum of 1m in front of its chest. Despite these 

requirements, only one camera will be used in this iteration of the project. This is 

done for several reasons. First, 60° of horizontal FOV is still a reasonable FOV for a 

robot. Second, reducing the number of cameras will save time from trying to 

combine and analyze footage from two cameras. The purpose of this robot is to be a 

proof-of-concept for future projects to build on. It would be a waste to invest too 

much time and effort into cameras that can be potentially replaced by a better 

solution. It is more important that the robot show its ability to respond to visual 

stimuli, rather than have a wide FOV; while having a wider FOV would be beneficial 

for future robots, the time and effort spent on joining the images using the camera's 

relative positions would be better spent on the proof of concept of actually using 

object detection on the resulting image. 
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Figure 4.11 ESP-EYE Camera Board 

The first camera considered was the ESP-EYE (Figure 4.11). The ESP-EYE is 

an ESP32 development board designed by Espressif. Unlike the DevKitC, The ESP-

EYE is designed for image recognition and Artificial Intelligence of Things 

applications [24]. The built-in camera is a 2-megapixel OV2640 camera. It has a 

horizontal FOV of 56°, a vertical FOV of 40°, and a framerate of 30 FPS [25]. 

However, the ESP-EYE’s only form of connection is a USB port that handles 

information and power transmission for the system. To utilize the ESP-EYE, it would 

need to connect to the Raspberry Pi via its USB port, which contradicts one of the 

requirements. Additionally, the ESP-EYE lacks detailed documentation, which may 

make it difficult to work with. 

 

Figure 4.12 Pixy2CMUcam5 Image Sensor 

The next camera is the Charmed Labs Pixy 2 CMUcam5 Image Sensor (Pixy 2) 

(Figure 4.12) [26]. The Pixy 2 supports multiple interface options and is therefore 

capable of connecting to several types of controllers. Recently it has added support 

for Arduino and Raspberry Pi platforms. Like the ESP-EYE, the Pixy 2 is also capable 

of image recognition, and with a framerate of 60 frames per second (FPS), the Pixy 2 

can take smooth video. The lens of the Pixy 2 has a FOV of 60° horizontally, and 40° 
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vertically. Being an image sensor, the Pixy 2 already has built-in image recognition 

features. By pressing the button, the Pixy 2 can be taught what images it should 

recognize. While this feature would be helpful, it defies the point of designing the 

software to handle image recognition on its own. However, the Pixy 2 is also 

significantly more expensive than the other options at $60 each. 

 

Figure 4.13 Arducam with M12 lens module 

The third camera is the Arducam with the M12 lens module (Figure 4.13) 

[27]. The Arducam is designed for use exclusively with the Raspberry Pi, as it can be 

plugged directly into the camera port of the Raspberry Pi board. It can record at 

multiple resolutions at different frame rates. It has 30 fps at a resolution of 1080p, 

60 fps at 720p, and 90fps at 480p. With the M12 lens, the Arducam has a horizontal 

FOV of 56°, making it slightly short of the acceptable FOV specification, but not by a 

large amount. As Raspberry Pi’s only have one camera port, it will be impossible to 

use two of these cameras. However, the Arducam has a low price of $19, which 

makes it a good option for testing and working with a camera feed. 

The camera we decided to use was the Arducam with the M12 Lens. As stated 

before, the current project only requires one camera to show that the robot can 

react to visual stimuli. The Arducam connects to the Raspberry Pi via the Raspberry 

Pi’s camera port, making it easy to integrate. Although the Pixy 2 would be a more 

ideal solution given its capabilities as an image sensor, its high price point makes it a 

large investment from a budgetary standpoint. Additionally, having image 

recognition capabilities built-in defeats the purpose of the project. The built-in 

firmware and applications that come with the Pixy 2 means more effort will have to 
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be spent on integrating, and potentially fighting, the existing systems of the image 

sensor. The Arducam has similar performance specifications for a much smaller 

price. 

4.2.3 | Microphones and Audio 

 Modern interactive robots are typically expected to be responsive to various 

audio cues, be it in the form of verbal communication, or simply making noises at it, 

like clapping. Not only does the robot need to be capable of detecting the presence 

of these sounds, but it must also be capable of determining the source of origin. This 

implies a set of strategically placed microphones around the robot. For this iteration 

of the robot, it was decided that only the detection of sound presence would be 

necessary, leaving room for future projects to expand the robot’s capabilities, such 

as voice recognition. Although voice recognition would be a good feature for the 

final robot. It is not a focus for this iteration. 

For audio detection, a set of three microphones will be used. They will be 

placed on the front, right, and left of the robot. The three microphones will not 

only allow the robot to detect sound, but also locate the source of the sound－ 

something necessary for the robot to be able to turn and face the source auditory 

cues outside of its FOV.  The requirement for the sensitivity of the microphone 

was chosen to be about -50 db. The average voice level at 2 meters away is 

approximately 54 dB [25]. 2 meters was considered a reasonable maximum 

distance for a person to stand away from the robot while talking to it. The 

sensitivity of a microphone is the minimum volume that it can detect. Therefore, it 

was necessary to find a microphone with a sensitivity of at least -50dB, but not 

too much greater than the said -50 dB, otherwise the microphone would be too 

sensitive to sound. Microphones with wire leads were prioritized, as they would 

be the simplest to integrate with the protoboard. 

 When evaluating microphones, there are 3 types of microphones that are 

commonly used: noise canceling, omnidirectional, and unidirectional. Noise 

canceling microphones are designed for sources that are close to the microphone, 

without detecting extraneous noise. They are generally used for applications such as 
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headset or podium microphones. Omnidirectional microphones can detect noise 

from all directions, which is useful when the direction of the sound does not matter. 

However, using multiple omnidirectional microphones runs the risk of overlap 

happening. This happens when multiple microphones pick up the same sound. Since 

the microphones we are using in particular will not be able to detect the direction 

the sound is coming from, the overlap will likely confuse the robot. For this 

application, unidirectional microphones are the preferred solution. Unidirectional 

microphones only detect noise in the direction they are pointed. 

 

Figure 4.14 AUM-5047L-3-LW100-R Microphone 

 The first microphone is the AUM-5047L-3-LW100-R (AUM-5041) (Figure 

4.14) [26]. This unidirectional microphone is rated for 1.5V with a range of 1.5V to 

10V and has a sensitivity of -47db ±4 dB [27]. It has wire leads, making it easy to 

connect to a proto-board or bread board. 

 

Figure 4.15 FB-EM-30346-000 Microphone 

The next microphone is the FB-EM-30346-000 (FB-EM) (Figure 4.15) [27]. 

This microphone is rated for 1.3V with a range of 1.3V to 10V and has a sensitivity of 

-48db ±3 dB at 74db SPL [27]. Unlike the AUM-5041, this microphone is an 

omnidirectional boom microphone. However, being a boom microphone, the FB-EM 
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is much more expensive than an electret condenser, making it a difficult choice to go 

with when considering the budget. 

The last two microphones are the POM-2246L-C33-LW100-R (POM-2246L) 

and the CMC-3015-44L100 (CMC-3015), which are nearly identical [28]. Both are 

omnidirectional electret condenser microphones with similar voltage ratings and 

sensitivity levels. Both microphones are rated for 1.3V with a range of 2V to 10V. 

However, the POM-2246L has a sensitivity of -46db ±3 dB [28], while the CMC-3015 

has a sensitivity of -44db ±3 dB [32]. 

We decided to use the AUM-5041 as it is the only microphone that is both 

unidirectional and is close to the desired sensitivity specification. Its low price point 

of $2 makes it a cheap investment. As the other microphones were omnidirectional 

microphones, they ran the risk of causing overlap that could confuse the robot. The 

microphones will be integrated into the robot through its circuit board. The input 

(red) line both receives power and sends signals from the microphone. That line will 

be connected to the ESP32 which will receive the signals from the microphone. 

4.2.4 | Touch Sensors 

The last need for the sensors is the ability to sense touch. As an interactive 

robot, the robot needs to be able to react to being touched. People will inevitably 

want to touch the robot, especially if it was designed to interact with people. By 

behaving differently according to where it was touched in combination with its 

other behaviors, the robot can sell the image of a character.  

For the capacitive touch sensors, it was determined that they must be able to 

detect a touch through at least 3 mm of material and that at least 6 sensors are 

necessary for adequate coverage. These 6 sensors would cover much of the neck and 

head areas which is where most of the physical interaction is expected to happen; 

these 6 sensors would cover the left neck, right, neck, left head, right, head, top head, 

and torso of the robot. The reason for the 3 mm of material is that a capacitive touch 

sensor will probably be spread across a foil skin behind an exterior layer of 

material. Although 3 mm is larger than necessary since the exterior layer is unlikely 
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to be that thick, it is a safe limit since the exterior layer has yet to be finalized. 

However, there are currently no plans for the cover to be created for this project. 

Therefore, it will only be necessary to have nodes on the robot that simulate the 

touch points of the robot. That being the case, whether the touch sensors can detect 

touch through the cover is not important for this project. 

Although it is technically possible to operate with only one touch sensor, the 

robot would exhibit limited behavior. Animals react to touch differently depending 

on where they are touched. It was determined that at least 6 sensors would give the 

robot enough different types of motion. Two would be placed on the body of the 

robot on its left and right flanks, which would allow the robot to turn its head and 

neck to that side and react. Two more sensors would be placed on the left and right 

of the neck which would limit the speed and range of motion of the neck when being 

touched. Finally, two would be placed at the top of the head, one at the back of the 

head, and one for the top of the face and its horns. These would probably be the 

most used and allow the robot to nuzzle hands. 

 

Figure 4.16 Phidgets Touch Sensor 

 The first capacitive touch sensor is the Phidgets Touch Sensor 1129 (1129) 

(Figure 4.16) [33]. This capacitive touch sensor is capable of detecting a touch 

through plastic, glass, or paper; up to ½” thick. Although the sensor is small, 

additional connections can be soldered onto the sensor to increase its range. The 

sensor is 3.3V compatible, however it also requires a Hub Phidget that connects to a 

computer via USB [32]. This makes it unusable with the ESP32, as it does not have 

USB hardware. 
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Figure 4.17 Adafruit 12-key Capacitive Touch Sensor 

 The other capacitive touch sensor considered was the Adafruit Multi-Key 

Capacitive Touch Sensor Breakout Board (Figure 4.17) [35]. This capacitive touch 

sensor comes in a 5, 8, and 12-key configuration. Each key is a touch sensor that can 

be extended with additional wiring. When a key is touched, the board will output a 

response that the key is being touched. This board allows for a much wider range 

with only a single board. However, it only works for mediums that are electrically 

conductive, which limits the materials it can be used with [35]. 

 We decided to use the Adafruit 12-Key Capacitive Touch Sensor Breakout 

Board, which means only one sensor will be necessary. Additionally, the 

expandability of the board allows for greater coverage of the robot. Because this 

project will not address the cover of the robot, there is no need to find sensors that 

will be compatible for a non-existent cover. When comparing the Adafruit touch 

sensor to the Phidgets touch sensor, the range and communication capabilities of 

the Adafruit sensor are far superior. The 12 keys of the Adafruit sensor allow for a 

greater variety of ranges, while not needing to rely on a USB hub makes the Adafruit 

sensor much more reliable compared to the Phidgets sensor. 

 ESP32 boards also can turn most of their GIPO ports into capacitive touch 

sensors. The ESP32 has more than enough ports to cover our needed 6 touch 

sensors and upon testing it showed that it could detect a signal through a foil, this 

sensor also had the advantage of not needing extra communication like with the 

Adafruit multi key sensor which would delay the system. Touch thresholds could 

also be set on the ESP that would trigger an interrupt which might be advantageous 
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for software design. Compared to the previous two options using the ESPs built-in 

capacitive touch sensors has some clear advantages such as shorter delay times, no 

need for extra communication software and the option of hardware interrupts. 

4.2.5 | Motors 

The motors we chose to use to actuate the robot were UCONTRO iHSS57-36-

20 integrated stepper motors [36]. These motors are compact and are capable of 

high torques. These motors have an operating voltage range of 24-50VDC, and 

nominal operating currents of 3A. However, if the motors encounter high stall 

torques, the motors may pull much higher currents than 3A. Therefore, to prevent 

the motors from pulling more currents than the power supply can provide, we will 

consider the motors capable of pulling 6A. However, doing so also increases the 

power requirements of the robot.  

4.2.6 | System Block Diagram 

 

 

(a) (b) 

Figure 4.18 Initial and Final Electrical System Diagrams 

Although knowing the components is an important part of designing the 

robot, what really matters is how the components are assembled. For this reason, a 
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system diagram can be used to highlight the important components of a system and 

illustrate how they are connected.  

The robot was designed with two sections in mind. The first part of the robot 

is the high-powered motors used to move the head and neck of the robot. The 

second part is the processors of the robot. In the initial design (Figure 4.18a), the 

processor consisted of a Raspberry Pi and one ESP32 module. The Raspberry Pi 

would handle the AI algorithms and camera data. The ESP32 would handle data to 

and from the microphones, touch sensor, and motors. Additionally, the ESP32 would 

be able to handle the manipulation of the head and neck motors.  

However, upon working with the physical boards, it became apparent that a 

second ESP32 would be necessary. The additional board would cut the 

computational load on a single ESP32, while also having enough physical pin 

connections for all of the sensors and motors. The system diagram was revised to 

reflect these changes (Figure 4.18b). 

 

4.2.7 | Power Supply 

 

Figure 4.19 Power Supply and Delivery Circuit Diagram 

Due to the voltage and current requirements of the motor, approximately 

48V and 32A were necessary to run the system. However, single module power 

supplies capable of providing the required power are generally quite expensive, 
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costing about $300 at the minimum. However, because voltages in series add 

together, we were able to substitute a single power supply with four 12V and 30A to 

generate 48V at 30A (Figure 4.19). Although this is not the 32A we originally 

desired, this iteration of the robot will not use all five motors like originally planned. 

Therefore, the power supply can have a lower rated current. 

After the power supply is an overcurrent protection device. Should the circuit 

try to pull more than the rated current, the overcurrent protection will cut the 

connection. This will prevent an excess of current in the main circuit and protect the 

circuit from damage if the power supplies malfunction. At the same time, the 

overcurrent protection also protects the power supply if the circuit tries to draw too 

much current.  Several options were considered for this device. The first was a fuse 

rated for 30A, should the current exceed 30A, the fuse would blow, cutting the 

connection to the rest of the circuit. Although this option was viable, fuses need to 

be replaced once they blow. The other option considered is a circuit breaker. Circuit 

breakers are generally more expensive than fuses but can be easily reset. 

Considering that the robot needs to interact with people, it is important for the 

system to be easy to reset. For this reason, a circuit breaker was the better design 

decision. For this circuit, we used a 30A circuit breaker rated for 48V. 
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Figure 4.20 Zener Regulator Circuit 

 
Figure 4.21 Overvoltage Protection Circuit 

 

Figure 4.22 SCR Crowbar Circuit 

Following the circuit breaker is an overvoltage protection configuration. 

Although power supplies are reliable, there is still the possibility of the power 

supply malfunctioning. To protect the circuit from such a malfunction, an 

overvoltage circuit is used. Some common overvoltage protection circuits are Zener 

voltage regulator circuits, Zener overvoltage protection circuits, and SCR 

overvoltage crowbar circuits. Zener voltage regulator circuits (Figure 4.20) use 

Zener diodes to limit the voltage of a circuit, if the voltage in the circuit overcomes 

the rated voltage of the diode, the Zener diode will allow current to flow through it. 

Doing so sends the current to ground, reducing the voltage to the rated level. A 

Zener voltage regulator will do this without cutting power to the load, allowing 

everything else to function. In comparison, a Zener overvoltage protection circuit 

(Figure 4.21) behaves in the same manner as the regulator circuit. However, the 

overvoltage protection circuit will cut power to the load if an overvoltage condition 

occurs. SCR Crowbar circuits, in contrast, close a short circuit over the output if an 
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overvoltage condition is experienced (Figure 4.22). They are often linked to a fuse 

which will blow if an overvoltage condition occurs.  

For this robot, we decided to use a Zener voltage regulator circuit. Although a 

Zener overvoltage protection circuit is likely safer for users, suddenly cutting power 

to the circuit runs the risk of damaging the processors from the sudden power loss. 

The Zener regulator circuit is also preferable over the SCR crowbar circuit because 

the SCR circuit uses a fuse. As discussed before, a fuse that blows needs to be 

replaced, which is impractical for this robot. Therefore, compared to these options, 

the Zener voltage regulator was the most preferable. 

4.2.8 | Motor Circuit Diagram 

 

Figure 4.23 Motor Control Circuit Diagram 

 To reduce the complexity of the robot for C-Term, this iteration of the robot’s 

head was not designed to have a roll axis. The motors for the head and neck are 

UCONTRO iHSS57-36-20 hybrid stepper motors. These motors are rated for 

operation at 20-50VDC and pull about 3A, handling up to 6A. We wanted to run the 

motors at 48V, so 16Ω resistors for each motor were used to ensure that the current 

would be reduced to an acceptable level. The motors have positive and negative pins 
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for five different functions. The PUL pins are also known as step pins on some 

stepper motors. Positive signals make the motors take a step. The DIR pins control 

the direction of the motors. A positive signal to the pins makes the motors rotate in 

a counterclockwise motion while a negative signal makes the motors rotate in the 

opposite direction. The ENA pin enables or disables the motors. When left 

uncontrolled, the motors are enabled. The PEND pins are output pins that are high 

when the actual position is different from the command position. Finally, the ALM 

are output pins that are high when a protection feature is activated, such as 

overvoltage, over-current, or a position following error has occurred. The motors 

are each connected to an ESP 32 which handles their control (Figure 4.23). 

 For a physical safety mechanism, an emergency stop (E-Stop) is used 

between the motors and the power line. E-Stops are a general safety measure that is 

expected of every robot and can be used in the rare instance that further operation 

of the robot will result in physical harm. The presence of an E-Stop, while it likely 

never will be required, is a vital step to ensure that the robot can be switched off 

immediately and physically. Should the E-Stop be switched, the switch will cut 

power to the motors and redirect power back to ground. Without power, the motor 

will be forced to stop immediately which should prevent further harm. Should the 

robot start malfunctioning, this switch can be flipped to prevent the robot from 

moving dangerously. 

 Because the motors and processors are connected to the same power source, 

there needs to be a way to reduce both the current and voltage going to the 

processors to prevent them from being damaged. To do so, we used a DC/DC buck 

converter to reduce the voltage from 48V to 5V. We used a DROK step-down voltage 

regulator as the converter for its ease of implementation and capability to reduce 

65V to 5V. However, the DC/DC converter takes a maximum of 8A, and outputs a 

current equivalent to the input current. To reduce the current to a more suitable 5A, 

a resistor connected to a 5A circuit breaker was used. Should the processor circuit 

try to pull more than it is rated to handle, the circuit breaker will cut the current 

flow and prevent the processors from being damaged. A diode is also used to keep 

current flowing in the correct direction. 
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4.2.9 | Processors and Sensors 

 

 

(a) (b) 

Figure 4.24 Processor Circuit. Sensor ESP32 (a). Motor Control ESP32 and Raspberry Pi (b) 

 As mentioned before, the processors are broken into three parts, a Raspberry 

Pi and two ESP32s. (Figure 4.24a) shows one of the ESP32s. This board uses the 

microphone and internal touch sensors to detect stimuli and sends its data to the 

Raspberry Pi to be processed. The on-board touch sensor has lines that are directly 

connected to the GIPO ports of the ESP to allow for its internal touch sensor 

readings as needed. This ESP32 also has three microphones attached to it. Powered 

by the on-board 3.3V power output, the microphones change in resistance 

depending on the volume the sense. The microphones are then connected to 20 gain 

operational amplifiers (op-amps) that amplify the signals of the microphones. 

Without the op-amps, the differences between sound levels are difficult to notice. 

The Raspberry Pi is the SPI master. It receives data from the ESP32s, and 

based on the sensor information, makes decisions about what to do next using its AI. 

It then transmits motor positions for one of the ESP32s to handle (Figure 4.24b). 

This ESP32 handles the control of the head and neck motors. In addition, five limit 

switches are connected to the module that are used to define the limits of the robot’s 

movements when it goes through its calibration phase. To prevent switch 

debouncing, the limit switches are in an RC debounce circuit. This prevents a faulty 

signal from erroneously triggering the robot’s limit switch related code. According 
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to their data sheets, the motor controllers on the motors are rated for 5V of input 

voltage. However, the ESP32 is only capable of outputting 3.3V. To compensate for 

this difference, logic level converters were used to convert the ESP32 output voltage 

to that from the Raspberry Pi. However, this design proved to cause errors, and was 

scrapped. 

4.3 | Software Design 

4.3.1 | Section Introduction 

Due to the complex nature of the robot and the tight timing requirements for 

various software components, the robot’s software has been broken up between a 

Raspberry Pi and two ESP32s. The Raspberry Pi is a powerful embedded computer 

that runs a full operating system (OS). With a full OS comes the convenience of built-

in support for embedded communication as well as pre-existing libraries for visual 

detection. However, the onboard operating system introduces an element of 

uncertainty when dealing with tasks that require tight timings. For these operations, 

we have elected to use the ESP32, a microcontroller from Espressif; ESP32s also 

come with existing support for embedded communication and tight motor control. 

Furthermore, ESP32s also have built-in libraries for embedded sensor 

communication, stepper motor pulse control, and GPIO control. Given that sensor 

data would need to be processed on the ESP32 and that motor controls need to be 

processed immediately, it was decided to split the responsibilities between two 

ESP32s; one will receive and send motor positions and the other will read in 

information from the sensors and send that data back to the Raspberry Pi. The 

combination of these two systems allow for more sophisticated calculations for our 

AI Architecture on the Raspberry Pi while the ESP32s allows for more precise 

control over the motor operations. 
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4.3.2 | User Experience 

˧ Personas 

 To better document and design the architecture from a user experience 

perspective, extensive work was put into writing out the various scenarios that the 

robot would expect to encounter as well as the expected reactions of the robot. At 

the start of this process, various personas were created. These are archetypes of 

people that were expected to interact with the robot. These personas were based on 

the expected circumstances that the robot would be placed in based on the 

stakeholder needs. Traits like age, sex, gender, and personality formed the base of 

these personas; furthermore, their technical background, expectations for the robot, 

and positive interactions were described. These details influenced how we would 

expect each persona to approach the robot, what the persona would expect from the 

robot, and what the robot represented to them. By detailing this information down, 

the root's behavior and the software design could be better tailored to their needs. 

See this example below: 

Name: Laura Wilson (Fictitious)      Age: 18      Gender: Female 

 
Personality: Laura Wilson is an outgoing young lady who has a close-knit group of friends. She is 
an extrovert who enjoys making new friends and social interactions. 
Background: Laura Wilson grew up on the West Coast of the United States in San Francisco with 
her mother and father. She attended the local high school where she joined the robotics club and 
played soccer; she maintained high grades, graduating in the top 10% of the class. 
Job: High School Student 
Technical Background: FIRST Robotics / VEX Robotics, Consumer Electronics 
Purpose: Laura Wilson is here with her father, where they are touring colleges that Laura is 
considering applying to. She is at an admission tour where she is determining whether she wants 
to attend WPI as a technical college. 
Expectations: When Laura Wilson is looking at the robot, she would be attentive to concepts and 
principles that she has yet to learn and wishes to.  
Laura Wilson is also interested in the robot building process here at WPI and wants to know if it is 
fun. 
Fulfillment: A positive situation would end with Laura Wilson being suitably impressed with the 
robot and interested in learning how to build a similar robot herself. Eventually, she decides WPI 
is an impressive university in robotics and places it in the top tier universities that she is looking 
at. 
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Figure 4.25 Software Personas Example: "Laura Wilson" 

 The age, gender, background, and personality traits of this persona inform us 

of a more extroverted young lady who maintains her friendships while also 

maintaining a life filled with sports, friends, and robotics. The technical background 

section details the persona’s technical knowledge which greatly influences their 

expectations for the robot. In this case, Laura is familiar with consumer electronics 

but also has a basic knowledge of robotics through her participation in high school 

robotics. The purpose section dictates the reason why the person is interacting with 

the robot as well as decisions that the robot might influence. For Laura, this is 

during an admissions tour where she is determining which universities she wishes 

to attend in the future. The expectation sections describe what the persona is 

looking for in this robot; while Laura is looking at the concepts and knowledge that 

this robot represents, her father would be looking at the student input and 

resources that this robot is the product of. Finally, the fulfillment section describes 

the best outcome of their interaction with the robot which fulfills their expectations. 

 As part of this process, seven personas were created which covered each 

section of expected interactions: prospective students to WPI, parents of 

prospective students to WPI, current WPI students, WPI alumni, WPI professors, 

and younger children. Furthermore, these personas covered the circumstances in 

which the robot is currently expected to appear in－ admissions tours, WPI 

community events, and outreach programs. These personas and their various traits 

influence the user stories which go more in depth of how each persona would 

interact with the robot. By starting with the people who will be experiencing the 

robot, the process becomes user-focused with the emphasis put on how people 

interact with the robot instead of what the creator's expectations are. 

(See Appendix E for a Full List of Personas) 

˧ User Stories 

 Each of the personas was then given a user story. These stories describe how 

the persona would interact with the robot, what the robot does in response, and the 
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progression of events. These events were separated into a list for each person. 

These lists create a positive story for the persona and help reveal not only how the 

person will react to the robot but also how the robot should react to the person. See 

this example below: 

• Laura Wilson 
• Laura Wilson has done her research beforehand and knows that a mascot robot exists but not 

its capabilities. She then seeks out the robot during an admissions tour. 
• Robot notices Laura’s approach, fixates on her and moves its head to get her attention. 
• Laura moves around the robot trying to get a closer look at the inner mechanics. 
• Robot head and neck tracks Laura’s movements. 
• Laura notices that the robot is tracking her and stops her movement. She then waves at the 

robot to see if it will respond. 
• Robot head and neck follows the hand and makes Goat Noise in greeting. 
• Laura says hi back to the robot. 
• Robot makes goat noises in response. 
• Laura reaches out her hand and touches the robot directly on the top of the head. 
• Robot nuzzles upward into Laura’s hand. 
• Laura moves her hand around the robot’s head still petting it. 
• Robot nuzzles in general direction of Laura's petting. 
• Laura decides that the robot is pretty interesting since it is able to respond well to her 

movements and that she would like to know how to build a similar robot. 
• Laura asks the operator to take a selfie with the robot. 
• Operator poses the robot with Laura to take a photo. 
• Other guests move forward to the robot. 
• Laura then has a lot more questions about the robot building process to which she asks the 

admissions guide or the operator. 

Figure 4.26 Software User Story Example: "Laura Wilson" 

 This user story describes how and where Laura communicates with the robot 

through her verbal and physical interactions. The expected reactions from the robot 

are also listed out－ not what the behavior currently is but rather what the behavior 

should be. Furthermore, these user stories also help identify behaviors that were 

not previously considered as well as resources and expectations outside of the robot 

interaction. These user stories also helped use divide up the personas into certain 

categories, each who interact with the robot in their own way: standard personas, 

who interact physically with the robot and treat it like a real goat; investigators, who 

attempt to Figure out the limitations and behavior of the robot; and observers, who 

are too shy or reserved to interact with the robot but will observe others who do. 

From these user stories, three major issues were identified that had been 

overlooked. Firstly, the robot will need to be able to distinguish between ambient 
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noise and noise directed at it. It would be annoying for the robot to interrupt a 

nearby conversation with goat noises constantly. Secondly, an operator will always 

be required to monitor the robot and answer questions about both the robot and 

WPI. This information includes topics like school resources, why and the process in 

which this robot was built, names of the mechanisms and software structures, and 

why particular choices were made in its design. Finally, a fair portion of the 

personas did not physically interact with the robot as they were too shy or reserved, 

especially in front of a crowd. Some personas would try and research as much as 

possible before interacting with the robot. Therefore, it would also be wise to have 

some online resources that explain the mechanism, software architectures, and 

contains a copy of the final MQP paper. These user stories also drove the 

development of the robot’s use cases, which formed a more concrete explanation of 

the expected behaviors. 

(See Appendix F for a Full List of User Stories) 

  



71 
 

˧ Use Cases 

 After the user stories were done, the next obstacle to tackle were the use 

cases. The use cases were created using the key observations from the user stories; 

each story was thoroughly analyzed and matched with use case sections. This 

allowed us to partition the use cases into seven categories: Toggle Manual Control, 

Manual Control, Toggle AI Mode, Seeking Behavior, Non-physical Interaction, 

Physical Interaction, and Sound Reactions. Use cases are a more formalized way to 

record and organize a list of actions defining the interactions between a user and the 

system to achieve a goal.  

See an example below: 

1:  Sound Reactions  
a. User 

i. Robot 
b. Purpose 

i. Robot wants to engage with a person or group of persons through 
auditory ways. 

c. Preconditions 
i. Robot is in AI mode. 

ii. People are within interaction distance. 
iii. Sound is not being made in response to a conversation. 

d. Triggers 
i. Sound is detected. 

e. Flow of Events 
i. Sound is detected. 

ii. Robot makes a sound. 
f. Post Conditions 

i. Robot is still fixated on the same person. 

Figure 4.27 Software Use Case Example: Sound Reaction 

 Each use case is divided into 6 sub-sections: user, purpose, preconditions, 

triggers, the flow of events and post conditions. This particular use case describes 

the sound reactions of the robot. Each of the subcategories are listed and expanded 

out, the user being the use case user, purpose being the aim of the case, 

preconditions being things that have to be true for this use case to be applicable, 

triggers are the events which fire off the actions, flow of events being the list of 

actions or events that take place after the trigger, and lastly post conditions being 

conditions that are true after the actions are done. 



72 
 

 In the initial document multiple problems were identified. First, we didn't 

have any way to trigger manual control which meant the AI mode was the only 

option. Secondly, the seeking behavior was not linked with the physical and 

nonphysical use case properly which resulted in an error with regards to the 

preconditions never being fulfilled for the seeking behavior. Lastly, early versions 

didn't have the sound and parallelization fleshed out, yet which resulted in there 

being no sound reactions case. All these issues were phased out as we iterated on 

the system.  

˧ Use Case Priority 

The priority of the behaviors was decided by consulting our stakeholders’ 

requirements and doing a feasibility analysis.  There were a variety of reasons we 

decided to go with this ranking. Some options would be time-consuming to 

implement while others would be very computationally expensive. We listed the 

priority and the reasoning behind each rank in our use case document. A couple of 

examples of our ranking can be seen below.  

Table 4.1 Prioritized Use Cases 

Priority Name Use Case Reason 

5 Conversation 
Detection 

Robot able to 
detect differences 
between 
conservation and 
directed cues 

This particular behavior is important for the 
robot to not interrupt conversations and is 
the next step after sound detection. It would 
allow people to have conversation near the 
robot without interruption which sells the 
goat being able to only react to sound 
directly toward it. 

7 Hand Nuzzle 
Behavior 

Robot goes out of 
outstretched hand 

This behavior is low priority because of the 
difficulty of doing it and low likelihood of 
people outstretching their hands. Guiding 
the head of the robot to a hand with only its 
vision is far harder than just pointing the 
head toward that hand. Furthermore, it was 
determined that a person is far more likely 
to just touch the head than to reach out a 
hand. 
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Conversation detection and hand nuzzle are 5 and 7 in the priority list 

respectively. The explanations go into detail about the difficulty of the 

implementation, complications and other reasons for its position amongst the list. 

The use cases and priority list drove the development of our AI architecture choice 

as well as a clear list of our requirements and needs.   

(See Appendix G for a Full list of Use Cases) 

(See Appendix H for a Prioritized List of Use Cases) 

4.3.3 | Embedded Software 

˧ Communication Protocol Design  

For our communication protocol we considered a multitude of choices and 

evaluated them based on our needs and our implementation requirements. The 

protocols discussed and analyzed were SPI, UART/serial, and I2C. Our general 

requirements were that more than 2 devices would need to communicate, we 

needed a fast data transfer method to keep our AI architecture up to date with 

sensor data and lastly the communication protocol could not be blocked. 

We first considered UART which at first seemed like a good fit, it was robust, 

all our processors could use it and its data transfer rates were more than adequate 

at a high baud rate. It also had the advantage of having easily accessible libraries for 

both our devices. While it could not directly set up more than three devices, we 

could write a communication protocol which would take this into account and allow 

a three-device setup.  

I2C was also a candidate, as it could be set up between more than 2 devices. 

Additionally, it allowed for fast data transfer between devices and it had a master 

slave setup allowing for one of our processors to control the flow of information. I2C 

also had a clock which ensured a robust method to prevent data loss or corruption 

during communicating. The downsides were that we would have to do extensive 

wiring, the libraries available were not intuitive, and lastly it was a new concept so it 

would take extra time to learn it to the level that a communication protocol for our 

robot could be set up. 
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SPI had many advantages, it had multiple libraries which allowed for easier 

integration. It also bolstered a controllable data transfer rate which could be set to 

high speed for fast data transfers. In addition, SPI allowed for more than two devices 

to be set up, in a master slave relationship which like the I2C could prove beneficial 

in our communication protocol design. SPI did have a few downsides though; we 

would have to set up clocks for it and it would require extensive testing to make it 

reliable. 

We tested and attempted to set up all these protocols, after further analysis 

of the prototypes and the features and downsides we decided that SPI would fit best 

within our project. This decision in our design process was predicated on a 

multitude of factors ranging from initial prototype successes, to the extra steps that 

would be needed to set up our 3 processors with this protocol.   

 

4.3.4 | AI Architecture 

There are a wide variety of AI architectures that can dictate the behavior of a 

system, each with its own advantages and disadvantages. Each architecture 

structures the system using different theories of behavior. Based on the use cases, 

parallel functionality was not required for this project－ the only case is for created 

noises in response to auditory signals. Other considerations are that the AI must be 

able to respond to unexpected circumstances. A crowd of people will not provide a 

controlled and stable environment. Finally, this architecture must be maintainable 

and extensible for future teams.  
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Figure 4.28 Diagram of a State Machine 

A Finite State Machine (FSM) is a system that consists of transitions and 

states (Figure 4.3.4). Each state in this machine defines some behavior with a 

transition as the condition that allows the machine to switch states [41]. This 

architecture is simple but is useful because each state is clearly defined and allows 

for clear control in each state [38]. Major disadvantages include being difficult to 

maintain as well as producing rigid, non-goat like behavior [39]. Although further 

behavior could be dictated by a lower-level decision making system, that system 

would be one of the systems discussed in this section. Additionally, a state machine 

design struggles to handle unexpected inputs, preventing it from responding 

properly [39]; everything behavior needs to be pre-planned and every transition 

must be accounted for [39]. Adding to or editing this system after creation is very 

difficult as the many transitions must be carefully managed [41]. It is possible to use 

a hierarchical FSM to mitigate many of these issues on a higher level, but the issues 

will persist through each sub FSM. 

The major reason why FSM was discounted from consideration was because 

of the rigidity of the system: all states and transitions need to be defined for an FSM 

to work well. In addition, although FSMs function well in pre-defined scenarios, 

FSMs are generally poor at interpreting and handling unexpected circumstances 

that may arise in a crowd of people. Finally, FSMs also fall short in one only trait - 

extensibility and maintenance. If our robot was implemented with this, we would 

have to fully map out its statistics and all the transitions between each state, which 

would take far too long to map out and make it nearly impossible to add new states 
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to the system. The storage requirements for this would include space for: a digital 

representation of the system state; the combinational logic that computes new 

values for state variables; and system outputs from the combined system inputs and 

current state variable values. 

 

Figure 4.29 Diagram of a Decision Tree 

Another simple system is a decision tree where a system parses through a 

tree of logical nodes. The system starts at a single root node, then moves down the 

tree through decision nodes. These decision nodes can then lead to other decision 

nodes or action nodes which can dictate behavior [41]. Like a state machine, this 

design is simple and allows for very defined behavior. However, it also is weak in 

similar areas: maintenance is difficult and decision trees are computationally 

inefficient [38]. Furthermore, editing or adding to this system is very complex as 

large decision trees are extremely difficult to understand without proper 

documentation [13]. As with FSMs, these problems can be mitigated using sub-

decision trees but once again, the problem persists. The space requirements of 

decision trees are determined by the number of nodes in the tree but ultimately the 

space requirements are determined linearly as such would easily fit within our 

available storage. 
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Figure 4.30 Representation of Utility Priority Score 

Given those traits, decision trees were discounted from the selection because 

they have the same weaknesses as FSMs. If they were implemented with our project, 

they would contain leaf nodes as our robots' behaviors and as such everything 

would be based on a yes/no choice as the tree splits down. Decision trees are 

slightly better at handling unexpected input but not as well as other architectures 

listed in this section. Maintenance and extensibility are still issues; both important 

in a project where the code will be built and change hands many times, often 

without the original writer's present. 

Another viable architecture is utility-based AI where external behaviors are 

scored based on previous actions and system input (Figure 4.3.6). Depending on 

those factors, the highest-scoring behavior is the one that the system deems to be 

the most important at each moment [41]. The advantage of this approach is that it is 

not as rigid as the previous two methods and still allows for well-defined behavior. 

This lack of rigid transitions allows utility-based AI to handle more unexpected 

situations [43], like those that could arise in a crowd. Its major detriment is that 

properly scoring the actions can be complicated and an incorrectly balanced system 

will not act as intended [38]. Furthermore, utility-based AI is limited in the number 

of exhibited behaviors as each one needs to be predefined in order to be scored [43]. 

If we went with this implementation, each behavior would have to be scored and 

balanced against all the other behaviors in such a way that there are no looped 
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behaviors. It would easily move along transitions and be able to act in more 

unexpected situations, though the scoring would need to be adjusted every time a 

new behavior is added. The storage would need to be enough to fit all the scores and 

nodes, which are linear in nature. As such, a modern processor board should have 

no problems storing it.  

 

Figure 4.31 Diagram of a Subsumption System 

One other behavior-dictated system is subsumption architecture. This 

architecture has various ordered levels (Figure 4.3.7). Each level denotes some 

behavior that the robot should exhibit with higher-prioritized behaviors at the 

bottom levels. The top-most level produces a set of external commands which are 

passed to the next level. Each level then modifies the commands as necessary [25]. 

For instance, if a robot is built to explore and map its environment, one top-level 

behavior would be wandering around and collecting sensor data around it. A lower 

level might be avoiding physical obstacles. For example, if the robot will hit a wall, 

this level will modify the set of commands to prevent the collision [25]. This 

behavior is similar to a FSM in that there is a set of predefined behavior which the 

robot can exhibit. However, like utility-based AI, it avoids having strictly defined 

transitions between behaviors [41]. Subsumption AI is also easier to maintain and 
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extend compared to FSMs but suffering from a different problem－ scaling. As a 

robot needs to exhibit more and more types of behavior, it gets difficult to 

determine the correct order of the levels and if behaviors need to be done in 

sequences [25]. If we implemented this our top-level behavior would be interacting 

with humans, a lower level behavior would be for example nuzzling a hand. The 

space requirements would be minimal as subsumption architecture is built with no 

need for memory in mind. 

 

Figure 4.32 Diagram of a Neural Network 

Neural networks are becoming one of the most popular methods of handling 

difficult to define behavior. With various layers of neurons, properly trained and 

designed neural networks can emulate very complex behavior. Signals are passed 

from neuron to neuron and then combined into an output the system can then 

follow (Figure 4.3.8) [41]. The major benefit of neural networks is the system being 

able to handle a far wider range of inputs, some of which were not accounted for by 

the programmer [45]. However, there are also major downsides: training a neural 

network is expensive and time-consuming; training requires a training set of 

thousands of samples to teach the neural network, which requires a large amount of 

work; a poorly trained network can behave in unintended ways [41]. Furthermore, 

the creator loses any amount of fine control over exhibited behavior－if a behavior 
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needs to be changed, new training material is required [45]. It is simply impossible 

to use this for our implementation, but if we hypothetically did use this system, we 

would have to make a set of goat data and train the model with it. This would allow 

for a unique behavior, but we wouldn't be able to add or edit things unless we 

wanted to fully retrain the model. The space requirements would be the weights for 

all the layers and the nodes themselves. As we wouldn't store any training or test 

data, our chip would have an easy time storing the neural network 

 

Figure 4.33 Diagram of a Behavior Tree 

Behavior Trees are another way to define the output behavior of a system. In 

this system, behaviors are structured in a similar manner to decision trees, except 

the decision nodes have more abilities. In addition to decision nodes, behavior trees 

have sequence nodes－which dictate a sequence of behaviors－and selector nodes

－ which only execute one of the behaviors underneath (Figure 4.3.9) [46]. 

Furthermore, behavior trees also return status results from the left nodes upward; 

this often includes information on where the node has successfully run, cannot be 

run, failed in trying to run, or is still running [46]. Some of the major advantages of 

behavior trees are that they can dictate more behavior with less structure than 

decision trees and FSMs. They are also better for handling multiple known 

situations, such as in the example above with the opening of a door. However, they 

also suffer from a similar problem－handling unexpected sequences or abruptly 

switching exhibited behavior. For example, if we implemented this model, it would 
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be nearly impossible to envision and plan for every eventual situation that could 

happen in a crowd of people. Furthermore, the robot would be constantly switching 

its behavior to handle everything happening in the crowd. If a person starts petting 

the robot, it needs to immediately break away from tracking another person and 

react to the petting. In terms of storage we would need to store the entire tree－

including its transitions－ which may be difficult to store depending on the size. 

However, it should fit the tree for our implementation.  
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˧ AI Architecture Decision 

The primary function of this AI Architecture will be to imitate the 

mannerisms and behavior of a goat such that although the robot is obviously 

mechanical, it reacts and functions like a well-behaved goat. From our research, 

visiting actual goats in a farm, we observed that goats almost always act in a single-

minded manner－ only focusing on one person or action at a time. Reflecting that, 

our intended behavior of the robot does not need major parallel functionality; the 

only case in which parallel behavior is required is when the robot will make goat 

noises in response to speech. Whatever the movement or action it is in, the robot 

needs to open its mouth and make a noise. Also related to its behavior, the robot 

must be able to exist and function in an environment where there is little to no 

guarantee of external factors. This robot will mainly be functioning in a crowd of 

people; crowds are unpredictable so the robot must be able to handle unexpected 

circumstances and adapt accordingly. Another factor that we considered in this 

decision is the maintainability and extensibility of the architecture; this robot will be 

passed between multiple MQP teams, as such the architecture needs to be easily 

modifiable so that future groups only need to add or tweak parts. This also leads to 

the last factor－ future teams may need parallel behavior as the robot expands. 

Walking and interacting at the same time would require parallel behavior, so ability 

to support parallel behavior is important. 

Many other systems, such as FSMs, were considered as well but were not 

viable choices. Although FSMs do not support parallel behavior, they have clearly 

defined transitions between each of their states. This trait would be useful in an 

environment where external factors can be predicted, but that is not the 

environment of a crowd. If a transition is not properly detected or defined, the robot 

will end up in a different state than it needs to be. Furthermore, as a FSM grows, the 

number of transitions can increase dramatically. This would make maintaining and 

modifying behaviors in future years difficult. Using sub FSMs mitigates some of 

these problems, but only shifts those issues to each sub FSM. 
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Decision Trees are also not viable－ they lack in many of the same areas that 

FSMs do. Decision Trees can support parallel behavior. Like FSMs, they function 

poorly in unexpected circumstances and each decision must be defined beforehand. 

Decision Trees also suffer from the same scaling issue as FSMs; more supportive 

behaviors lead to more decision nodes and a larger tree. Although this can be 

mitigated with the use of sub Decision Trees, the problem still exists in all the trees. 

 Subsumption Architecture is another AI system that is no longer being 

considered. Subsumption Architecture does not support parallel behavior and, in 

fact, has traits that make modifying the architecture to support parallel behavior 

almost impossible without major changes [48]. Since only the most important 

lowest-level behavior is ever returned and no other behaviors are ever weighed 

against each other, it would require additional custom functionality [48]. 

Subsumption architecture can handle unexpected circumstances and situations, but 

only has a limited number of behaviors like utility-based AI. The major downside of 

subsumption architecture is that scaling or programming in more Subsumption 

Architecture is another AI system that is no longer being considered. Subsumption 

Architecture does not support parallel behavior and, in fact, has traits that make 

modifying the architecture to support parallel behavior almost impossible without 

major changes [48]. Since only the most important lowest-level behavior is ever 

returned and no other behaviors are ever weighed against each other, it would 

require additional custom functionality [48]. Subsumption architecture is able to 

handle unexpected circumstances and situations, but only has a limited number of 

behaviors like utility-based AI. The major downside of subsumption architecture is 

that scaling or programming in more complex behaviors is difficult due to the need 

to determine the correct order of levels and figure out sequenced behavior [48].  

A Neural Network is also not a viable system for this robot to use. The prime 

reason why is due to the practicality of doing so, rather than the traits of the system 

itself. Neural Networks will already exhibit parallel behavior in its output 

commands, and unlike almost every other architecture discussed, it has an almost 

unlimited amount of different behaviors available [48]. This ability also makes a 
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Neural Network the best architecture for handling unexpected circumstances 

because it has the capability to create the appropriate behavior for the situation. 

Unfortunately, the practicality of creating and properly training a neural network 

for this project is impossible. Deep-learning Neural Networks require a large 

amount of training data to even get close to the correct behavior and that data just 

doesn’t exist for goats. Furthermore, it is impossible to tune or change small parts of 

the exhibited behavior without retraining the neural network with new training 

material [29]. The requirement of training material－ which would take a large 

amount of effort to produce－discounts this architecture simply because of the lack 

of time and funding required to find or create such data. 

 Behavior Trees are another viable system for this robot. Behavior Trees can 

support parallel behaviors for the robot without much modification or additional 

effort. Furthermore, the use of selector nodes allows the system to handle some 

unexpected circumstances as later nodes under that selector node allow for 

different behaviors. Behavior Trees do suffer from similar problems as decision 

trees in that scaling will result in larger trees. However, since Behavior Trees 

typically have more complex nodes, the resulting trees are flatter that decision trees 

and are therefore easier to maintain and update. 

After deliberation and analysis of our requirements on a wide range of 

architectures, we first decided on using utility-based AI architecture. Initially, we 

chose this system because we found that although it does not support parallel 

behavior, it is one of the easiest architectures to maintain and extend. Behaviors are 

clearly defined in their respective areas and adding or removing behavior only 

requires modification of the list. This also points to utility-based architecture's 

second strength－there are no predefined transitions between behaviors. Although 

the number of exhibited behaviors is limited, the robot should exhibit the behavior 

closest to the current circumstance [28]. However, this ability is not without 

downsides, properly determining the scoring system is not a simple task; incorrectly 

balanced systems will not exhibit the correct behavior when required and the 

threshold between behavior can be difficult to determine. 
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 After our initial choice, we consulted Professor Gillian Smith and did further 

research into behavior trees, deciding to switch to them. The reasoning behind this 

decision was because we could implement behavior trees with the functionality of 

utility-based systems in some of the nodes. This would result in an additional 

Composite Node which uses a utility score to determine the most valuable behavior. 

This combination allows for the parallel behavior of Behavior Trees, as well as the 

relative ability to handle unexpected circumstances would arise in a crowd. 

Furthermore, while this architecture would not be the easiest to maintain and 

update, if it were to be built in an intelligent manner, it would not be an 

insurmountable obstacle for future teams. Although this first year does not require 

extensive parallel behavior, future MQP groups might require that functionality and 

it would be wise to include that functionality if needed. With the choice of AI 

architecture made we moved on to the next step, the Unified Model Language (UML) 

diagrams. 
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4.3.5 | Unified Model Language (UML) 

˧ Object Diagram 

 

Figure 4.34 Initial Object Diagram 

Figure 4.34 is the initial UML Object Diagram that was created for high level 

AI Architecture. This diagram shows all the expected objects and interfaces of the 

code as well as some of the stored variables and functions of those objects. Given 

that this project would have major expansions and updates in future years, the AI 

Architecture was designed to be deliberately abstract, with functionality distributed 

over multiple objects. Although these extra objects technically contain functionality 

that could be included in other objects, future developments may expand on those 

areas. The additional readability and modularity would improve the cohesion of the 

codebase. This object diagram also helped determine which objects would need to 

be shared across other objects and which objects will act just as data structures. 

(See Appendix I for the Full-Size Object Diagram) 
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˧ Behavior Tree Diagram 

 

Figure 4.35 Behavior Tree Diagram 

As part of the software design and a behavior tree design, a Behavior Tree 

Diagram was also created (Figure 4.35). This diagram details the structure of the 

behavior tree based on the use cases. This Behavior Tree was designed with 

multiple levels in mind; the first level of the behavior tree is split into each of the 

three main types of interaction that were described in the use cases. Utility-based 

composite and decorator nodes were used on this level because a utility-based 

system can make the decision to select which of these use cases to do under 

unexpected circumstances. These major types of interaction are split into another 

utility-based system; this second level ensures that the sub behaviors of each major 

interaction are not compared against each other. These subtypes of interaction then 

link to behaviors which will execute the intended behavior. Although the touch use 

case will need to interrupt any of the other behaviors, this is accounted for in the 

objects that manage this behavior tree. When a touch is detected, the list of nodes to 

execute during the next cycle is cleared and the top of the behavior tree is executed 

again. Given that the robot is being touched, this immediately moves the physical 

interaction to the highest priority. 

Currently, the behavior tree relies heavily on utility composite and utility 

decorator nodes to determine the correct behavior to execute (Figure 4.36). There 

are a few sequence nodes that help define a list of behaviors that need to be 
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executed. Otherwise, it was determined that parallel and selector nodes were not 

currently required. Based on the use cases, no functionality requires selector nodes 

and parallel behavior is only required for audio creation. Earlier versions had 

parallel nodes for audio creation given that those parallel nodes were required in 

every branch of the behavior tree. However, it was redundant to have those nodes, 

since audio creation can easily be handled in a separate audio processing thread. 

1. Person Head Not in Center of FOV 
     a. Max 0.9 
     b. Min 0.0 
     c. Score based on distance of head to bottom center of vision 

Figure 4.36 Decorator Design Example 

Additional work was also put into the design of the decorator scores. Given 

that these nodes would work very similarly to utility-based architecture, it is 

important for these scores to be property and carefully defined. Each decorator was 

given an absolute minimum and maximum value as well as a general description of 

how the score would change in relation to the sensor information. 

 (See Appendix J for the Full Size Behavior Tree) 

(See Appendix K for the Full Decorator Design Document) 

4.3.6 | Prototype 

Even with the behavior tree and a basic object diagram written out, there are 

a lot of implementation details which can only arise and be solved in a prototype. 

Therefore, the next step was to design the architecture as a whole and build a 

functioning prototype as a proof of concept. Firstly, there are many terms which 

have common meanings, but have more specific descriptions here. The first part 

of the AI system is like all robotic control software, namely in that there is a 

closed control loop that is represented in the master control loop. To determine 

the expected behavior at any time, the behavior tree is run. Each ending leaf in 

that tree is a behavior which defines a certain action or series of actions. Actions 

are predefined motions that the robot can do which give it life－ moving in 

response to what it senses. For instance, the action to move the head and look at 

a person. These actions are used in the Calculator, which produces movements 
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based on known obstacles and expected endpoints. Movements are defined 

motions that the robot will do, i.e. move joints to these set positions in this 

amount of time. Movements are made up of Position, which are motor values that 

correspond to a certain configuration of the robot. These movements are then fed 

to the Controller which functions as the robot’s motion controller. This Controller 

handles the motion planning and produces the necessary intermediate setpoints for 

the robot. 

Another topic that was decided was the failure behavior of the composite 

nodes. The sequence nodes will stop upon receiving a failure, not executing any 

behavior yet to be executed, and returns a failure status to its parent. Parallel nodes 

operate similarly - if one child sends a failure status, the parallel node will return a 

failure status to its parent after all children have returned. Utility nodes operate in 

another way. When they receive a failure status from one of their children, that child 

is added to an ignored list. The Utility node will then recalculate scores and choose 

another child to execute. This process will repeat until a behavior is successfully 

executed or if the highest score received is zero. In both cases, the ignored list is 

cleared but if the highest score is zero, a failure status will be returned to its parent. 

This makes utility nodes able to handle some of the failures by choosing the second 

highest scoring behavior to execute. This functionality does add in one 

consideration in that if the root node is a utility node, one of its children must have a 

minimum score higher than zero else an infinite loop is encountered.  

Another detail that was discussed was how the motion controller would 

handle parallel behaviors. Although the behavior tree should never produce 

conflicting movements, it is possible that this case happens as the behavior tree gets 

more complex. For example, imagine a case where the behavior tree produces two 

different set points under a parallel node which are in opposite directions. To 

handle this circumstance, there will be a movement handler which will take in the 

movements from the behavior tree and remove conflicting behaviors based on first-

come importance. Furthermore, since the motion controller only takes in a single 

target position, this movement handler would combine all movements into a single 

movement, which only references a single target position. Finally, parallel nodes 
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returning a status after every return is not supported because this would result in a 

compounding number of statuses being passed around the behavior tree.  

One further topic is the reusability of nodes within the tree－ particularly 

with many behavior nodes sharing actions. For this functionality to work, the 

parents of these nodes are switched between executions so that the child will 

always choose the correct parent to call. However, this also adds another factor to 

consider in that nodes are not able to be shared underneath a parallel node because 

the child nodes will not know which parent to call. Take the example where there 

are two sequence nodes under a parallel node which both reference the same 

behavior node. The parallel node would call both sequence nodes which would both 

call the same behavior node. When the behavior node needs to call its parent node, 

it doesn't know which sequence node to call－ especially since it would have to call 

its parent twice. Which sequence node called it first and does the first finished 

execution correspond to the first or second parent? 

In addition, another topic that was sorted out were the requirements of both 

AI architecture, the motion and path planning, and the motor controller. This led to 

developments like the previous discussion on parallel behavior as well as the fact 

that the motion controller can only take in one end setpoint. This overall planning 

greatly assisted in some of the integration for the integration prototype as the roles 

of each system were clearly defined beforehand.  

Using these considerations as well as the produced UML, a prototype version 

of the architecture was created. This prototype was built to only handle a single 

point in 3D space, operate on a CLI input scale, and doesn’t communicate with third-

party sources like the sensors or OpenCV yet. However, it does test the functionality 

of all the behavior tree nodes and is also built with abstraction so that only minor 

modifications are needed to apply it to a particular robot. This prototype also 

assisted in the integration of the AI and the messaging and motion planning as well 

as various requirements that are required for programming robots. By helping hash 

out implementation details, this prototype laid the foundation for the final version 
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with its clear separation of responsibilities for each object and forced the team to 

make decisions regarding utility nodes, parallel nodes, and conflicting movements. 

5 | Prototype Testing, Results and Progress 

5.1 | Mechanical Design 

5.1.1 | Differential Mechanism Testing 

 Currently, there are two versions of the differential mechanism for the head 

that we are working with. Both the theory and abstract design behind them are the 

same. The first is a small, functional prototype. Its size meant we could quickly make 

low-cost fixtures and models to test functional implementation with the electrical 

systems and software. We used the smaller prototype for verifying joint kinematics, 

testing joint speeds, as well as for figuring out the cable routing path. The second 

prototype is a 1:1 scale model of the final design to be used for full scale testing. This 

assembly is also functional, though we have not yet fully implemented it. We have 

been able to integrate it with a partial head frame assembly, however due to the 

current coronavirus pandemic we do not have access to those parts, and we are 

unable to include images of that setup currently.  

˧ Mechanism Cabling and Routing 

 As discussed earlier in section 4.1.2 |, selecting the correct cable material was 

critical to the viability of the mechanism. The earliest prototypes used fishing line as 

the cabling. To work out the routing of the cables, some spare strands of TPU 3D-

Printing filament were used as its high elasticity made it easier to hand tension, 

which became laborious while figuring out how to properly route it with a less 

elastic material. Obviously, this elasticity was less than ideal for the final version, 

however it served as a useful intermediary to practice the windings. The first larger 

scale prototype was initially intended to use steel wire rope; however, UHMWPE 
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was substituted instead, and is currently what is used to transmit power through 

the mechanism. 

   

(a) Fishing Line (b) Wire Rope. (c) UHMWPE 

Figure 5.1 The Three Assembled Prototype Differential Mechanisms 

What we found when using a fishing line was that even though we could 

accommodate the minimum bend radius, the line still had too high of a bending 

stiffness for our purposes. Additionally, fishing line is designed to have some 

elasticity for its intended use case (fishing), which would reduce the overall stiffness 

of the mechanism at scale. Steel wire rope suffered from similar issues. Though its 

tensile strength was high and its elasticity very low, its stiffness caused issues with 

mechanism binding. In both cases, we did not use measurement tools to estimate 

the power losses due to the cable stiffness and friction, however it was evident from 

manual operation that neither material would suit our needs. UHMWPE provided a 

high tensile strength and low elasticity while having a relatively small minimum 

bend radius and low bending stiffness. Even when fully tensioned, the mechanism 

can still be operated manually with ease, and the major resistance comes from the 

friction in the pulley bearings. We did observe some minor vertical sliding of the 

cable as the mechanism is rotated, however due to the low coefficient of friction of 

UHMWPE with most materials, we assumed this sliding friction to be negligible.  

˧ Kinematics and Speed Testing 

 While we could conceptualize the kinematics of the differential mechanism 

we used, we needed to implement the mechanism in a test fixture and drive it 
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through software to verify. Additionally, doing so allowed us to visualize for the first 

time the speeds of the joints.  

 

Figure 5.2 Servo driven test fixture 

 

Figure 5.3 Stepper driven test fixture 

 

The first test fixture we made (Figure 5.2) simply had two hobby servos 

mounted in a direct drive configuration with the mechanism. We ultimately would 

need more rotational range (and more power) than what these motors could offer, 

but it allowed us to test our kinematics. Using this, we quickly verified that our 

kinematic relationships were correct. A second version was later created that 

utilized closed loop stepper motors mounted in a similar configuration (Figure 5.3). 

This setup allowed us to test integration with the control software that was 

currently being written for the embedded microcontrollers we would be using. As a 

side note, while that software was in progress, a piece of open source CNC control 

software called GRBL was modified to accommodate our parallel kinematics. This 

was a quick way to ensure everything was working properly before moving on to 

closer software integration. Due to delays in the development process, this same 

modified software was again used to test the final functional prototype before 

switching over to our own software.  

 The final version used for testing was constructed to more closely model the 

actual robot design. This gave us a better tool to visualize joint speeds as well as 

what range of motion we needed. It also was intended to serve as a temporary 
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platform for mounting sensors and cameras so they could be tested on a functioning 

mechanism while further design and production work was done in parallel.  

5.2 | Electrical Systems 

5.2.1 | System Architecture 

 

Figure 5.4 Electrical Systems Schematic 

The electrical systems of the robot include power delivery, processing, 

sensors, as well as motors and controllers. Currently, the robot receives primary 

power from a residential mains voltage source which is converted to 48 volts DC, 

and further regulated down to the required voltages for each system component. 

High level processing is performed on a Raspberry Pi single board computer. Timing 

critical tasks such as data collection and motor control are performed on several 

ESP32 microcontrollers. Actuation is accomplished using stepper motors with 

integrated closed-loop drivers that are controlled by an ESP32. 



95 
 

 

Figure 5.5 Electrical System Schematic Ported to Autodesk Eagle 

As discussed in section 4.2 |, the initial electrical system diagram (Figure 5.4) 

was made using software provided by Digi-Key. Despite its small learning curve and 

integration with their parts catalogue, it was not suitable for our final design, and 

we ultimately moved to using Autodesk Eagle. With no prior experience with the 

software, we did face some setbacks. However, the utility for future teams made it a 

valuable effort and provided us with an opportunity to familiarize ourselves with 

industry standard software. Currently, the redesign (Figure 5.5) in Autodesk Eagle is 

not yet done but will be fully completed in the remaining project term. This delay 

was in part due to the coronavirus pandemic. 

5.2.2 | Prototype Circuits and Testing 

At this stage, we have built several circuit prototypes to test alongside our 

current mechanical and software prototypes. These test circuits were mainly used 

to check the functionality of sensors and motors. By ensuring individual 

functionality, later problems can be traced to implementation rather than problems 

with the components. Due to the coronavirus pandemic, we were unable to continue 

construction and testing; current progress on the prototype implementations of our 

electrical designs reflects those completed in C-term. 
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(a) (b) 

Figure 5.6 Microphone Test Circuit with Arduino. Physical circuit(a) and Circuit Diagram (b) 

The first test circuit made was for the microphone, which is read by an 

Arduino Uno (Figure 5.6). An ESP32 will ultimately be responsible for logging 

microphone data, however this was decided after this test setup was made. Different 

software was eventually written for the ESP32; however, the function is simple 

enough that any microcontroller would suffice. Like the ESP32, the Arduino Uno is 

equipped with 3.3V output pins that have a maximum current of 50mA. However, 

the microphone has an excitation voltage of 10V, so we created a voltage divider to 

scale this down. While this is not ideal, it sufficed for testing purposes as the 

microphone only pulls 0.5mA, which falls within acceptable limits after the voltage 

divider. 
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Figure 5.7 Microphone Testing Results, mV vs Seconds 

To test the microphone, we performed a series of loud claps a few meters 

away from the microphone, at about the maximum distance we expected interaction 

with the robot to occur. We visualized the results of this test using the Serial 

Monitor and Plotter of the Arduino IDE (Figure 5.7). When there is no noise, the 

serial monitor oscillates around a digital value of 307.5 mV, indicating the static 

noise of the room. The impulse response from the claps can be seen clearly, 

satisfying our functionality test. 

  

(a) (b) 

Figure 5.8 Touch Sensor Circuit and Test Setup 

The second test circuit was for the touch sensor. Like the microphone, the 

touch sensor was tested by connecting it to an Arduino Uno. The VIN and GND keys 

of the sensor were connected to the 5V source and common on the Arduino 

respectively. The SCL pin was connected to the I2C clock SCL pin on the Arduino, in 

this case A5, and the SDA pin was connected to the I2C data SDA pin on the Arduino, 

in this case A4 (Figure 5.8a). Finally, a wire was connected to one of the keys of the 

touch sensor. Using the example code that came with the Arduino library for the 

MPR121 controller, the Arduino would print messages to the serial monitor when a 

key was touched, and indicate which key was being touched. The range of the key 

can be extended by connecting the wire to conductive material, such as aluminum 

foil (Figure 5.8b). To test if the touch sensor could operate under a layer of material, 

an additional material was put on top of the aluminum foil. In this case, both paper 

and wool cloth were used. The touch sensor could detect someone touching both 
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materials. However, the limits of the touch sensor are still unknown. It likely will not 

be able to detect touch through thick material or material that is nonconductive. 

More intensive tests need to be done on the ESP32 to ensure the touch sensor is 

working properly. 

  

Figure 5.9 Motor Test Circuits 

The final test circuit is the motor test circuit (Figure 5.9). This circuit was 

used to test the ESP32s ability to drive the motors after receiving commands from 

the Raspberry Pi. Additionally, this circuit had a dual purpose of mapping what the 

physical connections of the circuit would look like. The ESP32 was connected to the 

Raspberry Pi using their designated pins for SPI communication. From the monitor 

of the Raspberry Pi, position commands were sent to the ESP32. The ESP32 would 

then move the motor to the position. In the top left of the first circuit (Figure 5.9, 

left) is a logic level converter. During the testing of this circuit, we discovered that 

the logic level circuit was causing the motion of the motors to be erratic, causing it 

to fail to stop at the correct position. Once the logic level converter was removed, 

the motors were able to actuate properly. Using the information gained from the 

test circuit, the motor circuit was refined to only take a single breadboard (Figure 
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5.9, right). With more testing, the motors were able to move properly on the new 

circuit. 

5.3 | Software 

5.3.1 | Inter-device Communication 

Serial Peripheral Interface (SPI) communication is a synchronous serial 

communication interface used in embedding communication. SPI communication 

works by using at least four pins which are wired from the master device to each 

slave device. The synchronous clock pin (SCLK) syncs the clocks of both devices so 

that each only samples the buffers at the correct time. The master out slave in 

(MOSI) and the master in slave out (MISO) pins are used to transfer information 

between the devices. As per their names, the master uses the MOSI pin to send 

information to the slaves and receives information from the slaves through the 

MISO pin. Finally, the slave select (SS) pins are used by the master to determine 

which slave is actively exchanging information with the master. Given that the 

Raspberry Pi would be communicating with multiple ESP32s, the Raspberry Pi was 

chosen to be the master and the ESP32s the slaves. 

SPI communication sends sequences of bits from one device to another－ 

in practical terms, these sequences can be interpreted as hexadecimal or 

character arrays. Therefore, a predefined communication protocol must be 

determined beforehand so that both devices can correctly interpret the 

commands. To ensure that each device is only reading in the buffers that contain 

commands, the buffer needs to contain a pattern before and after each 

command. This pattern indicates the presence of a command to the receiver and 

ensures that the buffer was correctly transmitted. Given that it is extremely 

unlikely for this pattern to appear randomly, a sequence of 10 bytes of all 1s was 

chosen. 
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Table 5.1 Control Byte Definition 

Control Byte Instruct Byte Data Bytes 

 

0 1 2 3 4 5 6 7 

Dummy 
bit 

Request 
Resp   

Mirror  
Enc 

     

 

See Table 5.2 Binary Data 

Table 5.2 Communication Command Definitions 

Command Description Data Data Explanation Communication 
Direction 

ESTOP  Boolean Whether to Estop BOTH 

TOUCHINFO Touch Sensor 
Information 

Boolean 
Array 

Whether each touch 
sensor is being 
touched 

ESP32 -> RasPi 

AUDIOINFO Audio Levels for 
Microphones 

Float 
Array 

The noise level for 
each audio sensor 

ESP32 -> RasPi 

MOTORPOSITIO
N 

Polar 
Coordinates for 
the Robot to go to 

Int8_t, 
Int_32t, 
Int8_t 

Motor Index, Motor 
Step Position, Desired 
Delay 

RasPi -> ESP 

HANDSHAKE Initial Protocol 
that Setup is 
complete on both 
ends 

CHAR Indication of Ready BOTH 

REQUESTCMD Robot requests 
another 
command 

None None ESP32 -> RasPi 

 

Between the two patterns, an actual command would be contained. The first 

byte of the command is reserved for a control byte which contains certain flags for 

desired response, or whether additional mirror data is attached. Additional flags can 

be added as necessary to avoid corruption or desire that a command be resent. The 

second byte of the command contains a certain command index which determines 

what the command is and what data is contained in the rest of the command. For 

instance, if the second byte indicates that this command is a MOTORPOSITION 
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command, the next two bytes would be interpreted as an 8-bit integer, the next four 

as a 32-bit integer, and the last two as an 8-bit integer. This information would be 

then used for the correct execution of the command. The details of the control byte 

as well as the various command bytes is detailed in the following tables 

After testing and integration a Communication Specifications Document was 

created which held all the details needed to set up our communication protocol and 

change it to future team’s needs, this document contained the common bugs we 

encountered during testing, how to resolve them, links to all the relevant datasheets, 

links to other documentation like the ESP32 SPI protocol documentation and data 

like the required baud rate of the boards. Explanations of common problems our 

team encountered were also provided to help streamline the process for future 

teams allowing for a quicker and easier setup. 

5.3.2 | Motor Control 

For this version of the robot, we decided to use stepper motors for joint 

actuation in favor of more expensive closed-loop servomotors. Stepper motors 

function by receiving an electrical pulse that indicates a step should be taken in a 

certain direction. Other pins control whether the stepper motor is currently 

enabled, which direction the motor should turn, and whether the motor has 

encountered a problem. By controlling how often these pulses are sent as well as 

direction pin, an embedded system can control the speed and direction that the 

stepper motor will turn. 

Given that an ESP32 is being used for motor control, it needs to be able to 

generate those pulses. Although it is relatively simple to create a sequence of pulses 

of the same period between peaks, this results in a very jarring movement. So, the 

pulses need to be able to accelerate and then decelerate the motor; which will result 

in a much smoother movement. Although it is possible to generate the acceleration 

and deceleration pulses whenever the ESP32 receives a MOTORPOSITION command 

based on the desired speed, this is computationally expensive and results in a 

noticeable delay before each movement is executed. To mitigate this issue, a static 
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set of acceleration and deceleration pulses are generated on the startup of the 

ESP32. Then, based on the desired delay between pulses, a certain segment of those 

sets is added into another sequence which is then used. This results in a process that 

is computationally inexpensive while keeping in the smooth movement of the robot. 

These pulses are sent using one of the ESP32’s built-in libraries: The Remote-

Control Module Driver (RMT). This specialized library can take a sequence of pulses 

and is able to very quickly execute them; this operation takes a matter of 

microseconds and the robot is able to achieve appropriate speeds with this library. 

Originally, the ESP32 used a system of timers to execute a function every number of 

microseconds. However, this function very quickly became bloated with logic and 

the function was unable to execute in the required number of microseconds. In 

addition to allowing asynchronous execution, the RMT library allows for very 

precisely defined pulses periods and contains functionality for a callback function 

when pulse execution is done so that a REQUESTCMD command can be set back. 

5.3.3 | Sensor Data Processing 

˧ Audio Processing 

 The AUM-5041 also was easy to set up with our ESP, by simply wiring it to 

ground and 3.3v which is then connected to ESP ADC port allowed a solid reading 

for multiple mics at the same time. Resistors and a capacitor could be used to filter 

and stabilize the signal, furthermore to enhance the signal and move it to the band 

of sounds we needed an op amp could be used to first amplify the signal, and second 

cut off the signal to our needed range. More testing will be needed before this is 

implemented. Current design simply uses a resistor and capacitor to get the signal.  

˧ Visual Processing 

 Unlike the touch and noise information, which is being processed on the 

ESP32, the visual data from the camera is being processed on the Raspberry Pi. In 

order to simplify object detection and avoid training a neural network, OpenCV－ a 

library that comes with pre-trained image recognition functionality－ was chosen. 
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OpenCV allows for very simple object detection by only requiring an image and a 

cascade, which defines the objects to detect. However, OpenCV does have its faults: 

firstly, it is computationally expensive－ most of the Raspberry Pi's memory is 

devoted to object detection. To help reduce that cost, the images are scaled down by 

a factor of 2.5 so that the required processing time is reduced from 0.5 seconds to 

under 0.1 seconds. Another issue is that the pre-trained cascades provide 

inconsistent object detection. During testing, it was noticed that faces and bodies 

tended to pop in and out of detection despite minimal movement. To account for 

this, a system of visual trackers was set up. These visual trackers keep track of an 

object's position from frame to frame and as long as the object is seen for a 

proportion of the frames, then that object will be used for movement generation. 

This system helps filter the raw data from OpenCV and mitigates the impact of both 

false positives and false negatives. 
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5.3.4 | High Level AI 

˧ Modules and Layers 

 

Figure 5.10 Software UML Module Diagram 

The software can be divided into several layers, each with a separate and 

distinct task (Figure 5.10). On the Raspberry Pi side, there are currently five layers: 

serial processing, Behavior Tree Management, the behavior tree objects, movement 

calculation and generation, and sensor processing. Behavior Tree objects and 

Behavior Tree Management are separate from everything else because their task is 

to only calculate the correct behavior at a point in time and then generate a 

movement for it. Sensor Processing is also a distinct layer because it takes in sensor 

data and turns that raw data into usable information. That information is then used 

by the Behavior tree objects to Figure out the correct behavior as well as the 

Movement Calculation layer to calculate the movement. Serial Processing is 

responsible for encoding and decoding commands from and to the ESP32s. This is 
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kept separate as it only takes in generated movements and sends them to the ESP32 

or puts raw data into the sensor processors.  

(See Appendix L to see the Full-Size Layer Diagram) 

˧ Sequence Diagram 

 

Figure 5.11 Sequence Diagram 

A UML Sequence Diagram shows the progression of events and passage of 

data across time for a certain expected use case (Figure 5.11). In this case, the 

Raspberry PI Receiving a REQUESTCMD Command and generating a movement for 

the ESP32. The SerialProcessor reads the Command in the given buffer, moves the 

behaviors from the last cycle to the list to execute, and calls the MasterControlLoop 

to execute those behaviors. The MasterControlLoop then calls the controller to 

generate new Movements; the controller in turn calls behaviors in the structure of 

the behavior tree and the individual behavior then uses the Calculator to create a 

new Movement. The Calculator gets the data from the SensorData, MotorProcessor, 

and MotorTracker. This new Movement is then added to the Controller which then 

moves those Movements to the SerialProcessor which encodes the Movement and 

sends it to the ESP32. As stated before, this process was heavily abstracted to allow 

for additional functionality in the future. 

(See Appendix M for the Full-Size Sequence Diagram) 
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This prototype version of the software architecture works mainly by creating 

several different threads that each handle separate tasks. Currently, there are three 

threads: the MasterControlLoop thread, which handles calling the behavior tree to 

generate movements, the SerialProcessor thread which encodes those movements 

to send to the ESP32s as well as read buffers back from the ESP32s, and the 

VisualProcessor thread which handles processing the visual images using OpenCV. 

Sensor and Motor data is constantly being sent from the ESP32 which is recorded 

and processed as necessary. This data is then used whenever a new command is 

requested from the ESP32 to calculate a new movement which is then sent back. 

The ESP32 code works in a similar way; the ESP32 will constantly send over 

the current motor positions so that the latest motor position is correct. Whenever it 

receives a new position to go to, the ESP32 will build a list of pulse commands to be 

sent to the stepper motor and then send that list over. At the same time, it will 

calculate the expected time for the pulses to take and send a command to request a 

new movement when the motor has moved to the appropriate position. 

This general functionality can be further expanded into expected execution of 

the AI Architecture as it constantly processes sensor information and creates 

appropriate Movements when it is needed. For the sake of explanation, assume that 

events happen linearly. First, the SerialProcessor reads the SPI buffer from the 

ESP32; it then attempts to find and decode a command. If it finds a command that is 

the REQUESTCMD command, it will first move the behaviors that created 

movements in the previous cycle to the list of behaviors to execute. Then the 

SerialProcessor Thread will unlock a mutex in the MasterControlLoop which will 

then call those behaviors in the structure of the behavior tree. This will result in 

other behaviors being executed; these behaviors create new Movements based on 

sensor data from the VisualProcessor and the MotorProcessor. These new 

Movements are moved to the list of Movements to send in the SerialProcessor. The 

SerialProcessor then sends the individual motor positions for those movements to 

the ESP32s over SPI. 
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For SensorProcessing, this sequence of events is slightly different. When the 

SerialProcessor Thread receives a command that contains sensor data, it decodes 

that data into the appropriate primitive values. In the case of the MotorData, the 

command is decoded into a motor index (motor identification number) and a step 

position for that motor. This information is then passed to the MotorProcessor 

which adds that information to the appropriate MotorTracker. This step position 

can then be accessed from the Behavior Tree and Calculator which use that data to 

calculate the next position to move to. 

When the ESP32 receives a buffer from the Raspberry Pi, it decodes the 

buffer to find the command. In the instance that this is a MOTORPOSITION 

command, a sequence of pulses that move the desired number of steps is created 

and that sequence of pulses is sent off to be executed. At the same time, a timer is 

sent for the end of the pulse execution which will send a REQUESTCMD command 

back to the Raspberry Pi. Otherwise, the ESP32 will send back MOTORPOSITION 

commands to Raspberry Pi to indicate the current step position of all the motors. 

Although these systems are not strictly necessary, additional support for 

writing debugging information to a log file and returning detailed status information 

around the behavior tree are both supported in the current codebase. There are 

global logger functions which allow any object to write formatted information to a 

time-stamped text file. Older log files are automatically deleted when there are too 

many old files. This allows for advanced debugging by reviewing the log file after 

execution, as a user can observe how the nodes of behavior tree call each other, the 

priority scores returned by the decorator nodes, and the raw and decoded buffers 

that are sent between the Raspberry Pi and the ESP32. Initially, the behavior tree 

would only pass an enum from node to node to indicate success or failure; following 

a suggestion from Professor Gennert, this was changed so status objects are passed

－ these are more verbose and can contain an error code, error message, and 

information on how to handle a failure. The combination of all these asynchronous 

operations and additional systems allow for a system which can continuously 
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request, calculate, generate, and execute movements for the robot based on sensory 

data that it collects. 
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6 | Discussion and Future Work 

6.1 | Mechanical 

The scope of this project is very large, and as such there is still much work to 

be done on the mechanical design, testing and analysis of the various subsystems. 

The mechanisms are currently set for testing, however work still needs to be done 

on a suitable neck frame. Additionally, focus was shifted away from working on the 

main chassis (body and torso) of the mascot, and as such will need to be completed 

in the future as well. Designs and a partial construction are present for the head of 

the robot; however, the build will need to be completed and mounted to the head 

joint. At that point, actuators can be mounted to drive the head in isolation, which 

will allow for the first performance testing of the full-scale prototype head joint. 

While the software is not quite ready for implementation (described below), this 

platform will allow for preliminary testing of the computer vision software working 

with real data input that reflects the coordinate transformations of the real system.  

At the start of the project, we had included the outer shell and sleeve among 

the deliverables. The work of designing, manufacturing, and testing the silicone or 

cloth sleeve would have to fall to another year. One of the other aspects that will 

need to be designed and tested in future years is the hardened shell for the bottom 

of the robot which was not designed because of the prototype nature of the robot. 

6.2 | Electrical 

 Not enough of the robot was finished in C-term to make a conclusion about 

the performance of the circuitry. However, there were several concerns with the 

design. The first major concern is the power requirements of the circuit. The circuit 

is designed with the intention of being run at 48V and 30A, which is equivalent to 

1536W of power. 1536W is a massive amount of power for a robot, and the prices of 

parts that are rated for that load can be expensive and would take up a large portion 

of our budget. Additionally, the amount of current being used can be incredibly 
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dangerous if not handled properly. A major contributing factor to this high-power 

requirement is due to the requirements of the motors. The motors are being run at a 

high voltage and require approximately 6A each for safety. However, if a future team 

can find a way to reduce the voltage and current draw of the motors, the power 

requirements can be reduced. If it is impossible to do so, they should design the 

circuit with as many safety precautions as possible.  

 Additionally, the physical circuit needs to be refined further. This iteration of 

the project was done almost exclusively on breadboards that allowed for rapid 

prototyping and testing. Components and connections could be swapped out as 

necessary to test the circuit. However, breadboards are a poor design choice as a 

long-term solution. The final product should operate on a custom PCB board that 

connects all the components. This would require designing a permanent physical 

circuit board which may require parts of the circuit to be redesigned to account for 

the difference in hardware. 

 Another concern is the sensors of the robot. A major deciding factor in which 

sensors to purchase came from their ease of use and price. Low cost sensors with 

specifications that roughly matched those of the robot are chosen over more 

expensive parts that would better suit the needs of the robot. Due to the robot being 

a prototype, many parts are expected to be replaced by future teams. Because of the 

nature of the robot, it would have been a waste to invest in temporary parts. 

However, these temporary parts were not a waste, as they proved or disproved the 

functionality of the designs. Future teams should look at our testing and evaluate the 

sensors that need to be replaced and find better suited sensors for the robot. 

6.3 | Software 

Due to time constraints, testing of the codebase on a physical system was 

limited. Despite this, many of the different subsystems were manually tested. All 

process ending errors like segmentation faults or stack smashing had been removed 

so no unexpected exiting of the program should occur. SPI communication was also 

vigorously tested with different baud rates, corrupted buffers, and lost buffers. In all 
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circumstances, no exceptions were thrown. Although the buffer would be decoded 

incorrectly, both master and slave were able to correct their position relatively 

quickly. The kinematic calculations on the high-level AI were also tested and 

debugged. Initially, the equations were being used incorrectly and were missing 

some important modifiers. However, through ruthless, line by line, rubber duck 

debugging, these issues were resolved, and the team confirmed that the Calculator 

was returning the correct step positions. As the embedding system and 

communication was prioritized, unit tests were only recently started for the high-

level AI. Although a testing architecture has been integrated with the code and 

makefile, unit tests have barely started, and more functions and objects need to be 

covered. 

Further testing of the sound and touch codebase is still needed. As this code 

was developed at the end of term, little to no testing was conducted. While the touch 

sensing code was tested rigorously in lab settings, no real-world integrated testing 

was able to happen. Similarly, the sound codebase needs precise testing to see the 

sound volumes needed before amplifier circuits can be further designed for it. 

The social implication of a mascot robot can be divided up into two different 

categories: the mascot’s character and how the mascot interacts with various 

people. A mascot is a character, and like any character in the media, they have an 

influence on how people view something. Words can have multiple meanings and 

some words can cause unintended offense to certain groups of people. Prescribing 

any human characteristics to the robot automatically makes the robot represent or 

misrepresent those people and needs to be considered. 

The actions that the mascot takes can also represent the social attitude of 

those people. Unintended or not, differing the behavior with different types of 

people can result in unintended behavior. Visual-processing software is not 

unbiased in that recognizing, miss-categorizing, and ignoring people of certain 

genders, races, or physical characteristics can happen and needs to be avoided. Any 

use of neural networks can be biased depending on the given training data and 

should be carefully considered before use. The robot must act the same to any and 
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all persons who interact with it and be able to accommodate individuals no matter 

what. 

On the software side, the latest source of possible misrepresentation is the 

use of OpenCV for face and body recognition. The pre-trained cascades, used to 

identify visual features, and the training data used may contain biases that this 

robot will not be able to control. Another point of biases is also the priority used for 

calculating movements. For instance, if the robot observes two faces, which one 

does it prioritize? Prioritizing those faces in the center its vision leaves out people 

whose faces might reside in the lower or upper sections. Those excluded people 

could contain children who are one of the personas that were identified during the 

system design phase. To help counter this situation, the biases of the robot is 

currently set to prioritize bodies and faces from the bottom of its vision upward. 

Given that most of the main robot's interactions involve children, it makes sense to 

prioritize them.  

Of course, there remains much work to be done on the software. Although 

most of the framework and foundation of the codebase has been written, some 

functionality is still missing.  One of the most outstanding issues is communication 

support for parallel behaviors. Despite the fact that the behavior tree can support 

multiple behaviors being executed, the communication protocol only accounts for a 

single request;  the ESP32 is unable to tell which command it has received or how to 

identify which command it has completed - it can only keep track of a single 

command. A system that uses a UUID for different behaviors would be able to fix 

that issue. Another change that would improve the codebase would be to move 

away from static global objects that are accessed by various objects－ this trait 

increases the coupling of the software but allows for easier creation and assignment 

of objects that will be used across all objects. Although this allowed for much faster 

prototyping, this should be changed so that object would only keep a reference to a 

static object. Doing do will allow more complete unit tests to be created and the 

code will have overall easier maintainability, Furthermore, while visual data is being 

correctly processed, there is currently only bare bones processing for audio and 
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touch data. Despite all this future work, this year was able to create a solid 

foundation as well as complete much of the implementation and integration of 

third-party libraries. 

(See Appendix N for a Full List of Future Software Work) 

6.4 | General 

Some aspects of the software and testing will also have to shift to future 

teams as a few subsystems still need to be integrated before user testing for the full 

robot can conclude. Additionally, future teams should look at the testing and 

analysis we did and decide which parts of the robot need to be replaced with more 

robust systems as they move out of the prototyping phase.  

 

  



114 
 

References 

[1] S. Mohanty, “Growing Importance of Mascot & their Impact on Brand  

A. Awareness – A Study of Young Adults in Bhubaneswar City” IJCEM 

International Journal of Computational Engineering & Management, Vol. 

17, Issue 6, Nov. 2014. [Online] Available: 

http://www.ijcem.org/papers112014/ijcem_112014_09.pdf [Accessed 

Oct 1, 2019]. 

[2] “Toyota Robots Help People Experience Their Dreams of Attending the Olympic  

A. and Paralympic Games Tokyo 2020,” Toyota USA Newsroom, 26-Aug-

2019. [Online]. Available: https://pressroom.toyota.com/toyota-robots-

help-people-experience-their-dreams-of-attending-the-olympic-and-

paralympic-games-tokyo-2020/. [Accessed: 01-Oct-2019]. 

[3] B. Derntl, C. Regenbogen, “Empathy,” in Social Cognition and Metacognition in  

A. Schizophrenia Academic Press. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/B97801240517200

00041 [Accessed: 01-Oct-2019] 

[4] S. Mohanty, “Growing Importance of Mascot & their Impact on Brand  

A. Awareness – A Study of Young Adults in Bhubaneswar City” IJCEM 

International Journal of Computational Engineering & Management, Vol. 

17, Issue 6, Nov. 2014. [Online] Available: 

http://www.ijcem.org/papers112014/ijcem_112014_09.pdf [Accessed 

Oct 1, 2019]. 

[5]  “Toyota Robots Help People Experience Their Dreams of Attending the  

A. Olympic and Paralympic Games Tokyo 2020,” Toyota USA Newsroom, 

26-Aug-2019. [Online]. Available: https://pressroom.toyota.com/toyota-

robots-help-people-experience-their-dreams-of-attending-the-olympic-

and-paralympic-games-tokyo-2020/. [Accessed: 01-Oct-2019]. 

[6] T. Hamm, et. al, “ATLAS OF GOAT ANATOMY. PART 1: OSTEOLOGY” (1970)  

A. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/712988.pdf 

[7]  “Anatomy and physiology of the goat” (2017) Available:  



115 
 

A. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/178336/Ana

tomy-and-physiology-of-the-goat.pdf 

[8] Page et. al. “P011 Functional degrees of freedom of neck movements: linear  

A. models may overestimate variability” (2008) Available: 

https://www.sciencedirect.com/science/article/pii/S09666362087008

08  

[9] G. Bekey, P. Koenig “AI and locomotion: horse kinematics” (1994). Available:  

A. https://go.gale.com/ps/i.do?id=GALE%7CA14822145&v=2.1&u=mlin_c

_worpoly&it=r&p=PPIS&sw=w  

[10] F. Zhang, et. al, “Biomimetic walking mechanisms: Kinematic parameters of  

A. goats walking on different slopes” (2018) Available: 

https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4913   

[11] N. Rombach, “The Structural Basis of Equine Neck Pain” (2013) Available:  

A. https://d.lib.msu.edu/etd/2978/datastream/OBJ/download/The_struct

ural_basis_of_equine_neck_pain.pdf  

[12] “Animatronics Introduction,”. Available:  

A. https://ospace.otis.edu/ganimatronics/Welcome  

[13] S. Vijayagopalan, Animatronics. 2019. 

[14] J. Kundig, "3-Axis Robotic Mechanisms: Animatronic Necks & Torsos",  

A. Stanwinstonschool.com, 2019. [Online]. Available: 

https://www.stanwinstonschool.com/tutorials/3-axis-robotic-

mechanisms-animatronic-necks-torsos-part-

1?utm_source=YouTube&utm_medium=JKUN%20-%203-

Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%2

0Part%201&utm_campaign=On-Demand%20Course. [Accessed: 14- Oct- 

2019]. 

[15] B. Poor, "Squash Plate Cable Controller", Poorman's Guide to Animatronics,  

A. 2019. 

[16] F.J. Looft, Systems Engineering for Capstone Projects. Worcester: WPI, 2018. 

[17] D. Gealy et al., "Quasi-Direct Drive for Low-Cost Compliant Robotic  

A. Manipulation", arXiv preprint, 2019. 

https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/178336/Anatomy-and-physiology-of-the-goat.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/178336/Anatomy-and-physiology-of-the-goat.pdf
https://www.sciencedirect.com/science/article/pii/S0966636208700808
https://www.sciencedirect.com/science/article/pii/S0966636208700808
https://go.gale.com/ps/i.do?id=GALE%7CA14822145&v=2.1&u=mlin_c_worpoly&it=r&p=PPIS&sw=w
https://go.gale.com/ps/i.do?id=GALE%7CA14822145&v=2.1&u=mlin_c_worpoly&it=r&p=PPIS&sw=w
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4913
https://d.lib.msu.edu/etd/2978/datastream/OBJ/download/The_structural_basis_of_equine_neck_pain.pdf
https://d.lib.msu.edu/etd/2978/datastream/OBJ/download/The_structural_basis_of_equine_neck_pain.pdf
https://ospace.otis.edu/ganimatronics/Welcome
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course


116 
 

[18] "ESP32 Overview | Espressif Systems", Espressif.com. [Online]. Available:  

A. https://www.espressif.com/en/products/hardware/esp32/overview.  

(Accessed: 06- Apr- 2020). 

[19] "FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded  

A. systems with Internet of Things extensions", FreeRTOS, 2020. [Online]. 

Available: https://www.freertos.org/. [Accessed: 06- Apr- 2020]. 

[20] Raspberry Pi 4 Model B Datasheet, 1st ed. Raspberry Pi (Trading) Ltd., 2019. 

[21] Raspberry Pi Compute Module 3+ Datasheet, 1st ed. Raspberry Pi (Trading)  

A. Ltd., 2019. 

[22] M. Rowan, "Raspberry Pi 4 Hot new release – Too hot to use enclosed",  

A. Martinrowan.co.uk, 2020. [Online]. Available: 

https://www.martinrowan.co.uk/2019/06/raspberry-pi-4-hot-new-

release-too-hot-to-use-enclosed/.  [Accessed: 11- Mar- 2020]. 

[23] "ESP-EYE Espressif Systems | Mouser", Mouser Electronics, 2019. [Online].  

A. Available: https://www.mouser.com/ProductDetail/Espressif-

Systems/ESP-

EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D.  

[Accessed: 14- Dec- 2019]. 

[24] "ESP-EYE", Espressif.com, 2019. [Online]. Available:  

A. https://www.espressif.com/en/products/hardware/esp-eye/overview.  

[Accessed: 11- Nov- 2019]. 

[25] OV2640 Color CMOS UXGA (2.0 MegaPixel) CameraChip with OmniPixel2  

A. Technology Advanced Information Preliminary Datasheet. OmniVision 

Technologies, 2006. 

[26] ”Charmed Labs Pixy 2 CMUcam5 Image Sensor”2019. [Online]. Available:  

A. https://www.robotshop.com/en/charmed-labs-pixy-2-cmucam5-image-

sensor.html.  [Accessed: 14- Dec- 2019]. 

[27] Amazon.com, 2019. [Online]. Available:  

A. https://www.amazon.com/Arducam-   Camera-Raspberry-

Interchangeable-M12x0-

5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510

https://www.espressif.com/en/products/hardware/esp32/overview
https://www.freertos.org/
https://www.martinrowan.co.uk/2019/06/raspberry-pi-4-hot-new-release-too-hot-to-use-enclosed/
https://www.martinrowan.co.uk/2019/06/raspberry-pi-4-hot-new-release-too-hot-to-use-enclosed/
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP-EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP-EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP-EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D
https://www.espressif.com/en/products/hardware/esp-eye/overview
https://www.robotshop.com/en/charmed-labs-pixy-2-cmucam5-image-sensor.html
https://www.robotshop.com/en/charmed-labs-pixy-2-cmucam5-image-sensor.html
https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4
https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4
https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4


117 
 

464&sr=8-4. [Accessed: 14- Dec- 2019]. 

[28] POM-2246L-C33-LW100-R Datasheet, 1st ed. PUI Audio, 2019. 

[29] "AUM-5047L-3-LW100-R PUI Audio, Inc. | Audio Products | DigiKey",  

A. Digikey.com, 2019. [Online]. Available: 

https://www.digikey.com/product-detail/en/pui-audio-inc/AUM-

5047L-3-LW100-R/668-1492-ND/5414022. [Accessed: 14- Dec- 2019]. 

[30] AUM-5047L-3-LW100-R Datasheet, 1st ed. PUI Audio, 2019. 

[31] "POM-2246L-C33-LW100-R PUI Audio, Inc. | Audio Products | DigiKey",  

A. Digikey.com, 2019. [Online]. Available: 

https://www.digikey.com/product-detail/en/pui-audio-inc/POM-

2246L-C33-LW100-R/668-1494-ND/5414024.  [Accessed: 14- Dec- 

2019]. 

[32] CMC-3015-44L100 Datasheet, 1st ed. CUI Devices, 2019. 

[33] P. Sensor, "Phidgets Touch Sensor", Trossenrobotics.com, 2019. [Online].  

a. Available: https://www.trossenrobotics.com/p/phidgets-touch-

sensor.aspx. [Accessed: 14- Dec- 2019]. 

[34]  “1129 User Guide - Phidgets Support", Phidgets.com, 2019. [Online]. Available:  

a. https://www.phidgets.com/docs/1129_User_Guide. [Accessed: 12- 

Nov- 2019]. 

[35]  “Adafruit MPR121 12-Key Capacitive Touch Sensor Breakout Tutorial",  

a. Adafruit Learning System, 2019. [Online]. Available: 

https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-

touch-sensor-breakout-tutorial. [Accessed: 12- Nov- 2019]. 

[36] "UCONTRO iHSS57-36-20 CNC Closed-Loop NEMA 23 Integrated Stepper  

a. Motor", Amazon.com, 2020. [Online]. [Accessed: 07- Apr- 2020]. 

[37] P. Khatri, "Overvoltage Protection Circuit", Circuitdigest.com, 2020. [Online].  

a. Available: https://circuitdigest.com/electronic-circuits/overvoltage-

protection-circuit. [Accessed: 09- Mar- 2020]. 

[38] Dill, K. (2012). Introducing GAIA: A Reusable, Extensible Architecture for AI  

a. Behavior. 

[39] Guarnizo Marin, J., & Mellado Arteche, M. (2016). Robot Soccer Strategy Based  

https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4
https://www.digikey.com/product-detail/en/pui-audio-inc/AUM-5047L-3-LW100-R/668-1492-ND/5414022
https://www.digikey.com/product-detail/en/pui-audio-inc/AUM-5047L-3-LW100-R/668-1492-ND/5414022
https://www.digikey.com/product-detail/en/pui-audio-inc/POM-2246L-C33-LW100-R/668-1494-ND/5414024
https://www.digikey.com/product-detail/en/pui-audio-inc/POM-2246L-C33-LW100-R/668-1494-ND/5414024
https://www.trossenrobotics.com/p/phidgets-touch-sensor.aspx
https://www.trossenrobotics.com/p/phidgets-touch-sensor.aspx
https://www.phidgets.com/docs/1129_User_Guide
https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial
https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial
https://circuitdigest.com/electronic-circuits/overvoltage-protection-circuit
https://circuitdigest.com/electronic-circuits/overvoltage-protection-circuit


118 
 

a. on Hierarchical Finite State Machine to Centralized Architectures. 

IEEE Latin America Transactions, 14(8), 3586–3596. 

https://doi.org/10.1109/TLA.2016.7786338  

[40] An Introduction to Robot Operating System (ROS). (2017, June 26). Available:  

a. https://www.allaboutcircuits.com/technical-articles/an-

introduction-to-robot-operating-system-ros/  

[41] Mark, D. (n.d.). AI Architectures: A Culinary Guide (GDMag Article) « IA on AI.  

a. Available: http://intrinsicalgorithm.com/IAonAI/2012/11/ai-

architectures-a-culinary-guide-gdmag-article/  

[42] Rajesh S. Brid. (2018, October 26). Decision Trees??'A simple way to visualize a  

a. decision. Retrieved from https://medium.com/greyatom/decision-

trees-a-simple-way-to-visualize-a-decision-dc506a403aeb  

[43] Graham, D. R. (n.d.). An Introduction to Utility Theory. Retrieved from  

a. http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_I

ntroduction_to_Utility_Theory.pdf  

[44] Birrell, S. (2016, June 7). Robot Mind or Robot Body: Whatever happened to the  

a. Subsumption Architecture? – Artificial Human Companions. Retrieved 

from http://www.artificialhumancompanions.com/robot-mind-

robot-body-whatever-happened-subsumption-architecture/  

[45] A Quick Introduction to Neural Networks. (2016, August 10). Retrieved from  

a. https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/  

[46] Simpson, C. (2014, June 17). Behavior trees for AI: How they work. Retrieved  

a. from 

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/22133

9/  

[47] Jirak, D., & Wermter, S. (2018). Potentials and Limitations of Deep Neural  

a. Networks for Cognitive Robots. arXiv.org. Retrieved from 

http://search.proquest.com/docview/2072257764/  

[48] Beltran, J., & Gomez, J. (2012). Subsumption architecture for motion learning in  

a. robots. 2012 7th Colombian Computing Congress (CCC), 1–6. 

https://doi.org/10.1109/ColombianCC.2012.6398038 

https://doi.org/10.1109/TLA.2016.7786338
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-robot-operating-system-ros/
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-robot-operating-system-ros/
http://intrinsicalgorithm.com/IAonAI/2012/11/ai-architectures-a-culinary-guide-gdmag-article/
http://intrinsicalgorithm.com/IAonAI/2012/11/ai-architectures-a-culinary-guide-gdmag-article/
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf
http://www.artificialhumancompanions.com/robot-mind-robot-body-whatever-happened-subsumption-architecture/
http://www.artificialhumancompanions.com/robot-mind-robot-body-whatever-happened-subsumption-architecture/
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/
http://search.proquest.com/docview/2072257764/
https://doi.org/10.1109/ColombianCC.2012.6398038


119 
 

[49] R. Brewer et al., “A Friction Differential and Cable Transmission Design for a 3- 

a. DOF Haptic Device with Spherical Kinematics”, IEEE/RSJ International 

Conference on Intelligent Robots and Systems, 2011.  

[50]  “Ultra High Molecular Weight Polyethylene Ropes (UHMWPE)”, Katradis, 2019.  

a. Available: https://www.katradis.com/high-performance-

ropes/uhmwpe-ropes/uhmwpe-rope-info  

[51]  “Materials used for Ropes”, christiandmerchant.com, n.d., Available:  

a. https://www.christinedemerchant.com/rope_material_hmpe.html  

[52]  “Dyneema® in marine and industrial applications.” Pelican Rope, n.d.  

a. Available: 

http://www.pelicanrope.com/pdfs/DyneemaSK75_Tech_Sheet.pdf  

[53]  “UHMW Plastic Data Sheet,” Curbell Plastics, 2016. Available:  

a. https://www.curbellplastics.com/Research-Solutions/Technical-

Resources/Technical-Resource/UHMW-Data-Sheet  

[54] Muzumdar et. al., “Synthetic Fiber Capstan Drives for Highly Efficient, Torque  

a. Controlled, Robotic Applications ”, IEEE Robotics and Automation 

Letters, 2017. Available: 

https://www.osti.gov/servlets/purl/1340266 

[55]  “Anthrobot.com : Ross-Hime Designs, Inc : Omni-Wrist III", Anthrobot.com,  

a. 2019.  

[56] Letier, Pierre & Schiele, André & Avraam, More & Horodinca, Mihaita &  

a. Preumont, A. (2019). Bowden cable actuator for torque feedback in 

haptic applications. Available: 

https://www.researchgate.net/publication/229011036_Bowden_cabl

e_actuator_for_torque_feedback_in_haptic_applications     

[57] Bajaj, Neil & Spiers, Adam & Dollar, Aaron. (2015). State of the Art in Prosthetic  

a. Wrists: Commercial and Research Devices. 2015. 

10.1109/ICORR.2015.7281221. Available: 

https://www.researchgate.net/publication/277332478_State_of_the_

Art_in_Prosthetic_Wrists_Commercial_and_Research_Devices  

[58] https://ieeexplore.ieee.org/document/1642584   

https://www.katradis.com/high-performance-ropes/uhmwpe-ropes/uhmwpe-rope-info
https://www.katradis.com/high-performance-ropes/uhmwpe-ropes/uhmwpe-rope-info
https://www.christinedemerchant.com/rope_material_hmpe.html
http://www.pelicanrope.com/pdfs/DyneemaSK75_Tech_Sheet.pdf
https://www.curbellplastics.com/Research-Solutions/Technical-Resources/Technical-Resource/UHMW-Data-Sheet
https://www.curbellplastics.com/Research-Solutions/Technical-Resources/Technical-Resource/UHMW-Data-Sheet
https://www.osti.gov/servlets/purl/1340266
https://www.researchgate.net/publication/229011036_Bowden_cable_actuator_for_torque_feedback_in_haptic_applications
https://www.researchgate.net/publication/229011036_Bowden_cable_actuator_for_torque_feedback_in_haptic_applications
https://www.researchgate.net/publication/277332478_State_of_the_Art_in_Prosthetic_Wrists_Commercial_and_Research_Devices
https://www.researchgate.net/publication/277332478_State_of_the_Art_in_Prosthetic_Wrists_Commercial_and_Research_Devices
https://ieeexplore.ieee.org/document/1642584


120 
 

Appendix A: Key Stakeholder Needs 

 

Stakeholder Needs SH Considerations 

Athletics The system should emote or react 
during sports game 
People can take photos of it (put their 
arms around it) 
Celebratory pose/action on goals, 
touchdowns, runs, etc. 
The system should be relatively easy 
to transport 

The system will be a sporting events, so 
it should be able to interact with and 
hype up the crowd. The system will also 
have to not track debris onto the 
basketball courts. 

Admissions The system should interact with 
visitors and inform them about WPI 
The robot could be placed in the 
upcoming Bartlet Center lobby 
museum 
Visitors can take selfies with it 
Robot could have a fake smartphone 
in one of its hooves that takes selfies 

The system will be on display for 
visitors, so it should be visually 
appealing and safe for visitors to 
approach. The system may also be used 
to inform visitors about WPI. 

Marketing The design of the robot should not 
look like any of the existing licensed 
Gompei designs 

The robot’s character should not look 
like the existing brand images 

SAS The system should be able to create 
screaming goat sounds 
The system should be able to act as a 
sound system 
The system should be able to launch 
merchandise 
The system should be able emote 
The system should have a soft 
exterior 
The system should not speak 

SAS will handle the arrangements for 
the system. They will also have some 
approval over the appearance and 
manner of the system. 
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Appendix B: List of Needs and Priorities 

Need Statement Validation Priority 

Safety The robot should be safe to 

approach and operate 

Robotics 

Department, SAS, 

Admissions 

1 

Interaction The robot should be able to react 

to audio, physical, and visual 

stimuli 

SAS, Admissions, 

Marketing 

1 

Remote Control The robot should be able to be 

controlled by external controls 

Athletics, SAS 1 

Overheating The robot should not overheat due 

to internal heating issues 

All 1 

Replaceable 

feet 

The robot should have replaceable 

feet to avoid tracking dirt inside 

buildings 

Athletics 2 

Photo taking The robot should be able to take 

photos of itself with another 

person. 

Admissions, 

Marketing 

2 

Movement The robot should be able to move 

to another location without 

external forces 

Athletics, SAS 2 

Head 

Movement 

The robot should move its head in 

multiple directions 

Admissions, SAS, 

Athletics,  

2 

Autonomy The robot should have an Admissions, SAS 2 
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autonomous mode that reacts to 

external stimuli 

Visually 

Appealing 

The robot should appear as a 

cartoonish goat not a robot. 

SAS, Admissions, 

Athletics 

2 

Waterproofing The robot should be able to handle 

some rain exposure 

Athletics, SAS 2 
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Appendix C: Robot Requirements 

● Functional Requirements 

○ The robot mascot shall be able to respond to acoustic stimuli by 

turning its head in the direction of the sound to an accuracy of +-10 

degrees. 

○ The robot mascot shall be able to respond to acoustic stimuli by 

producing its own sounds after acoustic stimuli made in 

conversational tone within 2m. 

○ The robot mascot shall be able to respond to visual stimuli by turning 

its head in the direction of the visual movement to an accuracy of +-10 

degrees. 

○ The robot mascot shall be able to account for physical stimuli by being 

able to accommodate unpowered movement of the head to 10cm in 

any direction. 

○ The robot mascot shall be able to pose itself into at least two different 

positions: Proud Goat and Charging Goat. 

○ The robot mascot shall be capable of identifying people within 1 

meter of its range of vision. 

○ The robot mascot shall be capable of following a handheld out within 

1 meter of its range of vision. 

○ The robot mascot shall be capable of responding to being touched on 

its head with 9N of force. 

○ The robot mascot shall be able to recognize when a movement is 

being resisted and stop movement accordingly. 

○ The robot mascot shall be able to move its head and neck with a 

combined 5 degrees of freedom. 

○ The robot mascot shall have a neck pitch range of ±30 degrees. 

○ The robot mascot shall have a neck yaw range of ±50 degrees. 

○ The robot mascot shall have a head roll range of ±30 degrees. 

○ The robot mascot shall have a head pitch range of ±10 degrees. 
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○ The robot mascot shall have a head yaw range of ±40 degrees. 

○ The robot mascot shall move using a quadrupedal leg system. 

○ The robot mascot shall be able to produce its own sounds after 

acoustic stimuli made in conversational tone within 2m. 

● Non-Functional Requirements 

○ The robot mascot shall be able to operate for no less than 2 hours 

before charging or battery replacement. 

○ The robot mascot shall be capable of manual control via a remote 

control, as well as autonomous interactions with people. 

○ The robot mascot shall be water resistant to handle light exposure to 

rain without sustaining internal damage, long enough to be moved 

from the far end of the WPI athletics field to the athletic center. 

○ The robot mascot shall have adequate thermal regulation to prevent 

overheating. 

○ The robot shall be safe to approach and operate. 

○ The robot shall have replaceable feet for indoor and outdoor 

activities. 

○ The robot mascot shall use a combination of a camera, microphones, 

and capacitive touch sensors to sense and interact with the world 

around it. 

○ The robot mascot shall have enough power to operate all motors and 

sensors at full power. 

○ The robot mascot shall utilize a rechargeable battery for non-tethered 

operation. 

○ The robot mascot shall have a port to plug in a cable to charge its 

battery. 

○ The robot mascot shall be capable of operating while tethered and not 

tethered. 

○ The robot mascot shall be able to operate for no less than 2 hours 

before charging or battery replacement. * 

○  
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● Derived Requirements 

○ The robot mascot shall be able to fit into a standard freight or medical 

elevator (2300cm x 1100cm source: 

http://www.mitsubishielectric.com/elevator/products/basic/elevato

rs/nexiez_mr/pdf/hospital.pdf). 

● Standards Requirement 

○ The robot mascot shall not be able to pinch anyone who is touching 

the neck or head areas during movement. 

○ The robot mascot shall be able to recognize when a movement is 

being resisted and stop movement accordingly. 

○ The robot mascot shall have an easily reachable and easily pushable 

button that immediately cuts power to the robot mascot. 

● Software Requirements 

○ The robot mascot shall be able to be controlled remotely through a 

web server or through a Bluetooth controller. 

○ The robot mascot shall be programming in an easily readable 

standard with at least one comment in Doxygen standard for every 

file, method, and function. 

○ The robot mascot shall have an interface such that it is relatively 

simple to add support for a new payload. 

○ The robot mascot shall be able to respond within 1 sec of any given 

input. (Should be far less). 

○ The robot mascot shall be able to be controlled through a wireless 

controller. 

○ The robot mascot shall be able to interrupt precious commands given 

certain sensor input. 

○ The robot mascot shall be able to have a mode that allows it to 

automatically interact to stimuli from external sensors. 

○ The robot mascot shall have a kill switch on the wireless controller or 

any interface where it can be controlled. 

http://www.mitsubishielectric.com/elevator/products/basic/elevators/nexiez_mr/pdf/hospital.pdf
http://www.mitsubishielectric.com/elevator/products/basic/elevators/nexiez_mr/pdf/hospital.pdf
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○ The robot mascot shall have programming with unit tests that cover 

the most functions and situations. 

● Discovered Requirements 

○ The robot shall interact and respond to acoustic, physical, and visual 

stimuli 
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Appendix D: Circuit Diagram 
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Appendix E: Personas 

1. Laura Wilson 

1.1. Age: 18 

1.2. Gender: Female 

1.3. Personality 

1.3.1. Laura Wilson is an outgoing young lady who has a close-knit 

group of friends. She is an extrovert who enjoys making new 

friends and social interactions. 

1.4. Background 

1.4.1. Laura Wilson grew up on the West Coast of the United States in 

San Francisco with her mother and father. She attended the 

local high school where she joined the robotics club and played 

soccer; she maintained high grades, graduating in the top 10% 

of the class. 

1.5. Job 

1.5.1. High School Student 

1.6. Technical Background 

1.6.1. FIRST Robotics / VEX Robotics 

1.6.2. Consumer Electronics 

1.7. Purpose 

1.7.1. Laura Wilson is here with her father, where they are touring 

colleges that Laura is considering applying to. She is at an 

admission tours where she is determining whether she wants 

to attend WPI as a technical college. 

1.8. Expectations 

1.8.1. When Laura Wilson is looking at the robot, she would be 

attentive to concepts and principles that she has yet to learn 

and wishes to.  

1.8.2. Laura Wilson is also interested in robot building process here 

at WPI and wants to know if it is fun. 
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1.9. Fulfillment 

1.9.1. A positive situation would end with Laura Wilson being 

suitably impressed with the robot and interested in learning 

how to build a similar robot herself. Eventually, she decides 

WPI is an impressive university in robotics and places it in the 

top tier universities that she is looking at. 

2. David Wilson 

2.1. Age: 48 

2.2. Gender: Male 

2.3. Personality 

2.3.1. David Wilson is more reserved and cautious than his daughter. 

He is also more of an analytical man who trusts statistics and 

math more than emotions. 

2.4. Background 

2.4.1. David Wilson grew up in the US Midwest in a rural location. He 

graduation a middle of the road university before moving to 

San Francisco and settling down to raise a family. 

2.5. Job 

2.5.1. Financial Analyst Contractor 

2.6. Technical Background 

2.6.1. Consumer Electronics (Smartphone, personal computer) 

2.6.2. Microsoft Office Use 

2.7. Purpose 

2.7.1. David Wilson is here with his daughter Laura to determine if 

WPI is able to give his daughter an education that will enable 

her to get a decent job upon graduation. 

2.8. Expectations 

2.8.1. While David Wilson is looking the robot, he would be looking 

for concepts that he had research prior to the trip. He is 

looking to make sure that the robot is in line with current 

industry trends and that by building a robot similar, his 
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daughter would learn what she needs to know. David would be 

also interesting the resources provide to his daughter and also 

compare that to other universities. 

2.9. Fulfillment 

2.9.1. A positive situation would end with David Wilson observing 

current robotic concepts in action. David would then decide 

that WPI is able to give his daughter an education that would 

teach his daughter the proper skillset to get a decent job. 

3. John Caben 

3.1. Age: 31 

3.2. Gender: Male 

3.3. Personality 

3.3.1. John is more of an introvert and spends most of his time 

gaming with a small group of online friends. He keeps casual 

work acquaintances but is mostly a solitary person. 

3.4. Background 

3.4.1. John grew up in the suburbans of Boston. He attended WPI, 

graduated, and moved to Seattle to work for Boeing. He does 

not have a significant other. 

3.5. Job 

3.5.1. Mechanical Engineer at Boeing 

3.6. Technical Background 

3.6.1. WPI Mechanical Engineer Degree. 

3.6.2. Power User of personal electronics 

3.7. Purpose 

3.7.1. John has returned to WPI area for his 10-year reunion and 

during the party sees the robot. 

3.8. Expectations 

3.8.1. While John Caben is looking at the robot, he is comparing the 

robot with what he did during his WPI years as well as his 

current industry experience. 
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3.9. Fulfillment 

3.9.1. A positive situation would end with John Caben being 

suitability impressed with the robot and that is demonstrates 

more knowledge than he learned during his WPI days and 

perhaps similar knowledge that he is currently applying. 

4. Hannah Williams 

4.1. Age: 35 

4.2. Gender: Female 

4.3. Personality 

4.3.1. Hannah Williams is more of an introvert but does maintain a 

close circle of friends among her colleagues.  

4.4. Background 

4.4.1. Hannah Williams is a first-generation immigrant who moves 

from Europe during her younger years. She attended 

university in the US and obtained her PHD at Georgia Tech in 

Robotics. 

4.5. Job 

4.5.1. Associate Professor 

4.6. Technical Background 

4.6.1. PHD in Robotics 

4.7. Purpose 

4.7.1. Hannah Williams was passing by a university event in the quad 

and noticed the robot. She then takes a look to examine and 

judge the robot  

4.8. Expectations 

4.8.1. While Hannah Williams is looking at the robot, she is taking a 

more critical view of it. She wants to see that concepts that she 

is teaching are being applied and likely to ask more complex 

questions about the decision making of the mechanics. 

4.9. Fulfillment 
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4.9.1.  A positive situation would end with Hannah Williams being 

suitability impressed with the robot, seeing that it does contain 

and was built with her lessons in mind. 

5. Betsy Ericson 

5.1. Age: 8 

5.2. Gender: F 

5.3. Personality 

5.3.1. Betsy Ericson is a rambunctious, energetic child who tends to 

touch whatever she wants. This has led to a tendency to 

accidentally break some of her more fragile toys. 

5.4. Background 

5.4.1. WEST PHILADELPHIA BORN AND RAISED. The Ericson family 

all live together in a single household with her grandparents; 

they are more economically disadvantaged. 

5.5. Job 

5.5.1. Elementary School 

5.6. Technical Background 

5.6.1. LEGO  

5.6.2. Consumer Electronics (iPad, Computers, Video games) 

5.7. Purpose 

5.7.1. Betsy is attending a summer camp near WPI and they visit WPI 

for a tour. At one station, she sees this cool robot. 

5.8. Expectations 

5.8.1. While Betsy Ericson is interacting with the robot, she expects it 

to interact with her and be cool. She is also likely to interact 

physically with it in unexpected ways, 

5.9. Fulfillment 

5.9.1. A positive situation would end with Betsy Ericson directly 

interacting with the robot in some way that she considers cool 

as well as not break under unexpected circumstances. 

6. Sam Ayam 
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6.1. Age: 17 

6.2. Gender: Nonbinary 

6.3. Personality 

6.3.1. Sam is introverted who doesn’t have a close circle of friends, 

instead they are more of a social loner. Although they were 

involved in their high school marching band, they only had a 

group of acquaintances. 

6.4. Background 

6.4.1. Sam grew in Seattle, among the northern suburbans. They 

started music early with the French horn, which they 

continued throughout high school. They were raised by a single 

working mother. 

6.5. Job 

6.5.1. High School Student 

6.6. Technical Background 

6.6.1. Intro Computer Science Course 

6.6.2. Computer Science Hobby Projects 

6.7. Purpose 

6.7.1. Sam is visiting WPI outside of an admissions tour, rather they 

are being shown around by their cousin who is attending. Sam 

is determining whether they want to attend WPI as a technical 

college. 

6.8. Expectations 

6.8.1. While Sam Ayam is interacting with the robot, they are more 

curious about the engineering process in which it is built. They 

would be interested in the various programming aspects as 

well as how students got involved in this project. 

6.9. Fulfillment 

6.9.1. A positive situation would end with Sam Ayam, deciding WPI is 

an impressive university in robotics and places it in the top tier 

universities that Sam is looking at. They would also respect 
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how the robot was built and enjoy that at WPI students are 

pushed to do MQPs. 

7. Axle Lough 

7.1. Age: 18 

7.2. Gender: M 

7.3. Personality 

7.3.1. Axle is a relatively extroverted student who played basketball 

through middle and high school. He has a close group of friends 

and they hand out often. 

7.4. Background 

7.4.1. Axle grew up in the center of Los Angeles; both of his parents 

work in non-technical fields, but Axle is now considering a 

STEM career. 

7.5. Job 

7.5.1. High School Student 

7.6. Technical Background 

7.6.1. High School Science Courses 

7.6.2. Consumer Electronics 

7.7. Purpose 

7.7.1. Axle is here on an admissions tour to determine two points:  if 

STEM fields are right for them and if WPI is the right school for 

STEM. 

7.8. Expectations 

7.8.1. While Axle Lough is interacting with the robot, he would like to 

see if WPI interests him at all and whether he might be able to 

do what he sees eventually. 

7.9. Fulfillment 

7.9.1. A positive situation would end with Axle Lough deciding that 

STEM is cool, want to go into a field and that WPI is the 

university to go to for that field.       
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Appendix F: User Stories 

1. Laura Wilson 

a. Laura Wilson has done her research beforehand and knows that a 

mascot robot exists but not its capabilities. She then seeks out the 

robot during an admissions tour. 

b. Robot notices Laura’s approach fixates at her and moves its head to 

get her attention. 

c. Laura moves around robot trying to get a closer look at the inner 

mechanics. 

d. Robot head and neck tracks Laura’s movements. 

e. Laura notices that the robot is tracking her and stops her movement. 

She then waves at the robot to see if it will respond. 

f. Robot head and neck follows hand and makes Goat Noise in greeting. 

g. Laura says hi back to the robot. 

h. Robot makes goat noise in response. 

i. Laura reaches out hand and touches the robot directly on the top of 

the head. 

j. Robot nuzzles upward into Laura’s hand. 

k. Laura moves her hand around the robot’s head still petting it. 

l. Robot nuzzles in general direction of Laura's petting. 

m. Laura decides that the robot is pretty interesting since it is able to 

respond well to her movements and that she would like to know how 

to build a similar robot. 

n. Laura asks operator to take a selfie with the robot. 

o. Operator poses the robot with Laura to take a photo. 

p. Other guests move forward to the robot. 

q. Laura then has a lot more questions about the robot building process 

to which she asks the admissions guide or the operator. 

2. David Wilson 
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a. David Wilson notices robot since his daughter mentioned it and 

comes to investigate. 

b. Robot notices David’s approach and makes head and neck movements 

and goat noise to try and get attention. 

c. David Wilson examines robot from a relatively stationary position 

with small head and neck movements. 

d. Robot follows small movement for 5 seconds before losing fixation 

and moves to another person. 

e. David Wilson observes interactions of the robot with a third person. 

f. David Wilson asks question to admissions guide about student 

resources that enable them to build a robot. David Wilson also 

comparing the robot silently to robot that he has seen in the news and 

media. 

3. John Caben 

a. John Caben notices robot at the reunion and decides he wants to take 

a look at what students are WPI have been doing. So, he approaches it. 

b. John Caben first examines robot from a stationary position with 

relatively small head movements 

c. Robot head and neck tracks small movements. 

d. John Caben notices these small movements and decides to test the 

limits of the head and neck angles of freedom. 

e. John Caben first tests the extreme left and right movements before 

testing up and down. 

f. Robot tracks John Caben’s head as much as it can but does not go past 

its limits. 

g. Operator notices John Caben’s attempts and activates demonstrate 

sequence to show off the entire ranges of motion and all actuated 

movement. 

h. John Caben asks to touch the robot. 

i. Operator confirms that the robot is made to be touched and suggests 

reaching out hand. 
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j. Robot head goes to hand and nuzzles it. 

k. John Caben then observes the robot and tries touching it in various 

spots on the head, neck, and flanks. 

l. Robot makes goat noise and move head and neck in response to begin 

touched. 

m. John Caben then steps back and questions the operator on the various 

systems or mechanisms that were used on the robot. 

n. Operator peeling back the outer latex skin to show the inner 

workings. 

o. Operator switches the robot to manual mode and demonstrates the 

physical interworking of the robot. 

p. John Caben thanks operator for the closer look and steps back to tell 

his friends to come look at this. 

4. Hannah Williams 

a. Hannah Williams has heard of the robot from her peers and seeks it 

out during a social event on the quad. 

b. Hannah Williams first examines robot from a stationary position with 

relatively small head movements 

c. Robot head and neck tracks small movements. 

d. Hannah Williams notices these small movements and decides to test 

the limits of the head and neck angles of freedom. 

e. Hannah Williams first tests the extreme left and right movements 

before testing up and down. 

f. Robot tracks Hannah Williams’s head as much as it can but does not 

go past its limits. 

g. Operator notices Hannah Williams’s attempts and activates 

demonstrate sequence to show off the entire ranges of motion and all 

actuated movement. 

h. Hannah Williams asks to touch the robot. 

i. Operator confirms that the robot is made to be touched and suggests 

reaching out hand. 
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j. Robot head goes to hand and nuzzles it. 

k. Hannah Williams then observes the robot and tries touching it in 

various spots on the head, neck, and flanks. 

l. Robot makes goat noise and move head and neck in response to begin 

touched. 

m. Hannah Williams then steps back and questions the operator on the 

various systems or mechanisms that were used on the robot. 

n. Operator peeling back the outer latex skin to show the inner 

workings. 

o. Operator switches the robot to manual mode and demonstrates the 

physical interworking of the robot. 

p. Hannah Williams also has questions about why certain design 

decisions were made but the operator is unable to answer them. 

q. Hannah Williams thanks operator for the closer look and steps back 

thinking about the mechanisms that she had observed. 

5. Betsy Ericson 

a. Betsy Ericson notices the robot is interacting with another group of 

children. 

b. Betsy runs over to them to get a closer look but accidentally stumbles 

into one of the legs. 

c. Robot remains balanced and interacts with another child that had its 

fixation. 

d. Impatient with the robot making goat noise with another child, Betsy 

grabs the head of the robot and brings it in front of her face. 

e. Robot compensations for unexpected movement and moves fixation 

to Betsy. 

f. Betsy then makes noises and strokes it for a period of time. 

g. Betsy then loses interest but still thinks that robot was cool and runs 

away, accidentally tugged sharply on the head. 

h. Robot remains balanced. 

6. Sam Ayam 



139 
 

a. Sam Ayam notices the robot at a social event on the quad and comes 

over to investigate. 

b. Sam Ayam remains apart from the WPI students but does observe 

their interactions with the robot. 

c. Sam Ayam attempts to discern how it was programming and looks for 

various flaws in its behavior. 

d. Being socially anxious, they do not approach the operator with their 

questions but ask their cousin, but he doesn’t know. Instead they 

resolve to do their research about the robot later online. 

7. Axle Lough 

a. Axle Lough meets the robot during an admissions tour. 

b. Robot notices Axle approach fixates at him and moves its head to get 

his attention. 

c. Axle moves around robot trying to get a closer look at the inner 

mechanics. 

d. Robot head and neck tracks Axle’s movements. 

e. Axle notices that the robot is tracking him and stops his movement. 

He then waves at the robot to see if it will respond. 

f. Robot head and neck follows hand and makes Goat Noise in greeting. 

g. Axle says hi back to the robot. 

h. Robot makes goat noise in response. 

i. Axle asks operator to take a selfie with the robot. 

j. Operator poses the robot with Axle to take a photo. 

k. Other guests move forward to the robot. 

l. Axle then has a lot more questions about the robot building process to 

which he asks the admissions guide or the operator. 
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Appendix G: Use Cases 

1. Toggle Manual Control 

1.1. User 

1.1.1. Operator 

1.2. Purpose 

1.2.1. Operator wants to toggle the robot to manual mode, in order to 

pose the robot for a photo. 

1.3. Preconditions 

1.3.1. Robot is in AI mode. 

1.4. Triggers 

1.4.1. Operator’s intent to manually move the robot. 

1.5. Flow of Events 

1.5.1. Operator hits a button on the controller. 

1.5.2. All AI operations cease. 

1.6. Post Conditions 

1.6.1. Robot is in Manual Mode. 

1.6.2. No automated movements - no AI control routines are run. 

2. Manual Control 

2.1. User 

2.1.1. Operator 

2.2. Purpose 

2.2.1. Operator is able to individually control all degrees of freedom 

using the controller, in order to pose the robot for a photo. 

2.3. Preconditions 

2.3.1. Robot is currently in manual mode. 

2.4. Triggers 

2.4.1. Operator’s intent to pose the robot. 

2.5. Flow of Events 

2.5.1. Operator manipulates the left joystick to the left direction. 

2.5.2. Robot base of neck moves in the negative yaw direction (left). 
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2.5.3. Operator manipulates the left joystick to the right direction. 

2.5.4. Robot base of neck moves in the positive yaw direction (right). 

2.5.5. Operator manipulates the left joystick in the up direction. 

2.5.6. Robot base of neck moves in the positive pitch direction (up). 

2.5.7. Operator manipulates the left joystick in the down direction. 

2.5.8. Robot base of neck moves in the negative pitch direction 

(down). 

2.5.9. Operator manipulates the right joystick to the left direction. 

2.5.10. Robot base of head moves in the negative yaw direction (left). 

2.5.11. Operator manipulates the right joystick to the right direction. 

2.5.12. Robot base of head moves in the positive yaw direction (right). 

2.5.13. Operator manipulates the right joystick in the up direction. 

2.5.14. Robot base of head moves in the positive pitch direction (up). 

2.5.15. Operator manipulates the right joystick in the down direction. 

2.5.16. Robot base of head moves in the negative pitch direction 

(down). 

2.5.17. Operator manipulates the right controller trigger. 

2.5.18. Robot base of head moves in the negative roll direction 

(clockwise). 

2.5.19. Operator manipulates the left controller trigger. 

2.5.20. Robot base of head moves in the positive roll direction 

(counterclockwise). 

2.6. Alternative flow events 

2.6.1. Robot reaches maximum rotation of a freedom of axis. 

2.6.2. Operator input to move pass said limit is ignored. 

2.7. Post Conditions 

2.7.1. Robot joint moves in the intended direction unless pass limits. 

3. Toggle AI Mode 

3.1. User 

3.1.1. Operator 

3.2. Purpose 
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3.2.1. Operator wants to toggle AI mode in order for the robot to 

interact automatically with the public. 

3.3. Preconditions 

3.3.1. Robot is in manual mode. 

3.4. Triggers 

3.4.1. Operator’s intent for the robot to interact with the public. 

3.5. Flow of Events 

3.5.1. Operator hits a button on the controller. 

3.6. Post Conditions 

3.6.1. Robot is in AI mode. 

3.6.2. Robot automatically begins to run AI control routines.  

4. Seeking Behaviour 

4.1. User 

4.1.1. Robot 

4.2. Purpose 

4.2.1. Robot wants to engage with persons not yet close to the robot 

in order to engage with interaction with them 

4.3. Preconditions 

4.3.1. Robot is in AI mode. 

4.3.2. Robot is not currently interacting with a person. 

4.4. Triggers 

4.4.1. Robot is not currently interacting with a person. 

4.5. Flow of Events 

4.5.1. Robot moves head around to search for a person in its FOV. 

4.5.2. If the robot hears sound, robot moves head toward direction of 

sound. 

4.5.3. Robot detects a person at a distance greater than interaction 

distance but within seeking distance. 

4.5.4. Robot is fixated on the User. 

4.5.5. Robot moves head to point at said person. 
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4.5.6. Robot moves head in an up and down manner and makes goat 

noises. 

4.5.7. Person moves within interaction distance 

4.6. Alternate Flow of Events. 

4.6.1. If fixated person leaves seeking distance or 10 seconds pass 

without moving into interaction distance, restart the flow of 

events. 

4.7. Post Conditions 

4.7.1. Person is now within interaction distance or no persons are 

detected inside seeking distance. 

5. Non-physical Interaction 

5.1. User 

5.1.1. User 

5.2. Purpose 

5.2.1. User wants to test if the robot will respond to external 

movements in order to learn more about the robot. 

5.3. Preconditions 

5.3.1. Robot is in AI mode. 

5.3.2. Robot is fixated on the User. 

5.4. Triggers 

5.4.1. User moves inside the interaction range while the robot is 

fixated on the User. 

5.5. Flow of Events 

5.5.1. User moves hand in a large wave motion. 

5.5.2. Robot head and neck follows the movement of the hand. 

5.5.3. User moves head in some movement. 

5.5.4. Robot head and neck tracks user head. 

5.5.5. User walks to another location still in robot FOV. 

5.5.6. Robot moves head and neck so that User is in the center of 

FOV. 

5.5.7. User reaches out hand to robot. 
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5.5.8. Robot moves head to touch hand. 

5.6. Alternative Flow of Events 

5.6.1. If User leaves interaction distance, robot removes fixation with 

the user. 

5.7. Alternative Flow of Events 

5.7.1. If User remain inside interaction distance but doesn’t reach out 

hand, operator can guide user to do so. 

5.7.2. If User remain inside interaction distance but doesn’t reach out 

hand after 5 seconds, robot loses fixation. 

5.8. Alternative Flow of Events 

5.8.1. If another person reaches out hand, robot fixates on the new 

person. 

5.9. Post Conditions 

5.9.1. User and Robot are now in physical contact. 

6. Physical Interaction 

6.1. User 

6.1.1. User 

6.2. Purpose 

6.2.1. User wants to touch the robot in order to feel the external 

texture and see how it responds. 

6.3. Preconditions 

6.3.1. Robot is in AI mode. 

6.4. Triggers 

6.4.1. User is touching the robot. 

6.5. Flow of Events 

6.5.1. User is touching head of robot. 

6.5.2. Robot slowly moves head in a nodding motion while slowly 

rotating the base of neck along the roll axis (clockwise and 

counterclockwise). Robot also angles the head toward the 

direction of the touch (right, left, and up). 

6.5.3. User is touching the neck of the robot from side of robot. 
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6.5.4. Robot moves head in the direction of user and moves head in 

an up and down motion. 

6.5.5. User steps back and breaks physical contact. 

6.6. Alternative Flow of Events 

6.6.1. If User leaves interaction distance, robot removes fixation with 

the user. 

6.7. Alternative Flow of Events 

6.7.1. If User remains inside interaction distance but stops physical 

contact, robot removes fixation with the user. 

6.8. Post Conditions 

6.8.1. User is no longer fixated. 

7. Sound Reactions - Otherwise 

7.1. User 

7.1.1. Robot 

7.2. Purpose 

7.2.1. Robot wants to engage with a person or group of persons 

through auditory ways. 

7.3. Preconditions 

7.3.1. Robot is in AI mode. 

7.3.2. Robot is fixated on a person. 

7.3.3. Persons are within interaction distance. 

7.3.4. Sound is not being made in response to a conversation. 

7.4. Triggers 

7.4.1. Sound is detected. 

7.5. Flow of Events 

7.5.1. Sound is detected. 

7.5.2. Robot makes a sound. 

7.6. Post Conditions 

7.6.1. Robot is still fixated on the same person. 

  



146 
 

Appendix H: Prioritized Use Cases 

1. Seeking Behaviour 

a. Recognition of humans on camera and movement to face and interact 

with them 

b. Seeking of humans on camera is prioritized as the highest since it is a 

steppingstone to the next highest behavior which is nonphysical 

interaction. Being able to detect humans allows the robot to do that 

behavior as well as seek out new persons. It also requires the AI to be 

able to calculate expected locations and be able to develop the 

necessary commands to move the robot to that position. 

2. Non-Physical Within Interaction Distance  

a. Waving Hands, moving heads, tracking movement 

b. This nonphysical interaction is prioritized as the second because it 

relies on functionality from the first, but it is also probably going to be 

used the most by people interacting with the robot. This behavior also 

doesn't need to overcome the social barrier of touching robot and its 

behavior is movement that nearly everyone can trigger just be looking 

at the robot. 

3. Physical Interaction 

a. Reacting to physical touch, limiting movement based on touch sensors 

b. This is likely to be the next most used behavior as once one person 

sees the robot being touched, those more extroverted might be willing 

to touch the robot. These movements will also be very important in 

selling the believability of the lifelike goat that all this behavior is 

driving toward. 

4. Sound Detection Response 

a. Detect sound and make a noise in response 

b. This is a behavior that everyone might not use although some persons 

might say hi; it is unlikely that everyone will. Furthermore, this step is 
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relatively simple compared to the previous behavior and therefore 

can be delayed. 

5. Conversation Detection 

a. Robot able to detect differences between conservation and directed 

cues 

b. This particular behavior is important for the robot to not interrupt 

conversations and is the next step after sound detection. It would 

allow people to have conversation near the robot without 

interruption which sells the goat being able to only react to sound 

direct toward it, a more lifelike behavior. 

6. Sound Location Detection 

a. Detect a sound and have the robot face direction of sound and fixate 

on person who made sound 

b. This is another behavior that will probably be rare as it only occurs if 

the robot has not yet fixated on a person and the person trying to get 

its attention is outside its FOV. Although a nice feature that definitely 

helps the believability of the robot it is not likely to be used enough to 

make it a higher priority. 

7. Hand Nuzzle Behaviour 

a. Robot goes out of outstretched hand 

b. This behavior is low priority because of the difficulty of doing it and 

low likelihood of people outstretching their hands. Guiding the head 

of the robot to a hand in its visions is far harder than just pointed the 

head toward that hand. Furthermore, it was determined that a person 

is far more likely to just touch the head than top reach out a hand. 
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Appendix I: Object Diagram 

 
Click Here to See the Full-Size Object Diagram  

https://www.lucidchart.com/documents/view/c851195e-2186-480d-9433-02464b1deae3
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Appendix J: Behavior Tree Diagram 

 

 

Click Here to See the Full Size Behaviour Tree  

https://www.lucidchart.com/documents/view/764782d6-0237-4084-b303-54614908607c/0_0
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Appendix K: Decorator Design 

1. Physical Utility Decorator 

a. Max 1.0 

b. Min 0.0 

c. If the touch sensor is touched? 1.0 : 0.0 

2. Non-physical utility decorator 

a. Max 0.9 

b. Min 0.0 

c. Ratio of Person in robot FOV 

i. If person has been fixated multiplier of 0.5 

3. Seeking Utility Decorator 

a. Max 0.3 

b. Min 0.3 

c. Steady Minimum 

4. Time Since Last Sound Decorator 

a. Max 1.0 

b. Min 0.0 

c. Starts at 1.0, degrades to 0.0, after period returns to 1 

5. Person Hand is Moving Decorator 

a. Max: 1.0 

b. Min 0.0 

c. If Robot Does Not See Hand 

i. 0.0 

d. If hand in within bounding box in the center of FOV 

i. 1.0 

ii. Largest Hand Takes Priority 

6. Person Head Not in Center of FOV 

a. Max 0.9 

b. Min 0.0 

c. If Robot Does Not See Head 



151 
 

i. 0.0 

d. If head in within bounding box in the center of FOV 

i. 0.9 

ii. Largest head Takes Priority 

7. Person Motionless Decorator 

a. Max 0.3 

b. Min 0.3 

c. Steady Minimum 

8. Seeking Head Decorator 

a. Max 0.3 

b. Min 0.3 

c. Steady Minimum 

9. Person in View to Seek Decorator 

a. Person Hand is Moving Decorator 

i. Max: 1.0 

ii. Min 0.0 

iii. If Robot Does Not See Hand 

1. 0.0 

iv. Else 

1. 1.0 

v. Largest hand Takes Priority 
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Appendix L: Layer Diagram 

 

Click Here to See a Full-Size Layer Diagram  

https://www.lucidchart.com/documents/view/6cc99faf-5d56-4e2f-b7fc-2c6a6cf5d820/0_0
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Appendix M: Sequence Diagram 

 

Click Here to See the Full-Size Sequence Diagram  

https://www.lucidchart.com/documents/view/764782d6-0237-4084-b303-54614908607c/0_0
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Appendix N: Future Software Work 

1. UUID of Behaviours 

a. UUID is given on POSITIONCMD and are unique to a single behavior 

execution not a behavior. REQUESTCMD returns UUID of completed 

behavior when all movements are completed for that UUID. This 

would allow for parallel behavior in the behavior tree 

2. Fix Motor Ratios 

a. In the calculator, the ratio of movement between the head and neck is 

calculated as a decimal but it should take into account the maximum 

movements in the head to adjust 

3. Behaviour Tree Execute Cycles 

a. Make each execute cycle of the behavior tree depending on serial 

communication of REQUESTCMD instead of CMD line 

4. CommandLineProcessor 

a. A SensorProcessor object that manages all user inputs through the 

command line. There could be manual commands to start, stop, or 

manually move the robot here. 

5. AudioProcessor 

a. Actually, process noise data and make sound as necessary. This is part 

of the required behavior. 

6. Additional Commands 

a. Having commands to handle enable motors, start or stop sensor 

information. 

7. Less reliance on globals 

a. Store globals as pointers and set the pointers on startup. This will also 

make testing easier. 

8. Testing 

a. Unit Tests for all Objects 

9. SensorData 
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a. Make behaviours and decorators use SensorData as an interface to 

access processor data. This is better style even if it adds an additional 

layer. 
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Appendix O: Code Base 

The Entire Code Base is available on Github: 

ESP32 Code: https://github.com/WPIMascotMQP/ESP_32-SPI/tree/stepping 

Raspberry Pi Code: https://github.com/WPIMascotMQP/version0.1/tree/piv0.1 

General Testing and Prototyping Code : 

https://github.com/orgs/WPIMascotMQP/teams/members/repositories 

https://github.com/WPIMascotMQP/ESP_32-SPI/tree/stepping
https://github.com/WPIMascotMQP/version0.1/tree/piv0.1
https://github.com/orgs/WPIMascotMQP/teams/members/repositories

