
1

Project Number: MXG-WS20

WPI Mascot Robot

A Major Qualifying Project Report

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Mechanical Engineering

Degree of Bachelor of Robotics Engineering

Degree of Bachelor of Computer Science

By:

Jonathan Chang (Computer Science)

Connor Dietz (Mechanical Engineering)

Treksh Marwaha (Robotics Engineering)

Griffin Roth (Robotics Engineering)

Date: May 18, 2020

Approved:

Professor Michael A. Gennert, Major Advisor

Professor Gillian Smith, Major Advisor

Professor Holly Ault, Major Advisor

This report represents the work of one or more WPI undergraduate students

submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its website without editorial or peer

review.

2

Abstract

The WPI Robot Mascot MQP is designing and building a robot goat to be a

companion mascot to Gompei. Robotics is a signature program of WPI, and this MQP

seeks to further represent the iconic robotics work done by students and faculty. It

would be impossible in one MQP to develop a mascot robot that reflects the

impressive robotics achievements at WPI. This preliminary MQP involved design

and prototyping work for 5-DoF head and neck assembly. This includes work on the

mechanical, electrical, and software systems of the robot, as well as the initial

requirements and project planning done in collaboration with various stakeholders

at WPI. Future MQP teams will further develop the robot, and it will serve as a

continuously evolving platform to showcase the traditions and experiences at WPI.

3

Acknowledgements

Though our work on this MQP is only the beginning of a mascot robot, the unending

support we have received from our friends, families, professors, and mentors has us

confident that we will return to campus one day to find a lovable robot goat running

around campus and inviting everyone to see what WPI students can achieve.

We would like to acknowledge the WPI community for embracing our idea on a

whim, for making it easy to talk with students, faculty and professors throughout

campus, for never hesitating to make time in their busy schedules to give us the help

we needed, and for showing us how to create something real with our education.

We would like to acknowledge our advisors for their dedication to our learning and

success, for mentoring us in leadership and interdisciplinary problem solving, and

for giving us the resources to struggle with confidence throughout this project.

Lastly, we would like to acknowledge the countless individuals that gave us

invaluable inspiration and feedback, that made connections, that provided

resources, and of course, those that put up with late nights (well, early mornings,

really).

To everyone that had a hand in this project, we thank you for being a part of this

unique culminating experience with us. We think it is safe to say that we could not

have even started it without you.

4

Table of Contents

Abstract .. 2

Acknowledgements .. 3

Table of Contents ... 4

Authorship .. 7

List of Figures .. 9

List of Tables .. 11

List of Equations .. 12

List of Abbreviations .. 13

Authors’ Note .. 14

1 | Introduction .. 15

2 | Background .. 17

2.1 | Mascots .. 17

2.2 | Human Interactive Robots .. 18

2.3 | Goat Anatomy ... 18

2.4 | Animatronics ... 20

3 | Project Conceptualization and Planning ... 22

3.1 | Outline the Project .. 22

3.2 | Stakeholder and Needs Analysis .. 24

3.3 | Character Concept .. 26

4 | Robot Design ... 28

4.1 | Mechanical Design .. 28

4.1.1 | Initial Design Parameters .. 29

4.1.2 | Upper Neck and Head Design .. 33

4.2 | Electrical Systems Design .. 46

4.2.1 | Processors .. 47

4.2.2 | Imaging and Computer Vision ... 50

4.2.3 | Microphones and Audio ... 54

4.2.4 | Touch Sensors .. 56

5

4.2.5 | Motors .. 59

4.2.6 | System Block Diagram .. 59

4.2.7 | Power Supply .. 60

4.2.8 | Motor Circuit Diagram .. 63

4.2.9 | Processors and Sensors ... 65

4.3 | Software Design ... 66

4.3.1 | Section Introduction .. 66

4.3.2 | User Experience... 67

4.3.3 | Embedded Software .. 73

4.3.4 | AI Architecture ... 74

4.3.5 | Unified Model Language (UML) .. 86

4.3.6 | Prototype .. 88

5 | Prototype Testing, Results and Progress .. 91

5.1 | Mechanical Design .. 91

5.1.1 | Differential Mechanism Testing ... 91

5.2 | Electrical Systems ... 94

5.2.1 | System Architecture .. 94

5.2.2 | Prototype Circuits and Testing ... 95

5.3 | Software .. 99

5.3.1 | Inter-device Communication ... 99

5.3.2 | Motor Control .. 101

5.3.3 | Sensor Data Processing ... 102

5.3.4 | High Level AI .. 104

6 | Discussion and Future Work ... 109

6.1 | Mechanical .. 109

6.2 | Electrical .. 109

6.3 | Software ... 110

6.4 | General.. 113

References ... 114

Appendix A: Key Stakeholder Needs .. 120

6

Appendix B: List of Needs and Priorities ... 121

Appendix C: Robot Requirements ... 123

Appendix D: Circuit Diagram ... 127

Appendix E: Personas ... 128

Appendix F: User Stories ... 135

Appendix G: Use Cases ... 140

Appendix H: Prioritized Use Cases .. 146

Appendix I: Object Diagram ... 148

Appendix J: Behavior Tree Diagram ... 149

Appendix K: Decorator Design ... 150

Appendix L: Layer Diagram ... 152

Appendix M: Sequence Diagram .. 153

Appendix N: Future Software Work ... 154

Appendix O: Code Base .. 156

7

Authorship

Section Primary Author Secondary Author Editor
Abstract All - -
Acknowledgements Connor Dietz - -
Author’s Note Connor Dietz Griffin Roth

Jonathan Chang
-

1 Griffin Roth Jonathan Chang Connor Dietz
2 Griffin Roth Jonathan Chang -
 2.1 Griffin Roth Jonathan Chang Treksh Marwaha
 2.2 Connor Dietz Griffin Roth Treksh Marwaha
 2.3 Griffin Roth Connor Dietz -
 2.4 Griffin Roth Connor Dietz -
3 Connor Dietz Griffin Roth Jonathan Chang
 3.1 Connor Dietz Griffin Roth Jonathan Chang

Connor Dietz
 3.2 Jonathan Chang - -
 3.3 Connor Dietz

Jonathan Chang
- Connor Dietz

 3.4 Connor Dietz Griffin Roth -
4 Connor Dietz

Griffin Roth
Jonathan Chang
Treksh Marwaha

- -

 4.1 Connor Dietz
 4.1.1 Connor Dietz
 4.1.2 Connor Dietz
 4.2 Griffin Roth

Treksh Marwaha
- Jonathan Chang

 4.2.1 Griffin Roth Connor Dietz Jonathan Chang
Connor Dietz

 4.2.2 Griffin Roth Connor Dietz Jonathan Chang
 4.2.3 Griffin Roth Treksh Marwaha Jonathan Chang
 4.2.4 Griffin Roth Treksh Marwaha Jonathan Chang
 4.2.5 Griffin Roth - Jonathan Chang

Treksh Marwaha
 4.2.6 Griffin Roth - Treksh Marwaha
 4.2.7 Griffin Roth - Jonathan Chang
 4.2.8 Griffin Roth - Jonathan Chang
 4.3 Jonathan Chang

Treksh Marwaha
- Griffin Roth

 4.3.1 Connor Dietz Jonathan Chang Griffin Roth
 4.3.2 Jonathan Chang

Treksh Marwaha
- Griffin Roth

Connor Dietz
 4.3.2.1 Jonathan Chang - Griffin Roth
 4.3.2.2 Jonathan Chang Treksh Marwaha Griffin Roth
 4.3.2.3 Treksh Marwaha - Griffin Roth
 4.3.3 Treksh Marwaha - Connor Dietz
 4.3.4 Jonathan Chang Treksh Marwaha Griffin Roth

Connor Dietz
 4.3.5 Jonathan Chang - Griffin Roth

8

Connor Dietz
 4.3.6 Jonathan Chang - Griffin Roth
5 - - -
 5.1 Connor Dietz
 5.2 Connor Dietz Griffin Roth

Treksh Marwaha
Jonathan Chang

 5.3 Jonathan Chang
Treksh Marwaha

- -

 5.3.1 Jonathan Chang
Treksh Marwaha

- Griffin Roth

 5.3.2 Jonathan Chang - Griffin Roth
 5.3.3 Jonathan Chang

Treksh Marwaha
- -

 5.3.3.1 Treksh Marwaha - Treksh Marwaha
 5.3.3.2 Jonathan Chang - Griffin Roth
 5.3.4 Jonathan Chang - Griffin Roth
6 Connor Dietz

Griffin Roth
Jonathan Chang
Treksh Marwaha

- Treksh Marwaha

 6.1 Jonathan Chang
Connor Dietz

Treksh Marwaha Treksh Marwaha

 6.2 Connor Dietz - -
 6.3 Griffin Roth - Treksh Marwaha
 6.4 Jonathan Chang

Treksh Marwaha
- Griffin Roth

Report compilation and formatting Connor Dietz

Authorship Role Explanations:

Primary Author: The group member(s) responsible for writing most of the section content.

Secondary Author: The group member(s) responsible for adding significant section content.

Editor: The group member(s) responsible for making spelling and/or grammar corrections, or content suggestions (but not

modifications).

9

List of Figures

Figure 2.1 2020 Tokyo Olympics mascot robots Miraitowa (center right) and

Someity (center left). ... 17

Figure 2.2 Anatomy of a Goat Knee ... 19

Figure 2.3 Goat Skeletal Structure ... 19

Figure 3.1 Character Sketches of the Robot ... 27

Figure 3.2 Digital character sculpt ... 27

Figure 4.1 Kinematic outline of the neck and head mechanism ... 30

Figure 4.2 Simultaneous (a) and differential (b) input rotation of the differential

mechanism ... 34

Figure 4.3 Diagram of Friction Wheel Differential .. 36

Figure 4.4 Differential Mechanism Cable Designs and Routing .. 37

Figure 4.5 Our Bowden Cable Transmission CAD Model ... 39

Figure 4.6 Our Omni-Wrist III CAD Model .. 40

Figure 4.7 U-Joint Platform CAD models ... 41

Figure 4.8 U-Joint Platform Nomenclature ... 42

Figure 4.9 Zoomed View of U-Joint Platform Joint. Shown: yoke (purple), spider

(yellow), platform pin (red) .. 44

Figure 4.10 U-Joint Platform Cross-Section Geometry ... 45

Figure 4.11 ESP-EYE Camera Board .. 52

Figure 4.12 Pixy2CMUcam5 Image Sensor... 52

Figure 4.13 Arducam with M12 lens module .. 53

Figure 4.14 AUM-5047L-3-LW100-R Microphone ... 55

Figure 4.15 FB-EM-30346-000 Microphone ... 55

Figure 4.16 Phidgets Touch Sensor ... 57

Figure 4.17 Adafruit 12-key Capacitive Touch Sensor .. 58

Figure 4.18 Initial and Final Electrical System Diagrams .. 59

Figure 4.19 Power Supply and Delivery Circuit Diagram .. 60

Figure 4.20 Zener Regulator Circuit .. 62

Figure 4.21 Overvoltage Protection Circuit ... 62

Figure 4.22 SCR Crowbar Circuit .. 62

Figure 4.23 Motor Control Circuit Diagram ... 63

Figure 4.24 Processor Circuit. Sensor ESP32 (a). Motor Control ESP32 and

Raspberry Pi (b) ... 65

Figure 4.25 Software Personas Example: "Laura Wilson" ... 68

Figure 4.26 Software User Story Example: "Laura Wilson" .. 69

Figure 4.27 Software Use Case Example: Sound Reaction .. 71

Figure 4.28 Diagram of a State Machine .. 75

Figure 4.29 Diagram of a Decision Tree .. 76

10

Figure 4.30 Representation of Utility Priority Score ... 77

Figure 4.31 Diagram of a Subsumption System ... 78

Figure 4.32 Diagram of a Neural Network .. 79

Figure 4.33 Diagram of a Behavior Tree ... 80

Figure 4.34 Initial Object Diagram ... 86

Figure 4.35 Behavior Tree Diagram .. 87

Figure 4.36 Decorator Design Example ... 88

Figure 5.1 The Three Assembled Prototype Differential Mechanisms 92

Figure 5.2 Servo driven test fixture ... 93

Figure 5.3 Stepper driven test fixture .. 93

Figure 5.4 Electrical Systems Schematic ... 94

Figure 5.5 Electrical System Schematic Ported to Autodesk Eagle 95

Figure 5.6 Microphone Test Circuit with Arduino. Physical circuit(a) and Circuit

Diagram (b) .. 96

Figure 5.7 Microphone Testing Results, mV vs Seconds .. 97

Figure 5.8 Touch Sensor Circuit and Test Setup .. 97

Figure 5.9 Motor Test Circuits ... 98

Figure 5.10 Software UML Module Diagram .. 104

Figure 5.11 Sequence Diagram ... 105

11

List of Tables

Table 3.1 Stakeholder Identification and Involvement .. 23

Table 3.2 Stakeholder Needs .. 24

Table 3.3 Stakeholder Need Priority ... 25

Table 4.1 Prioritized Use Cases ... 72

Table 5.1 Control Byte Definition .. 100

Table 5.2 Communication Command Definitions ... 100

12

List of Equations

(1) Differential Kinematics Relationship, eqtn 1 ... 35

(2) Differential Kinematics Relationship, eqtn 2 ... 35

(3) Functional Definition of U-Joint Platform Induced Roll .. 42

(4) U-Joint Control Arm Position Vector Definitions ... 43

(5) U-Joint Induced Angle of Platform Rotation .. 43

(6) U-Joint Maximum Articulation Angle .. 45

13

List of Abbreviations

Abbreviation Definition

GB Gigabyte

dB Decibel

V Volts

WPI Worcester Polytechnic Institute

cm Centimeter

GHZ Gigahertz

DOF Degrees of Freedom

FOV Field of View

FPS Frames Per Second

AI Artificial Intelligence

mm Millimeter

Op-amp Operational Amplifier

OS Operating System

FSM Finite State Machine

14

Authors’ Note

This report is not the final iteration for the WPI Mascot Robot MQP. Some

members of the team will be continuing the project in subsequent term(s). As such,

this MQP report reflects the work done up to the end of the fourth project term

(D20). The work herein has been presented such that, to the extent possible, its

content is consistent in isolation. However, some of the team is still focused

primarily on project work, so there may still be section stubs that are yet to be

completed. Where appropriate, some sections note their incomplete status if it is not

self-evident. Note that this is also not the first version of the report published for

some team members’ completion of degree requirements.

COVID-19 Response

 This MQP, like many others, was affected by the coronavirus (COVID-19)

pandemic. This segment of the project was originally intended for the integration,

testing, and validation of the work produced during the A19, B19 and C20 project

terms. Unfortunately, health safety concerns as well as most of the team traveling

home from WPI meant access to project materials and resources was highly limited.

To cope with this, adjustments were made to the term goals as well as the intended

deliverables. Relevant sections in this report to affected project elements include a

statement on how they were affected, and, if applicable, how they will continue to be

handled in subsequent project term(s).

Though the impact to the project was large, the team saw an opportunity to

frame the experience as learning to work in a horizontal integration environment.

Reviewing materials or transferring work was no longer as simple as walking to an

office. In the same way that design firms must work with overseas manufacturers

and suppliers, collaboration had to be done remotely. The team members learned to

effectively communicate ideas asynchronously and developed their ability to work

with unpredictable schedules.

15

1 | Introduction

Robotics is a signature program of WPI, however, there is still an opportunity

to further integrate robotics into WPI’s image. While it is not the only important part

of WPI’s identity, the robotics work its students and faculty produce are iconic and

recognizable to people both in and out of STEM fields. The goal of this project is to

design a prototype of a mascot robot for WPI that anyone can interact with to see

and feel what WPI is all about.

However, WPI already has a mascot－Gompei the Goat. Gompei is ingrained

in the WPI tradition and loved by many, so it would be a huge loss to replace him.

The aim of this project is not to replace Gompei, but to add to the Gompei experience

with a little robot flair, as is WPI tradition. This robotic mascot will be able to

operate in a wider variety of circumstances such as a semi-permanent display, being

part of admissions tours, and events during unsuitable weather.

The current design of the robot sees the robot taking the form of a goat, with

proportions like those of a British Alpine goat. The robot will have 2 modes:

teleoperated and autonomous. In the teleoperated mode, a user will control the

robot with a remote control, capable of making the robot move its head and limbs.

In the autonomous mode, the robot will stand in place and be capable of interacting

with people. It will be able to track the movement of hands, turn its head to face

people talking to it, react to being pet, and make noises in response to what is

happening around it. However, this project will not be creating the full robot. A full

robot of this scale requires an immense amount of work, not possible with the given

time. Instead, this project will serve as a proof-of-concept for a mascot robot that

future projects may build upon and complete. This project will primarily focus on

designing the head and neck mechanisms, as well as the accompanying AI and basic

circuitry for motor control and sensors.

Over the course of A-Term, this team spoke with potential stakeholders in

the project, including Admissions, Athletics, and the SAS to get their thoughts on

what the robot will be used for and what it should be capable of doing. Using the

requirements created from those responses, a character design was drafted and

16

finalized, and initial designs for the mechanics and software of the robot began.

During B-Term, the requirements and designs were further refined. Prototype

versions of both the mechanisms as well as the software were produced, analyzed,

and integrated. Requirements for sensors were created, and applicable sensors

were identified. In C-Term, the implementation details for the mechanisms and

software were determined. The first version of the software for the robot was

written with the functionality to actuate physical motors to dynamically created

positions; production of physical mechanisms also began with additional focus

being put into electrical design. This report will highlight what options were

considered, analyzed, and selected for the first version of the mascot robot.

17

2 | Background

2.1 | Mascots

Mascots are an important part of organizational branding. A strong brand

communicates an image that builds trust and loyalty with its consumers. Mascots

help create an emotional bond between the customer and the brand, as they now

have an anthropomorphized character they can associate with the brand [1]. This in

turn helps engage customers with that brand. Of course, mascots are also an

important part of the brand of schools. Many high schools and colleges have mascots

that help people and alumni identify with the school. For example, WPI has Gompei

the goat, Penn State has the Nittany Lion, and MIT has Tim the beaver. These

mascots appear in their respective school’s marketing, merchandising, and at events

as costumes worn by people to bring the mascot to life.

Figure 2.1 2020 Tokyo Olympics mascot robots Miraitowa (center right) and Someity (center left).

Mascot robots, in comparison, are a new concept. The only public mascot

robots are the robot versions of Miraitowa and Someity, the mascots for the 2020

Tokyo Summer Olympics designed by Toyota (Figure 2.1) [2, Fig. 1]. These mascot

robots take the form of small, toy-like robots that will welcome athletes and guests

to venues, as well as interact with children [2]. Although these mascot robots do not

replace the original mascots, they provide an opportunity for their creators to show

off their technical prowess and interact with the audience in new ways. Due to the

18

lack of other mascot robots, there is a large design space open for new mascot

robots with different capabilities and appearances.

2.2 | Human Interactive Robots

One design space of robots that is currently seeing a lot of experimentation is

human interactive robots. Several robots today are being built with the intention of

interacting with humans. These range from companion robots such as Jibo and Blue

Frog Robotics’ Buddy to robots used for therapy and understanding human-robot

interactions. These robots interact with people in various ways, some respond to

audio cues, others move or react to stimuli; some even show emotions. As the field

of robotics advances, we will inevitably see human-robot interactions become more

frequent. One important development that we will likely see as social robots

advance, is the ability to display empathy. Empathy requires one to be able to

“perceive, understand, and feel the emotional state of others” [3]. A robot with this

ability would need to be able to understand the context surrounding a situation,

then decide on what to do.

2.3 | Goat Anatomy

Before any mechanisms can be researched or design work done, it is

important to first understand the anatomy of the animal that this robot will be

based around—that being a goat. The anatomy of any animal can be broken down

into multiple subsystems [4]. When studying the model animal anatomy to inform

the design of a robot, two obvious systems to start with are the skeletal and

muscular system. Together, these biological systems form the foundational

structure of the animal and provide a means for articulating it [4], [5].

19

Figure 2.2 Anatomy of a Goat Knee

As with most animals, goats have joints with both single and multiple

degrees of freedom (DoF). Unlike mechanical systems, these joints typically do not

have consistent instant centers. For example, the knee joint appears to simply be a

single DoF joint with a fixed point of rotation. However, the rotational axis of this

joint is variable due to the structure and alignment of the fibula, tibia, and the many

support bones (Figure 2.2) [4], [5]. Evidently, in order to translate these biological

systems into mechanical ones, simplifications will need to be made. These

simplifications are the functional degrees of freedom [6].

Figure 2.3 Goat Skeletal Structure

For this project, the important joints to examine are the ones that influence

head and neck movement. Goats, like most other animals, have six degrees of

freedom of positioning capability for their head relative to their shoulders [6], [7],

20

[8], [9]. Functionally, this is accomplished through their 7 cervical (neck) vertebrae

(Figure 2.3) [4, Fig. 1] [4], [5]. This chain of vertebrae is constructed from seven

3DOF joints chained together by the neck ligaments. Some of these vertebrae are

underactuated, and instead serve as intermediate pivot points along the chain.

Notably, these vertebrae tend to be fully articulated about the transverse and

sagittal axes, but minimally about the longitudinal axis [6], [9]. Rotation about the

sagittal, transverse and longitudinal axes corresponds to a goat ‘looking’ left/right,

up/down, and tilting, respectively.

2.4 | Animatronics

With the anatomy of a goat established as a reference point, considerations

for how to translate that into a mechanical system can be explored. Traditional

robotic systems do not always have the requirement of mimicking or resembling

biological creatures. It makes sense, then, to turn towards the field of animatronics,

and to understand how they can simulate organic movements.

Animatronics is effectively a form of puppetry, using mechanisms and

robotics to simulate a living being moving and sometimes interacting with the world

around it. Animatronics often see use in filmmaking, theme parks, and other forms

of entertainment. One of the benefits of animatronics is the life-like appearance they

can take. Instead of animating something using computer graphics, the animatronics

look real in comparison [10]. In animatronics, a lot of work and care goes into the

controls and mechanisms to make the subject and its movements as realistic as

possible.

Mechanical design for animatronics brings with its new design

considerations compared to traditional robotics. One of the biggest differences in

requirements between robotics and animatronics is that animatronics usually do

not need to physically interact with users or their surroundings. This means that not

only can mechanisms be lightweight, but less overall system rigidity is required.

Additionally, less power is generally required to actuate a given join, so mechanisms

21

can be designed to use complex systems of cables, pulleys and linkages that do not

provide much mechanical advantage at the effector [11].

The ability to focus mostly on desired movements and speeds gives more

options for actuating joints with multiple degrees of freedom. For example, when

designing a neck, there are many routes one can take. If simple, jerking motions are

okay, a series of bevel gears driven by motors and servos will suffice. For more

intricate motions in smaller applications, the neck can be actuated by two shafts

with u-joints attached to servos [15]. For more complex applications, a tentacle

mechanism can be used which utilizes a series of cables and u-joints to make the

neck move in complex patterns. When one cable shortens, other cables lengthen,

bending the neck [16]. These mechanisms do address the problem of creating a

neck, however the abilities and range of motion vary between them. Therefore, it is

important to always design for the problem at hand, and not for what would be the

most versatile.

22

3 | Project Conceptualization and Planning

3.1 | Outline the Project

 The conceptualization of this project stemmed from our previously planned

project to develop a robot mascot for the Worcester Red Sox, however because of

this, much of the initial project needed to be dedicated to identifying the project

goals themselves. After deciding to continue with the robot mascot idea, this time

for WPI, we began discussing how to translate it for our new target audience.

Though we did have a rough initial plan based on previous planning with our

contact at the Worcester Red Sox, we did not have a clear overall goal for the project

and needed to outline a plan and a set of goals. To facilitate this planning, we used a

set of guidelines laid out in Systems Engineering for Capstone Projects [17] to

inform our process. This framework guided us through the process of identifying

stakeholders, determining their needs, developing the concept for the robot,

translating those needs into requirements, and then developing a robot character

and design from them.

The first phase, the stakeholders and needs analysis, ultimately became an

ongoing process rather than an initial step. This was particularly important as we

were frequently faced with situations where we needed to evaluate our needs

regarding previously nonexistent project elements. All the requirements and

specifications for this robot are derived from conversations with our stakeholders,

namely the WPI Athletics and Admissions departments, as well as our own

brainstorming and discussions on usability and behavior. Some of these initial

conversations led to similar discussions about unpredictable behavior from the

users, particularly children and rowdy college students. Those points laid the

foundation for how we would need to think about the rest of the design process.

Safety would need to be an integral part of the final product, along with usability

and predictability.

We needed to first have conversations with our stakeholders about how they

would like to see the robot used, and the types of environments it would be placed

23

in. While we did not strictly adhere to each step, it was an invaluable starting point

to help us formulate our project goals.

Every project requires stakeholders who are interested in using the final

product. As this project was conceptualized by the team, there were no initial

stakeholders. Therefore, the team had to find and market the project to potential

stakeholders that would be interested in seeing the project’s success. Potential

stakeholders were chosen based on their perceived potential usage for the robot

(Table 3.1).

Table 3.1 Stakeholder Identification and Involvement

Stakeholder Involvement/ Type Met by ... Rationale
WPI Athletics
Department

Direct, Consulted,
Informed

 Periodic meetings
with Dana Harmon
(director)

Mascot present at
sporting events

WPI Student Body Indirect, Consulted,
Informed,

Informed through
social media (future)

Will interact with the
robot during events

WPI Robotics
Department

Indirect, Consulted,
Partner, Informed

Presenting project
during project
presentation day

Must satisfy the
department's
requirements for
MQPs

WPI Alumni, SAS Direct, Consulted,
Informed, Approver

Compliance with
guidelines set for
acceptable use of
Gompei, Periodic
updates with Herd
Chair

Will manage the
robotic mascot’s
involvement in events.

Fans of WPI Sports,
Programs

Indirect Shown the robot at
events.

Will interact with the
robot during events

WPI Admissions Direct, Engaged Periodic meetings
with Isabella
Camasura
(Admissions
Counselor). Financial
Aid.

Will present the robot
at certain locations as
a display.

Three major stakeholders at WPI were identified‐ Admissions, Athletics, and

the Student Alumni Society (SAS). Each of these stakeholders were identified as

possible parties that would be using the robotic mascot in the future. Admissions

expressed interest in showcasing the robot during admissions tours as a

demonstration of all the different engineering fields at WPI. During meetings,

Athletics considered having the robot as an additional moral and spirit source－ the

robotic mascot was envisioned interacting with the crowd during breaks or posing

24

whenever the WPI sport team scores. The SAS is the organization responsible for

managing the appearance of the Gompei the Goat mascot and would be the

organization that would take care of this robotic mascot including the storage,

maintenance, and supervision. During the requirement gathering phase, the team

met with each of these stakeholders to help determine the functionality

requirements of the robot.

3.2 | Stakeholder and Needs Analysis

Table 3.2 Stakeholder Needs

Stakeholder Needs Stakeholder Considerations

Athletics • The system should emote or
react during sports game

• People can take photos of it (put
their arms around it)

• Celebratory pose/action on
goals, touchdowns, runs, etc.

• The system should be relatively
easy to transport

The system will be at sporting
events, so it should be able to
interact with and hype up the
crowd. The system will also have to
not track debris onto the basketball
courts.

Admissions • The system should interact with
visitors and inform them about
WPI

• The robot could be placed in the
upcoming Bartlet Center lobby
museum

• Visitors can take selfies with it
• Robot could have a fake

smartphone in one of its hooves
that takes selfies

The system will be on display for
visitors, so it should be visually
appealing and safe for visitors to
approach. The system may also be
used to inform visitors about WPI.

SAS • The system should be able to
create screaming goat sounds

• The system should be able to act
as a sound system

• The system should be able to
launch merchandise

• The system should be able
emote

• The system should have a soft
exterior

• The system should not speak

SAS will handle the arrangements
for the system. They will also have
some approval over the appearance
and manner of the system.

Each major stakeholder identified a different set of needs based on their

expected use (Table 3.1). Athletics pointed out that given the robot would have to be

25

transported across campus, it was imperative that the robot be easily movable;

doors, curbs, elevators, and other obstacles would have to be overcome during

transportation. Admissions brought up the idea that people might like posting about

the robot on social media and the mascot must have the size and configuration for

people to be able to take photos with it. SAS shared a list of guidelines for the

Gompei the Goat Mascot which included some needs that were not initially

considered. For instance, a mascot should not speak or express any views on any

subject other than support for the current sports team.

Table 3.3 Stakeholder Need Priority

Need Statement Validation Priority

Safety The robot should be safe to approach and
operate

Robotics
Department, SAS,
Admissions

1

Interaction The robot should be able to react to audio,
physical, and visual stimuli

SAS, Admissions,
Marketing

1

Photo taking The robot should be able to take photos of
itself with another person.

Admissions,
Marketing

2

Movement The robot should be able to move to another
location without external forces

Athletics, SAS 1

Remote
Control

The robot should be able to be controlled by
external controls

Athletics, SAS 1

Head
Movement

The robot should move its head in multiple
directions

Admissions, SAS,
Athletics,

2

Autonomy The robot should have an autonomous mode
that reacts to external stimuli

Admissions, SAS 2

Visually
Appealing

The robot should appear as a cartoonish goat
not a robot.

SAS, Admissions,
Athletics

2

Waterproofing The robot should be able to handle some rain
exposure

Athletics, SAS 2

Overheating The robot should not overheat due to
internal heating issues

All 1

Replaceable
feet

The robot should have replaceable feet to
avoid tracking dirt inside buildings

Athletics 2

26

 The initial stakeholders in the list were then used to create a prioritized

version that indicates which stakeholders have the greatest stake in the project.

From this we could then see which stakeholder needs should be focused on to

develop the requirements for the robot. The derived prioritized list of needs (Table

3.3) has information about the need itself, along with a note on which stakeholder it

originates from, and an indication of its relative priority. In the table, needs of the

highest relative priority are marked at a “1”, and secondary priorities at a “2.” These

rankings were largely subjective and were based on our own intuition and synthesis

of the concerns of our stakeholders, as well as our advisors. This list of needs was

then used to build a more detailed, formal list of robot requirements that used more

technical language (Appendix C).

3.3 | Character Concept

Developing the character of the robot we would be creating was the first real

step towards designing the robot itself. After initial meetings with our stakeholders,

we gathered our ideas and drafted up some initial designs. At this stage, we also

considered how the robot might be manufactured, and what materials could be used

for the outer ‘skin’ of the robot. What we ended up with was a collection of sketches

and listed ideas that we then took back to our stakeholders for feedback. While none

of the team members proclaimed to be artists, we worked with what we had and

ultimately created a set of ideas that convinced our stakeholders that this robot

could be a potentially interesting addition to the tradition of WPI.

27

Figure 3.1 Character Sketches of the Robot

Figure 3.2 Digital character sculpt

The character that was created was Robo-Goat (name pending). It would look

and behave similarly to a real goat. Robo-Goat would still be able to appeal to

people, without overshadowing Gompei as a character. The process of sketching our

results was not easy for us as we did not have much prior experience in freehand

drawing. With our sketches, we also created a first version digital sculpt (Figure 3.2)

of the character to get a better understanding of what it would look like and how we

might go about manufacturing it in the future. The final design (Figure 3.1) we

arrived at was based on things we liked from our various initial sketches, and

represented what we felt would create an inviting character, but that still

maintained a distinctly robotic appearance.

The reasoning for going with this design is it is distinctly a robot; however, it

still retains the organic visual characteristics of a goat. Also, and almost more

28

importantly, it does not exude an uncanny creepiness or appear to be dangerous,

which is crucial for inviting spontaneous interaction. We also noted that if

something looks dangerous, there’s a good chance it probably is, so we avoided

classical robot design tropes involving exposed moving components and jagged

edges. A cleaner design, on the other hand, appears more visually inviting, and lends

itself well to designing for safety.

As mentioned, we also considered the physical materials and

manufacturability of the robot at this stage. In this design, the head and upper body

will be covered with a thin, continuous silicon sleeve that is placed over a solid

under-shell. The hard under shell will both add solid form to the robot, giving it a

goat-like appearance, as well as protect the internal components from users, and the

users from internal components. The soft, silicone outer sleeve will give the robot its

details, as well as a more inviting texture that also protects against injuries at pinch

points.

4 | Robot Design

4.1 | Mechanical Design

 As the mechanical design of the robot was done concurrently with the

software and electrical design, we took an iterative design approach. Particularly,

designs needed to accommodate the designed power budget, as well as the sensors

on board. Rather than constructing functional prototypes after a round of design

was completed, we prototyped elements of the mechanical systems throughout the

process. Despite the increased time investment on revisions of physical products,

this approach was necessary to perform periodic testing of co-dependent systems.

This integrated design strategy ultimately reduced the need to redesign dependent

components at various stages of development.

 The mechanical design process was facilitated by a set of digital tools as well

as rapid prototyping hardware. Two CAD packages were used during this project.

The cloud based solid modeling software, Onshape (recently acquired by PTC), was

29

used for the initial concept designs and prototyping. Onshape was chosen here for

its collaborative editing functionality. This always gave each team member access to

CAD models and sketches and made working together to quickly prototype designs

easy. Dassault Systèmes SolidWorks, along with its stress simulation tools were

later used for the final design and analysis. While Onshape is very robust in its

current state, it does not offer the same product maturity as SolidWorks, including

its analysis suite. Most of the prototyping work for this project was done using FDM

3D printers. Though these machines dramatically reduce time spent iterating on

prototypes, 3D printed parts alone could not provide us with the functionality

needed. Most prototypes consisted of a combination of 3D printed parts and OEM

components such as bearings, fasteners, and actuators. In some cases, these designs

were also supplemented with more rigid materials such as extruded aluminum

beams.

 In most cases, parts were designed with their final materials in mind. The nature

of 3D printing meant that we could produce a working prototype of a part

eventually intended to be machined out of aluminum, for example, minimizing the

design steps required before final production. Due to the coronavirus pandemic, we

were not able to reach a point where we could produce final components.

4.1.1 | Initial Design Parameters

 The mechanical work required for this robot encompasses a range of design

areas, including mechanism design, structural design, as well as the accompanying

kinematics and analysis for them. Given the large scope of the overall project, it was

necessary for us to focus in on a smaller set of design goals. Furthermore, most of

our decisions are further focused on the design of everything from the neck up. Our

initial work focused on identifying the key design constraints that would govern the

rest of the development of the robot. We outlined the degrees of freedom the neck

and head assembly would have, the sizing and scale of the robot itself, the strength

requirements of various components, and the speed and acceleration needed for

fluid motion of each joint. It was important that we consistently consider a set of

common factors to ensure the robot could perform its tasks both safely and reliably.

30

As such, failure modes of many different types were considered throughout the

design process and were driving factors in the decision-making process for the

design constraints. The following sections provide details on each of these design

decisions.

˧ Degrees of Freedom

Figure 4.1 Kinematic outline of the neck and head mechanism

The current robot is designed around a 5DoF head and neck assembly along

with a base chassis that acts as the frame of the body. The head will be capable of

three rotational degrees of freedom about the top of the neck, and the neck will have

two rotational degrees of freedom about the shoulders. Figure 4.1 shows a rough

kinematic outline of the neck superimposed on an image of a goat. Note that Figure

4.1 depicts a serial kinematic chain, whereas our final design has a parallel joint

controlling the head, as detailed later. Currently, our design is focused on everything

from the shoulder up. In this way, the robot will be able to look up, down, left, and

right in an organic fashion, along with the ability to tilt its head for added

expressiveness. Later projects can add additional capabilities to the body and legs.

Though a real goat has many more links and joints in its neck than our robot,

replicating them would add a large amount of complexity, increasing development

time and introducing many more failure modes. Added complexity further increases

the difficulties of designing a moving system intended for use by inexperienced

31

users. We determined that five degrees of freedom for the neck and head would

provide a good balance between simplicity and expressiveness.

˧ Sizing and Scale

 The physical sizing and scale of the mascot robot was a critical early step in

the design process. This affects not only the interaction experience, but also relates

heavily to decisions that need to be made concerning safety.

Initially we used a real goat as a size reference. This would make the robot

roughly the size of a large dog, with its head presenting itself at about waist high on

an average person. However, after interacting with several real goats and taking our

own measurements, as well as discussing with our stakeholders about how the

robot would be used, we determined this to be too small to meet project needs. The

robot needed to be large enough such that users would feel as though they are

interacting with something substantial. We could not make it too large, however, as

we wanted the robot to feel unintimidating and approachable.

Of course, an increase in size also brings an increase in associated costs due

to longer moment arms and thus large power requirements of the actuators and

strength requirements of the structure. Additionally, we have not yet discussed the

relative scaling of the anatomical analogues to our corresponding robot sections.

Like how we determined that five degrees of freedom would give us our desired

expressiveness, we needed to consider how the relative sizing of the various robot

components would affect the character we were creating. Instead of designing with

the goal of maintaining accurate relative scaling, we instead focused on ensuring our

character was both exaggerated, but still lifelike and recognizable. Taking these

design liberties also allowed us to modify the sizing of different components to

better handle the loadings we needed to account for, so designing for strength and

rigidity would be much easier.

32

˧ Strength and Rigidity

In discussions with our stakeholders, it became apparent that our robot

would need to be capable of withstanding a fair amount of abuse. Discussions with

our stakeholders and our own intuition were used to examine potential issues the

mascot robot might encounter from users. For example, the robot will inevitably

experience physical disruption from a child. This not only meant that we need to

design with structural rigidity and integrity in mind, but also design for safety.

Injuring a child is a less than ideal outcome, so we set our safety factor for critical

components at 6. More properly, components that may potentially experience

additional loading from a user, or components whose failure could result in injury,

must have a yield stress of at least 6 times higher than their maximum expected

stress under those conditions. This decision was primarily based on

recommendation from our mechanical engineering advisor, Professor Holly Ault.

A safety factor of 6 is indeed quite large, so we needed to carefully consider

which components needed to be held to that standard. To maintain consistency in

design, we needed to outline a set of loading conditions to test various components

under. These test conditions needed to be useable for both the designs as well as

using the eventual manufactured parts. Furthermore, we needed to maintain

consistency between the different tests, and develop a framework that can be used

to track results.

˧ Range of Motion and Joint Speeds

 Determining the physical limits of articulation for each joint was crucial to

identifying possible mechanical joint designs, and it also determined the

expressiveness and what types of behaviors the robot would be capable of

exhibiting. Initially, our goal was to simulate the movement of a real goat as closely

as possible. In fact, we started by using some of the footage and images collected

from our interactions with real goats to measure observed limitations of their

ranges of motion. Additionally, we were already aware that convincingly emulating

the organic movements of a known animal is difficult. After discussing with our

33

stakeholders, namely the WPI Athletics and Admissions departments, we decided

our goal should instead be to create a caricature of a goat rather than a lifelike

representation of one (as detailed earlier in sections 3.2 | and 3.3 |). Now that we no

longer needed to accurately represent the movement capabilities of a real goat, we

instead decided on motion ranges for each joint that would give us the freedom

needed for the expressiveness that we wanted. To do this we simply estimated what

kind of motions we thought would be expected, and then added some additional

articulation range as a margin of error.

 Joint speeds were determined in a similar way of estimation. We used

techniques such as moving our arms in a sweeping motion at a speed that felt

natural and measuring the time it took to complete it. We also factored in the

location of the joint along the kinematic chain and how large the part of the robot it

would be moving. In most cases, movements would be completed by more than one

joint, which in many cases increases the resultant angular velocity of the head. This

meant we could reduce our specified speeds for the upper head joints, which

provided benefits such as reduced weight requirements.

4.1.2 | Upper Neck and Head Design

As the entire neck and head assembly of the robot would ultimately create

one long moment arm, we decided it best to start the design at the head and work

backwards. The neck structure and the joint at the base of the neck must be able to

support not only our prescribed test loadings, but also the weight of the various

upper components themselves. As stated, the head joint must be capable of three

degrees of freedom. To start, we focused on the pitch and yaw motions of the neck.

The roll action will be added later. We identified several mechanisms that could

potentially fulfill requirements and performed some surface level analysis to narrow

down our selection. First, we will discuss some general decision factors used, then

we will detail the current design, and finally we will provide information on the

other options we considered.

In addition to the loading requirements we determined (pg. 32), we

considered mechanism complexity and control requirements when selecting a

34

suitable design. These impact design difficulty and manufacturability, as well as how

computationally expensive the mechanism would be to control. The design

complexity would also affect the difficulty of the analysis required to prove the

design capable of safely withstanding our prescribed loadings.

To actuate the joint at the base of the head, we decided that a pulley actuated

differential mechanism would best suit our requirements. Our decision was made

after considering a variety of different multiple degrees of freedom mechanisms and

how they would satisfy our requirements. Namely, we focused on selecting a base

mechanism that could provide us with our specified articulation angles (see section

4.1.1 |), was possible to design to be reasonably compact, and would successfully

meet our loading requirements. With the base mechanism selected, we designed our

implementation of it.

˧ Head Joint Kinematics

At this point in the project, we have two versions of the differential

mechanism in use (discussed later in section 5.1 |), however they both operate

under the same kinematic principle.

(a) (b)

Figure 4.2 Simultaneous (a) and differential (b) input rotation of the differential mechanism

35

Figure 4.2 illustrates the rotational kinematics of the mechanism. Simply, by

driving the inputs at the same angular velocity (same magnitude and direction) will

cause the output carrier (gray) to rotate about the same axis as the inputs, shown as

the red dashed line in Figure 4.2. Driving the inputs with opposing angular velocities

(same magnitude, opposite direction) will drive the output (blue) about its own axis

at that angular velocity, shown as the blue dashed line in Figure 4.2. By varying the

relative angular velocities of the inputs, combinational outputs are achieved. The

inverse kinematic relationships for this mechanism are then described by

 (1)

 (2)

Where and are the pitch and yaw angular velocities, and are the input shaft

velocities, and is the ratio between the input wheel diameter(s) and the output

wheel diameter. As shown, the kinematic relationships are simple and linear,

making the mechanism computationally efficient to control.

˧ Head Mechanism Transmission

Our implementation of the differential mechanism uses a transmission

system of pulleys and cables, which we selected after reviewing the different

transmissions that can be used. The three transmission methods we identified are

the chosen pulley-cable system, friction wheels [48], as well as bevel gears, which is

the most commonly recognized differential implementation.

36

Figure 4.3 Diagram of Friction Wheel Differential

The friction wheel-based differential (Figure 4.3) [48] uses drive wheels

forced against an output plate to drive the mechanism. The maximum loading

capabilities of a friction wheel-based system is dependent on the preload force

between the input and output wheels to generate adequate friction. That force

required is quite high [48], which means that materials with high coefficients of

friction would be needed. There are many materials that we could use to achieve

this, however, the friction interface presents a suboptimal point of failure. If the

friction surfaces become dirty, or as the materials wear over time, the frictional

force will decrease. For this reason, the safety factor would need to be increased to

account for this, which further increases the initial preload requirements. While it is

the most mechanically simple of the three options, the reasons outlined make it a

less than ideal choice.

Bevel gears provide a rigid transmission between the inputs and outputs and

are only slightly more complex than friction wheels. However, backlash and cost

become problematic. Extra design work would need to be done to mitigate backlash

such as implementing a preload method, and/or higher tolerance parts would be

needed. The cost of using bevel gears would not be small as higher precision parts

would be needed, and at relatively large sizes.

37

The last option is to use what we ultimately decided on: pulleys and cables.

There are two different ways in which pulleys and cables can be implemented,

which we will call the Continuous Cable and Anchored Cable Segments variants. The

Continuous Cable variant is articulated by a single, continuous cable routed around

each of the pulleys of the mechanism. The Anchored Cable Segments variant is

conceptually the same as the Continuous Cable variant, however the cable is instead

broken into four parts, each one anchored on both ends.

For our purposes, we decided that the Multiple Cable variant was the best

option. The Single Cable variant is mechanically simpler; however, it suffers from

similar issues as the friction wheel transmission discussed previously. Additionally,

it requires a single, closed loop cable, which would be difficult to source.

˧ Head Mechanism Cables and Routing

(a) First Prototype (Standard Winding) (b) CAD model of “switchback” version (c) Prototype “Switchback” version

Figure 4.4 Differential Mechanism Cable Designs and Routing

In our design, we are using a UHMWPE fiber rope, which is routed using

what we are calling a “switchback” configuration. Figure 4.4a shows the initial

winding option, which does not employ this “switchback” design, and Figure 4.4b

and Figure 4.4c show the CAD model of the current mechanism, which utilizes our

“switchback” routing, along with the prototype version used for evaluation. The

prototype allowed us to test different cable materials.

The cable material needed to have a high strength, low elasticity, as well as a

relatively small minimum bend radius (i.e. low stiffness). Too large of a bend radius

38

would increase the pretension required to keep the cable taut and would also

introduce additional torque requirements to actuate the mechanism as more force

would be required to bend the cables around the pulleys. When evaluating our

prototypes for the mechanism, we also found that the cable needs to have low

friction with the pulleys for smooth operation. We found that UHMWPE (Ultra-high-

molecular-weight polyethylene) fiber rope [50], [51] was a suitable option for us

due to its low cost, high strength, low stiffness, and low stretch. Typical UHMWPE

fiber rope has a breaking strength of Additionally, UHMWPE has low friction and

high abrasion resistance, so minimal or no lubrication is required, reducing

maintenance [50], [51], [52], [53]. We had also considered steel wire rope, however,

we found that the minimum bend radius was too large for our purposes. More on

this in section 5.1 |.

˧ Additional Head Mechanisms Considered

In addition to the cable driven differential, we also considered some other

mechanisms before we could select it as an effective solution. Our investigation

focused on four mechanisms: a Bowden cable transmission-based gimbal, Omni-

Wrist III [54], a U-Joint Supported platform, and the ultimately chosen cable driven

differential. The U-Joint Supported 2DoF platform was originally designed in the

previous project term; however, design modifications were made this term based on

previous findings. Each of the three mechanisms not chosen were initially analyzed

for some unique property they had that would benefit the system, however they

were dismissed once we determined they were not the most effective solution. What

follows is a discussion of each mechanism, along with our rationale for their initial

consideration as well as their ultimate dismissal.

39

 Bowden Cable Transmission Gimbal

(a) CAD model of a pulley pair (b) CAD model of a gimbal implementation

Figure 4.5 Our Bowden Cable Transmission CAD Model

 This mechanism, or rather transmission (Figure 4.5b) that we have

conceptualized a gimbal mechanism implementation (Figure 4.5b), uses a continuous

cable (gray, Figure 4.5a) fed through a Bowden tube (black, Figure 4.5a) to couple the

rotation of two pulleys. Unlike a traditional pulley transmission, the Bowden tube

removes the need to tension the cable by fixing the distance between the pulleys. The

pulley can be moved around freely, and motion still transmitted from the input to the

output. This property was worth investigating as it could potentially alleviate some

design difficulty with transmission routing for other mechanisms. It would also allow

us to combine multiple degrees of freedom into a relatively compact space by

‘stacking’ the output pulleys, as shown in Figure 4.5b.

 Despite the potential benefits, the Bowden cable transmission proved to have

enough difficulties associated with it that it would be problematic to implement. The

first was that the cable would have considerable friction on it by the Bowden tube.

This resulting decrease in efficiency could be mitigated by selecting a cable and

Bowden tube with correct relative diametric tolerances, however it would be

considerably difficult to do so [55]. Additionally, we identified that designing a

method for tensioning the cable would be difficult, but not impossible. With more

time available for testing, the Bowden cable transmission might still be a viable

option, however development time is an important criterion for us.

40

 Omni-Wrist III

(a) Neutral Position (b) Partial Articulation, Single Axis (c) Full Articulation, Both Axis

Figure 4.6 Our Omni-Wrist III CAD Model

 The Omni-Wrist III (Figure 4.6), developed by Ross-Hime Designs, Inc, is an

elegant 2DoF mechanism, however it is not very mechanically simple, and it also has

a complex set of kinematic equations [56],[57],[58]. What led us to initially consider

it was its large range of motion, offering up to, or even greater than 180 degrees of

articulation in both rotational axes. While our requirements did not necessitate this

large range of motion, it meant that there would be considerable possible range of

motion left even after making the mechanism more compact and mechanically

robust. What ultimately drove us to dismiss the mechanism was the difficulty of

controlling the mechanism. Ross-Hime Designs has not released a complete set of

kinematic control parameters, and the research that we found on analysis of the

mechanism described a complex set of equations that were very computationally

expensive [58].

41

 U-Joint Supported 2DOF Platform

(a) (b)

Figure 4.7 U-Joint Platform CAD models

This parallel mechanism operates similarly to the ubiquitous Stewart

platform; however, the design has been modified such that it is constrained to only

two degrees of freedom by utilizing U-Joints to link the control rods with the

effector platform. The U-Joints prevent rotation along any axis other than those of

the control actuators. Two variations of this mechanism were considered (Figure

4.7). We discovered that the first version of the mechanism (Figure 4.7a) was over

constrained. The second version (Figure 4.7b) incorporates an additional rotational

joint (the interface between the two red members). The reason for initially

considering this mechanism was because the control rods (purple) could serve as

both the support structure for the neck in addition to transmitting motion from the

base of the neck to the head.

42

(a) (b)

Figure 4.8 U-Joint Platform Nomenclature

To determine the practicality of this mechanism, we first started by

examining its geometric properties. Importantly, we needed to understand how the

magnitude of the induced rotation (Figure 4.8, red) is affected by different

parameters of the mechanism. Additionally, this analysis gave us a function that we

could use to compensate for the rotation with a serially attached roll stage, mounted

on the effector frame.

Our analysis began by introducing the induced angle of rotation about the

roll axis, , of the effector platform,

 (3)

43

where and are the control link lengths shown in Fig. 1a, and and are the

control angles about the y and x axis, respectively, as shown in Figure 4.8b. We

define as the position vector from 𝑅1to 𝑅2, and as the position vector from

𝑅3to 𝑅4. Note that 𝑅1is projected to the xz plane, and 𝑅3is projected to the yz plane.

(4)

To find our angle, , we will simply use the law of cosines. First, we find the

distance, , between and , which is equivalent to the distance between

position vectors and .

We can now apply the law of cosines to find the total internal angle between the

platform,

We are concerned with the rotation of the platform relative to the platform x-axis,

rather than the internal angle, so we say

Finally, composing the above work yields

Simplifying the above shows that the angle of rotation about the roll axis does not, in

fact, depend on or . Thus, our final equation for is

(5)

44

(a) (b)

Figure 4.9 Zoomed View of U-Joint Platform Joint. Shown: yoke (purple), spider (yellow), platform pin (red)

Seeing that the induced roll is reasonably correctable, we continued our

evaluation by examining what geometric elements of the components would affect

its motion range. We first looked at the effects of the U-Joint geometry. Zoomed

views of the components in question are shown in Figure 4.9; (b) illustrates the

configuration in question. The Platform will reach its angular articulation limit when

the yoke contacts the platform. The pin is assumed to be long enough, so the yoke

does not contact the platform. In a real implementation, the pin need only be long

enough for the spider, and the remaining required pin length may be of different

geometry.

45

(a) (b)

Figure 4.10 U-Joint Platform Cross-Section Geometry

The maximum articulation angle, denoted , will depend on the radius,

, of the platform pin, the base width, , of the yoke, and the base clearance, of

the yoke. To start, we divide by a line, , connecting the rotational center of the

yoke and the point of contact. We say that

From the Pythagorean theorem, we have

Using some trigonometry, we find

Finally, we arrive at the desired expression

(6)

46

4.2 | Electrical Systems Design

It would not be possible for the robot to interact with users and its

environment without a way to process input. This includes audio, physical, and

visual stimuli. To achieve this, the robot needs a set of sensors and processing

components that enable it to sense the world around it and act accordingly. While

careful design can reduce the potential for failure, it is still possible for external

issues or unexpected input to cause a fault. This understanding is what drove our

component decisions and designs.

We started the process for the design of the electrical systems by

determining sensor and processing requirements. This was done in coordination

with the mechanical designs as they influenced the location of the touch sensors,

camera and microphones, as well as the camera field of view. We also worked with

the designs of the mechanical systems to determine actuation requirements. After

researching and selecting suitable component candidates that could meet our

specifications, we determined the system power requirements, and set a power

budget.

We then used all this information to draw a comprehensive electrical system

schematic, which included the necessary circuitry for a fully functioning system.

Namely, we needed to design the power distribution and protection circuits and add

in components to maintain signal integrity. Our schematic also included necessary

auxiliary components as specified by various component manufacturers that ensure

proper component settings and function. Schematic outlining was first done on

using a web-based diagraming software provided by Digi-Key, our primary source

for electrical components and hardware. Though the software does not offer all the

features offered by dedicated circuit design software, its small learning curve and

integration with their parts catalogue made it a time saving tool.

Despite the convenience, Digi-Key’s diagraming software was ultimately not

suitable for our final designs. Upon recommendation from students in the ECE

department, we considered Autodesk Eagle and KiCad. While both offer similar

capabilities, Autodesk Engle proved to be an easier solution to learn. As an industry

47

standard, it is likely Eagle will also be more familiar to future teams. More

information on that can be found later in the results section.

4.2.1 | Processors

This robot processor must be capable of collecting and processing input from

sensors and peripherals, and then using it to compute and rapidly execute dynamic

actions. More importantly, the robot must be able to do this reliably and consistently

to maintain its animated character. Skips or lags due to lack of adequate CPU time

might incorrectly indicate malfunction to the user, breaking the ‘character,’ or

possibly causing more adverse reactions resulting in harm. While careful design can

reduce the potential for failure, it is still possible for external issues or unexpected

input to cause a fault. This understanding is what drove our component decisions

and designs.

As a robot designed for a dynamic production environment, we recognized

that our processor needed to be fault tolerant and easy to reset. To address this, we

outlined several requirements. First, the processor needed a boot-up time of no

longer than 30 seconds. This requirement was deemed a reasonable period the

average person would wait for a computer to restart. The robot must also have a

position control bandwidth of 7.5Hz and a vision system bandwidth of 15Hz. The

bandwidth of a system is the response time of that system. The position control

bandwidth requirement was determined based on the value used for a similar

multi-DOF robot [18]. The vision system bandwidth was determined as a reasonable

bandwidth to handle the larger amount of information images require as compared

to positional values. Finally, it is preferred that the processor does not utilize an

operating system. With an operating system comes boot time, so the robot would

need to take time to restart. An operating system also runs the risk of crashing,

forcing the robot to restart and waste precious time, which would be especially

problematic during a public event or presentation. However, a processor without an

operating system would be able to restart nearly instantly should something go

wrong.

48

As a starting point, we specified that all the onboard processing was to be

handled by a single real-time MCU, in this case an ESP32. The ESP32 is a low-cost,

yet still very capable MCU from Espressif Systems [19]. While it is most popularly

used for its full onboard hardware networking stack, its fast (base 160MHz, 240MHz

configurable) dual core architecture makes it an attractive option for the tight

timing requirements of our robot. It additionally has many of the hardware

peripherals that make robot development easier, such as multiple serial interfaces

as well as hardware ADCs, DACs, and a host of signal processing functions built right

onto the silicon. Development for the ESP32 is also made more accessible by its

integration of FreeRTOS, an open source real time operating system [20]. This

alleviates the often-cumbersome job of designing task schedulers and ISRs for low

level, timing critical applications without adding the unpredictable overhead of a full

OS. For general robot applications, the ESP32 is capable of handling sensors and

motor control, both autonomously and tele-operated. The ESP32 MCU does have its

limits, however, and it lacks the processing power to handle complex AI calculations.

While the ESP32 performs well under reasonably deterministic conditions, there are

limitations to its capabilities.

To address the weaknesses of the ESP32, an external processor such as a

laptop or Raspberry Pi, that would wirelessly connect to the ESP32 was considered.

However, as the design evolved, it was decided that a Raspberry Pi would directly

connect to the ESP32 boards inside the robot. While Raspberry Pi utilizes an

operating system, which we initially sought to avoid, it was ultimately decided that

the unpredictable nature could be dealt with, as it would perform only bulk

operations. Having an OS, in this case a Linux distribution, means creating user

interfaces (in our case simply over the command line), is much faster. Although not

as powerful as a laptop or PC, the Raspberry Pi is still a versatile computer despite

its small size. While the ESP32 boards would handle the I/O of the sensors and

motors, the Raspberry Pi would handle the AI of the robot.

 Espressif Systems offers the ESP32 as an integrated surface mount

package, or as part of a number of development board options, each tailored for

different applications. Two ESP32 development boards were considered－the

49

DevKitC and the WROVER-VB. Unlike the other development boards offered by

Espressif, the DevKitC is a general-purpose development board designed to be

easy to use and integrate with a breadboard. Its low cost of $10-$18 made it an

affordable option. Meanwhile, the WROVER-VB is a more advanced version of

the DevKitC. It includes features such as PSRAM, support for LCD and microSD,

and a multi-protocol USB bridge. However, these extra onboard devices also

mean the WROVER-VB is more expensive than the DevKitC at $40. However,

these features are not necessary for our purposes, making the standard DevKitC

the most sensible option.

 Similarly, two Raspberry Pi models were considered, the Raspberry Pi 3

Model B+, or the Raspberry Pi 4 Model B. The two processors have similar

specifications, with the Raspberry Pi 4 having a slightly better processor and

memory options, running at 1.5GHz with RAM of up to 4GB [21], compared to the

Raspberry Pi 3’s 1.4 GHz with only a 1 GB RAM option [23]. However, a common

complaint with the Raspberry Pi 4 is that it experiences hardware problems. Among

other issues, a particularly concerning issue with the Raspberry Pi 4 is that it gets

hotter and more prone to temperature throttling than the Raspberry Pi 3 [23].

Meanwhile, the Raspberry Pi 3 is well documented and still supported and does not

have the same hardware issues. This difference in reliability was the deciding factor

in using the Raspberry Pi 3 Model B+.

The design we used for the processor became a combination of the

Raspberry Pi and ESP32 communicating through SPI protocol. Initially, the

Raspberry Pi would act as the SPI slave and handle the AI and visual sensor of the

robot, while an ESP32 would act as the SPI master, taking information from the

motors and sensor and sending them to the Raspberry Pi to be processed.

Commands for how to move the motors would be sent back from the Raspberry Pi,

and the ESP32 would act accordingly. This would allow the robot to have a safety

net if the Raspberry Pi crashed, allowing the robot to continue operating should the

Raspberry Pi fail as the ESP32 could be designed to not rely on the Raspberry Pi.

The design changed along the way, as we soon realized the ESP32 would not

be capable of handling all of the motors and sensors, due to lacking the physical pins

50

to support both the Raspberry Pi and the sensors and the amount of information

that would need to be transferred. We revised the design in two ways. The first was

to make use of two ESP32’s - this allowed for more connections to sensors, and each

ESP32 could be given a specific role. One ESP32 would collect data from the sensors.

The other ESP32 would handle the motors. The second revision was to make the

Raspberry Pi a SPI master and the ESP32s SPI slaves. Although this contradicts the

preferred requirement to not rely on an operating system, the better performance

and physical pins of the Raspberry Pi made it much easier to work with. With the

split roles of the ESP32s, we were concerned that making one ESP32 a SPI master

would overcomplicate the system. With the higher processing power of the

Raspberry Pi, it would likely be able to handle the communication much better than

a single ESP32 could.

4.2.2 | Imaging and Computer Vision

 As a part of interacting with people in front of it, the robot needs visual

sensors to see what the world around it is. For this robot, it needs to be able to

identify people within its viewing range, and seek out people based on faces, bodies,

or hands. For this reason, cameras are necessary to detect the finer details of people.

For this reason, vision systems such as ultrasound, infrared, and LIDAR are not

viable options.

The camera of the robot has two must-have requirements. The first

requirement is that the camera should have about 120° of horizontal FOV and 40° of

vertical FOV. Although an actual goat’s FOV is significantly higher at 320°－340°, it

is unlikely that all those degrees are necessary for the operation of the robot. Most

of the interaction with the robot will occur almost directly in front of the robot

probably within the front 90° as this is where much of the interaction between

humans happens. Any excess beyond that would mostly be used to look for people

to interact with. For instance, if the robot is seeking someone to interact with and

someone is spotted in the FOV, the robot will turn to that person. Therefore, any

more degrees beyond 90° are rarely being used, and will require more processing

power, and camera view blending. Given available models, 120° was determined to

51

be an appropriate number that allows the robot to still notice movement outside the

area directly in front of it but also balanced with the necessary processing power for

one or two cameras. However, 120° is a large FOV for standard cameras. Therefore,

two cameras, each with about 60° of horizontal FOV, would also be an acceptable

solution as together they would provide the desired FOV.

The second requirement is that the camera needs to have a minimum frame

rate of 30 FPS. This was decided to be a reasonable requirement, as 30 FPS still

generates images where objects can still be tracked. Any lower may make the

footage too choppy to track a single object without mixing up objects, and no higher

bound was set as the FPS of a camera can be lowered as necessary. Finally, a

preferred capability of the camera is that allowing the robot was capable of being

able to see the ground at a minimum of 1m in front of its chest. Despite these

requirements, only one camera will be used in this iteration of the project. This is

done for several reasons. First, 60° of horizontal FOV is still a reasonable FOV for a

robot. Second, reducing the number of cameras will save time from trying to

combine and analyze footage from two cameras. The purpose of this robot is to be a

proof-of-concept for future projects to build on. It would be a waste to invest too

much time and effort into cameras that can be potentially replaced by a better

solution. It is more important that the robot show its ability to respond to visual

stimuli, rather than have a wide FOV; while having a wider FOV would be beneficial

for future robots, the time and effort spent on joining the images using the camera's

relative positions would be better spent on the proof of concept of actually using

object detection on the resulting image.

52

Figure 4.11 ESP-EYE Camera Board

The first camera considered was the ESP-EYE (Figure 4.11). The ESP-EYE is

an ESP32 development board designed by Espressif. Unlike the DevKitC, The ESP-

EYE is designed for image recognition and Artificial Intelligence of Things

applications [24]. The built-in camera is a 2-megapixel OV2640 camera. It has a

horizontal FOV of 56°, a vertical FOV of 40°, and a framerate of 30 FPS [25].

However, the ESP-EYE’s only form of connection is a USB port that handles

information and power transmission for the system. To utilize the ESP-EYE, it would

need to connect to the Raspberry Pi via its USB port, which contradicts one of the

requirements. Additionally, the ESP-EYE lacks detailed documentation, which may

make it difficult to work with.

Figure 4.12 Pixy2CMUcam5 Image Sensor

The next camera is the Charmed Labs Pixy 2 CMUcam5 Image Sensor (Pixy 2)

(Figure 4.12) [26]. The Pixy 2 supports multiple interface options and is therefore

capable of connecting to several types of controllers. Recently it has added support

for Arduino and Raspberry Pi platforms. Like the ESP-EYE, the Pixy 2 is also capable

of image recognition, and with a framerate of 60 frames per second (FPS), the Pixy 2

can take smooth video. The lens of the Pixy 2 has a FOV of 60° horizontally, and 40°

53

vertically. Being an image sensor, the Pixy 2 already has built-in image recognition

features. By pressing the button, the Pixy 2 can be taught what images it should

recognize. While this feature would be helpful, it defies the point of designing the

software to handle image recognition on its own. However, the Pixy 2 is also

significantly more expensive than the other options at $60 each.

Figure 4.13 Arducam with M12 lens module

The third camera is the Arducam with the M12 lens module (Figure 4.13)

[27]. The Arducam is designed for use exclusively with the Raspberry Pi, as it can be

plugged directly into the camera port of the Raspberry Pi board. It can record at

multiple resolutions at different frame rates. It has 30 fps at a resolution of 1080p,

60 fps at 720p, and 90fps at 480p. With the M12 lens, the Arducam has a horizontal

FOV of 56°, making it slightly short of the acceptable FOV specification, but not by a

large amount. As Raspberry Pi’s only have one camera port, it will be impossible to

use two of these cameras. However, the Arducam has a low price of $19, which

makes it a good option for testing and working with a camera feed.

The camera we decided to use was the Arducam with the M12 Lens. As stated

before, the current project only requires one camera to show that the robot can

react to visual stimuli. The Arducam connects to the Raspberry Pi via the Raspberry

Pi’s camera port, making it easy to integrate. Although the Pixy 2 would be a more

ideal solution given its capabilities as an image sensor, its high price point makes it a

large investment from a budgetary standpoint. Additionally, having image

recognition capabilities built-in defeats the purpose of the project. The built-in

firmware and applications that come with the Pixy 2 means more effort will have to

54

be spent on integrating, and potentially fighting, the existing systems of the image

sensor. The Arducam has similar performance specifications for a much smaller

price.

4.2.3 | Microphones and Audio

 Modern interactive robots are typically expected to be responsive to various

audio cues, be it in the form of verbal communication, or simply making noises at it,

like clapping. Not only does the robot need to be capable of detecting the presence

of these sounds, but it must also be capable of determining the source of origin. This

implies a set of strategically placed microphones around the robot. For this iteration

of the robot, it was decided that only the detection of sound presence would be

necessary, leaving room for future projects to expand the robot’s capabilities, such

as voice recognition. Although voice recognition would be a good feature for the

final robot. It is not a focus for this iteration.

For audio detection, a set of three microphones will be used. They will be

placed on the front, right, and left of the robot. The three microphones will not

only allow the robot to detect sound, but also locate the source of the sound－

something necessary for the robot to be able to turn and face the source auditory

cues outside of its FOV. The requirement for the sensitivity of the microphone

was chosen to be about -50 db. The average voice level at 2 meters away is

approximately 54 dB [25]. 2 meters was considered a reasonable maximum

distance for a person to stand away from the robot while talking to it. The

sensitivity of a microphone is the minimum volume that it can detect. Therefore, it

was necessary to find a microphone with a sensitivity of at least -50dB, but not

too much greater than the said -50 dB, otherwise the microphone would be too

sensitive to sound. Microphones with wire leads were prioritized, as they would

be the simplest to integrate with the protoboard.

 When evaluating microphones, there are 3 types of microphones that are

commonly used: noise canceling, omnidirectional, and unidirectional. Noise

canceling microphones are designed for sources that are close to the microphone,

without detecting extraneous noise. They are generally used for applications such as

55

headset or podium microphones. Omnidirectional microphones can detect noise

from all directions, which is useful when the direction of the sound does not matter.

However, using multiple omnidirectional microphones runs the risk of overlap

happening. This happens when multiple microphones pick up the same sound. Since

the microphones we are using in particular will not be able to detect the direction

the sound is coming from, the overlap will likely confuse the robot. For this

application, unidirectional microphones are the preferred solution. Unidirectional

microphones only detect noise in the direction they are pointed.

Figure 4.14 AUM-5047L-3-LW100-R Microphone

 The first microphone is the AUM-5047L-3-LW100-R (AUM-5041) (Figure

4.14) [26]. This unidirectional microphone is rated for 1.5V with a range of 1.5V to

10V and has a sensitivity of -47db ±4 dB [27]. It has wire leads, making it easy to

connect to a proto-board or bread board.

Figure 4.15 FB-EM-30346-000 Microphone

The next microphone is the FB-EM-30346-000 (FB-EM) (Figure 4.15) [27].

This microphone is rated for 1.3V with a range of 1.3V to 10V and has a sensitivity of

-48db ±3 dB at 74db SPL [27]. Unlike the AUM-5041, this microphone is an

omnidirectional boom microphone. However, being a boom microphone, the FB-EM

56

is much more expensive than an electret condenser, making it a difficult choice to go

with when considering the budget.

The last two microphones are the POM-2246L-C33-LW100-R (POM-2246L)

and the CMC-3015-44L100 (CMC-3015), which are nearly identical [28]. Both are

omnidirectional electret condenser microphones with similar voltage ratings and

sensitivity levels. Both microphones are rated for 1.3V with a range of 2V to 10V.

However, the POM-2246L has a sensitivity of -46db ±3 dB [28], while the CMC-3015

has a sensitivity of -44db ±3 dB [32].

We decided to use the AUM-5041 as it is the only microphone that is both

unidirectional and is close to the desired sensitivity specification. Its low price point

of $2 makes it a cheap investment. As the other microphones were omnidirectional

microphones, they ran the risk of causing overlap that could confuse the robot. The

microphones will be integrated into the robot through its circuit board. The input

(red) line both receives power and sends signals from the microphone. That line will

be connected to the ESP32 which will receive the signals from the microphone.

4.2.4 | Touch Sensors

The last need for the sensors is the ability to sense touch. As an interactive

robot, the robot needs to be able to react to being touched. People will inevitably

want to touch the robot, especially if it was designed to interact with people. By

behaving differently according to where it was touched in combination with its

other behaviors, the robot can sell the image of a character.

For the capacitive touch sensors, it was determined that they must be able to

detect a touch through at least 3 mm of material and that at least 6 sensors are

necessary for adequate coverage. These 6 sensors would cover much of the neck and

head areas which is where most of the physical interaction is expected to happen;

these 6 sensors would cover the left neck, right, neck, left head, right, head, top head,

and torso of the robot. The reason for the 3 mm of material is that a capacitive touch

sensor will probably be spread across a foil skin behind an exterior layer of

material. Although 3 mm is larger than necessary since the exterior layer is unlikely

57

to be that thick, it is a safe limit since the exterior layer has yet to be finalized.

However, there are currently no plans for the cover to be created for this project.

Therefore, it will only be necessary to have nodes on the robot that simulate the

touch points of the robot. That being the case, whether the touch sensors can detect

touch through the cover is not important for this project.

Although it is technically possible to operate with only one touch sensor, the

robot would exhibit limited behavior. Animals react to touch differently depending

on where they are touched. It was determined that at least 6 sensors would give the

robot enough different types of motion. Two would be placed on the body of the

robot on its left and right flanks, which would allow the robot to turn its head and

neck to that side and react. Two more sensors would be placed on the left and right

of the neck which would limit the speed and range of motion of the neck when being

touched. Finally, two would be placed at the top of the head, one at the back of the

head, and one for the top of the face and its horns. These would probably be the

most used and allow the robot to nuzzle hands.

Figure 4.16 Phidgets Touch Sensor

 The first capacitive touch sensor is the Phidgets Touch Sensor 1129 (1129)

(Figure 4.16) [33]. This capacitive touch sensor is capable of detecting a touch

through plastic, glass, or paper; up to ½” thick. Although the sensor is small,

additional connections can be soldered onto the sensor to increase its range. The

sensor is 3.3V compatible, however it also requires a Hub Phidget that connects to a

computer via USB [32]. This makes it unusable with the ESP32, as it does not have

USB hardware.

58

Figure 4.17 Adafruit 12-key Capacitive Touch Sensor

 The other capacitive touch sensor considered was the Adafruit Multi-Key

Capacitive Touch Sensor Breakout Board (Figure 4.17) [35]. This capacitive touch

sensor comes in a 5, 8, and 12-key configuration. Each key is a touch sensor that can

be extended with additional wiring. When a key is touched, the board will output a

response that the key is being touched. This board allows for a much wider range

with only a single board. However, it only works for mediums that are electrically

conductive, which limits the materials it can be used with [35].

 We decided to use the Adafruit 12-Key Capacitive Touch Sensor Breakout

Board, which means only one sensor will be necessary. Additionally, the

expandability of the board allows for greater coverage of the robot. Because this

project will not address the cover of the robot, there is no need to find sensors that

will be compatible for a non-existent cover. When comparing the Adafruit touch

sensor to the Phidgets touch sensor, the range and communication capabilities of

the Adafruit sensor are far superior. The 12 keys of the Adafruit sensor allow for a

greater variety of ranges, while not needing to rely on a USB hub makes the Adafruit

sensor much more reliable compared to the Phidgets sensor.

 ESP32 boards also can turn most of their GIPO ports into capacitive touch

sensors. The ESP32 has more than enough ports to cover our needed 6 touch

sensors and upon testing it showed that it could detect a signal through a foil, this

sensor also had the advantage of not needing extra communication like with the

Adafruit multi key sensor which would delay the system. Touch thresholds could

also be set on the ESP that would trigger an interrupt which might be advantageous

59

for software design. Compared to the previous two options using the ESPs built-in

capacitive touch sensors has some clear advantages such as shorter delay times, no

need for extra communication software and the option of hardware interrupts.

4.2.5 | Motors

The motors we chose to use to actuate the robot were UCONTRO iHSS57-36-

20 integrated stepper motors [36]. These motors are compact and are capable of

high torques. These motors have an operating voltage range of 24-50VDC, and

nominal operating currents of 3A. However, if the motors encounter high stall

torques, the motors may pull much higher currents than 3A. Therefore, to prevent

the motors from pulling more currents than the power supply can provide, we will

consider the motors capable of pulling 6A. However, doing so also increases the

power requirements of the robot.

4.2.6 | System Block Diagram

(a) (b)

Figure 4.18 Initial and Final Electrical System Diagrams

Although knowing the components is an important part of designing the

robot, what really matters is how the components are assembled. For this reason, a

60

system diagram can be used to highlight the important components of a system and

illustrate how they are connected.

The robot was designed with two sections in mind. The first part of the robot

is the high-powered motors used to move the head and neck of the robot. The

second part is the processors of the robot. In the initial design (Figure 4.18a), the

processor consisted of a Raspberry Pi and one ESP32 module. The Raspberry Pi

would handle the AI algorithms and camera data. The ESP32 would handle data to

and from the microphones, touch sensor, and motors. Additionally, the ESP32 would

be able to handle the manipulation of the head and neck motors.

However, upon working with the physical boards, it became apparent that a

second ESP32 would be necessary. The additional board would cut the

computational load on a single ESP32, while also having enough physical pin

connections for all of the sensors and motors. The system diagram was revised to

reflect these changes (Figure 4.18b).

4.2.7 | Power Supply

Figure 4.19 Power Supply and Delivery Circuit Diagram

Due to the voltage and current requirements of the motor, approximately

48V and 32A were necessary to run the system. However, single module power

supplies capable of providing the required power are generally quite expensive,

61

costing about $300 at the minimum. However, because voltages in series add

together, we were able to substitute a single power supply with four 12V and 30A to

generate 48V at 30A (Figure 4.19). Although this is not the 32A we originally

desired, this iteration of the robot will not use all five motors like originally planned.

Therefore, the power supply can have a lower rated current.

After the power supply is an overcurrent protection device. Should the circuit

try to pull more than the rated current, the overcurrent protection will cut the

connection. This will prevent an excess of current in the main circuit and protect the

circuit from damage if the power supplies malfunction. At the same time, the

overcurrent protection also protects the power supply if the circuit tries to draw too

much current. Several options were considered for this device. The first was a fuse

rated for 30A, should the current exceed 30A, the fuse would blow, cutting the

connection to the rest of the circuit. Although this option was viable, fuses need to

be replaced once they blow. The other option considered is a circuit breaker. Circuit

breakers are generally more expensive than fuses but can be easily reset.

Considering that the robot needs to interact with people, it is important for the

system to be easy to reset. For this reason, a circuit breaker was the better design

decision. For this circuit, we used a 30A circuit breaker rated for 48V.

62

Figure 4.20 Zener Regulator Circuit

Figure 4.21 Overvoltage Protection Circuit

Figure 4.22 SCR Crowbar Circuit

Following the circuit breaker is an overvoltage protection configuration.

Although power supplies are reliable, there is still the possibility of the power

supply malfunctioning. To protect the circuit from such a malfunction, an

overvoltage circuit is used. Some common overvoltage protection circuits are Zener

voltage regulator circuits, Zener overvoltage protection circuits, and SCR

overvoltage crowbar circuits. Zener voltage regulator circuits (Figure 4.20) use

Zener diodes to limit the voltage of a circuit, if the voltage in the circuit overcomes

the rated voltage of the diode, the Zener diode will allow current to flow through it.

Doing so sends the current to ground, reducing the voltage to the rated level. A

Zener voltage regulator will do this without cutting power to the load, allowing

everything else to function. In comparison, a Zener overvoltage protection circuit

(Figure 4.21) behaves in the same manner as the regulator circuit. However, the

overvoltage protection circuit will cut power to the load if an overvoltage condition

occurs. SCR Crowbar circuits, in contrast, close a short circuit over the output if an

63

overvoltage condition is experienced (Figure 4.22). They are often linked to a fuse

which will blow if an overvoltage condition occurs.

For this robot, we decided to use a Zener voltage regulator circuit. Although a

Zener overvoltage protection circuit is likely safer for users, suddenly cutting power

to the circuit runs the risk of damaging the processors from the sudden power loss.

The Zener regulator circuit is also preferable over the SCR crowbar circuit because

the SCR circuit uses a fuse. As discussed before, a fuse that blows needs to be

replaced, which is impractical for this robot. Therefore, compared to these options,

the Zener voltage regulator was the most preferable.

4.2.8 | Motor Circuit Diagram

Figure 4.23 Motor Control Circuit Diagram

 To reduce the complexity of the robot for C-Term, this iteration of the robot’s

head was not designed to have a roll axis. The motors for the head and neck are

UCONTRO iHSS57-36-20 hybrid stepper motors. These motors are rated for

operation at 20-50VDC and pull about 3A, handling up to 6A. We wanted to run the

motors at 48V, so 16Ω resistors for each motor were used to ensure that the current

would be reduced to an acceptable level. The motors have positive and negative pins

64

for five different functions. The PUL pins are also known as step pins on some

stepper motors. Positive signals make the motors take a step. The DIR pins control

the direction of the motors. A positive signal to the pins makes the motors rotate in

a counterclockwise motion while a negative signal makes the motors rotate in the

opposite direction. The ENA pin enables or disables the motors. When left

uncontrolled, the motors are enabled. The PEND pins are output pins that are high

when the actual position is different from the command position. Finally, the ALM

are output pins that are high when a protection feature is activated, such as

overvoltage, over-current, or a position following error has occurred. The motors

are each connected to an ESP 32 which handles their control (Figure 4.23).

 For a physical safety mechanism, an emergency stop (E-Stop) is used

between the motors and the power line. E-Stops are a general safety measure that is

expected of every robot and can be used in the rare instance that further operation

of the robot will result in physical harm. The presence of an E-Stop, while it likely

never will be required, is a vital step to ensure that the robot can be switched off

immediately and physically. Should the E-Stop be switched, the switch will cut

power to the motors and redirect power back to ground. Without power, the motor

will be forced to stop immediately which should prevent further harm. Should the

robot start malfunctioning, this switch can be flipped to prevent the robot from

moving dangerously.

 Because the motors and processors are connected to the same power source,

there needs to be a way to reduce both the current and voltage going to the

processors to prevent them from being damaged. To do so, we used a DC/DC buck

converter to reduce the voltage from 48V to 5V. We used a DROK step-down voltage

regulator as the converter for its ease of implementation and capability to reduce

65V to 5V. However, the DC/DC converter takes a maximum of 8A, and outputs a

current equivalent to the input current. To reduce the current to a more suitable 5A,

a resistor connected to a 5A circuit breaker was used. Should the processor circuit

try to pull more than it is rated to handle, the circuit breaker will cut the current

flow and prevent the processors from being damaged. A diode is also used to keep

current flowing in the correct direction.

65

4.2.9 | Processors and Sensors

(a) (b)

Figure 4.24 Processor Circuit. Sensor ESP32 (a). Motor Control ESP32 and Raspberry Pi (b)

 As mentioned before, the processors are broken into three parts, a Raspberry

Pi and two ESP32s. (Figure 4.24a) shows one of the ESP32s. This board uses the

microphone and internal touch sensors to detect stimuli and sends its data to the

Raspberry Pi to be processed. The on-board touch sensor has lines that are directly

connected to the GIPO ports of the ESP to allow for its internal touch sensor

readings as needed. This ESP32 also has three microphones attached to it. Powered

by the on-board 3.3V power output, the microphones change in resistance

depending on the volume the sense. The microphones are then connected to 20 gain

operational amplifiers (op-amps) that amplify the signals of the microphones.

Without the op-amps, the differences between sound levels are difficult to notice.

The Raspberry Pi is the SPI master. It receives data from the ESP32s, and

based on the sensor information, makes decisions about what to do next using its AI.

It then transmits motor positions for one of the ESP32s to handle (Figure 4.24b).

This ESP32 handles the control of the head and neck motors. In addition, five limit

switches are connected to the module that are used to define the limits of the robot’s

movements when it goes through its calibration phase. To prevent switch

debouncing, the limit switches are in an RC debounce circuit. This prevents a faulty

signal from erroneously triggering the robot’s limit switch related code. According

66

to their data sheets, the motor controllers on the motors are rated for 5V of input

voltage. However, the ESP32 is only capable of outputting 3.3V. To compensate for

this difference, logic level converters were used to convert the ESP32 output voltage

to that from the Raspberry Pi. However, this design proved to cause errors, and was

scrapped.

4.3 | Software Design

4.3.1 | Section Introduction

Due to the complex nature of the robot and the tight timing requirements for

various software components, the robot’s software has been broken up between a

Raspberry Pi and two ESP32s. The Raspberry Pi is a powerful embedded computer

that runs a full operating system (OS). With a full OS comes the convenience of built-

in support for embedded communication as well as pre-existing libraries for visual

detection. However, the onboard operating system introduces an element of

uncertainty when dealing with tasks that require tight timings. For these operations,

we have elected to use the ESP32, a microcontroller from Espressif; ESP32s also

come with existing support for embedded communication and tight motor control.

Furthermore, ESP32s also have built-in libraries for embedded sensor

communication, stepper motor pulse control, and GPIO control. Given that sensor

data would need to be processed on the ESP32 and that motor controls need to be

processed immediately, it was decided to split the responsibilities between two

ESP32s; one will receive and send motor positions and the other will read in

information from the sensors and send that data back to the Raspberry Pi. The

combination of these two systems allow for more sophisticated calculations for our

AI Architecture on the Raspberry Pi while the ESP32s allows for more precise

control over the motor operations.

67

4.3.2 | User Experience

˧ Personas

 To better document and design the architecture from a user experience

perspective, extensive work was put into writing out the various scenarios that the

robot would expect to encounter as well as the expected reactions of the robot. At

the start of this process, various personas were created. These are archetypes of

people that were expected to interact with the robot. These personas were based on

the expected circumstances that the robot would be placed in based on the

stakeholder needs. Traits like age, sex, gender, and personality formed the base of

these personas; furthermore, their technical background, expectations for the robot,

and positive interactions were described. These details influenced how we would

expect each persona to approach the robot, what the persona would expect from the

robot, and what the robot represented to them. By detailing this information down,

the root's behavior and the software design could be better tailored to their needs.

See this example below:

Name: Laura Wilson (Fictitious) Age: 18 Gender: Female

Personality: Laura Wilson is an outgoing young lady who has a close-knit group of friends. She is
an extrovert who enjoys making new friends and social interactions.
Background: Laura Wilson grew up on the West Coast of the United States in San Francisco with
her mother and father. She attended the local high school where she joined the robotics club and
played soccer; she maintained high grades, graduating in the top 10% of the class.
Job: High School Student
Technical Background: FIRST Robotics / VEX Robotics, Consumer Electronics
Purpose: Laura Wilson is here with her father, where they are touring colleges that Laura is
considering applying to. She is at an admission tour where she is determining whether she wants
to attend WPI as a technical college.
Expectations: When Laura Wilson is looking at the robot, she would be attentive to concepts and
principles that she has yet to learn and wishes to.
Laura Wilson is also interested in the robot building process here at WPI and wants to know if it is
fun.
Fulfillment: A positive situation would end with Laura Wilson being suitably impressed with the
robot and interested in learning how to build a similar robot herself. Eventually, she decides WPI
is an impressive university in robotics and places it in the top tier universities that she is looking
at.

68

Figure 4.25 Software Personas Example: "Laura Wilson"

 The age, gender, background, and personality traits of this persona inform us

of a more extroverted young lady who maintains her friendships while also

maintaining a life filled with sports, friends, and robotics. The technical background

section details the persona’s technical knowledge which greatly influences their

expectations for the robot. In this case, Laura is familiar with consumer electronics

but also has a basic knowledge of robotics through her participation in high school

robotics. The purpose section dictates the reason why the person is interacting with

the robot as well as decisions that the robot might influence. For Laura, this is

during an admissions tour where she is determining which universities she wishes

to attend in the future. The expectation sections describe what the persona is

looking for in this robot; while Laura is looking at the concepts and knowledge that

this robot represents, her father would be looking at the student input and

resources that this robot is the product of. Finally, the fulfillment section describes

the best outcome of their interaction with the robot which fulfills their expectations.

 As part of this process, seven personas were created which covered each

section of expected interactions: prospective students to WPI, parents of

prospective students to WPI, current WPI students, WPI alumni, WPI professors,

and younger children. Furthermore, these personas covered the circumstances in

which the robot is currently expected to appear in－ admissions tours, WPI

community events, and outreach programs. These personas and their various traits

influence the user stories which go more in depth of how each persona would

interact with the robot. By starting with the people who will be experiencing the

robot, the process becomes user-focused with the emphasis put on how people

interact with the robot instead of what the creator's expectations are.

(See Appendix E for a Full List of Personas)

˧ User Stories

 Each of the personas was then given a user story. These stories describe how

the persona would interact with the robot, what the robot does in response, and the

69

progression of events. These events were separated into a list for each person.

These lists create a positive story for the persona and help reveal not only how the

person will react to the robot but also how the robot should react to the person. See

this example below:

• Laura Wilson
• Laura Wilson has done her research beforehand and knows that a mascot robot exists but not

its capabilities. She then seeks out the robot during an admissions tour.
• Robot notices Laura’s approach, fixates on her and moves its head to get her attention.
• Laura moves around the robot trying to get a closer look at the inner mechanics.
• Robot head and neck tracks Laura’s movements.
• Laura notices that the robot is tracking her and stops her movement. She then waves at the

robot to see if it will respond.
• Robot head and neck follows the hand and makes Goat Noise in greeting.
• Laura says hi back to the robot.
• Robot makes goat noises in response.
• Laura reaches out her hand and touches the robot directly on the top of the head.
• Robot nuzzles upward into Laura’s hand.
• Laura moves her hand around the robot’s head still petting it.
• Robot nuzzles in general direction of Laura's petting.
• Laura decides that the robot is pretty interesting since it is able to respond well to her

movements and that she would like to know how to build a similar robot.
• Laura asks the operator to take a selfie with the robot.
• Operator poses the robot with Laura to take a photo.
• Other guests move forward to the robot.
• Laura then has a lot more questions about the robot building process to which she asks the

admissions guide or the operator.

Figure 4.26 Software User Story Example: "Laura Wilson"

 This user story describes how and where Laura communicates with the robot

through her verbal and physical interactions. The expected reactions from the robot

are also listed out－ not what the behavior currently is but rather what the behavior

should be. Furthermore, these user stories also help identify behaviors that were

not previously considered as well as resources and expectations outside of the robot

interaction. These user stories also helped use divide up the personas into certain

categories, each who interact with the robot in their own way: standard personas,

who interact physically with the robot and treat it like a real goat; investigators, who

attempt to Figure out the limitations and behavior of the robot; and observers, who

are too shy or reserved to interact with the robot but will observe others who do.

From these user stories, three major issues were identified that had been

overlooked. Firstly, the robot will need to be able to distinguish between ambient

70

noise and noise directed at it. It would be annoying for the robot to interrupt a

nearby conversation with goat noises constantly. Secondly, an operator will always

be required to monitor the robot and answer questions about both the robot and

WPI. This information includes topics like school resources, why and the process in

which this robot was built, names of the mechanisms and software structures, and

why particular choices were made in its design. Finally, a fair portion of the

personas did not physically interact with the robot as they were too shy or reserved,

especially in front of a crowd. Some personas would try and research as much as

possible before interacting with the robot. Therefore, it would also be wise to have

some online resources that explain the mechanism, software architectures, and

contains a copy of the final MQP paper. These user stories also drove the

development of the robot’s use cases, which formed a more concrete explanation of

the expected behaviors.

(See Appendix F for a Full List of User Stories)

71

˧ Use Cases

 After the user stories were done, the next obstacle to tackle were the use

cases. The use cases were created using the key observations from the user stories;

each story was thoroughly analyzed and matched with use case sections. This

allowed us to partition the use cases into seven categories: Toggle Manual Control,

Manual Control, Toggle AI Mode, Seeking Behavior, Non-physical Interaction,

Physical Interaction, and Sound Reactions. Use cases are a more formalized way to

record and organize a list of actions defining the interactions between a user and the

system to achieve a goal.

See an example below:

1: Sound Reactions
a. User

i. Robot
b. Purpose

i. Robot wants to engage with a person or group of persons through
auditory ways.

c. Preconditions
i. Robot is in AI mode.

ii. People are within interaction distance.
iii. Sound is not being made in response to a conversation.

d. Triggers
i. Sound is detected.

e. Flow of Events
i. Sound is detected.

ii. Robot makes a sound.
f. Post Conditions

i. Robot is still fixated on the same person.

Figure 4.27 Software Use Case Example: Sound Reaction

 Each use case is divided into 6 sub-sections: user, purpose, preconditions,

triggers, the flow of events and post conditions. This particular use case describes

the sound reactions of the robot. Each of the subcategories are listed and expanded

out, the user being the use case user, purpose being the aim of the case,

preconditions being things that have to be true for this use case to be applicable,

triggers are the events which fire off the actions, flow of events being the list of

actions or events that take place after the trigger, and lastly post conditions being

conditions that are true after the actions are done.

72

 In the initial document multiple problems were identified. First, we didn't

have any way to trigger manual control which meant the AI mode was the only

option. Secondly, the seeking behavior was not linked with the physical and

nonphysical use case properly which resulted in an error with regards to the

preconditions never being fulfilled for the seeking behavior. Lastly, early versions

didn't have the sound and parallelization fleshed out, yet which resulted in there

being no sound reactions case. All these issues were phased out as we iterated on

the system.

˧ Use Case Priority

The priority of the behaviors was decided by consulting our stakeholders’

requirements and doing a feasibility analysis. There were a variety of reasons we

decided to go with this ranking. Some options would be time-consuming to

implement while others would be very computationally expensive. We listed the

priority and the reasoning behind each rank in our use case document. A couple of

examples of our ranking can be seen below.

Table 4.1 Prioritized Use Cases

Priority Name Use Case Reason

5 Conversation
Detection

Robot able to
detect differences
between
conservation and
directed cues

This particular behavior is important for the
robot to not interrupt conversations and is
the next step after sound detection. It would
allow people to have conversation near the
robot without interruption which sells the
goat being able to only react to sound
directly toward it.

7 Hand Nuzzle
Behavior

Robot goes out of
outstretched hand

This behavior is low priority because of the
difficulty of doing it and low likelihood of
people outstretching their hands. Guiding
the head of the robot to a hand with only its
vision is far harder than just pointing the
head toward that hand. Furthermore, it was
determined that a person is far more likely
to just touch the head than to reach out a
hand.

73

Conversation detection and hand nuzzle are 5 and 7 in the priority list

respectively. The explanations go into detail about the difficulty of the

implementation, complications and other reasons for its position amongst the list.

The use cases and priority list drove the development of our AI architecture choice

as well as a clear list of our requirements and needs.

(See Appendix G for a Full list of Use Cases)

(See Appendix H for a Prioritized List of Use Cases)

4.3.3 | Embedded Software

˧ Communication Protocol Design

For our communication protocol we considered a multitude of choices and

evaluated them based on our needs and our implementation requirements. The

protocols discussed and analyzed were SPI, UART/serial, and I2C. Our general

requirements were that more than 2 devices would need to communicate, we

needed a fast data transfer method to keep our AI architecture up to date with

sensor data and lastly the communication protocol could not be blocked.

We first considered UART which at first seemed like a good fit, it was robust,

all our processors could use it and its data transfer rates were more than adequate

at a high baud rate. It also had the advantage of having easily accessible libraries for

both our devices. While it could not directly set up more than three devices, we

could write a communication protocol which would take this into account and allow

a three-device setup.

I2C was also a candidate, as it could be set up between more than 2 devices.

Additionally, it allowed for fast data transfer between devices and it had a master

slave setup allowing for one of our processors to control the flow of information. I2C

also had a clock which ensured a robust method to prevent data loss or corruption

during communicating. The downsides were that we would have to do extensive

wiring, the libraries available were not intuitive, and lastly it was a new concept so it

would take extra time to learn it to the level that a communication protocol for our

robot could be set up.

74

SPI had many advantages, it had multiple libraries which allowed for easier

integration. It also bolstered a controllable data transfer rate which could be set to

high speed for fast data transfers. In addition, SPI allowed for more than two devices

to be set up, in a master slave relationship which like the I2C could prove beneficial

in our communication protocol design. SPI did have a few downsides though; we

would have to set up clocks for it and it would require extensive testing to make it

reliable.

We tested and attempted to set up all these protocols, after further analysis

of the prototypes and the features and downsides we decided that SPI would fit best

within our project. This decision in our design process was predicated on a

multitude of factors ranging from initial prototype successes, to the extra steps that

would be needed to set up our 3 processors with this protocol.

4.3.4 | AI Architecture

There are a wide variety of AI architectures that can dictate the behavior of a

system, each with its own advantages and disadvantages. Each architecture

structures the system using different theories of behavior. Based on the use cases,

parallel functionality was not required for this project－ the only case is for created

noises in response to auditory signals. Other considerations are that the AI must be

able to respond to unexpected circumstances. A crowd of people will not provide a

controlled and stable environment. Finally, this architecture must be maintainable

and extensible for future teams.

75

Figure 4.28 Diagram of a State Machine

A Finite State Machine (FSM) is a system that consists of transitions and

states (Figure 4.3.4). Each state in this machine defines some behavior with a

transition as the condition that allows the machine to switch states [41]. This

architecture is simple but is useful because each state is clearly defined and allows

for clear control in each state [38]. Major disadvantages include being difficult to

maintain as well as producing rigid, non-goat like behavior [39]. Although further

behavior could be dictated by a lower-level decision making system, that system

would be one of the systems discussed in this section. Additionally, a state machine

design struggles to handle unexpected inputs, preventing it from responding

properly [39]; everything behavior needs to be pre-planned and every transition

must be accounted for [39]. Adding to or editing this system after creation is very

difficult as the many transitions must be carefully managed [41]. It is possible to use

a hierarchical FSM to mitigate many of these issues on a higher level, but the issues

will persist through each sub FSM.

The major reason why FSM was discounted from consideration was because

of the rigidity of the system: all states and transitions need to be defined for an FSM

to work well. In addition, although FSMs function well in pre-defined scenarios,

FSMs are generally poor at interpreting and handling unexpected circumstances

that may arise in a crowd of people. Finally, FSMs also fall short in one only trait -

extensibility and maintenance. If our robot was implemented with this, we would

have to fully map out its statistics and all the transitions between each state, which

would take far too long to map out and make it nearly impossible to add new states

76

to the system. The storage requirements for this would include space for: a digital

representation of the system state; the combinational logic that computes new

values for state variables; and system outputs from the combined system inputs and

current state variable values.

Figure 4.29 Diagram of a Decision Tree

Another simple system is a decision tree where a system parses through a

tree of logical nodes. The system starts at a single root node, then moves down the

tree through decision nodes. These decision nodes can then lead to other decision

nodes or action nodes which can dictate behavior [41]. Like a state machine, this

design is simple and allows for very defined behavior. However, it also is weak in

similar areas: maintenance is difficult and decision trees are computationally

inefficient [38]. Furthermore, editing or adding to this system is very complex as

large decision trees are extremely difficult to understand without proper

documentation [13]. As with FSMs, these problems can be mitigated using sub-

decision trees but once again, the problem persists. The space requirements of

decision trees are determined by the number of nodes in the tree but ultimately the

space requirements are determined linearly as such would easily fit within our

available storage.

77

Figure 4.30 Representation of Utility Priority Score

Given those traits, decision trees were discounted from the selection because

they have the same weaknesses as FSMs. If they were implemented with our project,

they would contain leaf nodes as our robots' behaviors and as such everything

would be based on a yes/no choice as the tree splits down. Decision trees are

slightly better at handling unexpected input but not as well as other architectures

listed in this section. Maintenance and extensibility are still issues; both important

in a project where the code will be built and change hands many times, often

without the original writer's present.

Another viable architecture is utility-based AI where external behaviors are

scored based on previous actions and system input (Figure 4.3.6). Depending on

those factors, the highest-scoring behavior is the one that the system deems to be

the most important at each moment [41]. The advantage of this approach is that it is

not as rigid as the previous two methods and still allows for well-defined behavior.

This lack of rigid transitions allows utility-based AI to handle more unexpected

situations [43], like those that could arise in a crowd. Its major detriment is that

properly scoring the actions can be complicated and an incorrectly balanced system

will not act as intended [38]. Furthermore, utility-based AI is limited in the number

of exhibited behaviors as each one needs to be predefined in order to be scored [43].

If we went with this implementation, each behavior would have to be scored and

balanced against all the other behaviors in such a way that there are no looped

78

behaviors. It would easily move along transitions and be able to act in more

unexpected situations, though the scoring would need to be adjusted every time a

new behavior is added. The storage would need to be enough to fit all the scores and

nodes, which are linear in nature. As such, a modern processor board should have

no problems storing it.

Figure 4.31 Diagram of a Subsumption System

One other behavior-dictated system is subsumption architecture. This

architecture has various ordered levels (Figure 4.3.7). Each level denotes some

behavior that the robot should exhibit with higher-prioritized behaviors at the

bottom levels. The top-most level produces a set of external commands which are

passed to the next level. Each level then modifies the commands as necessary [25].

For instance, if a robot is built to explore and map its environment, one top-level

behavior would be wandering around and collecting sensor data around it. A lower

level might be avoiding physical obstacles. For example, if the robot will hit a wall,

this level will modify the set of commands to prevent the collision [25]. This

behavior is similar to a FSM in that there is a set of predefined behavior which the

robot can exhibit. However, like utility-based AI, it avoids having strictly defined

transitions between behaviors [41]. Subsumption AI is also easier to maintain and

79

extend compared to FSMs but suffering from a different problem－ scaling. As a

robot needs to exhibit more and more types of behavior, it gets difficult to

determine the correct order of the levels and if behaviors need to be done in

sequences [25]. If we implemented this our top-level behavior would be interacting

with humans, a lower level behavior would be for example nuzzling a hand. The

space requirements would be minimal as subsumption architecture is built with no

need for memory in mind.

Figure 4.32 Diagram of a Neural Network

Neural networks are becoming one of the most popular methods of handling

difficult to define behavior. With various layers of neurons, properly trained and

designed neural networks can emulate very complex behavior. Signals are passed

from neuron to neuron and then combined into an output the system can then

follow (Figure 4.3.8) [41]. The major benefit of neural networks is the system being

able to handle a far wider range of inputs, some of which were not accounted for by

the programmer [45]. However, there are also major downsides: training a neural

network is expensive and time-consuming; training requires a training set of

thousands of samples to teach the neural network, which requires a large amount of

work; a poorly trained network can behave in unintended ways [41]. Furthermore,

the creator loses any amount of fine control over exhibited behavior－if a behavior

80

needs to be changed, new training material is required [45]. It is simply impossible

to use this for our implementation, but if we hypothetically did use this system, we

would have to make a set of goat data and train the model with it. This would allow

for a unique behavior, but we wouldn't be able to add or edit things unless we

wanted to fully retrain the model. The space requirements would be the weights for

all the layers and the nodes themselves. As we wouldn't store any training or test

data, our chip would have an easy time storing the neural network

Figure 4.33 Diagram of a Behavior Tree

Behavior Trees are another way to define the output behavior of a system. In

this system, behaviors are structured in a similar manner to decision trees, except

the decision nodes have more abilities. In addition to decision nodes, behavior trees

have sequence nodes－which dictate a sequence of behaviors－and selector nodes

－ which only execute one of the behaviors underneath (Figure 4.3.9) [46].

Furthermore, behavior trees also return status results from the left nodes upward;

this often includes information on where the node has successfully run, cannot be

run, failed in trying to run, or is still running [46]. Some of the major advantages of

behavior trees are that they can dictate more behavior with less structure than

decision trees and FSMs. They are also better for handling multiple known

situations, such as in the example above with the opening of a door. However, they

also suffer from a similar problem－handling unexpected sequences or abruptly

switching exhibited behavior. For example, if we implemented this model, it would

81

be nearly impossible to envision and plan for every eventual situation that could

happen in a crowd of people. Furthermore, the robot would be constantly switching

its behavior to handle everything happening in the crowd. If a person starts petting

the robot, it needs to immediately break away from tracking another person and

react to the petting. In terms of storage we would need to store the entire tree－

including its transitions－ which may be difficult to store depending on the size.

However, it should fit the tree for our implementation.

82

˧ AI Architecture Decision

The primary function of this AI Architecture will be to imitate the

mannerisms and behavior of a goat such that although the robot is obviously

mechanical, it reacts and functions like a well-behaved goat. From our research,

visiting actual goats in a farm, we observed that goats almost always act in a single-

minded manner－ only focusing on one person or action at a time. Reflecting that,

our intended behavior of the robot does not need major parallel functionality; the

only case in which parallel behavior is required is when the robot will make goat

noises in response to speech. Whatever the movement or action it is in, the robot

needs to open its mouth and make a noise. Also related to its behavior, the robot

must be able to exist and function in an environment where there is little to no

guarantee of external factors. This robot will mainly be functioning in a crowd of

people; crowds are unpredictable so the robot must be able to handle unexpected

circumstances and adapt accordingly. Another factor that we considered in this

decision is the maintainability and extensibility of the architecture; this robot will be

passed between multiple MQP teams, as such the architecture needs to be easily

modifiable so that future groups only need to add or tweak parts. This also leads to

the last factor－ future teams may need parallel behavior as the robot expands.

Walking and interacting at the same time would require parallel behavior, so ability

to support parallel behavior is important.

Many other systems, such as FSMs, were considered as well but were not

viable choices. Although FSMs do not support parallel behavior, they have clearly

defined transitions between each of their states. This trait would be useful in an

environment where external factors can be predicted, but that is not the

environment of a crowd. If a transition is not properly detected or defined, the robot

will end up in a different state than it needs to be. Furthermore, as a FSM grows, the

number of transitions can increase dramatically. This would make maintaining and

modifying behaviors in future years difficult. Using sub FSMs mitigates some of

these problems, but only shifts those issues to each sub FSM.

83

Decision Trees are also not viable－ they lack in many of the same areas that

FSMs do. Decision Trees can support parallel behavior. Like FSMs, they function

poorly in unexpected circumstances and each decision must be defined beforehand.

Decision Trees also suffer from the same scaling issue as FSMs; more supportive

behaviors lead to more decision nodes and a larger tree. Although this can be

mitigated with the use of sub Decision Trees, the problem still exists in all the trees.

 Subsumption Architecture is another AI system that is no longer being

considered. Subsumption Architecture does not support parallel behavior and, in

fact, has traits that make modifying the architecture to support parallel behavior

almost impossible without major changes [48]. Since only the most important

lowest-level behavior is ever returned and no other behaviors are ever weighed

against each other, it would require additional custom functionality [48].

Subsumption architecture can handle unexpected circumstances and situations, but

only has a limited number of behaviors like utility-based AI. The major downside of

subsumption architecture is that scaling or programming in more Subsumption

Architecture is another AI system that is no longer being considered. Subsumption

Architecture does not support parallel behavior and, in fact, has traits that make

modifying the architecture to support parallel behavior almost impossible without

major changes [48]. Since only the most important lowest-level behavior is ever

returned and no other behaviors are ever weighed against each other, it would

require additional custom functionality [48]. Subsumption architecture is able to

handle unexpected circumstances and situations, but only has a limited number of

behaviors like utility-based AI. The major downside of subsumption architecture is

that scaling or programming in more complex behaviors is difficult due to the need

to determine the correct order of levels and figure out sequenced behavior [48].

A Neural Network is also not a viable system for this robot to use. The prime

reason why is due to the practicality of doing so, rather than the traits of the system

itself. Neural Networks will already exhibit parallel behavior in its output

commands, and unlike almost every other architecture discussed, it has an almost

unlimited amount of different behaviors available [48]. This ability also makes a

84

Neural Network the best architecture for handling unexpected circumstances

because it has the capability to create the appropriate behavior for the situation.

Unfortunately, the practicality of creating and properly training a neural network

for this project is impossible. Deep-learning Neural Networks require a large

amount of training data to even get close to the correct behavior and that data just

doesn’t exist for goats. Furthermore, it is impossible to tune or change small parts of

the exhibited behavior without retraining the neural network with new training

material [29]. The requirement of training material－ which would take a large

amount of effort to produce－discounts this architecture simply because of the lack

of time and funding required to find or create such data.

 Behavior Trees are another viable system for this robot. Behavior Trees can

support parallel behaviors for the robot without much modification or additional

effort. Furthermore, the use of selector nodes allows the system to handle some

unexpected circumstances as later nodes under that selector node allow for

different behaviors. Behavior Trees do suffer from similar problems as decision

trees in that scaling will result in larger trees. However, since Behavior Trees

typically have more complex nodes, the resulting trees are flatter that decision trees

and are therefore easier to maintain and update.

After deliberation and analysis of our requirements on a wide range of

architectures, we first decided on using utility-based AI architecture. Initially, we

chose this system because we found that although it does not support parallel

behavior, it is one of the easiest architectures to maintain and extend. Behaviors are

clearly defined in their respective areas and adding or removing behavior only

requires modification of the list. This also points to utility-based architecture's

second strength－there are no predefined transitions between behaviors. Although

the number of exhibited behaviors is limited, the robot should exhibit the behavior

closest to the current circumstance [28]. However, this ability is not without

downsides, properly determining the scoring system is not a simple task; incorrectly

balanced systems will not exhibit the correct behavior when required and the

threshold between behavior can be difficult to determine.

85

 After our initial choice, we consulted Professor Gillian Smith and did further

research into behavior trees, deciding to switch to them. The reasoning behind this

decision was because we could implement behavior trees with the functionality of

utility-based systems in some of the nodes. This would result in an additional

Composite Node which uses a utility score to determine the most valuable behavior.

This combination allows for the parallel behavior of Behavior Trees, as well as the

relative ability to handle unexpected circumstances would arise in a crowd.

Furthermore, while this architecture would not be the easiest to maintain and

update, if it were to be built in an intelligent manner, it would not be an

insurmountable obstacle for future teams. Although this first year does not require

extensive parallel behavior, future MQP groups might require that functionality and

it would be wise to include that functionality if needed. With the choice of AI

architecture made we moved on to the next step, the Unified Model Language (UML)

diagrams.

86

4.3.5 | Unified Model Language (UML)

˧ Object Diagram

Figure 4.34 Initial Object Diagram

Figure 4.34 is the initial UML Object Diagram that was created for high level

AI Architecture. This diagram shows all the expected objects and interfaces of the

code as well as some of the stored variables and functions of those objects. Given

that this project would have major expansions and updates in future years, the AI

Architecture was designed to be deliberately abstract, with functionality distributed

over multiple objects. Although these extra objects technically contain functionality

that could be included in other objects, future developments may expand on those

areas. The additional readability and modularity would improve the cohesion of the

codebase. This object diagram also helped determine which objects would need to

be shared across other objects and which objects will act just as data structures.

(See Appendix I for the Full-Size Object Diagram)

87

˧ Behavior Tree Diagram

Figure 4.35 Behavior Tree Diagram

As part of the software design and a behavior tree design, a Behavior Tree

Diagram was also created (Figure 4.35). This diagram details the structure of the

behavior tree based on the use cases. This Behavior Tree was designed with

multiple levels in mind; the first level of the behavior tree is split into each of the

three main types of interaction that were described in the use cases. Utility-based

composite and decorator nodes were used on this level because a utility-based

system can make the decision to select which of these use cases to do under

unexpected circumstances. These major types of interaction are split into another

utility-based system; this second level ensures that the sub behaviors of each major

interaction are not compared against each other. These subtypes of interaction then

link to behaviors which will execute the intended behavior. Although the touch use

case will need to interrupt any of the other behaviors, this is accounted for in the

objects that manage this behavior tree. When a touch is detected, the list of nodes to

execute during the next cycle is cleared and the top of the behavior tree is executed

again. Given that the robot is being touched, this immediately moves the physical

interaction to the highest priority.

Currently, the behavior tree relies heavily on utility composite and utility

decorator nodes to determine the correct behavior to execute (Figure 4.36). There

are a few sequence nodes that help define a list of behaviors that need to be

88

executed. Otherwise, it was determined that parallel and selector nodes were not

currently required. Based on the use cases, no functionality requires selector nodes

and parallel behavior is only required for audio creation. Earlier versions had

parallel nodes for audio creation given that those parallel nodes were required in

every branch of the behavior tree. However, it was redundant to have those nodes,

since audio creation can easily be handled in a separate audio processing thread.

1. Person Head Not in Center of FOV
 a. Max 0.9
 b. Min 0.0
 c. Score based on distance of head to bottom center of vision

Figure 4.36 Decorator Design Example

Additional work was also put into the design of the decorator scores. Given

that these nodes would work very similarly to utility-based architecture, it is

important for these scores to be property and carefully defined. Each decorator was

given an absolute minimum and maximum value as well as a general description of

how the score would change in relation to the sensor information.

 (See Appendix J for the Full Size Behavior Tree)

(See Appendix K for the Full Decorator Design Document)

4.3.6 | Prototype

Even with the behavior tree and a basic object diagram written out, there are

a lot of implementation details which can only arise and be solved in a prototype.

Therefore, the next step was to design the architecture as a whole and build a

functioning prototype as a proof of concept. Firstly, there are many terms which

have common meanings, but have more specific descriptions here. The first part

of the AI system is like all robotic control software, namely in that there is a

closed control loop that is represented in the master control loop. To determine

the expected behavior at any time, the behavior tree is run. Each ending leaf in

that tree is a behavior which defines a certain action or series of actions. Actions

are predefined motions that the robot can do which give it life－ moving in

response to what it senses. For instance, the action to move the head and look at

a person. These actions are used in the Calculator, which produces movements

89

based on known obstacles and expected endpoints. Movements are defined

motions that the robot will do, i.e. move joints to these set positions in this

amount of time. Movements are made up of Position, which are motor values that

correspond to a certain configuration of the robot. These movements are then fed

to the Controller which functions as the robot’s motion controller. This Controller

handles the motion planning and produces the necessary intermediate setpoints for

the robot.

Another topic that was decided was the failure behavior of the composite

nodes. The sequence nodes will stop upon receiving a failure, not executing any

behavior yet to be executed, and returns a failure status to its parent. Parallel nodes

operate similarly - if one child sends a failure status, the parallel node will return a

failure status to its parent after all children have returned. Utility nodes operate in

another way. When they receive a failure status from one of their children, that child

is added to an ignored list. The Utility node will then recalculate scores and choose

another child to execute. This process will repeat until a behavior is successfully

executed or if the highest score received is zero. In both cases, the ignored list is

cleared but if the highest score is zero, a failure status will be returned to its parent.

This makes utility nodes able to handle some of the failures by choosing the second

highest scoring behavior to execute. This functionality does add in one

consideration in that if the root node is a utility node, one of its children must have a

minimum score higher than zero else an infinite loop is encountered.

Another detail that was discussed was how the motion controller would

handle parallel behaviors. Although the behavior tree should never produce

conflicting movements, it is possible that this case happens as the behavior tree gets

more complex. For example, imagine a case where the behavior tree produces two

different set points under a parallel node which are in opposite directions. To

handle this circumstance, there will be a movement handler which will take in the

movements from the behavior tree and remove conflicting behaviors based on first-

come importance. Furthermore, since the motion controller only takes in a single

target position, this movement handler would combine all movements into a single

movement, which only references a single target position. Finally, parallel nodes

90

returning a status after every return is not supported because this would result in a

compounding number of statuses being passed around the behavior tree.

One further topic is the reusability of nodes within the tree－ particularly

with many behavior nodes sharing actions. For this functionality to work, the

parents of these nodes are switched between executions so that the child will

always choose the correct parent to call. However, this also adds another factor to

consider in that nodes are not able to be shared underneath a parallel node because

the child nodes will not know which parent to call. Take the example where there

are two sequence nodes under a parallel node which both reference the same

behavior node. The parallel node would call both sequence nodes which would both

call the same behavior node. When the behavior node needs to call its parent node,

it doesn't know which sequence node to call－ especially since it would have to call

its parent twice. Which sequence node called it first and does the first finished

execution correspond to the first or second parent?

In addition, another topic that was sorted out were the requirements of both

AI architecture, the motion and path planning, and the motor controller. This led to

developments like the previous discussion on parallel behavior as well as the fact

that the motion controller can only take in one end setpoint. This overall planning

greatly assisted in some of the integration for the integration prototype as the roles

of each system were clearly defined beforehand.

Using these considerations as well as the produced UML, a prototype version

of the architecture was created. This prototype was built to only handle a single

point in 3D space, operate on a CLI input scale, and doesn’t communicate with third-

party sources like the sensors or OpenCV yet. However, it does test the functionality

of all the behavior tree nodes and is also built with abstraction so that only minor

modifications are needed to apply it to a particular robot. This prototype also

assisted in the integration of the AI and the messaging and motion planning as well

as various requirements that are required for programming robots. By helping hash

out implementation details, this prototype laid the foundation for the final version

91

with its clear separation of responsibilities for each object and forced the team to

make decisions regarding utility nodes, parallel nodes, and conflicting movements.

5 | Prototype Testing, Results and Progress

5.1 | Mechanical Design

5.1.1 | Differential Mechanism Testing

 Currently, there are two versions of the differential mechanism for the head

that we are working with. Both the theory and abstract design behind them are the

same. The first is a small, functional prototype. Its size meant we could quickly make

low-cost fixtures and models to test functional implementation with the electrical

systems and software. We used the smaller prototype for verifying joint kinematics,

testing joint speeds, as well as for figuring out the cable routing path. The second

prototype is a 1:1 scale model of the final design to be used for full scale testing. This

assembly is also functional, though we have not yet fully implemented it. We have

been able to integrate it with a partial head frame assembly, however due to the

current coronavirus pandemic we do not have access to those parts, and we are

unable to include images of that setup currently.

˧ Mechanism Cabling and Routing

 As discussed earlier in section 4.1.2 |, selecting the correct cable material was

critical to the viability of the mechanism. The earliest prototypes used fishing line as

the cabling. To work out the routing of the cables, some spare strands of TPU 3D-

Printing filament were used as its high elasticity made it easier to hand tension,

which became laborious while figuring out how to properly route it with a less

elastic material. Obviously, this elasticity was less than ideal for the final version,

however it served as a useful intermediary to practice the windings. The first larger

scale prototype was initially intended to use steel wire rope; however, UHMWPE

92

was substituted instead, and is currently what is used to transmit power through

the mechanism.

(a) Fishing Line (b) Wire Rope. (c) UHMWPE

Figure 5.1 The Three Assembled Prototype Differential Mechanisms

What we found when using a fishing line was that even though we could

accommodate the minimum bend radius, the line still had too high of a bending

stiffness for our purposes. Additionally, fishing line is designed to have some

elasticity for its intended use case (fishing), which would reduce the overall stiffness

of the mechanism at scale. Steel wire rope suffered from similar issues. Though its

tensile strength was high and its elasticity very low, its stiffness caused issues with

mechanism binding. In both cases, we did not use measurement tools to estimate

the power losses due to the cable stiffness and friction, however it was evident from

manual operation that neither material would suit our needs. UHMWPE provided a

high tensile strength and low elasticity while having a relatively small minimum

bend radius and low bending stiffness. Even when fully tensioned, the mechanism

can still be operated manually with ease, and the major resistance comes from the

friction in the pulley bearings. We did observe some minor vertical sliding of the

cable as the mechanism is rotated, however due to the low coefficient of friction of

UHMWPE with most materials, we assumed this sliding friction to be negligible.

˧ Kinematics and Speed Testing

 While we could conceptualize the kinematics of the differential mechanism

we used, we needed to implement the mechanism in a test fixture and drive it

93

through software to verify. Additionally, doing so allowed us to visualize for the first

time the speeds of the joints.

Figure 5.2 Servo driven test fixture

Figure 5.3 Stepper driven test fixture

The first test fixture we made (Figure 5.2) simply had two hobby servos

mounted in a direct drive configuration with the mechanism. We ultimately would

need more rotational range (and more power) than what these motors could offer,

but it allowed us to test our kinematics. Using this, we quickly verified that our

kinematic relationships were correct. A second version was later created that

utilized closed loop stepper motors mounted in a similar configuration (Figure 5.3).

This setup allowed us to test integration with the control software that was

currently being written for the embedded microcontrollers we would be using. As a

side note, while that software was in progress, a piece of open source CNC control

software called GRBL was modified to accommodate our parallel kinematics. This

was a quick way to ensure everything was working properly before moving on to

closer software integration. Due to delays in the development process, this same

modified software was again used to test the final functional prototype before

switching over to our own software.

 The final version used for testing was constructed to more closely model the

actual robot design. This gave us a better tool to visualize joint speeds as well as

what range of motion we needed. It also was intended to serve as a temporary

94

platform for mounting sensors and cameras so they could be tested on a functioning

mechanism while further design and production work was done in parallel.

5.2 | Electrical Systems

5.2.1 | System Architecture

Figure 5.4 Electrical Systems Schematic

The electrical systems of the robot include power delivery, processing,

sensors, as well as motors and controllers. Currently, the robot receives primary

power from a residential mains voltage source which is converted to 48 volts DC,

and further regulated down to the required voltages for each system component.

High level processing is performed on a Raspberry Pi single board computer. Timing

critical tasks such as data collection and motor control are performed on several

ESP32 microcontrollers. Actuation is accomplished using stepper motors with

integrated closed-loop drivers that are controlled by an ESP32.

95

Figure 5.5 Electrical System Schematic Ported to Autodesk Eagle

As discussed in section 4.2 |, the initial electrical system diagram (Figure 5.4)

was made using software provided by Digi-Key. Despite its small learning curve and

integration with their parts catalogue, it was not suitable for our final design, and

we ultimately moved to using Autodesk Eagle. With no prior experience with the

software, we did face some setbacks. However, the utility for future teams made it a

valuable effort and provided us with an opportunity to familiarize ourselves with

industry standard software. Currently, the redesign (Figure 5.5) in Autodesk Eagle is

not yet done but will be fully completed in the remaining project term. This delay

was in part due to the coronavirus pandemic.

5.2.2 | Prototype Circuits and Testing

At this stage, we have built several circuit prototypes to test alongside our

current mechanical and software prototypes. These test circuits were mainly used

to check the functionality of sensors and motors. By ensuring individual

functionality, later problems can be traced to implementation rather than problems

with the components. Due to the coronavirus pandemic, we were unable to continue

construction and testing; current progress on the prototype implementations of our

electrical designs reflects those completed in C-term.

96

(a) (b)

Figure 5.6 Microphone Test Circuit with Arduino. Physical circuit(a) and Circuit Diagram (b)

The first test circuit made was for the microphone, which is read by an

Arduino Uno (Figure 5.6). An ESP32 will ultimately be responsible for logging

microphone data, however this was decided after this test setup was made. Different

software was eventually written for the ESP32; however, the function is simple

enough that any microcontroller would suffice. Like the ESP32, the Arduino Uno is

equipped with 3.3V output pins that have a maximum current of 50mA. However,

the microphone has an excitation voltage of 10V, so we created a voltage divider to

scale this down. While this is not ideal, it sufficed for testing purposes as the

microphone only pulls 0.5mA, which falls within acceptable limits after the voltage

divider.

97

Figure 5.7 Microphone Testing Results, mV vs Seconds

To test the microphone, we performed a series of loud claps a few meters

away from the microphone, at about the maximum distance we expected interaction

with the robot to occur. We visualized the results of this test using the Serial

Monitor and Plotter of the Arduino IDE (Figure 5.7). When there is no noise, the

serial monitor oscillates around a digital value of 307.5 mV, indicating the static

noise of the room. The impulse response from the claps can be seen clearly,

satisfying our functionality test.

(a) (b)

Figure 5.8 Touch Sensor Circuit and Test Setup

The second test circuit was for the touch sensor. Like the microphone, the

touch sensor was tested by connecting it to an Arduino Uno. The VIN and GND keys

of the sensor were connected to the 5V source and common on the Arduino

respectively. The SCL pin was connected to the I2C clock SCL pin on the Arduino, in

this case A5, and the SDA pin was connected to the I2C data SDA pin on the Arduino,

in this case A4 (Figure 5.8a). Finally, a wire was connected to one of the keys of the

touch sensor. Using the example code that came with the Arduino library for the

MPR121 controller, the Arduino would print messages to the serial monitor when a

key was touched, and indicate which key was being touched. The range of the key

can be extended by connecting the wire to conductive material, such as aluminum

foil (Figure 5.8b). To test if the touch sensor could operate under a layer of material,

an additional material was put on top of the aluminum foil. In this case, both paper

and wool cloth were used. The touch sensor could detect someone touching both

98

materials. However, the limits of the touch sensor are still unknown. It likely will not

be able to detect touch through thick material or material that is nonconductive.

More intensive tests need to be done on the ESP32 to ensure the touch sensor is

working properly.

Figure 5.9 Motor Test Circuits

The final test circuit is the motor test circuit (Figure 5.9). This circuit was

used to test the ESP32s ability to drive the motors after receiving commands from

the Raspberry Pi. Additionally, this circuit had a dual purpose of mapping what the

physical connections of the circuit would look like. The ESP32 was connected to the

Raspberry Pi using their designated pins for SPI communication. From the monitor

of the Raspberry Pi, position commands were sent to the ESP32. The ESP32 would

then move the motor to the position. In the top left of the first circuit (Figure 5.9,

left) is a logic level converter. During the testing of this circuit, we discovered that

the logic level circuit was causing the motion of the motors to be erratic, causing it

to fail to stop at the correct position. Once the logic level converter was removed,

the motors were able to actuate properly. Using the information gained from the

test circuit, the motor circuit was refined to only take a single breadboard (Figure

99

5.9, right). With more testing, the motors were able to move properly on the new

circuit.

5.3 | Software

5.3.1 | Inter-device Communication

Serial Peripheral Interface (SPI) communication is a synchronous serial

communication interface used in embedding communication. SPI communication

works by using at least four pins which are wired from the master device to each

slave device. The synchronous clock pin (SCLK) syncs the clocks of both devices so

that each only samples the buffers at the correct time. The master out slave in

(MOSI) and the master in slave out (MISO) pins are used to transfer information

between the devices. As per their names, the master uses the MOSI pin to send

information to the slaves and receives information from the slaves through the

MISO pin. Finally, the slave select (SS) pins are used by the master to determine

which slave is actively exchanging information with the master. Given that the

Raspberry Pi would be communicating with multiple ESP32s, the Raspberry Pi was

chosen to be the master and the ESP32s the slaves.

SPI communication sends sequences of bits from one device to another－

in practical terms, these sequences can be interpreted as hexadecimal or

character arrays. Therefore, a predefined communication protocol must be

determined beforehand so that both devices can correctly interpret the

commands. To ensure that each device is only reading in the buffers that contain

commands, the buffer needs to contain a pattern before and after each

command. This pattern indicates the presence of a command to the receiver and

ensures that the buffer was correctly transmitted. Given that it is extremely

unlikely for this pattern to appear randomly, a sequence of 10 bytes of all 1s was

chosen.

100

Table 5.1 Control Byte Definition

Control Byte Instruct Byte Data Bytes

0 1 2 3 4 5 6 7

Dummy
bit

Request
Resp

Mirror
Enc

See Table 5.2 Binary Data

Table 5.2 Communication Command Definitions

Command Description Data Data Explanation Communication
Direction

ESTOP Boolean Whether to Estop BOTH

TOUCHINFO Touch Sensor
Information

Boolean
Array

Whether each touch
sensor is being
touched

ESP32 -> RasPi

AUDIOINFO Audio Levels for
Microphones

Float
Array

The noise level for
each audio sensor

ESP32 -> RasPi

MOTORPOSITIO
N

Polar
Coordinates for
the Robot to go to

Int8_t,
Int_32t,
Int8_t

Motor Index, Motor
Step Position, Desired
Delay

RasPi -> ESP

HANDSHAKE Initial Protocol
that Setup is
complete on both
ends

CHAR Indication of Ready BOTH

REQUESTCMD Robot requests
another
command

None None ESP32 -> RasPi

Between the two patterns, an actual command would be contained. The first

byte of the command is reserved for a control byte which contains certain flags for

desired response, or whether additional mirror data is attached. Additional flags can

be added as necessary to avoid corruption or desire that a command be resent. The

second byte of the command contains a certain command index which determines

what the command is and what data is contained in the rest of the command. For

instance, if the second byte indicates that this command is a MOTORPOSITION

101

command, the next two bytes would be interpreted as an 8-bit integer, the next four

as a 32-bit integer, and the last two as an 8-bit integer. This information would be

then used for the correct execution of the command. The details of the control byte

as well as the various command bytes is detailed in the following tables

After testing and integration a Communication Specifications Document was

created which held all the details needed to set up our communication protocol and

change it to future team’s needs, this document contained the common bugs we

encountered during testing, how to resolve them, links to all the relevant datasheets,

links to other documentation like the ESP32 SPI protocol documentation and data

like the required baud rate of the boards. Explanations of common problems our

team encountered were also provided to help streamline the process for future

teams allowing for a quicker and easier setup.

5.3.2 | Motor Control

For this version of the robot, we decided to use stepper motors for joint

actuation in favor of more expensive closed-loop servomotors. Stepper motors

function by receiving an electrical pulse that indicates a step should be taken in a

certain direction. Other pins control whether the stepper motor is currently

enabled, which direction the motor should turn, and whether the motor has

encountered a problem. By controlling how often these pulses are sent as well as

direction pin, an embedded system can control the speed and direction that the

stepper motor will turn.

Given that an ESP32 is being used for motor control, it needs to be able to

generate those pulses. Although it is relatively simple to create a sequence of pulses

of the same period between peaks, this results in a very jarring movement. So, the

pulses need to be able to accelerate and then decelerate the motor; which will result

in a much smoother movement. Although it is possible to generate the acceleration

and deceleration pulses whenever the ESP32 receives a MOTORPOSITION command

based on the desired speed, this is computationally expensive and results in a

noticeable delay before each movement is executed. To mitigate this issue, a static

102

set of acceleration and deceleration pulses are generated on the startup of the

ESP32. Then, based on the desired delay between pulses, a certain segment of those

sets is added into another sequence which is then used. This results in a process that

is computationally inexpensive while keeping in the smooth movement of the robot.

These pulses are sent using one of the ESP32’s built-in libraries: The Remote-

Control Module Driver (RMT). This specialized library can take a sequence of pulses

and is able to very quickly execute them; this operation takes a matter of

microseconds and the robot is able to achieve appropriate speeds with this library.

Originally, the ESP32 used a system of timers to execute a function every number of

microseconds. However, this function very quickly became bloated with logic and

the function was unable to execute in the required number of microseconds. In

addition to allowing asynchronous execution, the RMT library allows for very

precisely defined pulses periods and contains functionality for a callback function

when pulse execution is done so that a REQUESTCMD command can be set back.

5.3.3 | Sensor Data Processing

˧ Audio Processing

 The AUM-5041 also was easy to set up with our ESP, by simply wiring it to

ground and 3.3v which is then connected to ESP ADC port allowed a solid reading

for multiple mics at the same time. Resistors and a capacitor could be used to filter

and stabilize the signal, furthermore to enhance the signal and move it to the band

of sounds we needed an op amp could be used to first amplify the signal, and second

cut off the signal to our needed range. More testing will be needed before this is

implemented. Current design simply uses a resistor and capacitor to get the signal.

˧ Visual Processing

 Unlike the touch and noise information, which is being processed on the

ESP32, the visual data from the camera is being processed on the Raspberry Pi. In

order to simplify object detection and avoid training a neural network, OpenCV－ a

library that comes with pre-trained image recognition functionality－ was chosen.

103

OpenCV allows for very simple object detection by only requiring an image and a

cascade, which defines the objects to detect. However, OpenCV does have its faults:

firstly, it is computationally expensive－ most of the Raspberry Pi's memory is

devoted to object detection. To help reduce that cost, the images are scaled down by

a factor of 2.5 so that the required processing time is reduced from 0.5 seconds to

under 0.1 seconds. Another issue is that the pre-trained cascades provide

inconsistent object detection. During testing, it was noticed that faces and bodies

tended to pop in and out of detection despite minimal movement. To account for

this, a system of visual trackers was set up. These visual trackers keep track of an

object's position from frame to frame and as long as the object is seen for a

proportion of the frames, then that object will be used for movement generation.

This system helps filter the raw data from OpenCV and mitigates the impact of both

false positives and false negatives.

104

5.3.4 | High Level AI

˧ Modules and Layers

Figure 5.10 Software UML Module Diagram

The software can be divided into several layers, each with a separate and

distinct task (Figure 5.10). On the Raspberry Pi side, there are currently five layers:

serial processing, Behavior Tree Management, the behavior tree objects, movement

calculation and generation, and sensor processing. Behavior Tree objects and

Behavior Tree Management are separate from everything else because their task is

to only calculate the correct behavior at a point in time and then generate a

movement for it. Sensor Processing is also a distinct layer because it takes in sensor

data and turns that raw data into usable information. That information is then used

by the Behavior tree objects to Figure out the correct behavior as well as the

Movement Calculation layer to calculate the movement. Serial Processing is

responsible for encoding and decoding commands from and to the ESP32s. This is

105

kept separate as it only takes in generated movements and sends them to the ESP32

or puts raw data into the sensor processors.

(See Appendix L to see the Full-Size Layer Diagram)

˧ Sequence Diagram

Figure 5.11 Sequence Diagram

A UML Sequence Diagram shows the progression of events and passage of

data across time for a certain expected use case (Figure 5.11). In this case, the

Raspberry PI Receiving a REQUESTCMD Command and generating a movement for

the ESP32. The SerialProcessor reads the Command in the given buffer, moves the

behaviors from the last cycle to the list to execute, and calls the MasterControlLoop

to execute those behaviors. The MasterControlLoop then calls the controller to

generate new Movements; the controller in turn calls behaviors in the structure of

the behavior tree and the individual behavior then uses the Calculator to create a

new Movement. The Calculator gets the data from the SensorData, MotorProcessor,

and MotorTracker. This new Movement is then added to the Controller which then

moves those Movements to the SerialProcessor which encodes the Movement and

sends it to the ESP32. As stated before, this process was heavily abstracted to allow

for additional functionality in the future.

(See Appendix M for the Full-Size Sequence Diagram)

106

This prototype version of the software architecture works mainly by creating

several different threads that each handle separate tasks. Currently, there are three

threads: the MasterControlLoop thread, which handles calling the behavior tree to

generate movements, the SerialProcessor thread which encodes those movements

to send to the ESP32s as well as read buffers back from the ESP32s, and the

VisualProcessor thread which handles processing the visual images using OpenCV.

Sensor and Motor data is constantly being sent from the ESP32 which is recorded

and processed as necessary. This data is then used whenever a new command is

requested from the ESP32 to calculate a new movement which is then sent back.

The ESP32 code works in a similar way; the ESP32 will constantly send over

the current motor positions so that the latest motor position is correct. Whenever it

receives a new position to go to, the ESP32 will build a list of pulse commands to be

sent to the stepper motor and then send that list over. At the same time, it will

calculate the expected time for the pulses to take and send a command to request a

new movement when the motor has moved to the appropriate position.

This general functionality can be further expanded into expected execution of

the AI Architecture as it constantly processes sensor information and creates

appropriate Movements when it is needed. For the sake of explanation, assume that

events happen linearly. First, the SerialProcessor reads the SPI buffer from the

ESP32; it then attempts to find and decode a command. If it finds a command that is

the REQUESTCMD command, it will first move the behaviors that created

movements in the previous cycle to the list of behaviors to execute. Then the

SerialProcessor Thread will unlock a mutex in the MasterControlLoop which will

then call those behaviors in the structure of the behavior tree. This will result in

other behaviors being executed; these behaviors create new Movements based on

sensor data from the VisualProcessor and the MotorProcessor. These new

Movements are moved to the list of Movements to send in the SerialProcessor. The

SerialProcessor then sends the individual motor positions for those movements to

the ESP32s over SPI.

107

For SensorProcessing, this sequence of events is slightly different. When the

SerialProcessor Thread receives a command that contains sensor data, it decodes

that data into the appropriate primitive values. In the case of the MotorData, the

command is decoded into a motor index (motor identification number) and a step

position for that motor. This information is then passed to the MotorProcessor

which adds that information to the appropriate MotorTracker. This step position

can then be accessed from the Behavior Tree and Calculator which use that data to

calculate the next position to move to.

When the ESP32 receives a buffer from the Raspberry Pi, it decodes the

buffer to find the command. In the instance that this is a MOTORPOSITION

command, a sequence of pulses that move the desired number of steps is created

and that sequence of pulses is sent off to be executed. At the same time, a timer is

sent for the end of the pulse execution which will send a REQUESTCMD command

back to the Raspberry Pi. Otherwise, the ESP32 will send back MOTORPOSITION

commands to Raspberry Pi to indicate the current step position of all the motors.

Although these systems are not strictly necessary, additional support for

writing debugging information to a log file and returning detailed status information

around the behavior tree are both supported in the current codebase. There are

global logger functions which allow any object to write formatted information to a

time-stamped text file. Older log files are automatically deleted when there are too

many old files. This allows for advanced debugging by reviewing the log file after

execution, as a user can observe how the nodes of behavior tree call each other, the

priority scores returned by the decorator nodes, and the raw and decoded buffers

that are sent between the Raspberry Pi and the ESP32. Initially, the behavior tree

would only pass an enum from node to node to indicate success or failure; following

a suggestion from Professor Gennert, this was changed so status objects are passed

－ these are more verbose and can contain an error code, error message, and

information on how to handle a failure. The combination of all these asynchronous

operations and additional systems allow for a system which can continuously

108

request, calculate, generate, and execute movements for the robot based on sensory

data that it collects.

109

6 | Discussion and Future Work

6.1 | Mechanical

The scope of this project is very large, and as such there is still much work to

be done on the mechanical design, testing and analysis of the various subsystems.

The mechanisms are currently set for testing, however work still needs to be done

on a suitable neck frame. Additionally, focus was shifted away from working on the

main chassis (body and torso) of the mascot, and as such will need to be completed

in the future as well. Designs and a partial construction are present for the head of

the robot; however, the build will need to be completed and mounted to the head

joint. At that point, actuators can be mounted to drive the head in isolation, which

will allow for the first performance testing of the full-scale prototype head joint.

While the software is not quite ready for implementation (described below), this

platform will allow for preliminary testing of the computer vision software working

with real data input that reflects the coordinate transformations of the real system.

At the start of the project, we had included the outer shell and sleeve among

the deliverables. The work of designing, manufacturing, and testing the silicone or

cloth sleeve would have to fall to another year. One of the other aspects that will

need to be designed and tested in future years is the hardened shell for the bottom

of the robot which was not designed because of the prototype nature of the robot.

6.2 | Electrical

 Not enough of the robot was finished in C-term to make a conclusion about

the performance of the circuitry. However, there were several concerns with the

design. The first major concern is the power requirements of the circuit. The circuit

is designed with the intention of being run at 48V and 30A, which is equivalent to

1536W of power. 1536W is a massive amount of power for a robot, and the prices of

parts that are rated for that load can be expensive and would take up a large portion

of our budget. Additionally, the amount of current being used can be incredibly

110

dangerous if not handled properly. A major contributing factor to this high-power

requirement is due to the requirements of the motors. The motors are being run at a

high voltage and require approximately 6A each for safety. However, if a future team

can find a way to reduce the voltage and current draw of the motors, the power

requirements can be reduced. If it is impossible to do so, they should design the

circuit with as many safety precautions as possible.

 Additionally, the physical circuit needs to be refined further. This iteration of

the project was done almost exclusively on breadboards that allowed for rapid

prototyping and testing. Components and connections could be swapped out as

necessary to test the circuit. However, breadboards are a poor design choice as a

long-term solution. The final product should operate on a custom PCB board that

connects all the components. This would require designing a permanent physical

circuit board which may require parts of the circuit to be redesigned to account for

the difference in hardware.

 Another concern is the sensors of the robot. A major deciding factor in which

sensors to purchase came from their ease of use and price. Low cost sensors with

specifications that roughly matched those of the robot are chosen over more

expensive parts that would better suit the needs of the robot. Due to the robot being

a prototype, many parts are expected to be replaced by future teams. Because of the

nature of the robot, it would have been a waste to invest in temporary parts.

However, these temporary parts were not a waste, as they proved or disproved the

functionality of the designs. Future teams should look at our testing and evaluate the

sensors that need to be replaced and find better suited sensors for the robot.

6.3 | Software

Due to time constraints, testing of the codebase on a physical system was

limited. Despite this, many of the different subsystems were manually tested. All

process ending errors like segmentation faults or stack smashing had been removed

so no unexpected exiting of the program should occur. SPI communication was also

vigorously tested with different baud rates, corrupted buffers, and lost buffers. In all

111

circumstances, no exceptions were thrown. Although the buffer would be decoded

incorrectly, both master and slave were able to correct their position relatively

quickly. The kinematic calculations on the high-level AI were also tested and

debugged. Initially, the equations were being used incorrectly and were missing

some important modifiers. However, through ruthless, line by line, rubber duck

debugging, these issues were resolved, and the team confirmed that the Calculator

was returning the correct step positions. As the embedding system and

communication was prioritized, unit tests were only recently started for the high-

level AI. Although a testing architecture has been integrated with the code and

makefile, unit tests have barely started, and more functions and objects need to be

covered.

Further testing of the sound and touch codebase is still needed. As this code

was developed at the end of term, little to no testing was conducted. While the touch

sensing code was tested rigorously in lab settings, no real-world integrated testing

was able to happen. Similarly, the sound codebase needs precise testing to see the

sound volumes needed before amplifier circuits can be further designed for it.

The social implication of a mascot robot can be divided up into two different

categories: the mascot’s character and how the mascot interacts with various

people. A mascot is a character, and like any character in the media, they have an

influence on how people view something. Words can have multiple meanings and

some words can cause unintended offense to certain groups of people. Prescribing

any human characteristics to the robot automatically makes the robot represent or

misrepresent those people and needs to be considered.

The actions that the mascot takes can also represent the social attitude of

those people. Unintended or not, differing the behavior with different types of

people can result in unintended behavior. Visual-processing software is not

unbiased in that recognizing, miss-categorizing, and ignoring people of certain

genders, races, or physical characteristics can happen and needs to be avoided. Any

use of neural networks can be biased depending on the given training data and

should be carefully considered before use. The robot must act the same to any and

112

all persons who interact with it and be able to accommodate individuals no matter

what.

On the software side, the latest source of possible misrepresentation is the

use of OpenCV for face and body recognition. The pre-trained cascades, used to

identify visual features, and the training data used may contain biases that this

robot will not be able to control. Another point of biases is also the priority used for

calculating movements. For instance, if the robot observes two faces, which one

does it prioritize? Prioritizing those faces in the center its vision leaves out people

whose faces might reside in the lower or upper sections. Those excluded people

could contain children who are one of the personas that were identified during the

system design phase. To help counter this situation, the biases of the robot is

currently set to prioritize bodies and faces from the bottom of its vision upward.

Given that most of the main robot's interactions involve children, it makes sense to

prioritize them.

Of course, there remains much work to be done on the software. Although

most of the framework and foundation of the codebase has been written, some

functionality is still missing. One of the most outstanding issues is communication

support for parallel behaviors. Despite the fact that the behavior tree can support

multiple behaviors being executed, the communication protocol only accounts for a

single request; the ESP32 is unable to tell which command it has received or how to

identify which command it has completed - it can only keep track of a single

command. A system that uses a UUID for different behaviors would be able to fix

that issue. Another change that would improve the codebase would be to move

away from static global objects that are accessed by various objects－ this trait

increases the coupling of the software but allows for easier creation and assignment

of objects that will be used across all objects. Although this allowed for much faster

prototyping, this should be changed so that object would only keep a reference to a

static object. Doing do will allow more complete unit tests to be created and the

code will have overall easier maintainability, Furthermore, while visual data is being

correctly processed, there is currently only bare bones processing for audio and

113

touch data. Despite all this future work, this year was able to create a solid

foundation as well as complete much of the implementation and integration of

third-party libraries.

(See Appendix N for a Full List of Future Software Work)

6.4 | General

Some aspects of the software and testing will also have to shift to future

teams as a few subsystems still need to be integrated before user testing for the full

robot can conclude. Additionally, future teams should look at the testing and

analysis we did and decide which parts of the robot need to be replaced with more

robust systems as they move out of the prototyping phase.

114

References

[1] S. Mohanty, “Growing Importance of Mascot & their Impact on Brand

A. Awareness – A Study of Young Adults in Bhubaneswar City” IJCEM

International Journal of Computational Engineering & Management, Vol.

17, Issue 6, Nov. 2014. [Online] Available:

http://www.ijcem.org/papers112014/ijcem_112014_09.pdf [Accessed

Oct 1, 2019].

[2] “Toyota Robots Help People Experience Their Dreams of Attending the Olympic

A. and Paralympic Games Tokyo 2020,” Toyota USA Newsroom, 26-Aug-

2019. [Online]. Available: https://pressroom.toyota.com/toyota-robots-

help-people-experience-their-dreams-of-attending-the-olympic-and-

paralympic-games-tokyo-2020/. [Accessed: 01-Oct-2019].

[3] B. Derntl, C. Regenbogen, “Empathy,” in Social Cognition and Metacognition in

A. Schizophrenia Academic Press. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B97801240517200

00041 [Accessed: 01-Oct-2019]

[4] S. Mohanty, “Growing Importance of Mascot & their Impact on Brand

A. Awareness – A Study of Young Adults in Bhubaneswar City” IJCEM

International Journal of Computational Engineering & Management, Vol.

17, Issue 6, Nov. 2014. [Online] Available:

http://www.ijcem.org/papers112014/ijcem_112014_09.pdf [Accessed

Oct 1, 2019].

[5] “Toyota Robots Help People Experience Their Dreams of Attending the

A. Olympic and Paralympic Games Tokyo 2020,” Toyota USA Newsroom,

26-Aug-2019. [Online]. Available: https://pressroom.toyota.com/toyota-

robots-help-people-experience-their-dreams-of-attending-the-olympic-

and-paralympic-games-tokyo-2020/. [Accessed: 01-Oct-2019].

[6] T. Hamm, et. al, “ATLAS OF GOAT ANATOMY. PART 1: OSTEOLOGY” (1970)

A. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/712988.pdf

[7] “Anatomy and physiology of the goat” (2017) Available:

115

A. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/178336/Ana

tomy-and-physiology-of-the-goat.pdf

[8] Page et. al. “P011 Functional degrees of freedom of neck movements: linear

A. models may overestimate variability” (2008) Available:

https://www.sciencedirect.com/science/article/pii/S09666362087008

08

[9] G. Bekey, P. Koenig “AI and locomotion: horse kinematics” (1994). Available:

A. https://go.gale.com/ps/i.do?id=GALE%7CA14822145&v=2.1&u=mlin_c

_worpoly&it=r&p=PPIS&sw=w

[10] F. Zhang, et. al, “Biomimetic walking mechanisms: Kinematic parameters of

A. goats walking on different slopes” (2018) Available:

https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4913

[11] N. Rombach, “The Structural Basis of Equine Neck Pain” (2013) Available:

A. https://d.lib.msu.edu/etd/2978/datastream/OBJ/download/The_struct

ural_basis_of_equine_neck_pain.pdf

[12] “Animatronics Introduction,”. Available:

A. https://ospace.otis.edu/ganimatronics/Welcome

[13] S. Vijayagopalan, Animatronics. 2019.

[14] J. Kundig, "3-Axis Robotic Mechanisms: Animatronic Necks & Torsos",

A. Stanwinstonschool.com, 2019. [Online]. Available:

https://www.stanwinstonschool.com/tutorials/3-axis-robotic-

mechanisms-animatronic-necks-torsos-part-

1?utm_source=YouTube&utm_medium=JKUN%20-%203-

Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%2

0Part%201&utm_campaign=On-Demand%20Course. [Accessed: 14- Oct-

2019].

[15] B. Poor, "Squash Plate Cable Controller", Poorman's Guide to Animatronics,

A. 2019.

[16] F.J. Looft, Systems Engineering for Capstone Projects. Worcester: WPI, 2018.

[17] D. Gealy et al., "Quasi-Direct Drive for Low-Cost Compliant Robotic

A. Manipulation", arXiv preprint, 2019.

https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/178336/Anatomy-and-physiology-of-the-goat.pdf
https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/178336/Anatomy-and-physiology-of-the-goat.pdf
https://www.sciencedirect.com/science/article/pii/S0966636208700808
https://www.sciencedirect.com/science/article/pii/S0966636208700808
https://go.gale.com/ps/i.do?id=GALE%7CA14822145&v=2.1&u=mlin_c_worpoly&it=r&p=PPIS&sw=w
https://go.gale.com/ps/i.do?id=GALE%7CA14822145&v=2.1&u=mlin_c_worpoly&it=r&p=PPIS&sw=w
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4913
https://d.lib.msu.edu/etd/2978/datastream/OBJ/download/The_structural_basis_of_equine_neck_pain.pdf
https://d.lib.msu.edu/etd/2978/datastream/OBJ/download/The_structural_basis_of_equine_neck_pain.pdf
https://ospace.otis.edu/ganimatronics/Welcome
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course
https://www.stanwinstonschool.com/tutorials/3-axis-robotic-mechanisms-animatronic-necks-torsos-part-1?utm_source=YouTube&utm_medium=JKUN%20-%203-Axis%20Mechanisms%20Animatronic%20Necks%20and%20Torsos%20Part%201&utm_campaign=On-Demand%20Course

116

[18] "ESP32 Overview | Espressif Systems", Espressif.com. [Online]. Available:

A. https://www.espressif.com/en/products/hardware/esp32/overview.

(Accessed: 06- Apr- 2020).

[19] "FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded

A. systems with Internet of Things extensions", FreeRTOS, 2020. [Online].

Available: https://www.freertos.org/. [Accessed: 06- Apr- 2020].

[20] Raspberry Pi 4 Model B Datasheet, 1st ed. Raspberry Pi (Trading) Ltd., 2019.

[21] Raspberry Pi Compute Module 3+ Datasheet, 1st ed. Raspberry Pi (Trading)

A. Ltd., 2019.

[22] M. Rowan, "Raspberry Pi 4 Hot new release – Too hot to use enclosed",

A. Martinrowan.co.uk, 2020. [Online]. Available:

https://www.martinrowan.co.uk/2019/06/raspberry-pi-4-hot-new-

release-too-hot-to-use-enclosed/. [Accessed: 11- Mar- 2020].

[23] "ESP-EYE Espressif Systems | Mouser", Mouser Electronics, 2019. [Online].

A. Available: https://www.mouser.com/ProductDetail/Espressif-

Systems/ESP-

EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D.

[Accessed: 14- Dec- 2019].

[24] "ESP-EYE", Espressif.com, 2019. [Online]. Available:

A. https://www.espressif.com/en/products/hardware/esp-eye/overview.

[Accessed: 11- Nov- 2019].

[25] OV2640 Color CMOS UXGA (2.0 MegaPixel) CameraChip with OmniPixel2

A. Technology Advanced Information Preliminary Datasheet. OmniVision

Technologies, 2006.

[26] ”Charmed Labs Pixy 2 CMUcam5 Image Sensor”2019. [Online]. Available:

A. https://www.robotshop.com/en/charmed-labs-pixy-2-cmucam5-image-

sensor.html. [Accessed: 14- Dec- 2019].

[27] Amazon.com, 2019. [Online]. Available:

A. https://www.amazon.com/Arducam- Camera-Raspberry-

Interchangeable-M12x0-

5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510

https://www.espressif.com/en/products/hardware/esp32/overview
https://www.freertos.org/
https://www.martinrowan.co.uk/2019/06/raspberry-pi-4-hot-new-release-too-hot-to-use-enclosed/
https://www.martinrowan.co.uk/2019/06/raspberry-pi-4-hot-new-release-too-hot-to-use-enclosed/
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP-EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP-EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D
https://www.mouser.com/ProductDetail/Espressif-Systems/ESP-EYE?qs=%2Fha2pyFadujswH4LzMQeev06BnO64zRMg6GpEjGri4s%3D
https://www.espressif.com/en/products/hardware/esp-eye/overview
https://www.robotshop.com/en/charmed-labs-pixy-2-cmucam5-image-sensor.html
https://www.robotshop.com/en/charmed-labs-pixy-2-cmucam5-image-sensor.html
https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4
https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4
https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4

117

464&sr=8-4. [Accessed: 14- Dec- 2019].

[28] POM-2246L-C33-LW100-R Datasheet, 1st ed. PUI Audio, 2019.

[29] "AUM-5047L-3-LW100-R PUI Audio, Inc. | Audio Products | DigiKey",

A. Digikey.com, 2019. [Online]. Available:

https://www.digikey.com/product-detail/en/pui-audio-inc/AUM-

5047L-3-LW100-R/668-1492-ND/5414022. [Accessed: 14- Dec- 2019].

[30] AUM-5047L-3-LW100-R Datasheet, 1st ed. PUI Audio, 2019.

[31] "POM-2246L-C33-LW100-R PUI Audio, Inc. | Audio Products | DigiKey",

A. Digikey.com, 2019. [Online]. Available:

https://www.digikey.com/product-detail/en/pui-audio-inc/POM-

2246L-C33-LW100-R/668-1494-ND/5414024. [Accessed: 14- Dec-

2019].

[32] CMC-3015-44L100 Datasheet, 1st ed. CUI Devices, 2019.

[33] P. Sensor, "Phidgets Touch Sensor", Trossenrobotics.com, 2019. [Online].

a. Available: https://www.trossenrobotics.com/p/phidgets-touch-

sensor.aspx. [Accessed: 14- Dec- 2019].

[34] “1129 User Guide - Phidgets Support", Phidgets.com, 2019. [Online]. Available:

a. https://www.phidgets.com/docs/1129_User_Guide. [Accessed: 12-

Nov- 2019].

[35] “Adafruit MPR121 12-Key Capacitive Touch Sensor Breakout Tutorial",

a. Adafruit Learning System, 2019. [Online]. Available:

https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-

touch-sensor-breakout-tutorial. [Accessed: 12- Nov- 2019].

[36] "UCONTRO iHSS57-36-20 CNC Closed-Loop NEMA 23 Integrated Stepper

a. Motor", Amazon.com, 2020. [Online]. [Accessed: 07- Apr- 2020].

[37] P. Khatri, "Overvoltage Protection Circuit", Circuitdigest.com, 2020. [Online].

a. Available: https://circuitdigest.com/electronic-circuits/overvoltage-

protection-circuit. [Accessed: 09- Mar- 2020].

[38] Dill, K. (2012). Introducing GAIA: A Reusable, Extensible Architecture for AI

a. Behavior.

[39] Guarnizo Marin, J., & Mellado Arteche, M. (2016). Robot Soccer Strategy Based

https://www.amazon.com/Arducam-%20%20%20Camera-Raspberry-Interchangeable-M12x0-5/dp/B013JTY8WY/ref=sr_1_4?keywords=m12+camera&qid=1573510464&sr=8-4
https://www.digikey.com/product-detail/en/pui-audio-inc/AUM-5047L-3-LW100-R/668-1492-ND/5414022
https://www.digikey.com/product-detail/en/pui-audio-inc/AUM-5047L-3-LW100-R/668-1492-ND/5414022
https://www.digikey.com/product-detail/en/pui-audio-inc/POM-2246L-C33-LW100-R/668-1494-ND/5414024
https://www.digikey.com/product-detail/en/pui-audio-inc/POM-2246L-C33-LW100-R/668-1494-ND/5414024
https://www.trossenrobotics.com/p/phidgets-touch-sensor.aspx
https://www.trossenrobotics.com/p/phidgets-touch-sensor.aspx
https://www.phidgets.com/docs/1129_User_Guide
https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial
https://learn.adafruit.com/adafruit-mpr121-12-key-capacitive-touch-sensor-breakout-tutorial
https://circuitdigest.com/electronic-circuits/overvoltage-protection-circuit
https://circuitdigest.com/electronic-circuits/overvoltage-protection-circuit

118

a. on Hierarchical Finite State Machine to Centralized Architectures.

IEEE Latin America Transactions, 14(8), 3586–3596.

https://doi.org/10.1109/TLA.2016.7786338

[40] An Introduction to Robot Operating System (ROS). (2017, June 26). Available:

a. https://www.allaboutcircuits.com/technical-articles/an-

introduction-to-robot-operating-system-ros/

[41] Mark, D. (n.d.). AI Architectures: A Culinary Guide (GDMag Article) « IA on AI.

a. Available: http://intrinsicalgorithm.com/IAonAI/2012/11/ai-

architectures-a-culinary-guide-gdmag-article/

[42] Rajesh S. Brid. (2018, October 26). Decision Trees??'A simple way to visualize a

a. decision. Retrieved from https://medium.com/greyatom/decision-

trees-a-simple-way-to-visualize-a-decision-dc506a403aeb

[43] Graham, D. R. (n.d.). An Introduction to Utility Theory. Retrieved from

a. http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_I

ntroduction_to_Utility_Theory.pdf

[44] Birrell, S. (2016, June 7). Robot Mind or Robot Body: Whatever happened to the

a. Subsumption Architecture? – Artificial Human Companions. Retrieved

from http://www.artificialhumancompanions.com/robot-mind-

robot-body-whatever-happened-subsumption-architecture/

[45] A Quick Introduction to Neural Networks. (2016, August 10). Retrieved from

a. https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

[46] Simpson, C. (2014, June 17). Behavior trees for AI: How they work. Retrieved

a. from

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/22133

9/

[47] Jirak, D., & Wermter, S. (2018). Potentials and Limitations of Deep Neural

a. Networks for Cognitive Robots. arXiv.org. Retrieved from

http://search.proquest.com/docview/2072257764/

[48] Beltran, J., & Gomez, J. (2012). Subsumption architecture for motion learning in

a. robots. 2012 7th Colombian Computing Congress (CCC), 1–6.

https://doi.org/10.1109/ColombianCC.2012.6398038

https://doi.org/10.1109/TLA.2016.7786338
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-robot-operating-system-ros/
https://www.allaboutcircuits.com/technical-articles/an-introduction-to-robot-operating-system-ros/
http://intrinsicalgorithm.com/IAonAI/2012/11/ai-architectures-a-culinary-guide-gdmag-article/
http://intrinsicalgorithm.com/IAonAI/2012/11/ai-architectures-a-culinary-guide-gdmag-article/
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
https://medium.com/greyatom/decision-trees-a-simple-way-to-visualize-a-decision-dc506a403aeb
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf
http://www.gameaipro.com/GameAIPro/GameAIPro_Chapter09_An_Introduction_to_Utility_Theory.pdf
http://www.artificialhumancompanions.com/robot-mind-robot-body-whatever-happened-subsumption-architecture/
http://www.artificialhumancompanions.com/robot-mind-robot-body-whatever-happened-subsumption-architecture/
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/
http://search.proquest.com/docview/2072257764/
https://doi.org/10.1109/ColombianCC.2012.6398038

119

[49] R. Brewer et al., “A Friction Differential and Cable Transmission Design for a 3-

a. DOF Haptic Device with Spherical Kinematics”, IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2011.

[50] “Ultra High Molecular Weight Polyethylene Ropes (UHMWPE)”, Katradis, 2019.

a. Available: https://www.katradis.com/high-performance-

ropes/uhmwpe-ropes/uhmwpe-rope-info

[51] “Materials used for Ropes”, christiandmerchant.com, n.d., Available:

a. https://www.christinedemerchant.com/rope_material_hmpe.html

[52] “Dyneema® in marine and industrial applications.” Pelican Rope, n.d.

a. Available:

http://www.pelicanrope.com/pdfs/DyneemaSK75_Tech_Sheet.pdf

[53] “UHMW Plastic Data Sheet,” Curbell Plastics, 2016. Available:

a. https://www.curbellplastics.com/Research-Solutions/Technical-

Resources/Technical-Resource/UHMW-Data-Sheet

[54] Muzumdar et. al., “Synthetic Fiber Capstan Drives for Highly Efficient, Torque

a. Controlled, Robotic Applications ”, IEEE Robotics and Automation

Letters, 2017. Available:

https://www.osti.gov/servlets/purl/1340266

[55] “Anthrobot.com : Ross-Hime Designs, Inc : Omni-Wrist III", Anthrobot.com,

a. 2019.

[56] Letier, Pierre & Schiele, André & Avraam, More & Horodinca, Mihaita &

a. Preumont, A. (2019). Bowden cable actuator for torque feedback in

haptic applications. Available:

https://www.researchgate.net/publication/229011036_Bowden_cabl

e_actuator_for_torque_feedback_in_haptic_applications

[57] Bajaj, Neil & Spiers, Adam & Dollar, Aaron. (2015). State of the Art in Prosthetic

a. Wrists: Commercial and Research Devices. 2015.

10.1109/ICORR.2015.7281221. Available:

https://www.researchgate.net/publication/277332478_State_of_the_

Art_in_Prosthetic_Wrists_Commercial_and_Research_Devices

[58] https://ieeexplore.ieee.org/document/1642584

https://www.katradis.com/high-performance-ropes/uhmwpe-ropes/uhmwpe-rope-info
https://www.katradis.com/high-performance-ropes/uhmwpe-ropes/uhmwpe-rope-info
https://www.christinedemerchant.com/rope_material_hmpe.html
http://www.pelicanrope.com/pdfs/DyneemaSK75_Tech_Sheet.pdf
https://www.curbellplastics.com/Research-Solutions/Technical-Resources/Technical-Resource/UHMW-Data-Sheet
https://www.curbellplastics.com/Research-Solutions/Technical-Resources/Technical-Resource/UHMW-Data-Sheet
https://www.osti.gov/servlets/purl/1340266
https://www.researchgate.net/publication/229011036_Bowden_cable_actuator_for_torque_feedback_in_haptic_applications
https://www.researchgate.net/publication/229011036_Bowden_cable_actuator_for_torque_feedback_in_haptic_applications
https://www.researchgate.net/publication/277332478_State_of_the_Art_in_Prosthetic_Wrists_Commercial_and_Research_Devices
https://www.researchgate.net/publication/277332478_State_of_the_Art_in_Prosthetic_Wrists_Commercial_and_Research_Devices
https://ieeexplore.ieee.org/document/1642584

120

Appendix A: Key Stakeholder Needs

Stakeholder Needs SH Considerations

Athletics The system should emote or react
during sports game
People can take photos of it (put their
arms around it)
Celebratory pose/action on goals,
touchdowns, runs, etc.
The system should be relatively easy
to transport

The system will be a sporting events, so
it should be able to interact with and
hype up the crowd. The system will also
have to not track debris onto the
basketball courts.

Admissions The system should interact with
visitors and inform them about WPI
The robot could be placed in the
upcoming Bartlet Center lobby
museum
Visitors can take selfies with it
Robot could have a fake smartphone
in one of its hooves that takes selfies

The system will be on display for
visitors, so it should be visually
appealing and safe for visitors to
approach. The system may also be used
to inform visitors about WPI.

Marketing The design of the robot should not
look like any of the existing licensed
Gompei designs

The robot’s character should not look
like the existing brand images

SAS The system should be able to create
screaming goat sounds
The system should be able to act as a
sound system
The system should be able to launch
merchandise
The system should be able emote
The system should have a soft
exterior
The system should not speak

SAS will handle the arrangements for
the system. They will also have some
approval over the appearance and
manner of the system.

121

Appendix B: List of Needs and Priorities

Need Statement Validation Priority

Safety The robot should be safe to

approach and operate

Robotics

Department, SAS,

Admissions

1

Interaction The robot should be able to react

to audio, physical, and visual

stimuli

SAS, Admissions,

Marketing

1

Remote Control The robot should be able to be

controlled by external controls

Athletics, SAS 1

Overheating The robot should not overheat due

to internal heating issues

All 1

Replaceable

feet

The robot should have replaceable

feet to avoid tracking dirt inside

buildings

Athletics 2

Photo taking The robot should be able to take

photos of itself with another

person.

Admissions,

Marketing

2

Movement The robot should be able to move

to another location without

external forces

Athletics, SAS 2

Head

Movement

The robot should move its head in

multiple directions

Admissions, SAS,

Athletics,

2

Autonomy The robot should have an Admissions, SAS 2

122

autonomous mode that reacts to

external stimuli

Visually

Appealing

The robot should appear as a

cartoonish goat not a robot.

SAS, Admissions,

Athletics

2

Waterproofing The robot should be able to handle

some rain exposure

Athletics, SAS 2

123

Appendix C: Robot Requirements

● Functional Requirements

○ The robot mascot shall be able to respond to acoustic stimuli by

turning its head in the direction of the sound to an accuracy of +-10

degrees.

○ The robot mascot shall be able to respond to acoustic stimuli by

producing its own sounds after acoustic stimuli made in

conversational tone within 2m.

○ The robot mascot shall be able to respond to visual stimuli by turning

its head in the direction of the visual movement to an accuracy of +-10

degrees.

○ The robot mascot shall be able to account for physical stimuli by being

able to accommodate unpowered movement of the head to 10cm in

any direction.

○ The robot mascot shall be able to pose itself into at least two different

positions: Proud Goat and Charging Goat.

○ The robot mascot shall be capable of identifying people within 1

meter of its range of vision.

○ The robot mascot shall be capable of following a handheld out within

1 meter of its range of vision.

○ The robot mascot shall be capable of responding to being touched on

its head with 9N of force.

○ The robot mascot shall be able to recognize when a movement is

being resisted and stop movement accordingly.

○ The robot mascot shall be able to move its head and neck with a

combined 5 degrees of freedom.

○ The robot mascot shall have a neck pitch range of ±30 degrees.

○ The robot mascot shall have a neck yaw range of ±50 degrees.

○ The robot mascot shall have a head roll range of ±30 degrees.

○ The robot mascot shall have a head pitch range of ±10 degrees.

124

○ The robot mascot shall have a head yaw range of ±40 degrees.

○ The robot mascot shall move using a quadrupedal leg system.

○ The robot mascot shall be able to produce its own sounds after

acoustic stimuli made in conversational tone within 2m.

● Non-Functional Requirements

○ The robot mascot shall be able to operate for no less than 2 hours

before charging or battery replacement.

○ The robot mascot shall be capable of manual control via a remote

control, as well as autonomous interactions with people.

○ The robot mascot shall be water resistant to handle light exposure to

rain without sustaining internal damage, long enough to be moved

from the far end of the WPI athletics field to the athletic center.

○ The robot mascot shall have adequate thermal regulation to prevent

overheating.

○ The robot shall be safe to approach and operate.

○ The robot shall have replaceable feet for indoor and outdoor

activities.

○ The robot mascot shall use a combination of a camera, microphones,

and capacitive touch sensors to sense and interact with the world

around it.

○ The robot mascot shall have enough power to operate all motors and

sensors at full power.

○ The robot mascot shall utilize a rechargeable battery for non-tethered

operation.

○ The robot mascot shall have a port to plug in a cable to charge its

battery.

○ The robot mascot shall be capable of operating while tethered and not

tethered.

○ The robot mascot shall be able to operate for no less than 2 hours

before charging or battery replacement. *

○

125

● Derived Requirements

○ The robot mascot shall be able to fit into a standard freight or medical

elevator (2300cm x 1100cm source:

http://www.mitsubishielectric.com/elevator/products/basic/elevato

rs/nexiez_mr/pdf/hospital.pdf).

● Standards Requirement

○ The robot mascot shall not be able to pinch anyone who is touching

the neck or head areas during movement.

○ The robot mascot shall be able to recognize when a movement is

being resisted and stop movement accordingly.

○ The robot mascot shall have an easily reachable and easily pushable

button that immediately cuts power to the robot mascot.

● Software Requirements

○ The robot mascot shall be able to be controlled remotely through a

web server or through a Bluetooth controller.

○ The robot mascot shall be programming in an easily readable

standard with at least one comment in Doxygen standard for every

file, method, and function.

○ The robot mascot shall have an interface such that it is relatively

simple to add support for a new payload.

○ The robot mascot shall be able to respond within 1 sec of any given

input. (Should be far less).

○ The robot mascot shall be able to be controlled through a wireless

controller.

○ The robot mascot shall be able to interrupt precious commands given

certain sensor input.

○ The robot mascot shall be able to have a mode that allows it to

automatically interact to stimuli from external sensors.

○ The robot mascot shall have a kill switch on the wireless controller or

any interface where it can be controlled.

http://www.mitsubishielectric.com/elevator/products/basic/elevators/nexiez_mr/pdf/hospital.pdf
http://www.mitsubishielectric.com/elevator/products/basic/elevators/nexiez_mr/pdf/hospital.pdf

126

○ The robot mascot shall have programming with unit tests that cover

the most functions and situations.

● Discovered Requirements

○ The robot shall interact and respond to acoustic, physical, and visual

stimuli

127

Appendix D: Circuit Diagram

128

Appendix E: Personas

1. Laura Wilson

1.1. Age: 18

1.2. Gender: Female

1.3. Personality

1.3.1. Laura Wilson is an outgoing young lady who has a close-knit

group of friends. She is an extrovert who enjoys making new

friends and social interactions.

1.4. Background

1.4.1. Laura Wilson grew up on the West Coast of the United States in

San Francisco with her mother and father. She attended the

local high school where she joined the robotics club and played

soccer; she maintained high grades, graduating in the top 10%

of the class.

1.5. Job

1.5.1. High School Student

1.6. Technical Background

1.6.1. FIRST Robotics / VEX Robotics

1.6.2. Consumer Electronics

1.7. Purpose

1.7.1. Laura Wilson is here with her father, where they are touring

colleges that Laura is considering applying to. She is at an

admission tours where she is determining whether she wants

to attend WPI as a technical college.

1.8. Expectations

1.8.1. When Laura Wilson is looking at the robot, she would be

attentive to concepts and principles that she has yet to learn

and wishes to.

1.8.2. Laura Wilson is also interested in robot building process here

at WPI and wants to know if it is fun.

129

1.9. Fulfillment

1.9.1. A positive situation would end with Laura Wilson being

suitably impressed with the robot and interested in learning

how to build a similar robot herself. Eventually, she decides

WPI is an impressive university in robotics and places it in the

top tier universities that she is looking at.

2. David Wilson

2.1. Age: 48

2.2. Gender: Male

2.3. Personality

2.3.1. David Wilson is more reserved and cautious than his daughter.

He is also more of an analytical man who trusts statistics and

math more than emotions.

2.4. Background

2.4.1. David Wilson grew up in the US Midwest in a rural location. He

graduation a middle of the road university before moving to

San Francisco and settling down to raise a family.

2.5. Job

2.5.1. Financial Analyst Contractor

2.6. Technical Background

2.6.1. Consumer Electronics (Smartphone, personal computer)

2.6.2. Microsoft Office Use

2.7. Purpose

2.7.1. David Wilson is here with his daughter Laura to determine if

WPI is able to give his daughter an education that will enable

her to get a decent job upon graduation.

2.8. Expectations

2.8.1. While David Wilson is looking the robot, he would be looking

for concepts that he had research prior to the trip. He is

looking to make sure that the robot is in line with current

industry trends and that by building a robot similar, his

130

daughter would learn what she needs to know. David would be

also interesting the resources provide to his daughter and also

compare that to other universities.

2.9. Fulfillment

2.9.1. A positive situation would end with David Wilson observing

current robotic concepts in action. David would then decide

that WPI is able to give his daughter an education that would

teach his daughter the proper skillset to get a decent job.

3. John Caben

3.1. Age: 31

3.2. Gender: Male

3.3. Personality

3.3.1. John is more of an introvert and spends most of his time

gaming with a small group of online friends. He keeps casual

work acquaintances but is mostly a solitary person.

3.4. Background

3.4.1. John grew up in the suburbans of Boston. He attended WPI,

graduated, and moved to Seattle to work for Boeing. He does

not have a significant other.

3.5. Job

3.5.1. Mechanical Engineer at Boeing

3.6. Technical Background

3.6.1. WPI Mechanical Engineer Degree.

3.6.2. Power User of personal electronics

3.7. Purpose

3.7.1. John has returned to WPI area for his 10-year reunion and

during the party sees the robot.

3.8. Expectations

3.8.1. While John Caben is looking at the robot, he is comparing the

robot with what he did during his WPI years as well as his

current industry experience.

131

3.9. Fulfillment

3.9.1. A positive situation would end with John Caben being

suitability impressed with the robot and that is demonstrates

more knowledge than he learned during his WPI days and

perhaps similar knowledge that he is currently applying.

4. Hannah Williams

4.1. Age: 35

4.2. Gender: Female

4.3. Personality

4.3.1. Hannah Williams is more of an introvert but does maintain a

close circle of friends among her colleagues.

4.4. Background

4.4.1. Hannah Williams is a first-generation immigrant who moves

from Europe during her younger years. She attended

university in the US and obtained her PHD at Georgia Tech in

Robotics.

4.5. Job

4.5.1. Associate Professor

4.6. Technical Background

4.6.1. PHD in Robotics

4.7. Purpose

4.7.1. Hannah Williams was passing by a university event in the quad

and noticed the robot. She then takes a look to examine and

judge the robot

4.8. Expectations

4.8.1. While Hannah Williams is looking at the robot, she is taking a

more critical view of it. She wants to see that concepts that she

is teaching are being applied and likely to ask more complex

questions about the decision making of the mechanics.

4.9. Fulfillment

132

4.9.1. A positive situation would end with Hannah Williams being

suitability impressed with the robot, seeing that it does contain

and was built with her lessons in mind.

5. Betsy Ericson

5.1. Age: 8

5.2. Gender: F

5.3. Personality

5.3.1. Betsy Ericson is a rambunctious, energetic child who tends to

touch whatever she wants. This has led to a tendency to

accidentally break some of her more fragile toys.

5.4. Background

5.4.1. WEST PHILADELPHIA BORN AND RAISED. The Ericson family

all live together in a single household with her grandparents;

they are more economically disadvantaged.

5.5. Job

5.5.1. Elementary School

5.6. Technical Background

5.6.1. LEGO

5.6.2. Consumer Electronics (iPad, Computers, Video games)

5.7. Purpose

5.7.1. Betsy is attending a summer camp near WPI and they visit WPI

for a tour. At one station, she sees this cool robot.

5.8. Expectations

5.8.1. While Betsy Ericson is interacting with the robot, she expects it

to interact with her and be cool. She is also likely to interact

physically with it in unexpected ways,

5.9. Fulfillment

5.9.1. A positive situation would end with Betsy Ericson directly

interacting with the robot in some way that she considers cool

as well as not break under unexpected circumstances.

6. Sam Ayam

133

6.1. Age: 17

6.2. Gender: Nonbinary

6.3. Personality

6.3.1. Sam is introverted who doesn’t have a close circle of friends,

instead they are more of a social loner. Although they were

involved in their high school marching band, they only had a

group of acquaintances.

6.4. Background

6.4.1. Sam grew in Seattle, among the northern suburbans. They

started music early with the French horn, which they

continued throughout high school. They were raised by a single

working mother.

6.5. Job

6.5.1. High School Student

6.6. Technical Background

6.6.1. Intro Computer Science Course

6.6.2. Computer Science Hobby Projects

6.7. Purpose

6.7.1. Sam is visiting WPI outside of an admissions tour, rather they

are being shown around by their cousin who is attending. Sam

is determining whether they want to attend WPI as a technical

college.

6.8. Expectations

6.8.1. While Sam Ayam is interacting with the robot, they are more

curious about the engineering process in which it is built. They

would be interested in the various programming aspects as

well as how students got involved in this project.

6.9. Fulfillment

6.9.1. A positive situation would end with Sam Ayam, deciding WPI is

an impressive university in robotics and places it in the top tier

universities that Sam is looking at. They would also respect

134

how the robot was built and enjoy that at WPI students are

pushed to do MQPs.

7. Axle Lough

7.1. Age: 18

7.2. Gender: M

7.3. Personality

7.3.1. Axle is a relatively extroverted student who played basketball

through middle and high school. He has a close group of friends

and they hand out often.

7.4. Background

7.4.1. Axle grew up in the center of Los Angeles; both of his parents

work in non-technical fields, but Axle is now considering a

STEM career.

7.5. Job

7.5.1. High School Student

7.6. Technical Background

7.6.1. High School Science Courses

7.6.2. Consumer Electronics

7.7. Purpose

7.7.1. Axle is here on an admissions tour to determine two points: if

STEM fields are right for them and if WPI is the right school for

STEM.

7.8. Expectations

7.8.1. While Axle Lough is interacting with the robot, he would like to

see if WPI interests him at all and whether he might be able to

do what he sees eventually.

7.9. Fulfillment

7.9.1. A positive situation would end with Axle Lough deciding that

STEM is cool, want to go into a field and that WPI is the

university to go to for that field.

135

Appendix F: User Stories

1. Laura Wilson

a. Laura Wilson has done her research beforehand and knows that a

mascot robot exists but not its capabilities. She then seeks out the

robot during an admissions tour.

b. Robot notices Laura’s approach fixates at her and moves its head to

get her attention.

c. Laura moves around robot trying to get a closer look at the inner

mechanics.

d. Robot head and neck tracks Laura’s movements.

e. Laura notices that the robot is tracking her and stops her movement.

She then waves at the robot to see if it will respond.

f. Robot head and neck follows hand and makes Goat Noise in greeting.

g. Laura says hi back to the robot.

h. Robot makes goat noise in response.

i. Laura reaches out hand and touches the robot directly on the top of

the head.

j. Robot nuzzles upward into Laura’s hand.

k. Laura moves her hand around the robot’s head still petting it.

l. Robot nuzzles in general direction of Laura's petting.

m. Laura decides that the robot is pretty interesting since it is able to

respond well to her movements and that she would like to know how

to build a similar robot.

n. Laura asks operator to take a selfie with the robot.

o. Operator poses the robot with Laura to take a photo.

p. Other guests move forward to the robot.

q. Laura then has a lot more questions about the robot building process

to which she asks the admissions guide or the operator.

2. David Wilson

136

a. David Wilson notices robot since his daughter mentioned it and

comes to investigate.

b. Robot notices David’s approach and makes head and neck movements

and goat noise to try and get attention.

c. David Wilson examines robot from a relatively stationary position

with small head and neck movements.

d. Robot follows small movement for 5 seconds before losing fixation

and moves to another person.

e. David Wilson observes interactions of the robot with a third person.

f. David Wilson asks question to admissions guide about student

resources that enable them to build a robot. David Wilson also

comparing the robot silently to robot that he has seen in the news and

media.

3. John Caben

a. John Caben notices robot at the reunion and decides he wants to take

a look at what students are WPI have been doing. So, he approaches it.

b. John Caben first examines robot from a stationary position with

relatively small head movements

c. Robot head and neck tracks small movements.

d. John Caben notices these small movements and decides to test the

limits of the head and neck angles of freedom.

e. John Caben first tests the extreme left and right movements before

testing up and down.

f. Robot tracks John Caben’s head as much as it can but does not go past

its limits.

g. Operator notices John Caben’s attempts and activates demonstrate

sequence to show off the entire ranges of motion and all actuated

movement.

h. John Caben asks to touch the robot.

i. Operator confirms that the robot is made to be touched and suggests

reaching out hand.

137

j. Robot head goes to hand and nuzzles it.

k. John Caben then observes the robot and tries touching it in various

spots on the head, neck, and flanks.

l. Robot makes goat noise and move head and neck in response to begin

touched.

m. John Caben then steps back and questions the operator on the various

systems or mechanisms that were used on the robot.

n. Operator peeling back the outer latex skin to show the inner

workings.

o. Operator switches the robot to manual mode and demonstrates the

physical interworking of the robot.

p. John Caben thanks operator for the closer look and steps back to tell

his friends to come look at this.

4. Hannah Williams

a. Hannah Williams has heard of the robot from her peers and seeks it

out during a social event on the quad.

b. Hannah Williams first examines robot from a stationary position with

relatively small head movements

c. Robot head and neck tracks small movements.

d. Hannah Williams notices these small movements and decides to test

the limits of the head and neck angles of freedom.

e. Hannah Williams first tests the extreme left and right movements

before testing up and down.

f. Robot tracks Hannah Williams’s head as much as it can but does not

go past its limits.

g. Operator notices Hannah Williams’s attempts and activates

demonstrate sequence to show off the entire ranges of motion and all

actuated movement.

h. Hannah Williams asks to touch the robot.

i. Operator confirms that the robot is made to be touched and suggests

reaching out hand.

138

j. Robot head goes to hand and nuzzles it.

k. Hannah Williams then observes the robot and tries touching it in

various spots on the head, neck, and flanks.

l. Robot makes goat noise and move head and neck in response to begin

touched.

m. Hannah Williams then steps back and questions the operator on the

various systems or mechanisms that were used on the robot.

n. Operator peeling back the outer latex skin to show the inner

workings.

o. Operator switches the robot to manual mode and demonstrates the

physical interworking of the robot.

p. Hannah Williams also has questions about why certain design

decisions were made but the operator is unable to answer them.

q. Hannah Williams thanks operator for the closer look and steps back

thinking about the mechanisms that she had observed.

5. Betsy Ericson

a. Betsy Ericson notices the robot is interacting with another group of

children.

b. Betsy runs over to them to get a closer look but accidentally stumbles

into one of the legs.

c. Robot remains balanced and interacts with another child that had its

fixation.

d. Impatient with the robot making goat noise with another child, Betsy

grabs the head of the robot and brings it in front of her face.

e. Robot compensations for unexpected movement and moves fixation

to Betsy.

f. Betsy then makes noises and strokes it for a period of time.

g. Betsy then loses interest but still thinks that robot was cool and runs

away, accidentally tugged sharply on the head.

h. Robot remains balanced.

6. Sam Ayam

139

a. Sam Ayam notices the robot at a social event on the quad and comes

over to investigate.

b. Sam Ayam remains apart from the WPI students but does observe

their interactions with the robot.

c. Sam Ayam attempts to discern how it was programming and looks for

various flaws in its behavior.

d. Being socially anxious, they do not approach the operator with their

questions but ask their cousin, but he doesn’t know. Instead they

resolve to do their research about the robot later online.

7. Axle Lough

a. Axle Lough meets the robot during an admissions tour.

b. Robot notices Axle approach fixates at him and moves its head to get

his attention.

c. Axle moves around robot trying to get a closer look at the inner

mechanics.

d. Robot head and neck tracks Axle’s movements.

e. Axle notices that the robot is tracking him and stops his movement.

He then waves at the robot to see if it will respond.

f. Robot head and neck follows hand and makes Goat Noise in greeting.

g. Axle says hi back to the robot.

h. Robot makes goat noise in response.

i. Axle asks operator to take a selfie with the robot.

j. Operator poses the robot with Axle to take a photo.

k. Other guests move forward to the robot.

l. Axle then has a lot more questions about the robot building process to

which he asks the admissions guide or the operator.

140

Appendix G: Use Cases

1. Toggle Manual Control

1.1. User

1.1.1. Operator

1.2. Purpose

1.2.1. Operator wants to toggle the robot to manual mode, in order to

pose the robot for a photo.

1.3. Preconditions

1.3.1. Robot is in AI mode.

1.4. Triggers

1.4.1. Operator’s intent to manually move the robot.

1.5. Flow of Events

1.5.1. Operator hits a button on the controller.

1.5.2. All AI operations cease.

1.6. Post Conditions

1.6.1. Robot is in Manual Mode.

1.6.2. No automated movements - no AI control routines are run.

2. Manual Control

2.1. User

2.1.1. Operator

2.2. Purpose

2.2.1. Operator is able to individually control all degrees of freedom

using the controller, in order to pose the robot for a photo.

2.3. Preconditions

2.3.1. Robot is currently in manual mode.

2.4. Triggers

2.4.1. Operator’s intent to pose the robot.

2.5. Flow of Events

2.5.1. Operator manipulates the left joystick to the left direction.

2.5.2. Robot base of neck moves in the negative yaw direction (left).

141

2.5.3. Operator manipulates the left joystick to the right direction.

2.5.4. Robot base of neck moves in the positive yaw direction (right).

2.5.5. Operator manipulates the left joystick in the up direction.

2.5.6. Robot base of neck moves in the positive pitch direction (up).

2.5.7. Operator manipulates the left joystick in the down direction.

2.5.8. Robot base of neck moves in the negative pitch direction

(down).

2.5.9. Operator manipulates the right joystick to the left direction.

2.5.10. Robot base of head moves in the negative yaw direction (left).

2.5.11. Operator manipulates the right joystick to the right direction.

2.5.12. Robot base of head moves in the positive yaw direction (right).

2.5.13. Operator manipulates the right joystick in the up direction.

2.5.14. Robot base of head moves in the positive pitch direction (up).

2.5.15. Operator manipulates the right joystick in the down direction.

2.5.16. Robot base of head moves in the negative pitch direction

(down).

2.5.17. Operator manipulates the right controller trigger.

2.5.18. Robot base of head moves in the negative roll direction

(clockwise).

2.5.19. Operator manipulates the left controller trigger.

2.5.20. Robot base of head moves in the positive roll direction

(counterclockwise).

2.6. Alternative flow events

2.6.1. Robot reaches maximum rotation of a freedom of axis.

2.6.2. Operator input to move pass said limit is ignored.

2.7. Post Conditions

2.7.1. Robot joint moves in the intended direction unless pass limits.

3. Toggle AI Mode

3.1. User

3.1.1. Operator

3.2. Purpose

142

3.2.1. Operator wants to toggle AI mode in order for the robot to

interact automatically with the public.

3.3. Preconditions

3.3.1. Robot is in manual mode.

3.4. Triggers

3.4.1. Operator’s intent for the robot to interact with the public.

3.5. Flow of Events

3.5.1. Operator hits a button on the controller.

3.6. Post Conditions

3.6.1. Robot is in AI mode.

3.6.2. Robot automatically begins to run AI control routines.

4. Seeking Behaviour

4.1. User

4.1.1. Robot

4.2. Purpose

4.2.1. Robot wants to engage with persons not yet close to the robot

in order to engage with interaction with them

4.3. Preconditions

4.3.1. Robot is in AI mode.

4.3.2. Robot is not currently interacting with a person.

4.4. Triggers

4.4.1. Robot is not currently interacting with a person.

4.5. Flow of Events

4.5.1. Robot moves head around to search for a person in its FOV.

4.5.2. If the robot hears sound, robot moves head toward direction of

sound.

4.5.3. Robot detects a person at a distance greater than interaction

distance but within seeking distance.

4.5.4. Robot is fixated on the User.

4.5.5. Robot moves head to point at said person.

143

4.5.6. Robot moves head in an up and down manner and makes goat

noises.

4.5.7. Person moves within interaction distance

4.6. Alternate Flow of Events.

4.6.1. If fixated person leaves seeking distance or 10 seconds pass

without moving into interaction distance, restart the flow of

events.

4.7. Post Conditions

4.7.1. Person is now within interaction distance or no persons are

detected inside seeking distance.

5. Non-physical Interaction

5.1. User

5.1.1. User

5.2. Purpose

5.2.1. User wants to test if the robot will respond to external

movements in order to learn more about the robot.

5.3. Preconditions

5.3.1. Robot is in AI mode.

5.3.2. Robot is fixated on the User.

5.4. Triggers

5.4.1. User moves inside the interaction range while the robot is

fixated on the User.

5.5. Flow of Events

5.5.1. User moves hand in a large wave motion.

5.5.2. Robot head and neck follows the movement of the hand.

5.5.3. User moves head in some movement.

5.5.4. Robot head and neck tracks user head.

5.5.5. User walks to another location still in robot FOV.

5.5.6. Robot moves head and neck so that User is in the center of

FOV.

5.5.7. User reaches out hand to robot.

144

5.5.8. Robot moves head to touch hand.

5.6. Alternative Flow of Events

5.6.1. If User leaves interaction distance, robot removes fixation with

the user.

5.7. Alternative Flow of Events

5.7.1. If User remain inside interaction distance but doesn’t reach out

hand, operator can guide user to do so.

5.7.2. If User remain inside interaction distance but doesn’t reach out

hand after 5 seconds, robot loses fixation.

5.8. Alternative Flow of Events

5.8.1. If another person reaches out hand, robot fixates on the new

person.

5.9. Post Conditions

5.9.1. User and Robot are now in physical contact.

6. Physical Interaction

6.1. User

6.1.1. User

6.2. Purpose

6.2.1. User wants to touch the robot in order to feel the external

texture and see how it responds.

6.3. Preconditions

6.3.1. Robot is in AI mode.

6.4. Triggers

6.4.1. User is touching the robot.

6.5. Flow of Events

6.5.1. User is touching head of robot.

6.5.2. Robot slowly moves head in a nodding motion while slowly

rotating the base of neck along the roll axis (clockwise and

counterclockwise). Robot also angles the head toward the

direction of the touch (right, left, and up).

6.5.3. User is touching the neck of the robot from side of robot.

145

6.5.4. Robot moves head in the direction of user and moves head in

an up and down motion.

6.5.5. User steps back and breaks physical contact.

6.6. Alternative Flow of Events

6.6.1. If User leaves interaction distance, robot removes fixation with

the user.

6.7. Alternative Flow of Events

6.7.1. If User remains inside interaction distance but stops physical

contact, robot removes fixation with the user.

6.8. Post Conditions

6.8.1. User is no longer fixated.

7. Sound Reactions - Otherwise

7.1. User

7.1.1. Robot

7.2. Purpose

7.2.1. Robot wants to engage with a person or group of persons

through auditory ways.

7.3. Preconditions

7.3.1. Robot is in AI mode.

7.3.2. Robot is fixated on a person.

7.3.3. Persons are within interaction distance.

7.3.4. Sound is not being made in response to a conversation.

7.4. Triggers

7.4.1. Sound is detected.

7.5. Flow of Events

7.5.1. Sound is detected.

7.5.2. Robot makes a sound.

7.6. Post Conditions

7.6.1. Robot is still fixated on the same person.

146

Appendix H: Prioritized Use Cases

1. Seeking Behaviour

a. Recognition of humans on camera and movement to face and interact

with them

b. Seeking of humans on camera is prioritized as the highest since it is a

steppingstone to the next highest behavior which is nonphysical

interaction. Being able to detect humans allows the robot to do that

behavior as well as seek out new persons. It also requires the AI to be

able to calculate expected locations and be able to develop the

necessary commands to move the robot to that position.

2. Non-Physical Within Interaction Distance

a. Waving Hands, moving heads, tracking movement

b. This nonphysical interaction is prioritized as the second because it

relies on functionality from the first, but it is also probably going to be

used the most by people interacting with the robot. This behavior also

doesn't need to overcome the social barrier of touching robot and its

behavior is movement that nearly everyone can trigger just be looking

at the robot.

3. Physical Interaction

a. Reacting to physical touch, limiting movement based on touch sensors

b. This is likely to be the next most used behavior as once one person

sees the robot being touched, those more extroverted might be willing

to touch the robot. These movements will also be very important in

selling the believability of the lifelike goat that all this behavior is

driving toward.

4. Sound Detection Response

a. Detect sound and make a noise in response

b. This is a behavior that everyone might not use although some persons

might say hi; it is unlikely that everyone will. Furthermore, this step is

147

relatively simple compared to the previous behavior and therefore

can be delayed.

5. Conversation Detection

a. Robot able to detect differences between conservation and directed

cues

b. This particular behavior is important for the robot to not interrupt

conversations and is the next step after sound detection. It would

allow people to have conversation near the robot without

interruption which sells the goat being able to only react to sound

direct toward it, a more lifelike behavior.

6. Sound Location Detection

a. Detect a sound and have the robot face direction of sound and fixate

on person who made sound

b. This is another behavior that will probably be rare as it only occurs if

the robot has not yet fixated on a person and the person trying to get

its attention is outside its FOV. Although a nice feature that definitely

helps the believability of the robot it is not likely to be used enough to

make it a higher priority.

7. Hand Nuzzle Behaviour

a. Robot goes out of outstretched hand

b. This behavior is low priority because of the difficulty of doing it and

low likelihood of people outstretching their hands. Guiding the head

of the robot to a hand in its visions is far harder than just pointed the

head toward that hand. Furthermore, it was determined that a person

is far more likely to just touch the head than top reach out a hand.

148

Appendix I: Object Diagram

Click Here to See the Full-Size Object Diagram

https://www.lucidchart.com/documents/view/c851195e-2186-480d-9433-02464b1deae3

149

Appendix J: Behavior Tree Diagram

Click Here to See the Full Size Behaviour Tree

https://www.lucidchart.com/documents/view/764782d6-0237-4084-b303-54614908607c/0_0

150

Appendix K: Decorator Design

1. Physical Utility Decorator

a. Max 1.0

b. Min 0.0

c. If the touch sensor is touched? 1.0 : 0.0

2. Non-physical utility decorator

a. Max 0.9

b. Min 0.0

c. Ratio of Person in robot FOV

i. If person has been fixated multiplier of 0.5

3. Seeking Utility Decorator

a. Max 0.3

b. Min 0.3

c. Steady Minimum

4. Time Since Last Sound Decorator

a. Max 1.0

b. Min 0.0

c. Starts at 1.0, degrades to 0.0, after period returns to 1

5. Person Hand is Moving Decorator

a. Max: 1.0

b. Min 0.0

c. If Robot Does Not See Hand

i. 0.0

d. If hand in within bounding box in the center of FOV

i. 1.0

ii. Largest Hand Takes Priority

6. Person Head Not in Center of FOV

a. Max 0.9

b. Min 0.0

c. If Robot Does Not See Head

151

i. 0.0

d. If head in within bounding box in the center of FOV

i. 0.9

ii. Largest head Takes Priority

7. Person Motionless Decorator

a. Max 0.3

b. Min 0.3

c. Steady Minimum

8. Seeking Head Decorator

a. Max 0.3

b. Min 0.3

c. Steady Minimum

9. Person in View to Seek Decorator

a. Person Hand is Moving Decorator

i. Max: 1.0

ii. Min 0.0

iii. If Robot Does Not See Hand

1. 0.0

iv. Else

1. 1.0

v. Largest hand Takes Priority

152

Appendix L: Layer Diagram

Click Here to See a Full-Size Layer Diagram

https://www.lucidchart.com/documents/view/6cc99faf-5d56-4e2f-b7fc-2c6a6cf5d820/0_0

153

Appendix M: Sequence Diagram

Click Here to See the Full-Size Sequence Diagram

https://www.lucidchart.com/documents/view/764782d6-0237-4084-b303-54614908607c/0_0

154

Appendix N: Future Software Work

1. UUID of Behaviours

a. UUID is given on POSITIONCMD and are unique to a single behavior

execution not a behavior. REQUESTCMD returns UUID of completed

behavior when all movements are completed for that UUID. This

would allow for parallel behavior in the behavior tree

2. Fix Motor Ratios

a. In the calculator, the ratio of movement between the head and neck is

calculated as a decimal but it should take into account the maximum

movements in the head to adjust

3. Behaviour Tree Execute Cycles

a. Make each execute cycle of the behavior tree depending on serial

communication of REQUESTCMD instead of CMD line

4. CommandLineProcessor

a. A SensorProcessor object that manages all user inputs through the

command line. There could be manual commands to start, stop, or

manually move the robot here.

5. AudioProcessor

a. Actually, process noise data and make sound as necessary. This is part

of the required behavior.

6. Additional Commands

a. Having commands to handle enable motors, start or stop sensor

information.

7. Less reliance on globals

a. Store globals as pointers and set the pointers on startup. This will also

make testing easier.

8. Testing

a. Unit Tests for all Objects

9. SensorData

155

a. Make behaviours and decorators use SensorData as an interface to

access processor data. This is better style even if it adds an additional

layer.

156

Appendix O: Code Base

The Entire Code Base is available on Github:

ESP32 Code: https://github.com/WPIMascotMQP/ESP_32-SPI/tree/stepping

Raspberry Pi Code: https://github.com/WPIMascotMQP/version0.1/tree/piv0.1

General Testing and Prototyping Code :

https://github.com/orgs/WPIMascotMQP/teams/members/repositories

https://github.com/WPIMascotMQP/ESP_32-SPI/tree/stepping
https://github.com/WPIMascotMQP/version0.1/tree/piv0.1
https://github.com/orgs/WPIMascotMQP/teams/members/repositories

