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“Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make, 

because they lead little by little to the truth.” 

Jules Verne, Journey to the Center of the Earth  
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ABSTRACT  

Utilizing ‘omics’ data of diverse types such as genomics, proteomics, transcriptomics, 

epigenomics, and others has largely been attributed as holding great promise for solving the 

complexity of many health and ecological problems such as complex genetic diseases and parasitic 

destruction of farming crops.  By using bioinformatics, it is possible to take advantage of ‘omics’ 

data to gain a systems level molecular perspective to achieve insight into possible solutions.  One 

possible solution is understanding and expanding the use of alternative splicing (AS) of mRNA 

precursors.  Typically, genes are considered the focal point as the main players in the molecular 

world.  However, due to recent ‘omics’ analysis across the past decade, AS has been demonstrated 

to be the main player in causing protein diversity.  This is possible as AS rearranges the key 

components of a gene (exon, intron, and untranslated regions) to generate diverse functionally 

unique proteins and regulatory RNAs.  AS is highly prevalent, where on average 10 AS transcripts 

occur for every gene in humans. Furthermore, multiple transcripts can be expressed at the same 

moment leading to different protein products that can interact within their molecular environment 

in unique ways. The prevalence on which transcripts are alternatively spliced has been 

demonstrated to be based on age, tissue, cell type, and disease state.  

This work brings together different ‘omics’ data to expand our understanding and promote the 

value of AS  Specifically, there are six projects described here which make use of transcriptomics, 

proteomics, genomics, and epigenomics, which often overlap, on the focus in a couple of complex 

genetic diseases as well as analyzing a parasite, which infects soybeans.   The projects range from 

systemically profiling machine learning methods utilizing RNA-Seq based alternative splicing 

expression data to promote its use, development of a method to predict whether an alternative 

spliced protein affects its interaction, a systematic analysis across the transcriptome for comparing 
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binding sites and domains with alternative splicing and expression patterns, assessment of single 

nucleotide variation on protein binding sites in cancer, assessment of epigenomics with 

transcriptomics within the context of acute lymphoblastic leukemia, and looking for patterns of 

alternative splicing on parasites infecting soybeans.   
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CHAPTER 1: Introduction and Literature Review 

1.1 21st Century Problems 

Fighting disease and food production have been among the main challenges that civilizations have 

tried to resolve for thousands of years.  Yet, our comprehension of molecular mechanisms behind 

genetic and infectious diseases in humans, animals, and plants has begun to crystallize only in the 

last 100 years (1).  Our scientific understanding of molecular biology starts in the late 1800’s in 

the form of Gregor Mendel laying the groundwork for genetics, but then re-discovered in the early 

1900’s (2, 3).  The field quickly expands due to the discovery of the inheritability of DNA (4), the 

structure of DNA (5), and the central dogma of molecular biology (6) to name only a few of the 

many tremendous achievements.   

 

Furthermore, these accomplishments help lay the groundwork for success in the treatment and 

understanding of many Mendelian diseases cataloged initiated in the 1960’s by Dr. Victor 

McKusick (7).  These Mendelian diseases defined as single loci patterns of inheritance with 

examples such as sickle-cell anemia and cystic fibrosis represent over 15,000 genes with known 

relationships between phenotype and genotype (8).  However, multi-loci diseases such as cancer, 

diabetes, and neurological disorders do not have a clear relationship between phenotype and 

genotype.  38.4% of all people will be diagnosed with cancer at some point in their lifetime (9).   

This represents 14.1 million new cases globally and 8.2 million deaths (9).  Focusing on the US, 

1.7 million new cases and 825,000 deaths (9). In the US, 30.3 million (9.4%) of the U.S. has some 

form of diabetes (10).  10 million children (15%) are currently diagnosed with autism in the U.S. 

In the past 100 years, there has been incredible growth in food production despite global population 

growing from 1.6 to 7 billion and there was a surplus for 1.6 billion (11, 12).  Innovations from 
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synthetic fertilizers, hybridization of crops, and expansion of landmass for farming have in large 

part been responsible for the ability to match food demand (13, 14).  Furthermore, while current 

farming innovations have increased productivity it has reduced food variety and lowering the 

quality of nutrients due to lack of ripening on the vine (15),  Additionally, due to more land being 

used for farming, it causes a shift in pests preference for crops as a nutrient resource causing more 

than one billion dollars in yield loss for soybean alone (16).  This observation is extended to food 

productions globally being reduced 20-40% due to pests alone (17).  There is a need for food 

production to increase by 59-98% by 2050 that will likely not be resolved by known innovations 

(18).   

1.2 Value Of Omics Data  

In the past decade, the technological advancements have propelled genome sequencing with 

the rate that has surpassed the Moore’s Law (19), generating petabytes of information and making 

genomics one of the first scientific areas that entered the era of Big Data. The diversity of Next 

Generation Sequencing (NGS) methods (20), ranging from whole-genome (21) to whole-exome 

(22) to RNA-sequencing (23) and reaching a single-cell precision (24) has allowed investigating 

the genetic material between the healthy and disease tissues of an individual and across populations 

(25). Substantial improvements have been made in the ability of utilizing high-throughput 

‘‘omics’’ data for use in clinical environment during the same time period (26). Scientists have 

recently started looking at a new important target: diagnostics and treatment of complex genetic 

disorders (CGDs) by leveraging the omics data of different types, including genomics, proteomics, 

metabolomics, transcriptomics, glycomics, epigenomics, lipomics, and others (27-29). However, 

like most new concepts there are multiple problems surrounding attempts to utilize the omics data 

for treatment and diagnostics, such as a lack of a standardized protocol (30), reproducibility of the 
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results, limited computational resources for data integration, and most importantly, the 

extraordinary complexity of CGDs. In the beginning of the 21st century, we are witnessing a truly 

pandemic growth of common diseases that are molecularly and genetically complex. GLOBOCAN 

2012 estimated that 14.1 million new cancer cases including and 8.2 million deaths occurred only 

in 2012, with 43% of new cases and 35% of deaths coming from the economically developing 

countries (31). More than 1.7 million new cancer cases and almost 600,000 cancer deaths are 

estimated to occur in the United States alone in 2018 (9). Being the 7th leading cause of death in 

the U.S. in 2015, diabetes affected 30.3 million children and adults in the U.S. (9.4% of the 

population) (10). The number of neurodevelopmental, psychotic, and neurodegenerative disorder 

cases are also on the rise: for instance, the number of U.S. children aged 3–17 diagnosed with 

developmental disabilities, such as autism or ADHD, has reached a staggering 10 million affecting 

15% of children of this age (32). To cope with the complex diseases, doctors and scientists have 

been relentlessly trying to improve diagnostics and therapeutic intervention through the use of 

experimental and computational approaches. However, for many of these diseases the tasks of 

early diagnostics and successful treatment are challenging and in some cases still unfeasible, 

impeded by our lack of knowledge of the disease at the molecular level. Understanding of the 

molecular mechanisms driving CGDs is in turn hindered by the multiple layers of complexity due 

to dozens, often hundreds, of pathogenic mutations affecting many genes, targeting multiple 

regulatory mechanisms and perturbing multiple pathways and systems. Complex diseases 

commonly manifest changes at the genetic, post-transcriptional, and epigenetic levels (33-39). 

Single nucleotide variations (SNVs) and indel mutations occurring in coding as well as non-coding 

regions of genomes are perhaps the most widely studied class of genetic changes owing to the 

recent progress in next generation sequencing (33-35). The transcriptional complexity of CGDs is 
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further complicated by post-transcriptional diversity—one of the most recent discoveries is the 

intrinsic role of post-transcriptional variations, such as alternative splicing variations in a number 

of diseases (38, 40). Finally, another recent finding supported by the rapidly increasing volume of 

evidence is the link between the epigenetic variations and complex diseases (39).  In combination, 

these mutations affect similar molecular targets such as TP53 (Figure 1.1.1). 

 

Figure 1.2.1. Genetic, structural and posttranscriptional variations of TP53 can all affect the macromolecular 

interactions mediated by this gene. Shown clockwise are: (i) domain architecture of P53 and the structure of its 

DBD-TET-RD C-terminal part; (ii) effects of nsSNVs on the PPI between TP53 (gray) and TP53BP2 (yellow) 

products with the neutral nsSNVs shown in cyan and disruptive in magenta, (iii) pathogenic CNV in chromosome 17 

including deletion of TP53 which is associated with gastric cancer and other disorders, (iv) disruptive effect of 

pathogenic ASV on protein-DNA interaction but not PPI where the deleted part of DBD (orange) also includes a part 

of DNA binding site (green) but not TP53BP2 binding site (blue), and (v) P53-centered PPI network, with the 

interaction partners grouped and color-coded based on the GO annotation and well-studied proteins labeled. 
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1.3 Alternative Splicing and postranscriptional variation in Complex Genetic Disorders 

Alternative splicing (AS), since its discovery in 1977 in viruses, is increasingly seeing an 

explosion of interest from the general research community (Figure 1.2.1) (41-43). This interest 

stems from the observation that this mechanism is predicted to be one of the widespread causes of 

protein diversity, however this observation is recently under scrutiny discussed later (44-47). AS 

occurs across all analyzed eukaryotes and in some viruses, bacteria, and archaea (48-50). 

Estimations of 90-95% of human genes undergo AS, and on average, there are seven to ten AS 

events predicted per multi-exon gene in humans (51-54). AS is a universal regulatory mechanism 

of gene expression that allows the initiation of more than one unique RNA species using the 

spliceosome from a single gene, which results in both coding and non-coding RNA (55). During 

posttranscriptional processing of a precursor mRNA (pre-mRNA), the spliceosome can 

incorporate over 200 proteins to generate different AS products through multiple mechanisms (56, 

57). These mechanisms include exon skipping (the removal of specific exons), the use of 

alternative splice sites (which can be within introns, exons, or untranslated regions (UTRs)) and 

intron retention (41). These mechanisms might affect RNA stability, localization or translation 

(41, 58). Furthermore, rearrangement can alter the starting site for translation potentially 

completely rearranging the protein coding sequence (41). The choice of which AS mechanism is 

used is based on three main factors: 1) splice site strength, 2) cisregulatory sequences in pre-

mRNAs that favor or impair exon recognition, and 3) the expression levels of trans-acting factors 

(RNA-binding proteins (RBPs) and splicing factors) (41). Three main observations have been 

reported regarding the distribution of AS transcript isoforms: (1) genes tend to express multiple 

isoforms simultaneously, but at different quantities, (2) there tends to be major and minor dominant 

isoforms of a gene that account for over 30% and 15% of total transcript expression, which shift 
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dependent on biological context, and (3) for any two discrete isoforms from the same gene, it 

seems that one is always more dominant (52, 59-67). The mechanisms underlying these 

observations are unclear due to transcriptomic studies are rarely subjected to systemic AS analysis 

(Figure 1.2.1) (68).  

 

Figure 1.3.1. Number of Publications Matching Pubmed Search Terms.  Searches for the key words 
“Alternative Splicing”, “RNA-Seq”, “RNA-Seq & Alternative Splicing”, “transcript & RNA-Seq”, and “gene & 
RNA-Seq”.  Despite RNA-Seq being the current best tool for global assessment of alternative splicing, the 
research community rarely performs the analysis.   

 

Previously mentioned, the main widespread cause for protein diversity is thought to be due to 

AS, but this is recently being scrutinized (69). Based on a recent large scale RNA-Seq analysis, 

72% of annotated human genes undergo AS and roughly 205,000 transcripts have protein-coding 

potential (53, 70). Furthermore, it is predicted that in total 90-95% of all annotated human genes 

have the potential to undergo AS (51, 52). However, based on a high-resolution mass spectrometry 

of proteins on 30 histologically normal human samples resulted in proteins identified for ~84% of 

annotated genes, but only ~37% of them were caused by AS (71). This observation is consistent 

with known annotation from RefSeq (54). Furthermore, using prediction methods all known 

alternative spliced isoforms were tested for their protein folding ability, which concluded that 
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approximately one third of isoforms are functional proteins (72). These discrepancies may be 

attributed due to the small sampling of phenotypes and/or insufficient methods (73). Another 

possibility is that AS transcripts are largely non-functional or play a larger unrealized role within 

noncoding RNA. Regardless, the functional consequences of AS are largely unexplored (41, 66).  

However, there are a few known patterns regarding AS. While genes tend to express isoforms 

simultaneously, it is not uncommon for isoforms to be specific to tissue, cell type, developmental 

stage or disease (41, 49, 74). Misregulation of AS underlies many diseases, including skeletal and 

neurodegenerative diseases, and cancer (37, 38, 58, 75, 76). Unfortunately, the precise mechanisms 

behind the disease-associated misregulation of AS, and the key relationships between the 

variations in AS and the protein function are yet to be understood. However, what is understood 

is the effect of post-transcriptional variation on protein-protein interactions underlie the cell’s basic 

functioning. Therefore, it is not surprising that recent studies of disease networks have linked many 

genetic variations (e.g., single nucleotide variations, SNVs) and posttranscriptional variations 

(e.g., AS isoforms) with protein-protein interactions (PPIs) (77-79). Understanding how the AS 

variants can rewire the interaction network mediated by proteins associated with the disease has 

been defined as a critical step in studying complex genetic disorders (80-82). In our recent review, 

we proposed that there are four main scenarios of how AS can modify protein-protein interactions; 

unfolded protein, deleted protein domains, deleted functional portion of protein domain, and 3 

insertion of a new protein domain potentially adding a function (Figure 1.2.2A) (83). These 

modifications would result in the normal protein-protein interaction network to be modified 

through completely or partially removing protein interactions, or adding new interactions (Figure 

1.2.2B). These scenarios were later experimentally verified (84). To date, the interaction landscape 

determined by the post-transcriptional variants of genes is far from being fully reconstructed. Thus, 
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fast and accurate computational methods are prone to play an important role in modeling the effects 

of post-transcriptional variation on PPIs. In summary, alternative splicing is a common regulatory 

mechanism; however its function is not fully understood. It is known to have a normal role in 

modifying protein function in many biological contexts (cell type, tissue, age) as well as a role in 

disease, but understanding this mechanism is far from complete. It is important for the research 

community to have a comprehensive assessment of changes to protein function as a result of 

alternative splicing as well as tools to gain further insight. 

 

Fig. 1.3.2. Posttranscriptional variation and its effect on PPI network. (A) Different AS variants of a gene can 

have drastically different functional effects. AS can result in a small structurally disordered protein fragment. It can 

also remove one or several protein domains and thus abolish the functions those domains carry. Sometimes, however, 

only a small functional part of the domain is removed (for instance, when more than one exon corresponds to the same 

protein domain). Shown are AS isoforms containing protein domains with the protein binding sites. (B) Basic effects 

of AS variation on the PPI network. Light blue node corresponds to the four isoforms of a protein in panel A. Red/ 

orange binding site corresponds to the interaction between the blue node and the red/orange node. 

 

1.4 Studying genetic variation in Complex Genetic Disorders 

Due to the reduced cost of DNA sequencing and NGS’s superior coverage and resolution, NGS 

technology is taking over traditional array-based detection methods (85). The technology provides 

geneticists and bioinformatics researchers with new sequence based reference datasets and 
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necessitates revisiting the tools of the genome wide association studies (GWAS) era (34). Armored 

with the rapidly growing NGS data, scientists are now reaching beyond the GWAS methods, which 

primarily focus on genetic markers that are intended to represent causal variation indirectly, with 

the goal of identifying causal variants directly. This possibility is often considered the key 

advantage of the new sequencing approaches over genotyping methods (35), especially given the 

widely accepted hypothesis that many complex genetic diseases could be influenced by rare 

variants in many different genes (33). Many common and rare genetic variants have been 

associated with complex diseases. According to the National Cancer Institute (NCI)-National 

Human Genome Research Institute (NHGRI) (86) catalog of published GWAS, as of November 

2014, there are 2060 publications describing 14,876 SNVs. Almost all common and many rare 

complex diseases have been addressed, including various types of cancer, cardiovascular diseases, 

neurological disorders, and immune system diseases. More importantly, this knowledge base has 

provided insights to the key molecular mechanisms underlying CGDs (87). For example, Multiple 

Sclerosis (MS) disease is an autoimmune demyelinating disease, whose mechanism is still not 

fully understood. After integrating different source of association study data, the interleukin 7 

receptor (IL7R) gene stands out as a strong candidate gene with promising insights into the 

underling pathogenesis mechanism (88). A genetic variation in IL7R has a strong association with 

MS (88), and its interplay with the alternative splicing of IL7R suggests a reliable hypothesis for 

MS. Another interesting finding is that one genetic locus could be associated with multiple 

clinically distinct diseases. For example, different interleukin receptor genes that are associated 

with Crohn’s disease, multiple sclerosis, systemic lupus erythematosus and rheumatoid arthritis 

(89, suggesting that autoimmune diseases may share a common mechanism. Moreover, such 

‘pleiotropy’ phenomenon has resulted in the concept of ‘diseasome’ {Goh, 2007 #5760). Last, it 
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has become evident that in many cases, not a single gene but a group of genes, often associated 

with a specific pathway or biomolecular network, are targeted by the mutations (90, 91). Thus, the 

network and pathways information could be useful in identifying sets of genes (rather than 

individual genes) implicated in the disease. For instance, by applying pathway-based analysis to 

the whole genome association studies Askland et al. found that multiple ion channel structural and 

regulatory genes are likely to contribute to the susceptibility of bipolar disorder (92). Even more 

importantly, they propose that the heterogeneity of these gene sets across multiple studies could 

be the key feature of the genetic mechanism behind the susceptibility to this CGD.  

 

Figure 1.4.1. Genetic variation and examples of its effects on PPI network. Genetic variation such as nsSNVs and 

indels can affect a variety of functions. (A) Shown are examples of known mutants that are linked to complexes genetic 

disorders and that affect a phosphorylation site (protein SIN1), disrupt ligand binding (binding of a chloride ion by 

RYR2), or abolish PPI interaction by modifying the protein binding site (protein BRCA1). (B) Effects of nsSNVs can 

be observed at the systems level, for instance by studying a PPI network centered around the mutant proteins. 

1.5 Studying epigenomic variation in Complex Genetic Disorders 

A generic definition of epigenetics is regulation of gene expression from DNA that is not 

through variation in the genetic sequence. Regulatory mechanisms in epigenetics can be grouped 
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into three main categories: DNA methylation, histone modifications, and nucleosome positioning. 

All three categories have been implicated in CGDs (39, 93). This review will focus on DNA 

methylation, the most widely studied type of epigenetics in CGDs. Epigenetic changes play an 

important role in cancer progression. Changes in the DNA methylation and histone modification 

can regulate transcription of the tumor suppressor genes and/or oncogenes (94). Specifically, in 

hypermethylation transcription of the promoter regions lead to gene silencing, while 

hypomethylation promotes gene expression. CpG clusters, known as CpG islands, are often 

targeted for DNA methylation in cancerous genes (95) in spite of the fact that in healthy tissues 

most CpG islands are unmethylated, even when the corresponding genes are not expressed (94). 

Furthermore, CpG islands, particularly on the promoter regions, are commonly associated with the 

gene silencing function, potentially becoming a part of the tumorigenesis process. Retinoblastoma 

cell control cycle gene (RB) was one of the first epigenetic lesions to be identified in 

carcinogenesis (94). A study conducted by Stirzaker et al. identifies three characteristics of RB 

identified as significant: (i) significant hypermethylation transpires throughout the CpG island, (ii) 

it is not limited to transcription factor binding sites, and (iii) abnormal methylation patterns are 

maintained in unmethylated CpG islands suggesting that the RB gene is active in the precursor 

cells of tumors (96). Colon cancer is another tumor type in which aberrant methylation occurs, 

frequently caused by germline mutations in MutL homolog 1 (MLH1) gene (97). Both DNA and 

histone proteins should be in an open, or unlocked, state in order for transcription to take place 

(94). The introduction of mutated genes, which are able to control the epigenetic state has a 

significant role in the promotion of cancer, e.g., myeloid leukemia and myeloid cancer (98). 

Epigenetic variations are implicated in a number of neurodevelopmental and neuropsychiatric 

disorders. In recent years, autism spectrum disorders (ASD) have received a great deal of attention 
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(99-103). However, the exact biomolecular components and their implications behind the ASD 

phenotypes remain unclear (104). It has been suggested that autism can be caused by a synergistic 

activity of genetic mutations as well as epigenetic dysregulation (105). A recently identified 

mechanism that plays a role in ASD is the loss epigenetic regulatory patterns, responsible for gene 

expression (106). In another work, mutations in the amyloid-beta precursor (APP) protein and the 

presenilin genes PSEN1 and PSEN2 are found to associate with Alzheimer’s disease (AD). 

Significant accumulations of APP proteins are one of the earliest pathological events to take place 

in AD, triggering a cataclysm event, leading to neuro-degeneration (107). Age-specific epigenetic 

drift has been found to support the idea of potential epigenetic effects in late-onset Alzheimer’s 

disease (LOAD). Moreover, significant epigenetic variability in genes participating in the 

processing of amyloid beta proteins and methylation regulation suggests predisposition to LOAD, 

and that aberrant epigenetic control of CpG-island may contribute to LOAD pathology (108). 

Malfunctioning of epigenetic mechanisms is also linked to heart diseases. A study by Angrisano 

et al. revealed epigenetic changes involved in the heart failure of murine under pressure overload 

(109). Specifically, the authors identified histone H3 modifications on the promoter regions of 

endoplasmic reticulum Ca2+-ATPase (SERCA-2A) and beta-myosin heavy chain (Mhc-b) genes 

in murine heart. DNA methylation components were also found on the myosin heavy chain 7 

(Myh7) promoter regions, suggesting that epigenetic modification may indeed be involved in the 

heart failure. The results obtained for the animal model also pose a question if the mechanics of 

aging plays a direct role in alteration of epigenetics. Liver diseases are another group of CGDs 

where the epigenetic effect have been studied in depth, with an increasing attention to hepatic 

stellate cells (HSC) that play significant role in liver fibrosis. These cells can become highly 

proliferative, and synthesize a fibrotic matrix rich in type I collagen in the event of liver injury 



 

13 

 

(110). Mann et al. have described multiple proteins and miRNAs that are implicated in the 

epigenetic relay pathway that is implicated in HSC transdifferentiation  (111). Understanding the 

epigenetic constituents may bring us closer to therapeutically controlling or reducing the 

fibronegesis in chronic liver diseases. 

1.6 Summary 

21st century society demands an increase food production by at least 58% by 2050 and 

increasingly higher incidence of complicated diseases such as cancer, diabetes, and neurological 

disorders.  Following the central dogma laid out by Crick (6), molecular mechanisms through 

DNA, RNA, and protein are capable of complex data through omic’s data.  With the tremendous 

growth of omics data during the last years, the computational systems biology and bioinformatics 

approaches that leverage these data often share three common traits: (1) methods and tools are 

becoming increasingly data-intensive, (2) new methods are integrative in their nature; (3) the 

abundance of the above data provides a new critical goal for computational and informatics 

methods to assist in diagnostics and treatment of complex genetic disorders. Furthermore, while 

this dissertation highlights alternative splicing, the molecular mechanisms involved in alternative 

splicing cross many scientific disciplines.  For example, there are cases where genetic variation, 

structural variation, post-transcriptional variation, and epigenetic variation are all implicated as 

being a factor in CGDs.   

1.7 Summary of Dissertation 

The main aim of this dissertation is to expand our understanding of alternative splicing and the 

value in evaluation in the hope of solving 21st century problems of increasing our food production 

and improving our understanding of complicated diseases.  This work brings together different 

‘omics’ data to expand our understanding and promote the use of A.S.  Specifically, there are six 
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projects described here which make use of transcriptomics, proteomics, genomics, and 

epigenomics, which often overlap, on the focus in a couple of complex genetic diseases as well as 

analyzing a parasite, which affects soybeans.   The projects start with a basic analysis of RNA-Seq 

that is integrated with epigenomics to identify disease mechanisms in acute lymphoblastic 

leukemia.  The focus shifts to looking for patterns of alternative splicing on parasites infecting 

soybeans that causes an estimated 1 billion in crop damage every year (16). Then the focus shifts 

to assessment of single nucleotide variation within eight cancer types on protein binding sites.  

Then the projects focus on systemically profiling machine learning methods utilizing RNA-Seq 

based alternative splicing expression data to promote its use, development of a method to predict 

whether alternative splicing occurs affects its interaction, a systematic analysis across the 

transcriptome for comparing binding sites and domains with alternative splicing and expression 

patterns. 

This dissertation is organized as follows. The overall pattern is each chapter or subsection of a 

chapter encompasses a published paper with the citation reference listed at the end of the title.  

Generally speaking, the published papers have been unmodified except for dissertation formatting 

purposes.  The exceptions to this rule are Chapter 1, 2.3, and 4. 

The introduction in Chapter 1 includes a peer reviewed review paper (83) I was a part of, but 

due to it was published 3 years ago was updated, split up, and rearranged for the purposes of this 

dissertation.  Both subsections for chapter 2.3 and chapter 4 had supplementary information 

removed due to their magnitude. 

In summary, Chapter 1 includes the introduction, literature review, and organization.  Chapter 

2 utilizes transcriptomics in three sections.  2.1 uses epigenomics and transcriptomics to look for 

regulators in acute lymphoblastic leukemia (ALL).  2.2 presents a large systematic analysis 
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demonstrating the importance of using alternative splicing from RNA-Seq to build classification 

models. 2.3 demonstrates the importance of A.S. in a worm (nematode) on proteins, which effect 

its ability to infect soybeans (effectors).  Chapter 3 employs proteomics in three different 

subsections.  3.1 covers our developed method (AS-IN), which predicts when A.S. occurs whether 

it alters a known protein-protein interaction.  3.2 incorporates both genomics and proteomics by 

assessing whether single nucleotide variations (SNVs) in cancer effect protein binding sites.  3.3 

summarizes a systemic wide analysis of A.S. effect on protein binding sites and functional domains 

for human. Chapter 4 summarizes some main conclusions that can be determined from this 

dissertation as well as possible future directions.  Appendix A-B contain supplementary tables and 

figures for Chapters 2.1 and 3.1.   
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CHAPTER 2: TRANSCRIPTOMICS 

2.1 Epigenetic and RNA effects in Acute Lymphoblastic Leukemia (ALL)  

2.1.1 Abstract 

Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under 

the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA 

methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in 

ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery 

assay followed by next-generation sequencing. More than 25,000 differentially methylated regions 

(DMR) were observed in ALL patients with »90% present within intronic or intergenic regions. 

To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed 

and integrated with methylation data. Aberrant promoter methylation was associated with the 

altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. 

Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant 

methylation in these regions was associated with the altered expression of neighboring genes 

involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include 

potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, 

TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In 

addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding 

RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL.  

2.1.2 Introduction  

Acute lymphoblastic leukemia (ALL) is a hematological malignancy associated with precursor 

B-cells. ALL is the most common type of cancer in children with an annual occurrence rate of 35 

to 40 cases per 1 million people in the United States (112). The development and differentiation 
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of B-cells comprises numerous stages and is a highly synchronized and controlled process 

governed by stage-specific gene expression (113, 114). Any deviation from normal stage-specific 

gene expression could lead to disease conditions including ALL. The general known mechanisms 

underlying the induction of ALL include chromosomal translocation, hyperdiploidy, and aberrant 

expression of proto-oncogenes. Advancement in deciphering additional mechanisms that may be 

responsible for the induction of all ALL is lacking. Therefore, the identification of key regulatory 

regions in the genome that may impact the development of ALL is critical to gaining a better 

understanding of ALL pathogenesis. DNA methylation is responsible for tissue specific gene 

expression and plays a significant role in hematopoiesis (115, 116) and malignant transformation 

(117, 118). A reduced level of CpG methylation was one of the first epigenetic alterations to be 

found in human cancer when compared with normal-tissue counterparts (119). Although 

hypermethylation of CpG islands within gene promoters has been the main focus of studies on 

malignant cells, the role of differential DNA methylation in other regions is gaining favor  (120, 

121). One such region harbors transcriptional enhancers, which reside within noncoding regions 

of the genome and are known to work over long distances to promote cell/tissue type specific gene 

expression. Active enhancers are often accompanied by DNA demethylation, (122) and alterations 

in enhancer methylation are seen in malignant transformation. Recently, it has been shown that 

differential methylation of these regions exhibit a higher correlation with gene expression than 

differential promoter methylation (123). As a step toward better understanding the consequence of 

altered DNA methylation on gene expression in pre-B ALL, MIRA-seq was used to identify altered 

DNA methylation throughout the genome and then correlated with transcriptome data. We show 

that differential comparisons of DNA methylation between normal and diseased tissue can identify 
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potential regulatory regions of the genome and that when paired with gene expression data the 

functionality of the regulatory regions can be determined.  

2.1.3 Results 

Genome-wide DNA methylation profiles MIRA-seq was utilized to generate genome-wide 

DNA methylation profiles for 19 pre-B ALL patient samples from diagnostic bone marrow. 

Normal precursor B-cell populations (pre-BI and pre-BII) were isolated from 10 human umbilical 

cord blood (HCB) samples to generate methylation profiles for healthy tissue to be used as a 

comparator (115). On average, 188 million reads were generated for HCB samples and 174 million 

reads were generated for ALL patient samples (Figure 5.1.3.1A). Methylation peaks were more 

abundant in HCB samples (305,736) than in ALL samples (162,832) and across all chromosomes 

revealing an overall genome-wide reduction of methylation in ALL (Figure 5.1.3.1B). Genomic 

distribution analysis showed that »90% of the methylated peaks were located within intronic and 

intergenic regions (Figure 5.1.3.1C). The distribution of methylation peaks relative to CpG islands 

(CGIs) revealed that 9,814 CGIs were methylated in HCB samples and 11,015 CGIs were 

methylated in ALL samples but the overwhelming majority of methylated peaks were present in 

regions of the genome not associated with CGIs (Figure 5.1.3.1D).  
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Figure 2.1.3.1. Genome-wide DNA methylation profiles in HCB and ALL. (A) Average read and alignment 

statistics. Reads were averaged across all individuals for HCB and ALL samples. The top of each bar represents the 

total number of reads for each category. Black bars: total reads; Dark gray bars: reads mapped; Light gray bars: unique 

reads. (B) Chromosome-wise methylation peaks. The X and Y chromosomes were excluded from analysis. (C) 

Genomic distribution of methylation peaks. TTS: transcription termination site. (D) Methylation peaks in CGI context. 

Differentially methylated regions in ALL  

To determine methylation patterns distinct to ALL, differentially methylated regions (DMRs) 

between ALL and HCB samples with at least a 2-fold change and an FDR of 5% were identified. 

A total of 15,492 regions lost methylation and 9,790 regions gained methylation in ALL compared 

to the normal HCB samples and the genomic distribution of loci harboring DMRs differed in the 

hypomethylated versus hypermethylated DMRs (Figure 5.1.3.2A and B). Hypermethylation was 

more prevalent in the 50 regulatory regions of genes than hypomethylation. The majority of the 

DMRs coincided with intergenic and intronic genomic regions. DMRs have applicability as 

disease specific biomarkers and may also play regulatory roles in the expression of genes that are 

involved in the pathogenesis of ALL. To further elucidate the importance of DMRs, we sought to 

identify the DMRs with regulatory potential. DMRs are associated with regulatory sequences: The 
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promoters of protein coding genes harbor regulatory sequences required for the initiation of 

transcription. A total of 1,568 differentially methylated gene promoters were identified 

(corresponding to 1,252 hypermethylated genes and 240 hypomethylated genes) in ALL. To 

explore the association of DNA methylation and gene expression, MIRA-seq data and RNA-seq 

data were correlated. Sixty-two promoter DMRs were hypermethylated and downregulated in ALL 

and were significantly enriched for genes involved in the regulation of transcription and apoptosis, 

whereas 37 promoter DMRs were hypomethylated and upregulated and were significantly 

enriched for genes involved in GTPase activation, the regulation of cell proliferation, and those 

that play a role in protein complex assembly. Additionally, hypermethylated DMRs were identified 

in the promoters of 3 tumor suppressor genes, MTSS1, PAWR, and EXT1, and corresponded with 

a significant decrease in gene expression. In addition to protein coding gene promoters, differential 

methylation was observed within 1,000 bp upstream or Figure 5.1.3.1. Genome-wide DNA 

methylation profiles in HCB and ALL. (A) Average read and alignment statistics. Reads were 

averaged across all individuals for HCB and ALL samples. The top of each bar represents the total 

number of reads for each category. Black bars: total reads; Dark gray bars: reads mapped; Light 

gray bars: unique reads. (B) Chromosome-wise methylation peaks. The X and Y chromosomes 

were excluded from analysis. (C) Genomic distribution of methylation peaks. TTS: transcription 

termination site. (D) Methylation peaks in CGI context downstream of the TSS in non-coding 

RNAs and pseudogenes (Figure 3.1.3.2C). MicroRNAs (miRNA) are non-coding RNAs that 

regulate expression through imperfect base-pairing with the 30 UTR of multiple target genes. A 

total of 69 miRNAs were differentially methylated in ALL including miR-375, miR-196a, miR-

3545, miR-9-1/2/3, miR-124-1/3, and miR-34b, which have been implicated in human 

malignancies.13-15 RNAseq libraries were prepared from poly(A) RNA and excluded the capture 
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of miRNA; therefore, correlation studies between methylation and gene expression were not 

performed for miRNA. The regulatory potential of DMRs associated with miRNAs warrants 

further attention. Long intergenic non-coding RNAs (lincRNAs) are emerging as key regulators 

of numerous cellular processes and regulate the expression of multiple target genes. Differential 

methylation occurred in 65 lincRNAs. Of these, hypomethylation and upregulation was observed 

in AC002398.5, DIO3OS and LINC00642. Lastly, 55 pseudogenes were differentially methylated 

in ALL. No correlations between expression and promoter methylation was observed in the 

pseudogenes; however, pseudogenes, much like lincRNAs, have the potential to epigenetically 

regulate their parental genes and were further investigated. It is well known that transposable 

element activities are often silenced by DNA methylation (124), and that transcriptional activation 

of these elements results in transposable element mediated insertions and chromosomal 

rearrangements in many cancers (125). Many of the intergenic DMRs were associated with 

transposable elements and repeat sequences (Figure 5.1.3.2D). Non-autonomous short interspersed 

nuclear elements (SINE) were the most abundantly present transposable element within the 

differentially methylated intergenic regions followed by long terminal repeat (LTR), autonomous 

long interspersed nuclear elements (LINE) and satellite repeats. Centromeric a satellite repeats 

were often hypermethylated in ALL, which may block CENP-A and result in centromere 

inactivation.  
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Figure 2.1.3.2. Differentially methylated regions in ALL. (A) Hypomethylated (blue) and hypermethylated (red) 

regions. (B) Genomic distribution of hypo- and hyper-methylated DMR. (C) DMRs associated with the 50 regulatory 

region of pseudogenes and non-coding RNA. (D) Intergenic DMRs associated with transposable elements and repeat 

sequences 

DMRs are associated with predicted regulatory sequence  

Differential methylation predominately occurred in intergenic and intronic regions in ALL. 

One third of the intronic DMRs (3,341) were located within 150 base pairs of the 50 or 30 splice 

sites and could potentially alter appropriate splicing in ALL. To investigate whether the intergenic 

and intronic DMRs coincided with the location of regulatory enhancer elements, the sites for 

intergenic and intronic DMRs were overlaid with ENCODE ChIP-seq data for enhancer related 

histone marks (H3K4me1 and H3K27ac) in the GM12878 lymphoblastoid cell line. Overall, 765 

intergenic and intronic DMRs overlapped with potential enhancer like regions (eDMR). Of these, 

453 were hypomethylated and 312 were hypermethylated. Enhancer methylation has been shown 

to have a stronger association with gene deregulation than promoter methylation in cancer (123). 

To investigate the association between enhancer methylation and gene expression in our data, lists 
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were constructed of the nearest upstream and downstream gene to identify the potential target 

genes for each eDMR. A total of 81 genes exhibited significantly decreased expression in ALL 

that corresponded with hypermethylation of potential neighboring eDMRs, and 111 genes showed 

significantly increased expression that corresponded with eDMR hypomethylation. Functional 

annotation clustering revealed that downregulated genes with eDMR hypermethylation included 

those involved in cell cycle processes, cell division, regulation of gene expression, cytoskeleton, 

and a large number of zinc finger proteins, whereas upregulated genes with eDMR 

hypomethylation included those involved in lymphocyte activation, cell migration, apoptosis, 

DNA replication, and DNA metabolic processes.  

Gene body DMRs are associated with gene expression  

Associations between gene body methylation and gene expression were also observed. 

Increasing gene body methylation along with promoter methylation has been shown to have a 

stronger repressive effect on gene expression during normal B-cell development than promoter 

methylation alone (126). However, the effect of gene body methylation in the absence of promoter 

methylation is less clear. Both inverse and positive correlations between gene body methylation 

and gene expression were observed. Gene body hypermethylation and a significant decrease in 

expression was observed in Figure 5.1.3.2. Differentially methylated regions in ALL. (A) 

Hypomethylated (blue) and hypermethylated (red) regions. (B) Genomic distribution of hypo- and 

hyper-methylated DMR. (C) DMRs associated with the 50 regulatory region of pseudogenes and 

non-coding RNA. (D) Intergenic DMRs associated with transposable elements and repeat 

sequences. 261 genes and included protein kinases (CDK5R1, NRBP1, LYN, NUAK2, PHKB, 

BLK, PRKAG2, MKNK2, SMG1, TRIO, GAK, PRKD2, ULK1, RIOK3, WNK4, MAP3K9, 

PDGFRA, NEK8, DCLK2, TLK2, LRRK1, CDC42BPB, CAMK1D), cell morphogenesis genes 
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(CDK5R1, GDF7, ULK1, LAMA5, NR4A2, MAPK8IP3, SEMA3B, MYCBP2, NFATC1), 

lymphocyte differentiation genes (CHD7, IL7, CEBPG, HDAC9, FOXP1), chromatin modifiers 

(RSF1, CREBBP, BANP, ARID1B, UIMC1, CHD8, CHD7, WHSC1L1, PHF21A, TLK2, IRF4, 

HDAC9, RERE), and regulators of MAPK, JNK, JUN kinase activity. Conversely, gene body 

hypomethylation and a significant increase in expression was observed in 815 genes and included 

the DNA methyltransferases (DNMT3A and DNMT1), antiapoptotic genes (IL2RB, PRDX2, 

BCL2L1, TCF7L2, DAPK1, AKT1, ATF5, BAX, TGM2, NOS3, THBS1, and MYO18A), and 

telomere organization genes (TERT and TNKS1BP1). Additionally, many genes showed positive 

correlations between methylation and expression. For example, several members of the protein 

tyrosine phosphatase family that regulate many cellular processes, such as cell growth, mitotic 

cycle, cellular differentiation, and malignant transformation, were upregulated and 

hypermethylated in ALL. Alternately, genes that play roles in B-cell activation were 

downregulated and hypomethylated in ALL.  

B-cell development genes and epigenetic modifiers are aberrantly expressed in ALL  

To investigate the deregulation of gene expression in ALL, genome-wide gene expression 

profiling of ALL patients and healthy precursor B-cells was performed using RNA-seq. A total of 

3,700 genes were significantly upregulated in ALL vs. healthy samples and 2,734 genes were 

significantly downregulated. Forty-three genes known to play roles in B-cell differentiation and 

activation were differentially expressed and may contribute to the pathogenesis of ALL (Table 

2.1.3.2). The aberrant expression of epigenetic modifiers was also observed. The DNA methylation 

catalyzing enzymes DNMT1, DNMT3A, and DNMT3B were significantly upregulated in ALL. 

Conversely, 2 genes known to actively demethylate DNA (127), TET2 and TET3, were 

significantly downregulated in ALL. In addition, 22 genes encoding histone proteins were 
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significantly upregulated in ALL. Finally, the chromatin activating histone lysine 

acetyltransferases (MGEA5, CDYL, CREBBP, EP300, and NCOA3) were downregulated and the 

chromatin inactivating histone deacetylases (HDAC11 and SIRT2) were upregulated in ALL.  

Table 2.1.3.1 Patient Characteristics 

Patient 

ID 

Blast rate 

(%) 

Age 

(months) 

WBC, 

103/µl 

Sex Immunophenotype Cyotgenetics 

A4 88 4 7.8 M 19;10 hyperdiploidy 

A15 94 36 7.8 M 19;10 hyperdiploidy 

A18 97 17 4.3 F 19;10 46, XX-15der(1) t (1;?), 

del(6)(q21),t mar 

A19 88 36 3.7 M 19;10 hyperdiploidy 

A20 92 120 3.6 M 19;10 46, XY 

A21 91 36 6.6 M 19;10 46, XY t(3;19)(p25;p13) 

A22 94 60 2.5 F 19;10 47, XX C21; 48, XX 

A23 96 180 2.3 M 19;10 46, XY del(6)(q21;q27) 

A24 94 108 3.7 M 19;10 45, -7 -9 +der(9) 

t(8;9)(q112;p11) 

A25 96 48 13.7 M 19;10 46, XY 

A26 91 48 4.3 M 19;10 47, XY 

A28 96 36 1.5 M 19;10 none available 

A29 93 24 10.2 F 19;10;20 46, XX 

A30 94 24 3.7 F 19;10;20wk 46, XX 

A31 94 132 18.8 M 19;10;20 45, XY -7 

A32 92 36 3.4 M 19;10;20 none available 

A33 88 180 4.5 M 19;10;20 46, XY 

A35 97 22 25.9 M 19;10;20 46, XY 

A36 91 72 2.7 F 19;10;20 46, XX 
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A37 93 20 2.5 M 19;10 hyperdiploidy 

 

Differential expression of transcripts with epigenetic regulatory functions  

LincRNAs epigenetically regulate gene expression by a number of diverse mechanisms 

including recruitment of histone methyltransferases through polycomb repressor complex 2 to 

modify chromatin states  (128, 129), and the differential expression of lincRNA has been shown 

to play critical roles in many diseases (130, 131). Differential expression analysis of lincRNAs in 

ALL patients compared to healthy controls revealed 197 lincRNAs were differentially expressed. 

Among them, 104 lincRNAs were upregulated and 93 were downregulated in ALL. Pseudogene 

transcripts play a significant role in cancer pathogenesis and are differentially expressed in 

different types of cancer (132, 133). The relationship between differentially expressed pseudogene 

transcripts and the expression of parent gene targets was diverse in our data. In some instances, 

the upregulation of a pseudogene was associated with the downregulation of its parent gene. For 

example, the pseudogene GRK6P1 was upregulated and associated with downregulation of their 

parent gene GRK6. Interestingly, GRK6 phosphorylates the activated forms of G protein-coupled 

receptors (GPCRs) thereby instigating their deactivation. Further, the overexpression of GPCRs is 

known to contribute to cancer cell proliferation (134). Thus, the upregulation of GRK6P1 may 

lead to the constitutive activation of GPCRs and contribute to the proliferation of cancer cells. 

Conversely, in other instances the downregulation of a pseudogene was associated with the 

upregulation of its parent gene. For example, the downregulation of AC007041.2, RP11-368P15.1 

and KRT18P4 was associated with the upregulation of DRG1 and NDUFB3, and KRT18 

respectively. KRT18 (cytokeratin 18) is involved in multiple cellular processes including 

apoptosis, mitosis, cell cycle progression, and cell signaling and is hypothesized to be involved in 

carcinogenesis through multiple signaling pathways (135). Therefore, the pseudogene mediated 
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upregulation of KRT18 may lead to the aberrant regulation of signaling pathways in ALL. A 

positive correlation was also observed in which upregulated pseudogene transcripts were 

associated with upregulated parent gene transcripts and downregulated pseudogene transcripts 

were associated with downregulated parent gene transcripts. In these cases the pseudogene 

transcripts may upregulate their parent gene by competing with endogenous RNAs that share 

miRNA response elements (136), or by competing for RNA binding proteins that degrade their 

parent gene and vice versa. In ALL, the upregulation of pseudogenes RP11-423H2.1, FAM86C2P, 

and HMGB1P41 was associated with the upregulation of their parent genes THOC3, FAM86A, 

and HMGB2. Previous studies have shown that HMGB2 is overexpressed in a variety of cancers 

and that there is a decline in the proliferation of cancer cells when siRNA is used to knockdown 

expression of HMGB2 (137, 138), suggesting a putative role in the pathogenesis of ALL. 

Likewise, some pseudogenes were downregulated and their parent genes were also downregulated. 

Specifically, the downregulation of PABPC1P3 was associated with the downregulation of its 

parent gene, PABPC1, which encodes a poly(A) binding protein involved in stabilizing the 50 cap 

of mRNA. The downregulation of PABPC1 has also been reported in esophageal cancer(139). It 

is possible that the pseudogene mediated downregulation of PABPC1 results in unstable mRNA 

transcripts and contributes to the pathogenesis of ALL.  

Table 2.1.3.2: Differentially expressed genes in ALL involved in B-cell development and 

epigenetic modifications 

 

Gene 
Fold 

change*  Gene  

Fold 
change* 

B-cell development genes   B-cell development genes  
DNTT -10.25  LYN  4.08 

VPREB1 -9.08  IRF8  4.30 
RAG1 -8.81   DNA demethylase  

RaAG2 -8.52  TET3  1.02 
IGLL1 -7.37  TET2  1.17 

FCER1G -6.41   DNA methyltransferase  
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LEF1 -5.49  DNIMT3B  -5.54 
TNFSF4 -4.91  DNMT1  -1.89 
HMGB2 -3.49  DNMT3A  -1.44 

LCP2 -3.30   Histone deacetylases  
OAS3 -3.21  HDAC11  -1.75 

VPREB3 -3.15  SIRT2  -0.99 

IL18R1 -2.94   

Histone lysine 
acetyltransferases  

BST1 -2.87  CDYL  1.15 
CD59 -2.63  CREBBP  1.53 
CTSC -2.31  EP300  1.56 
SOX4 -2.15  MGEA5  1.96 
ADA -1.91  NCOA3  3.39 
IGJ -1.89   Histones  

LRRC8D -1.84  HIST1H2BJ  -8.21 
NOTCH1 -1.62  HIST1H3H  -8.07 

TCF3 -1.22  HIST1H2BO  -7.60 
CEACAM1 -1.21  HIST1H3J  -7.47 
PAXBP1 -1.12  HIST1H2BH  -6.90 
MALT1 1.05  HIST2H2AB  -6.60 
IGHM 1.17  HIST1H3D  -6.43 
ETS1 1.39  HIST1H4F  -6.43 
BCL2 1.40  HIST1H2AC  -5.91 

HLA-DMB 1.58  HIST1H2BF  -5.81 
RFX1 1.63  HIST1H4H  -5.76 

BCL10 2.08  HIST2H2BF  -5.29 
IL24 2.16  HIST1H2AD  -5.07 

BTG1 2.18  HIST1H1E  -4.95 
HLA-DQB1 2.39  HIST1H2BK  -4.82 

IRF4 2.46  HIST1H4I  -4.76 
FCGR2B 2.56  HIST1H2BC  -4.65 
ADAM8 2.60  HIST1H4E  -4.64 
CARD11 3.24  HIST2H2BE  -4.43 
ADAM19 3.59  HIST1H2BN  -4.35 
MS4A1 3.87  HIST1H1C  -4.13 

IL4R 4.00  HIST1H2BD  -3.72 

 

Negative log fold change = upregulated in ALL, positive fold change = downregulated in ALL 

*Log2 fold change. 

 

2.1.3 Discussion  

On average, more than 50 million unique mapped MIRA-seq reads were generated providing 

genome-wide coverage of the methylome in 19 pediatric ALL patients. Importantly, these profiles 

were compared to healthy precursor B-cells isolated from umbilical cord blood, the normal 
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counterparts of malignant precursor B-cells to identify DMRs. To determine the regulatory 

potential of DMRs, transcriptomes were also generated and differential expression was determined 

between ALL patients and normal controls. Previous studies in ALL have identified inverse 

correlations between gene expression and DNA methylation in CGIs, CGI shores and gene 

promoters (140). In this study, 99% of DMRs associated with a CGI were hypermethylated in 

ALL; however, these only accounted for a small number of the total DMRs. In fact, more than 

80% of DMRs were identified in intronic or intergenic regions and not within a CGI context. Since 

DMRs can be used as biomarkers and as targets for novel therapeutics, we sought to identify the 

most likely candidates with regulatory potential. Strikingly, 70% of the intergenic DMRs were 

concomitant with functional regulatory elements including transposable elements, enhancers, 

transcription factor binding sites, ncRNA, and pseudogenes. Inverse and positive correlations 

between DNA methylation in regulatory regions and gene expression were observed. In addition, 

inverse and positive correlations were observed between gene body methylation and expression. 

The cause and effect of DNA methylation within gene bodies is not fully understood; however, 

mechanisms leading to faulty gene expression have been postulated including the regulation of 

transcriptional elongation (141), cell-type specific selection of alternative promoters (142), 

modulating alternative RNA splicing (143), or defining alternative polyadenylation sites (144). 

Genes that are regulated by DNA methylation and provide a selective growth advantage to cancer 

cells have been referred to as epi-driver genes (145). The ability to weed out driver epimutations 

from passenger epi-mutations is crucial in the quest to delineate potential therapeutic targets from 

a multitude of passenger events. Integrated DNA methylation and gene expression analysis 

identified potential epi-driver genes including SYNE1 (cytokinesis), PTPRS (signaling molecule), 

PAWR (pro-apoptotic gene), HDAC9 (downstream target of KRAS), RGCC (cell-cycle 
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regulator), and MCOLN2 (unknown function), which were hypermethylated in the 50 regulatory 

region and downregulated in ALL. These genes have also been shown to be hypermethylated 

and/or downregulated in other malignancies (146-148), indicating the potential for tumor 

suppressor activity and supporting the role of DNA methylation as a regulator of gene expression. 

Although the function of MCOLN2 is unclear, the B-cell lineage specific activator PAX5 regulates 

its expression, strongly implicating its involvement in early Bcell development (149). Taken 

together, the downregulation of these genes due to DNA methylation may play important roles in 

the development of ALL. Perhaps the most paramount finding of this study was the identification 

of potential regulatory enhancers (eDMR). In relation to this, potential epi-drivers regulated by 

DNA methylation of an eDMR were also identified. Three of the genes with hypermethylated 

promoter DMRs (SYNE1, PTPRS, and MCOLN2) also possessed a hypermethylated eDMR. In 

addition, LYN and TRAF3 were downregulated in ALL patients and associated with a 

hypermethylated eDMR. LYN plays an important role in the regulation of B-cell differentiation, 

proliferation, survival and apoptosis, and TRAF3 negatively regulates the activation of the NF-

kB2 pathway in B-cells. Conversely, FLT1 and MELK were upregulated and associated with a 

hypomethylated eDMR. Both genes have previously been shown to be upregulated in cancer (150, 

151). Furthermore, FLT1 has been shown play a role in the proliferation of tumor cells (152), and 

suppression of MELK expression by siRNA has been shown to inhibit the growth of cancer cells. 

Therefore, the aberrant expression of these genes due to DNA methylation may provide a survival 

advantage to malignant cells and play a role in pediatric ALL. In summary, novel differentially 

methylated regulatory regions and differentially expressed genes were identified that may 

contribute to the pathogenesis of ALL. As expected, genes associated with B-cell development 

and epigenetic modifier genes were differentially expressed. The de novo DNA methyltransferases 
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(DNMT3A, DNMT3B) responsible for the establishment of DNA methylation patterns and 

chromatin inactivating deacetylase genes were upregulated, whereas TET1 and TET2, which are 

responsible for actively demethylating DNA and chromatin activating acetyltransferase genes 

were downregulated in ALL. The upregulation of methylating enzymes along with the 

downregulation of demethylating genes supports the theory that the loss of methylation is a passive 

event that occurs during DNA replication over multiple uncontrolled cell divisions (153). 

Accordingly, the overall result of the aberrant expression of the epigenetic modifier genes 

observed in this study may effectively be the inactivation of key genes that contribute to ALL. In 

addition, pseudogenes and lincRNAs genes were also aberrantly expressed in ALL and have 

functional roles in epigenetic regulation through diverse mechanisms including behaving as 

antisense RNA, endo-siRNA, competing endogenous RNA, or competing for RNA-binding 

proteins to regulate their target genes. Moreover, for the first time, putative transcriptional 

enhancers were identified that were differentially methylated and associated with the expression 

of a neighboring gene. Importantly, these may be used as prospective biomarkers for ALL and/or 

as targets for novel therapeutic agents that can restore altered DNA methylation and gene 

expression back to the normal state with the ultimate goal of improving treatment therapies and 

patient outcomes.  

2.1.3 Materials and Methods  

Patient samples  

De-identified patient samples were obtained under full ethical approval of the institutional 

review board at the University of Missouri. A total of 20 pre-B ALL patient samples (Table 5.1.3.1) 

and pre-BI and pre-BII cells from 10 healthy individuals were used for this study. ALL patient 

samples contain at least 88% blasts. Normal control pre-BI and pre-BII cells were isolated from 
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10 human umbilical cord blood (HCB) samples as previously described (154). Briefly, 

mononuclear cells were isolated by density gradient centrifugation using Ficoll-Paque PLUS (GE 

Healthcare Bio-Sciences AB; cat. no. 17–1440-03) followed by depletion of all non B-cells with 

biotin conjugated antibodies cocktail and anti-biotin monoclonal antibodies conjugated to 

magnetic beads using human B cell Isolation Kit (MACS Miltenyi Biotec; order no. 130-093-660). 

For the methylation studies, purified B-cells were fluorescently labeled with antibodies against 

cell surface antigen (CD19, CD34, CD45; BD Biosciences) specific to individual stages of B-cell 

development. Finally, the fluorescently labeled cells were sorted as pre-BI 

(CD19C/CD34¡/CD45low) and pre-BII (CD19C/CD34¡/ CD45med). Because no regions of 

differential methylation were observed in pre-BI versus pre-BII cells, transcriptomes were 

generated for precursor B-cells which include both pre-BI and preBII subsets. To obtain this 

population of cells, purified B-cells were fluorescently labeled with antibodies against CD19 and 

IgM and precursor B-cells (CD19C/IgM¡) were isolated by flow cytometry.  

Antibodies  

The following antibodies were used for flow cytometry and non B-cell isolation through 

column purification: BD PharMingenTM PE Mouse Anti-Human CD34 (BD Biosciences; cat. no. 

560941); BD PharmingenTM APC Mouse Anti-Human CD19 (BD Biosciences; cat. no. 555415); 

CD45 FITC (BD Biosciences, cat. no. 347463); BD PharmingenTM PE Mouse Anti-Human IgM 

(BD Biosciences, cat. no. 555783); B cell Isolation kit (MACS Miltenyi Biotec; order no. 130-

093-660).  

MIRA-seq library preparation  

Genomic DNA from ALL patient samples was isolated using DNeasy Blood and Tissue Kit 

(Qiagen; cat. no. 69506) according to manufacturer’s instructions. MIRA-seq libraries for normal 
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precursor B-cells were prepared as previously described.4 For ALL patient samples, 1.0 mg of 

DNA from each ALL patient was sonicated with alternating 30 seconds on/off intervals for a total 

of 9 minutes to generate 200- to 600-bp fragments. A small portion of sonicated DNA was run on 

1% agarose gel to ensure the sonication accuracy. The remaining sonicated DNA fragments were 

concentrated and purified using the MinElute PCR purifi- cation kit (Qiagen; cat. no. 28004). 

Adaptor ligation to fragmented DNA followed by MIRA using MethylCollectorTM Ultra kit 

(Active Motif; cat. no. 55005) was performed according to manufacturer’s protocols and as 

previously described.4 After size selection of enriched methylated DNA on 1% agarose gel, PCR 

amplification of recovered methylated DNA fragments was performed for 11 cycles and then 

purified with the MinElute gel extraction kit (Qiagen; cat no. 28604). In order to validate the 

enrichment of methylated DNA, end point PCR amplification of methylated SLC25A37- and 

unmethylated APC1- regions was performed with the following primer pairs: 50 -CCCCC 

TGGACGTCTGTAAG-30 (forward) and 50 -GGCATCTGGTAGATGACACG-30 (reverse) for 

SLC25A37, and 50 -ACTGCCATCAACTTCCTTGC-30 (forward) and 50 -GCGGATT 

ACACAGCTGCTTC C-30 (reverse) for APC1. Quantity and fragment analysis was performed 

using Qubit and Bioanalyzer before sequencing. Four high quality MIRA-seq libraries were 

multiplexed in 10nM concentrations and sequenced on the Illumina HiSeq 2000 (1£100 bp reads) 

at the DNA Core Facility, University of Missouri-Columbia.  

Identification of methylated peaks and differentially methylated regions in ALL  

MIRA-seq data processing and methylated peaks for individual samples were identified using 

MACS2 pipeline as previously described.4 Briefly, following adaptor trimming, sequences were 

aligned to the human reference sequence (GRCh37 with SNP135 masked) with bowtie2 (version 

2.1.0). Patient sample A32 had an insufficient numbers of reads and was excluded from subsequent 
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analyses. Picardtools (version 1.92) were used to remove duplicate reads from the BAM files. The 

resulting BAM files were indexed with SAMtools “index.” Methylated peaks were identified using 

MACS2 (version 2.0.10.20130712) (155) with default parameters. Unified peak locations across 

the samples were created using bedtools (version 2.17.0). Individual sample was assigned a peak 

when their own peak overlapped with the unified peaks. ALL and HCB peaks were included if the 

peak was present in at least 17 biological replicates. Differentially methylated regions (DMRs) 

between the ALL and control precursor B-cells isolated from HCB were identified as described 

previously.4  The coverage depth for each sample was analyzed and any sample with insufficient 

depth (saturation correlation < 0.90) was omitted from further analyses. Following normalization 

of data using a CpG coupling factor-based method (156), DMRs were identified. Initially regions 

of interest (ROIs) were determined based on read counts within 100 bp windows with a 300 bp 

overlaps (expected fragment size of 400 bp). Non-specific filtering was performed by discarding 

the ROIs with modest signal representation (<20 mean counts across all samples). Differentially 

methylated regions were identified from the remaining ROIs using the edgeR package called via 

the MEDIPS package in R/Bioconductor. The ROIs with <5% false discovery rate (FDR; 

Benjamini-Hochberg) and at least a fold2- change were identified as a DMRs. ROIs immediately 

adjacent to one another were combined into a single DMR. Hyper- and hypomethylated ROIs were 

merged separately so that only putatively consistent ROIs were combined. The reported log fold 

change for merged DMRs is the maximum log2 fold change for any of its constituent ROIs. All 

MIRA-seq data were deposited in NCBI Sequence Read Archive (Accession SRP058314). 

Annotation and enhancer prediction  

Methylated peaks and differentially methylated regions were annotated with HOMER 

(Hypergeometric Optimization of Motif EnRichment), version 4.3, using the default setting to 

identify genomic locations (157). The X and Y chromosomes were excluded from the analysis as 
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the genders of individual normal samples were unknown. CpG island positional information from 

the University of California Santa Cruz (UCSC) table browser was used to determine the position 

of methylation peaks within a CpG island context. The genomic locations of enhancers were 

identified based on the enrichment of histone H3 lysine 4 monomethylation (H3K4me1) and 

histone H3 lysine 27 acetylation (H3K27ac) modifications in the GM12878 cell line 

(lymphoblastoid) available from ENCODE.  

RNA-seq library preparation and data analysis  

RNA samples were also obtained from the pre-B ALL patients (20 samples) utilized in the MIRA-

seq assays and from normal precursor B-cells isolated from HCB (8 samples). RNA sequencing 

libraries were constructed with the NEBNext UltraTM Directional RNA Library Prep Kit for 

Illumina (New England Biolabs; cat. no. E7420) and sequenced on the Illumina HiSeq 2000 

(1£100 bp reads) at the University of Missouri DNA Core Facility. The reads were preprocessed 

to remove poor quality reads of <20 using FastX toolkit (http:// hannonlab.cshl.edu/fastx_toolkit/). 

Reads were aligned to hg19 using Tophat (v2.0.13) with default settings. Differential gene 

expression between ALL and healthy precursor B-cells were determined using Cufflinks with 

default parameters (version 2.2.1)(158). The read counts along with FPKM values and their 

variances were calculated by cuffdiff 2 and the log fold change and p-value was calculated for 

each gene. Multiple testing corrections using Benjamini-Hochberg was also performed (qvalue). 

The same cutoffs for FDR and fold change used in the analysis of methylated ROIs were used to 

determine differential expression. All functional annotations were performed using the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (159). All RNA-seq data 

were deposited in NCBI Sequence Read Archive (Accession SRP058414). 
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2.2 Novel global effector mining from the transcriptome of early life stages of the soybean 

cyst nematode Heterodera glycines (160) 

2.2.1 Abstract 

Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the 

secretion of effector proteins to manipulate host cellular processes that favor the formation of a 

feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary 

forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome 

assembly representing the early life stages of SCN in both a compatible and an incompatible host 

interaction to facilitate global effector mining efforts in the absence of an available annotated SCN 

genome. We then employed a dual effector prediction strategy coupling a newly developed 

nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction 

pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between 

effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a 

core function in parasitism and demonstrated that alternative splicing is one mechanism used to 

diversify the effector pool. In addition, we confirmed the presence of viral and microbial 

inhabitants with molecular sequence information. This transcriptome represents the most 

comprehensive whole-nematode sequence currently available for SCN and can be used as a tool 

for annotation of expected genome assemblies.  

2.2.2 Introduction 

The soybean cyst nematode (SCN) Heterodera glycines is the most economically important 

pathogen of soybean, causing over one billion dollars in yield loss annually (16). This microscopic 

roundworm begins its life cycle as an egg in the soil, undergoing one molt before hatching as a 

second-stage juvenile (J2). Once the nematode has hatched, it migrates through the soil towards a 
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host plant where it invades the root tissue and migrates towards the vasculature, selecting a single 

cell to establish a feeding site called a syncytium. At this point, the nematode penetrates the cell 

wall using its stylet and releases a set of secretions into the host cell, including effector proteins.  

Stylet-secreted effector proteins identified to date share many characteristics including the 

presence of a signal peptide, lack of a transmembrane domain, and expression in the esophageal 

gland cells (161). These effector proteins manipulate the host cell by modulating a variety of 

cellular processes to make it more suitable for the nematode, including suppression of host defense 

and stress responses and causing significant transcriptional re-programming in the host cell 

nucleus (162). Effectors harboring nuclear localization signals are recognized by host cellular 

machinery for targeting to the nucleus where they modulate host nuclear functions (163). Similar 

to effectors delivered by the stylet of piercing/sucking insects, the type III secretion system of 

bacteria or the haustorium of pathogenic fungi and parasitic plants, these effectors represent an 

interface between the nematode pathogen and host (164, 165). Once the feeding site is established, 

the nematode becomes sedentary and relies entirely on the host for nutrition for the remainder of 

its life cycle. The nematode slowly swells up as it undergoes a series of molts and differentiates 

into either a male or a female. Females protrude from the roots while the males regain mobility 

and exit the root to fertilize females, following which the males die. The females eventually die 

after fertilization, their bodies hardening into a protective casing for the eggs called a cyst that 

breaks off into the soil and begins the process anew. The early stages of the nematode infection 

cycle represent a key point in determining the fate of a cyst nematode. Whether or not the nematode 

will survive long enough to complete its life cycle depends on the ability of the nematode to survive 

and circumvent the hostile environment presented by the plant host. 
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 In recent years, next generation sequencing technologies have been applied to several 

plant-parasitic nematode species, resulting in the assembly of complete genomes for Meloidogyne 

hapla, M. incognita, Globodera ellingtonia, G.pallida, G. rostochiensis, Ditylenchus destructor, 

and Bursaphelenchus xylophilus (166-171). Despite the enormous economic importance of H. 

glycines, no finished and comprehensively annotated genome is currently available. In the absence 

of a sequenced genome, several other plant-parasitic nematode systems have turned to de novo 

transcriptome-level studies instead (172-175). These studies were able to identify key features of 

the interaction of plant host and nematode pathogen, including the discovery of new effectors.   

In the SCN system, studies have primarily focused on identifying and characterizing stylet-

secreted effectors produced in the esophageal gland cells, which has resulted in the identification 

of 72 SCN effectors (176-178). These studies based their identification of SCN effectors on the 

presence of a signal peptide as well as expression in the esophageal gland cells confirmed by in 

situ hybridization. Multiple functional studies have since been performed using these effectors, 

identifying host targets and characterizing their role in cyst nematode parasitism (179). Though 

the approach focused on the gland cells has been highly successful in identifying stylet-secreted 

effector proteins, low abundance transcripts, those harboring non-canonical secretion signals, and 

those encoding secreted proteins originating in other structures of the nematode, such as amphids 

(180), are lacking. A global analysis allows for a comprehensive assessment of effectors, enabling 

studies to assess effector variation within and across populations to identify highly variable 

effectors potentially correlated with virulence, as well as those effectors highly conserved across 

the population that may be key components of the SCN infection process. Effector variation has 

been shown to be important in other plant pathogens such as bacteria and fungi as a tactic for 

evading host recognition and resistance (181, 182).  
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To provide comprehensive biological insight and a tool for comparative analyses between 

different nematode species and populations of H. glycines in the absence of a reference genome, a 

de novo transcriptome assembly of early life stages was generated.  An analysis of the 

transcriptome confirmed previous reports of microorganisms present within the nematode with 

molecular details and identified new parallels to other plant-parasitic nematode species. We then 

performed multiple analyses focused on effectors; both predicting novel effectors using a newly 

developed bioinformatics tool called N-Preffector that is not reliant on the presence of a signal 

peptide and investigating variation of previously identified stylet-secreted effector protein 

sequences. This allowed for the identification of an additional suite of novel effectors that may 

play a pivotal role in SCN infection and could serve as potential targets for future development of 

novel SCN control strategies.     

2.2.3 Results 

Transcriptome sequencing and assembly 

To gain global insights into the transcriptomic response associated with the establishment of 

SCN infection, mRNA sequencing of pre-parasitic second-stage juvenile (ppJ2) and parasitic 

second-stage juvenile (pJ2) life stages infecting a resistant and susceptible host was conducted, 

yielding a total of 603.6 million paired 100 base reads. Following initial filtering steps and removal 

of reads mapping to the soybean genome, the final input for transcriptome assembly was 430 

million reads. Trinity de novo transcriptome assembly resulted in a final assembly of 147,910 

transcripts with a total assembly length of 46.7 Mb and estimated 23-fold transcriptome coverage. 

The average length of these transcripts was 658 base pairs (bp) with a N50 of 1,085 bp (Table 

2.2.3.1). When translated, 78,625 resulting proteins were predicted. This transcriptome assembly 

was then assessed using BUSCO (Benchmarking Universal Single-Copy Orthologs, (183)). Based 
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on the 429 single copy orthologs for eukaryotes, the SCN assembly is 68% complete, with an 

additional 14% of the orthologs represented in fragmented transcripts and the remaining 18% 

missing from the transcriptome. 

Table 2.2.3.1. de novo transcriptome assembly statistics for the SCN early life 

stage assembly.  
Number of transcripts 147,910 

   
Total assembly length (Mb) 46.7 

   
Number of trinity 'genes' 71,093 

   
N50 (bp) 1,085 

   
Maximum contig size (bp) 11,112 bp 

   
Minimum contig size (bp) 201 bp 

   
Average contig length (bp) 658 bp 

   
Predicted proteins 78,625 

   
BUSCO score C: 68%, F: 14%, M: 18% 

   
The assembly was generated from H. glycines pre-parasitic second-stage juvenile 

samples as well as parasitic second-stage juvenile samples from susceptible and 

resistant host interactions using the Trinity de novo transcriptome assembly tool. The 

transcriptome was assessed for completeness using the tool BUSCO (benchmarking 

universal single-copy orthologs) to identify complete (C), fragmented (F), and missing 

(M) sequences representing conserved orthologs found in all eukaryotes. 

 

Annotation of transcripts 

Transcripts from the H. glycines transcriptome were annotated following the Trinotate pipeline 

(184). Transcripts were first compared to GenBank, Swissprot, and TrEMBL databases using 

BLASTX, resulting in a total of 66,601 (45.03%) out of the 147,910 transcripts annotated using 
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an e-value cutoff of 1e-5.  When examining the species distribution of these significant hits, most 

transcripts hit to prior H. glycines database entries followed by animal-parasitic nematode species 

such as Ascaris suum and Strongyloides ratti (Figure 2.2.3.1). In total, 1315 species are 

represented in the BLASTX results representing a broad variety of genera. Other species of note 

in the annotated transcripts include Cardinium endosymbionts of Encarsia pergandiella and 

Bemesia tabaci as well as several soybean cyst nematode associated viruses (185-190). The virus 

sequences from the H. glycines PA3 population sequenced in this study are described by Ruark et 

al. (191) and the endosymbiont-associated transcripts were characterized in more detail as 

described below. 
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Figure 2.2.3.1. Species distribution of predicted homologues to H. glycines.  Homologues were predicted using 

a BLASTX search against several protein databases at an e-value cutoff of 1e-5. The top 20 species with the most 

homologues are shown here. The resulting species evolutionary relationship was obtained from NCBI Taxonomy 

Browser [83] and visualized using IcyTree [84]. 

 

 Transcripts were further compared to several nematode species with sequenced and 

annotated genomes representing free-living, animal-parasitic, and plant-parasitic trophic groups to 

identify potential overlap and genes that are uniquely shared between SCN and one other nematode 
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species. The H. glycines transcriptome uniquely shares 76 potential homologs with 

Bursaphelenchus xylophilus, 313 homologs with Meloidogyne hapla, 200 with M. incognita, and 

7,721 with Globodera pallida. In addition, the transcriptome shares 11 homologs with the free-

living nematode Pristionchus pacificus, 28 with the free-living nematode Caenorhabditis elegans, 

and 84 homologs with the animal-parasitic nematode A. suum (Figure 2.2.3.2).   

 

Figure 2.2.3.2. H. glycines orthologs in proteomes from sequenced nematodes with diverse feeding 

behaviors. The interior numbers represent predicted H. glycines proteins that only have orthologs identified in one of 

the seven other nematode species examined. Exterior numbers represent sequenced nematode proteins with no unique 

orthologs in the early parasitic H. glycines transcriptome.   

 

Identification and GO annotation of endosymbiont-associated transcripts from the H. glycines 

transcriptome 
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Prior microscopic analysis of SCN indicated the presence of a bacterial endosymbiont (187, 

190). Within the early parasitic SCN transcriptome we identified 468 transcripts annotated as 

endosymbiont-associated transcripts, all of which were confirmed by BLASTX mapping to the 

Cardinium hertigii proteome (Figure 2.2.3.3A). To further examine the potential functional 

significance of this inhabitant on SCN biology, GO terms were assigned to the 468 endosymbiont-

associated transcripts using BLAST2GO, resulting in GO annotation of 328 of the 468 transcripts. 

Of those sequences with GO annotation within molecular function, the majority were involved in 

ATP binding, with 24% of the annotated transcripts falling into this category, followed by DNA 

(17%) and RNA (14%) binding (Figure 5.2.3.3B). The cellular compartment represented by the 

greatest number of transcripts was the ribosome (39%) (Figure 2.2.3.3C). The most significant 

biological processes represented among annotated transcripts were translation (14%) and transport 

(10%) (Figure 2.2.3.3D).  
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Figure 2.2.3.3. Identification and characterization of ‘Candidatus Cardinium hertigii’-associated 

transcripts within the H. glycines early life stage transcriptome.  Transcripts from the H. glycines transcriptome 

were extracted and mapped against the proteome for Candidatus Cardinium hertigii to identify potential 

endosymbiont-associated transcripts, resulting in the identification of 468 of the 839 described proteins for this 

endosymbiont within the SCN early life stage transcriptome (A). Available gene ontology annotation was added to 

the endosymbiont-associated transcripts by BLAST2GO and grouped by the parent terms molecular function (B), 

cellular component (C), and biological process (D).  

 

SCN stylet-secreted effector protein analysis 

Effector proteins originating in the esophageal gland cells and secreted through the stylet play 

critical roles in the SCN infection process. Therefore, we first examined the 72 previously 

identified stylet-secreted H. glycines effectors (176-178) within the transcriptome. Of these, 

transcripts corresponding to each effector were identified using a BLASTN search, indicating that 

the transcriptome contained sufficient depth to detect expression of the known gland cell effector 
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repertoire of SCN. An analysis of effector variation within the population was then performed. We 

first grouped the known effectors into stylet-secreted effector families (SSEFs) with greater than 

70% sequence identity. To assess the level of variation of these known effectors within the 

sequenced H. glycines population, the predicted peptide sequences were mined for protein variants 

using BLASTP at a 1e-5 cutoff. Protein variants were identified for 69 of the 72 known effectors 

(Figure 2.2.3.4). The remaining three (17G06, 30C02, and GLAND9) were found to have single 

nucleotide insertions and/or deletions leading to a frame shift in the predicted peptide, resulting in 

a completely different peptide compared to the reference sequence, and consequently were not 

examined for sequence variation. A wide scope of variation was identified, with some effectors 

having over 70 predicted protein variants across the population (e.g., annexin 4F01), while others 

were limited to a single, highly conserved protein sequence (e.g., 7E05, protein unknown 

function).   
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Figure 2.2.3.4. Variation of known effectors in the H. glycines early life stage transcriptome. Protein variants 

of previously published H. glycines effectors [17-19] were identified using a BLASTP search at a 1e-5 cutoff and 

counted.  Known effector sequences with >70% amino acid identity were grouped into stylet-secreted effector families 

(SSEF) to facilitate the analysis. Available functional annotation for effector families is indicated as follows: 
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ANN=annexin-like; SLP1= SNARE-like protein 1; ENG=endoglucanase; CHI=chitinase; VAP=venom allergen-like 

protein; CBP=cellulose-binding protein; CLE= CLAVATA3/EMBRYO SURROUNDING REGION (CLE)-like; 

CSP=circumsporozoite protein; CM=chorismate mutase. 

 

We then examined the expression of known SCN effectors during a compatible and an 

incompatible interaction to determine if the host environment influences the expression of any of 

these effectors. The effectors were split into two different groups (upregulated or downregulated) 

based on their expression pattern from the pre-parasitic second-stage juvenile (J2) stage to the 

parasitic J2 life stage and then compared across the two conditions. Most of the known SCN 

effectors followed the same pattern of expression across both comparisons, but the level of 

expression change was slightly reduced in the incompatible interaction. However, a subset of 

effectors exhibited an opposite trend of increased expression in the incompatible interaction, 

including members of SSEFs 1 [4F01], 9 [26D05], 17 [20E03], 22 [8H07], 45 [30D08, 21E12, 

16A01], 39 [5D08], and 11 [33A09].    

Effector alternative splicing analysis 

To analyze alternative splicing (AS) as a potential mechanism of effector variation, we used 

the 72 previously identified stylet-secreted H. glycines effector candidates (176-178). Similar to 

the protein analysis of known SCN effectors, transcripts corresponding to each effector were 

identified using a BLASTN search in order to determine AS relationships. The major differences 

from the protein analysis were the use of a higher sequence similarity threshold (>85% identity) 

and the use of a gap penalty of 0. These two constraints were implemented to reduce false positives 

and improve true positives since gaps are expected to occur and should have a higher percent 

identity if AS occurs. In total, 395 AS transcripts were identified for the 72 previously known SCN 

effectors (Table 2.2.3.2), with the number of AS variants per each effector ranging from 1 to 38. 
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Using these 395 AS transcripts, differential expression analysis was conducted to determine 

statistically significant AS transcripts for comparison between the ppJ2 and pJ2 life stages as well 

as between two different host interactions in the pJ2 life stage, an incompatible and compatible 

interaction. In total, 129 AS transcripts representing 44 known SCN effectors were determined to 

be statistically significant with respect to host interaction groups and 276 AS transcripts 

representing 58 known SCN effectors were statistically significant with respect to life stages, with 

127 overlapping transcripts (98.4%) between stages (Table 2.2.3.2).  

Table 2.2.3.2. Summary statistics for alternative splicing analysis of known 

SCN effectors.  

  

Known 

effectors 

AS 

transcripts 

Total 72 395 

Significant for host interaction (compatible vs 

incompatible) 44 129 

Significant for life stage (ppJ2 vs pJ2) 58 276 

Alternative splicing analysis was performed on the previously published SCN 

effectors using the de novo transcriptome assembly. Splice variants were identified 

for known effectors and then analyzed for differential expression based on host 

interaction and nematode life stage. 

 

To explore the effect that AS may have on protein function, functional domain analysis 

was conducted on the 395 AS transcripts. For this, we determined the changes in the functional 

domain architectures between specific AS isoforms. Since AS often alters the reading frame, all 

six reading frames were analyzed. Of the 72 effectors, 7 did not have any identified functional 

protein domains. In total, 513 protein functional domains for the remaining 65 effectors (7.9 

domains per an isoform, on average) were identified using InterPro (192).  For the 395 AS 
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transcripts, 910 protein functional domains were identified (2.3 domain, on average), with 108 

transcripts with no functional domains identified. When considering each effector and their AS 

transcripts, 37 out of 65 effectors (57%) had AS events that altered the predicted domain 

architecture. The 395 transcripts included 198 architectures with no change, 247 with at least one 

added functional domain, and 78 with one or more functional domains deleted. We note that the 

numbers of domain architectures do not add up to 395 because in some cases a transcript belonging 

to one effector was identified as the AS transcript from a different effector. 

To analyze the functional changes in more detail, case studies of two effectors, GLAND13 

and HgCLE (Heterodera glycines CLAVATA3/EMBRYO SURROUNDING REGION-like), 

were considered together with their AS transcripts. GLAND13 was chosen to demonstrate a simple 

example of a clear association between a protein function and AS variation due to the differentially 

spliced isoforms. On the other hand, HgCLE was chosen to demonstrate the structural and 

functional complexity that could be invoked through alternatively spliced isoforms. The 

architecture of the GLAND13 protein was predicted to have two functional domains that 

corresponded almost exactly to the two exons (Figure 2.2.3.5A). These two protein domains were 

associated with glycosyl hydrolase, a five-blade beta propeller domain, and concanavalin A-like 

lectin/glucanase protein domain (InterPro IDs: IPR023296 and IPR013320, respectively). Both of 

the functional domains are known to associate with metabolism. Our de novo AS analysis 

determined two different transcripts associated with GLAND13. The primary transcript included 

both protein domains, while the secondary transcript had exon 1 spliced out. It is possible for the 

reading frame to be altered if an AS event modifies the beginning of the gene.  However, in our 

case the reading frame was preserved, which caused a removal of the glycosyl hydrolase domain, 

while leaving intact the glucanase domain. The functional implications of this removal are yet to 
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be experimentally characterized. However, it was clear from the analysis that the primary transcript 

was important for life stage and was upregulated in the parasitic stage (p-value is 9.07E-11). 

Additionally, the secondary transcript was important for both life stage and host interaction (p-

value 1.29E-5, Figure 2.2.3.5B). This transcript was upregulated in the parasitic stage, but to a 

greater extent in nematodes infecting a resistant host plant. 

 

Figure 2.2.3.5. Gene structure, protein functional domain architecture, and isoform protein products for 

GLAND13. Domain architecture and the retained protein domains in each of two isoforms, IS-1 and IS-2 (A). 

Expression of each isoform (transcripts per million) in pre-parasitic second-stage juveniles (ppJ2) and parasitic J2 

(pJ2) life stages during a compatible (C) or incompatible (I) host interaction (B). The first isoform was significant for 

life stage change (p-value is 9.07E-11), while the second isoform was significant for both life stage and host interaction 

changes (p-value 1.29E-5).  

HgCLE genomic architecture includes four exons that were consistent with four functional 

subunits: signal peptide, variable domain I, variable domain II, and the CLE domain (193). The 

N-terminal signal peptide is important for secretion of the peptide out of the nematode esophageal 

gland cell while variable domain I has been shown to function in targeting of the effector within 
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the host plant cell (193). The HgCLE effector family [2B10-4G12] contains two known members 

with high levels of sequence conservation at the amino acid level, the only differences existing 

within the variable domains. The CLE domain is processed to release a small peptide that functions 

within the host plant as a ligand mimic (194). Based on the AS analysis, there were 8 transcripts 

associated with HgCLE. To improve the AS analysis, the corresponding HgCLE2 genomic DNA 

sequence was retrieved from NCBI GenBank (GenBank ID: FJ503005.1) and compared with these 

8 transcripts (Figure 2.2.3.6A). While the genomic sequence was obtained from a nematode 

population that was different from the one used in this study, it was expected that there would be 

a significant sequence similarity between the gene sequence and the AS isoforms if there were AS 

events associated with intron retention. Transcript 1 corresponded to the full sequence of HgCLE2 

retaining all four exons. Transcript 2 included exon 1-3, but retained intron 3 and lacked exon 4, 

which was associated with the CLE domain. Transcript 3 contained exon 1 and 2, but retained a 

modified version of intron 1. Transcript 4 was similar to transcript 3 except intron 3 was retained. 

Transcript 5 included just exon 1 and 2. Transcript 6 included modified versions of intron 1 and 

exon 2. Transcript 7 included a modified version of exon 2. Transcript 8 included exon 1. With 

respect to the differential expression analysis, transcript 1, 3, 5 and 7 were statistically significant 

(p-values ranging from 5.50E-04 to 9.638E-05) for life stage and host interaction, transcripts 2 and 

4 were statistically significant (p-value 5.27E-07 and 4.96E-10) only in regards to the life stage, 

and transcripts 6 and 8 were not differentially expressed between any group (Figure 2.2.3.6B).   



 

53 

 

 

Figure 2.2.3.6. Gene structure, protein functional domain architecture, and isoform protein products for 

HgCLE2. Domain architecture and the retained protein domains in each of eight isoforms, IS-1 and IS-8 (A). Shown 

in red are the retained introns. Each retained intron was modified as a result of AS. Dark grey boxes correspond to a 

modified VD1 domain due to AS. Expression of each isoform (transcripts per million) in pre-parasitic second-stage 

juveniles (ppJ2) and parasitic J2 (pJ2) life stages during a compatible (C) or incompatible (I) host interaction (B). Red 

boxes highlight transcripts that were statistically different for both life stage and host interaction groups.  

Novel effector prediction 
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We then performed a comprehensive effector analysis on the SCN transcriptome. Effectors 

were predicted using two separate pipelines, and then the results were compared to determine the 

overlap of each pipeline (Figure 2.2.3.7). The first of these pipelines relies on the presence of a 

signal peptide and follows the method used in previous studies for the prediction of putative stylet-

secreted effectors (177, 178). This pipeline predicted 4,846 putative effectors. To identify putative 

new effectors with higher confidence, we focused on genes upregulated from the pre-parasitic J2 

to parasitic J2 life stage and analyzed the sequences for the presence of a nuclear localization signal 

(NLS). A NLS combined with an N-terminal signal peptide is a strong indicator for localization 

of these effectors into host cell nuclei where they can play a variety of functions including 

regulation of plant defense responses (179, 195). Following these filtering steps, this pipeline 

predicted 734 effector candidates, including 139 nuclear localization signal (NLS)-positive 

effector candidates up-regulated from the pre-parasitic J2 to the parasitic J2 life stage (Figure 

5.2.3.7). The 72 known SCN effector proteins, known to contain signal peptides, were re-

discovered at a rate of 74% using this pipeline. This pipeline is reliant upon the presence of a N-

terminal signal peptide, which may not be present if the N-terminus is absent from the transcript. 

This is reflected in the fact that several known SCN effectors were not recovered despite their 

nucleotide sequences being present within the transcriptome. A second pipeline independent of the 

presence of a signal peptide was performed using N-Preffector, a machine learning algorithm 

trained on known nematode and bacterial effectors. The N-Preffector-based pipeline predicted 

1,251 putative effectors, including 338 NLS positive effector candidates up-regulated from the 

pre-parasitic J2 to the parasitic J2 life stage (Figure 2.2.3.7). In this pipeline, 67% of the known 

SCN effectors were re-discovered. When the two pipelines were compared, 210 effector 

candidates were found to be overlapping, including 51 NLS positive candidates (Figure 2.2.3.7). 
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Many of these sequences have little or no annotation available. Among those sequences with 

available annotation are many homologs of effectors from other plant-parasitic nematodes that 

were not previously identified or characterized in H. glycines. These include effectors such as 

glutathione synthetase (196) and members of the SPRYSEC family (197). 

 

Figure 2.2.3.7. Secreted effector protein prediction in the early life stage transcriptome of H. glycines. 

Predicted peptides from the transcriptome were put through two separate pipelines to identify candidate effectors. One 

pipeline utilized prediction of a signal peptide and lack of a predicted transmembrane domain (TMD) while the other 

utilized N-Preffector, a machine learning algorithm. Numbers shown here are predicted peptides remaining after each 

step in the pipeline. 
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2.2.3 Discussion 

In this study, we sequenced the transcriptome of the early life stages of the plant-parasitic 

nematode Heterodera glycines, including the infective (pre-parasitic) second-stage juvenile (J2) 

life stage and the parasitic J2 life stage in two different host conditions, resistant and susceptible. 

We then carried out a de novo transcriptome assembly with an emphasis on assessing the level of 

variation of known effectors within a single population and identifying novel secreted effectors 

within H. glycines that may play important roles in establishing a parasitic interaction with its host, 

soybean. The resulting transcriptome from these samples consisted of nearly 150,000 transcripts 

encoding 78,625 predicted proteins. There are several possible explanations for the large number 

of transcripts identified. First, to generate the transcriptome a large population of nematodes was 

sequenced. The inherent genotypic heterogeneity present within the population may lead to many 

variants of the same gene being represented within the transcriptome. In addition, following 

transcriptome assembly no expression threshold was applied. This was done to capture any rare or 

lowly expressed transcripts within the population. Of the 147,910 transcripts contained within the 

H. glycines transcriptome, 66,601 (48%) were annotated based on BLAST homology. Many of 

these potential homologues existed in other nematode species, including plant- and animal-

parasitic nematodes. In addition, some transcripts showed homology to a bacterial endosymbiont 

from the genus Cardinium, of Encarsia pergandiella, a parasitic wasp, and Bemesia tabaci, a 

whitefly. Previous work identified this endosymbiont and characterized it as Candidatus 

Paenicardinium endonii, later renamed to Candidatus Cardinium hertigii (187, 198). However, 

little is known about the function of this endosymbiont and what role it may play, if any, in plant 

parasitism. Related endosymbionts found in insects and arachnids have been shown to have 

prominent impacts on their hosts, leading to changes in host reproductive capacity and also 
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modulating host immunity (199). To better understand the function of a putative endosymbiont in 

H. glycines all transcripts associated with this endosymbiont were identified and extracted from 

the transcriptome, representing a majority of the characterized sequences for this endosymbiont. 

Those transcripts identified were primarily associated with metabolic processes, which may 

contribute to both nematode and endosymbiont metabolism. Further studies into the function of 

this endosymbiont and any effect on parasitism removing the endosymbiont has will be vital in 

elucidating what role it plays inside the nematode. In addition to a bacterial endosymbiont, several 

putative homologs from viruses were also identified. Previously, researchers found representative 

viruses from the Bornaviridae, Rhabdoviridae, and Bunyaviridae families contained within H. 

glycines (186, 191). Thus, there appears to be a significant microbial community active within H. 

glycines that has until now remained largely unexplored. Further examination of these organisms 

could reveal vital connections that can be exploited for improving resistance against SCN. 

 Stylet-secreted effectors represent a key component of the plant-nematode interaction, 

serving a wide variety of functions required for successful invasion and establishment of the 

nematode feeding site. Previous studies have identified a suite of these effectors using 

microaspiration techniques to isolate the contents of the esophageal gland cells where these genes 

are expressed (177, 178). These studies then prioritized potential effectors based on those 

sequences possessing a signal peptide and lacking a transmembrane domain. Despite previous 

knowledge about the effector repertoire of SCN, very little is known about the structure of these 

sequences within a population, specifically how these sequences vary from one individual to 

another. To address this question, we undertook an effector variation analysis within the 

transcriptome, identifying putative variants of known effectors and examining their level of 

variation within the population. Within the SCN transcriptome, predicted sequence variants of 
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known effectors ranged from over 70 (effector 4F01) down to one (effectors 7E05 and GLAND2). 

This effector variation may be a result of different alleles being present in the population and/or 

reflect variation in the copy numbers of genes encoding related effectors. The level of variation of 

these effectors is likely related to the function of the effector in question. For example, a highly 

variable effector such as 4F01 may be under constant selection pressure to avoid host recognition, 

resulting in a wide level of variation across the gene pool. A prior study demonstrated that 4F01 

might function as a mimic of host plant annexins to promote successful plant infection (200). By 

contrast, effectors with limited variation across the population are likely constrained by their 

function. It would be interesting to see how a highly virulent population or a field population 

compares to the highly inbred population used here for sequencing. Certain effectors may be 

expanded or reduced depending on the population and host selection pressure. Effectors with a 

very low number of variants across populations may represent key elements of infection that could 

be targeted for further study in the attempt at identifying a novel source of broad spectrum SCN 

resistance.   

One potential mechanism of gene regulation that can introduce variation into genetic 

sequences is alternative splicing. Previous work has identified alternative splicing in stylet-

secreted effectors from SCN on an individual basis and demonstrated that expression of these 

variants was impacted by the life stage of the nematode (201, 202). As sequence data become 

available for plant-parasitic nematodes, these types of analysis can be expanded to larger scales. 

For example, a comprehensive analysis of alternative splicing events conducted across the effector 

complement of the potato cyst nematode G. pallida using the sequenced genome found that 38% 

of these genes undergo alternative splicing and that certain families of effectors show increased 

occurrence of splicing relative to others (203). With the early parasitic transcriptome generated in 
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this study we were able to perform a large-scale alternative splicing analysis on the known 

effectors of SCN and identified significant changes in the expression of alternatively spliced 

transcripts for a majority of the effectors between the ppJ2 and pJ2 life stages as well as between 

compatible and incompatible host interactions. Changes in effector splicing across life stages as 

the nematode begins infection may be important for altering the protein function or activity to 

facilitate migration and establishment of the nematode feeding site. We then examined alternative 

splicing of effectors between a compatible and an incompatible host interaction, identifying a 

smaller subset of effectors with significant expression changes between these two conditions. 

These splice variants may be useful once again for altering function and activity of the effectors, 

potentially after being triggered by perception of host resistance by the nematode. By expressing 

an alternate version of the effector sequence, the nematode may avoid direct recognition of the 

host or recognition of the function that effector performs. Once additional populations of SCN 

have been sequenced it will be interesting to see whether these splice variants are involved in 

virulence on other sources of SCN resistance and if these can be targeted to improve overall 

resistance to this pathogen. 

We also mined the early parasitic transcriptome to identify additional effectors expressed 

within H. glycines using the SignalP predictive tool, as well as a novel pipeline called N-Preffector. 

The use of N-Preffector allowed for the identification of an entirely new class of effectors not 

necessarily containing a signal peptide. Examples of secreted effectors lacking a signal peptide 

have been shown in other plant-parasitic nematode species such as G. rostochiensis, where they 

have been shown to play a role in disrupting host reactive oxygen species production (204, 205).  

These effectors may contain a previously unknown secretion signal or utilize a novel secretion 

pathway in order to be secreted. Between the two pathways utilized for effector discovery, 86% of 
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known SCN effectors were re-discovered within the early parasitic SCN transcriptome. The 

remaining 14% were not re-discovered either due to truncated sequences relative to the reference 

sequence or a change in the predicted protein sequence between the transcriptome and reference 

sequence. It is interesting to note that 47% of these effectors were identified by both pipelines, but 

included different effectors. This illustrates the potential advantage of using both pipelines to 

accurately detect all possible effectors including those that one pipeline may not identify. The 

signal peptide-dependent method is excellent at predicting putative effectors, but misses out on 

transcripts that may be truncated or simply lack the signal peptide, which can be complemented 

using the N-Preffector pipeline. It should also be noted that in this study an expression change 

between life-stages was used as a parameter for effector prediction and to limit the overall number 

of false positives. For this reason, the possibility exists that some putative effectors with very low 

expression levels may have eluded discovery. One example is HgCLEB, which is expressed at low 

levels and therefore was not discovered in the effector pipeline, but later identified using a targeted 

search of the transcriptome (206). 

The novel effector candidates identified by these two pipelines represent a set of genes for 

downstream expression and functional analysis to investigate the interaction between SCN and 

soybean. Many of these sequences have little or no annotation available, much like the original 

gland isolated effector sequences obtained for H. glycines (176-178). These novel effector 

sequences may play pivotal roles in nematode parasitism and will require more in depth functional 

studies to determine their function. Among those sequences with available annotation are many 

homologs of effectors from other plant-parasitic nematodes that were not identified or 

characterized in H. glycines previously. Included in this category are genes such as the glutathione 

synthetase family, the novel G. rostochiensis effector E9, and candidates showing homology to 
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the SPRYSEC family of effectors from G. rostochiensis. Glutathione synthetases have many 

potential roles in the interaction between the nematode and host plant. In the interaction of the 

root-knot nematode M. incognita it was found that glutathione is needed for successful infection 

of the host plant Medicago truncatula (195). In addition, glutathione synthetase genes were found 

to be greatly expanded in the genome of the potato cyst nematode G. pallida, where these genes 

are theorized to be involved in protection of the nematode from antioxidant proteins as well as 

potentially in nematode nutrition (167). Several transcripts annotated as glutathione synthetase 

also contained a secretion signal, something that differentiates them from glutathione synthetases 

found in animal parasites that may function within the nematode. The putative effector E9 has 

been identified in both G. rostochiensis and G. pallida and was confirmed to be expressed in gland 

cells via in situ hybridization (203, 207). Thus far little is known about the function of the E9 

effector, other than it being expressed in the gland cells of Globodera species. The SPRYSEC 

effectors on the other hand have been heavily investigated in the Globodera-tomato pathosystem, 

with demonstrated roles in the suppression of plant immune responses (197, 207). To date, 

SPRYSEC effectors have not been identified in the genome sequence of root-knot nematodes 

(167); however, entries in non-redundant sequence databases suggest they may be present in other 

cyst nematodes and lesion nematodes (208). Thus, these could be very interesting candidates for 

comparative analysis across virulent populations of SCN to determine whether or not they play the 

same role as in Globodera spp. Another effector candidate of note is a putative secreted 

calreticulin. A calreticulin secreted by M. incognita is necessary for successful infection and may 

play a role in suppression of plant defenses; functions that may be retained in H. glycines (209). 

Another nematode effector homolog group identified in the transcriptome involved in suppression 

of host defenses are the C-type lectins (CTLs) from Rotylenchus reniformus. These effectors were 
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identified in the R. reniformus transcriptome and subsequently shown to be expressed in the 

hypodermis of parasitic stages of the nematode (210). It is hypothesized that these effectors are 

involved in protecting the nematode from environmental stress. While these homologs are all 

predicted to have the same function in H. glycines as their originating species, further functional 

characterization is necessary to confirm this. 

Interestingly, we identified several effector candidates with sequence similarity to proteins 

originating in plants and other organisms. These included multiple effector candidates with 

homology to members of the plant RING/U-box superfamily of proteins.  These proteins are 

typically involved in protein modification and regulation of plant pathways, including defense 

responses and regulation of cell death (211). Nematode mimics of these proteins may be involved 

in manipulation or suppression of host defense pathways in order to allow successful establishment 

of the feeding site.  Among the identified effector candidates are also several homologs related to 

plant metabolism and cell wall degradation. These included arabinosidase, fructosidase, glycoside 

hydrolase, and expansin. These cell wall modifying proteins have been shown to aid in the 

loosening and degradation of polysaccharides present in the plant cell wall (212-214) and have 

been identified from other plant-parasitic nematodes where they play a crucial function in 

migration and establishment of the nematode feeding site (215, 216). Therefore, these plant mimics 

all represent avenues of study to be pursued in order to better understand the interplay between 

SCN and its plant host, soybean.   

 In conclusion, a de novo transcriptome of the pre-parasitic and parasitic second-stage 

juvenile life stages of H. glycines has been generated, annotated, and comprehensively mined for 

putative effector sequences. Within this transcriptome novel effector candidates were identified 

utilizing a new prediction tool not reliant on sequences possessing a signal peptide, N-Preffector. 
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In addition, the level of variation of previously identified H. glycines effectors was examined for 

the first time at the population level and identified highly conserved and highly variable effectors. 

Finally, this transcriptome provides a useful genetic resource that will aid in annotation of the SCN 

genome. Combining these data will provide insights into the biology of SCN with the hopes of 

discovering new ways to combat this pathogen. 

 

2.2.4 Materials & Methods 

Nematode cultivation and isolation 

The SCN inbred population PA3 (HG Type 0) was propagated under greenhouse conditions 

on susceptible soybean Williams 82 or EXF63.  Freshly hatched pre-parasitic second-stage 

juveniles (ppJ2) were inoculated onto 10-day old seedlings of the susceptible host or the resistant 

host (cv. Forrest) and the inoculated plants were placed in the greenhouse. The remaining ppJ2 

nematodes were pelleted by centrifugation and flash-frozen in liquid nitrogen and stored at -80°C 

prior to RNA isolation. Five days post-inoculation, parasitic second-stage juveniles (pJ2) 

nematodes were isolated from the roots by blending the roots for 30s in a kitchen blender.  

Following this, the root homogenate was poured over a nested stack of sieves with pore sizes of 

850µm, 250µm, and 25µm before purifying the nematodes from the sample using sucrose 

centrifugal flotation (217). Samples were frozen in liquid nitrogen and stored at -80°C prior to 

RNA isolation.   

RNA isolation and sequencing 

RNA was isolated from frozen nematode pellets using the PerfectPure Fibrous Tissue Kit 

(5Prime) and a modified version of the manufacturer’s extraction protocol.  Tissue was 



 

64 

 

homogenized in 30 second intervals in the provided lysis solution containing 0.5 µM TCEP using 

a bead beater and 1.0 mm zirconia beads, followed by a 30 second incubation on ice. This was 

repeated three times. The sample was centrifuged briefly at room temperature before transferring 

the supernatant to a fresh tube.  Following lysis and homogenization, 10 µl of the provided 

Proteinase K was added and the sample was allowed to incubate on ice for 10 minutes, after which 

the manufacturer’s protocol for RNA purification was followed. RNA quality was determined 

using a Fragment Analyzer (Advanced Analytical) and quantified using a Qubit Fluorometer prior 

to library preparation. RNA-seq libraries (ppJ2, pJ2 infecting susceptible host, pJ2 infecting 

resistant host) were constructed using the TruSeq mRNA Stranded Library Prep Kit (Illumina) and 

sequenced on the Illumina HiSeq 2500 platform in a paired-end manner (2x100 for ppJ2 and pJ2-

Compatible samples and 2x50 for pJ2-Incompatible sample).  Library preparation and high-

throughput sequencing services were performed at the University of Missouri DNA Core Facility. 

Three biological replicates of each sample were sequenced. 

 

De novo transcriptome assembly 

Prior to assembly, raw reads from these libraries were filtered using Trimmomatic (218) to 

remove low quality reads. The remaining reads were paired and orphan reads discarded. High 

quality paired-end reads were used as input for transcriptome assembly. De novo transcriptome 

assembly was completed using the de Bruijn graph-based tool Trinity (219). As part of the 

assembly process, an in silico read normalization step was performed. Assembly quality was then 

assessed by mapping raw reads back to transcripts using Bowtie2 (220) at default parameters.   

Transcriptome annotation and quantification 
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The transcriptome was annotated following the established Trinotate pipeline (219).  

Homology searches were performed against the protein sequences contained in Genbank (221) and 

UniProt (222) databases using BLASTX at an evalue cutoff of 1e-5 (223). Transcripts were 

translated into protein using TransDecoder, a component of Trinity (219). HMMER and Pfam 

databases were used to predict protein domains contained within each transcript  (224, 225). 

Presence of a signal peptide was determined using SignalP version 4.0 and TMHMM version 2.0 

was utilized to identify predicted transmembrane domains (226, 227). The resulting annotation 

information was then combined and pooled into a SQLite database.  In addition, sequenced 

nematode genomes were leveraged to identify potential homologs within the transcriptome. For 

this, predicted protein datasets from the genomes of Bursaphalenchus xylophilus, Meloidogyne 

hapla, Meloidogyne incognita, Globodera pallida, Pristionchus pacificus, Ascaris suum, and 

Caenorhabditis elegans were downloaded from WormBase (http://ws204.wormbase.org/) and 

used (228).  BLASTP hits from the H. glycines transcriptome with e-values less than 1e-5 were 

considered potential homologs. Lists of potential homologs from each of the seven species 

examined were then compared and contrasted to determine uniquely shared homologs between the 

sequenced nematode and H. glycines.    

 For quantification and differential expression analysis, reads from the libraries used for 

assembly were mapped and quantified using RSEM  (229) to determine transcript abundance. 

RSEM was utilized as it has been shown to correlate well with RT-qPCR measurements and 

produce expression values with high accuracy (230). Following quantification, differential 

expression analysis was conducted using edgeR (231), identifying all genes with a minimum 4-

fold expression difference and under a p-value cutoff of 0.001 between any of the samples.   

Identification of endosymbiont sequences within the H. glycines transcriptome 

http://ws204.wormbase.org/


 

66 

 

The entire de novo early parasitic transcriptome for H. glycines was mined for transcripts 

related to the endosymbiont “Candidatus Cardinium hertigii”. All transcripts annotated with the 

species designation ‘Cardinium endosymbiont’ were extracted from the transcriptome and 

combined into a file. A database was then constructed from the complete proteome of the closest 

available sequenced bacterial isolate, Cardinium hertigii cEper1 isolated from Encarsia 

pergandiella (188). Then all putative Cardinium-associated sequences were mapped against the 

proteome database using BLASTX at an e-value cutoff of 1e-5 to confirm their identity as putative 

endosymbiont-associated transcripts. The resulting transcripts were then used for gene ontology 

analysis. 

Gene ontology analysis of endosymbiont-associated sequences from the H. glycines transcriptome  

Gene ontology (GO) analysis was performed to identify the putative function of endosymbiont-

associated sequences within SCN. To do this endosymbiont-associated sequences from the SCN 

transcriptome were used in the research tool BLAST2GO (232). This tool uses a similarity 

searches to assign GO annotation to sequence data lacking well-characterized GO annotation. In 

BLAST2GO BLASTX was performed at an e-value cutoff of 1e-5 and the top available BLAST 

hit used to pull available GO annotation. Once available GO annotation was assigned to the 468 

endosymbiont-associated transcripts the results were examined for their potential role in SCN 

biology. 

Variation of known SCN effectors 

The protein sequences for the 72 known SCN effector sequences (176-178) were aligned using 

MUSCLE (233) and then a maximum likelihood tree was constructed based on sequence 

homology in MEGA7 (234). MUSCLE (multiple sequence comparison by log-expectation) is a 

high accuracy tool for protein alignment. Effectors with bootstrap values greater than 50 were 
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grouped into stylet-secreted effector families (SSEFs). Predicted transcript peptide sequences from 

the SCN transcriptome were then mapped to known SCN effector protein sequences using 

BLASTP at an e-value cutoff of 1e-5 and quantified for each known effector. Variants of known 

SCN effectors in a SSEF were pooled for quantification.   

Effector alternative splicing analysis 

De novo alternative splicing analysis represents a challenging task since a complete H. glycines 

genome is not available to assess exon and intron relationship (232). However, it is possible to 

associate known genes of interest and build associated relationships to infer alternative splicing 

events by comparing known regions of overlap and extract exons associated with specific 

alternative splicing isoforms. This alternative splicing analysis relies on the transcripts that are 

assembled with the Trinity pipeline (184). The alternative splicing quantification is then carried 

out with the kallisto tool (235) using the preprocessed reads and the pseudo alignment on the 

assembled transcripts, which allows the analysis to be computationally more efficient, without 

losing its quality. Using these quantified transcripts, sleuth tool was employed to determine 

statistically significant differentially expressed transcripts (236). From the list of 72 known SCN 

effector genes, the inferred alternative splicing relationship is built based on significant overlap 

between effector sequences and transcripts, defined by sequence identity of greater than 85%. The 

overlap and sequence identity are determined using the BLASTN tool, with the gap penalty 

parameter set to 0 (237). This high sequence identity threshold is used because a true alternative 

splicing event is expected to have a significant exon overlap between the effector sequences and 

transcripts. The reason that a higher identity threshold is not used is because the SCN population 

used as a source for the effector genes is different from the SCN population used as a source for 

transcriptomic data obtained in this study. Combining the high sequence identity threshold and 
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zero gap penalty in the BLASTN search, thus, allows for alternative splicing events of known 

exons from the effector genes to be identified, while not allowing the discovery of new 

relationships. New relationships that will be missed due to the data and methodology limitation 

are primarily the intron retention events and require the assembled genome as a reference. Using 

the identified associated alternative spliced transcripts, protein functional analysis is done by 

predicting the domain architectures and characterizing protein domains using InterPro (192). Since 

it is expected for the reading frame to change, all 6 reading frames (forward and reverse) are 

assessed for the domain architectures and protein functions. In summary, this approach allows one 

to functionally characterize the differential expression changes for alternative spliced transcripts. 

These functionally characterized differentially expressed transcripts were compared between 

different nematode life stages and host interactions. 

Effector prediction 

The effector prediction pipeline started with all predicted peptides from the SCN 

transcriptome. First, sequences represented in the gland cell transcriptome were subjected to two 

different prediction tools: SignalP (226) and N-Preffector, developed in this study. For the SignalP-

based prediction, peptides were run through SignalP 4.0 and TMHMM (227) to predict signal 

peptides and transmembrane helices, respectively. Predicted peptides containing a signal peptide 

and lacking a transmembrane domain were then filtered based on their expression between the 

ppJ2 and pJ2 life stages of the nematode, with those peptides showing a minimum 4-fold up-

regulation into the pJ2 life stage retained. Finally, nuclear localization signals were predicted using 

NLStradamus (238). For N-Preffector based prediction, predicted peptides were run through a 

machine-learning algorithm trained on 72 known H. glycines effector sequences and 150 known 

non-effector sequences from H. glycines in addition to the original sequences (gram negative 
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bacteria) in which the Preffector model was trained (239). For each protein sequence, N-Preffector 

calculates a vector of length-invariant features; the feature vector is then used as an input for the 

classification model. Feature categories that were considered are: residue composition, 

sequence/structure information, and physico-chemical properties of proteins. To select highly 

correlated features with the class and not correlated with each other, Preffector utilizes the 

correlation-based feature selection (CFS) method (240). Our goal was to minimize the number of 

proteins erroneously misclassified as effectors, i.e., false positives, while trying to maximize the 

number of predicted real effectors, using the same exact protocol utilized in Preffector. N-

Preffector achieves this through a more stringent classification criterion. Given an SVM model M 

and a training data of size n, for each training example xk, let  𝑓𝑘 ∈ [−1, −1] be its decision value 

predicted by the SVM model, and 𝑦𝑘 ∈ {+1, −1} be its true annotation of being an effector or non-

effector. Given the SVM model M, the prediction probability for a training example xk is defined 

as  

𝑝𝑘
(𝑖)

=
1

(1+exp(𝐴(𝑖)𝑓𝑘
(𝑖)

+𝐵(𝑖)))
.   (1) 

 

The coefficients A(i) and B(i) are estimated during the SVM training process by minimizing the 

log-likelihood function. Those peptides predicted by N-Preffector at or above a 0.9 confidence 

score cutoff were then filtered based on expression, retaining peptides with a minimum 4-fold up-

regulation from the ppJ2 to the pJ2 life stages. Nuclear localization signals were then predicted 

using NLStradamus for the remaining peptides (238). 

Data availability 
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Raw sequence reads are available under the Short Read Archive (SRA) accession no. 

SRP122521. This Transcriptome Shotgun Assembly project has been deposited at 

DDBJ/EMBL/GenBank under the accession GFZZ00000000. The version described in this paper 

is the first version, GFZZ01000000. 
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2.3 Biological classification with RNA-Seq data: Can alternative spliced transcript 

expression enhance machine learning classifier? (241) 

2.3.1 Abstract 

The extent to which the genes are expressed in the cell can be simplistically defined as a 

function of one or more factors of the environment, lifestyle, and genetics. RNA sequencing 

(RNA-Seq) is becoming a prevalent approach to quantify gene expression and is expected to gain 

better insights to a number of biological and biomedical questions, compared to the DNA 

microarrays. Most importantly, RNA-Seq allows to quantify expression at the gene and alternative 

splicing transcript levels. However, leveraging the RNA-Seq data requires development of new 

data mining and analytics methods. Supervised machine learning methods are commonly used 

approaches for biological data analysis and have recently gained attention for their applications to 

the RNA-Seq data.  

In this work, we assess the utility of supervised learning methods trained on RNA-Seq data for 

a diverse range of biological classification tasks. We hypothesize that the transcript-level 

expression data is more informative for biological classification tasks than the gene-level 

expression data. Our large-scale assessment is done through utilizing multiple datasets, organisms, 

lab groups, and RNA-Seq analysis pipelines. Overall, we performed and assessed 61 biological 

classification problems that leverage three independent RNA-Seq datasets and include over 2,000 

samples that come from multiple organisms, lab groups, and RNA-Seq analyses. These 61 

problems include predictions of the tissue type, sex, or age of the sample, healthy or cancerous 

phenotypes and, the pathological tumor stage for the samples from the cancerous tissue. For each 

classification problem, the performance of three normalization techniques and six machine 

learning classifiers was explored. We find that for every single classification problem, the 
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transcript-based classifiers outperform or are comparable with gene expression-based methods. 

The top-performing supervised learning techniques reached a near perfect classification accuracy, 

demonstrating the utility of supervised learning for RNA-Seq based data analysis.  

2.3.2 Introduction 

Ever since the intrinsic role of RNA was proposed by Crick in his Central Dogma (6), there 

has been a desire to accurately annotate and quantify the amount of RNA material in the cell. A 

decade ago, with the introduction of RNA sequencing (RNA-Seq) (242), it became possible to 

quantify the RNA levels on the whole genome scale using a probe-free approach, gaining insights 

into cellular and disease processes and illuminating the details of many critical molecular events 

such as alternative splicing, gene fusion, single nucleotide variation, and differential gene 

expression (232). The basic assessment of RNA-Seq is focused on utilizing the data for differential 

gene expression between the groups of biological importance (158). However, there are additional 

patterns that can be elucidated from the same raw sequencing data by extracting the expression 

levels of the alternatively spliced transcripts (243).  

 

Alternative splicing (AS) of pre-mRNA provides an important means of genetic control (37, 

244). It is abundant across all eukaryotes and even occurs in some bacteria and archaea (48-50). 

AS is defined by the rearrangement of exons, introns, and/or untranslated regions that yields 

multiple transcripts (74). Furthermore, 86-95% of multi-exon human genes is estimated to undergo 

alternative splicing (66). Genes tend to express many transcripts simultaneously, 70% of which 

encode important functional or structural changes for the protein (66). RNA-Seq data encompasses 

expression at both gene and transcript levels: the gene-level expression amounts to the combined 

expression of all transcripts associated with a particular gene. It has been previously demonstrated 
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that the gene-level expression is an excellent indicator of the tissue of origin as well as certain 

cancer types (245-249). However, transcript-level expression has been shown to provide a more 

precise measurement of gene product dosage, resulting in the superior performance in predicting 

the cancer patient prognosis or survival time, and providing further insights into the functional 

transformations driving cancer (243, 250-252).  Differential AS depends on many factors, 

including the epigenetic state, genome sequence, RNA sequence specificity, activators and 

inhibitors from both, proteins and RNAs, as well as post-translational modification (37, 253-255). 

These diverse mechanisms control AS to obtain developmental, cell-type, and tissue-specific 

expression. Furthermore, the patterns driven by AS and specific to cancer and other diseases have 

been recently identified (256, 257).  

 

Machine learning tools developed over the last several decades have significantly advanced 

the analysis of the vast amount of next generation sequencing and microarray expression data by 

discovering the biologically relevant patterns (258-260). Previous studies have utilized 

unsupervised and supervised machine learning techniques on the microarray gene expression data 

with variable success rates (261, 262). Along with the individual approaches (263), large-scale 

comparative studies have been carried out (264, 265). Some studies evaluated both basic and 

advanced clustering techniques, such as hierarchical clustering, k-means, CLICK, dynamical 

clustering, and self-organizing maps, to identify the groups of genes that share similar functions 

or genes that are expressed during the same time point of a mitotic cell cycle (249, 266, 267). Other 

studies compared the ability to perform disease/healthy sample classification tasks by state-of-the-

art supervised methods, such as Support Vector Machines (SVM), Artificial Neural Nets (ANN), 

Bayesian Networks, Decision Trees, and Random Forest classifiers (265). 
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When it comes to the biological classification, the RNA-Seq data present an attractive 

alternative to microarrays, since it is possible to quantify all RNA present in the sample without 

the need of the a priori knowledge. With RNA-Seq rapidly replacing microarrays, it is necessary 

to assess the potential of the supervised machine learning methodology applied to the RNA-Seq 

data across multiple datasets and biological questions (268). Recently, there have been limited 

studies that have assessed RNA-Seq data with supervised and unsupervised machine learning 

techniques (269). However, these studies utilized RNA-Seq data by leveraging only gene-level 

expression data rather than more detailed transcript-level, or transcript-level, data available for the 

alternative splicing transcripts (37). Most recently, a study analyzed the utility of RNA-Seq 

transcript-level data for the disease/non-disease phenotype classification of the samples, showing 

the advantage of the transcript expression data for the disease phenotype prediction task (270). 

However, the question of whether or not the utility of transcript-level expression presents a general 

trend across all main biological and biomedical classification tasks remains open. 

 

This work aims to systematically assess how well state-of-the-art supervised machine learning 

methods perform in various biological classification tasks when utilizing either gene-level or 

transcript-level expression data obtained from the RNA-Seq experiments. The assessment is done 

from three different perspectives: (i) by analyzing RNA-Seq data from two organisms (rat and 

human), (ii) by using the increasingly difficult datasets, and (iii) by considering different technical 

scenarios. The datasets were analyzed using six supervised machine learning techniques, three 

normalization methods, and two RNA-Seq analysis pipelines. Altogether, the performance on 61 

major classification problems include 2,196 individual classification tasks were compared. We 
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define a major classification problem as a combination of the biological class and the dataset used.  

We then define the individual classification task as a combination of all machine learning methods, 

normalization techniques, as well as the major classification problem.  The use of multiple datasets 

allows us to determine if the success of a classification task is due to the discovery of distinct 

biological patterns by a machine learning algorithm, or if it is due to biologically unrelated patterns 

such as caused by differences in library preparation and/or the lab source. Finally, we assess 

whether using the information on alternatively spliced transcripts presented in the form of 

transcript expression data can provide the higher classification accuracy, compared to the gene 

expression data.  

 

2.3.3 Results 

The goal of this work is to examine the capabilities of supervised machine learning methods 

in performing biological classification based on RNA-Seq data. Specifically, we analyzed whether 

the performance is influenced by (1) the power of the machine learning classifier, and/or (2) more 

detailed information extracted from the RNA-Seq data. In the first case, we assessed several 

supervised classifiers, ranging from the very basic methods to the state-of-the-art supervised 

classifiers, across three different normalization techniques. In the second case, we compared the 

same classifiers using either gene-level or transcript-level expression data. Together, the study 

setup utilized three RNA-Seq datasets, six supervised machine learning techniques, and three 

normalization protocols (Figure 2.3.3.1). Furthermore, each of the 61 classification problems was 

set to use the numerical features generated either from the gene-level or transcript-level expression 

data. To the best of our knowledge, this is the largest comparative analysis of biological 

classification tasks based on RNA-Seq data, performed to date. 
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Figure 2.3.3.1. Overall computational pipeline. The samples from each of the three datasets are collected. The 

classification tasks are then defined. The expression data are processed for each sample at the gene and isoforms levels 

using two RNA processing pipelines and three different count measures. Next, feature pre-processing, scaling, and 

selection are done for each classification task. Finally, the binary as well as multiclass supervised classifiers are trained 

and tested. 



 

77 

 

 

Classification Tasks Analyzed 

Two categories of classification tasks were considered: normal phenotype and disease 

phenotype. In the first category, we determined whether it was possible to distinguish between age 

groups, sex, or tissue types in normal rats based on transcriptome analysis. The second category 

focused on classification tasks associated with breast cancer, with the main goal to differentiate 

between the pathological tumor stages. Both categories were analyzed using RNA-Seq data at the 

gene and transcript levels. Two types of classification were considered for each category of tasks: 

binary classification and multiclass, or multinomial, classification. These classification types 

center around two conceptually different classification problems. The binary classification 

distinguishes a sample as either belonging to the class or not. The multiclass classification 

distinguishes which class a specific sample belongs to. For example, for a binary tissue 

classification task, a sample can be classified as extracted from the brain tissue or not. In the 

context of a multiclass classification, the same sample is classified as extracted from exactly one 

of several tissue types. 

 

Dataset Statistics 

Three datasets were used to carry out the classification tasks: two datasets for the normal 

phenotype classification tasks and one dataset for the disease phenotype classification tasks 

(Figure 2.3.3.1). The first dataset was obtained from the Rat Body Map and is referred to as RBM 

dataset. It consisted of 660 normal rat samples whose transcriptomes were sequenced from the 

same rat strain and served as a reference dataset for the community (271). The transcriptomes were 

obtained at 40 M reads per sample on average. The data were evenly split between the male and 
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female rats, four age groups, and eleven tissue types (Appendix A1.1). The four age groups 

included 2, 6, 21, and 101 weeks. The eleven tissue types included adrenal gland, brain, heart, 

thymus, lung, liver, kidney, uterus, testis, muscle, and spleen. All samples used the same library 

preparation protocol, sequencer, and were prepared by the same laboratory. As a result, the dataset 

was expected to have the least impact from the data inconsistency that arises from the non-

biological sources, such as utilizing different sequencing protocols, instruments, and other 

parameters.  

 

The second dataset, also used in the normal phenotypes classification tasks and referred to as 

NCBI dataset, included over 1,100 samples (Appendix A1.2) with the sequencing depth ranging 

between 6 and 116 M reads. This dataset was prepared by analyzing the collection of rat 

transcriptomes that were sequenced on Illumina Hi-Seq 2000 platform and were publicly available 

from the NCBI SRA database (272). The dataset was obtained from the sequencing experiments 

of 29 research projects (Appendix A.1.1). It contained highly variable transcriptomes due to the 

differences in library preparation, project goals, and rat strains.  The classification tasks for the 

NCBI dataset were the same as for the RBM dataset, but with one modification. The age 

classification was modified from the four age groups into either embryo or adult age groups and 

is described later in this section. 

 

The last dataset included raw RNA-Seq data from 1,216 human breast cancer patients from the 

Cancer Genome Atlas (referred to as TCGA dataset) and was used in the disease phenotype 

classification tasks (273). At the preprocessing stage, two RNA-Seq data normalization techniques 

were implemented and compared. Classification was performed to distinguish between the 
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pathological cancer stages, as defined by the American Joint Committee on Cancer (AJCC) (274). 

The AJCC breast cancer staging is based on size of tumors present within the breast, presence or 

absence of detection of metastases that are not within the breast, and the presence, size, and type 

of metastases within the lymph nodes. The patients were distributed with high variability 

especially when considering sub-cancer stages (Appendix 1.1.3).  

 

Feature Selection and Analysis 

The numerical features for this study represented either gene or transcript expression levels. 

As a result, the number of features ranged from 10,711 to 73,592, depending on the dataset and 

representation (Suppl. Table S2). Utilizing all features for a classification task greatly increases 

the computational complexity. Moreover, not all expressed genes or transcripts may be important 

for a given classification task; using the uninformative features during the training process could 

potentially decrease the accuracy of the classifier. To reduce the dimensionality of the feature 

space, a feature selection method (275) was applied in a classification-specific and dataset-specific 

manner, resulting in a significant reduction of features ranging from 107 to 735 folds (Figure 

2.1.3.2A, Appendix A1.4-7, Appendix A2.3). 
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Figure 2.3.3.2. Overview of feature selection and the performance of classifiers using gene and isoform level 

expression data. A. Comparison of the number of features between gene and isoform after feature selection. Each 

classification task has the same number of features selected for each classifier at the gen-level and isoform-level. The 

four selected classes represent the four types of patterns seen between gene-level (green) and isoform-level classifiers. 

The Brain Tissue class is the most common pattern of feature selection. In general, more features are selected for 

isoform-level classifiers versus gene-level. B. Example of the variability of gene and isoform performance determined 

by f-measure across the six methods (DT = Decision Table, J48 = J48 Decision Tree, LR = Linear Regression, NB = 

Naïve Bayes, RF = Random Forest, SVM = Support Vector Machine). This example is from the RBM dataset for the 

Multi Age class without normalization. While there is a high degree of variability in performance, isoform-level 

classifiers consistently perform either comparably or better than gene-level classifiers. C. and D. Summary of the 

performance variability across classes for gene and isoform f-measure for the most frequent top and bottom 

performance methods (RF-G = Random Forest Gene, RF-I = Random Forest Isoform, NB-G = Naïve Bayes Gene, 

NB-I = Naïve Bayes Isoform). The data used in C. is TCGA dataset and in D. is NCBI dataset. MC = stands for 

multiclass.  

 

Regardless of the classification task or dataset, the normalization of the RNA-Seq data did not 

make a significant difference on the choice of the selected features: variation in the numbers of 

selected features was less than 1% (Appendix A1.8-11). An interesting observation, consistent 

across different tissue classification tasks, was that the number of features selected for the 

multiclass classification tasks was significantly greater than for a binary classification task. This 

observation should not be surprising, because the binary classification task is generally simpler 

than the multiclass classification task (Suppl. Table S3). However, in our case even if all features 
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of the binary classification tasks related to a single multiclass classification task were combined, 

it would still not account for all features selected by the feature selection method for the multiclass 

task. 

In many cases, the overall number of features selected for a binary classification task was the 

same or nearly the same, irrespective of whether the features were gene- or transcript-based 

(Appendix 1.4-7). Does it mean that the features from the gene- or transcript-based approaches 

correspond to the same genes? Not always: the transcripts used for the selected features in a 

transcript-based, or transcript-based, classifier did not always originate from the genes that were 

selected for the corresponding gene-based classifier. Indeed, because 70% of transcripts were 

expected to encode different functional gene products (66), we expected cases where the gene 

expression features were not as specific as the corresponding transcript features. In general, there 

was a large portion of 73,592 transcripts from 20,524 genes that corresponded to the same gene 

set (70-100%). However, there were several classification tasks, including multiclass tissue 

classification using NCBI dataset, where there was a lower percentage of such overlap (30%). 

Furthermore, there were several classification tasks, including multiclass age classification using 

RBM, multiclass tissue classification using GEO, and stage IIB classification using TCGA dataset, 

where the numbers of features that used either gene or transcript level of expression were 

significantly different, which was usually the case when a multiclass classification task was 

considered (Figure 2.1.3.2A, Appendix A1.4-S7, Appendix A2.2-3). Another interesting 

observation was obtained when comparing the RBM and NCBI Rat datasets: the number of 

selected features was much smaller for the RBM dataset rather than for the NCBI Rat dataset (on 

average 231 versus 588), thus indicating the need for additional features to compensate for the 

increased data variability found within the NCBI Rat dataset. 
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Overall Performance of Classifiers trained on Gene-based vs. Transcript-based data 

Next, we hypothesized that because of the observed specificity of alternative splicing across 

tissues, ages, sexes, and between disease/normal phenotypes, training classifiers with the RNA-

Seq data at the transcript, or transcript, level for the biological classification tasks could increase 

the classification accuracy (275, 276). Consistent with this hypothesis, the supervised learning 

classifiers that leverage the transcript-based data performed comparably or better than the 

classifiers trained on the gene data for all classification tasks (Figure 2.1.3.2B, Figure 2.1.3.3). 

This observation also held true irrespective of the datasets used, normalization protocols, 

classification tasks, or supervised classifiers.  Furthermore, the difference between the gene- and 

transcript-based classifiers were consistently less than the standard deviation across all 10-folds, 

supporting this hypothesis (Appendix A1.12-13). The most frequently top performing methods 

were the random forest and logistic regression classifiers, whereas the worst performing method 

was typically naïve Bayes classifier (Figure 2.1.3.2B-D). However, the former approaches were 

not the most accurate ones for every single classification task, since in some cases naïve Bayes 

classifier was capable of outperforming all other methods tested (Stage IIA & IIB, Figure 

2.1.3.2C). In general, the random forest classifier applied to the data without any normalization 

achieved 83-100% accuracy (Figure 2.1.3.2B-D).  
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Figure 2.3.3.3. Heat map representation of the difference between Isoform and Gene f-measure across machine 

learning methods, classes, datasets, and normalization techniques. For the majority of classification tasks using 

isoform-level rather than gene-level expression data resulted in small to substantial increase of the performance 

accuracy, represented by f-measure values here. The bottom x-axis represents the machine learning techniques (DT = 

Decision Table, J48 = J48 Decision Tree, LR = Linear Regression, NB = Naïve Bayes, RF = Random Forest, SVM = 

Support Vector Machine). The y-axis represents the classes considered. MC stands for multiclass. The top x-axis 

represents normalization techniques including Nothing (no normalization), Standardized, and Normalized. Datasets 

for each panel are A. RBM, B. NCBI, C. TCGA – log2 normalized counts, and D. TCGA – raw counts. 

 

It was also observed that for 63% of classification tasks, the gene- and transcript-based 

methods performed with similar accuracy (within 0.2 difference in f-measure value). For 37% of 

the classification tasks, the transcript-based methods performed better than the gene-based (more 

than 0.2 gain in f-measure value). The difference between the transcript-based and gene-based 

classification accuracies was particularly profound when comparing the classification results of 

naïve Bayes, which was one of the less accurate methods analyzed, while being among the fastest 
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classifiers. However, we did not observe such a drastic difference, and sometimes no difference at 

all, when considering one of the most accurate classifiers, random forest, across all classification 

tasks. For instance, when comparing gene- and transcript-based classifiers for stage IA cancer 

using the raw count expression values and not performing any normalization protocols, the 

accuracy and f-measure values for naïve Bayes classifier ranged between 49.5%-76.4% and 

between 0.60-0.82, respectively, while for random forest the ranges were nearly identical (Figure 

2.3.3.2C-D).  

 

Another potential source of variability in the classifier performance was the difference in the 

protocols used by different studies.  To determine whether the difficulty of classification task 

increased when using datasets from multiple laboratories rather than from a single one, the 

classification accuracies between the two rat datasets were compared for each binary or multiclass 

classification task. Not surprisingly, we found that there was greater difference in the performance 

accuracies when relying on the data from one laboratory compared to the data from multiple 

laboratories (Figure 2.1.3.4A-B). With exception of a single worst performing classifier, SVM, the 

classifiers performed better on the RBM dataset, which came from a single study, then on the 

NCBI dataset, which was obtained by merging multiple independent studies. Moreover, this 

difference held for both the gene and transcript-based models. Next, we evaluated if the prediction 

accuracy depended on the transcript counting approach. To do so, TCGA expression values were 

calculated based on (i) raw counts and (ii) log2 normalized counts with respect to the gene length 

and sequencing depth. The results showed that there was a strong preference, in terms of accuracy, 

in raw counts for the gene-based classifiers, but to a lesser extent for the transcript-based models.  

However, the opposite was observed where transcript-based models were more accurate when 
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using log2 normalized counts (Figure 2.3.3.4C-D).  There was less variability (less than 0.3 in the 

maximum difference of f-measure values across all methods for each classification task) when 

considering transcript-based versus gene-based models.  

 

Figure 2.3.3.4. Heat map representation showing the influence of different factors on the accuracy 

performance. Panels A. and B. represent the difference in performance accuracies, calculated with f-measure, 

between RBM (single-lab) and NCBI (multi-lab) datasets for gene-based A. and isoform-based B. classifications, 

respectively. Panels C. and D. represent the difference in f-measure between the classifiers trained on the TCGA 

expression values, quantified as either raw counts or log2 normalized counts with respect to gene length and sequencing 

depth. Shown are f-measure differences for gene-based (C.) and isoform-based (D.) classifications, respectively. The 

bottom x-axis represents the machine learning techniques (DT = Decision Table, J48 = J48 Decision Tree, LR = Linear 

Regression, NB = Naïve Bayes, RF = Random Forest, SVM = Support Vector Machine). The y-axis represents the 

classes considered. MC stands for multiclass. The top x-axis represents normalization techniques including Nothing 

(no normalization), Standardized, and Normalized.  
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Finally, we considered different normalization techniques across the gene- and transcript-based 

classifiers. The general trend observed was little to no difference in performance accuracies using 

either different normalization protocols or no normalization at all.  The only exception was the 

performance of the SVM classifier employed by both, the transcript-based and gene-based, 

approaches: differences in the accuracy values between the various normalization techniques for 

some classification tasks were as high as 40.3 and 30.7%, respectively (Figure 2.3.3.5).  

 

Figure 2.3.3.5. Heat map representation of the difference between maximum f-measure and minimum f-

measure across normalization techniques. To demonstrate the variability attributed to the machine learning 

normalization technique, the intensity of the color represents the difference between the maximum and minimum f-

measures achieved for a specific classification task and specific classifier across all three normalization protocols. The 

upper x-axis reflects if the difference is from gene or isoform expression values. SVM is the only method that has 
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significant changes due to normalization. The lower x-axis represents machine learning techniques (DT = Decision 

Table, J48 = J48 Decision Tree, LR = Linear Regression, NB = Naïve Bayes, RF = Random Forest, SVM = Support 

Vector Machine). The y-axis represents the classes considered. MC stands for multiclass. Datasets for each panel are 

A. RBM, B. NCBI, C. TCGA – log2 normalized counts, and D. TCGA – raw counts. 

 

Normal Phenotype Classification Tasks: Age, Sex, and Tissue Classification of Rat Samples 

The Rat Body Map (RBM) represents a dataset with the least amount of noise due to non-

biological variation becomes it comes from a single laboratory, which uses the same sample and 

library preparation protocols and a fixed sequencing depth (Figure 2.3.3.3A). From this dataset we 

identified eleven tissue types, four age groups, and both sexes. We then defined 17 “one-against-

all” binary classification problems. Additionally, we merged the tissue and age groups and applied 

a multiclass classifier.  

 

For the tissue classification, including multiclass tissue classification, the models achieved 

100% accuracy and 1.0 f-measure based on the assessment protocol and irrespective of the 

machine learning method. However, when considering normalization technique, SVM had the 

accuracy ranged between 75.3% to 99.8% and 0.39 to 1.00 f-measure. The age group classification 

represented a more challenging task, with the classification accuracy ranging between 40.2% to 

100% and f-measure ranging from 0.40 to 1.00. For the 2-week and 104-week age groups, the 

classifiers again achieved nearly 100% accuracy and 1.0 f-measure across all machine learning 

techniques. The 6-week and 21-week age groups were predicted with over 97% accuracy using 

random forest, j48, and logistic regression classifiers, while naïve Bayes could only achieve 81.1% 

and SVM with 40.2%. Similar pattern was observed in sex classification, where logistic regression 

and random forest achieved more than 97.3% in accuracy, but naïve Bayes could reach only 86.1%. 
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The NCBI dataset was expected to result in a greater variation of the feature values, compared 

with the RBM dataset, since it included the data from multiple research laboratories that sequenced 

different rat samples and even strains using different library preparation protocols (Figure 

2.3.3.3B). The same types of classification tasks were considered, including tissue, age, and sex. 

Since this dataset represents all publicly available data in rat obtained using the same sequencer 

model, it included more tissue types than the RBM dataset. For consistent comparison, only those 

tissue types that were previously included in the RBM dataset were chosen for the NCBI dataset 

for the binary classification. However, for the multiclass tissue classification problem, the labels 

were determined based on the entire range of organs and tissues that the samples originated from, 

thus including more tissue types than in the RBM dataset. In contrast, the age group classification 

for the NCBI dataset was more limited than that one for the RBM dataset, since some samples in 

the former did not include the detailed age information. Therefore, the age types for the NCBI 

datasets were reduced to either adult or embryonic types.  

 

The RNA-Seq data normalization did not have an effect on the classification results for the 

NCBI dataset: the performance difference when using the normalized and unnormalized datasets 

was only observed for the SVM classifier, the method that performed the worst out of the six 

supervised learning methods. The binary tissue-based classification performed well overall, 

reaching over 99.7% in accuracy and 0.99 in f-measure for the top-performing random forest 

classifier. Interestingly, the worst performing classifier, SVM, achieved the accuracy of only 

21.2% and 0.07 f-measure for the gene-based tissue multi class. The analysis of method 

performances for multiclass classification tasks revealed that classification of several tissue types 

was particularly challenging for some of the less accurate methods. The binary tissue type 
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classification tasks reporting the lowest accuracies included brain and liver tissue classification, 

with 79.1%-94.3% in accuracies and 0.70-0.94 in f-measure values, depending on the supervised 

learning method used. For the harder problem of multiclass tissue classification, the performance 

of the classifiers was highly variable, with the accuracy ranging from 0.7% to 84.3% and f-measure 

from 0.07 to 0.84, and with the observation that the random forest classifier was, again, the best 

performing method. Differentiating between embryonic and adult samples as well as between the 

sexes were easier tasks compared to the tissue origin. The age classification accuracy ranged from 

83.2% to 98.3% and f-measure from 0.75 to 0.97 across all six supervised learning. The sex 

classification task had classification accuracy ranging between 71.1% and 97.3% and f-measure 

between 0.59 and 0.97. Interestingly, the consistently poor performance of the SVM classifier was 

not dependent on the normalization technique. 

 

Disease Phenotype Classification Tasks: Breast Cancer vs, Healthy and Stage Classification of 

Human Samples 

Based on the promising results for the normal phenotype classification tasks, we further 

increased the difficulty of classification task by predicting different pathological stages of breast 

cancer using gene-based and transcript-based data. To evaluate if this classification task could 

benefit from additional information, we assessed the method performances based on the RNA-Seq 

data with log2 normalization in addition to the three types of normalization used in the two previous 

classification problem. The classification performance was heavily dependent on the supervised 

learning method with accuracies ranging from 20.2% to 99.8% and f-measure ranging from 0.21 

to 1.00, and with naïve Bayes and SVM classifier being the worst performing classifiers (Figure 

2.3.3.3C-D). Furthermore, when considering all classes and log2 normalization, the accuracies 
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decreased by as much as 60%, and the only method that benefited from the normalization was the 

poorly performing SVM classifier. 

 

For each stage of breast cancer, we were able to achieve at least 78.3% in accuracy and 0.77 

in f-measure. However, there is a significant variability within all parameters tested (Figure 

2.3.3.2C, Figure 2.3.3.3C-D). Similar to the analysis for the RBM and NCBI datasets, random 

forest had the highest performance across all stages of breast cancer based on 71.3% to 99.8% 

accuracy and 0.64 to 1.00 f-measure. The most difficult stages to classify were stages IIA and IIB, 

with the average difference in accuracy between 21.3% accuracy and 0.29 f-measure. Unlike the 

RBM and NCBI datasets, there were classes, such as Stage IIB, where naïve Bayes and SVM 

outperformed random forest by 5% in accuracy and 0.11 in f-measure. The easiest stages to classify 

were stages II and III with 99.8% accuracy and 1.00 f-measure. 

 

In contrast to the RBM and NCBI datasets, the worst performing models for each class were 

highly variable, depending on the parameters chosen. For example, for stage IIA, the logistic 

regression classifier was the best performing model at 78.2% accuracy and 0.77 f-measure. 

However, the worst performing model was J48 at 60.1% accuracy and 0.60 f-measure. Similarly, 

for stage I the worst performing classifier was naïve Bayes with 53.7% accuracy and 0.63 f-

measure, while the best performing classifier was random forest with 91.4% accuracy and 0.84 f-

measure. On the other hand, for stage III binary classification the performance was 99.5-99.8% 

accuracy and 0.996-0.998 f-measure across all classifiers and parameter sets. These results 

demonstrated that no single method and parameter set was able to always outperform all others.  
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2.3.4 Discussion 

This work achieves two aims. The first aim is to broadly assess how well the supervised 

machine learning methods perform in various biological classifications by utilizing exclusively the 

RNA-Seq data. This aim is supported by our rationale that the key biological patterns should be 

recoverable from the transcriptomics data. Our second aim is to investigate whether relying on the 

transcript-level expression, which provides details on the alternatively spliced transcripts, can 

increase the accuracy of biological classification compared to the gene-level expression. Since the 

data patterns detected by the machine learning techniques during their training stage are highly 

dependent on the type of biological classification problem, we wanted for our assessment to cover 

multiple aspects. Specifically, we evaluated the performance of six widely used supervised 

classifiers across different RNA-Seq datasets, organisms, and normalization protocols, totaling in 

61 classification problems and 2,196 individual classification tasks. The different RNA-Seq 

datasets were selected based on the increasing difficulty of classification tasks due to the 

background noise.  The RBM dataset represented the “easiest” dataset as the level of background 

oise was expected to be low due to using a single data source and well-defined biological 

classification problems: tissue-, age-, and gender-based.  The assumption of a single data source 

implies a well-defined animal model, which the genetically identical specimina, and the same 

RNA-Seq library protocol.  The NCBI dataset increases the background noise by including 

multiple RNA-Seq protocols and different genetic backgrounds, but keeping the classification the 

same, to allow for comparison with the RBM dataset.  The TCGA dataset further increases the 

background noise due to increasing genetic and environmental variability by switching from a 

model organism to human, from the normal to disease-specific phenotype, and by relying on a 

potentially biased definition of the biological classes (breast cancer pathological stages are not 



 

92 

 

defined from the molecular perspective, but by a pathologist).  Each task separately utilized the 

gene-level and transcript-level expression datasets. The main purpose behind our study was to 

demonstrate the importance of enriching RNA-Seq data with the differentially expressed 

transcripts for the biological classification tasks, suggesting that limiting the RNA-Seq analysis to 

the differentially expressed genes would, in turn, limit the capabilities of machine learning 

algorithms. As a result, several important conclusions were made. 

 

First, we found that the accuracy of machine learning classifiers depended on how much data 

variation associated with the type of sequencers, library preparation, or sample preparation was 

introduced. Our rat datasets were specifically selected to compare the differences in data variation 

and in classification accuracies. The first dataset (RBM) was chosen because it included samples 

representing multiple age groups, tissue types, as well as sex (271), while these data were generated 

by only one research group and using the same sequencer. Thus, possible variation due to the type 

of sequencers or preparation protocols was expected to be minimal. Furthermore, we downloaded 

and processed the raw RNA-Seq reads using our in-house protocol and thus excluding possible 

variation due to different RNA-Seq analysis techniques. Our second dataset (NCBI) incorporated 

all publically available RNA-Seq data for rat using the same sequencer model, thus minimizing 

possible sequencer-based bias, a well-documented source of variation (277). The NCBI dataset 

included 29 studies from multiple laboratories and represented the same classes as in the RBM 

except for the age groups. As expected, higher variation negatively affected the accuracy across 

predominantly all machine learning methods, normalization protocols and classification tasks. On 

the other hand, even for the NCBI dataset, the accuracies for all top-performing binary classifiers 
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were never below 90% either for gene-level or for transcript-level expression data, suggesting 

minimal influence of the batch effect on the supervised classifiers.  

 

Second, our study suggested that the standard data normalization techniques were not needed for 

RNA-Seq data except when using the poor-performing SVM classifiers. Random forest and 

logistic regression classifiers performed consistently well with each of the normalization technique 

but also without them, regardless of the classification task. However, there are several 

normalization techniques specific to RNA-Seq data, including RPKM (reads per kilobase per 

million reads), FPKM (fragments per kilobase per million reads), and TPM (transcripts per 

kilobase per million reads) (232). Assessing whether these normalization techniques have an effect 

on classification accuracy should be considered for future studies. 

 

Third, we found that the overall performance of the most accurate machine learning classifiers 

was very strong, with a few exceptions. In fact, for several classification tasks including all tissue 

classes, 2 week, and 104 week from RBM dataset, stage I from TCGA dataset, and the top-

performing classifiers achieved a perfect 1.0 f-score, while for the majority of other tasks, the 

accuracy and f-measure were no less than 0.9 and often achieved by more than one classifier. From 

the biological perspective, it was surprising to see how well the classifiers performed on the normal 

phenotype datasets, in spite of significant variations in the sample and library preparation by 

different labs as well as the difference in rat strains. Intuitively, the expression values should have 

high variability due to these differences. The few exceptions in excellent performance were the 

multiclass age group classification for the normal phenotype datasets and classifications of clinical 

stages I, IIA, IIB and IIIA for the disease phenotype dataset, with stages IIA and IIB performing 
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significantly worse. The clinical definition of IIA and IIB are based on the size of the tumor as 

well as evidence of cancer movement, and the reduced performance on each of these stages 

suggests that while there is a phenotype difference there may not be a strong molecular expression 

difference, which would cause a higher error rate by a classifier. The results also suggested that, 

from the diagnostic perspective, a more accurate AJCC classification methodology to distinguish 

those two phenotypes might be required to improve the stage prediction accuracy. The most 

consistent in the overall performance across all tasks were the random forest classifiers, which had 

been previously shown to perform exceptionally well for a number of bioinformatics tasks (278) 

and can be suggested as a reliable first choice for a biological classification task. Overall, our 

findings provided strong evidence that the supervised learning approach is readily available for the 

majority of the biological classification tasks. 

 

Finally, we found that the classifiers that leveraged the transcript-level expression never 

performed worse and often outperformed the classifiers that used the gene-level expression data. 

This observation was consistent across datasets, normalization techniques, RNA-Seq pipelines, 

and classification tasks.  For the normal phenotype tasks, the most profound difference was when 

considering the most challenging classification task—the multiclass classification of age groups. 

For the disease phenotype tasks, the most significant difference in performances of the classifiers 

that used gene-based and transcript-based expression data was again for the most challenging 

classes, the clinical stages IIA and II B of breast cancer. The better performance for the classifiers 

on the transcript-level data seems to be the expected result because the methods are trained on the 

enriched data, from the biological point of view. However, we note that the transcript-level data 

provides a significantly higher number of initial features, which could result in adding more noise 
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to or potential overfitting of a classifier. Hence the importance of the feature selection and thorough 

model evaluation, which in this work suggests that the transcript-level information is a better 

choice when developing a biological classifier.  Given that the transcript extraction methods 

continue to improve (279, 280), we expect further improvement in the accuracy of transcript-level 

based classifiers. 

 

In summary, this study demonstrates that a supervised learning method leveraging transcript-

level RNA-Seq data is a reliable approach for many biological classification tasks.  We conclude 

that an appropriate general purpose pipeline for building a RNA-Seq based classifier should use 

1) transcript-based expression data, 2) feature selection preprocessing, 3) Random Forest 

classification method, and 4) do not use normalization.  The proposed pipeline is computationally 

fast and can be fully automated for the projects that involve massive volumes of sequencing data 

and/or high number of samples. However, it is important to note that 1) there are some cases where 

Random Forest can be outperformed and 2) the protocols and methods used for data gathering may 

have an effect on the classifier.  With the rapid advancements of RNA sequencing technologies as 

well as with continuous improvement of the transcript prediction methods, the accuracy of the 

machine learning approaches will only increase. We also expect for these methods to tackle more 

challenging tasks such as cell type classification, disease phenotype classification of common and 

rare complex diseases, and clinical stage classification across all major cancer types. Finally, we 

expect for advanced machine learning approaches, such as semi-supervised learning (281), deep 

learning (282), and learning under privileged information (283) to step in. 
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2.3.5 Materials & Methods 

The methodology used in this study compares three RNA-Seq datasets, six supervised machine 

learning methods, three normalization techniques, two RNA-Seq analysis pipelines, and 61 

classification problems in order to assess if the features derived from the expression data at the 

alternative splicing level (i.e., transcript-based) can result in a higher classification accuracy than 

the features derived from the gene-based expression levels. Our approach attempts to 

systematically evaluate the classifiers that relied on these features from multiple perspectives, with 

a goal to provide a comprehensive analysis. We use the increasingly difficult biological 

classification tasks to assess the performances of classifiers in the presence of noise due to the 

difference in the biological sources, sequencers, and preparation protocols. The analysis is based 

on three RNA-Seq datasets, two from rat and one from human. The six supervised machine 

learning methods tested in this work include support vector machines (SVM), random forest (RF), 

decision table, J48 decision tree, logistic regression, and naïve Bayes. The three normalization 

protocols used include (1) pipeline-specific RNA-Seq count with no post-normalization, (2) 

pipeline-specific RNA-Seq count with normalization from 0 to 1, and (3) pipeline-specific RNA-

Seq count protocol with standardization with respect to standard deviation. The two RNA-Seq 

analysis pipelines in this work, each employing different RNA-Seq count methods were the 

standard Tuxedo suite and RSEM. The 61 classification problems include binary and multiclass 

classifications of tissue types, age groups, sex, as well as clinical stages of breast cancer.  

Data Sources 

Three datasets are used to demonstrate the usability of the transcript-level expression data for 

the supervised classification. The first two datasets are from rat samples of normal phenotype; the 

raw RNA-Seq data for both datasets is processed using our in-house protocol. The last dataset 
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consists of already processed RNA-Seq data from human breast cancer samples (284). The first, 

RBM, dataset is obtained from the Rat Body Map and includes 660 samples from 12 different rats 

from the F344 rat strain (271) covering 4 different age groups, 11 tissues, and both male and female 

rats. Publicly available raw mRNA RNA-Seq data from the Rat Body Map 

(http://pgx.fudan.edu.cn/ratbodymap/) is downloaded and processed for the gene and transcript 

levels of expression. The second dataset, NCBI, includes all publically available raw RNA-Seq 

data from rat samples that are sequenced using Illumina Hi-Seq 2000 and available from the NCBI 

GEO DataSets collection (http://www.ncbi.nlm.nih.gov/gds, Suppl. Table S3). In total 1,308 

samples are used, which represents 29 different projects. In contrast to the processing of the data 

for the first dataset, these 29 projects used a variety of library preparation protocols and adapters 

to process their samples. The third, TCGA, dataset is obtained from The Cancer Genome Atlas 

data repository (284) and includes 1,216 breast cancer patients diagnosed with different 

pathological cancer stages (as defined by the American Joint Committee on Cancer, AJCC (274)).  

The class distributions for all datasets are shown in Appendix A1.9-11. 

RNA-Seq Pipeline 

RNA-Seq analysis encompasses three main stages: preprocessing, alignment, and 

quantification. There are a number of methods to perform each of these three basic steps, while 

the debate on the most appropriate methodology continues (232). In this work, we expect for the 

variation due to data processing to be minimal since the same processing pipeline is used for each 

dataset. Two different RNA-Seq pipelines are implemented and applied to each dataset for both 

gene and transcript levels of expression. These two pipelines leverage different algorithms and 

different metrics (285). For the RBM and NCBI dataset, all raw RNA-Seq data are downloaded 

from the SRA repository (https://www.ncbi.nlm.nih.gov/sra) using unique project IDs (Suppl. 

http://pgx.fudan.edu.cn/ratbodymap/
http://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/sra
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Table S3). SRA file formats are then converted into fastq format. These files are used as input for 

the preprocessing stage. The preprocessing is done using Fastx Tools with the settings that 

removed reads shorter than 20 bp. All nucleotides with quality scores of less than 20 are converted 

into N’s (286). The alignment is done against the rat genome version rn5 (287) using Tophat v2 

and its default settings (288) . Quantification for both gene- and transcript-based expression levels 

is performed using Cufflinks v2 (289) and Ensembl transcript annotation v75 (290). The Cufflinks 

is set to use the transcript annotation for quantification with other settings being default. For the 

TCGA dataset, MapSlice (291) is used for alignment and RSEM (229) for quantification. The final 

output includes expression levels for each sample at both gene and transcript levels. We note that 

the gene-based expression values are the summation of all transcripts determined to be associated 

with the corresponding gene.  

 Supervised Learning Classifiers 

The quantified expression values obtained from Cufflinks are then used to train and assess six 

supervised classifiers for each task. Two types of classification tasks are considered: one-against-

all and multiclass. Our classification approach leverages feature-based supervised learning 

methods. Each post-processed RNA-Seq sample is represented as a feature vector, where each 

feature represents the transcript- or gene-level expression value for a specific gene or AS transcript 

corresponding to this gene. Expression samples may vary in length, thus to generate feature vectors 

of the same length, we compute the intersection of all samples in terms of the feature set that 

represents each sample. We next rank the importance of each feature and select subsets of the 

features that best describe their respective classes using the Best First (BF) feature selection 

method  (275). The BF method is driven by the property that the subsets of important features are 

highly correlated with a specific class and are not correlated with each other. The method is 
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described as a greedy hill climbing algorithm augmented with a backtracking step, where the 

importance of features is estimated through one-by-one feature removal. All machine learning 

methods are implemented using the Weka package version 3.7.13 (292).  

 

Due to a large number of features for genes and even greater number of features for the 

transcripts (~20,000-73,000) using the base classification and even BF method was not 

computationally feasible, thus the modification to the original methodology is implemented 

allowing to reduce the processing time. The modifications includes introducing multiple splits of 

the features followed by two rounds of BS feature selection. Specifically, we split the data into 

1,000 subsets and perform feature selection on each subset independently. After feature selection 

is performed on all splits, the selected features are merged, and another round of feature selection 

is performed. Our solution reduces the time needed to compute from several weeks to hours and 

still able to successfully select a reduced feature set that allows for accurate classification. 

 

Machine Learning Technique Rationale  

A broad selection of supervised learning approaches were implemented to test whether 

performance could be improved, depending on the method tested. The machine learning methods 

have different assumptions on how the data are structured; the methods also vary in their treatment 

of the class outliers and convergence w.r.t number of training examples. 

 

The first two classifiers, naïve Bayes and logistic regression, are often regarded as the baseline 

methods due to their simplicity and robustness. Naïve Bayes classifier is a probabilistic method 

that has been used in many applications including bioinformatics and text mining (293-297). It is 
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a simple model that leverages the Bayes rule and describes a class of Bayesian networks with 

assumed conditional independence between the numerical features. The use of this “naïve” 

assumption makes the method computationally efficient during both the training and classification 

stages. Furthermore, while the probability estimation by naïve Bayes is reported to be not very 

accurate (298), a threshold-based classification performance is typically very robust. In our 

implementation, the numeric estimator precision values are chosen based on analysis of the 

training data and is set to 0.1 The batchSize parameter that specifies the preferred number of 

instances to process during training if batch prediction is being performed is set to 100. Logistic 

regression is another type of a simple machine learning classifier that has been compared with 

naïve Bayes in terms of accuracy and performance (299). Different versions of logistic regression 

models are often used in bioinformatics applications (300-303). In this work, we implemented a 

boosting linear logistic regression method without regularization and with the optimal number of 

boosting iterations based on cross validation. 

 

The next three classifiers, decision tables, J48, and random forest, are the decision tree based 

algorithms. A decision table is a rule-based classifier commonly used for the attribute visualization 

and less commonly for classification. The rules are represented in a tabular format using only an 

optimal subset of features that are included into the table during training. The decision table is a 

less popular approach for bioinformatics and genomics classification tasks, however it has showed 

a superior performance in some bioinformatics applications (304), and therefore is included into 

the pool of methods. The decision table model is implemented as a simple majority classifier using 

the Best-First method for searching. J48 is an open source implementation of perhaps the most 

well-known decision tree algorithm, C4.5 (305), which is, in turn, is an extension of Iterative 
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Dichotomiser 3 (ID3) algorithm (306). C4.5 uses the information-theoretic principles to build 

decision trees from the training data. Specifically, it leverages the information gain and gain ratio 

for a heuristic splitting criterion with a greedy search that maximizes the criterion. Furthermore, 

the algorithm includes a tree pruning step to reduce the size of the tree and avoid the overfitting. 

In this work, the implementation of J48 was done with the default confidence threshold of 0.25 

and minimum number of instances per leaf set to 2. Random forest is an ensemble learning 

approach, where many decision trees are generated during the training stage, with each tree based 

on a different subset of features and trained on a different part of the same training set (307). 

During the classification of unseen examples, the predictions of the individually trained trees are 

then agglomerated using the majority vote. This bootstrapping procedure is found to efficiently 

reduce the high variance that an individual decision tree is likely to suffer from. The random forest 

methods have been widely used in bioinformatics and genomics applications due to their versatility 

and high accuracy (307). In this work, due to a large but highly variable number of features the 

number of attributes, K, randomly selected for each tree is dependent on the classification task and 

is defined as K = log2 n+1êë úû , where n is the total number of features. The number of sampled trees 

per each classifier is set to 100. 

 

The last method, Support Vector Machines (SVM) represents yet another family of the 

supervised classifiers, the kernel methods (308). It is among the most well-established and popular 

machine learning approaches in bioinformatics and genomics (261, 309-311). SVM classifiers 

range from a simple linear, or maximum margin, classifier where one needs to find a decision 

boundary separating two classes and represented as a hyperplane, in case of a multi-dimensional 

feature space, to a more complex classifier represented by a non-linear decision boundary through 
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introducing a non-linear kernel function. For our SVM model training, Radial Basis Function 

(RBF) was used, a commonly used kernel. The two parameters, Gamma and C, were set to 0.01 

and 1, respectively. 

 

Training, Testing, and Assessment of classifiers 

To evaluate each of the classifiers, a basic supervised learning assessment protocol is 

implemented. Specifically, the training/testing stages are assessed as a 10-fold stratified cross 

validation to eliminate the sampling bias. This protocol is implemented using Weka (292). The 

reported result of assessment is based on the average f-measure for the 10-folds for testing dataset. 

f-measure incorporates recall (Rec, also called sensitivity) and precision (Pre) into one reported 

metric: 

𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 +  𝐹𝑁
; 𝑃𝑟 =

𝑇𝑃

𝑇𝑃 𝑥 𝐹𝑃
; 𝑅𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; 𝑆𝑝 =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
; 

 

where TP is the number of true positives (correctly classified as class members for a specified 

class), TN is the number of true negatives (correctly classified as not class members), FP is the 

number of false positives (incorrectly classified as class members), and FN is the number of false 

negatives (incorrectly classified as not class members). While each of the above four measures are 

commonly used to evaluate the overall performance of a method, we primarily focus on the most 

balanced metric, f-measure, due to a high number of classification tasks to be reported. 

 

Availability  

The supervised machine learning methods were implemented using the Weka platform 

(http://www.cs.waikato.ac.nz/ml/weka/). Data used are publically available from Rat Body Map 

http://www.cs.waikato.ac.nz/ml/weka/
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(http://pgx.fudan.edu.cn/ratbodymap/), Geo Datasets (http://www.ncbi.nlm.nih.gov/gds ), and the 

Cancer Genome Atlas (https://portal.gdc.cancer.gov/ ).  

  

http://pgx.fudan.edu.cn/ratbodymap/
http://www.ncbi.nlm.nih.gov/gds
https://portal.gdc.cancer.gov/
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CHAPTER 3: Proteomics 

3.1 Determining rewiring effects of alternatively spliced isoforms on protein-protein 

interactions using a computational approach (241) 

3.1.1 Abstract 

 

The critical role of alternative splicing (AS) in cell functioning has recently become apparent, 

whether in studying tissue- or cell-specific regulation, or understanding molecular mechanisms 

governing a complex disorder. Studying the rewiring, or edgetic, effects of alternatively spliced 

isoforms on protein interactome can provide system-wide insights into these questions. 

Unfortunately, high-throughput experiments for such studies are expensive and time-consuming, 

hence the need to develop an in-silico approach. Here, we formulated the problem of 

characterization the edgetic effects of AS on protein-protein interactions (PPIs) as a binary 

classification problem and introduced a first computational approach to solve it. We first 

developed a supervised feature-based classifier that benefited from the traditional features 

describing a PPI, the problem-specific features that characterized the difference between the 

reference and alternative isoforms, and a novel domain interaction potential that allowed 

pinpointing the domains employed during a specific PPI. We then expanded this approach by 

including a large set of unlabeled interactomics data and developing a semi-supervised learning 

method. Our method called AS-IN (Alternatively Splicing INteraction prediction) Tool was 

compared with the state-of-the-art PPI prediction tools and showed a superior performance, 

achieving 0.92 in precision and recall. We demonstrated the utility of AS-IN Tool by applying it 

to the transcriptomic data obtained from the brain and liver tissues of a healthy mouse and western 

diet fed mouse that developed type two diabetes. We showed that the edgetic effects of 
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differentially expressed transcripts associated with the disease condition are system-wide and 

unlikely to be detected by looking only at the gene-specific expression levels.  

 

3.1.2 Introduction 

 

Protein-protein interactions (PPIs) underlie many key mechanisms of cellular functioning 

(312). With thousands of PPIs simultaneously occurring in every cell of an organism, an average 

protein is expected to interact with two or more other proteins forming large molecular assemblies, 

transporting proteins, facilitating a chemical reaction, protecting the organism from pathogens, and 

carrying out other basic functions (313-315). Throughout the past two decades, there have been 

efforts in characterizing the experimentally confirmed PPIs by describing the structure of 

molecular complexes and interaction interfaces formed through the PPI (316, 317), determining a 

protein function that is controlled by the interaction (318), and understanding the evolutionary 

principles shared between the homologous interactions (319, 320). More recently, several studies 

have been published that focus on studying the interaction-rewiring, edgetic, effects of genetic 

variations cause by genetic diseases (321, 322). The edgetic effects on the whole protein 

interactome of other types of variation, such as copy-number variation, epigenetic variation, and 

transcriptional variation, or alternative splicing, are far less studied (84, 313). 

 

Alternative pre-mRNA splicing due to either natural or disease-causing variation in 

transcriptome is a process by which the same gene can result in different gene products through 

selective inclusions and exclusions of the gene’s exons and introns (323).  While many alternative 

splicing events naturally occur in different tissues, cells, and under different cellular conditions, a 
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growing number of alternatively spliced genes have been associated with genetic disorders, 

including cancer, neurodevelopmental and heart diseases, and others (313, 324, 325). Alternative 

splicing has been shown to alter the protein function (74). The range of functional variation 

between the alternatively spliced isoforms may vary drastically: from a complete loss of original 

function, due to misfolding and removal by the cell degradation mechanism of the corresponding 

alternatively spliced isoform, to a subtle difference in the protein functioning, or perhaps the gain 

of a new function, due to acquiring by the isoform of a new exon that encodes a new functional 

protein domain. Recently, a high-throughput interactomics study has demonstrated a wide-spread 

interaction rewiring by the alternatively spliced gene products (84). In some cases, new 

interactions were shown to be formed. In spite of being very accurate, these large-scale 

experiments are time-consuming and expensive. Thus, there is a need for a cheaper and faster, in-

silico, approach. However to date, no computational approaches that predict the edgetic effects of 

alternatively spliced variants have been introduced. 

 

Here, we propose and compare two machine learning approaches that predict if an alternatively 

spliced isoform will disrupt the original interaction originally formed by a reference isoform. 

Machine learning has been previously used in bioinformatics applications that focus on 

characterization of functional effects caused by the genetic and posttranscriptional variation (84, 

321). The applications often define this problem as a classification task and leverage supervised 

learning approaches, including deep learning, where the training set includes labeled variants for 

which the function is known and is experimentally validated. The supervised learning approach is 

designed to benefit from the labeled training set in order to provide an accurate prediction, however 

the labeling (i.e., functional annotation) may not be feasible for large datasets required by many 
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supervised methods. As an alternative option, a semi-supervised learning method can be 

introduced, where in addition to the labeled training set, the method can benefit from the 

knowledge of a large unlabeled dataset, i.e., consisting of alternatively spliced isoforms with 

unknown functional effects. The semi-supervised learning methods have been popular in the areas 

of data mining and pattern recognition (326), and have recently been applied to the biological and 

biomedical data (321, 327). 

 

Both of our new methods, supervised learning and semi-supervised learning, leverage features 

that focus on determining and characterizing the key differences between the reference isoform 

that is involved in the original PPI with bait, protein and the alternative isoform whose rewiring 

property we need to determine. The assessment of the methods has shown that both methods 

perform remarkably well, correctly characterizing 9 out of 10 alternatively spliced variants. We 

then demonstrate the utility of this approach by applying it to the tissue-specific transcriptomics 

datasets obtained from the healthy and western diet-fed and obese mice with the goal to 

discovering the disease-specific variants with the interaction-rewiring functional impact. In 

summary, the proposed novel approaches for characterization of edgetic effects of alternatively 

spliced genes provide a cheap and fast, but nevertheless accurate, alternative to the interactomics 

experiments and can be used to streamline the high-throughput experimental design by focusing 

on the most promising candidate isoforms. 
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Figure 3.1.2.1. A: Characterization of edgetic effects of AS on PPI formulated as a binary classification problem. B: 

Outline of the overall computational approach. 

 

3.1.3 Results 

 

Datasets and feature statistics 

The first dataset (D1) used to generate the training set for the supervised learning classifiers 

includes 2,501 interactions from 638 genes with 881 alternative spliced isoform. The number of 

isoform products each gene has ranges from 2 to 110, with an average of 14 isoforms per gene. 
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The second dataset (D2) composed of known human PPIs (84, 328-332) included 5,460 unique 

known interactions mediated by the total of 1,230 unique proteins (i.e., reference isoforms), 1,082 

of which had at least one alternative isoform (in addition to the reference isoform). In total, 4,885 

unique alternative isoforms were identified, and 42,654 new, unlabeled, triplets (A1, A2, B) were 

formed, where A1 interacts with B, but it is not known whether A2 interacts with B.  For this second 

dataset, the number of isoforms for each gene ranged from 1 to 92 with an average of 32 isoforms 

per gene. The number of interactions per gene range from 1 to 680, with an average of 31.96 

interactions per protein. 

 

Of the three groups of features generated for each data point, perhaps the sparsest were the 

features corresponding to the occurrence frequency of the SCOP domains. This phenomenon was 

due to the fact that not all proteins were capable of having at least one SCOP domain predicted 

using SUPERFAMILY. On the other hand, not all SCOP families were represented across the set 

of proteins from D1 or D2 equally well.  Of 356 proteins in D1, 260 had 1 to 8 SCOP domains 

predicted by SUPERFAMILY, with a mean of 1.4.  Similarly, for 4,028 proteins in D2, 2,917 had 

1 to 25 SCOP domains annotated by SUPERFAMILY, with a mean of 2.  

 

Another interesting question was whether any of the delta features (third group, see Methods 

for more details) could be used to provide an accurate separating boundary. For instance, if an 

alternatively spliced isoform altered more than k residues of the reference isoform, then the 

alternative isoform would be predicted to eliminate the original interaction. There was a wide range 

of changes for each feature type, with the values seemingly independent of the fact if the alternative 

isoform disrupted the original interaction or not (Figure 3.1.3.2A, B, C). The changes in the SCOP 
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domains architecture in the alternative isoform, compared with the reference isoform can be 

grouped into three categories: no change, deleted domain, or modified domain. For D1, there were 

874 (90%) reference isoforms with no change, 99 (10%) isoforms with at least one SCOP domain 

deleted, and 374 (38 %) with at least one SCOP domain modified.  For D2, there were 11,456 

(33%) reference isoforms with no change, 23,120 (67%) with at least one domain deleted, or 

16,390 (47%) with at least one domain modified. 

 

Method Evaluation 

First, using D1, we evaluated the prediction accuracy of three supervised machine learning 

classifiers: SVM with linear and radial basis function kernels and random forest (Figure 3.1.3.2D, 

Appendix C2.2 in Suppl. Data). The results of 10-fold cross validation showed that random forest 

clearly outperformed the two SVM models, reaching the accuracy of 0.86, f-measure of 0.91, MCC 

of 0.65 and AUC of 0.81. Next, to evaluate the importance of protein domain feature information, 

we assessed the same methods, but with two different feature vector definitions, one that includes 

the protein domain features, another one that excludes them.  Without protein domains, the 

performance slightly dropped, with the accuracy values ranged from 0.82 to 0.84, precision from 

0.85 to 0.88, recall from 0.91 to 0.94, F1-score from 0.88 to 0.89, MCC from 0.49 to 0.58, and 

AUC from 0.72 to 0.78. Similarly, to evaluate the importance of using the delta feature 

information, we assessed the same supervised classifiers with or without these features.  Without 

delta features the performance dropped, with the accuracy values ranging between 0.73 and 0.74, 

precision ranging between 0.73 and 0.75, and with MCC dropping to a record low range between 

0 and 0.09, with the recall being the only metric that improved, ranging from 0.96 to 1.0. 
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Our second machine learning approach is a semi-supervised learning classifier, which 

incorporates a large number of unknown label data to train the model.  As a result, during the 

cross-validation the method provided the most accurate performance of all other methods.  The 

assessment values were: accuracy 0.88 (improvement of 0.02 over the top supervised learning 

classifier), precision 0.92 (improvement of 0.02), recall 0.92 (same as the top supervise classifier), 

f-score 0.92 (improvement of 0.01), MCC 0.7 (improvement of 0.05), and AUC 0.84 

(improvement of 0.03). 

 

Figure 3.1.3.2. Feature analysis and comparison of our machine learning models with general PPI prediction 

methods across 4 different metrics (accuracy, F1-score, MCC and AUC). (A) A correlation plot between features 

used for training machine learning models showing three distinct blocks which are associated with biochemical 

features of reference isoform, biochemical features of interacting protein and delta biochemical features. Each of those 

blocks is separate and does not show high correlations with other blocks. (B) A scatterplot based on delta frequency 

of leucine and another delta of 280MERC coefficient is a typical example of how the feature values are distributed 

between the representatives of two classes, suggesting that the pairwise comparisons cannot separate two classes well. 

(C) Isomap visualization of all features through a low-dimensional embedding. Even through powerful manifold 

learning, we are unable to obtain separable classes in 2D space, which suggests that the problem is challenging. (D) 
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Performance of our supervised (blue) and semi-supervised (purple) methods vs. three current ab-initio PPI prediction 

methods (orange) across four metrics.  

 

To the best of our knowledge, this is the first work where a problem of determining the rewiring 

effect of an alternatively spliced isoform is addressed using a computational approach. However, 

the same question can be potentially addressed by (1) assuming that the alternative isoform is a 

new protein, and (2) predicting whether the isoform interacts with the corresponding interaction 

partner using an ab initio PPI prediction method, i.e., without prior knowledge about the 

interaction of the reference isoform and the same interaction partner. Our evaluation of the three 

state-of-the-art ab initio PPI prediction methods has shown that neither of the methods can be 

reliable used for our problem: the accuracy ranged between 0.46 and 0.58, recall values ranged 

between 0.29 and 0.5, precision was between 0.5 and 0.52, f-score was between 0.36 and 0.4, while 

MCC was between 0 and 0.05 (Figure 3.1.3.2D). 
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Figure 3.1.3.3: Case study of diabetes-centered mouse interactome.  Network focused on alternatively spliced 

isoforms expressed in the liver and brain tissues, which were found drastically different (at least 5 fold of log2 

expression values) between the control and T2D mice induced through Western Diet.  The effect of the alternative 

isoforms was predicted as either disrupting the original PPI (red) or preserving it (blue).  To provide context within 

diabetes, genes that are associated with T2D are colored magenta, while their interaction partners are colored gray. A 

few well-studied genes linked to T2D are highlighted: map3k7, yes1, spry1, dlg1, and ywhaz. 

 

Case Study 

To demonstrate the utility of AS-IS Tool and extent to which the AS can ‘rewire’ a disease-

centered PPI network, we used our method to predict the edgetic effects due to the disease-specific 

AS occurring in the brain and liver tissues and obtained from the RNA-Sequencing (RNA-Seq) 

data extracted from the tissue samples of the healthy mouse and Western Diet (WD) fed mouse 

that developed T2D.  Our deep RNA-sequencing data resulted in 1,899 AS isoforms from 1,608 

genes for brain and 5,951 AS isoforms from 3,942 genes for liver with drastically different 

expression levels (>5 fold) between diabetic and normal mice samples.  In total, 6,745 unique 

isoforms that were drastically differentially expressed were collected for both tissue types. 

 

Figure 3.1.3.4: Case study of a gene associated with T2D, whose alternatively spliced isoforms were predicted 

by AS-IN Tool to rewire some of the currently known PPIs. A. The gene architecture, protein domain architecture, 

and structure based characterization of the alternatively spliced isoform of ywhab gene. The red part of the protein 

corresponds to the seventh exon and is spliced out in the alternative isoform, A2. B. As a result, two interactions were 

predicted to be disrupted by the alternatively spliced isoform A2 that had been determined to be significantly 

overexpressed in the tissue samples of WD-fed mouse with T2D disease phenotype, compared with the control. 
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We then used the experimentally confirmed interactomics data extracted from the STRING 

database to define 46,862 PPIs mediated by 7,730 mouse proteins corresponding to 7,630. The 

obtained mouse interactome was considered as the “reference” interactome. Combining this 

information with the obtained RNA-Seq data allowed us to provide the reference interactome for 

135 out of 6,745 unique proteins that were involved in 489 PPIs (Figure 3.1.3.3). The 135 proteins 

corresponded to the reference isoforms for which 135 alternative isoforms were extracted, and AS-

IS Tool was applied to see the edgetic effect of AS. Furthermore, we extracted 1,399 genes from 

T2D database, three of which were found in our dataset of 135 proteins associated with T2D 

(Figure 3.1.3.4); these three proteins contributed to 17 PPIs.  In summary, AS-IN Tool predicted 

128 (26%) interactions, including 10 (59%) T2D-associated interactions to disrupt the 

corresponding reference interactome (Figure 3.1.3.3). 

 

3.1.4 Discussion 

 

This work describes the first computational approach, AS-IN Tool, which attempts to 

characterize the edgetic effects of alternatively spliced isoforms on a protein-protein interaction.  

We formulate this problem by taking advantage of a known PPI, and then characterizing the 

difference between the reference and alternative isoforms. We develop two feature-based 

classification methods that leverage the supervised and semi-supervised learning paradigms, 

taking advantage of traditional features characterizing a PPI and learning the difference caused by 

alternative splicing.  When comparing our top models with the start-of-the-art sequence-based PPI 

prediction tools, the accuracy of both supervised and semi-supervised methods dominated all three 
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current methods. Furthermore, with the accuracy, precision and recall surpassing 90%, AS-IN Tool 

becomes a great alternative to the experimental approaches and the only accurate computational 

approach for this task.  

 

While we understand that the results of predicting edgetic effects of AS isoforms on mouse 

interactome for our case-study are mere predictions that need experimental validations, we hope 

that our method can streamline the expensive and time-consuming high-throughput interactomics 

approach by first identifying a pool of candidate genes for the primer libraries and then pinpointing 

the isoforms of the outmost interest. AS-IN Tool is available for use as python software package 

located at https://github.com/korkinlab/asintool.  

3.1.3 Methods & Assessment 

 

Overall design and problem formulation 

Our approach, Alternative Splicing INteraction prediction Tool (AS-IN Tool), is designed to 

address a problem of characterization the rewiring, or edgetic, effects of alternative splicing, which 

can be formulated as the following binary classification problem (Figure 3.1.2A): Given a known, 

reference, isoform A1 that is involved in a protein-protein interaction A1−B, with another protein 

B, will an alternatively spliced isoform of A1, A2, preserve the interaction with B or disrupt, i.e. 

eliminate, it? Triplets (A1, A2, B) where A2 preserve the interaction with B, given the knowledge 

that A1 and B interact, are labeled as members of the negative class. Alternatively, triplets (A1, A2, 

B) where the alternatively spliced isoform A2 will disrupt the interaction with B are labeled as 

members of the positive class. Each of the two developed methods presented in this work is a 

feature-based approach (Figure 3.1.2B). Specifically, the features encode the information 
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concerning the known interaction A1−B, and information about the changes between A2 and A1 

that may result in the disrupted interaction. 

Supervised classifiers  

Support Vector Machines (SVM) belongs to a family of widely used supervised classifiers 

(333). It is also among the most well-established and popular machine learning approaches in 

bioinformatics (260, 311). SVM classifiers range from a simple linear, maximum margin, or 

classifier, where one needs to find a decision boundary separating two classes and represented as 

a hyperplane in a multi-dimensional feature space, to a more complex classifier represented by a 

non-linear decision boundary through introducing a non-linear kernel function. Here, two kernel 

functions were explored: linear and radial basis function (RBF) implemented in libsvm library 

(334). For the SVM models, the parameter optimization was performed using grid search. Optimal 

values gamma=0.005 and C = 9 were obtained after the search in range from gamma=0.001 to 

gamma=1 with a step 0.002, and from C=1 to C=100 with a step 1.  

  

Next, since a majority of our features are not correlated, one can expect for another supervised 

learning classifier, random forest (RF), to be well-suited for the dataset. Random forest (307) is an 

ensemble classifier, which combines multiple supervised learning classifiers to get a prediction. 

Random forest uses the ideas of bagging and random split decisions to predict a class of untrained 

vectors. In bagging, a random selection of the examples in the training set is used to build each 

decision. A random forest algorithm consists of three basic steps: 

1. Draw bootstrap samples. 

2. Build decision tree for each sample with the following modifications: select best predictor 

for node not from all available features but from their random subset. 
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3. Predict class based on the majority vote of resulting trees. 

In this work, the random forest models were trained using scikit-learn package (335), with the 

default parameters, including Gini criterion. 

Semi-supervised classifier based on iterative self-learning random forest 

One of the main bottlenecks of supervised learning is the cost of labeling data. The idea behind 

a semi-supervised learning approach is to utilize a large amount of unlabeled data to improve 

results of the supervised algorithm. There is a number of existing approaches to the combining of 

labeled and unlabeled information that try to exploit the underlying structure of the unlabeled data. 

In most cases, the learning algorithm attempts to find clusters in order to modify the decision 

boundaries. Here, we implement a simple semi-supervised learning approach, called iterative self-

learning random forest, that has previously shown to outperform more advanced semi-supervised 

learning methods on the protein interaction data represented by heterogeneous features (321). The 

algorithm starts with a labeled training dataset and a pool of unlabeled feature vectors (Appendix 

C1.1). At each step, the algorithm trains a supervised learning classifier on the labeled training set. 

Then, it evaluates the model using a grouped 10-fold cross-validation over the training set. Next, 

the algorithm is applied to the remaining unlabeled dataset, predicting their labels, selecting several 

examples, and adding them to the training set. After multiple iterations, the model with the best 

evaluation score is selected. 

Feature design, evaluation, and selection 

The question we are answering in this work, if the alternatively spliced isoform A2 would retain 

an interaction originally established between the reference isoform A1 and its interaction partner, 

is somewhat similar to the PPI prediction task. However, here we want to leverage alternative 

splicing information and the knowledge about the previous interaction as much as possible. This 
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naturally imposes a structure on the features we generate. So far we are using 3 groups of features: 

(1) biochemical features of the reference isoform and its interacting partner, (2) domain interaction 

statistical potentials, and (3) so-called delta features. The first group of features are the most 

straightforward ones and are inspired by the PPI prediction methods (336). These features provide 

a general outline of different properties of the known interaction. Biochemical features include 

molecular weight, number of residues, average residue weight, charge, isoelectric point, A280 

molecular extinction coefficient for both reduced and cysteine bridges, and several others 

characteristics Appendix C2.1, Supplementary Data).  

 

The second group represents novel features derived from our DOMMINO database of 

macromolecular interactions (336). The rationale behind using this group of features is the 

following: given that an average protein includes multiple protein domains (312), it is important 

to know which domains are directly involved in a particular PPI. The interdomain interaction is 

one of the major driving forces behind a protein-protein interaction, with the protein domains often 

having preferences of interacting with other protein domains. Thus, the frequency of domain-

domain interactions differs across different families of related domains. The quantification of those 

odds is defined as the statistical potential. There are two types of statistical potentials introduced 

in this work: (1) calculated for a domain from a specific domain family, and (2) calculated for a 

pair of domains. Statistical potential Pi for a single domain Di is calculated based on the total 

number of interactions NDi extracted from our DOMMINO database for the specific SCOP family 

(337) this domain belongs to. The SCOP families for each protein sequence are defined using 

SUPERFAMILY tool (338). Statistical potential Pij for a pair of domain Di and Dj is calculated 

based on the total number of occurrences Nij of the interactions between all domains from the same 
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two SCOP families as Di and Dj. Those numbers were transformed into probability using Maxwell-

Boltzmann statistic: 

𝑃𝑖 =
𝑒

−
𝑁𝐷𝑖

𝑁𝑚𝑒𝑎𝑛

∑ 𝑒
−

𝑁𝐷𝑗

𝑁𝑚𝑒𝑎𝑛𝑗

, 𝑃𝑖𝑗 =
𝑒

−
𝑁𝐷𝑖𝑗

𝑁𝑚𝑒𝑎𝑛

∑ 𝑒
−

𝑁𝐷𝑘,𝑙
𝑁𝑚𝑒𝑎𝑛𝑘,𝑙

 

where Nmean is the average number of interactions for one domain and M is the average number 

of interactions for a pair of domains present in database. 

 

The third group, the “delta” features, includes selected characteristics of alternative splicing 

events. Specifically, the features are designed to capture the differences between the original 

reference isoform and alternatively spliced variant, which may result in a loss of interaction. There 

are four subgroups of these features. The first subgroup includes features describing the difference 

in the biochemical characteristics between the reference isoform A1 and alternatively spliced 

isoform A2. The second subgroup includes the difference between the statistical potentials of A1 

and A2. The third subgroup is a set of simple sequence features that can be computed with a basic 

sequence alignment, but nevertheless may provide important knowledge. For instance, an exon 

skipping event that results in a large portion of protein missing, is usually more detrimental to 

interaction than several small exon skipping events. Similarly, the modifications in N- or C-termini 

are less likely to result in the interaction rewiring than an equal-sized modification occurring in 

the protein body. The last subgroup is reliant on SCOP family domain information defied by 

SUPERFAMILY tool (338), which allows determining if the alternative splicing affects specific 

protein domains. 
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To improve performance of the classifiers, three feature selection methods were explored 

including LASSO, recursive feature elimination (RFE), and principal component analysis (PCA) 

(339). LASSO is a regression model with l1 regularization. Because of the l1 penalty, a solution 

for the regression naturally contains zero coefficients for many features, thus discarding them from 

the model. RFE is a widely used feature selection algorithm that consecutively removes one feature 

from the model and evaluates the results using cross-validation. The optimal number of features is 

also determined by cross-validation. The last feature selection method, PCA, is a technique that 

performs the orthogonal transformation on the feature set to obtain linearly uncorrelated 

components. The number of selected principal components was determined by the 98% explained 

variance cutoff threshold. Feature selection methods produced varying results for SVM and failed 

to improve performance of the random forest classifier, which, in turn, showed the most accurate 

performance among all supervised methods in our study. This result was expected, since the total 

number of features is significantly smaller than the number of samples, so the random forest model 

does not overfit, and the influence of less informative features’ is limited due to the random 

subspace selection. 

 

Lastly, we analyze the importance of the individual features. For the calculation of feature 

importance, we use the mean decrease of impurity in the random forest model, our top-performing 

supervised classifier. This is a tree-specific metric, and is directly related to the Gini impurity, 

calculated at each tree node (307). The same feature is present in multiple trees in a random forest 

model, thus the average decrease in impurity integrates the feedback from all trees that contain 

this feature.  

Method assessment 
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The performance of the supervised and semi-supervised learning methods is assessed using 

two evaluation protocols: the cross-validation and comparison with the state-of-the-art ab-initio 

PPI prediction methods. The purpose of cross-validation is to obtain reliable evaluation of the 

fitted model. It helps to avoid overfitting, a phenomenon which occurs when the model is trained 

to be oversensitive to some specific signals present in a sample from a training set, but not common 

for the general population. The main idea is to divide the dataset into k subsets. Then, multiple 

iterations of retraining and re-evaluating model are carried out. For every iteration, the dataset is 

divided into a test set (represented by one of k subsets) and a training set (the rest of the data). 

Many variations of the cross-validation protocol exist based on the value of k, with leave-one-out 

cross-validation (k=1) and 10-fold cross-validation (k=10) being the most common. 10-fold cross-

validation is deemed to be one of the most stable protocols, so we are using it in this work. 

 

Regular cross-validation performs well if we can consider each of the data points to be truly 

independent. Unfortunately, it is not a case for our dataset, where multiple isoforms are the 

products of the same gene. If one subset of related isoforms is present in the training set and another 

subset is present in the testing set, then our model is provided with unfair advantage during the 

evaluation. Since we are expecting the model to generalize well, and thus, to work on novel 

isoforms, with no prior information about them, we want our evaluation to be as close to this 

scenario as possible. Therefore, the original 10-fold cross validation is modified into a grouped 

cross-validation. Specifically, we group all isoforms that are products of the same gene, and each 

group is then allocated exclusively either into the training set or into the test set. This grouped 

cross-validation protocol is more stringent and thus is expected to reduce the reported accuracy of 

the method. 
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In our second evaluation, we compare the performance of our methods with the state-of-the-

art ab initio PPI prediction tools, including TRI_Tool (M1) (340), LR_PPI (341) with negative set 

1 (M2), and LR_PPI with negative set 2 (M3). One can apply each of these tools to predict if a PPI 

between A2 and B exists, independently of the knowledge of whether or not A1 and B interact. 

 

The performance of each method is measured using standard measures, including accuracy 

(Acc), recall (also called sensitivity, Rec), precision (Pre), f-measure (F1-score), Matthews 

correlation coefficient (MCC), and area under the curve (AUC). Area under the curve can be 

computed with the help of Gini coefficient (𝐺1): 

𝐴𝑈𝐶 =
1+𝐺1

2
𝐺1 = 1 − ∑(𝑋𝑘 − 𝑋𝑘−1) (𝑌𝑘 + 𝑌𝑘−1), 

where 𝑋𝑖 is a true positive rate (TPR), and 𝑌𝑖 is a false positive rate (FPR) for the threshold i. 

A pair (𝑋𝑖,𝑌𝑖) defines a point on the receiver operating characteristic (ROC) curve. 

Datasets 

For training and evaluation of the supervised machine learning classifiers, we use an 

experimental human high-throughput interactomics dataset developed for the purpose of analyzing 

AS effects (84). This dataset is initially randomly split for 10 fold cross validation protocol.  

However, the folds are then modified to ensure all isoforms related to a gene are either in the test 

or training split, as described in the group cross validation protocol above.  

 

The second dataset of unknown effects by alternative isoforms is used as a source of the 

unlabeled data in the training of the semi-supervised classifier.  To obtain the unlabeled dataset, 

we first consider another high-throughput human interactome (84, 328-331). We then remove 
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RNA-protein interactions as well as interactions from the oligomeric complexes, leaving only PPIs 

between two individual proteins.  Then, to compile a list of AS isoforms for all proteins that are 

involved in the pre-processed list of PPIs, we downloaded the protein, gene, and isoform mapping 

from Ensembl (GRCh38 version 91) (342).  All protein-coding isoforms related to a reference 

protein that is involved in a PPI are then included into our list of AS isoforms. 

Case Study: An application of AS-IN to the diabetes-centered mouse interactome 

To test the utility of our approach, AS-IN is applied to study how alternatively spliced isoforms 

in a mouse model of type 2 diabetes (T2D) can rewire a disease-centered interactome. The dataset 

used for our case study is obtained from an environmentally derived T2D mouse model (343), 

where we extracted and analyzed RNA-Seq from brain and liver tissues between the diabetic and 

normal control mice. Previous studies have demonstrated that ingesting a western diet (WD), high 

in fat and refined carbohydrates, leads to activation of the Akt and mTOR pathways (344).  The 

activation of these signaling processes from the food intake, in turn, has been shown to result in 

inhibiting insulin metabolic signaling and leading to T2D (345).  Specifically, after 3 months of 

feeding the WD to C57BL/6J mice, T2D is developed.  To explore the AS effect on T2D in this 

pilot study, we selected two mice: one fed WD and one without.  From these mice, brain and 

liver were dissected and preserved using standard techniques. 

 

Using Qiagen’s RNeasy Mini Kit, total RNA is isolated from the dissected brain and liver 

samples.  Library preparation for RNA-Seq is done using TruSeq RNA v2 to isolate mRNA and 

prepare for sequencing.  After validating RNA quality using RNA integrity number (RIN) on an 

Agilent 2500 BioAnalyzer, samples are deep sequenced on an Illumina HiSeq 2000 using 2 lanes 

for each sample to achieve close to 100 million 75 paired-end reads per sample. The RNA 
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sequencing analysis pipeline includes Trimmomatic with default settings to remove the low quality 

reads (218), Tophat v2 to align on GRCm38.p5 (346), and Cufflinks v2 to reassemble and quantify 

expression levels (347).  Due to only 1 sample per group (WD or wild type, brain or liver), we 

cannot rely on standard statistics to determine relevant isoforms.  Thus, we use a strict cutoff of 5 

log2-fold changes between WD and wild type mice, for each of the two tissue types, to identify the 

relevant isoforms.   

 

The initial set of the relevant isoforms is further reduced based on the known gene association 

to T2D. To do that, we collect the data from Type 2 Diabetes Knowledge Portal 

(http://www.type2diabetesgenetics.org/), which houses the data from multiple genome-wide 

association studies (GWAS) to identify genetic associations from single nucleotide variations 

(SNVs) with diabetes type 2 (348).  We downloaded the data from 9 GWAS studies (349-351) and 

selected the genes that are near to or carry SNVs with a p-value of 5*10-5 as associated with T2D. 

Finally, as a source of the reference PPIs, we construct the mouse interactome from STRING 

database, selecting all mouse PPI that have at least one experimental reference (352). 

 

 

  

http://www.type2diabetesgenetics.org/
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3.2 Systematic annotation of mutation underlies importance of extracellular interactions in 

cancer through de novo prediction of protein binding sites 

 

3.2.1 Abstract 

The standard molecular-phenotypic definition of cancer relates genomic instability with 

increased proliferation, capable of evading growth suppressors, resisting apoptosis, avoiding 

immune destruction, and metastasis.  Recurrent single nucleotide variations (SNVs) as a result of 

genomic instability may target essential protein functions such as phosphorylation, acetylation, or 

ubiquitination site.  One essential protein function, occurs at physical contact interfaces 

characterized as protein binding sites.  This work’s focus is to identify whether cancer SNVs target 

a protein’s binding site.  During the past decade, numerous protein binding site prediction methods 

have been published using sequence which can be applied to any known protein sequence; 

however, they are less accurate then structure-based methods, which are limited by the narrow 

number of protein structural data. Therefore, we developed a new de novo protein binding site 

prediction method (Comparative Binding Region Annotator (COBRA)), which expands the 

number of proteins that can be assessed without losing accuracy.  Our new de novo protein 

prediction method was assessed across eight different methods.  Using COBRA we performed a 

large-scale annotation of SNVs across eight different cancer types to evaluate for their protein 

binding sites (bSNVs).  bSNVs were assessed for their enrichment of known cancer drivers, 

functional enrichment, patient survivability, clinical significance, and protein-protein interaction 

(PPI) network.  Finally, we analyzed whether the observed patterns were similar to SNVs that 

affect phosphorylation (pSNVs).  
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3.2.2 Introduction 

Genomic instability is considered a common characteristic of cancer (353).  The resulting 

genomic instability allows cancer cells to have increased proliferation, capable of evading growth 

suppressors, resisting apoptosis, avoiding immune destruction, and dissemination (354).  

Understanding the relationship between the phenotypic observations of cancer and genomic 

instability is an area of active research  (355).  One observation is the increased mutation rate of 

single nucleotide variations (SNVs) within cancerous cells (356).  Recent studies have 

demonstrated SNVs may target essential protein functions such as phosphorylation, acetylation, 

or ubiquitination sites (357, 358).  As a result, systemic annotation of SNVs have been utilized to 

identify genes and signaling pathways driving cancer progression (359). 

 

One key observation from these analyses is disruption and dysregulation of protein interactions 

could be instrumental to allow cancer progression (360).  Protein interactions occur at interfaces 

characterized as protein binding sites, which are the group (s) of amino acid residues that are in 

physical contact (241).  During the past decade, numerous protein binding site prediction methods 

have been published.  The existing methods make use of two types of information: sequence- and 

structure-based methods (241).  The sequence-based methods can be applied to essentially any 

known protein sequence; however, they are less accurate then structure-based methods, which are 

limited by the narrow number of protein structural data (241). Therefore, the goal for a new binding 

site prediction approach would be to bridge the coverage gap while preserving and hopefully 

improving the prediction accuracy.  
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This work’s focus is to identify whether cancer SNVs target a protein’s binding site, which 

would allow for modification of protein interactions.  The first goal of this work was to design a 

new de novo protein binding site prediction method.  This method uses a Comparative Binding 

Region Annotator (COBRA), which does not depend on interaction information between a protein 

and its interaction partner.  This allows the method to increase the number of protein binding sites 

that can be annotated without losing prediction accuracy.  This method was evaluated then 

compared with the state-of-the-art sequence- and structure-based approaches.  The second goal of 

this work was to determine whether protein binding sites are a recipient of cancer SNVs.  To 

achieve this goal, a large-scale annotation of SNVs across eight different cancer types from the 

cancer genome atlas (TCGA) were assessed for their protein binding sites (bSNVs).  bSNVs were 

assessed for their enrichment of known cancer drivers, functional enrichment, patient survivability, 

clinical significance, and protein-protein interaction (PPI) network.  Finally, we analyzed whether 

the observed patterns were similar to SNVs that affect phosphorylation (pSNVs) (241). 
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3.2.3 Results 

 

The goal of this work is to assess whether there is any prevalence of SNVs in cancer to protein 

binding sites (bSNVs).  In order to, conduct this analysis, we developed a new de novo protein 

binding site prediction method (COBRA, Figure 3.2.3.1) that increases the coverage of proteins 

that can be assessed while maintaining the accuracy achievable by structure-based methods.  To 

validate the quality of predictions, we assessed and compared it with the sequence- and structure-

based methods introduced here as well as current state-of-the-art approaches. De novo methods 

that predict protein binding sites rely only on the sequence or structure information about the target 

protein and do not depend on the interaction information of this protein and its interaction partner. 

The first group of de novo methods includes sequence-based methods, which rely exclusively on 

the features that can be generated from the query protein’s sequence. The second group includes 

structure-based approaches that rely on both the sequence-based and structure-based features and 

require an experimentally obtained structure of the query protein. When an experimentally solved 

structure of the query protein is not available, it is possible to apply a structure-based method to a 

comparative model, however the prediction accuracy is likely to be worse due to structural errors 

in the model. 

 

Using COBRA, we assessed bSNVs prevalence across eight different cancer types primarily 

from the cancer genome atlas (TCGA): breast, colorectal, liver, lung, ovarian, and pancreatic 

cancer, as well as glioblastoma (two datasets) and leukemia.   SNVs were classified as either on 

the binding site (bSNV) or not (non-bSNV).  Genes with bSNVs or non-bSNVs were assessed for 

their enrichment of known cancer drivers, functional enrichment, patient survivability, clinical 
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significance, and protein-protein interaction (PPI) network.  Finally, we analyzed whether the 

observed patterns were similar to SNVs that affect phosphorylation (pSNVs) (241).  New approach 

bridges the accuracy gap between the sequence-based and structure-based prediction methods 

 

Figure 3.2.3.1.  Summary of COBRA Methodology.  The data collected a comprehensive non-redundant set of 

protein structures and comparative models of varied quality for each protein, which include at least one experimentally 

defined protein binding site. A feature vector was generated for each model through combining both sequence, 

structure, and homology-based models to summarize their properties for computational learning. Using these feature 

vectors, models were analyzed using both training and testing of several supervised classifiers.  We post-process the 

prediction results by using a density-based clustering to screen the outliers.  

 

Our comprehensive evaluation of all eight methods to classify the binding site residues of both 

interaction types, heteromeric and homomeric, provided several insights that were consistent 

across all heteromeric and homomeric classifiers. First, our structure-based approach, StrucBRA, 

applied to the proteins with known native structures outperformed every other tested method, while 
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the sequence-based approach, SeqBRA, applied to protein sequences demonstrated the worst 

performance among all methods, as expected. The performance differences between SeqBRA and 

StrucBRA for the homomeric binding sites (specificity values of 0.52 vs. 0.79 and accuracy values 

of 0.55 vs. 0.75, correspondingly) was more profound than for the heteromeric binding sites 

(specificity values of 0.65 vs. 0.77 and accuracy values of 0.64 vs. 0.73, correspondingly). Both 

methods had considerably lower precision values (0.28 vs. 0.39 for heteromeric and 0.25 vs. 0.42 

for homomeric binding sites) by allowing higher number of false positives than false negatives. 

 

The performance of the whole family of homology-based COBRA methods fitted naturally 

between SeqBRA and StrucBRA methods. Not surprisingly, the performance of COBRA methods 

became better with the higher quality of the comparative model, as defined by the sequence identity 

between the target sequence and template structure. Specifically, the performance of both 

StrucBRA and COBRA on the comparative models as a function of the target-template sequence 

identity gradually improved when making prediction on the models that were obtained on 

increasingly similar template structures, although the improvement was not so profound for models 

based on the templates with sequence identities of 50% and higher. Interestingly, some of the 

performance measures, such as f-measure and precision for SeqBRA (performed on sequences of 

the comparative models) and original StrucBRA (performed on the native structures of the target 

proteins whose comparative models were obtained) indicated slight dependence on the target-

template sequence identity. On the other hand, the accuracy and recall measures showed no such 

dependence. Even more importantly, when applied to the testing sets of comparative models, 

StrucBRA performed worse than every single COBRA method on the same sets, which indicates 

the importance of developing our approach for binding site prediction on comparative models. 
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Finally, a COBRA method that was optimized with f-score followed by clustering of the binding 

site residues performed better than any other COBRA method, approaching the performance of 

StrucBRA on the native structures. For prediction of heteromeric binding site residues, this top 

performing COBRA method was sometimes even better than the performance of structure-based 

StrucBRA on the native protein structures of the same proteins whose comparative models were 

tested by COBRA; the performance was evaluated by f-measure and MCC.  

 

In summary, several important observations had been made. First, a sequence-based method 

for binding site prediction, SeqBRA, while applicable to any protein sequence, demonstrated the 

worst performance. Second, the structure-based method, StrucBRA, demonstrated the best 

performance on the experimental structures while applicable to the fewest proteins. Third, our 

comparative modeling-based method, COBRA, was applicable to any protein whose structure can 

be modeled using comparative modeling; this number is expected to be substantially greater than 

the number of existing experimental structures (241). Furthermore, when applied to a comparative 

model, COBRA was comparable with StrucBRA applied to the corresponding experimental 

structure and sometimes even outperformed the structure-based method. Fourth, the performance 

of StrucBRA on the same set of comparative models was worse than the performance of COBRA, 

indicating that our new method is a more accurate alternative to the existing structural approaches 

when applied to models as opposed to the native structures. Last, we showed the utility of 

clustering post-processing of the identified binding site residues. 
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Figure 3.2.3.2.  Assessment Between Sequence, Structure, and COBRA-RF.  Structure based binding site 

prediction methods represent the highest quality of models, but suffer from only being able to be applied to the limited 

proteins with resolved structures.  However, sequence based methods can be applied to any annotated protein, but 

suffer from lower prediction quality.  COBRA-RF bridges the gap by allowing increased coverage of the number of 

proteins that can be assessed, without losing quality of predictions. 

 

Characterization of cancer-associated somatic mutations in protein binding sites 

 

The second goal of this study was to determine whether single nucleotide variations (SNVs) 

that were localized on the predicted protein binding regions (bSNVs) had any potential role in 

cancer. We utilized The Cancer Genome Atlas (TCGA) dataset, which included 10,900 non-

synonymous SNVs on 6,188 genes involved in eight types of cancer: breast, colorectal, liver, lung, 

ovarian, and pancreatic cancer, as well as glioblastoma (two datasets) and leukemia. Among these 

genes, 1,259 protein products (~12%) or protein fragments were covered by the experimentally 

solved structures.  An additional set of 2,029 protein products could be resolved through 

comparative modeling, thus expanding the number of structurally resolved proteins to 30%.  Such 

a significant expansion of the dataset for the analysis prompted us to use COBRA approach for the 



 

133 

 

annotation of bSNVs based on the predicted protein binding sites. When applying our most 

accurate COBRA-RF method to the combined set of 3,288 structurally characterized proteins, we 

predicted at least one bSNV for each of 1,203 proteins. Most genes had only one bSNV annotated, 

while a few of these genes had multiple bSNVs, as many as 16 different bSNVs on TP53 or 10 on 

EPHA3. Both of these genes have been well known for their roles in cancer and tumorigenicity  

(361-363). Interestingly, these two genes were among the top 5 most well represented bSNVs in 

the individual samples of specific cancers, together with KRAS, EFGR, and CDKN2A. 

 

The analysis of the prevalence of bSNVs across the eight cancer types revealed several 

interesting patterns. First, bSNVs constituted a large part of the mutations across all eight types, 

between 23% and 67% (41% average) of all SNVs. bSNVs affected a number of genes, 1,137 out 

of 6,187 (18%) with a range of 68-685 in all cancer types, but only 4 out of 41 (10%) for leukemia 

and 116 out of 1171 (10%) for glioblastoma.  The absolute numbers of bSNVs and affected gene 

were dependent on the number of patients. Normalization over the patient sample size revealed a 

range of 2-22 genes affected per patient in most cancer types except liver, which were 79. 

Considering the average number of bSNVs per patient ranged between 2 to 90 versus 8 to 116 for 

non-bSNV mutations. Next, when analyzing genes that had bSNVs in three or more cancer types, 

we found that some of them, such as TP53, EPHA3, NTRK3, and KRAS had been previously 

associated with cancer (241), while others, such as TNI3K and IGSF9, had not (241). The total 

number of bSNVs observed for genes not associated with the cancer progression (347) were 

significantly higher than expected (173), based on the average frequency of this mutation type 

across all genes (p < 2.2*10-16). 

 



 

134 

 

Genes with bSNVs are involved in extracellular molecular interactions and are linked to olfactory 

function 

 

The comparison of Gene Ontology (GO) molecular functions enriched among genes carrying 

at least one bSNV and genes carrying at least one non-bSNV mutation, found several patterns 

shared between these two gene types as well as patterns exclusive to bSNV genes.  Both bSNV 

and non-bSNV genes were involved in many types of macromolecular binding and kinase 

activities, partially since 737 genes carried both bSNV and non-bSNV mutations. Of interest were 

the binding functions of bSNV genes that were associated with the transmembrane receptor 

activities. Strikingly, after removing the functions common to both types, we found that bSNV 

genes were uniquely enriched for GO terms associated with DNA repair and extracellular receptor 

activity in contrast to non-bSNVs that were enriched in classical intra-cellular binding activity 

(Figure 3.2.3.3). 

 

Perhaps the most unexpected was the finding that the top enriched GO term unique to bSNVs 

was the olfactory receptor activity term (GO:0004984). Olfactory receptors, the genes that are 

expressed tin the cellular membranes and are implicated in the sense of smell, were thought by 

some studies to be unrelated to cancer (364).  However, while the OR are named due to their 

expression in the sensory neurons of the olfactory epithelium, they were nevertheless found to be 

present in various other tissues such as brain, heart, kidney, testis, muscle, where their potential 

functions are largely unknown (365). Most recently, several studies have suggested that OR genes 

play an important role in several cancers (241, 366-369). 
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We finally compared the enrichment of existing functional pathways with bSNVs and non-

bSNVs. While both datasets shared the enrichment in pathways associated with cancer, such as 

Signaling Pathways in Glioblastoma term and a more general Pathways in Cancer term, several 

cancer-related and signaling pathways were found to be uniquely enriched with bSNVs. These 

pathways included Non-Small Cell Lung Cancer as well as Small Cell Lung Cancer and Signaling 

by GPCR. Based on these results, we further investigated if any of the currently known cancer 

pathways are enriched with bSNVs. We considered main cancer pathways of three types: cell 

survival, cell fate, and genome maintenance (241). The 12 specific pathways included in this 

analysis were: RAS, cell cycle apoptosis, PI3K, Stat, Mapk, TGF-β, DNA damage control, Notch, 

HH, APC, chromatin modification, and transcriptional regulation. Surprisingly, only 4 out of 12 

cancer pathways were enriched with bSNVs, while 10 out of 12 pathways were enriched with non-

bSNVs. 

 

Figure 3.2.3.3.  Summary of Functional analysis of bSNV and pSNV.  A. Gene Oncology terms summarized 

into related to bSNV (blue) and nonbSNV (red) B. Assessment of the distribution of bSNV, nonbSNV, pSNV, and 

nonpSNV related to cancer driver genes and on ovarian cancer specific patients (C) D. The general trends on survival 

of patients with at least one pSNV or bSNV, which were not considered significant.  However, the general trend is 
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pSNV are associated with increased survival whereas bSNV were associated with decreased survival. E. Survival 

analysis was instead conducted to look for genes with bSNV that were associated with survival.  This caused the 

analysis to discover 40 genes that have a significant impact on survival. F.  After exploring clinical factors, found only 

tumor presence and absence to be statistically significant with presence of bSNV. 

 

Relationship between the SNVs affecting binding sites and phosphorylation sites 

 

We next compared the distribution of bSNVs with another large-scale functionally annotated 

subset of mutations recently obtained from the same TCGA dataset of SNVs—phosphorylation –

associated mutations, or pSNVs (241). The list of cancer genes with high confidence was collected 

from Cancer Gene Census (http://cancer.sanger.ac.uk/cancergenome/projects/census/). The same 

gene list was also previously used in the pSNV analysis (241). In total, 522 cancer genes were 

annotated. 61 cancer genes were observed in our whole gene list, while 32 are expected based on 

the number of detected genes in our dataset (p < 1.2*10-6, hypergeometric test). The comparison 

of distributions of bSNVs and pSNVs across cancers in terms of either absolute numbers or 

normalized numbers, to remove the effect of the dataset size, has revealed remarkably similar 

contributions of bSNVs and pSNVs to the cancer-specific mutations. 

 

Given that both mutation type’s bSNVs and pSNVs affect many genes across multiple 

pathways, we next wanted to characterize the system-wide distribution of bSNV and pSNV 

mutation sets. To do so, we constructed a protein-protein interaction network centered around the 

proteins associated with each cancer type using the known experimental information, and mapped 

bSNVs and pSNVs on this network (Figure 3.2.3.4). We found that the overall number of genes 

containing bSNV mutations whose protein products are a part of a PPI cancer network across each 

cancer type is significantly larger than the number of genes with mapped pSNVs. Intriguingly, the 
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bSNVs and pSNVs have a complementary cumulative effect on the cancer interactome: for each 

cancer type considered in this work, the dataset of genes that are a part of the interactome and that 

carry bSNVs have little to no overlap with genes carrying pSNVs with 40 – 80% overlap. For 

example, of the 114 patients in pancreatic cancer, there are 80 genes with bSNVs and 37 genes 

with pSNVs, but 32 containing both pSNVs and bSNVs.   

 

Case study: KRAS, a gene with depleted pSNVs and enriched bSNVs 

 

Not surprisingly, the highest number of unique (w.r.t their locations on the gene) somatic 

bSNVs across all samples of all different cancer types were found in TP53.  However, TP53 did 

not have the highest total number of somatic bSNVs—another gene, KRAS, which was widely 

reported to link with cancer (241). We therefore focused on investigating the role of diverse types 

of somatic mutations for KRAS. Unlike TP53, the majority of SNVs (186) contributed to bSNVs 

(98.4%), but only to five positions on the gene. None of these mutations were reported to be 

associated with a phosphorylation site in a recent comprehensive analysis (241). Strikingly, only 

three of the total 189 SNVs extracted from TCGA dataset for KRAS were located on the positions 

117 and 146, which were not predicted to be the binding site residues. Thus, most of the mutations 

detected in this gene was predicted to lie on the protein’s putative binding site. We note that the 

KRAS function of normal tissue signaling had been reported to be compromised during cancer 

development (241). This was consistent with the bSNV functional annotations reported above. 

 

Cancer Driver- bSNV Enrichment 
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Since a hallmark of cancer is the loss of DNA repair, a higher than normal genomic mutation 

rate is expected.  This leads to genes being classified as either cancer drivers (part of the cancer 

process) or a byproduct of cancer (passengers) (370).  We wished to explore whether genes with 

bSNVs were associated with cancer drivers or passengers.  The Catalogue of Somatic Mutations 

in Cancer (Cosmic) is an ongoing effort to identify cancer causing genes (371). Within this 

database, genes are identified into two groups: Tier 1 (T1) and Tier 2 (T2).   Tier 1 cancer driver 

genes include documented activity relevant to cancer.  Tier 2 cancer driver genes include genes 

with strong indication of a role in cancer, but with less extensive evidence available. Out of the 

699 genes identified as cancer driver, 48 and 81 overlaps with bSNV and non-bSNV; respectively.  

Splitting the cancer driver genes into T1 and T2 leads to a slight difference.  T1 genes with 34 and 

67 bSNV and non-bSNV genes; respectively.  T2 genes with 14 for both bSNV and non-bSNV.  

The difference between bSNV and non-bSNV is considered not statistically significant (0.5801 p-

value) based on a Fischer’s exact test.  

 

Cancer Survivability – bSNV 

We wanted to explore our hypothesis that bSNV would be critical at a certain survival stage 

of cancer.  Similarly, an analysis previously conducted on pSNVs, we analyzed survival data from 

TCGA (The Cancer Genome Atlas) for ovarian cancer patients on bSNVs using the Kaplan-Meier 

survival curve.   This analysis was conducted from two different perspectives: global and 

individual scale.  The global scale refers to a patient is considered to have a bSNV if there is at 

least one gene with a bSNV.  Whereas, the individual scale considers patients with the presence or 

absence of a specific bSNV gene.  The survival data on a global scale for both bSNV and pSNV 

are not significant when considering at the global scale.  However, the global trend is that bSNVs 
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has a negative impact on survival whereas pSNVs has a positive impact. However, when 

considering presence of bSNV on the individual gene level there are 40 out of 2080 genes that 

have a statistically significant difference.  Performing gene enrichment analysis on these 40 genes 

leads only to olfactory receptors as an enriched function.  However, this only accounts for 4 out of 

40 genes present.  There is not an enriched function or pathway associated when these 4 olfactory 

receptor genes are excluded from the analysis.  Furthermore, there is only one cancer driver (Akd1) 

associated with these 40 genes.  All 40 genes have a negative impact on survival. 

 

Clinical Data - bSNV 

 To further explore any potential association of bSNV on clinical data, all clinical information 

available for the ovarian cancer patients was tested using the Fischer t-test for statistical significant 

for bSNV enrichment.  Patients were defined as bSNV associated if at least one gene with a bSNV 

was considered, which considered 164 patients as bSNV and 16 as non-bSNV.  In total, 53 clinical 

factors were assessed.  Examples of clinical data are race, tumor grade, and lymphovascular 

invasion indicator.   All clinical factors were not statistically significant except for the presence or 

absence of a tumor (0.0203 p-value).  This is due to the observation that all patients that did not 

have a tumor had bSNVs.   

 

3.2.4 Methods 

 

Rational behind a new computational method for prediction of protein binding site. The 

objective of this work is to determine how many disease-associated SNVs are located within 

protein binding sites and characterize them.  To obtain a comprehensive atlas of genetic variation 
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implicated in protein binding, we develop a new method that predicts the protein binding sites. 

The method is designed to have significantly greater coverage, compared to state-of-the-art 

structure-based methods, without significant loss of the method’s accuracy. This is done by 

expanding the set of target proteins with experimentally solved structures to the set of proteins 

with the structures modeled by a comparative modeling approach.  A supervised learning method 

is trained to dynamically adjust importance of the information coming from the sequence- and 

structure-based features for a comparative model of the query protein. The model training 

intrinsically depends on the modeled quality of candidate region of the query protein and follows 

the following simple rationale. Depending on the sequence identity between the query sequence 

and template structure, the model’s quality can range from very poor to excellent, often with some 

regions modeled better than others. In the former case, the new method will rely primarily on the 

sequence-based features, since the extracted structural information may be unreliable, while in the 

latter case, the structural features will be produced from a near-perfect comparative model, thus 

those will be the preferred source of information for the method. 

 

The basic stages of our computational approach are organized as follows (Figure 3.2.3.1).  We 

first assemble a comprehensive non-redundant set of protein structures, together with the 

comparative models of varied quality for each protein. Each structure or model in this dataset also 

has at least one experimentally defined protein binding site. The structures and their corresponding 

models are used for both training and testing of several supervised classifiers. Second, for each 

comparative model, we generate region-specific energy scores, each score corresponding to the 

model quality of a small protein region.  Third, for each residue we generate a feature vector by 

combining the model energy scores with other sequence- and structure-based properties. Fourth, 
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the feature vectors are used to train a supervised learning classifier that predicts whether a residue 

belongs to a protein binding site. Finally, after the model is trained and applied to predict the 

binding site residues, we post-process the prediction results by using a density-based clustering to 

screen the outliers.  

 

A dataset of structurally resolved PPI complexes and their comparative models. The data 

to train and test a protein binding site classifier consist of protein structures known to participate 

in protein-protein interactions (PPIs), their comparative models, and experimentally known protein 

binding sites extracted from PPI complex structures. The complexes are collected from 

DOMMINO, a comprehensive database of macromolecular interactions (316). First, we collect all 

dimers, trimers, and tetramers solved by X-ray with resolution ≤ 3.0 Å.  Second, we group hetero- 

and homo-oligomeric structures and map the protein binding sites onto protein chains comprising 

each oligomer. The homo-oligomers are distinguished from hetero-oligomers through the pairwise 

sequence similarity: if sequence identity between each pair of chains comprising an oligomer is 

greater or equal to 90%, it is defined as a homo-oligomer, otherwise it is defined as a hetero-

oligomer. The procedure results in 22,800 dimers (16,076 homodimers and 6,724 heterodimers), 

3,703 trimers (1,511 homotrimers and 2,192 heterotrimers) and 4,121 tetramers (2,741 

homotetramers and 1,380 heterotetramers).  

 

For each protein chain in a PPI complex, we identify the binding residues that constitute its 

protein binding site. Given an interaction between two proteins, a residue on one protein is defined 

as a binding site residue if at least one of its heavy atoms is within 6Å of any heavy atom in the 

other protein. For a protein chain in a homo-oligomer, we extracted protein binding sites from all 
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binary PPIs involving this chain, identifying all residues involved in these binding sites. In a 

hetero-oligomeric complex, there may be some homodimeric PPIs shared between two identical 

subunits, as defined above. Thus, for a protein chain in a hetero-oligomeric complex, we consider 

only those protein binding sites that are involved in the heterodimeric PPIs. For both types of 

interactions, protein binding sites of less than 3 residues are considered as artifacts and discarded.  

As a result, we collect two sets of protein chains extracted from hetero- and homo-oligomers 

respectively, where, each of the chains is annotated with at least one protein binding site. 

 

Next, a set of filters is applied to remove redundancy and decrease the error rate during testing. 

First, to reduce the number of disordered proteins in the dataset, protein chains with length less 

than 30 residues are removed. Second, we exclude another stand-alone class of proteins, trans-

membrane proteins, from the consideration using PDB-TM database (241).  Third, we exclude 

proteins whose structure is incomplete. Specifically, if the missing residue ratio (241) for a protein 

chain is greater than 10%, the protein chain will be excluded from the dataset. Finally, we reduce 

the training bias from the homologous proteins: we apply BLATClust to cluster the remaining 

protein chains using pair-wise sequence identity of 30% as a threshold. From each cluster, we pick 

up a representative protein chain with the highest structural resolution and the longest sequence 

length. After applying the above filters, the final dataset includes 1,160 protein chains involved in 

heteromeric interactions and 3,883 protein chains involved in homomeric interactions. Using this 

final dataset, we collect 51,887 binding site residues (positive set) and 215,512 non-binding 

residues (negative set) for heteromeric interaction dataset, and 203,709 binding site residues 

(positive set) and 819,762 non-binding residues (negative set) for homomeric interaction dataset. 
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Comparative models are obtained using MODELLER-9 software (372). Each comparative 

model was assessed using DOPE, a distance-dependent statistical potential calculated from known 

protein structures and available through MODELLER-9 (373). Models are generated for each 

sequence in the dataset through the following five steps: (1) Generate a sequence profile by running 

three rounds of PSI-BLAST (223) (2007 release) against non-redundant (NR) database (2008 

release) with E-value cutoff 0.0001 (2) Generate Hidden Markov Model (HMM) using (374)  with 

the sequence profile from the previous step; the secondary structure for HHSearch is predicted by 

(375) (3) Generate a sequence alignment between each sequence and the best PDB template found 

using PSIBLAST and HHSearch (4) Generate 500 models for each sequence using MODELLER-

9 (5) Select the best model using DOPE scoring function provided by MODDELLER-9. 

 

COBRA: An integrated approach to de novo prediction of protein binding sites. Our novel 

approach is applicable to any protein sequence for which a comparative model can be built. It 

leverages numerical features obtained from a sequence–based prediction method, and a structure-

based prediction method applied to a comparative model rather than to a native protein structure. 

Specifically, we develop and compare four new classifiers that integrate results of the sequence-

based and structure-based classifiers, adjusting their relative contribution for the different regions 

of comparative model, depending on the regions’ quality. Unfortunately, most of the state-of-the-

art sequence- and structure-based methods are either unavailable or presented only as web-servers 

(241). Thus, we have also designed two sequence-based and two structure-based protein binding 

site predictors of heteromeric and homomeric binding sites, correspondingly, using feature-based 

supervised learning classifiers and following the feature description from the two top-performing 
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binding site prediction methods (241).  In total, this comprehensive study resulted in training, 

evaluation, and comparative analysis of 8 machine learning classifiers.  

 

The Sequence-based Binding Residue Annotation (SeqBRA) methods are feature-based 

classifiers whose features are obtained from the protein sequence using a sequential sliding 

window approach. For a target residue, a sequential sliding window of size 9 is defined as a 

sequentially continuous segment of protein sequence, with the target residue in the middle (the 

fifth position), with four residues before and four residues after the target residue. The size of the 

sliding windows is selected from the analysis of performance of the state-of-the-art current 

methods that use a similar sliding-window approach to generate features (241). The window is 

moved, one residue at a time, from N- to C-terminus, generating a feature vector for a new target 

residue at each step. For each candidate residue and its sliding window, a 10-feature vector is 

determined, with the first nine features corresponding to the residue type of each position of the 

sliding window. Each of the nine features is encoded as a standard 20-bit binary vector representing 

20 residue types. The last feature represents the length of the protein. Because of the sliding 

window design, binding residues occurring in the first four (N-terminal) and the last four (C-

terminal) positions of the protein sequence cannot be predicted. To resolve this, we add four 

‘decoy’ residues before the first residue and after the last residue in the protein sequence. Each of 

these residues contributes ‘NULL’ values to the feature vector.  

 

Similar to SeqBRA methods, the Structure-based Binding Residue Annotation (StrucBRA) 

classifiers employ a 9-residue sliding window with the candidate residue in the middle of the 

window. A vector of 27 features is calculated from the sequence and structure information of the 
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residues in the window. The features include: (1) residue type of each position in the window 

encoded the same as in SeqBRA (9 features), (2) secondary structure of the candidate residue, (3) 

average hydrophobicity, (4) average accessible surface area (ASA), (5) average relative ASA, (6) 

average backbone ASA, (7) average relative backbone ASA, (8) average backbone ASA, (9) 

average side chain ASA, (10) average relative side chain ASA, (11) average relative non-polar 

ASA, (12) average polar ASA, (13) average relative polar ASA, (14) average depth index, (15) 

average protrusion index, (16) minimal protrusion index, (17) maximal protrusion index, (18) 

maximal depth index, and (19) length of the sequence. The secondary structure is calculated using 

DSSP package (376) and features (3)–(19) are determined using PSAIA software (377).  

 

Both SeqBRA and StrucBRA methods leverage the random forest supervised classifier 

implemented in a scikit-learn library (335). Random forest classifiers have been consistently 

among the top performing methods for a number of bioinformatics tasks (378, 379). When 

generating the Random Forest models, the numbers of estimators (number of trees) are 200 for the 

heteromeric binding site classifier and 250 for the homomeric classifier. In both approaches, a 

feature vector is labeled positive if the candidate residue belongs to a protein binding site and 

negative otherwise. 

 

Finally, two COmparative model Binding Residue Annotation (COBRA) methods were 

developed and compared, each integrating sequence- and structure-based predictions made on 

comparative models. Similar to the previously described methods, each of these methods is trained 

on two separate datasets of binding residues, one coming from heteromeric interaction dataset and 

another from homomeric interaction dataset, resulting in a total of four classifiers. The first 
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method, COBRALOG, trains a simple L1-regularized logistic regression classifier implemented in 

LPS-v2.2 (380), with no further post-processing. The classifier has been widely used for a number 

of supervised learning and feature selection tasks and has demonstrated good generalization 

performance (381, 382).  Here we consider the classifier with a regularization term defined as L1 

norm constraint on the vector of parameters. The constraint is introduced as a part of the 

optimization problem at the training stage, with the goal to avoid over-fitting. The second method, 

COBRARF, trains a more advanced, random forest, classifier implemented using the same 

parameters and package as for SeqBRA and StrucBRA classifiers. For both COBRALOG and 

COBRARF, each residue is represented as a 39-dimensional feature vector. These features are 

grouped into four categories and are calculated using the linear and spatial sliding windows.  

 

The first category of features consists of nine variables, each variable encoding the results of 

the sequence-based binding site prediction for each of the nine residues from the sequential sliding 

window of the candidate residue. Similarly, the second category of features includes nine variables 

that encode the results of the structure-based binding site prediction of nine residues from the 

spatial sliding window containing eight closest neighbors of the candidate residue using Euclidian 

distance from a neighbor to the candidate residue. Those neighbor residues are sorted based on 

their proximity to the candidate residue. The third category represents another set of nine variables 

that are the DOPE scores of the nine residues from the structural sliding window in the same order 

(241). The fourth category includes only one variable corresponding to the solvent accessibility of 

the target residue calculated using NACCESS software applied to the comparative model [66]. 

While our approach can take as input predictions from an arbitrary sequence-based and structure-
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based binding site prediction methods, here we selected the best performing methods, according 

to our evaluation. 

 

Spatial clustering of predicted binding site residues. The results of residue classification are 

post-processed by spatial clustering of the predicted binding residues and filtering the outliers. For 

clustering, we use a density-based clustering algorithm DBSCAN (241). Being among the top 

performing clustering algorithms, DBSCAN also has several properties that make it suitable for 

our task. First, during the clustering procedure it defines the outliers, the data points that do not 

belong to any cluster. These outliers are structurally segregated and are unlikely to be a part of a 

protein binding site. Therefore, they are removed from the set of predicted binding residues. 

Second, the input for DBSCAN is the distance matrix, which allows one to use a custom distance 

measure. Here, we use the Minkowski distance defined between the PDB coordinates 

 of the two closest heavy atoms for each pair of predicted binding residues, 

i and j, calculated as: 

 

Two parameters of DBSCAN, min_samples and eps, defining the compactness of the clusters 

and minimum number of data points populating one cluster, are selected that optimize the 

performance of the clustering method during the training procedure (see next section for more 

detail). 

 

Assessment of the approaches. The performance of binding site residue annotation methods 

is evaluated using 10-fold cross validation independently on homomeric and heteromeric 

interaction datasets. Eight classifiers are evaluated: (1) SeqBRA using protein sequences as input, 
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(2) StrucBRA using protein native structures as input, (3) StrucBRA using protein comparative 

models as input, (4) COBRALOG optimized on f-measure, (5) COBRALOG optimized on balanced 

accuracy, (6) COBRARF optimized on f-measure, (7) COBRARF optimized on balanced accuracy, 

and (8) COBRARF optimized on f-measure and post-processed using residue clustering (all 

COBRA classifiers were also tested using protein comparative models as input). 

 

The data sets are evenly split into 10 folds and use each subset of eight folds for training, one-

fold for optimization (to get the probability threshold) and the other fold—for testing. During 

evaluation we also study how the prediction quality depends on the quality of comparative models 

tested in one StrucBRA and all COBRA methods. For that purpose, the comparative models are 

assigned to one of eight bins based on the sequence identity between the target sequence and 

template structure. In total, 138 protein chains and their comparative models are assigned to each 

bin in the heterogenic interaction dataset, and 241—to each bin in the homomeric interaction 

dataset. To avoid the training bias, datasets for training the sequence-based and structure-based 

classifiers are different from the dataset used to train, optimize, and test COBRA, since predictions 

of the former methods are included to the input feature vectors for the latter methods. Once the 

evaluation is completed, the probability thresholds for SeqBRA and StrucBRA methods used for 

new predictions is defined as an average of the 10 thresholds obtained from the 10-fold cross 

validation. As result, SeqBRA probability thresholds for homo- and heterometic protein binding 

sites are 0.19 and 0.18, and StrucBRA thresholds are 0.27 and 0.28, correspondingly.  
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In total, seven measures are used to optimize and evaluate the performance of the binding site 

prediction methods, accuracy (Ac), precision (Pr), recall (Re), specificity (Sp), balanced accuracy 

(BA), f-measure (F), and Matthews correlation coefficient (MCC): 

𝐴𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 +  𝐹𝑁
; 𝑃𝑟 =

𝑇𝑃

𝑇𝑃 𝑥 𝐹𝑃
; 𝑅𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
; 𝑆𝑝 =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
; 

𝐵𝐴 = √𝑆𝑝 𝑥 𝑅𝑒;  𝐹 =
2 𝑥 𝑃𝑟 𝑥 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 ; 𝑀𝐶𝐶 =

𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁) 
 

where TP is the number of true positives, TN is the number of true negatives, FP is the number 

of false positive, and FN is the number of false negatives. 

 

Overview of the large-scale annotation of cancer somatic mutations with protein binding. In a 

large-scale application of the protein binding site prediction method, we have annotated and 

analyzed SNVs from eight different cancer types. In this application, we apply StrucBRA for PDB 

with known experimental structures and COBRARF optimized on f-measure with residue clustering 

for the proteins whose structures were modeled. The annotation pipeline includes five basic stages. 

First, the SNVs, the corresponding genes and their protein products are collected from TCGA 

repository (241). Second, for each protein we attempt to retrieve one or several structures or 

structural models. Third, COBRA-RF is applied to those protein sequences with at least one 

structure or models. Fourth, a SNVs is annotated as a binding site SNV (bSNV) if the 

corresponding residue belongs to the predicted protein binding site. Last, all annotated SNVs are 

further analyzed with respect to the enriched function, potential role in cancer, and relationship 

with patient-specific clinical parameters. 
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Data collection and preprocessing. The processed TCGA dataset includes in total 6,188 

genes and 10,900 SNVs. Among those genes, 1,259 genes have protein products that are covered 

by the experimentally solved structures retrieved from the Protein Data Bank (PDB) (241), either 

fully or partially. These structurally annotated protein regions carry 2,242 SNVs in total.  However, 

during the structural characterization of a protein carrying an SNV, the sequence information 

corresponding to the PDB structure (and stored as a part of the corresponding PDB entry) comes 

from a source different than the source of the protein product sequence for the same gene stored 

in TCGA. As a result, changes between the two reference sequences (e.g. due to different 

alternative splicing isoforms) may result in an incorrect mutated residue match on the structure. 

Indeed, out of 1,259 genes, 188 genes with 407 SNVs have two mismatched reference sequences 

each. These sequences are then matched using a pairwise sequence alignment (241). However, 

after applying such protocol to 407 SNVs on the genes with inconsistent sequences, there are still 

62 SNVS for which we cannot identify the position on the corresponding sequence by the sequence 

alignment. As a result, only 345 SNVs of the 407 SNVs with inconsistent sequence information 

have been structurally annotated. In total, 1,878 SNVs of 1,259 genes have been annotated in the 

experimentally structurally characterized regions. 

 

In addition, 2,029 genes could be structurally characterized through comparative modeling. 

The structurally modeled regions contain 3,583 SNVs. The comparative models were obtained 

using a MODELLER-based automated computational pipeline ModPipe (372, 383). 

 

Enrichment of somatic SNVs on protein binding sites. The set of genes containing at least 

one somatic SNV and at least one binding site region is selected for calculating the enrichment of 
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mutations on the protein binding sites. Each sequence is divided into regions of two types: (1) 

binding sites region and (2) outside region. If somatic mutations are enriched on the protein binding 

sites, we expect their frequency to be significantly higher than the frequency of mutations on the 

outside regions. The fraction of mutations expected by chance in each region, fE, is calculated by 

adding the total sequence length of each region in all proteins, and dividing it by the length of all 

proteins combined. The number of observed mutations, fO, in each region over all proteins is also 

added together and divided by the total number of mutations. The odds ratio, θ, is calculated using 

these expected and observed fractions: q =
fO(1- fO )

fE (1- fE )
. Standard error, SEθ, and Z-score, Z, are 

calculated using the log odds ratios:  

SEq =OR ×SElogq , Z =
log(q )

SElogq

,  where

SElogq =
1

nSNV _REG

+
1

nSNV _TOT - nSNV _REG

+
1

nRES _REG

+
1

nRES _TOT - nRES _REG

,  and

 

where nSNV_REG and nRES_REG are the numbers of bSNVs and all residues in a region of one of 

the two types, and nSNV_TOT and nRES_TOT are the total numbers of bSNVs and all residues, 

respectively. 

 

Enrichment of known “cancer genes” in genes carrying somatic bSNVs. We next 

determine if the set of genes each carrying at least one somatic bSNV is enriched with the known 

cancer-associated genes. The dataset of cancer genes includes 522 genes and is collected from the 

Cancer Gene Census, an ongoing effort to catalogue those genes for which mutations have been 

causally implicated in cancer (241). The same gene list was used in a recent work on annotation 

SNVs from the same TCGA dataset with phosphorylation sites (241). The enrichment is calculated 

using the hypergeometric test: 
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(𝑋 ≥ 𝑛0) =  ∑
(𝐾

𝑘
)(𝑁−𝐾

𝑛−𝑘
)

(𝑁
𝑛

)

𝑁

𝑘=𝑛0

 

 

Here, N is the number of total genes in human genome, K is the number of all cancer genes, n 

is the number of the bSNV carrying genes; n0 is the number of the cancer genes observed among 

the bSNV carrying gens.  

 

Functional Enrichment Analysis. We next determine if bSNV-carrying genes are enriched 

or depleted with specific functions. To do so, four gene lists were created (1) genes with at least 

one bSNVs, (2) genes with no bSNVs, (3) genes with at least one pSNVs, and (4) genes with no 

pSNVs. For the four gene lists, the gene enrichment analysis is performed using the ToppFun 

method from the ToppGene Suite (241).   This analysis allows for multiple comparisons to be 

performed within the same computational framework from multiple database sources.  It explores 

gene associations with GO molecular function, GO biological process, GO cellular component, 

pathways, human and/or mouse phenotypes, protein domain content, protein interactions, miRNA 

interactions, cytoband, transcription factor binding sites, and other factors.  Parameters used for 

the program include an FDR correction factor (241) with a p-value cutoff of 0.05. 

 

Cancer Survival Analysis. The comprehensive patient clinical data, available only for ovarian 

cancer, is downloaded from TCGA. The clinically relevant attributes are extracted for each sample 

ID the bSNV annotation analysis has been done for. To enable comparison with a recently 

performed survival analysis for somatic mutations involved in phosphorylation, the survival 

analysis is performed using the same protocol (241). Specifically, we implement Kaplan-Meier 

estimate of survival, where the input for the estimate is the time of survival, patients are stratified 
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using two separate protocols, and whether the patient is survived within the observed timeframe.   

Patients are stratified and tested for a significant survival difference either from the SNV or gene 

perspective. The SNV perspective stratifies a patience as based on presence or absence of a bSNV 

for the patient.  The gene perspective selects for only patients that have a SNV within that gene.  

Then patients are stratified by either a presence or absence of a bSNV.  This implementation tests 

whether there is a difference between the survival curves using the G-rho family of tests by 

Harrington and Fleming (241) with weights on the death using Kaplan-Meier estimate of survival 

and log-rank or Mantel-Haenszel test.  The analysis is implemented in R using Olsurv, data.table, 

stringr, and Exact packages. The same analysis is repeated on the individual gene basis. 

 

Clinical Significance. The significance of the difference of ratios between bSNVs and non-

bSNVs with respect to each of the clinically relevant attributes, including ethnicity, tumor_status, 

tumor_grade, residual_tumor, residual_disease_largest_nodule, vascular_invasion_indicator, 

lymphovascular_invasion_indicator, karnofsky_score, ecog_score, performance_status_timing, 

radiation_treatment_adjuvant, pharmaceutical_tx_adjuvant, treatment_outcome_first_course, 

new_tumor_event_dx_indicator, initial_pathologic_diagnosis, anatomic_neoplasm_subdivision, 

clinical_M, clinical_N, clinical_T, clinical_stage, days_to_initial_pathologic_diagnosis, 

extranodal_involvement, histological_type, icd_10, icd_o_3_histology, icd_o_3_site, 

pathologic_M, pathologic_N, pathologic_T, pathologic_stage, tissue_source_site, and 

tumor_tissue_site, is tested using the Fisher’s exact t-test implemented in R.  This simple 

implementation uses the hypergeometric distribution with three possible alternatives for a 2 by 2 

contingency table.  The null hypothesis is there is no statistically significant difference between 

the two ratios. The three alternatives tested with respect to this hypothesis include (1) the odds 
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ratio is greater than 1, (2) the odds ratio is less than 1, and (3) equal to 1. Testing each of the three 

alternatives is important, since the effect of a bSNV on a clinical variable is generally unknown.  

 

Cancer gene centered PPI network reconstruction. To gain further insights of bSNV-

targeted genes we constructed a PPI network using BioGRID (241) dataset (version BIOGRID-

ORGANISM-Homo_sapiens-3.2.105).  The complete PPI network retrieved from BioGRID 

includes 15,854 proteins and 133,755 PPIs. A subnetwork, containing all proteins with at least one 

bSNV or pSNV was created and analyzed using this work’s SNV annotation and the previously 

published dataset (241), yielding 4,994 proteins and 21,958 interactions. Based on the newly 

constructed subnetwork, we then extracted cancer-specific subnetworks for each of the cancer 

types. 
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3.2.5 Discussion 

 

The main objective of this work is to investigate whether cancer SNVs have a prevalence for 

a protein’s binding site.  The rationale of this objective stems from two main observations. The 

first observation is a major challenge in genomics is the functional interpretation of genomic 

mutations (273). Functional mutations typically affect protein residues, however customary 

mutation evaluation methods focus mainly on gene and protein specific information such as 

comparative protein analysis for evolutionary or disease specific conservation (384).  However, 

we can gain additional insight about functional mutations by considering particular protein sites 

related to molecular interactions such as phosphorylation (358).  The second observation stems 

from disruption and/or dysregulation of protein interactions may be fundamental to allowing 

cancer progression (360).  The typical phenotypic observation of cancer is uncontrollable growth, 

failure of immune cells to control, and lack of ability to undergo apoptosis.  Signaling pathways 

or lack thereof all involve protein interactions thus modifications of the normal protein interaction 

allow for cancer to progress.     

 

We achieved our objective by first designing a new de novo protein binding site prediction 

method called Comparative Binding Region Annotator (COBRA).  We decided to design a new 

method due to the desire to increase the number of protein binding sites that can be annotated 

without losing prediction accuracy.  The main types of protein binding site prediction methods rely 

on a protein’s sequence or structure.  Sequence based methods are capable of assessing any protein 

sequence thus having a high coverage, but suffer from lower accuracy when compared to structure 

based methods, which are limited to resolved protein structures.  Our novel approach relies on the 
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ability for any protein sequence for which a comparative model can be leveraged.  The approach 

integrates information from a sequence based prediction method and a structure based, but applied 

to a comparative model rather than the natural protein structure thus allowing an increase to the 

number of proteins that can be assessed.  In summary, we trained, evaluated and compared 8 

machine learning classifiers on an experimentally validated protein binding site dataset with the 

best result of 0.37 precision, 0.60 recall, 0.74 specificity, 72% accuracy, 0.29 MCC, and 0.46 F-

measure for COBRA.  

 

We achieved our main objective by applying COBRA for a large-scale annotation of SNVs 

across eight different cancer types from the cancer genome atlas (TCGA) for their overlap with 

protein binding sites (bSNVs).  bSNVs were assessed for their enrichment of known cancer 

drivers, functional enrichment, patient survivability, clinical significance, and protein-protein 

interaction (PPI) network.  Furthermore, to provide context to the patterns discovered we compared 

bSNVs to SNVs that affect the phosphorylation site (pSNVs) using the same data (241).   

 

Our first observation was on average a high number of bSNVs (41%), but in contrast for 

pSNVs (9.5%).  Furthermore, the particular bSNV mutation locations were typically repeated.  For 

example, KRAS, a well-known cancer associated gene, had the highest number of bSNVs 

associated (98.4%).  However, despite the 186 bSNVs, they only correlated with 5 mutational 

positions on the gene.   This is an interesting observation because the binding site regions are 

typically less than 5% of the total length of a protein yet account for a large portion of SNVs.    
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Our second observation was for both protein function mutation types, bSNVs and pSNVs 

affect similar genes across multiple pathways with 40 – 80% overlap dependent on the cancer type.  

We found that the overall number of genes containing bSNV mutations whose protein products 

are a part of a PPI cancer network across each cancer type is significantly larger than the number 

of genes with mapped pSNVs. Intriguingly, the bSNVs and pSNVs have a complementary 

cumulative effect on the cancer interactome: for each cancer type considered in this work, the 

dataset of genes that are a part of the interactome and that carry bSNVs have little to no overlap 

with genes carrying pSNVs. 

 

Our third main observation came from any functional enrichment of genes associated with at 

least one bSNV or not (non-bSNV) for top enriched GO terms and functional pathways. bSNV 

genes were uniquely enriched for GO terms associated with DNA repair and extracellular receptor 

activity in contrast to intra-cellular binding activity for non-bSNV genes.  A hallmark of cancer is 

a failure of DNA repair.  What is unexpected is the split for bSNVs genes to affect cellular 

signaling, but non-bSNVs affect protein binding within the cell as protein binding occurs 

throughout the cell as well as extracellular.  A possible hypothesis for this observation is the type 

of protein binding being targeted: temporary versus permanent, which will require additional 

analysis to explore.  Another unexpected finding, which is related to extra-cellular binding activity, 

was bSNVs are enriched with olfactory receptors (OR).  From one perspective this is unusual as 

OR were labeled due to their implicated role in the sense of smell that were thought as being 

unrelated to cancer (364).  However, recent studies are increasingly demonstrating a role of OR in 

cancer as part of a failure of cell to cell communication (241, 366-369).  Lastly, we considered 12 

specific pathways related to cell survival, cell fate, and genome maintenance typically thought to 
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be associated with cancer (241). Interestingly, only 4 out of the 12 cancer pathways were 

associated with genes with bSNVs.  Taking these findings together suggests bSNVs play a role in 

cell to cell communication within cancer progression. 

 

Finally, we analyzed the clinical survival with bSNV.  When we considered patients with or 

without a bSNV there was not statistically significance, but a general negative trend.  This caused 

us to rephrase the analysis from the perspective of patients with genes enriched with bSNVs, which 

led to 40 bSNV genes having a negative impact on survival.  These genes functions are consistent 

with our enriched terms as associated with olfactory receptor genes, which are thought to be 

involved in cell to cell communication (241, 366-369).  This provides a direct link with the 

phenotypic observations of cancer of the disruption to cell to cell communication that is essential 

to allow cancerous cells to circumvent the immune system, allow metastasis, and a failure to 

apoptosis.    

 

This analysis was conducted from two different perspectives: global and individual scale.  The 

global scale refers to a patient is considered to have a bSNV if there is at least one gene with a 

bSNV.  Whereas, the individual scale considers patients with the presence or absence of a specific 

bSNV gene.  The survival data on a global scale for both bSNV and pSNV are not significant when 

considering at the global scale.  However, the global trend is that bSNVs has a negative impact on 

survival whereas pSNVs has a positive impact. However, when considering presence of bSNV on 

the individual gene level there are 40 out of 2080 genes that have a statistically significant 

difference.  Performing gene enrichment analysis on these 40 genes leads only to olfactory 

receptors as an enriched function.  However, this only accounts for 4 out of 40 genes present.  
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There is not an enriched function or pathway associated when these 4 olfactory receptor genes are 

excluded from the analysis.  Furthermore, there is only one cancer driver (Akd1) associated with 

these 40 genes.  All 40 genes have a negative impact on survival. 

 

In summary, we achieve our goal of assessing the prevalence of cancer SNVs with protein 

binding sites by using our novel de novo protein binding prediction tool COBRA, we were able to 

assess 23% more proteins then typically would be allowed without losing prediction accuracy.  

From our analysis of over 8 cancer types, we conclude that 1) bSNVs to be highly prevalent as 

they are close to 10 times more bSNVs than expected, 2) enriched functions for genes affected by 

bSNVs are related to cell to cell communication, and 3) interestingly, genes enriched with bSNVs 

were associated with a negative impact on cancer survival.   These findings give support to other 

analyses which suggest that disruption and dysregulation of protein interactions may be 

fundamental for cancer to progress (360).   
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3.3 Survey of Alternative Splicing Impact On Protein Interaction Landscape In Human 

3.3.1 Abstract 

Alternative splicing of mRNA precursors is known to expand the diversity of protein isoforms 

from the majority of genes in humans.  What is unknown is whether there are patterns associated 

with the functional aspects of a protein from alternative splicing selection.  This makes assessment 

of the functional impact of alternative splicing difficult to access.  In order to create a systematic 

structural analysis of this landscape, we analyzed protein domains and binding sites with their 

propensity with alternative splicing types and RNA-Seq expression patterns.  To achieve this 

analysis, we incorporated transcript data across six different databases then selected transcripts 

from the agreement of at least four databases, which produce a protein product from humans.  

These transcripts had binding sites identified by two methodologies and protein domains identified 

through SUPERFAMILY.  Furthermore, alternative splicing types such as intron retention and 

exon skipping were integrated with RNA-Seq expression analysis across multiple developmental 

time points and tissue types to assess for patterns of alternative splicing selection.  In summary, 

we analyzed 16,682 genes with 218,222 isoforms in human, which cause on average 83% of 

binding sites and a range of 0 - 85% of domains, N-terminus, or C-terminus to be rearranged as a 

result of alternative splicing.  Furthermore, we propose that genes be quantified with an ‘alternative 

splicing impact factor’ to summarize the impact alternative splicing has on possible protein 

function for future studies of influence. Our results suggest that while alternative splicing can 

drastically remove or alter (>50%) important components of a protein such as domains, N-

terminus, or C-terminus it maintains the majority of binding sites (>73%) demonstrating 

alternative spliced proteins play a functional role. 
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3.3.2 Introduction 

Upon sequencing of the first draft of the human genome, a paradox was highlighted where the 

number of genes did not correspond to the number of proteins, which are considered the main 

players in the molecular realm (385, 386).   Given that humans are regarded as being more complex 

then organisms such as bacteria, worms, or fruit flies, it is considered a ‘remarkable’ observation 

the number of protein coding genes do not correlate with complexity (241, 387). This has led to a 

scientific revolution in expanding annotation of the genome from a focus on individual protein-

coding genes to an increasing more complete view of the complex reality such as alternative 

splicing, pseudogenes, and noncoding RNAs (388).  

 

Alternative splicing has largely been marketed as being the main player for expanding the 

diversity of protein isoforms for the majority of genes in human.  While this mechanism was 

discovered in the late 1970’s in viruses (42, 43, 389), the frequency it occurs in humans was not 

demonstrated until much later due to the advent of next generation sequencing (51, 52). The 

observation that a single gene can produce on average 10 different ‘versions’ or isoforms for ~95% 

of human genes resulting in ~70% altering a protein function presents an interesting solution to 

the paradox (41, 47, 84, 390) (52, 391).  While it is still an ongoing debate the frequency alternative 

splicing affects protein function (69, 71), it has been experimentally demonstrated on many case-

by-case bases (74) and a large scale protein-protein interaction (84) that alternative splicing can 

‘rewire’ its protein function and interaction (83).  
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What is essentially unknown is how proteomic interaction complexity is related to alternative 

splicing selection.  This makes assessment of the functional impact of alternative splicing on 

proteins difficult to access.  There have been some systematic studies into the functional role of 

alternative protein isoforms, but focused on the functions they can or cannot perform relative to 

their ‘reference’ counterpart typically the longest known protein transcript associated for the 

particular gene (84, 392, 393).  Understanding the patterns of alternative spliced proteins affecting 

the interaction network has been defined as a critical step in studying complex genetic disorders 

(74, 82, 394, 395).  Previously patterns such as protein domain architecture with alternative 

splicing have been studied limitedly (396-398), but have suggested that alternative splicing largely 

does not affect the protein domain architecture.   

 

This work’s goal is to achieve a systematic analysis alternative splicing modifies on protein 

interaction.  Specifically, we analyzed protein domains, N-terminus, C-terminus, linker region, 

and binding sites with alternative splicing and RNA-Seq expression patterns.   We integrated six 

databases and filtered for protein producing transcripts, which had agreement across four 

databased to achieve a comprehensive alternative spliced database (COMP-AS).  These transcripts 

had binding sites identified by two methodologies, protein domains identified through 

SUPERFAMILY, and used a comprehensive database of macromolecular interactions 

(DOMMINO v. 2.0 (316)) that includes the interactions between protein domains, interdomain 

linkers, N- and C-terminal regions, and protein peptides.  Furthermore, alternative splicing types 

such as intron retention and exon skipping were integrated with RNA-Seq expression analysis 

across multiple developmental time points and tissue types to assess for patterns of alternative 

splicing selection.  In summary, we analyzed 16,682 genes with 218,222 isoforms in human, which 
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cause ‘rewiring’ on average 83% of binding sites and a range of 0 - 85% of domains, N-terminus, 

or C-terminus to be rearranged as a result of alternative splicing.  Furthermore, we propose that 

genes be quantified with an ‘alternative splicing impact factor’ to summarize the impact alternative 

splicing has on possible protein function for future studies of influence. Our results suggest that 

while alternative splicing can drastically remove or alter (>50%) important components of a 

protein such as domains, N-terminus, or C-terminus it maintains the majority of binding sites (>73-

97%) demonstrating alternative spliced proteins have the potential to play a functional role. 

 

3.3.3 Results 

This work’s goal is to achieve a systematic analysis alternative splicing modifies on protein 

interaction.  Specifically, we analyzed protein domains, N-terminus, C-terminus, linker region, 

and binding sites with alternative splicing and RNA-Seq expression patterns.   We integrated six 

databases and filtered for protein producing transcripts, which had agreement across four 

databased to achieve a comprehensive alternative spliced database (COMP-AS).  These transcripts 

had binding sites identified by two methodologies, protein domains identified through 

SUPERFAMILY, and used a comprehensive database of macromolecular interactions 

(DOMMINO v. 2.0 (316)) that includes the interactions between protein domains, interdomain 

linkers, N- and C-terminal regions, and protein peptides.  Furthermore, alternative splicing types 

such as intron retention and exon skipping were integrated with RNA-Seq expression analysis 

across multiple developmental time points and tissue types to assess for patterns of alternative 

splicing selection.  In summary, we analyzed 16,682 genes with 218,222 isoforms in human, which 

cause ‘rewiring’ on average 83% of binding sites and a range of 0 - 85% of domains, N-terminus, 

or C-terminus to be rearranged as a result of alternative splicing.  Furthermore, we propose that 

genes be quantified with an ‘alternative splicing impact factor’ to summarize the impact alternative 
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splicing has on possible protein function for future studies of influence. Our results suggest that 

while alternative splicing can drastically remove or alter (>50%) important components of a 

protein such as domains, N-terminus, or C-terminus it maintains the majority of binding sites (>73-

97%) demonstrating alternative spliced proteins have the potential to play a functional role. 

 

Figure 3.3.3.1. Methodology for Alternative Splicing Protein Functionality Assessment. Alternative Spliced 

Protein Isoforms were integrated from six databased then filtered for isoforms with 100% agreement between at least 

four databases.  These isoforms were annotated for interaction subunit, protein domain, and isoform.  Binding sites 

were then annotated. RNA-Seq was then conducted across 120 tissue types, 40 age groups, and both genders to give 

context to the prevalence of alternative spliced transcripts.   

 

Furthermore, alternative splicing types such as intron retention and exon skipping were integrated 

with RNA-Seq expression analysis across multiple developmental time points and tissue types to 

assess for patterns of alternative splicing selection.  In summary, as a result of alternative splicing 

‘rewiring’ can drastically remove or alter (>50%) important components of a protein such as 

domains, N-terminus, or C-terminus, but maintains the majority of binding sites (>73-97%) 

demonstrating alternative spliced proteins have the potential to play a functional role. 



 

165 

 

Dataset Statistics 

After filtering for at least four database agreement across Genecode, VEGA, AS-Alps, ASAPII, 

ASPicDB, and ASTD, resulting in 16,682 genes with 218,222 alternative spliced protein isoforms.  

Upon annotation these isoforms had, 160,776 (74%) domains, 164,223 (75%) C terminus, 151,091 

(69%) N-terminus, and 82,937 (38%) linker regions.   On average 83% of binding sites are 

modified across alternative spliced isoforms with the range of (73-97%). 

Example 

Alternative splicing has been well established as having a tissue context change.  What is not well 

reflected is how well this correlates with protein domain structure and binding site changes.  Using 

the example of HMBOX (Fig 3.3.3.2) it is highlighted that protein-binding site changes do not 

correlate with protein expression or alternative splicing rearrangement.  Primarily the C terminal 

region are the regions that are heavily modified for this particular gene, which interestingly does 

not have a large impact on the protein domains.  Additionally, when considering the expression 

changes the transcripts with heavy modifications by C terminal, protein domain, or binding sites 

do not correlate with transcript usage.  This may suggest that alternative splicing is used more to 

exclude functional uses rather than expand functions.     

Summary of Trends 

Expanding this observation across the entire alternative splicing landscape alternative splicing 

represents wide versatility.  The first analysis looks at the top 50 protein families in terms of what 

does alternative splicing do  (Figure 3.3.3.1).  The most prevalent change is no change in terms of 

distributions across all possible modifications.  However, when modifications do affect it is by 

deletions rather then mutations.  The distribution across protein families is quite variable 

suggesting further exploration is required.  Expanding the analysis by looking at just type of 
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modifications by protein structure region (U,N,L,D,C) demonstrates that in fact deletions, 

alterations, and single nucleotide changes are the most common across all types.  Changes are 

generally in the majority within protein domains.   

 

Figure 3.3.3.2 HMBOX Alternative Splicing (AS) Diversity Changes.  A) 8 transcripts for HMBOX with the 

number of nucleotide changes by alternative spliced transcript based on protein structure definitions.  B) Same 

information as A except information is plotted by protein structure.  C) Percent of protein binding sites modified as a 

result of AS.  D) 4 represented tissues demonstrating the veracity of expression changes, which does not correlate with 

protein structure modification.   

 

Figure 3.3.3.3.  Global Statistics of Alternative Splicing Occurrence.  Alteration patterns: unchanged (u), 

deleted (d), inserted (i), altered (a), single mutated (s) are code by (u, d, i, a, s). (e.g. u=1, d=1, i=0, a=1, s=1 results in 

a pattern 11011) A)  Alterations by top 50 families.  B) Alterations by protein structure subunits.   
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Summary of Protein Binding Site Modifications 

Analyzing alternative splicing effect on protein binding sites (Figures 3.3.3.4) demonstrates that 

the majority of changes are modified with the protein domain having the highest changes.  

However, focusing on the extent of modification demonstrates that majority of changes are less 

then 20% of the entire protein binding site.   

 

 

Figure 3.3.3.4 Global Summary of Alternative Splicing Effect on Protein Binding Sites.  A) Reflects the 

frequency of changes based on definition of eliminated, left intact, modified, and SNPs.  B) The percentage of protein 

binding sites changes implicating that most binding sites are less than 20% modified.   

 

3.3.4 Discussion 

This work systemically assesses the impact alternative splicing has on protein interaction in 

human.  Specifically, we integrated six alternative splice databases then filtered to only those 

isoforms that are protein coding and have 100% agreement between at least four databases to 

achieve a high consensus (COMP-AS).  This resulted in 16,682 genes with 218,222 alternative 

splice protein isoforms.  These isoforms had binding sites identified by two methodologies, protein 

domains identified through SUPERFAMILY, and used a comprehensive database of 
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macromolecular interactions (DOMMINO v. 2.0 (316)) that includes the interactions between 

protein domains, interdomain linkers, N- and C-terminal regions, and protein peptides.  

 

Figure 3.3.3.5.  Alternative Splicing Impact Factor.  In order to quantify the functional versality of a protein 

as a result of alternative splicing the metric Alteriatve Splicing Impact Factor (AS-IF) was developed.   AS-IF reflects 

the veracity of protein function change as a reflection of alternative splicing rearrangement.  There are two components 

that make up AS-IF.  A)  One component attempts to quantify the extent a transcript is used based on the frequency 

of expression across tissues as well as modified by the transcript expression rank.  B) The second component is to 

quantify the extent of protein rearrangement of transcripts as a reflection of binding sites deletions and modifications.  

C) These two components divided to emphasis the use of a transcript by the extent alternative splicing rearranges the 

protein.  As an example, the three bar plots calculated AS_IF on HMBOX1. 

 

To reflect the impact of modification alternative splicing has on protein structure, we propose an 

Alternative Splicing Impact Factor (ASIF) (Figure 3.3.3.5).  In order to attempt to quantify how 

impactful ASIF is on function changes, a single value would be useful.  Our proposed value 

represents both the expression modifications in addition to protein binding site changes.  

Combining both of these components allows for each transcript to be represented by the impact 

AS as on the functional changes.   
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3.3.5 Methods 

The methodology used within this study integrated six databases, which profile alternative 

splicing, filtered for an agreement of at least four databases, annotated protein binding sites, 

domains, N-terminus, C-terminus, and linker regions.  Using this data, alternative splicing patterns 

were analyzed in context of alternative splicing types and RNA-Seq expression patterns across 

140 tissue types, 40 age points, and both genders.  Our approach made use of two protein binding 

site methodologies, SUPERFAMILY protein annotation, and DOMMINO a macromolecular 

interaction database.   

Dataset Integration 

 The six databases integrated were VEGA (399) , AS-Alps (400), ASAPII (401) , ASPicDB 

(402), and ASTD (403).  These databases incorporate manual, automated, computationally 

predicted and experimentally derived alternative splicing annotation for human.  Due to this, we 

only used alternative spliced annotation for proteins that were in 100% agreement across four or 

more databases (COMP-AS). 

Binding Site Prediction 

Two protein binding site methodologies were used.  The first relies on template based.  The 

second relies on PSI-BLAST, which makes use of SCOP protein domain annotation in order to 

extend the coverage.  Since the first methodology relies on template based it is more reliable.  Due 

to this, when there is overlap between the methods the first method is preferable.   

Protein Domain and Subunit Annotation 

Using DOMMINO v2.0 (316) was used to annotate the protein domains, N-terminus, C-

terminus, and linker regions (protein regions between domina, N, and C). 

RNA-Seq Quantification 
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To determine the expression values for alternative splicing, we quantified across 120 tissue 

types, 40 age groups, and both genders.  The RNA-Seq samples came from publically available 

Expression Atlas (404), which includes 1,170 normal samples for human.  Kallisto (405) using 

default settings was used to quantify the samples against COMP-AS as the sequences to quantify 

against.  
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CHAPTER 4: Conclusions and Future Directions 

The main aim of this dissertation is to leverage omics data to expand the value and 

understanding of alternative splicing (A.S.).  Specifically, four types of ‘omics’ data were utilized 

across the six projects described here: transcriptomics, proteomics, genomics, and epigenomics.  

The context used to describe alternative splicing was usually within a complex genetic disorder 

such as diabetes or cancer.  However, there were projects described within a ‘normal’ as well as 

crop production.  While each chapter and subsection have a wide variety of conclusions specific 

to the problem context, there are many general trends that can be highlighted from this dissertation.   

 

When alternative splicing produces RNAs for translation, these can be considered functionally 

unique proteins.  The usual perspective is to consider a gene as the main base unit of hereditary.  

What is increasingly being demonstrated is through alternative splicing of a gene, the range of 

proteins produced can be considered functionally unique as they interact within their molecular 

environment.  This suggests that rather than organizing a systemic viewpoint around a gene, it 

should rather be done at individual transcripts and their protein products.  Changing this viewpoint 

to a transcript centric perspective, most likely will change how molecular pathways are considered 

to act within the normal or abnormal context (406). 

 

Alternative splicing creates more noncoding RNA then coding RNA.  This is both an 

observation and a suggestion for future directions.  It was observed quite often by myself when 

conducting the various analyses that far more transcripts were removed then preserved upon 

filtering for protein.  It has been hypothesized that these transcripts are not functionally useful 

while some may be used as regulators such as miRNA through the DICER complex (407).  This 
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is suggested as the expression level of these transcripts are low and often below a given filter 

threshold.  This raises a question why they are expressed at all as there are mechanisms for 

silencing (408).  While the general opinion trend suggests an evolutionary artifact or in the process 

of being degraded, the volume I have observed (sometimes up to 50% of all unique transcripts 

expressed) I would hypothesize that there is something functionally relevant to this observation.  I 

would hypothesize that these noncoding RNAs have far more functions then currently realized.  

This is based on noncoding RNAs such as miRNA, lncRNA, and circRNA have only been recently 

discovered and analyzed using the same ‘omic’ type data discussed in this dissertation from the 

past decade (409-411).  I would suggest developing analytical tools such as from Chapter 3.3, that 

would focus on the noncoding RNA rather than coding.   

 

Alternative splicing needs more system-wide functional analysis.  Much that is understood 

about alternative splicing is on a case-by-case basis rather than via systemic pattern analysis.  To 

this end, a future direction of this dissertation is combining the various projects and development 

of new tools to systemically assess the effect of alternative splicing regarding coding RNA.  

Specifically, combining the analysis from chapters 3.1 and 3.3 to extend this analysis to explore 

what are the functional consequences of alternative splicing from function and interaction 

perspective.   This would extend the understanding into the possible molecular rationale for 

particular transcripts existence under certain normal or abnormal conditions.   
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In summary, this work brings together different ‘omics’ data to expand our understanding and 

promote the use of A.S.  Specifically, there are six projects described here which make use of 

transcriptomics, proteomics, genomics, and epigenomics, which often overlap, on the focus in a 

couple of complex genetic diseases as well as analyzing a parasite, which affects soybeans.   The 

projects range from systemically profiling machine learning methods utilizing RNA-Seq based 

alternative splicing expression data to promote its use, development of a method to predict whether 

alternative splicing occurs affects its interaction, a systematic analysis across the transcriptome for 

comparing binding sites and domains with alternative splicing and expression patterns, assessment 

of single nucleotide variation on protein binding sites, assessment of epigenomics with 

transcriptomics within the context of acute lymphoblastic leukemia, and looking for patterns of 

alternative splicing on parasites infecting soybeans.    
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Appendix A: Supplementary 2.3 

A.1 Figures 

Figures Appendix A1.1-3.  Distribution of Classes for each Dataset.  Y-axis is the number of samples.  The X-axis 

lists the classes used for binary and multiclass (MC) classifications.  Colors group classes of similar type.  Each figure 

depicts a different dataset for RBM (S9), NCBI (S10), TCGA (S11) 

 

 

Figure Appendix A1.1- RBM 
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Figure Appendix A1.2-NCBI 
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Figure Appendix A1.3- TCGA 
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Figures Appendix A1.4-7. Comparing the Number of Features Selected During Feature Selection Protocol for 

Gene vs Isoform Based Classification.  The Y-axis is the number of features.  The X-axis lists the classes used for 

binary and multiclass (MC) classifications.  Each figure depicts an individual dataset: RBM (S4), NCBI (S5), TCGA-

log2 Normalized (S6), and TCGA-Raw Count (S7). 

 

 

Figure Appendix A1.4-RBM 

  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Gene

Isoform



 

178 

 

 

Figure Appendix A1.5-NCBI 
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Figure Appendix A1.6- TCGA Log2 Normalized 
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Figure Appendix A1.7 – TCGA Raw Counts 
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Figures Appendix A1.8–11 Comparing the Number of Features Selected Post-Feature Selection across 

Normalization Techniques for Gene Features.  The Y-axis is the number of features.  The X-axis lists the classes 

used for binary and multiclass (MC) classifications.   Each figure depicts a different dataset for RBM (S8), NCBI (S9), 

TCGA-log2 Normalized (S10), and TCGA-Raw Count (S11). 

 

 

Figure S8 – RBM 

  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nothing normalized standardized



 

182 

 

 

Figure Appendix A1.9-NCBI 
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Figure Appendix A1.10-TCGA Log2 Normalization 
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Figure Appendix A1.11-TCGA Raw Count 
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Figures Appendix A1.12-13.  Heat Map representation of f -measure standard deviation across the 10-Fold 

Cross Validation across machine learning methods, classes, datasets, and normalization techniques.  For the 

majority of classification tasks, the standard deviation was less than 1% for both Gene (S12) and Transcript (S13).  

The top x-axis represents normalization techniques including Nothing (no normalization), Standardized, and 

Normalized.  The bottom x-axis represents the machine learning techniques (DT = Decision Table, J48 = J48 Decision 

Tree, LR = Linear Regression, NB = Naïve Bayes, RF = Random Forest, SVM = Support Vector Machine). The y-

axis represents the classes where MC stands for multiclass. Datasets for each panel are (A) RBM, (B) NCBI, (C) 

TCGA – log2 normalized counts, (D) TCGA – raw counts. 

 

 

Figure S12-Gene 
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Figure Appendix A1.13- Transcript 
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A.2 Tables 

 

Table Appendix A2.1- List of all NCBI SRA Project IDs for NCBI Dataset 
Accession Number Number of Samples 

SRP037986 662 

SRP023266 144 

SRP041131 125 

SRP039021 116 

SRP028932 48 

SRP016501 27 

SRP036442 24 

SRP041119 16 

SRP045777 16 

SRP021090 14 

SRP028515 12 

SRP029760 12 

SRP041920 12 

SRP055430 12 

SRP042370 10 

SRP021119 8 

SRP046247 8 

SRP018407 6 

SRP044684 6 

SRP046248 6 

SRP035358 4 

SRP041741 4 

SRP045117 4 

SRP051483 4 
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SRP009272 2 

SRP013262 2 

SRP017140 2 

SRP029980 2 

SRP047494 1 
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Table Appendix A2.2. Initial number of features, and the average number of features after 

feature selection procedure across different classification problems 
 

 Initial After Feature Selection 

Gene Transcript Gene Transcript 

RBM 
25,538 29,130 659 671 

NCBI 
10,711 17,506 119 97 

TCGA-Raw 
20,524 73,592 49 82 

TCGA-log2 

Normalized 

20,524 73,592 38 80 
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Table Appendix A2.3- Number of Features Selected: Binary classification (average) and 

Multiclass classification  

 

 Binary-Average Multiclass 

Gene Transcript Gene Transcript 

RBM-Tissue 
230 242 9173 9237 

RBM-Age 
102 114 60 27 

NCBI-Tissue 
48 97 1030 589 

TCGA-Raw-

Cancer Stage 

38 80 20 73 

TCGA-log2 

Normalized-Cancer 

Stage 

49 82 20 73 
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Appendix B: Supplementary 3.1 

Supplementary Data 

B1. Figures 

 

Appendix B1.1. A pseudocode of iterative self-learning random forest algorithm used in AS-IN Tool.  

1: 𝑋𝑡𝑟𝑎𝑖𝑛 = train set data samples 

2: 𝑌𝑡𝑟𝑎𝑖𝑛 = train set labels 

3: 𝑈 = unlabeled data samples 

4: 𝑁 = number of elements to add to train set 

5: 𝑇 = False 

6: 𝜀 = threshold value 

7: 𝑋𝑏𝑒𝑠𝑡 = 𝑋𝑡𝑟𝑎𝑖𝑛 

8: 𝑅𝐹𝑚𝑜𝑑𝑒𝑙 ←run Random Forest classifier on train set (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) 

9: 𝐹𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ← F-score of 𝑅𝐹𝑚𝑜𝑑𝑒𝑙 based on 10-fold CV on (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) 

10: 𝑅𝐹𝑏𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 ← 𝑅𝐹𝑚𝑜𝑑𝑒𝑙 

11: while not 𝑇 do: 

12:  𝑌𝑈 ← Classification result of  𝑅𝐹𝑚𝑜𝑑𝑒𝑙on 𝑈 

13: (𝑈𝑜𝑟𝑑𝑒𝑟𝑒𝑑, 𝑌𝑈𝑜𝑟𝑑𝑒𝑟𝑒𝑑
) ←order 𝑈 along with corresponding 𝑌𝑈 according to the probability of 

𝑌𝑈𝑖
 to be correct label for sample 𝑈𝑖  in descending order 

14:  (𝐾, 𝑌𝐾) ← first 𝑁 elements from set (𝑈𝑜𝑟𝑑𝑒𝑟𝑒𝑑 , 𝑌𝑈𝑜𝑟𝑑𝑒𝑟𝑒𝑑
) 

15:    (𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤) ← merge (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) and (𝐾, 𝑌𝐾) 

16:    𝑅𝐹𝑛𝑒𝑤𝑚𝑜𝑑𝑒𝑙 ← run Random Forest classifier on train set (𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤) 

17:    𝐹𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 ← F-score of 𝑅𝐹𝑛𝑒𝑤𝑚𝑜𝑑𝑒𝑙 based on 10-fold CV on (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) 

18:    if 𝐹𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 > 𝐹𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡: 

19:  𝐹𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ← 𝐹𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤  

20:                   𝑅𝐹𝑏𝑒𝑠𝑡 𝑚𝑜𝑑𝑒𝑙 ← 𝑅𝐹𝑛𝑒𝑤𝑚𝑜𝑑𝑒𝑙 

21:  (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) ← (𝑋𝑛𝑒𝑤, 𝑌𝑛𝑒𝑤)  
22:    remove 𝐾 from 𝑈 

23:    if |𝐹𝑠𝑐𝑜𝑟𝑒𝑜𝑙𝑑 − 𝐹𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤| < 𝜀: 

24:  𝑇 ←True 

 

 

 

 



 

192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B1.2. Alternative Splicing Focused Protein–Protein Interaction Network. This dataset (D1) was 

developed using yeast-two hybrid to explore the effect alternative splicing has on protein-protein interactions.  We 

used this dataset to train and test the supervised machine learning models.  As an example, we highlighted nodes 

corresponding to the genes associated with diabetes (magenta); all other nodes are colored in grey.  Edges that 

correspond to the PPIs that are experimentally confirmed to be eliminated by an alternatively spliced isoform are 

colored red; those edges that correspond to PPIs that are not affected by the alternative isoforms are colored blue. 
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B.2 Tables 

Appendix B2.1. List of features used in a feature-based machine learning classifier. The list 

includes 3 main groups – biochemical features, statistical potentials and AS-related “delta” 

features. Related Proteins column indicates which proteins among the reference isoform A1, its 

interacting partner B, and alternatively spliced isoform A2 are involved. Two stand-alone proteins 

indicate that features described in the corresponding group were obtained for each protein 

independently. (X,Y) grouping of proteins indicate that both proteins X and Y are required to 

obtain the corresponding features. X-Y indicates that the corresponding features reflect the 

difference between the individual features of proteins X and Y. 

Feature Group 
Related 

Proteins 
Feature List 

Biochemical 

A1 

 

B 

  

 

 

Molecular weight  

Number of residues 

Average residue weight 

Charge 

Isoelectric point 

A280 molecular extinction coefficient 

for reduced and cystine bridges 

Frequency, Molarity, DayhoffStat for each 

residue and residue property (Tiny, Small, 

Aliphatic, Aromatic, Non-polar, Polar, 

Charged, Basic, and Acidic) 

 

Statistical Potentials 

(A1,B) 

3 largest statistical potentials among all  

combinations of domain from protein and 

protein 

A1 
2 largest statistical potentials for 

individual domains of protein 

Delta Features  

Biochemical A1-A2 See feature list for Biochemical 

Statistical potentials 
(A1,B)-(A2,B) 

See feature list for Statistical Potentials 
A1-A2 

Sequence 

Alignment Based 
(A1,A2) 

Length change (ratio) 

Length change (absolute) 

N-termini 

C-termini 

Maximum alignment gap size 

Mean alignment gap size 

Number of alignment gaps 

Number of large gaps (>=10 bases) 

Number of small gaps (<10 bases) 

Domain Based (A1,A2) 

Domains lost 

Domains changed 

Domain or linker 
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Appendix B2.2. Comparison of alternative splicing-specific machine learning models and 

general ab initio PPI prediction methods. Our top performing machine learning model is the 

semi-supervised random forest. It has the best scores for each metric except recall. PPI prediction 

methods fairs poorly for our problem.  As both F1-score and MCC are also low our conclusion is 

that M1, M2 and M3 in its current states are unfit for our problem. Low AUC also suggests that 

we cannot raise other metrics much by simply varying the probability cutoff threshold. 

 

Algorithm 
Feature 

Selection 
Accuracy Precision Recall F1-score MCC AUC 

Semi-Supervised RF None 0.88 0.92 0.92 0.92 0.70 0.84 

Random Forest None 0.86 0.90 0.92 0.91 0.65 0.81 

SVM-RBF RFE 0.84 0.87 0.93 0.89 0.55 0.75 

SVM-Linear Lasso 0.82 0.84 0.93 0.88 0.48 0.71 

PPI Prediction Methods 

M1 0.58 0.29 0.50 0.36 0 0.51 

M2 0.58 0.29 0.50 0.36 0 0.41 

M3 0.46 0.50 0.52 0.40 0.05 0.42 
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