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ABSTRACT

In this project, we developed an approach to sports rankings that reflects the strength

of each team while accounting for game results. We implemented a dynamic program-

ming algorithm that creates an optimal ranking for roughly thirty teams. We designed

approximation algorithms that formulate near-optimal rankings in polynomial time.

Finally, we created postprocess algorithms that determine the best possible ranking,

given multiple equivalent optimal rankings. Our rankings remain true to actual game

results, ultimately making them better than existing rankings.
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1
INTRODUCTION

Rankings are used by all types of sports enthusiasts - die hard fans argue over

the ordering of certain teams, while sports writers spend time determining the newest

edition of their “power rankings." Far too often, existing rankings seem to ignore the

actual results of games played between teams. For example, in the 2018 NFL season,

the Patriots defeated the Chiefs in Week 6 of the season in a tight game. Accordingly,

that week, ESPN ranked the Patriots second, one spot ahead of the Chiefs. However, in

Week 7, after both teams won against lower ranked opponents, ESPN ranked the Chiefs

second, one spot ahead of the Patriots [1]. How could this ranking possibly reflect the

actual outcomes of games played if it so blatantly ignored the results?

This project involved the algorithmic creation of rankings that honor game results as

much as possible. In most leagues, there are teams that conflict with each other when

being ranked. For example, if Team A beat Team B, Team B beat Team C, and Team C

beat Team A, who should be ranked highest? No matter what, at least one result will

be ignored. In most cases these conflicts cannot be completely resolved, but they can be

minimized. Our goal was to create a ranking that minimizes the number of times a team

was ranked below a team they beat.

To achieve this goal, we developed multiple algorithms all based around graph theory.

Some of our algorithms find the best possible ranking to honor game results, while others

find one close to the best. Further, we programmatically implemented these algorithms

to actually create rankings using real data. We were able to find an optimal ranking for

leagues with 32 teams or less in under an hour, checking billions of possible combinations.

Taking recency of games and margin of victory into account, we found that the rankings

our methods create are similar to (and arguably better than) real world rankings from

sources such as ESPN and Sports Illustrated.

The following chapters provide an outline of our project: the background concepts

used, the design of our algorithms, and how we actually implemented and ran the

algorithms. Finally, our results are shared and discussed for accuracy, factors to consider,

and timing trade-offs.
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2
BACKGROUND

2.1 Existing Sports Rankings

Rankings in sports are a common method to determine which teams or competitors

are better than others. While there are many different systems of creating rankings, they

all serve the purpose of sharing which teams are better than others. The modern concept

of these systems date back to the late 1920’s [2], when people attempted to predict the

national champions in college football. Since then, many new forms of rankings have

been developed, especially with the advent of cheap, powerful computers. Additionally,

more and more data is being collected from games, leading to different factors being used

in many of these rankings.

2.1.1 Considerations

Ranking systems often consider a number of factors. The most common factors

considered are point differential, strength of schedule, and game recency. However, many

ranking systems are created by aggregating the opinions of a committee of analysts or

journalists. In such cases, these factors are considered implicitly rather than being an

explicit metric as in algorithmic ranking systems.

2.1.1.1 Point Differential

Many differences in sports ranking systems come from how heavily they weigh point

differential in their rankings. Point differential is the difference in the score between

a team and their opponent [3]. Using point differential allows the ranking system to

understand whether a game was close or a blowout.

However, point differential is also a controversial metric [4]. This is because if point

differential is considered, then it incentivizes scoring more points in blowout games,

which in many sports is considered unsportsmanlike. Additionally, many sports have

2



2.1. EXISTING SPORTS RANKINGS

"garbage time," which is when the game outcome has already been decided due to a

lopsided score, but the players still have to finish the game. During garbage time teams

may not be trying as hard as usual, leading to scoring that would not have happened

had the game been close.

2.1.1.2 Strength of Schedule

Strength of schedule is a measurement of the difficulty of a team’s schedule. There

are many different methods of determining strength of schedule, but most of them

work by considering the general ranking and/or record of the team’s opponents. As

an example, prior to the introduction of the College Football Playoff, NCAA Football

calculated strength of schedule for bowl selection using the following formula:

(2.1) Strength of Schedule= (2∗P)+Q

In this formula, P represents the combined record of the team’s opponents, and Q

represents the combined record of their opponent’s opponents. The resulting value is

then used to rank a team’s schedule against those of other teams, helping to differentiate

them when creating rankings. Utilizing strength of schedule, a loss against a much

stronger opponent is less impactful on a team’s ranking compared to a loss against a

closely-ranked or lower-ranked team.

2.1.1.3 Game Recency

Game recency is the time elapsed since a game was played. This metric is important,

since teams often change throughout a season as players are injured, traded, etc. As a

result, many ranking systems weigh games based on their recency, such that a game at

the beginning of the season is considered less important than a game which happened

much later.

2.1.2 Traditional Ranking Algorithms

2.1.2.1 Win/Loss

A win/loss system of ranking is the simplest method of producing a reasonable

ranking. By ordering teams based upon their overall record, teams can be arranged in a

way that gives a reasonable ranking. In some cases, strength of schedule can be used to

improve the accuracy of the rankings.
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Win/loss systems are used in most professional sports to determine playoff berths

and seeding. The system benefits from being simple to understand, but often is seen as

an incomplete metric that does not necessarily generate a true ranking.

2.1.2.2 Elo Rating

The Elo rating system is a method of ranking competitors based on their past perfor-

mance. Devised by Arpad Elo [5], it was first used as a way to rank chess players, and to

predict future matchups of players who had not previously played. More recently, it has

gained significant popularity outside of chess, most notably in other board games and

competitive video games as a way to find similarly-skilled players for fair matchmak-

ing. Additionally, some traditional sports analysts use Elo Ratings to create their own

rankings [6].

Elo’s rating system works by assigning all new competitors a base rating. After each

match, a competitor’s rating will increase or decrease by a set amount determined by

comparing their rating to their opponent’s. Their opponent’s rating will change by the

equal but opposite amount. The size of these changes, along with the base rating, differ

across implementations of the Elo system.

The Elo system is useful since it is self correcting: that is, as a competitor plays

more matches, their ranking will more closely reflect their true skill. In this way, the

Elo system produces ratings that, given an infinite number of games, creates an ideal

ranking when sorting all competitors by their rating [7].

2.1.2.3 Committee Rankings

Committee rankings are frequently used as an alternative to algorithmic ranking

systems. Rankings by committee are often based on a poll or the choices of a selection

committee. Selection Committees are most notably used in NCAA Football and Bas-

ketball, where they are used to determine the teams and seeding for the end-of-season

playoffs [8],[9]. These committees are given metrics on each team and tasked with de-

ciding on which teams will make or miss these playoffs. By contrast, poll rankings are

generated by aggregating the opinions of many people, most commonly journalists or

analysts. These rankings are typically used during a season to track a team’s progress,

and are commonly referred to as power rankings.
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2.2 Factors in Ranking Sports

In order to effectively create rankings for many different sports, one must consider

nuances that apply to each sport. Different sports have different factors that play into

rankings. Some factors affecting rankings include number of teams, number of games,

and scoring systems. The focus of this project has been six specific sports leagues: NCAA

Basketball, NCAA Football, the National Football League (NFL), Major League Baseball

(MLB), the National Basketball Association (NBA), and the National Hockey League

(NHL).

2.2.1 NCAA Basketball

NCAA Basketball is a college level men’s basketball league. There are 351 Division 1

teams in this league, and over 5,000 games are played by these teams in each season.

Division 1 is split up into 32 different conferences, mainly separated by regional location.

In terms of scoring, teams tend to earn an average of 70 to 100 points per game [10].

Due to the considerable number of teams in this league, there is a large discrepancy

between the talent level of the top and bottom teams. Therefore, point differentials vary

significantly from game to game.

2.2.2 NCAA Football

NCAA Football is a college level men’s football league. There are 250 Division 1 teams

in this league, which are further broken down into the Football Bowl Subdivision (FBS)

and the Football Championship Subdivision, the former having 130 teams in 2018. The

FBS abides by more stringent rules than the FCS, and its teams end their seasons with

bowl games, which ultimately determine the consensus Division 1 champion. The FBS

subdivision is considered the stronger of the two subdivisions, and its championship

team is considered the true winner of the division. Therefore, this project will only focus

on ranking the FBS teams [11]. By subdividing Division 1, the NCAA decreased the

talent disparity between two competing football teams in the same subdivision.

2.2.3 NFL

The NFL is a professional men’s American football league. There are 32 teams in

this league. A total of 256 games are played each season, with each team playing 16

games. There are two conferences, each with 16 teams. Within each conference, there are
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four divisions, each with four teams. Each team plays six games within their division,

facing each team in their division twice. Each team also plays six non-divisional games

within their conference, as well as four games outside of their conference, all against the

same division [12]. In terms of scoring, most teams earn 20 to 30 points per game in this

league [13].

2.2.4 MLB

MLB is a professional men’s baseball league. There are 30 teams in the league, which

are split into two leagues. Each league is broken down into three divisions, with five

teams per division. Each team plays 162 games in a season. A team plays 76 of these

games against teams within the same division, 19 per team. A team plays an additional

66 games against teams within the same league and different division. A team also plays

20 games outside of their division [14]. Each team scores an average of three to six runs

(points) per game [15].

2.2.5 NBA

The NBA is a professional men’s basketball league. There are 30 teams in the league,

which is split into two conferences containing 15 teams each. Each conference has three

divisions. There are 1230 total games in the season, and each team plays 82 games. Each

team plays every other team in the league at least twice in a season, and plays teams

within their division four times [16]. Scoring averages at about 100 to 120 points per

game [17].

2.2.6 NHL

The NHL is a professional men’s hockey league. There are currently 31 teams in the

league, which is split into two conferences, one with 15 teams and the other with 16

teams. Each conference has two divisions. There are 1271 total games in the season, and

each team plays 82 games. Each team plays every other team in the league at least twice

in a season, and plays teams within their division four or five times [18]. Most teams

score around one to three goals (points) per game [19].
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2.3 Graph Theory

2.3.1 Introduction to Graphs

In computer science, a graph is a convenient data structure consisting of nodes and

edges between those nodes. An example graph is shown in Figure 2.1, where A, B, C,

and D are nodes and the lines between them are edges. One might use a graph like this

to represent flights between cities - nodes represent cities and edges represent existing

flights between those cities.

A B

CD

Figure 2.1: Example Graph

Graphs are defined by (V ,E), where V is the set the set of vertices or nodes, and E is

the set of edges between these vertices.

There are two different ways to represent edges: undirected or directed. In the graph

in Figure 2.1, all of the edges are undirected, meaning they can be traversed from either

vertex. Node B can be reached from node C, and node C can be reached from node

B. However, there are scenarios where this would not represent the data accurately -

consider the case where there is a flight from city B to city C, but no flight from city C

back to city B. In this case, there would be a directed edge from node B to node C, as

shown below in Figure 2.2. A directed graph is also known as a digraph.

There is a path from a starting node (s) to a terminal node (t) if t can be reached

from s, even if other nodes must be visited along the way [20]. In Figure 2.2 there is a

path from node A to node C. Starting at node A, we go to node B, and then to node C.

A weighted graph is a graph whose edges have values (weights) assigned to them.

If there are no weights, then the graph is an unweighted graph. Figure 2.2 is an un-

weighted graph, and Figure 2.3 is a weighted graph. These weights generally signify

more information about the data being represented. In the flight example, the edges can

signify how many hours the flight takes.
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A B

CD

Figure 2.2: A Directed Graph

A B

CD

1

1

2

3

4

Figure 2.3: A Directed and Weighted Graph

Graphs can further be categorized by the frequency of edges. A complete graph
has the maximum amount of edges: every node is directly connected to every other node

[20]. A graph is considered “dense" when the number of edges in the graph is close to

the maximum amount of edges. Conversely, a graph is considered “sparse" when it has

relatively few edges. There is no precise technical definition of a graph’s density, and

graph categorization often depends on the context it is viewed in.

A connected graph has an undirected path joining each pair of vertices. A strongly
connected graph is a directed graph where there is a directed path from every node to

every other node [20]. Figure 2.2 is an example of a strongly connected graph.

There are cycles in a graph if a node can reach itself by traversing through at least

one other node. In Figure 2.3, there is a cycle between nodes A and B, and another one

between nodes B, C, and D. A graph is called acyclic if there are no cycles in the graph.

Graphs can be separated into components in order to categorize sections of the

graph. These components are smaller parts of the full graph, also known as subgraphs,
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which retain the properties of graphs. For example, a component can by cyclic or strongly

connected, or have any other graphic property.

2.3.2 Representing Graphs

Graphs are often represented by two dimensional matrices called adjacency matri-
ces. If the value at row i, column j is 0 then there is no edge from node i to node j. If

the value is non-zero, then there is an edge from node i to node j and the value is the

weight of that edge. If the graph is unweighted, then the value is simply 1. Below is an

adjacency matrix representing the graph in Figure 2.3. In this matrix, the first row and

first column represents node A, the second row and column represents node B, and so on.
0 1 0 0

1 0 2 0

0 0 0 3

0 0 4 0


2.3.3 Minimum Feedback Arc Set Problem

A feedback arc set is a set of edges that can be removed from a graph to turn it

into a directed acyclic graph. The minimum feedback arc set is a feedback arc set

with the least possible number of edges [21]. There can be multiple minimum feedback

arc sets for each graph. Consider the graph G in Figure 2.4 below. G has a cycle with

nodes A, B, C, and D. Removing the edge from A to C and from B to C results in graph G′

(Figure 2.5) which is a directed acyclic graph. Therefore, edges AC and BC are a feedback

arc set. However, removing only edge AD also results in a directed acyclic graph, which

is shown as G′′ in Figure 2.6. Since this feedback arc set only contains one edge, it is a

minimum feedback arc set.

Finding a minimum feedback arc set (mfas) for any graph is an NP-hard problem
(see [22], p. 192). This will be discussed further in the following sections, but, in short,

a problem being NP-hard means that there is no known algorithm that can solve this

problem in polynomial time [23]. A naïve solution to find an mfas is to try removing

every combination of edges and for each combination, check if the remaining edges form

an acyclic graph. If so, check the number of edges removed and see if it is the least. If n
is the number of nodes in the graph, this costs O(2n2

) because there can be up to O(n2)

edges in a graph and for every edge there are two choices: it can be kept or removed.

Additionally, for each graph, we also must ensure that it is acyclic, which would mean a

9
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A B

CD

Figure 2.4: Graph G, a Cyclic Digraph

A B

CD

Figure 2.5: Graph G′, an Acyclic Digraph

A B

CD

Figure 2.6: Graph G′′, an Acyclic Digraph

feedback arc set was indeed removed. Using Depth-First-Search, this costs O(n2). The

total time complexity of this solution is O(2n2 ×n2), which is indeed exponential.

A weighted version of the minimum feedback arc set problem would be to find the

feedback arc set that has the smallest weight instead of the smallest number of edges.

The unweighted version is a special case of the weighted version where every edge has

the same weight. To find the weighted minimum feedback arc set, simply add the weights

of every possible feedback arc set and choose the set with the minimum weight.
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Because removing a feedback arc set results in an acyclic digraph, the nodes of the

graph can be ordered. The order must start from a node with no incoming edges. Looking

at graph G′′ above, it is clear that the nodes should be ordered ABCD by following the

directed edges. An ordered image of G′′ is shown below in Figure 2.7. Note that every

edge points to the right.

A B C D

Figure 2.7: Ordered Graph G′′

If the edges in the mfas were to be added back in, they would all be pointing left. These

edges are therefore known as backedges. They point against the order, or backwards.

Figure 2.8 shows the backedge removed from graph G in red. Because the edges in a

feedback arc set are all backedges, finding the mfas is equivalent to finding the order

of nodes with the least backedge weight. Therefore, another way to find the mfas is for

every ordering of the nodes in the graph, find the weight of the backedges. The mfas

is the backedges of the order whose backedge weight is the least [21]. This solution is

O(nn+2) since there are at most nn ways to order n nodes, it takes n2 operations to make

an adjacency matrix, and n2

2 operations to count the backedges in the adjacency matrix.

A B C D

Figure 2.8: Ordered Graph G′′

2.4 P and NP

A common way problems are classified is by their known solutions. There are two

major complexity classes, P and NP. The set of P contains problems that are known to

be efficiently solvable in polynomial time. More precisely, they can be solved in time

complexity O(nc), where n is the input size and c is a constant. The set of NP contains
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problems for which if a potential solution is presented, it can be verified in polynomial

time. NP stands for non-deterministic polynomial. P is a subset of NP, but it is unknown

if the two sets are actually equivalent [24]. However, most people believe that P 6= NP.

The P vs. NP problem is one of seven Millennium Problems, which were proposed in

2000 as some of the most important problems in mathematics. There is a one million

dollar prize for solving this problem and proving that P and NP are either equivalent

or separate [25]. Therefore, this problem holds significant importance in the world of

computer science.

There are two further classes of problems within NP: NP-Complete and NP-Hard.

NP-Hard is the set of problems that can be reduced to each other in polynomial time.

NP-Complete is the set of problems that are both NP and NP-Hard. Figure 2.9 shows

the relationships between the problem classes, both in the case that P 6= NP and in the

case that P = NP.

Figure 2.9: Relationships between Problem Classifications [26]

2.4.1 Problem Solving Techniques

As an NP-Hard problem grows, there are no known methods to solve it in a reasonable

amount of time. In fact, if P 6= NP then there are no methods to solve it in a reasonable

amount of time. However there are many methods one can use to solve small NP-Hard

problems in a manageable amount of time. These methods use several approaches to
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making NP-Hard problems manageable, such as decreasing the time complexity of the

problem, or separating the problem into smaller subproblems.

2.4.1.1 Brute Force

A brute force approach is a method of solving a problem by trying every single

possible solution until a suitable one is found [20]. This approach has the benefits of

being simple to understand, as well as being guaranteed to find a solution, if one exists

for the given problem. However, brute force solutions are often very computationally

expensive, especially for NP-hard problems [20].

2.4.1.2 Dynamic Programming

Dynamic programming is an approach which recursively breaks down a large

problem into a series of subproblems [24]. Using the solutions of these subproblems,

the larger solution can be found. This approach significantly cuts down on the time

requirement to find the optimal solution, since not all possible solutions have to be

considered. However, dynamic programming has higher memory consumption from

needing to store the solutions to every subproblem, which can become an issue if the

number of subproblems is very large [24]. Additionally, not every problem can be divided

into the subproblems necessary to utilize a dynamic programming approach.

2.4.1.3 Multithreading

Multithreading is a way of writing code so as to utilize multiple processes at the

same time to solve a problem [20]. This concept works especially well with dynamic

programming problems, since many subproblems can be solved simultaneously.

Multithreaded algorithms must avoid a race condition, or situation in which a

system attempts to simultaneously perform more than one operation that must be

completed in a specific sequence. To prevent this, multithreaded algorithms utilize

mutual exclusion, which is essentially a programmatic lock that only allows one

process to have access to a shared resource. They also use atomic operations, which are

operations that other threads understand to be instantaneous and cannot be interrupted

[20].
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2.5 Previous Work

In the 2017-2018 school year, an MQP was completed that focused on using algorithms

to generate sports rankings. This MQP utilized several algorithms to generate rankings,

including brute force solutions to the minimum feedback arc set problems, as well

as a few approximation algorithms. This MQP included weight scales for its graphs

which consider recency (represented as α) and point differential (represented as β).

These contributions, as well as the overall structure of the MQP, provided significant

background for this project [27].

2.6 Summary

This chapter introduced several key topics relating to our topic. Different sports

leagues were discussed, and their variations are important as we wish to test our project

against a wide range of data. Graph theory is used extensively throughout this project as

a way to model the data for each season. The complexity of problems and ways to solve

problems were explained. This is especially important as the problem we solved has no

known polynomial time efficient solution.
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DESIGN

3.1 Ranking System

Our proposed ranking system is designed to take game results into consideration as

much as possible. Therefore, our goal is to create rankings that minimize the amount of

occurrences of teams being ranked lower than teams they beat.

By representing teams and the games between them as a digraph, we can consider

our goal as minimizing the number of backedges in a ranking. Further, by applying edge

weights to represent point differential and game recency, we can minimize the weight

of the backedges instead of the number of backedges, which is equivalent to finding the

minimum feedback arc set (mfas).

3.1.1 Graph Structure

To create a digraph of a season, we treat the teams as nodes and the games between

the teams as directed edges between the nodes. If Team A beats Team B, an edge from

Node A to Node B is created. If Team A beats Team B multiple times, we add to the

edge’s weight instead of creating multiple edges. If Team A and Team B tie, no edge is

added.

3.1.2 Edge Weights

Since some game results can have more significance than others, edge weights

are given to each game. The two factors in consideration are game recency and point

differential. To control the relative importance of each factor we introduced α and β

parameters. These parameters control the minimum value of each factor. α creates a

linear scale for game recency, from the value of α to 1. Similarly, β creates a linear scale

for point differential, from the value of β to 1. If α and β are set to a value of 1, all games

will be weighted equally.
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3.1.2.1 Game Recency

Game recency is calculated on a linear scale between α and 1. Since each sport has a

different scheduling system and number of games, the recency value for different sports

is handled slightly differently. For football (NFL and NCAA Football), we treat every

game in a distinct week as occurring at the same time. Since each team only plays once

per week, there is no difference between playing Sunday afternoon or Monday night. For

every other sport, we treat every game that was played on the same day as occurring at

the same time. Even though baseball teams can play two games on the same day, this is

rare and the time difference between the games is negligible.

The first game of each season is designated as the lowest value game and given

a value of α. The last game of each season is designated as the highest value game

and given a value of 1. Every game in between is placed linearly between alpha and 1

based on when the game was played. For convenience, even if no games are played on

a particular day during the season, we still count that day as being part of the season,

there are just no games with a recency value corresponding to that day.

3.1.2.2 Point Differential

Point differential is calculated on a scale between β and 1. The lowest point differ-

ential in the season, or the closest game, is given a value of β. The top 25% of the point

differentials in the season are given a value of 1. All of the point differentials up to the

75th percentile are placed linearly between β and 1. We chose to give the largest 25%

of the point differentials the same value because we do not want blowouts to skew the

significance of the wins. For example, in football, winning by 30 points or 35 points is not

very different.

To decide where to cap the point differential, we analyzed data on the frequencies

of different point differentials in different sports. In every case, the 75th percentile

represented a point differential in which one would consider the winning team won by a

large margin. Table 3.1 shows the 75th percentile of point differentials for different sports

and seasons. Figure 3.1 shows a chart of point differential distributions for different

sports and seasons.
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Table 3.1: 75th Percentile Point Differential for Different Sports

Sport and Year 75th Percentile Point Differential
NFL 2016 15
NFL 2017 17
NHL 2017 3
MLB 2018 5

NCAA Basketball 2017 18

Figure 3.1: Chart of Point Differential Distributions

3.2 Data Format

In order for our program to know the results of games between teams, we need to

provide season data. We chose to use csv files to store this data and input into our

program. Two files are needed by the program: a csv file that contains information about

each game, and a csv file that contains the names of all of the teams that we want to

rank.

In the csv file containing game information, each row is a game. The only required

data are the team names and the score for each team. However, more information can be

provided such as the date of the game and which team was the home team. All of our csv

files have standardized column headers, so the program knows which information is in

each column and the order of the columns does not matter.

The csv of teams is a simple csv file where each row is a different team name. This

file tells the program which teams to extract game data for, and which teams to ignore.
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3.2.1 Ranking Considerations Among Sports

We chose to compute rankings for the following sports leagues: MLB, NFL, NBA,

NHL, NCAA Basketball, and NCAA Football. These sports leagues vary significantly in

number of teams, number of games, and average points per game. We chose the first four

leagues because they are the most popular professional sports in the United States, and

therefore many people will be interested in our results for those sports. We also wanted

to include NCAA Basketball and Football because they present interesting ranking

challenges due to the large number of teams. Additionally, rankings for these leagues

are very important because championship tournament members in NCAA Football and

Basketball are determined by a ranking.

The MLB, NFL, NBA, and NHL all provide very dense graphs because of how many

teams play each other within the leagues. In the NBA and NHL, all nodes are connected

since every team plays every other team at least twice. Additionally, the MLB has only

30 teams, each of which plays 162 games, meaning that two teams may play each other

many times.

NCAA Basketball and Football provide very different graphs from those of profes-

sional leagues. NCAA Basketball and Football graphs have many more nodes and are

sparser than their professional league counterparts. These graphs often have smaller

subgraphs within them that are almost completely separate from the rest of the graph.

Overall, the differences between each sport analyzed in this project significantly

affect the ranking program design. It must account for both sparse and dense graphs, as

well as varying numbers of nodes. It is important to consider these factors when writing

algorithms to rank graphs.

3.3 A Dynamic Programming Algorithm

In the context of this project, our problem involves determining which order of nodes

gives the smallest possible feedback weight, or backedge weight. This order of nodes

represents the best possible ranking in terms of backedge weight; we call this order

an optimal order. In this section we will present a dynamic programming algorithm

that will find an optimal order with a significantly reduced time complexity compared to

the brute-force algorithm. The dynamic programming algorithm utilizes the following

definition.

Definition 3.3.1. For a sequential ordering R of the nodes of a directed graph G, a con-
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secutive subgraph G′ of G is any (non-empty) subgraph composed of nodes consecutively
ordered by R and the arcs connecting these in G.

In addition to this definition, the dynamic programming algorithm relies on the

following result proved by Younger (Theorem 5.a on page 241 in [21]).

Theorem 3.3.1. ([21]) Assume that we are given an optimal ordering R of a directed
graph G and a consecutive subgraph G′ of G. Then G′ must have as minimum feedback
arc set those arcs of G′ that are feedback arcs according to R.

In other words, a consecutive suborder of an optimal order will be also optimal. We

can use this idea dynamically to build larger optimal orders from smaller optimal orders.

3.3.1 Dynamic Programming Design

Since each subproblem provides optimal accuracy, we can design a dynamic pro-

gramming algorithm based on the subproblems. For each subproblem, we must find

the minimum feedback arc set for a smaller set of nodes. This dynamic programming

algorithm is bottom-up, which keeps only an optimal solution for each set of nodes. The

algorithm requires the full graph to be broken up into smaller subgraphs. For each

subgraph, we can consider separating one node, which will connect to the remaining

subgraph. When separating nodes, we must consider every possible split. Then, for

each split, we must calculate the added feedback weight from the separated node to the

remaining subgraph.

Let opt(G′) be the optimal solution for subgraph G′ = (V ′,E′) where V ′ =
{v′0,v′1, . . . ,v′k−1} and E′ is the set of the edges in E within V ′. Then, using the above

splitting idea, we can define a dynamic programming equation as:

(3.1) opt(G′)=


0 if G′ =∅

min
v∈G′ (opt(G′− {v})+ ∑

u∈G′−{v}
w(v,u)) if G′ 6=∅

Additionally, we need to keep track of the order of each subgraph so that we can

determine a final ordering of all nodes. We could simply store the suborder for each

subgraph, and connect those together, but that is not very space efficient. In order to

minimize space complexity, we store only the node that gets separated. Therefore, we

can use backtracking from that point to get the full order.
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3.3.2 Pseudocode

Algorithm 1: Dynamic Programming Brute Force
Data: Graph G = (V ,E) and adjacency matrix for weighted edges w
Result: Minimum feedback set of the graph

1 begin
2 forall G′ is subgraph of G do opt(G′)←∞;
3 opt(∅)← 0;
4 // need to be increasing orders
5 forall G′ is subgraph of G do
6 G′ ←minv∈G′(opt(G′− {v})+ ∑

u∈G′−{v}
w(v,u));

7 end
8 return opt(G);
9 end

3.3.3 Analysis

Our Dynamic Programming Brute Force solution is significantly more time efficient

than a standard brute force solution to the minimum feedback arc set problem. In our

algorithm, we evaluate every subgraph. Considering n as the number of nodes, there are

2n subgraphs. For each of these subgraphs, we need to consider every possible one-node

removal. This requires us to calculate the added feedback weight for a removed node,

which takes O(n). Ultimately, this process leaves the algorithm with a time complexity

of O(2nn2), which is much less than its original brute force complexity of O(nn+2). We

replace the nn factor in the original brute force solution with 2n from the dynamic

programming solution, which results in a very large time difference between the two

algorithms.

3.3.4 Parallelization

In order to further increase the efficiency of this algorithm, we chose to parallelize it.

This process is possible because one subgraph’s state can be calculated independently

from other subgraph’s states, as long as the subgraphs contain the same number of nodes.

Because a state can be calculated independently from states whose graphs consists of

the same number of nodes as the current node’s, we can split the computation among

threads.
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We define all subgraphs with an equal number of nodes to be on the same level. Each

level of subgraphs are calculated based upon subgraphs in a previous level. Starting

from an empty graph, we can calculate each concurrent level by utilizing data from only

the current and previous levels. This ensures that there will not be a race condition.

Ultimately, the algorithm is parallelized by giving one state at a time to a thread,

parallelizing only within each level.

3.4 Approximation Algorithms

3.4.1 Sliding Window

One approximation algorithm we designed is called the Sliding Window approxima-

tion algorithm. This algorithm uses our Dynamic Programming Brute Force algorithm

on separate windows or ranges of teams. Given the data of 32 teams and a window

size of 20, this algorithm would run dynamic brute force on teams 13 through 32. It

would then save the team that was ranked last (32nd place) in the full ranking. Next, the

algorithm would run dynamic brute force on teams 12 through 31. The team that was

ranked last in this window would then be ranked in 31st place in the full ranking. This

process continues until there are only 20 teams remaining, at which point the Sliding
Window algorithm computes a ranking for those teams and adds the entire result to the

full ranking. When the window size is fixed at size w, and there are n teams, this process

has a time complexity of O(2w ∗w2∗ (n−w)). This is significantly less than that of the

full brute force algorithm when w is smaller than n, allowing for a much faster solution.

If w is constant, then this solution is actually linear, which is very efficient.

The Sliding Window algorithm uses windows that start from the bottom of the

ranking and move to the top of the ranking. We chose to use this bottom to top process

in order to have the greatest possible certainty about the top ranked teams. In the

example mentioned above, the Sliding Window would begin its first window with 20

teams, leaving 12 unranked and therefore uncertain teams outside of the ranking window.

As it moves to the next window, it has a window of 20 teams, plus one ranked or certain

team as well as only 11 unranked or uncertain teams. The uncertainty continues to

decrease until the algorithm reaches the final window 20 teams at the top of the ranking,

at which point there are zero remaining uncertain teams. By using this bottom to top

method, we were able to have the greatest certainty about the top ranked teams, which

are usually the most important teams in the minds of sports fans, since they would be
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the teams ultimately competing for the championship.

3.4.1.1 Preordering

The process of using windows is only able to create a reasonably accurate ranking

when it begins with a good preorder. This is because the windows do not include the

entirety of the data, and as a result, need to contain the most relevant information

within them. For example, when the Sliding Window algorithm ranks the bottom 20

input teams, it intends to find the team that should be ranked last in the overall ranking.

If the team that should be ranked last is not present in the preordered bottom 20 teams,

the final ranking created by the Sliding Window algorithm will not be optimal, no

matter where the remaining teams are ranked. In order to avoid negatively affecting the

performance of the Sliding Window algorithm, it is important to create a strong preorder

for this algorithm

The strength of the preorder can severely affect the performance of the Sliding
Window algorithm. Therefore, we decided to preprocess the input data to generate

a preorder of teams based on total net edge weight out of nodes. This preorder can

be generated quickly by utilizing the game and team data that already exists in the

adjacency matrix. The resulting preorder gives a reasonable ordering for teams based on

weighted wins and losses that allows the Sliding Window algorithm to, in turn, create a

reasonable ranking. The algorithm will also accept a manually created preorder, which

allows for further experimentation with ordering when desired.

3.4.1.2 Pseudocode

Algorithm 2: Sliding Window
Data: adjacency matrix, numTeams, windowSize, preorder

Result: ranking

1 windowPos = numTeams - 1;

2 while windowPos != (windowSize - 1) do
3 run brute force on current window of preorder;

4 get bottom team from brute force window;

5 add bottom team to top of existing final ranking;

6 windowPos - -;

7 end
8 run brute force on final window of preorder;

9 add full window to top of existing final ranking;
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3.4.2 Brute Force Pruning

This approach is similar to the brute force approach to creating a ranking. The

important difference is that instead of keeping all possible subrankings at each level, we

keep only those rankings which have low backedge weights.

In each level, we keep only a certain number of subrankings, based upon a limiting

number. If there are equivalent rankings that would cause us to keep more rankings

than the limiting number, then all of those equivalent rankings are discarded to keep

the number of rankings below the limiting number. For example, if the limiting number

of rankings was 100, and rankings 90 to 110 had the same backedge weight, then the

algorithm keeps the 89 subrankings which have the lowest backedge weights in each

level.

If many subrankings have the same total backedge weight, it can take much longer

to execute this pruning method. Instead of keeping all subrankings with equivalent

backedge weights, we keep only a number of subrankings that are below the limiting

number. We randomize which subrankings are kept in order to make sure all subrankings

with equivalent backedge weights have a similar chance of being chosen.

Although initial orders can have a significant effect on the final results of this

algorithm, we use strategies to help decrease the impact of these initial orders. These

strategies include randomizing chosen subrankings, permuting ranking orders, and

taking the minimum weighted ranking generated by several runs of the algorithm.

3.4.3 Dynamic Brute Force Pruning

This algorithm is an approximation version of the previously discussed Dynamic Pro-

gramming Algorithm, adapted to take less time to run. In order to decrease run-time, this

pruning algorithm removes some subrankings from consideration during computation.

Subrankings are removed when they have a high total feedback weight. This approach

keeps subrankings according to the limiting number method presented in Section 3.4.2.

However, this approach constructs a ranking using the Dynamic Programming Brute
Force algorithm instead of the traditional brute force algorithm.

3.5 Postprocesses

Rankings returned by our algorithms are just one of potentially many with an

equivalent backedge weight. These equivalent rankings pose an additional problem
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within this project: finding the best possible ranking amongst those with equivalent

backedge weights. Our postprocesses attempt to address this issue.

3.5.1 Range of Correctness

One postprocess that we included in the project is called Range of Correctness (RoC).
This postprocess is intended to indicate the certainty of each team’s placing within a

ranking. The Range of Correctness in its most basic form is not intended to choose the

best ranking given equivalent backedges. Rather, it is intended to allow a viewer to

understand the solidity of each team within a given ranking.

The Range of Correctness works based on only the edges in the graph. Given a ranking,

this postprocess will calculate each team’s upper and lower rank limit. A team’s upper

rank limit is determined by the rank of the nearest team above it in the ranking that

it has lost to, which is indicated by an incoming edge from a team ranked above the

current team. RoC records the upper rank limit for a team as one position below this

team. A team’s lower rank limit is determined by the rank of the nearest team below

it in the ranking that it has won against, which is indicated by an outgoing edge to a

team ranked below the current team. RoC records the lower rank limit for a team as one

position above this team. For example, if a team lost to the team in first place and beat

the team in fifth place, that team’s upper rank limit would be two and its lower rank

limit would be four. This gives an indication that despite where that team is within the

ranking, it could be ranked anywhere from number two to number four based on the

team’s performance without changing the backedge weight of the ranking.

Range of Correctness is an important postprocess because it shows how much move-

ment is possible within a given ranking. A team can be moved to any ranked position

within its range of correctness as long as no other ranges of correctness become impossi-

ble as a result of the move. This movement is possible because there are no conflicting

edges between teams that can move within the range of correctness, and therefore move-

ment within a team’s range of correctness does not affect the total backedge weight of

the ranking.

When Range of Correctness is run on a ranking, it is designed to print out a full

ranking with each team’s range of correctness next to its spot in the ranking. For example,

if the New England Patriots were ranked number one with an upper limit of one and a

lower limit of three, it would look like the following:

1. New England Patriots [1, 3]
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This format is intended to clearly indicate to someone looking at the ranking how

much movement for each team is possible within the ranking without changing the total

backedge weight.

3.5.2 Tree of Correctness (ToC) Method

Often, when a ranking is created, there is flexibility to move teams without changing

the backedge weight. A common situation where this could occur is when two teams are

next to each other in a ranking, but they have not played each other. Since there is no

edge between the two nodes in the graph, no backedge will be introduced by switching

the team’s places in the ranking. The Tree of Correctness (ToC) method was designed to

create the “best" ranking that has an equivalent (or better if possible) backedge weight

to a given ranking and adjacency matrix.

The first step in the ToC method is to remove all of the backedges from the graph of

games. These backedges are known from the input ranking provided. By removing all

of the backedges, all of the cycles in the graph are broken, so we get an acyclic graph.

An acyclic graph is also known as a forest, or a tree if it is connected. We call it ToC
Structure.

Once the tree is created, a root node (a node with no incoming edges) is chosen to

be the first team in our new ranking. Since there are no incoming edges, choosing this

team as the best is safe since no new backedges can be introduced. Once a node is chosen,

edges connecting to it are removed from the tree. This process is repeated for each node

with no incoming edges, each time adding the team chosen to the next spot in the ranking.

Once all nodes have been selected, the new ranking is created. There will always be at

least one team with no incoming edges to choose because there will always be at least

one root of the tree.

It is important to note that the ToC method cannot generate all possible rankings

with an equivalent total backedge weight because of how backedges are removed in

cycles. For example, consider a graph of three nodes that contains one cycle (of equivalent

weight) as shown in Figure 3.2. Each edge can be considered a backedge depending on

the ordering of the nodes. By removing one edge we remove the ability to remove the

other edges since they are no longer backedges. Therefore, only one ordering of these

three nodes can be considered by the ToC method. We cannot generate all three of the

trees shown in Figure 3.3, Figure 3.4, and Figure 3.5 in the same run of ToC.

25



CHAPTER 3. DESIGN
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Figure 3.2: Original Graph

1

2 3

Figure 3.3: 1st Equivalent Graph with Order {1, 2, 3}

1

2 3

Figure 3.4: 2nd Equivalent Graph with Order {3, 1, 2}

1

2 3

Figure 3.5: 3rd Equivalent Graph with Order {2, 3, 1}

3.5.2.1 Proof

Lemma 1: The total feedback weight of a ranking obtained from ToC is less than or
equal to the weight of a provided ranking.

Proof. Edges in a graph can be separated to two parts, forward edges and backward

edges. An acyclic graph from the ToC structure consists of all of the forward edges given

by a provided ranking. To ensure that no forward edges are turned into backward edges,
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we only remove nodes that do not currently have incoming edges. If we removed nodes

that have incoming edges, those edges would become backward edges, which would

increase the total backedge weight of the ranking. By repeating the ToC process for every

node in the acyclic graph, no backedges are ever added, so the backedge weight cannot

increase. �

3.5.2.2 Pseudocode

Algorithm 3: Tree of Correctness (ToC) Structure
Data: Graph G = (V ,E) and ranking for each team rank
Result: ToC structure (acyclic graph) corresponding to G as ToCG

1 begin
2 E′ ←∅;
3 forall e = (u,v) ∈ E do
4 // add an edge if node u is ranked higher than node v
5 if rank(u)< rank(v) then E′ ← E′⋃{e};
6 end
7 return ToCG = (V ,E′);
8 end

3.5.3 Secondary Metric

Within the constraints of the ToC algorithm, we utilize a secondary metric (or score)

in order to select the best possible ranking. The idea behind this secondary metric is

to give a higher score to teams who defeat teams that are higher in the ranking, and a

lower score to teams who lose to teams that are lower in the ranking. Each team gets a

score according to the following equation:

(3.2) score(vi)=
n−1∑
j=0

(n+1− rank(v j))×w(vi,v j)−
n−1∑
j=0

rank(v j)×w(v j,vi)

where rank(vi) is the rank (starting from 1) of node vi, and n is the number of teams.

When this score is maximized, we have the best possible ranking according to our second

metric.
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3.5.4 Range of Correctness Reorder

The idea behind the Range of Correctness Reorder postprocess is to rearrange a

ranking depending on the second metric, while limiting a team’s mobility to the range

of correctness. Range of Correctness Reorder runs the Tree of Correctness postprocess

with the second metric to create a new ranking. Instead of maximizing the second metric

score of the entire ranking, we choose the team with the best second metric score from

every team whose Range of Correctness allows it to be in a certain spot in the ranking.

This process repeatedly generates new rankings until an identical ranking is generated

twice. When that happens the ranking that occurred twice is kept.

3.6 Comparing Rankings

Comparing our rankings to externally generated rankings, such as those from ESPN

or the NCAA, allows us to determine whether our rankings make sense. While our

rankings produce the lowest possible backedge weight, some teams may be ranked

significantly differently than they would be in a traditional ranking system. Comparing

our own system to these rankings allows us to fine-tune different input values to best

emulate these external rankings.

Our ranking comparison algorithm takes each team in the external ranking, finds

its rank in our ranking, and takes the absolute value of the difference. By taking the

summation of the absolute value of this difference for each team, we arrive at a total

difference score that shows us how close our ranking is to the external one. This is shown

in the following equation, where Ri is team i’s rank in our ranking, and E i is team i’s
rank in the external ranking:

(3.3) Rank Difference=
n∑

i=1
|Ri −E i|

By calculating this difference for a series of different α and β values, we can determine

which of these values produces the closest ranking to the external one, allowing us to

gauge the importance of game recency and point differential in these external rankings.

3.7 Summary

This chapter focused on the overall design of our algorithms and postprocesses. It

outlined the structure of the adjacency matrices that store game data. The design of
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our optimal Dynamic Programming Brute Force algorithm, as well as our approximate

Sliding Window, Brute Force Pruning, and Dynamic Brute Force Pruning algorithms were

discussed in detail and accompanied by pseudocode. The concept of Range of Correctness
was introduced and its importance in displaying the flexibility of a ranking was explained.

Finally, our postprocessing algorithms Range of Correctness, Tree of Correctness, and

RoC Reorder were introduced and explained.
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IMPLEMENTATION

4.1 Program Configuration

There were many options when determining how to best implement the algorithms

described in the design section above. Firstly, we had to choose a programming language

that would allow fast execution time and manageable threading. We also had to consider

general program design for flexibility of testing and result gathering.

We chose to use the C++ language to implement our program. It is an efficient

language that also allows for the use of objects and other convenient data structures.

The boost library has many additional features that make programming complex tasks

easier [28].

To implement our program, we decided to have one program that can execute multiple

different algorithms on different data. For ease of running the program, the only input

argument is a configuration file that specifies which ranking algorithm to run, what data

to run it on, what the values of α and β should be, which postprocess algorithm to use (if

any), and other convenience measures, such as where to save the results.

To run our program, we used WPI’s ACE computing cluster. This allowed us to use

up to 40 threads to run the levelled version of our Dynamic Programming Brute Force
algorithm. Additionally, it provided a common platform where we could all obtain results

that were consistent with each other. The majority of the nodes in the ACE computing

cluster use two Intel Xeon Gold 6138 Processors. These processors run at 2.00 GHz and

can be overclocked to 3.70 GHz [29].

4.2 Data Acquisition

To obtain data, we wrote python scripts to scrape game data from different websites.

These scripts read the data for a specified season and put it into the csv format described

above. The following table shows where data for each sport was obtained from.
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Table 4.1: Sources for Data Sets

Data Set Source
MLB 2018 www.baseball-reference.com
NFL 2018-2019 www.nfl.com
NBA 2017-2018 www.basketball-reference.com
NHL 2017-2018 https://www.hockey-reference.com
NCAA Basketball 2017-2018 www.sports-reference.com/cbb/boxscores/
NCAA Football 2018-2019 www.sports-reference.com/cfb/boxscores/

4.3 Graph Generation

The first step of generating an adjacency matrix from the input data is to create a

lookup table that maps team names to integers. These integers are used as indices in

the adjacency matrix. To create the lookup table, the program reads through the input

csv file of team names. The first team is mapped to 0, the second team to 1, and so on

and so forth until all of the teams have been mapped.

Next, the program reads the csv of game data. For each line in the file, the program

first determines the winning team and the losing team depending on the score (ties are

ignored). It then gets the indices of both teams from the lookup table. If either of the

two teams are not in the lookup table, then the program knows that at least one of the

teams is not being considered for the ranking. In that case, the game is not added to the

adjacency matrix and the next game is looked at. If both teams are in the lookup table,

then the edge weight is calculated and stored in the adjacency matrix.

If one team is found in the lookup table but the other team is not, there is a user

option to enable a “supernode." This supernode acts as an extra team that represents

all of the teams we are not ranking. If a team in the lookup table beats a team not in

the lookup table, then it counts as a win over the supernode. Conversely, if a team in the

lookup table loses to a team not in the lookup table, then it counts as a loss against the

supernode.

To calculate the edge weights, the scale for each factor must be determined. Therefore,

the program scans the game data to find when the first and last games occurred, as

well as the distribution of the point differentials. When the recency edge weight is being

calculated for a specific game, the program knows when in the season the game took

place and can assign the appropriate value. Similarly, when the point differential edge

weight is being calculated for a specific game, the program knows at what percentile that

point differential is, and the appropriate value is assigned.
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4.4 Algorithms

4.4.1 Dynamic Programming Algorithm

4.4.1.1 Initial Implementation

Due to memory and time constraints, this algorithm can consider a maximum of

approximately 32 nodes. To save on memory and time, we chose to represent the nodes

in a subgraph as a bitmask stored as an unsigned long.

Let n be the number of nodes in a graph. The indices of the nodes go from 0 to n−1.

We define the existence of the ith node as the value of 2i. When a node is included in a

subgraph, it is represented by a 1 in the bitmask. To add a node to the subgraph, the

program uses bitwise OR (|) between the existing graph and a bitmask that only has a 1

at the node index we want to add. For example, to add node 2 to a subgraph of nodes 1

and 4 the following operation is performed.

(4.1) 1001 | 0100= 1101

Note that the algorithm does not need to keep track of the edges in the subgraph because

the adjacency matrix still has that information. It is only keeping track of which nodes

are included in the subgraph. The maximum value of 2n −1 is needed to represent the

entire considered graph. Considering the maximum of 32 nodes, an unsigned long is

sufficient to represent all subgraphs.

More precisely, let graph G′ = (V ′ = {vg0 ,vg1 , . . . ,vgk−1},E′) where g0 < g1 < ·· · < gk−1.

We define the value representing graph G′ as:

state(G′)=
k−1∑
i=0

2g i

Then, we represent the optimal ordering, or opt as an array. Because the bigger

state values only need smaller state values, the program can directly iterate from 0 to

2N −1 with Equation 3.1. Initially, it sets all values in opt to infinity and changes them

when processing. It calculates each of opt in a bottom-up manner; that is, it changes

value-greater states from the current state. To calculate the added feedback weight,

the program reverses a state value to nodes by using bitwise AND (&). Precisely, to

decide if subgraph G′ consists of node i, it checks if state(G′)&2i > 0. Then, it uses that

information to calculate all weights from one of the excluded nodes to all included nodes

and change the value of a new state to lower value.
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In addition, the algorithm stores order data in an array. It is then able to backtrack

through the array and obtain the best order of nodes. It changes the node number when it

changes the state value as explained in the previous paragraph. To retrieve the complete

order, it gets the node number, changes it to the node value, and reduces the kept state

value until it becomes zero (empty state). Since the algorithm stores the node number

during processing, the order is entered in reverse. The last step is to reverse that order

and get the correct one.

4.4.1.2 Parallelizable Implementation

It is difficult to separate state values which should be calculated earlier from Sec-

tion 4.4.1.1. Instead of parallelizing the previous implementation, we completely changed

it to better allow for parallelization. For each step in the parallelized implementation,

we want to keep and use only the states that are necessary for the calculation of the

next states. The algorithm initializes two C++ STL vectors to keep current and previous

states; it swaps them when it finishes each level. It allocates space for current states

beforehand because it can calculate exactly how much space it needs. Then, we paral-

lelize the process of finding current states from previous states by using a global atomic

integer to track a position to be filled. Each thread calculates one previous state at a

time to create states which are guaranteed to be different from others.

Similarly to the initial implementation, the algorithm stores the optimal solution

for each subgraph and the last node of subgraphs globally. In contrast to the initial

implementation, the algorithm starts from a current state by removing one node from a

set of nodes of a subgraph, calculates backedge weight from the removed node to remain-

ing subgraph, adds to stored minimum values for subgraph, and takes the minimum

value. It, similarly, parallelizes on current states we obtain earlier (explained in previous

paragraph).

In order to avoid spending too much time waiting for threads to complete, we decided

to use an atomic integer to retrieve the state value from the previous level. This integer

will in turn be written to a specific array position in the current level, avoiding the

additional time taken by using locking while waiting for the mutex to be released by

each thread.
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4.5 Approximation Algorithms

4.5.1 Sliding Window

The Sliding Window algorithm was implemented according to the logic explained in

the Sliding Window design section. The algorithm loops through windows of a defined

size within a full preorder of teams, running the dynamic brute force algorithm on the

ranking, starting from the bottom. Like other algorithms, the Sliding Window algorithm

allows for α and β values to create different edge weights between games, and therefore

is able to consider recency and point differential within each window that it ranks.

4.5.1.1 Preorder

As designed, the Sliding Window algorithm requires a preorder. The preorder can

either be entered in a file by a user, or it can be generated. The generated preorder takes

in an adjacency matrix that has edge weight information in it. The process then creates

a preorder based upon the edge weight information.

4.5.2 Brute Force Pruning

As explained in Section 3.4.2, we start the algorithm by shuffling an order of nodes

by using C++ STL (std::shuffle). We then duplicate the adjacency matrix and change it

so that the first node in the order is index 0, the second node is index 1, and so on and so

forth.

For each shuffle, we start by creating a C++ STL priority queue as a maximum heap

to keep a pair of total feedback weight and its corresponding subranking. The priority

queue will have rankings with a higher feedback weight at the top, so they will be

removed before rankings with a lower feedback weight. In addition, we also keep track

of the minimum total feedback weight. We start to pop elements that have a higher

total feedback weight than the ranking at the limiting number. In our original design

concept, our plan was to keep all equivalent feedback weight rankings if that brings us

to a total number of rankings less than twice the limiting number. Otherwise, we get rid

of all rankings that have an equivalent backedge weight to the ranking at the limiting

number. However, in our final implementation, we decided to simply cut off rankings at

the limiting number. If there are rankings that cross the limiting number, we randomly

choose which ones to keep.
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To get a new ranking from each kept subranking, we put a new node to the end of

considered subranking, calculate the total feedback weight by adding weights from that

new node to all nodes in subranking, and then add it and the newly-created subranking

to the heap so that we can reuse that subranking later to save computation. After that,

we swap the new node and a node next to it, increase total feedback weight by the weight

from the next node to the new node, decrease it by the weight from the other way, and

put in heap.

4.5.3 Dynamic Brute Force Pruning

Similarly to Brute Force Pruning, Dynamic Brute Force Pruning utilizes the same

strategy but uses a different weight finding approach. We keep only some states. We pick

states one at a time. Then, we choose one of the unranked nodes and try to append it to

the end of a state (ranking). Next, we calculate an added feedback weight by summing

the weight from the chosen node to the state and store that weight globally as array,

which is similar to the optimal Dynamic Brute Force Algorithm. Finally, we put it on the

heap and repeat the process with different unranked node.

4.6 Postprocesses

4.6.1 Range of Correctness (RoC)

The Range of Correctness process utilizes the logic outlined in the design section.

This process loops through each team in a ranking and then uses an adjacency matrix

to find the closest ranked team above the team in question that was a loss in the team

in question’s record. Then, it uses the matrix to find the closest ranked team below the

team in question that was a win in the team in question’s record. After following this

process for each team in the ranking, the range of correctness is able to be determined

for the full ranking, and is displayed as outlined in the design section.

4.6.2 Tree of Correctness (ToC)

The Tree of Correctness Method of postprocessing takes in an adjacency matrix

representing games played by all teams. In order to implement the ToC method, we

must create an acyclic graph. This acyclic graph can be represented by an adjacency

matrix initialized to false boolean values. Once the acyclic graph matrix is created, we
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go through game matrix and change the boolean values accordingly. If a position in the

game matrix is non-zero and it has an edge from a higher rank to a lower rank, the

corresponding boolean will be changed to true in the acyclic graph matrix. After updating

the acyclic matrix, we continue calculation with one of three possible processes.

4.6.2.1 Original

The Original ToC Method generates equivalent rankings using recursion. Using a

function with reference access to a vector, we initialize an empty order globally. Through-

out the process, we add and remove elements from this global vector. To add an element,

we first check if there is an edge in the acyclic graph going into the element in question.

This determines whether or not it can be next in an equivalent ordering. If the element

can be next, we keep it and process it recursively until a full equivalent order, or ranking,

is complete.

After we obtain every equivalent ranking (or 1 million equivalent rankings are

obtained), we use Equation 3.2 to calculate a score for each ranking. For each ranking,

we calculate the feedback weight and the score. Then, from rankings with the minimum

feedback weight, we pick the ranking with the maximum score.

4.6.2.2 Big Data

For this process, we initialize a global score array to be accessed in future. Then,

we iterate through the nodes, using the score calculating function shown below in

Equation 4.2 on each node. When the score calculating function is called, it also runs

recursively for all of its successors if their scores have not yet been calculated. After

retrieving all successors scores, we apply the ToC method. We use a maximum priority

queue to determine nodes that can be next in the ranking, taking the one with a maximum

score each time. We put any successors which do not have predecessors outside of the

ranking.

(4.2) score(vi)= γ|S|+δ ∑
u∈S

score(u)

where S is the set of successors of vi,

γ is the coefficient of the number of successors,

δ is the coefficient of the total score of successors.
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4.6.3 Range of Correctness Reorder

The Range of Correctness Reorder process utilizes the logic outlined in the design

section. We initialize a set to keep rankings that we have processed. We start each

sub-process by generating a second metric value and tree of correctness given graph and

ranking. We generate a new ranking using the acyclic graph from the Tree of Correctness
Method, along with the second metric. We check if the new ranking exists in the set

of previously generated rankings. If so, we stop the process and return the ranking;

otherwise, we continue the sub-process with the newly generated ranking.

4.7 Summary

This chapter explained how the functionality of the project was implemented. It

highlighted the adjustments that were made after the design phase of the project. Code

specific details for each algorithm were discussed and reasons for these choices were

given. The code implementation of our postprocesses were also discussed for each method.
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All code was run using the ACE computing cluster. It is important to note that since

this cluster is used by many students and faculty at WPI, we were unable to assure that

each run was executed in the exact same circumstances. In some cases, our program was

run simultaneously with many other external computations. Therefore, two identical

runs could report taking different amounts of time. However, we are still able to identify

and analyze trends in the timing of our algorithms.

Additionally, all data was collected at the end of the respective league’s regular season.

Postseason results are not reflected in any of the rankings - both the ones created by our

algorithms and the external rankings.

5.1 Algorithms

The following sections show how our algorithms performed with NFL 2018 data. All

rankings were created with α= 1 and β= 1 so all wins are treated equally. Additionally,

there is no postprocessing, so each ranking is just one of potentially many with an

equivalent backedge weight.

5.1.1 Dynamic Programming Brute Force

The maximum amount of threads we were able to use on the ACE computing clus-

ter was 40. Table 5.1 is a ranking of the 2018 NFL Season computed using Dynamic
Programming Brute Force with 40 threads.

Using multithreading significantly improved the performance of this algorithm. When

using 40 threads, the computation took 1795 seconds (30 minutes) to complete. When

using only 1 thread, the computation took 15235 seconds (254 minutes) to complete.

Figure 5.1 is a graph showing how the time performance of our algorithm changes

based upon the number of teams (nodes) being ranked. The algorithm was run with 40
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Table 5.1: NFL 2018 Dynamic Programming Brute Force Ranking

α= 1 β= 1 Backedge Percent = 19.3%
Rank Team Range of Correctness
1. New Orleans Saints [ 1, 4 ]
2. New England Patriots [ 1, 2 ]
3. Houston Texans [ 3, 8 ]
4. Chicago Bears [ 3, 4 ]
5. Los Angeles Rams [ 5, 5 ]
6. Kansas City Chiefs [ 6, 6 ]
7. Baltimore Ravens [ 7, 7 ]
8. Los Angeles Chargers [ 8, 8 ]
9. Cleveland Browns [ 9, 9 ]
10. Denver Broncos [ 10, 10 ]
11. Pittsburgh Steelers [ 11, 12 ]
12. Seattle Seahawks [ 11, 16 ]
13. Cincinnati Bengals [ 12, 13 ]
14. Indianapolis Colts [ 14, 14 ]
15. Buffalo Bills [ 15, 15 ]
16. Tennessee Titans [ 16, 16 ]
17. Dallas Cowboys [ 17, 18 ]
18. Minnesota Vikings [ 16, 18 ]
19. Philadelphia Eagles [ 19, 19 ]
20. Atlanta Falcons [ 20, 20 ]
21. Washington Redskins [ 21, 21 ]
22. Jacksonville Jaguars [ 22, 24 ]
23. Detroit Lions [ 19, 23 ]
24. Carolina Panthers [ 24, 24 ]
25. New York Giants [ 25, 25 ]
26. Tampa Bay Buccaneers [ 26, 30 ]
27. Arizona Cardinals [ 24, 27 ]
28. Green Bay Packers [ 28, 28 ]
29. Miami Dolphins [ 29, 29 ]
30. New York Jets [ 30, 32 ]
31. San Francisco 49ers [ 29, 31 ]
32. Oakland Raiders [ 32, 32 ]

threads on NFL 2018 data. As expected, the time increases exponentially as more nodes

are added.
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Figure 5.1: Dynamic Programming Brute Force Nodes vs. Time

5.1.2 Sliding Window

The accuracy of our Sliding Window algorithm depends upon the preorder and the

window size. To keep things consistent we automatically generated a preorder based

on the net outgoing edge weight of each node. In other words, the teams who won more

games were ranked higher in the preorder. Table 5.2 is a preorder generated for the NFL

2018 season where α= 1 and β= 1.

Using this preorder, for the Sliding Window algorithm on NFL 2018 data, we obtained

the results shown in Table 5.3. Note that the optimal backedge weight found by the

Dynamic Programming Brute Force algorithm is 49.

With window size 14, we were able to find the ranking with the optimal backedge

weight. However, we had to increase to window size 16 to be able to consistently find the

optimal ranking. The Sliding Window algorithm with window size 16 took 0.89 seconds

to find an optimal ranking. The Dynamic Programming Brute Force algorithm took 1795

seconds (30 minutes). The ranking for window size 16 is shown in Table 5.3. Even though

this ranking has the same backedge weight as Dynamic Programming Brute Force, it is

a different ranking.

Figure 5.2 shows how the backedge weight changes with changes in the window size.

Figure 5.3 shows how the time changes as the window size changes. As expected, this
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Table 5.2: NFL 2018 Sliding Window Preprocess

α= 1 β= 1
Preorder Rank Team
1. Los Angeles Rams
2. New Orleans Saints
3. Chicago Bears
4. Kansas City Chiefs
5. Los Angeles Chargers
6. Houston Texans
7. New England Patriots
8. Baltimore Ravens
9. Dallas Cowboys
10. Indianapolis Colts
11. Seattle Seahawks
12. Pittsburgh Steelers
13. Philadelphia Eagles
14. Tennessee Titans
15. Minnesota Vikings
16. Cleveland Browns
17. Atlanta Falcons
18. Carolina Panthers
19. Miami Dolphins
20. Washington Redskins
21. Green Bay Packers
22. Buffalo Bills
23. Cincinnati Bengals
24. Denver Broncos
25. Detroit Lions
26. Jacksonville Jaguars
27. New York Giants
28. Tampa Bay Buccaneers
29. New York Jets
30. Oakland Raiders
31. San Francisco 49ers
32. Arizona Cardinals

is also an exponential increase since sliding window relies on Dynamic Programming
Brute Force.
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Figure 5.2: Sliding Window NFL 2018 Window Size vs. Backedge Weight

Figure 5.3: Sliding Window NFL 2018 Window Size vs. Time
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Table 5.3: NFL 2018 Sliding Window Ranking, Window Size = 14

α= 1 β= 1 Backedge Percent = 19.3%
Rank Team Range of Correctness
1. New England Patriots [ 1, 2 ]
2. New Orleans Saints [ 1, 3 ]
3. Chicago Bears [ 2, 3 ]
4. Los Angeles Rams [ 4, 4 ]
5. Kansas City Chiefs [ 5, 5 ]
6. Baltimore Ravens [ 6, 7 ]
7. Houston Texans [ 2, 7 ]
8. Denver Broncos [ 8, 8 ]
9. Los Angeles Chargers [ 9, 9 ]
10. Pittsburgh Steelers [ 10, 10 ]
11. Cleveland Browns [ 11, 11 ]
12. Cincinnati Bengals [ 12, 12 ]
13. Indianapolis Colts [ 13, 13 ]
14. Buffalo Bills [ 14, 15 ]
15. Seattle Seahawks [ 10, 16 ]
16. Tennessee Titans [ 15, 17 ]
17. Minnesota Vikings [ 16, 18 ]
18. Dallas Cowboys [ 17, 18 ]
19. Philadelphia Eagles [ 19, 19 ]
20. Atlanta Falcons [ 20, 20 ]
21. Washington Redskins [ 21, 22 ]
22. Detroit Lions [ 19, 22 ]
23. Arizona Cardinals [ 23, 23 ]
24. Green Bay Packers [ 24, 25 ]
25. Jacksonville Jaguars [ 22, 25 ]
26. Miami Dolphins [ 26, 29 ]
27. Carolina Panthers [ 23, 27 ]
28. New York Giants [ 28, 28 ]
29. Tampa Bay Buccaneers [ 29, 30 ]
30. New York Jets [ 27, 32 ]
31. San Francisco 49ers [ 30, 31 ]
32. Oakland Raiders [ 32, 32 ]
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5.1.3 Brute Force Pruning

Using the Brute Force Pruning algorithm described earlier, we are able to find good

rankings much faster than the optimal Dynamic Programming Brute Force algorithm.

Table 5.4 shows an optimal ranking found by the Brute Force Pruning algorithm for α= 1

and β= 1. Note that although the ranking has the same backedge weight as the ones

found using Dynamic Programming Brute Force and Sliding Window, the teams are in a

different order.

Figure 5.4 shows the backedge weights for different combinations of limiting numbers

and retries. The black line shows the optimal backedge weight, which was reached by

multiple pruning configurations. Due to the randomness involved in choosing whether or

not to keep a state, there is a lot of variation among the results. A low limiting number

can sometimes give a better result than a higher limiting number. Clearly, there is no

obvious benefit to increasing the limiting number as the backedge weight increased

and decreased with no apparent pattern. However, there is a benefit to increasing the

retry number. Although increases do not always offer an improvement, there was a

large improvement between 1 retry and 10 retries. Once the retry number got to 50,

Brute Force Pruning produced rankings that were all optimal, regardless of the limiting

number. Therefore, the best configuration for Brute Force Pruning on a connected graph

is leaving the limiting number fairly low and retrying the algorithm many times.

The quickest run to create an optimal ranking for this data was 10 retries with

limiting number 500, which took 7.6 seconds. However, in order to consistently find the

optimal ranking, 50 retries with a limiting number of at least 500 is needed. This took

38 seconds, which is a large improvement over the 1795 seconds (30 minutes) it took the

Dynamic Programming Brute Force algorithm.

Figure 5.5 shows how the timing increased as the limiting number and number of

retries increased. As expected, this was a linear increase.
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Figure 5.4: Brute Force Pruning Backedge Weights for Different Configurations

Figure 5.5: Brute Force Pruning Timing for Different Configurations
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Table 5.4: NFL 2018 Brute Force Pruning Ranking

α= 1 β= 1 Backedge Percent = 19.3%
Rank Team Range of Correctness
1. New England Patriots [ 1, 2 ]
2. New Orleans Saints [ 1, 3 ]
3. Chicago Bears [ 2, 3 ]
4. Los Angeles Rams [ 4, 5 ]
5. Houston Texans [ 2, 9 ]
6. Kansas City Chiefs [ 5, 6 ]
7. Baltimore Ravens [ 7, 7 ]
8. Los Angeles Chargers [ 8, 8 ]
9. Pittsburgh Steelers [ 9, 9 ]
10. Cleveland Browns [ 10, 10 ]
11. Denver Broncos [ 11, 11 ]
12. Cincinnati Bengals [ 12, 12 ]
13. Indianapolis Colts [ 13, 14 ]
14. Seattle Seahawks [ 12, 16 ]
15. Buffalo Bills [ 14, 15 ]
16. Tennessee Titans [ 16, 16 ]
17. Dallas Cowboys [ 17, 18 ]
18. Minnesota Vikings [ 16, 18 ]
19. Philadelphia Eagles [ 19, 19 ]
20. Atlanta Falcons [ 20, 21 ]
21. Detroit Lions [ 19, 22 ]
22. Washington Redskins [ 21, 22 ]
23. Arizona Cardinals [ 23, 27 ]
24. Carolina Panthers [ 23, 25 ]
25. Jacksonville Jaguars [ 23, 25 ]
26. New York Giants [ 26, 26 ]
27. Tampa Bay Buccaneers [ 27, 28 ]
28. Green Bay Packers [ 24, 28 ]
29. San Francisco 49ers [ 29, 30 ]
30. Miami Dolphins [ 29, 30 ]
31. Oakland Raiders [ 31, 32 ]
32. New York Jets [ 31, 32 ]
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5.1.4 Dynamic Programming Brute Force Pruning

Our second method of pruning uses the Dynamic Programming Brute Force algorithm

to prune. Table 5.5 shows the best ranking from Dynamic Programming Brute Force,

which was achieved with limiting number 500 and 1 retry and took 1 second. This

ranking is not optimal.

This method was tested with the same configurations as Brute Force Pruning (limiting

number up to 5000 in increments of 500, retry number up to 50 in increments of 10).

However, for all configurations the same backedge weight of 51 was found. This is likely

because this method has difficulty recovering from selecting suboptimal orderings early

on. Once two teams have been placed in an order, that order cannot be adjusted later

on. Nevertheless, this approximation is still able to find a ranking close to optimal very

quickly. For other data sets, we were able to observe an improvement in backedge weight

as the limiting number and retry number increased, but the optimal ranking was still

not found.
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Table 5.5: NFL 2018 Dynamic Brute Force Pruning Ranking

α= 1 β= 1 Backedge Percent = 20.1%
Rank Team Range of Correctness
1. New England Patriots [ 1, 2 ]
2. New Orleans Saints [ 1, 3 ]
3. Chicago Bears [ 2, 3 ]
4. Los Angeles Rams [ 4, 4 ]
5. Los Angeles Chargers [ 5, 5 ]
6. Seattle Seahawks [ 6, 6 ]
7. Kansas City Chiefs [ 7, 9 ]
8. Minnesota Vikings [ 7, 17 ]
9. Houston Texans [ 2, 11 ]
10. Baltimore Ravens [ 8, 10 ]
11. Pittsburgh Steelers [ 11, 11 ]
12. Cleveland Browns [ 12, 12 ]
13. Cincinnati Bengals [ 13, 13 ]
14. Indianapolis Colts [ 14, 14 ]
15. Buffalo Bills [ 15, 15 ]
16. Tennessee Titans [ 16, 16 ]
17. Dallas Cowboys [ 17, 17 ]
18. Philadelphia Eagles [ 18, 18 ]
19. Atlanta Falcons [ 19, 19 ]
20. Washington Redskins [ 20, 20 ]
21. Jacksonville Jaguars [ 21, 23 ]
22. Detroit Lions [ 18, 22 ]
23. Carolina Panthers [ 23, 23 ]
24. New York Giants [ 24, 28 ]
25. Arizona Cardinals [ 23, 25 ]
26. Green Bay Packers [ 26, 26 ]
27. Miami Dolphins [ 27, 27 ]
28. New York Jets [ 28, 30 ]
29. Tampa Bay Buccaneers [ 25, 29 ]
30. San Francisco 49ers [ 30, 30 ]
31. Denver Broncos [ 31, 31 ]
32. Oakland Raiders [ 32, 32 ]
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5.2 Postprocesses

5.2.1 Range of Correctness (RoC)

RoC was designed as a simple tool that shows the possible mobility within a given

ranking. In practice, RoC gives a rough idea of which positions a team can be moved to,

however the mobility within the ranking is only accurate for the exact given ranking, not

any variation with equivalent backedge weight. For example, in Table 5.1, the output of

RoC shows that the Dallas Cowboys and Minnesota Vikings can be swapped. However,

the output of RoC does not show all possible moves within the ranking. For instance, in

Table 5.1 we can move the New York Jets from 30th to 32nd and move the San Francisco

49ers and Oakland Raiders from 31st and 32nd up by 1 rank to 30th and 31st. This will

create an equivalent backedge weighted ranking because the New York Jets do not limit

the San Francisco 49ers and the Oakland Raiders. However, RoC shows the Raiders

fixed at the bottom because they must remain below the 49ers.

Noticeably, the density of the graphs also limits RoC ranges. For example, the ranges

of teams in Table 5.6 are wider than ones in Table 5.1 because the NFL graph is denser

than the NCAA graph.
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Table 5.6: NCAA Football 2018 Sliding Window Ranking for Top 25 Teams with Range
of Correctness

α= 0 β= 0 Backedge Percent = 9.9%
Rank Team RoC
1. Oklahoma [ 1, 1 ]
2. Army [ 2, 3 ]
3. Ohio [ 1, 3 ]
4. Buffalo [ 4, 8 ]
5. Alabama [ 1, 5 ]
6. Georgia [ 6, 6 ]
7. Missouri [ 7, 9 ]
8. Central Florida [ 1, 8 ]
9. Temple [ 9, 10 ]
10. Memphis [ 9, 10 ]
11. Houston [ 11, 68 ]
12. Clemson [ 1, 13 ]
13. Middle Tennessee State [ 7, 14 ]
14. North Carolina State [ 13, 14 ]
15. Marshall [ 15, 39 ]
16. Ohio State [ 1, 17 ]
17. Notre Dame [ 1, 17 ]
18. Michigan [ 18, 18 ]
19. Penn State [ 19, 23 ]
20. Utah State [ 1, 47 ]
21. Fresno State [ 1, 29 ]
22. Washington [ 1, 22 ]
23. Arizona State [ 23, 25 ]
24. Appalachian State [ 20, 32 ]
25. Washington State [ 23, 25 ]
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5.2.2 Tree of Correctness (ToC) Method

The main goal of all variations of the ToC Method is to select the best possible ranking,

given several rankings that have equivalent backedge weights. We used the rankings

shown in Table 5.1 and Table 5.6 as the base rankings to run all of the different ToC
Methods and compared the results of each.

5.2.2.1 Original ToC Method

The Original ToC Method can improve the backedge weight of a suboptimal ranking

such as Table 5.9 for NCAA 2018. If the provided ranking is already of optimal backedge

weight, the Original ToC Method will retain its backedge weight.

Although it can improve the backedge weight of rankings, the Original ToC Method
can be extremely time consuming. For a given ranking, this process will take a propor-

tional amount of time to the number of nodes and the number of existing equivalent

rankings. Therefore, the time consumption of the Original ToC Method depends on the

density of the acyclic graphs it processes. Due to the large difference in number of teams,

the NFL and NCAA rankings do not clearly demonstrate this time difference for the

density. However, it still showed that the number of nodes affects the computational time

as shown in Table 5.9.

To further analyze the Original ToC method, we checked the sums of the second

metric for equivalent rankings. We found out that when using α= 1 and β= 1 for NFL

data, all of the sums were 0, while NCAA ones were not. This happened because all

NFL teams play the same number of games, and those games combined are zero-sum.

For a league similar to the NFL, the Original ToC Method should not be used because

equivalent rankings cannot be distinguished by using the second metric. Additionally,

in order to run this postprocess on larger data sets, such as NCAA data, we needed to

limit the number of equivalent rankings compared, which decreases the accuracy of the

results.
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Table 5.7: NFL 2018 Dynamic Programming Brute Force with Original ToC Method

α= 1 β= 1 Backedge Percent = 19.3%

Rank
Original ToC Method No Postprocess

Team RoC Team RoC
1. New England Patriots [ 1, 1 ] New Orleans Saints [ 1, 4 ]
2. Chicago Bears [ 2, 3 ] New England Patriots [ 1, 2 ]
3. New Orleans Saints [ 1, 3 ] Houston Texans [ 3, 8 ]
4. Los Angeles Rams [ 4, 5 ] Chicago Bears [ 3, 4 ]
5. Houston Texans [ 2, 8 ] Los Angeles Rams [ 5, 5 ]
6. Kansas City Chiefs [ 5, 6 ] Kansas City Chiefs [ 6, 6 ]
7. Baltimore Ravens [ 7, 7 ] Baltimore Ravens [ 7, 7 ]
8. Los Angeles Chargers [ 8, 8 ] Los Angeles Chargers [ 8, 8 ]
9. Cleveland Browns [ 9, 9 ] Cleveland Browns [ 9, 9 ]
10. Denver Broncos [ 10, 10 ] Denver Broncos [ 10, 10 ]
11. Pittsburgh Steelers [ 11, 11 ] Pittsburgh Steelers [ 11, 12 ]
12. Cincinnati Bengals [ 12, 12 ] Seattle Seahawks [ 11, 16 ]
13. Indianapolis Colts [ 13, 13 ] Cincinnati Bengals [ 12, 13 ]
14. Buffalo Bills [ 14, 15 ] Indianapolis Colts [ 14, 14 ]
15. Seattle Seahawks [ 11, 15 ] Buffalo Bills [ 15, 15 ]
16. Minnesota Vikings [ 16, 18 ] Tennessee Titans [ 16, 16 ]
17. Tennessee Titans [ 15, 17 ] Dallas Cowboys [ 17, 18 ]
18. Dallas Cowboys [ 18, 18 ] Minnesota Vikings [ 16, 18 ]
19. Detroit Lions [ 19, 22 ] Philadelphia Eagles [ 19, 19 ]
20. Philadelphia Eagles [ 19, 20 ] Atlanta Falcons [ 20, 20 ]
21. Atlanta Falcons [ 21, 21 ] Washington Redskins [ 21, 21 ]
22. Washington Redskins [ 22, 22 ] Jacksonville Jaguars [ 22, 24 ]
23. Arizona Cardinals [ 23, 24 ] Detroit Lions [ 19, 23 ]
24. Jacksonville Jaguars [ 23, 25 ] Carolina Panthers [ 24, 24 ]
25. Green Bay Packers [ 24, 25 ] New York Giants [ 25, 25 ]
26. Miami Dolphins [ 26, 26 ] Tampa Bay Buccaneers [ 26, 30 ]
27. New York Jets [ 27, 32 ] Arizona Cardinals [ 24, 27 ]
28. Carolina Panthers [ 23, 28 ] Green Bay Packers [ 28, 28 ]
29. New York Giants [ 29, 29 ] Miami Dolphins [ 29, 29 ]
30. Tampa Bay Buccaneers [ 30, 30 ] New York Jets [ 30, 32 ]
31. San Francisco 49ers [ 31, 31 ] San Francisco 49ers [ 29, 31 ]
32. Oakland Raiders [ 32, 32 ] Oakland Raiders [ 32, 32 ]
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Table 5.8: NCAA Football 2018 Sliding Window Ranking for Top 25 Teams with
Original ToC Method

α= 0 β= 0

Rank
Original ToC Method No Postprocess

Team RoC Team RoC
1. North Texas [ 1, 39 ] Oklahoma [ 1, 1 ]
2. Washington [ 1, 2 ] Army [ 2, 3 ]
3. Washington State [ 3, 4 ] Ohio [ 1, 3 ]
4. Arizona State [ 3, 4 ] Buffalo [ 4, 8 ]
5. Utah [ 5, 9 ] Alabama [ 1, 5 ]
6. Fresno State [ 1, 6 ] Georgia [ 6, 6 ]
7. Boise State [ 7, 7 ] Missouri [ 7, 9 ]
8. Utah State [ 8, 47 ] Central Florida [ 1, 8 ]
9. Notre Dame [ 1, 9 ] Temple [ 9, 10 ]
10. Stanford [ 10, 10 ] Memphis [ 9, 10 ]
11. Oregon [ 11, 11 ] Houston [ 11, 68 ]
12. California [ 12, 66 ] Clemson [ 1, 13 ]
13. Ohio State [ 1, 13 ] Middle Tennessee State [ 7, 14 ]
14. Michigan [ 14, 14 ] North Carolina State [ 13, 14 ]
15. Northwestern [ 15, 16 ] Marshall [ 15, 39 ]
16. Penn State [ 15, 16 ] Ohio State [ 1, 17 ]
17. Iowa [ 17, 19 ] Notre Dame [ 1, 17 ]
18. Appalachian State [ 17, 18 ] Michigan [ 18, 18 ]
19. Troy [ 19, 19 ] Penn State [ 19, 23 ]
20. Nebraska [ 20, 20 ] Utah State [ 1, 47 ]
21. Michigan State [ 21, 64 ] Fresno State [ 1, 29 ]
22. Clemson [ 1, 22 ] Washington [ 1, 22 ]
23. Syracuse [ 23, 24 ] Arizona State [ 23, 25 ]
24. Georgia Southern [ 23, 33 ] Appalachian State [ 20, 32 ]
25. North Carolina State [ 24, 40 ] Washington State [ 23, 25 ]

Table 5.9: Backedge Weight Percentage for Original ToC Method vs No Postprocess

Original ToC Method No Postprocess

Time (s)
Backedge Weight Backedge Weight

Percentage Percentage
NFL 2018 (Table 5.1) 30.6 19.3% 19.3%

NCAA 2018 558.7 7.1% 9.9%
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5.2.2.2 Big Data ToC Method

The Big Data ToC Method runs Breath First Search (BFS) through the graph and

ToC structure, and therefore it runs quickly. As shown in Table 5.10, it ran in less than 3

milliseconds for both sports; it ran quicker on NFL than on NCAA because the number

of teams in NFL is 3-4 times less than one of NCAA.

However, the backedge weight percentage was not significantly changed by running

Big Data ToC Method. It decreased less than 1 percent on the NCAA dataset. This means

that sorting nodes by the density of a ranking’s corresponding acyclic graph does not

significantly decrease backedge weight.

Table 5.10: Backedge Weight Percentage for Big Data ToC Method vs No Postprocess

Big Data ToC Method No Postprocess

Time
Backedge Weight Backedge Weight

Percentage Percentage
NFL 2018 < 1 ms 19.3% 19.3%

NCAA 2018 3 ms 9.6% 9.9%
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Table 5.11: NFL 2018 Dynamic Programming Brute Force Ranking with Big Data ToC
Method

α= 1 β= 1 Backedge Percentage = 19.3%

Rank
Big Data ToC Method No Postprocess

Team RoC Team RoC
1. New England Patriots [ 1, 2 ] New Orleans Saints [ 1, 4 ]
2. New Orleans Saints [ 1, 3 ] New England Patriots [ 1, 2 ]
3. Chicago Bears [ 2, 3 ] Houston Texans [ 3, 8 ]
4. Los Angeles Rams [ 4, 4 ] Chicago Bears [ 3, 4 ]
5. Kansas City Chiefs [ 5, 5 ] Los Angeles Rams [ 5, 5 ]
6. Baltimore Ravens [ 6, 7 ] Kansas City Chiefs [ 6, 6 ]
7. Houston Texans [ 2, 8 ] Baltimore Ravens [ 7, 7 ]
8. Los Angeles Chargers [ 7, 8 ] Los Angeles Chargers [ 8, 8 ]
9. Cleveland Browns [ 9, 9 ] Cleveland Browns [ 9, 9 ]
10. Denver Broncos [ 10, 10 ] Denver Broncos [ 10, 10 ]
11. Seattle Seahawks [ 11, 16 ] Pittsburgh Steelers [ 11, 12 ]
12. Pittsburgh Steelers [ 11, 12 ] Seattle Seahawks [ 11, 16 ]
13. Cincinnati Bengals [ 13, 13 ] Cincinnati Bengals [ 12, 13 ]
14. Indianapolis Colts [ 14, 14 ] Indianapolis Colts [ 14, 14 ]
15. Buffalo Bills [ 15, 15 ] Buffalo Bills [ 15, 15 ]
16. Tennessee Titans [ 16, 16 ] Tennessee Titans [ 16, 16 ]
17. Dallas Cowboys [ 17, 18 ] Dallas Cowboys [ 17, 18 ]
18. Minnesota Vikings [ 16, 18 ] Minnesota Vikings [ 16, 18 ]
19. Philadelphia Eagles [ 19, 19 ] Philadelphia Eagles [ 19, 19 ]
20. Atlanta Falcons [ 20, 20 ] Atlanta Falcons [ 20, 20 ]
21. Washington Redskins [ 21, 22 ] Washington Redskins [ 21, 21 ]
22. Detroit Lions [ 19, 23 ] Jacksonville Jaguars [ 22, 24 ]
23. Jacksonville Jaguars [ 22, 26 ] Detroit Lions [ 19, 23 ]
24. Arizona Cardinals [ 23, 24 ] Carolina Panthers [ 24, 24 ]
25. Green Bay Packers [ 25, 27 ] New York Giants [ 25, 25 ]
26. Carolina Panthers [ 23, 26 ] Tampa Bay Buccaneers [ 26, 30 ]
27. New York Giants [ 27, 28 ] Arizona Cardinals [ 24, 27 ]
28. Miami Dolphins [ 26, 30 ] Green Bay Packers [ 28, 28 ]
29. Tampa Bay Buccaneers [ 28, 29 ] Miami Dolphins [ 29, 29 ]
30. San Francisco 49ers [ 30, 31 ] New York Jets [ 30, 32 ]
31. New York Jets [ 29, 32 ] San Francisco 49ers [ 29, 31 ]
32. Oakland Raiders [ 31, 32 ] Oakland Raiders [ 32, 32 ]
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Table 5.12: NCAA Football 2018 Sliding Window Ranking for Top 25 Teams with Big
Data ToC Method

α= 0 β= 0

Rank
Big Data ToC Method No Postprocess

Team RoC Team RoC
1. Ohio State [ 1, 2 ] Oklahoma [ 1, 1 ]
2. Notre Dame [ 1, 2 ] Army [ 2, 3 ]
3. Michigan [ 3, 5 ] Ohio [ 1, 3 ]
4. Alabama [ 1, 8 ] Buffalo [ 4, 8 ]
5. Oklahoma [ 1, 14 ] Alabama [ 1, 5 ]
6. Penn State [ 4, 10 ] Georgia [ 6, 6 ]
7. Washington [ 1, 13 ] Missouri [ 7, 9 ]
8. Northwestern [ 4, 10 ] Central Florida [ 1, 8 ]
9. Georgia [ 5, 16 ] Temple [ 9, 10 ]
10. Central Florida [ 1, 24 ] Memphis [ 9, 10 ]
11. Iowa [ 9, 32 ] Houston [ 11, 68 ]
12. Clemson [ 1, 29 ] Clemson [ 1, 13 ]
13. Fresno State [ 1, 15 ] Middle Tennessee State [ 7, 14 ]
14. Washington State [ 8, 19 ] North Carolina State [ 13, 14 ]
15. Army [ 6, 23 ] Marshall [ 15, 39 ]
16. Boise State [ 14, 25 ] Ohio State [ 1, 17 ]
17. Middle Tennessee State [ 10, 30 ] Notre Dame [ 1, 17 ]
18. West Virginia [ 6, 35 ] Michigan [ 18, 18 ]
19. Arizona State [ 8, 19 ] Penn State [ 19, 23 ]
20. Utah [ 20, 45 ] Utah State [ 1, 47 ]
21. Appalachian State [ 7, 25 ] Fresno State [ 1, 29 ]
22. Missouri [ 10, 38 ] Washington [ 1, 22 ]
23. Ohio [ 1, 23 ] Arizona State [ 23, 25 ]
24. Buffalo [ 24, 24 ] Appalachian State [ 20, 32 ]
25. Temple [ 25, 28 ] Washington State [ 23, 25 ]

5.2.2.3 RoC Reorder

Similarly to the Original ToC Method, we want to test how the processing time and

reduction of backedge weight changes based on how sparse the graph is. We ran a similar

experiment for RoC Reorder on NFL 2018 data.

The time complexity to run this method depends on how big the original graph is

and how many chains of inputs and outputs of the subprocess there are. From the NFL

result in Table 5.15, the method took essentially no time to finish. This indicates that

rankings repeat in this process really quickly. In addition, the reduced backedge weight
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percentage was close to one from the Original ToC Method, which we believe it was the

minimum possible reduced backedge weight because it tried every possible equivalent

graph.

From the NCAA Football result, this method reduced the backedge weight 15 to 20

percent compared to the input ranking, which is much better than the Big Data ToC
Method. Additionally, it took only 36 milliseconds to get a new ranking with less backedge

weight percentage, which is faster than Original ToC Method.
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Table 5.13: NFL 2018 Dynamic Programming Brute Force Ranking with RoC Reorder

α= 1 β= 1 Backedge Percent = 19.3%

Rank
RoC Reorder No Postprocess

Team RoC Team RoC
1. New Orleans Saints [ 1, 4 ] New Orleans Saints [ 1, 4 ]
2. New England Patriots [ 1, 2 ] New England Patriots [ 1, 2 ]
3. Houston Texans [ 3, 8 ] Houston Texans [ 3, 8 ]
4. Chicago Bears [ 3, 4 ] Chicago Bears [ 3, 4 ]
5. Los Angeles Rams [ 5, 5 ] Los Angeles Rams [ 5, 5 ]
6. Kansas City Chiefs [ 6, 6 ] Kansas City Chiefs [ 6, 6 ]
7. Baltimore Ravens [ 7, 7 ] Baltimore Ravens [ 7, 7 ]
8. Los Angeles Chargers [ 8, 8 ] Los Angeles Chargers [ 8, 8 ]
9. Cleveland Browns [ 9, 9 ] Cleveland Browns [ 9, 9 ]
10. Denver Broncos [ 10, 10 ] Denver Broncos [ 10, 10 ]
11. Pittsburgh Steelers [ 11, 12 ] Pittsburgh Steelers [ 11, 12 ]
12. Seattle Seahawks [ 11, 16 ] Seattle Seahawks [ 11, 16 ]
13. Cincinnati Bengals [ 12, 13 ] Cincinnati Bengals [ 12, 13 ]
14. Indianapolis Colts [ 14, 14 ] Indianapolis Colts [ 14, 14 ]
15. Buffalo Bills [ 15, 15 ] Buffalo Bills [ 15, 15 ]
16. Tennessee Titans [ 16, 16 ] Tennessee Titans [ 16, 16 ]
17. Dallas Cowboys [ 17, 18 ] Dallas Cowboys [ 17, 18 ]
18. Minnesota Vikings [ 16, 18 ] Minnesota Vikings [ 16, 18 ]
19. Philadelphia Eagles [ 19, 19 ] Philadelphia Eagles [ 19, 19 ]
20. Atlanta Falcons [ 20, 20 ] Atlanta Falcons [ 20, 20 ]
21. Washington Redskins [ 21, 21 ] Washington Redskins [ 21, 21 ]
22. Jacksonville Jaguars [ 22, 24 ] Jacksonville Jaguars [ 22, 24 ]
23. Detroit Lions [ 19, 23 ] Detroit Lions [ 19, 23 ]
24. Carolina Panthers [ 24, 24 ] Carolina Panthers [ 24, 24 ]
25. New York Giants [ 25, 25 ] New York Giants [ 25, 25 ]
26. Tampa Bay Buccaneers [ 26, 30 ] Tampa Bay Buccaneers [ 26, 30 ]
27. Arizona Cardinals [ 24, 27 ] Arizona Cardinals [ 24, 27 ]
28. Green Bay Packers [ 28, 28 ] Green Bay Packers [ 28, 28 ]
29. Miami Dolphins [ 29, 29 ] Miami Dolphins [ 29, 29 ]
30. New York Jets [ 30, 32 ] New York Jets [ 30, 32 ]
31. San Francisco 49ers [ 29, 31 ] San Francisco 49ers [ 29, 31 ]
32. Oakland Raiders [ 32, 32 ] Oakland Raiders [ 32, 32 ]
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Table 5.14: NCAA Football 2018 Sliding Window Ranking for Top 25 Teams with RoC
Reorder

α= 0 β= 0

Rank
RoC Reorder No Postprocess

Team RoC Team RoC
1. Alabama [ 1, 2 ] Oklahoma [ 1, 1 ]
2. Clemson [ 1, 18 ] Army [ 2, 3 ]
3. Georgia [ 2, 4 ] Ohio [ 1, 3 ]
4. Central Florida [ 1, 19 ] Buffalo [ 4, 8 ]
5. Missouri [ 4, 19 ] Alabama [ 1, 5 ]
6. Ohio State [ 1, 7 ] Georgia [ 6, 6 ]
7. Notre Dame [ 1, 7 ] Missouri [ 7, 9 ]
8. Michigan [ 8, 12 ] Central Florida [ 1, 8 ]
9. Fresno State [ 1, 10 ] Temple [ 9, 10 ]
10. Oklahoma [ 1, 17 ] Memphis [ 9, 10 ]
11. Boise State [ 10, 11 ] Houston [ 11, 68 ]
12. Utah State [ 12, 35 ] Clemson [ 1, 13 ]
13. Penn State [ 9, 13 ] Middle Tennessee State [ 7, 14 ]
14. Appalachian State [ 14, 30 ] North Carolina State [ 13, 14 ]
15. Louisiana State [ 2, 15 ] Marshall [ 15, 39 ]
16. Mississippi State [ 16, 18 ] Ohio State [ 1, 17 ]
17. Washington [ 1, 21 ] Notre Dame [ 1, 17 ]
18. West Virginia [ 11, 45 ] Michigan [ 18, 18 ]
19. Texas A&M [ 17, 24 ] Penn State [ 19, 23 ]
20. Memphis [ 6, 39 ] Utah State [ 1, 47 ]
21. Ohio [ 1, 36 ] Fresno State [ 1, 29 ]
22. Washington State [ 18, 35 ] Washington [ 1, 22 ]
23. Middle Tennessee State [ 4, 49 ] Arizona State [ 23, 25 ]
24. Syracuse [ 8, 28 ] Appalachian State [ 20, 32 ]
25. Kentucky [ 20, 25 ] Washington State [ 23, 25 ]

Table 5.15: Backedge Weight Percentage for RoC Reorder Method vs No Postprocess

RoC Reorder No Postprocess

Time
Backedge Weight Backedge Weight

Percentage Percentage
NFL 2018 (Table 5.1) < 1 ms 19.3% 19.3%

NCAA 2018 36 ms 8.3% 9.9%
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5.3 Ranking Comparisons

To give our rankings an objective version of the “eye test," we used external rankings

from ESPN, NBC Sports, the AP Poll, NFL.com, and NBA.com as a comparison. While

these rankings are not specifically created to minimize backedge weight, they are an

indicator of approximately where teams should fall in a “good" ranking. Additionally, this

method of comparing rankings allows us to look at these external rankings and estimate

how influential game recency and point differential are in these rankings.

For all professional sports, we ran these tests using the Dynamic Programming Brute
Force algorithm, with the RoC Reorder postprocess. For collegiate sports, the algorithm

used was Brute Force Pruning with the RoC Reorder postprocess.

5.3.1 National Football League

Table 5.16: NFL 2018 Ranking Comparison Scores for ESPN

α\β 0.0 0.25 0.5 0.75 1.0
0.0 190 188 196 192 198
0.25 194 188 192 202 200
0.5 252 134 144 144 138
0.75 140 128 128 130 134
1.0 140 128 128 130 134

Table 5.17: NFL 2018 Ranking Comparison Scores for NFL.com

α\β 0.0 0.25 0.5 0.75 1.0
0.0 130 134 146 138 152
0.25 138 134 134 148 160
0.5 138 96 114 114 112
0.75 136 118 118 128 136
1.0 138 118 118 134 136

Our two external rankings for the NFL (ESPN [30] and NFL.com [31]) both provided

a comparison score of 140. This means that on average, a team would be placed in one

ranking 4.1875 ranks away from where they were placed in the other ranking. Putting

our own rankings against these external ones, we find that our lowest comparison score

when comparing against ESPN is 128, which occurs when α= 0.75 or α= 1.0 and β= 0.25

or β= 0.5. This 128 score means that our ranking placed teams an average of 4.0 ranks
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away form their placement in the ESPN ranking. Against NFL.com, we find that our

closest ranking, produced when α = 0.5 and β = 0.25, has an even lower score of 96,

meaning that our ranking placed teams an average of 3.0 ranks away from NFL.com’s

placement in their ranking.

When comparing against the ESPN ranking, our highest difference in rank for a

single team is 13 for the Buffalo Bills. Most teams in this ranking are either ranked

within 1 to 3 ranks from their placement by ESPN, or are much further away, usually 9

to 13 ranks.
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Table 5.18: NFL 2018 Ranking Comparison between ESPN and our Ranking

α= 0.75 β= 0.25 Backedge Percent = 16.2%
Rank Our Ranking ESPN Rank Difference
1. New Orleans Saints Los Angeles Rams [+3]
2. New England Patriots New Orleans Saints [-1]
3. Chicago Bears Kansas City Chiefs [+2]
4. Los Angeles Rams New England Patriots [-2]
5. Kansas City Chiefs Los Angeles Chargers [+2]
6. Baltimore Ravens Houston Texans [+2]
7. Los Angeles Chargers Pittsburgh Steelers [+3]
8. Houston Texans Chicago Bears [-5]
9. Denver Broncos Seattle Seahawks [+2]
10. Pittsburgh Steelers Baltimore Ravens [-4]
11. Seattle Seahawks Dallas Cowboys [+7]
12. Cleveland Browns Minnesota Vikings [+5]
13. Cincinnati Bengals Indianapolis Colts [+1]
14. Indianapolis Colts Carolina Panthers [+9]
15. Buffalo Bills Denver Broncos [-6]
16. Tennessee Titans Tennessee Titans [0]
17. Minnesota Vikings Philadelphia Eagles [+2]
18. Dallas Cowboys Washington Redskins [+4]
19. Philadelphia Eagles Green Bay Packers [+9]
20. Atlanta Falcons Miami Dolphins [+9]
21. Detroit Lions Atlanta Falcons [-1]
22. Washington Redskins Cleveland Browns [-10]
23. Carolina Panthers Tampa Bay Buccaneers [+3]
24. Jacksonville Jaguars Jacksonville Jaguars [0]
25. New York Giants Cincinnati Bengals [-12]
26. Tampa Bay Buccaneers New York Giants [-1]
27. Arizona Cardinals Detroit Lions [-6]
28. Green Bay Packers Buffalo Bills [-13]
29. Miami Dolphins New York Jets [+1]
30. New York Jets Arizona Cardinals [-3]
31. San Francisco 49ers San Francisco 49ers [0]
32. Oakland Raiders Oakland Raiders [0]

Compared against NFL.com, our highest single team difference is 14 with the Cincin-

nati Bengals. However, unlike the ESPN comparison, this appears to be an outlier, as all

other teams are ranked within 6 places of their ranking from NFL.com.
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Table 5.19: NFL 2018 Ranking Comparison between NFL.com and our Ranking

α= 0.5 β= 0.25 Backedge Percent = 15.8%
Rank Our Ranking NFL.com Rank Difference
1. New Orleans Saints New Orleans Saints [0]
2. New England Patriots Chicago Bears [+1]
3. Chicago Bears Los Angeles Rams [+1]
4. Los Angeles Rams Kansas City Chiefs [+5]
5. Houston Texans New England Patriots [-3]
6. Baltimore Ravens Baltimore Ravens [0]
7. Los Angeles Chargers Los Angeles Chargers [0]
8. Seattle Seahawks Indianapolis Colts [+5]
9. Kansas City Chiefs Houston Texans [-4]
10. Pittsburgh Steelers Seattle Seahawks [-2]
11. Cleveland Browns Dallas Cowboys [+6]
12. Cincinnati Bengals Philadelphia Eagles [+6]
13. Indianapolis Colts Pittsburgh Steelers [-3]
14. Buffalo Bills Minnesota Vikings [+2]
15. Tennessee Titans Tennessee Titans [0]
16. Minnesota Vikings Cleveland Browns [-5]
17. Dallas Cowboys Atlanta Falcons [+4]
18. Philadelphia Eagles Buffalo Bills [-4]
19. Detroit Lions Detroit Lions [0]
20. Green Bay Packers New York Giants [+5]
21. Atlanta Falcons Green Bay Packers [-1]
22. Washington Redskins Washington Redskins [0]
23. Carolina Panthers Carolina Panthers [0]
24. Jacksonville Jaguars San Francisco 49ers [+5]
25. New York Giants Oakland Raiders [+5]
26. Tampa Bay Buccaneers Cincinnati Bengals [-14]
27. Miami Dolphins Tampa Bay Buccaneers [-1]
28. New York Jets Denver Broncos [+3]
29. San Francisco 49ers Miami Dolphins [-2]
30. Oakland Raiders Jacksonville Jaguars [-6]
31. Denver Broncos New York Jets [+3]
32. Arizona Cardinals Arizona Cardinals [0]

Additionally, looking at the backedge weight of these rankings provides further in-

sight. By minimizing the backedge weight of our rankings, we are effectively minimizing

the number and size of upsets in our ranking over the course of the season. The ESPN

ranking, using α= 0.75 and β= 0.25, has a backedge weight percentage of 25.73%, while

our own ranking with the same α and β has a backedge percentage of 16.20%. Comparing
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to NFL.com, using α= 0.5 and β= 0.25 gives a backedge weight percentage of 22.56%,

while our own rankings has as 15.84% backedge weight. This means that our rankings

contain a lower number of upsets, and that the upsets that did occur were closer scoring

games that happened earlier in the season compared to the ESPN and NFL.com rankings.

In Table 5.20, we see that this trend is repeated across a wide range of α and β values.

Table 5.20: NFL 2018 Backedge Weight Comparisons

Backedge Percentage Comparison Score
α β Our Rankings ESPN NFL.com ESPN NFL.com
0.0 0.0 9.89% 23.79% 20.39% 190 130
0.5 0.5 17.18% 27.16% 24.16% 144 114
1.0 1.0 19.29% 29.13% 26.38% 134 136
0.75 0.25 15.84% 25.73% 22.56% 128 118
0.5 0.25 16.20% 25.73% 22.56% 192 96

For both external rankings, our closest ranking was produced with β= 0.25, signifying

that these rankings consider point differential as a significant factor. Meanwhile, α in

these rankings was 0.5 for NFL.com and 0.75 or 1.0 for ESPN. This means that ESPN’s

rankings likely give little or no consideration to the recency of a game, while the NFL.com

analysts likely consider it, but it may not be a major factor in their rankings.

5.3.2 Major League Baseball

Table 5.21: MLB 2018 Ranking Comparison Scores for ESPN

α\β 0.0 0.25 0.5 0.75 1.0
0.0 118 120 130 136 136
0.25 122 120 120 136 134
0.5 112 118 98 116 130
0.75 128 114 104 124 130
1.0 130 110 104 100 114

Table 5.22: MLB 2018 Ranking Comparison Scores for NBC Sports

α\β 0.0 0.25 0.5 0.75 1.0
0.0 118 122 130 128 128
0.25 128 116 116 128 122
0.5 110 114 94 110 116
0.75 138 114 106 116 116
1.0 140 118 108 94 104
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Against the ESPN [32] and NBC Sports [33] rankings for the MLB 2018 season, we

found that our closest rankings gave comparison scores of 98 when compared to ESPN,

and 94 when compared to NBC Sports. This led to an average displacement of teams by

3.267 and 3.133 ranks, respectively. This was significantly higher than the comparison

between the two external rankings, which gave a comparison score of 28, and an average

team displacement of 0.933 ranks.

Comparing ourselves against ESPN, we find that our highest single team displace-

ment was by 8 ranks, which was the case for several teams. Most of the different

displacements were by either 1 to 3 ranks, or by about 6 to 8 ranks.
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Table 5.23: MLB 2018 Ranking Comparison between ESPN and our Ranking

α= 0.5 β= 0.5 Backedge Percent = 36.9%
Rank Our Ranking ESPN Rank Difference
1. New York Yankees Houston Astros [+1]
2. Houston Astros Boston Red Sox [+1]
3. Boston Red Sox New York Yankees [-2]
4. Chicago Cubs Oakland Athletics [+8]
5. Los Angeles Dodgers Cleveland Indians [+8]
6. Milwaukee Brewers Chicago Cubs [-2]
7. St. Louis Cardinals Milwaukee Brewers [-1]
8. Colorado Rockies Los Angeles Dodgers [-3]
9. Seattle Mariners Atlanta Braves [+1]
10. Atlanta Braves Colorado Rockies [-2]
11. Tampa Bay Rays Tampa Bay Rays [0]
12. Oakland Athletics St. Louis Cardinals [-5]
13. Cleveland Indians Washington Nationals [+8]
14. New York Mets Arizona Diamondbacks [+2]
15. San Francisco Giants Seattle Mariners [-6]
16. Arizona Diamondbacks Pittsburgh Pirates [+8]
17. Los Angeles Angels Los Angeles Angels [0]
18. Texas Rangers Philadelphia Phillies [+4]
19. Minnesota Twins New York Mets [-5]
20. Toronto Blue Jays Minnesota Twins [-1]
21. Washington Nationals San Francisco Giants [-6]
22. Philadelphia Phillies Toronto Blue Jays [-2]
23. San Diego Padres Texas Rangers [-5]
24. Pittsburgh Pirates Cincinnati Reds [+4]
25. Miami Marlins Detroit Tigers [+2]
26. Kansas City Royals San Diego Padres [-3]
27. Detroit Tigers Chicago White Sox [+2]
28. Cincinnati Reds Miami Marlins [-3]
29. Chicago White Sox Kansas City Royals [-3]
30. Baltimore Orioles Baltimore Orioles [0]

When we compare our rankings to the NBCSports ranking, we find that most teams

are displaced by 2 to 7 ranks.
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Table 5.24: MLB 2018 Ranking Comparison between NBC Sports and our Ranking

α= 0.5 β= 0.5 Backedge Percent = 36.9%
Rank Our Ranking NBC Sports Rank Difference
1. New York Yankees Boston Red Sox [+2]
2. Houston Astros Houston Astros [0]
3. Boston Red Sox New York Yankees [-2]
4. Chicago Cubs Milwaukee Brewers [+2]
5. Los Angeles Dodgers Oakland Athletics [+7]
6. Milwaukee Brewers Cleveland Indians [+7]
7. St. Louis Cardinals Los Angeles Dodgers [-2]
8. Colorado Rockies Chicago Cubs [-4]
9. Seattle Mariners Atlanta Braves [+1]
10. Atlanta Braves Colorado Rockies [-2]
11. Tampa Bay Rays Tampa Bay Rays [0]
12. Oakland Athletics St. Louis Cardinals [-5]
13. Cleveland Indians Seattle Mariners [-4]
14. New York Mets Pittsburgh Pirates [+10]
15. San Francisco Giants Washington Nationals [+6]
16. Arizona Diamondbacks Arizona Diamondbacks [0]
17. Los Angeles Angels Philadelphia Phillies [+5]
18. Texas Rangers Los Angeles Angels [-1]
19. Minnesota Twins New York Mets [-5]
20. Toronto Blue Jays Minnesota Twins [-1]
21. Washington Nationals Toronto Blue Jays [-1]
22. Philadelphia Phillies San Francisco Giants [-7]
23. San Diego Padres Cincinnati Reds [+5]
24. Pittsburgh Pirates Texas Rangers [-6]
25. Miami Marlins San Diego Padres [-2]
26. Kansas City Royals Detroit Tigers [+1]
27. Detroit Tigers Miami Marlins [-2]
28. Cincinnati Reds Chicago White Sox [+1]
29. Chicago White Sox Kansas City Royals [-3]
30. Baltimore Orioles Baltimore Orioles [0]

Looking at the backedge weight of each ranking for α= 0.5 and β= 0.5, which was the

point where our rankings were closest to both the ESPN and NBC Sports rankings, we

find that our backedge weight percentage is lower, producing 36.93% backedge weight,

compared to 38.83% for ESPN and 39.49% for NBC Sports.
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Table 5.25: MLB 2018 Backedge Weight Comparisons

Backedge Percentage Comparison Score
α β Our Rankings ESPN NBCSports ESPN NBCSports
0.0 0.0 34.74% 37.37% 38.24% 118 118
0.5 0.5 36.93% 38.83% 39.49% 98 94
1.0 1.0 37.56% 39.70% 40.23% 114 104
1.0 0.75 37.33% 39.31% 39.90% 100 94

The α and β values that produced these lowest comparison scores suggest that both

the ESPN and NBC Sports rankings consider both game recency and point differential

as somewhat significant factors in their rankings.

5.3.3 National Basketball Association

Table 5.26: NBA 2017-2018 Ranking Comparison Scores for ESPN

α\β 0.0 0.25 0.5 0.75 1.0
0.0 104 112 108 108 108
0.25 104 110 80 86 86
0.5 104 96 80 86 88
0.75 104 96 94 86 88
1.0 104 94 94 86 92

Table 5.27: NBA 2017-2018 Ranking Comparison Scores for NBA.com

α\β 0.0 0.25 0.5 0.75 1.0
0.0 108 114 100 104 104
0.25 108 114 86 86 86
0.5 108 94 86 86 90
0.75 100 94 94 86 90
1.0 100 94 94 86 94

Using the 2017-2018 NBA season, we compared our rankings to those from ESPN [34]

and NBA.com [35]. Against these two rankings, we found that our closest rankings gave

comparison scores of 80 when compared to ESPN, and 86 when compared to NBA.com,

giving respective average team displacements of 2.667 and 2.867 ranks. Similar to our

MLB rankings, these are significantly higher than the 28 comparison score and 0.933

average team displacement given by comparing the two external rankings.
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When we compared our rankings to those from NBA.com, we found that there were

multiple α and β pairs which produced rankings with equivalent comparison scores to

the external rankings. We used α= 0.5 and β= 0.5 for the following rankings, since this

α and β pair was one that produced the lowest comparison score for both rankings.

Table 5.28: NBA 2017-2018 Ranking Comparison between ESPN and our Ranking

α= 0.5 β= 0.5 Backedge Percent = 27.7%
Our Ranking ESPN Rank Difference

1. Toronto Raptors Houston Rockets [+3]
2. Boston Celtics Toronto Raptors [-1]
3. Philadelphia 76ers Golden State Warriors [+8]
4. Houston Rockets Philadelphia 76ers [-1]
5. Minnesota Timberwolves Cleveland Cavaliers [+9]
6. Denver Nuggets Boston Celtics [-4]
7. Portland Trail Blazers Portland Trail Blazers [0]
8. Oklahoma City Thunder Utah Jazz [+2]
9. Indiana Pacers Indiana Pacers [0]
10. Utah Jazz New Orleans Pelicans [+2]
11. Golden State Warriors San Antonio Spurs [+2]
12. New Orleans Pelicans Oklahoma City Thunder [-4]
13. San Antonio Spurs Minnesota Timberwolves [-8]
14. Cleveland Cavaliers Denver Nuggets [-8]
15. Miami Heat Miami Heat [0]
16. Charlotte Hornets Milwaukee Bucks [+4]
17. Washington Wizards Washington Wizards [0]
18. Los Angeles Clippers Detroit Pistons [+1]
19. Detroit Pistons Los Angeles Clippers [-1]
20. Milwaukee Bucks Charlotte Hornets [-4]
21. Los Angeles Lakers Los Angeles Lakers [0]
22. New York Knicks Brooklyn Nets [+3]
23. Phoenix Suns Sacramento Kings [+1]
24. Sacramento Kings New York Knicks [-2]
25. Brooklyn Nets Chicago Bulls [+1]
26. Chicago Bulls Dallas Mavericks [+2]
27. Atlanta Hawks Atlanta Hawks [0]
28. Dallas Mavericks Orlando Magic [+1]
29. Orlando Magic Memphis Grizzlies [+1]
30. Memphis Grizzlies Phoenix Suns [-7]
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Table 5.29: NBA 2017-2018 Ranking Comparison between NBA.com and our Ranking

α= 0.5 β= 0.5 Backedge Percent = 27.7%
Our Ranking NBA.com Rank Difference

1. Toronto Raptors Houston Rockets [+3]
2. Boston Celtics Toronto Raptors [-1]
3. Philadelphia 76ers Golden State Warriors [+8]
4. Houston Rockets Utah Jazz [+6]
5. Minnesota Timberwolves Philadelphia 76ers [-2]
6. Denver Nuggets Portland Trail Blazers [+1]
7. Portland Trail Blazers Cleveland Cavaliers [+7]
8. Oklahoma City Thunder Boston Celtics [-6]
9. Indiana Pacers Indiana Pacers [0]
10. Utah Jazz Oklahoma City Thunder [-2]
11. Golden State Warriors New Orleans Pelicans [+1]
12. New Orleans Pelicans San Antonio Spurs [+1]
13. San Antonio Spurs Denver Nuggets [-7]
14. Cleveland Cavaliers Minnesota Timberwolves [-9]
15. Miami Heat Miami Heat [0]
16. Charlotte Hornets Milwaukee Bucks [+4]
17. Washington Wizards Washington Wizards [0]
18. Los Angeles Clippers Los Angeles Clippers [0]
19. Detroit Pistons Detroit Pistons [0]
20. Milwaukee Bucks Los Angeles Lakers [+1]
21. Los Angeles Lakers Charlotte Hornets [-5]
22. New York Knicks Brooklyn Nets [+3]
23. Phoenix Suns Atlanta Hawks [+4]
24. Sacramento Kings Sacramento Kings [0]
25. Brooklyn Nets New York Knicks [-3]
26. Chicago Bulls Dallas Mavericks [+2]
27. Atlanta Hawks Chicago Bulls [-1]
28. Dallas Mavericks Orlando Magic [+1]
29. Orlando Magic Memphis Grizzlies [+1]
30. Memphis Grizzlies Phoenix Suns [-7]

Looking at backedge weight percentage, we found that for α= 0.5 and β= 0.5 gave us

27.7% backedge weight for our own rankings. For the external rankings, this α and β

pair gave a backedge weight percentage of 31.6% for ESPN and 32.2% for the NBA.com

ranking. This is significantly higher than the backedge weight our own ranking system

produces for this data, meaning our rankings create a lower number of upsets, and that

those upsets were closer scoring games that happened earlier in the season compared to

those in the ESPN and NBA.com rankings.
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Table 5.30: NBA 2017-2018 Backedge Weight Comparisons

Backedge Percentage Comparison Score
α β Our Rankings ESPN NBA.com ESPN NBA.com
0.0 0.0 24.40% 29.70% 30.31% 104 108
0.5 0.5 27.74% 31.55% 32.23% 80 86
1.0 1.0 29.02% 32.68% 33.41% 92 94

Because of the number of equivalent comparison scores for the NBA.com ranking, it

is difficult to determine exactly how much game recency and point differential factor

into their rankings. The best we can determine based on these results is that neither is

likely to be a significant factor, since the equivalent comparison scores do form a cluster

around α= 0.5 and β= 0.75 However, for the ESPN ranking, we can determine that both

factors are fairly significant in their rankings, since the lowest score was produced with

α= 0.25 or α= 0.5 and β= 0.5.

5.3.4 National Hockey League

Table 5.31: NHL 2017-2018 Ranking Comparison Scores for ESPN

α\β 0.0 0.25 0.5 0.75 1.0
0.0 130 144 142 136 136
0.25 134 144 144 134 132
0.5 132 140 140 130 108
0.75 114 120 122 122 116
1.0 116 122 120 120 124

Table 5.32: NHL 2017-2018 Ranking Comparison Scores for Sports Illustrated

α\β 0.0 0.25 0.5 0.75 1.0
0.0 120 132 130 140 140
0.25 122 132 132 138 136
0.5 116 126 126 132 130
0.75 116 120 124 124 120
1.0 118 122 126 126 134

Using the 2017-2018 NHL season, we compared our rankings to those from ESPN

[36] and Sports Illustrated (SI) [37]. We found that our closest rankings gave comparison

scores of 108 against the ESPN ranking, and 116 when compared to Sports Illustrated,

with respective average team displacements of 3.484 and 3.742 ranks. This was higher
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than the 68 comparison score and 2.194 average team displacement between these two

external rankings. Notably, the α, β pair that produced the lowest comparison score was

significantly different for each of the two external rankings.

Table 5.33: NHL 2017-2018 Comparison between ESPN and our Ranking

α= 0.5 β= 1 Backedge Percent = 33.5%
Rank Our Ranking ESPN Rank Difference
1. Vegas Golden Knights Nashville Predators [+1]
2. Nashville Predators Tampa Bay Lightning [+2]
3. Winnipeg Jets Boston Bruins [+12]
4. Tampa Bay Lightning Vegas Golden Knights [-3]
5. Anaheim Ducks Winnipeg Jets [-2]
6. Pittsburgh Penguins Pittsburgh Penguins [0]
7. Los Angeles Kings Toronto Maple Leafs [+5]
8. Philadelphia Flyers Washington Capitals [+1]
9. Washington Capitals Philadelphia Flyers [-1]
10. Columbus Blue Jackets San Jose Sharks [+7]
11. Colorado Avalanche Los Angeles Kings [-4]
12. Toronto Maple Leafs Columbus Blue Jackets [-2]
13. Dallas Stars Minnesota Wild [+3]
14. Florida Panthers New Jersey Devils [+7]
15. Boston Bruins Colorado Avalanche [-4]
16. Minnesota Wild Dallas Stars [-3]
17. San Jose Sharks St. Louis Blues [+2]
18. Calgary Flames Calgary Flames [0]
19. St. Louis Blues Anaheim Ducks [-14]
20. Edmonton Oilers Florida Panthers [-6]
21. New Jersey Devils New York Islanders [+2]
22. Montreal Canadiens Chicago Blackhawks [+6]
23. New York Islanders Carolina Hurricanes [+3]
24. Detroit Red Wings New York Rangers [+1]
25. New York Rangers Montreal Canadiens [-3]
26. Carolina Hurricanes Edmonton Oilers [-6]
27. Vancouver Canucks Vancouver Canucks [0]
28. Chicago Blackhawks Detroit Red Wings [-4]
29. Arizona Coyotes Buffalo Sabres [+2]
30. Ottawa Senators Arizona Coyotes [-1]
31. Buffalo Sabres Ottawa Senators [-1]
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Table 5.34: NHL 2017-2018 Comparison between Sports Illustrated and our Ranking

α= 0.5 β= 0 Backedge Percent = 31.4%
Rank Our Ranking Sports Illustrated Rank Difference
1. Vegas Golden Knights Nashville Predators [+1]
2. Nashville Predators Boston Bruins [+8]
3. Winnipeg Jets Tampa Bay Lightning [+1]
4. Tampa Bay Lightning Winnipeg Jets [-1]
5. Los Angeles Kings Vegas Golden Knights [-4]
6. Washington Capitals Washington Capitals [0]
7. Colorado Avalanche Toronto Maple Leafs [+1]
8. Toronto Maple Leafs San Jose Sharks [+8]
9. Anaheim Ducks Minnesota Wild [+5]
10. Boston Bruins Columbus Blue Jackets [+2]
11. Pittsburgh Penguins Pittsburgh Penguins [0]
12. Columbus Blue Jackets Los Angeles Kings [-7]
13. Dallas Stars Philadelphia Flyers [+4]
14. Minnesota Wild St. Louis Blues [+5]
15. Florida Panthers Anaheim Ducks [-6]
16. San Jose Sharks Colorado Avalanche [-9]
17. Philadelphia Flyers New Jersey Devils [+4]
18. Arizona Coyotes Florida Panthers [-3]
19. St. Louis Blues Dallas Stars [-6]
20. Edmonton Oilers Calgary Flames [+6]
21. New Jersey Devils Arizona Coyotes [-3]
22. Montreal Canadiens Carolina Hurricanes [+5]
23. Detroit Red Wings New York Rangers [+2]
24. New York Islanders New York Islanders [0]
25. New York Rangers Chicago Blackhawks [+5]
26. Calgary Flames Edmonton Oilers [-6]
27. Carolina Hurricanes Detroit Red Wings [-4]
28. Buffalo Sabres Montreal Canadiens [-6]
29. Vancouver Canucks Vancouver Canucks [0]
30. Chicago Blackhawks Ottawa Senators [+1]
31. Ottawa Senators Buffalo Sabres [-3]

For the ESPN ranking, setting α = 0.5 and β = 0.0 gives us a backedge weight

percentage of 37.84%, while our own ranking with this α and β has a backedge weight

percentage of 33.5%. Against the Sports Illustrated ranking, we find that using the α=
0.5 and β= 1.0 which produced the lowest comparison score gives the Sports Illustrated

ranking a backedge weight percentage of 38.12%, while our own ranking has a backedge

weight percentage of 31.40%.
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Table 5.35: NHL 2017-2018 Backedge Weight Comparisons

Backedge Percentage Comparison Score
α β Our Rankings ESPN SI ESPN SI
0.0 0.0 29.52% 36.90% 38.12% 130 120
0.5 0.5 32.81% 37.47% 38.67% 140 126
1.0 1.0 33.99% 37.84% 39.02% 124 134
0.5 1.0 33.54% 37.84% 39.02% 108 130
0.5 0.0 31.40% 36.90% 38.12% 132 116

For these external rankings, we found that α= 0.5 produced the lowest comparison

scores, meaning that both consider game recency as a somewhat significant factor. How-

ever, their β values were extremely different, with ESPN being most closely matched

with β= 1.0, while Sports Illustrated’s ranking was best matched by β= 0.0. This means

that while ESPN likely does not consider point differential at all for NHL rankings,

Sports Illustrated uses it as a highly significant part of their ranking. This large differ-

ence may be explained by the low scoring nature of NHL games, since our cutoff for the

75th percentile when weighing point differential was only 3 goals, much lower than any

other sport.

5.3.5 NCAA Football

Table 5.36: NCAA Football 2018 Ranking Comparison Scores for the AP Poll

α\β 0.0 0.25 0.5 0.75 1.0
0.0 461 293 209 172 231
0.25 205 260 278 305 196
0.5 287 243 287 294 355
0.75 292 295 262 302 218
1.0 259 257 135 214 341

Table 5.37: NCAA Football 2018 Ranking Comparison Scores for the College Football
Playoff (CFP)

α\β 0.0 0.25 0.5 0.75 1.0
0.0 436 305 197 175 299
0.25 210 265 241 311 198
0.5 312 192 274 305 355
0.75 340 267 259 301 211
1.0 275 225 140 219 339
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For both the AP [38] and CFP [39] rankings, α= 1.0 and β= 0.5 produced the closest

ranking. With a lowest comparison score of 135, our ranking placed teams approximately

5.40 ranks away from where the AP Poll had placed them. For the CFP comparison, our

lowest comparison score was 140, placing teams 5.60 ranks away from where they were

ranked by the CFP system. As a baseline, the AP and CFP rankings had a comparison

score of 24, placing teams an average of 0.96 ranks away from the other. However, since

not every team is ranked in either of these external rankings, teams in one of the external

rankings but not the other (Army, Iowa State, Northwestern, and Syracuse) are not

counted in this baseline comparison score.

Table 5.38: NCAA Football 2018 Comparison between the AP Poll and our Ranking

α= 1 β= 0.5 Backedge Percent = 10.4%
Rank Our Ranking AP Poll Rank Difference
1. Alabama Alabama [0]
2. Clemson Clemson [0]
3. Notre Dame Notre Dame [0]
4. Oklahoma Oklahoma [0]
5. Central Florida Ohio State [+1]
6. Ohio State Georgia [+3]
7. Michigan Central Florida [-2]
8. Louisiana State Michigan [-1]
9. Georgia Washington [+7]
10. Kentucky Florida [+10]
11. West Virginia Louisiana State [-3]
12. Boise State Washington State [+5]
13. Fresno State Penn State [+1]
14. Penn State Texas [+1]
15. Texas West Virginia [-4]
16. Washington Kentucky [-6]
17. Washington State Syracuse [+19]
18. South Carolina Mississippi State [+3]
19. Missouri Fresno State [-6]
20. Florida Utah [+5]
21. Mississippi State Texas A&M [+1]
22. Texas A&M Army [+10]
23. Vanderbilt Boise State [-11]
24. North Carolina State Missouri [-5]
25. Utah Iowa State [+31]
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Table 5.39: NCAA Football 2018 Comparison between the CFP and our Ranking

α= 1 β= 0.5 Backedge Percent = 10.4%
Rank Our Ranking College Football Playoff Rank Difference
1. Alabama Alabama [0]
2. Clemson Clemson [0]
3. Notre Dame Notre Dame [0]
4. Oklahoma Oklahoma [0]
5. Central Florida Georgia [+4]
6. Ohio State Ohio State [0]
7. Michigan Michigan [0]
8. Louisiana State Central Florida [-3]
9. Georgia Washington [+7]
10. Kentucky Florida [+10]
11. West Virginia Louisiana State [-3]
12. Boise State Penn State [+2]
13. Fresno State Washington State [+4]
14. Penn State Kentucky [-4]
15. Texas Texas [0]
16. Washington West Virginia [-5]
17. Washington State Utah [+8]
18. South Carolina Mississippi State [+3]
19. Missouri Texas A&M [+3]
20. Florida Syracuse [+16]
21. Mississippi State Fresno State [-8]
22. Texas A&M Northwestern [+11]
23. Vanderbilt Missouri [-4]
24. North Carolina State Iowa State [+32]
25. Utah Boise State [-13]

Looking at backedge weight, the external rankings give us a backedge weight of

20.99% from the AP Poll with α= 1.0 and β= 0.5, while our own ranking gives 10.38%.

For the CFP system, this α = 1.0 and β = 0.5 gives a backedge weight percentage of

19.97%.

Table 5.40: NCAA Football 2018 Backedge Weight Comparisons

Backedge Percentage Comparison Score
α β Our Rankings AP Poll CFP AP Poll CFP
0.0 0.0 6.33% 15.69% 14.43% 461 436
0.5 0.5 10.10% 20.68% 19.49% 287 274
1.0 1.0 11.34% 22.50% 21.43% 341 339
1.0 0.5 10.38% 20.99% 19.97% 135 140
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For both of these rankings, the lowest comparison score happened at α = 1.0 and

β= 0.5. This suggests that the recency of a particular game has no effect on its weight in

these external rankings, while the point differential of the game is a somewhat significant

factor.

5.3.6 NCAA Basketball

Table 5.41: NCAA Basketball 2017-2018 Ranking Comparison Scores for the AP Poll

α\β 0.0 0.25 0.5 0.75 1.0
0.0 640 611 780 489 566
0.25 402 750 537 588 430
0.5 346 518 596 590 402
0.75 378 421 415 440 705
1.0 347 377 669 412 383

Table 5.42: NCAA Basketball 2017-2018 Ranking Comparison Scores for the Coaches
Poll

α\β 0.0 0.25 0.5 0.75 1.0
0.0 630 560 576 494 566
0.25 392 745 540 594 457
0.5 351 537 564 471 417
0.75 391 403 441 496 714
1.0 391 382 692 417 379

For both the AP Poll [40] and Coaches Poll [41], α = 0.5 and β = 0.0 produced the

closest ranking. With a lowest comparison score of 346, our ranking placed teams

approximately 13.84 ranks away from where the AP Poll had placed them. Comparing

ourselves to the Coaches Poll, our lowest comparison score was 351, placing teams an

average of 14.04 ranks away. As a baseline, the AP Poll and Coaches Poll rankings had

a comparison score of 44, placing teams an average of 1.76 ranks away from the other.

Like the NCAA Football rankings, however, teams in one of the external rankings but

not the other are not counted in this baseline comparison score.

Looking at backedge weight, the AP Poll give us a backedge weight of 32.91% with

α= 0.5 and β= 0.0, while our own ranking gives 15.49%. For the Coaches Poll, α= 1.0

and β= 0.5 gives a backedge weight percentage of 37.28%.
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Table 5.43: NCAA Basketball 2017-2018 Comparison between the AP Poll and our
Ranking

α= 0.5 β= 0.0 Backedge Percent = 15.5%
Rank Our Ranking AP Poll Rank Difference
1. Villanova Virginia [+1]
2. Virginia Villanova [-1]
3. Duke Xavier [+49]
4. UNC Michigan State [+28]
5. Texas Tech Duke [-2]
6. Kansas Gonzaga [+9]
7. TCU Michigan [+23]
8. Nevada Cincinnati [+45]
9. South Dakota Kansas [-3]
10. Syracuse Purdue [+23]
11. Clemson Wichita State [+9]
12. Florida UNC [-8]
13. Auburn Tennessee [+1]
14. Tennessee Texas Tech [-9]
15. Gonzaga Arizona [+25]
16. Murray State Auburn [-3]
17. Saint Mary’s Ohio State [+14]
18. Miami (FL) West Virginia [+18]
19. Notre Dame Clemson [-8]
20. Wichita State Saint Mary’s [-3]
21. Fresno State Houston [+33]
22. Jacksonville State Nevada [-14]
23. Belmont Florida [-11]
24. St. Joseph’s Miami (FL) [-6]
25. Rhode Island Rhode Island [0]

Table 5.45: NCAA Basketball 2017-2018 Backedge Weight Comparisons

Backedge Percentage Comparison Score
α β Our Rankings AP Poll Coaches Poll AP Poll Coaches Poll
0.0 0.0 16.34% 32.19% 37.82% 640 630
0.5 0.5 20.26% 38.06% 42.06% 596 574
1.0 1.0 21.45% 40.58% 44.00% 383 379
0.5 0.0 15.49% 32.91% 37.28% 346 351

From the closest scores to our external rankings, we find that these rankings are

most closely matched when α= 1.0 and β= 0.5. This means that the AP Poll and Coaches

Poll see game recency as a somewhat significant factor in their rankings. Additionally,
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Table 5.44: NCAA Basketball 2017-2018 Comparison between the Coaches Poll and our
Ranking

α= 0.5 β= 0.0 Backedge Percent = 15.5%
Rank Our Ranking Coaches Poll Rank Difference
1. Villanova Virginia [+1]
2. Virginia Villanova [-1]
3. Duke Kansas [+3]
4. UNC Xavier [+48]
5. Texas Tech Michigan State [+27]
6. Kansas Duke [-3]
7. TCU Michigan [+23]
8. Nevada Gonzaga [+7]
9. South Dakota UNC [-5]
10. Syracuse Cincinnati [+43]
11. Clemson Purdue [+22]
12. Florida Tennessee [+2]
13. Auburn Texas Tech [-8]
14. Tennessee West Virginia [+22]
15. Gonzaga Arizona [+25]
16. Murray State Wichita State [+4]
17. Saint Mary’s Ohio State [+14]
18. Miami (FL) Clemson [-7]
19. Notre Dame Houston [+35]
20. Wichita State Kentucky [+15]
21. Fresno State Auburn [-8]
22. Jacksonville State Rhode Island [+3]
23. Belmont Saint Mary’s [-6]
24. St. Joseph’s Florida [-12]
25. Rhode Island Miami (FL) [-7]

this means that point differential carries very significant weight in their rankings.
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5.3.7 Rankings Summary

In the end, our algorithms generated a “best" ranking for each data set. Based

upon our results, the “best" rankings come from various combinations of our ordering

algorithms. For professional sports, rankings with the lowest total backedge weight

were generated by using the Dynamic Programming Brute Force algorithm, which was

possible due to the relatively low number of teams in those leagues. For NCAA sports, we

used Sliding Window with window size 20 since the NCAA leagues had too many teams

to run Dynamic Programming Brute Force in a reasonable amount of time. For all data

sets, we ran the RoC Reorder postprocess to choose the best equivalent ranking based on

our second metric. Finally, α and β were chosen so that our rankings best match external

rankings.
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5.3.7.1 NFL 2018

Below is our best generated ranking for the NFL 2018 season where α = 0.5 and

β= 0.25, which was closest to the existing NFL.com ranking.

Table 5.46: NFL 2018 Best Ranking

α= 0.5 β= 0.25 Backedge Percent = 15.8%
Rank Team Range of Correctness
1. New Orleans Saints [ 1, 3 ]
2. New England Patriots [ 1, 2 ]
3. Chicago Bears [ 3, 3 ]
4. Los Angeles Rams [ 4, 6 ]
5. Houston Texans [ 3, 10 ]
6. Baltimore Ravens [ 2, 6 ]
7. Los Angeles Chargers [ 7, 7 ]
8. Seattle Seahawks [ 8, 8 ]
9. Kansas City Chiefs [ 9, 9 ]
10. Pittsburgh Steelers [ 10, 10 ]
11. Cleveland Browns [ 11, 11 ]
12. Cincinnati Bengals [ 12, 12 ]
13. Indianapolis Colts [ 13, 13 ]
14. Buffalo Bills [ 14, 14 ]
15. Tennessee Titans [ 15, 16 ]
16. Minnesota Vikings [ 15, 17 ]
17. Dallas Cowboys [ 16, 17 ]
18. Philadelphia Eagles [ 18, 20 ]
19. Detroit Lions [ 18, 19 ]
20. Green Bay Packers [ 20, 20 ]
21. Atlanta Falcons [ 21, 21 ]
22. Washington Redskins [ 22, 22 ]
23. Carolina Panthers [ 23, 24 ]
24. Jacksonville Jaguars [ 23, 24 ]
25. New York Giants [ 25, 25 ]
26. Tampa Bay Buccaneers [ 26, 28 ]
27. Miami Dolphins [ 25, 27 ]
28. New York Jets [ 28, 30 ]
29. San Francisco 49ers [ 27, 29 ]
30. Oakland Raiders [ 30, 30 ]
31. Denver Broncos [ 31, 31 ]
32. Arizona Cardinals [ 32, 32 ]
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5.3.7.2 MLB 2018

Below is our best generated ranking for the MLB 2018 season where α = 0.5 and

β= 0.5, which was closest to the existing NBC Sports ranking.

Table 5.47: MLB 2018 Best Ranking

α= 0.5 β= 0.5 Backedge Percent = 36.9%
Rank Team Range of Correctness
1. New York Yankees [ 1, 1 ]
2. Houston Astros [ 2, 2 ]
3. Boston Red Sox [ 3, 8 ]
4. Chicago Cubs [ 1, 4 ]
5. Los Angeles Dodgers [ 5, 5 ]
6. Milwaukee Brewers [ 6, 6 ]
7. St. Louis Cardinals [ 7, 7 ]
8. Colorado Rockies [ 8, 8 ]
9. Seattle Mariners [ 9, 10 ]
10. Atlanta Braves [ 9, 10 ]
11. Tampa Bay Rays [ 11, 11 ]
12. Oakland Athletics [ 12, 12 ]
13. Cleveland Indians [ 13, 16 ]
14. New York Mets [ 12, 14 ]
15. San Francisco Giants [ 15, 15 ]
16. Arizona Diamondbacks [ 16, 16 ]
17. Los Angeles Angels [ 17, 17 ]
18. Texas Rangers [ 18, 18 ]
19. Minnesota Twins [ 19, 19 ]
20. Toronto Blue Jays [ 20, 20 ]
21. Washington Nationals [ 21, 21 ]
22. Philadelphia Phillies [ 22, 22 ]
23. San Diego Padres [ 23, 23 ]
24. Pittsburgh Pirates [ 24, 24 ]
25. Miami Marlins [ 25, 27 ]
26. Kansas City Royals [ 25, 26 ]
27. Detroit Tigers [ 27, 27 ]
28. Cincinnati Reds [ 28, 28 ]
29. Chicago White Sox [ 29, 29 ]
30. Baltimore Orioles [ 30, 30 ]
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5.3.7.3 NBA 2017-2018

Below is our best generated ranking for the NBA 2017-2018 season where α= 0.5

and β= 0.5, which was closest to the existing ESPN ranking.

Table 5.48: NBA 2017-2018 Best Ranking

α= 0.5 β= 0.5 Backedge Percent = 27.7%
Rank Team Range of Correctness
1. Toronto Raptors [ 1, 1 ]
2. Boston Celtics [ 2, 2 ]
3. Philadelphia 76ers [ 3, 3 ]
4. Houston Rockets [ 4, 4 ]
5. Minnesota Timberwolves [ 5, 5 ]
6. Denver Nuggets [ 6, 6 ]
7. Portland Trail Blazers [ 7, 7 ]
8. Oklahoma City Thunder [ 8, 8 ]
9. Indiana Pacers [ 9, 9 ]
10. Utah Jazz [ 10, 10 ]
11. Golden State Warriors [ 11, 11 ]
12. New Orleans Pelicans [ 12, 12 ]
13. San Antonio Spurs [ 13, 13 ]
14. Cleveland Cavaliers [ 14, 14 ]
15. Miami Heat [ 15, 15 ]
16. Charlotte Hornets [ 16, 16 ]
17. Washington Wizards [ 17, 17 ]
18. Los Angeles Clippers [ 18, 18 ]
19. Detroit Pistons [ 19, 19 ]
20. Milwaukee Bucks [ 20, 20 ]
21. Los Angeles Lakers [ 21, 21 ]
22. New York Knicks [ 22, 22 ]
23. Phoenix Suns [ 23, 23 ]
24. Sacramento Kings [ 24, 24 ]
25. Brooklyn Nets [ 25, 25 ]
26. Chicago Bulls [ 26, 26 ]
27. Atlanta Hawks [ 27, 27 ]
28. Dallas Mavericks [ 28, 28 ]
29. Orlando Magic [ 29, 29 ]
30. Memphis Grizzlies [ 30, 30 ]
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5.3.7.4 NHL 2017-2018

Below is our best generated ranking for the NHL 2017-2018 season where α= 0.5

and β= 1.0, which was closest to the existing ESPN ranking.

Table 5.49: NHL 2017-2018 Best Ranking

α= 0.5 β= 1 Backedge Percent = 33.5%
Rank Team Range of Correctness
1. Vegas Golden Knights [ 1, 1 ]
2. Nashville Predators [ 2, 2 ]
3. Winnipeg Jets [ 3, 3 ]
4. Tampa Bay Lightning [ 4, 4 ]
5. Anaheim Ducks [ 5, 5 ]
6. Pittsburgh Penguins [ 6, 6 ]
7. Los Angeles Kings [ 7, 7 ]
8. Philadelphia Flyers [ 8, 8 ]
9. Washington Capitals [ 9, 9 ]
10. Columbus Blue Jackets [ 10, 10 ]
11. Colorado Avalanche [ 11, 11 ]
12. Toronto Maple Leafs [ 12, 12 ]
13. Dallas Stars [ 13, 13 ]
14. Florida Panthers [ 14, 14 ]
15. Boston Bruins [ 15, 15 ]
16. Minnesota Wild [ 16, 16 ]
17. San Jose Sharks [ 17, 17 ]
18. Calgary Flames [ 18, 18 ]
19. St. Louis Blues [ 19, 19 ]
20. Edmonton Oilers [ 20, 20 ]
21. New Jersey Devils [ 21, 21 ]
22. Montreal Canadiens [ 22, 22 ]
23. New York Islanders [ 23, 23 ]
24. Detroit Red Wings [ 24, 24 ]
25. New York Rangers [ 25, 25 ]
26. Carolina Hurricanes [ 26, 26 ]
27. Vancouver Canucks [ 27, 27 ]
28. Chicago Blackhawks [ 28, 28 ]
29. Arizona Coyotes [ 29, 29 ]
30. Ottawa Senators [ 30, 30 ]
31. Buffalo Sabres [ 31, 31 ]
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5.3.7.5 NCAA Football 2018

Below is our best generated ranking for the NCAA Football 2018 season where α= 1

and β= 0.5, which was closest to the existing College Football Playoff and AP Poll top 25

ranking.

Table 5.50: NCAA Football 2018 Best Ranking

α= 1 β= 0.5 Backedge Percent = 10.4%
Rank Team RoC Rank Team RoC Rank Team RoC
1. Alabama [ 1, 7 ] 45. Temple [ 45, 45 ] 89. Florida International [ 88, 105 ]
2. Clemson [ 1, 17 ] 46. Cincinnati [ 46, 50 ] 90. Miami (OH) [ 87, 90 ]
3. Notre Dame [ 1, 6 ] 47. San Diego State [ 28, 52 ] 91. Northern Illinois [ 91, 91 ]
4. Oklahoma [ 1, 10 ] 48. Mississippi [ 40, 59 ] 92. Brigham Young [ 92, 92 ]
5. Central Florida [ 1, 34 ] 49. Marshall [ 42, 81 ] 93. Hawaii [ 93, 99 ]
6. Ohio State [ 1, 6 ] 50. Wyoming [ 27, 83 ] 94. Ohio [ 92, 105 ]
7. Michigan [ 7, 13 ] 51. South Florida [ 47, 51 ] 95. Arizona [ 93, 95 ]
8. Louisiana State [ 2, 8 ] 52. Georgia Tech [ 52, 61 ] 96. Oregon [ 96, 96 ]
9. Georgia [ 9, 9 ] 53. Eastern Michigan [ 48, 53 ] 97. UCLA [ 97, 97 ]
10. Kentucky [ 10, 17 ] 54. Purdue [ 54, 54 ] 98. California [ 98, 98 ]
11. West Virginia [ 5, 14 ] 55. Iowa [ 55, 55 ] 99. Southern California [ 99, 109 ]
12. Boise State [ 1, 12 ] 56. Iowa State [ 56, 57 ] 100. Colorado State [ 94, 100 ]
13. Fresno State [ 13, 46 ] 57. Boston College [ 55, 61 ] 101. Arkansas [ 101, 104 ]
14. Penn State [ 8, 29 ] 58. Baylor [ 57, 58 ] 102. North Carolina [ 99, 130 ]
15. Texas [ 12, 36 ] 59. Kansas State [ 59, 59 ] 103. Navy [ 94, 104 ]
16. Washington [ 1, 16 ] 60. Texas Tech [ 60, 60 ] 104. Louisville [ 89, 110 ]
17. Washington State [ 17, 24 ] 61. Oklahoma State [ 61, 79 ] 105. Tulsa [ 104, 119 ]
18. South Carolina [ 11, 18 ] 62. Virginia Tech [ 58, 62 ] 106. Massachusetts [ 95, 106 ]
19. Missouri [ 19, 19 ] 63. Florida State [ 63, 63 ] 107. Liberty [ 107, 107 ]
20. Florida [ 20, 20 ] 64. Wake Forest [ 64, 73 ] 108. New Mexico [ 108, 109 ]
21. Mississippi State [ 21, 21 ] 65. Toledo [ 54, 65 ] 109. San Jose State [ 101, 109 ]
22. Texas A&M [ 22, 47 ] 66. Nevada [ 66, 83 ] 110. Nevada-Las Vegas [ 110, 127 ]
23. Vanderbilt [ 21, 37 ] 67. Coastal Carolina [ 44, 67 ] 111. Western Kentucky [ 105, 116 ]
24. North Carolina State [ 3, 48 ] 68. Alabama-Birmingham [ 68, 69 ] 112. Georgia State [ 70, 112 ]
25. Utah [ 18, 26 ] 69. Louisiana [ 68, 111 ] 113. Louisiana-Monroe [ 113, 113 ]
26. Utah State [ 13, 49 ] 70. Louisiana Tech [ 69, 70 ] 114. Southern Mississippi [ 114, 120 ]
27. Stanford [ 26, 46 ] 71. North Texas [ 71, 71 ] 115. South Alabama [ 114, 121 ]
28. Troy [ 13, 28 ] 72. Southern Methodist [ 72, 72 ] 116. Rutgers [ 88, 121 ]
29. Georgia Southern [ 29, 29 ] 73. Houston [ 73, 73 ] 117. Ball State [ 112, 117 ]
30. Appalachian State [ 30, 42 ] 74. Tulane [ 74, 80 ] 118. Western Michigan [ 118, 123 ]
31. Duke [ 3, 31 ] 75. Colorado [ 26, 75 ] 119. Oregon State [ 100, 130 ]
32. Army [ 32, 43 ] 76. Arizona State [ 76, 77 ] 120. Connecticut [ 107, 130 ]
33. Northwestern [ 32, 39 ] 77. Nebraska [ 76, 77 ] 121. Texas-San Antonio [ 115, 121 ]
34. Miami (FL) [ 32, 34 ] 78. Michigan State [ 78, 78 ] 122. Texas State [ 122, 122 ]
35. Pittsburgh [ 35, 35 ] 79. Maryland [ 79, 84 ] 123. New Mexico State [ 123, 127 ]
36. Syracuse [ 36, 56 ] 80. Kansas [ 62, 115 ] 124. Bowling Green State [ 119, 124 ]
37. Texas Christian [ 16, 55 ] 81. East Carolina [ 75, 101 ] 125. Akron [ 125, 125 ]
38. Tennessee [ 24, 38 ] 82. Charlotte [ 69, 82 ] 126. Kent State [ 126, 130 ]
39. Auburn [ 39, 47 ] 83. Florida Atlantic [ 83, 83 ] 127. Central Michigan [ 126, 130 ]
40. Wisconsin [ 34, 53 ] 84. Air Force [ 84, 99 ] 128. Texas-El Paso [ 124, 128 ]
41. Middle Tennessee State [ 24, 48 ] 85. Illinois [ 80, 85 ] 129. Rice [ 129, 129 ]
42. Memphis [ 20, 71 ] 86. Minnesota [ 86, 86 ] 130. Old Dominion [ 130, 130 ]
43. Arkansas State [ 31, 66 ] 87. Indiana [ 87, 87 ]
44. Buffalo [ 33, 44 ] 88. Virginia [ 88, 93 ]
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5.3.7.6 NCAA Basketball 2017-2018

Below is our best generated ranking for the NCAA Basketball 2017-2018 season

where α= 0.5 and β= 0, which was closest to the existing AP Poll and Coaches Poll.

Table 5.51: NCAA Basketball 2017-2018 Best Ranking

α= 0.5 β= 0 Backedge Percent = 15.5%
Rank Team RoC Rank Team RoC Rank Team RoC
1. Villanova [ 1, 13 ] 54. Houston [ 54, 63 ] 107. Wofford [ 104, 107 ]
2. Virginia [ 1, 2 ] 55. San Diego State [ 52, 60 ] 108. Georgia Tech [ 108, 109 ]
3. Duke [ 3, 3 ] 56. Kansas State [ 52, 56 ] 109. Iowa [ 103, 109 ]
4. UNC [ 4, 9 ] 57. Baylor [ 57, 59 ] 110. Northwestern [ 110, 110 ]
5. Texas Tech [ 1, 5 ] 58. Seton Hall [ 53, 72 ] 111. Valparaiso [ 111, 111 ]
6. Kansas [ 6, 6 ] 59. Mississippi State [ 54, 62 ] 112. Utah State [ 112, 112 ]
7. TCU [ 7, 7 ] 60. Texas [ 58, 64 ] 113. Northeastern [ 113, 114 ]
8. Nevada [ 8, 20 ] 61. Boise State [ 56, 61 ] 114. UNLV [ 113, 141 ]
9. South Dakota [ 8, 84 ] 62. Loyola (IL) [ 62, 70 ] 115. Hofstra [ 114, 115 ]
10. Syracuse [ 7, 10 ] 63. Missouri [ 60, 63 ] 116. William & Mary [ 116, 142 ]
11. Clemson [ 11, 11 ] 64. Arkansas [ 64, 64 ] 117. DePaul [ 111, 117 ]
12. Florida [ 12, 12 ] 65. Oklahoma [ 65, 65 ] 118. Providence [ 118, 118 ]
13. Auburn [ 13, 13 ] 66. Oklahoma State [ 66, 67 ] 119. Washington [ 119, 155 ]
14. Tennessee [ 14, 28 ] 67. Georgia [ 65, 72 ] 120. St. John’s (NY) [ 119, 120 ]
15. Gonzaga [ 13, 16 ] 68. Iowa State [ 67, 71 ] 121. Georgetown [ 121, 122 ]
16. Murray State [ 14, 21 ] 69. Wake Forest [ 55, 69 ] 122. Cal State Fullerton [ 76, 147 ]
17. Saint Mary’s [ 16, 45 ] 70. Florida State [ 70, 107 ] 123. Richmond [ 122, 123 ]
18. Miami (FL) [ 12, 18 ] 71. Illinois State [ 63, 71 ] 124. Davidson [ 124, 125 ]
19. Notre Dame [ 19, 19 ] 72. Tulsa [ 72, 131 ] 125. Alabama-Birmingham [ 124, 135 ]
20. Wichita State [ 20, 25 ] 73. Vanderbilt [ 68, 73 ] 126. VCU [ 125, 126 ]
21. Fresno State [ 9, 54 ] 74. Radford [ 74, 76 ] 127. Bucknell [ 127, 127 ]
22. Jacksonville State [ 17, 22 ] 75. UCSB [ 44, 121 ] 128. Vermont [ 128, 147 ]
23. Belmont [ 23, 43 ] 76. Sam Houston State [ 58, 158 ] 129. Ball State [ 128, 143 ]
24. St. Joseph’s [ 2, 24 ] 77. UNC Asheville [ 75, 77 ] 130. Pitt [ 109, 171 ]
25. Rhode Island [ 25, 25 ] 78. UNC Greensboro [ 78, 78 ] 131. La Salle [ 128, 131 ]
26. College of Charleston [ 26, 75 ] 79. ETSU [ 79, 97 ] 132. Temple [ 132, 132 ]
27. Lamar [ 1, 27 ] 80. Dayton [ 60, 80 ] 133. South Carolina [ 133, 168 ]
28. Stephen F. Austin [ 28, 28 ] 81. St. Bonaventure [ 81, 85 ] 134. UCF [ 133, 135 ]
29. LSU [ 29, 29 ] 82. Tennessee Tech [ 81, 82 ] 135. Wisconsin [ 133, 137 ]
30. Michigan [ 30, 30 ] 83. New Mexico [ 83, 83 ] 136. Memphis [ 135, 136 ]
31. Ohio State [ 31, 31 ] 84. Wyoming [ 84, 84 ] 137. Mercer [ 137, 152 ]
32. Michigan State [ 32, 32 ] 85. South Dakota State [ 85, 85 ] 138. Minnesota [ 136, 138 ]
33. Purdue [ 33, 36 ] 86. Buffalo [ 86, 95 ] 139. Drake [ 139, 139 ]
34. Texas A&M [ 30, 34 ] 87. Lipscomb [ 83, 94 ] 140. Missouri State [ 140, 140 ]
35. Kentucky [ 35, 35 ] 88. Evansville [ 84, 88 ] 141. Wright State [ 141, 143 ]
36. West Virginia [ 36, 55 ] 89. Southern Illinois [ 89, 92 ] 142. Illinois [ 139, 142 ]
37. Louisville [ 36, 37 ] 90. Ole Miss [ 86, 90 ] 143. Marshall [ 143, 143 ]
38. Virginia Tech [ 38, 38 ] 91. Alabama [ 91, 91 ] 144. Toledo [ 144, 159 ]
39. NC State [ 39, 39 ] 92. BYU [ 92, 105 ] 145. Austin Peay [ 143, 202 ]
40. Arizona [ 40, 41 ] 93. Bradley [ 91, 93 ] 146. Grand Canyon [ 143, 184 ]
41. Nebraska [ 34, 47 ] 94. Northern Iowa [ 94, 110 ] 147. UTSA [ 144, 156 ]
42. UCLA [ 41, 42 ] 95. Tennessee State [ 88, 95 ] 148. Harvard [ 139, 219 ]
43. USC [ 43, 43 ] 96. Canisius [ 96, 163 ] 149. North Dakota State [ 141, 168 ]
44. Middle Tennessee [ 44, 44 ] 97. Central Michigan [ 87, 97 ] 150. Rutgers [ 143, 199 ]
45. Western Kentucky [ 45, 46 ] 98. Purdue-Fort Wayne [ 98, 98 ] 151. UConn [ 137, 151 ]
46. New Mexico State [ 44, 82 ] 99. Indiana [ 99, 99 ] 152. SMU [ 152, 157 ]
47. Old Dominion [ 46, 79 ] 100. Maryland [ 100, 100 ] 153. Liberty [ 138, 153 ]
48. Boston College [ 42, 68 ] 101. Butler [ 101, 102 ] 154. Georgia State [ 154, 154 ]
49. Stanford [ 44, 49 ] 102. Penn State [ 101, 108 ] 155. Louisiana [ 155, 156 ]
50. Oregon [ 50, 50 ] 103. Furman [ 102, 106 ] 156. Montana [ 155, 174 ]
51. Arizona State [ 51, 51 ] 104. Marquette [ 102, 104 ] 157. Louisiana Tech [ 156, 168 ]
52. Xavier [ 52, 52 ] 105. Creighton [ 105, 109 ] 158. Tulane [ 155, 158 ]
53. Cincinnati [ 53, 53 ] 106. Utah [ 102, 111 ] 159. Southeastern Louisiana [ 159, 176 ]
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Rank Team RoC Rank Team RoC Rank Team RoC
160. Oakland [ 145, 160 ] 224. Navy [ 224, 225 ] 288. Northwestern State [ 281, 288 ]
161. Northern Kentucky [ 161, 164 ] 225. NJIT [ 224, 239 ] 289. Louisiana-Monroe [ 289, 289 ]
162. Texas-Arlington [ 156, 162 ] 226. Delaware [ 225, 226 ] 290. South Alabama [ 290, 290 ]
163. Georgia Southern [ 163, 180 ] 227. UNC Wilmington [ 227, 227 ] 291. Coastal Carolina [ 291, 304 ]
164. Monmouth [ 152, 164 ] 228. Campbell [ 228, 251 ] 292. St. Peter’s [ 291, 292 ]
165. Iona [ 165, 165 ] 229. Boston University [ 225, 233 ] 293. Niagara [ 293, 293 ]
166. Rider [ 166, 195 ] 230. Grambling [ 212, 235 ] 294. Cornell [ 294, 300 ]
167. Albany (NY) [ 165, 167 ] 231. Hartford [ 218, 231 ] 295. Incarnate Word [ 289, 351 ]
168. Colgate [ 168, 216 ] 232. Stony Brook [ 232, 232 ] 296. Sacred Heart [ 293, 296 ]
169. UTEP [ 158, 185 ] 233. Saint Francis (PA) [ 233, 233 ] 297. St. Francis (NY) [ 297, 297 ]
170. Colorado State [ 159, 170 ] 234. Lehigh [ 234, 234 ] 298. Fairleigh Dickinson [ 298, 298 ]
171. Winthrop [ 171, 227 ] 235. Princeton [ 235, 255 ] 299. Central Connecticut [ 299, 299 ]
172. Duquesne [ 131, 172 ] 236. Texas-Rio Grande Valley [ 231, 236 ] 300. North Carolina A&T [ 300, 306 ]
173. San Francisco [ 173, 173 ] 237. UC-Irvine [ 237, 268 ] 301. Brown [ 300, 301 ]
174. UC-Davis [ 174, 174 ] 238. North Texas [ 237, 238 ] 302. UMass-Lowell [ 302, 314 ]
175. Northern Colorado [ 175, 175 ] 239. Indiana State [ 239, 272 ] 303. Quinnipiac [ 302, 313 ]
176. Idaho [ 176, 176 ] 240. Jacksonville [ 226, 240 ] 304. Cleveland State [ 300, 304 ]
177. Nicholls State [ 177, 182 ] 241. North Florida [ 241, 241 ] 305. Arkansas State [ 305, 305 ]
178. Denver [ 176, 181 ] 242. Eastern Michigan [ 242, 242 ] 306. Little Rock [ 306, 306 ]
179. Western Michigan [ 177, 179 ] 243. Miami (OH) [ 243, 243 ] 307. Norfolk State [ 307, 307 ]
180. Ohio [ 180, 192 ] 244. Kent State [ 244, 244 ] 308. Bethune-Cookman [ 308, 308 ]
181. George Mason [ 173, 201 ] 245. Oregon State [ 245, 245 ] 309. Savannah State [ 309, 339 ]
182. Oral Roberts [ 179, 186 ] 246. Colorado [ 246, 247 ] 310. Detroit [ 305, 310 ]
183. New Orleans [ 178, 190 ] 247. Western Illinois [ 244, 260 ] 311. Saint Louis [ 311, 311 ]
184. Hawaii [ 175, 184 ] 248. Washington State [ 247, 248 ] 312. George Washington [ 312, 312 ]
185. Utah Valley [ 185, 209 ] 249. Texas Southern [ 249, 249 ] 313. Fordham [ 313, 313 ]
186. Southern Miss [ 176, 198 ] 250. Prairie View [ 250, 250 ] 314. UMass [ 314, 338 ]
187. Omaha [ 183, 246 ] 251. Eastern Kentucky [ 251, 251 ] 315. New Hampshire [ 313, 315 ]
188. Texas State [ 171, 188 ] 252. Charleston Southern [ 252, 252 ] 316. Binghamton [ 316, 317 ]
189. Pacific [ 189, 189 ] 253. Gardner-Webb [ 253, 253 ] 317. Dartmouth [ 316, 317 ]
190. San Diego [ 190, 230 ] 254. Hampton [ 254, 257 ] 318. Loyola (MD) [ 318, 351 ]
191. Texas A&M-Corpus Christi [ 189, 191 ] 255. California [ 249, 332 ] 319. Marist [ 304, 319 ]
192. Abilene Christian [ 192, 192 ] 256. Akron [ 245, 256 ] 320. Citadel [ 320, 320 ]
193. Bowling Green State [ 193, 222 ] 257. UT-Martin [ 257, 304 ] 321. Chattanooga [ 321, 321 ]
194. Western Carolina [ 163, 197 ] 258. Appalachian State [ 257, 258 ] 322. Charlotte [ 322, 322 ]
195. LIU-Brooklyn [ 1, 195 ] 259. Troy [ 259, 259 ] 323. High Point [ 323, 324 ]
196. Wagner [ 196, 196 ] 260. UIC [ 260, 260 ] 324. Siena [ 320, 345 ]
197. Mount St. Mary’s [ 197, 232 ] 261. Milwaukee [ 261, 261 ] 325. Presbyterian [ 324, 336 ]
198. Samford [ 195, 200 ] 262. Elon [ 262, 262 ] 326. Alcorn State [ 251, 326 ]
199. Rice [ 189, 221 ] 263. South Florida [ 263, 282 ] 327. Arkansas-Pine Bluff [ 327, 347 ]
200. East Carolina [ 159, 226 ] 264. Holy Cross [ 235, 270 ] 328. Youngstown State [ 311, 328 ]
201. VMI [ 199, 251 ] 265. Robert Morris [ 234, 265 ] 329. IUPUI [ 329, 351 ]
202. North Carolina Central [ 182, 202 ] 266. Drexel [ 266, 270 ] 330. Northern Arizona [ 283, 330 ]
203. Southeast Missouri State [ 203, 203 ] 267. Northern Illinois [ 262, 285 ] 331. Cal State Bakersfield [ 331, 336 ]
204. Eastern Illinois [ 204, 206 ] 268. Southern Utah [ 215, 268 ] 332. Sacramento State [ 331, 332 ]
205. McNeese State [ 203, 205 ] 269. Long Beach State [ 269, 269 ] 333. Cal State Northridge [ 333, 333 ]
206. Central Arkansas [ 206, 207 ] 270. Pepperdine [ 270, 275 ] 334. UC-Riverside [ 334, 334 ]
207. SIU-Edwardsville [ 205, 207 ] 271. Lafayette [ 267, 271 ] 335. Cal Poly [ 335, 351 ]
208. Morehead State [ 208, 250 ] 272. Army [ 272, 272 ] 336. USC Upstate [ 286, 351 ]
209. Southern [ 203, 229 ] 273. Air Force [ 273, 274 ] 337. Chicago State [ 332, 351 ]
210. UMKC [ 204, 210 ] 274. Columbia [ 273, 293 ] 338. Longwood [ 326, 351 ]
211. Seattle [ 211, 211 ] 275. San Jose State [ 274, 275 ] 339. Maine [ 318, 351 ]
212. Eastern Washington [ 212, 212 ] 276. Santa Clara [ 276, 276 ] 340. Coppin State [ 310, 340 ]
213. Weber State [ 213, 213 ] 277. Portland [ 277, 277 ] 341. South Carolina State [ 341, 341 ]
214. Portland State [ 214, 254 ] 278. Loyola Marymount [ 278, 294 ] 342. Morgan State [ 342, 342 ]
215. James Madison [ 214, 215 ] 279. Idaho State [ 276, 280 ] 343. Florida A&M [ 343, 343 ]
216. Towson [ 216, 216 ] 280. Houston Baptist [ 207, 287 ] 344. Howard [ 344, 344 ]
217. UMBC [ 217, 230 ] 281. Montana State [ 280, 281 ] 345. Maryland-Eastern Shore [ 345, 346 ]
218. Manhattan [ 217, 218 ] 282. North Dakota [ 282, 326 ] 346. Bryant [ 325, 351 ]
219. Fairfield [ 219, 219 ] 283. Stetson [ 264, 283 ] 347. Delaware State [ 346, 351 ]
220. Penn [ 220, 220 ] 284. Florida International [ 284, 289 ] 348. Alabama A&M [ 328, 348 ]
221. Yale [ 221, 225 ] 285. Kennesaw State [ 284, 307 ] 349. Jackson State [ 349, 349 ]
222. Florida Atlantic [ 217, 222 ] 286. Green Bay [ 284, 303 ] 350. Alabama State [ 350, 350 ]
223. Florida Gulf Coast [ 223, 223 ] 287. American [ 273, 314 ] 351. Mississippi Valley State [ 351, 351 ]
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5.4 Comparing Backedge Weight Across Sports

Table 5.52: Backedge Weight Comparisons across Different Sports

α β NFL MLB NBA NHL NCAA FB NCAA BB
0.0 0.0 9.89% 34.74% 24.40% 29.52% 7.60% 16.3%
0.5 0.5 17.18% 36.93% 27.74% 32.81% 11.87% 20.2%
1.0 1.0 19.29% 37.56% 29.02% 33.99% 13.25% 21.5%

Because different sports leagues have different season lengths and games played per

season, the backedge percentage of a ranking for one sport may be significantly higher or

lower than one for another sport. In Table 5.52, we see the backedge percentages for our

own rankings at different α and β values across the different sports we analyzed. One

significant trend is that leagues which play fewer games, such as the NFL and NCAA

Football, tend to have lower backedge weight percentages. This makes sense since in

a scenario like this, the graph is going to be significantly sparser, leading to less edges

needing to be considered as backedges.

In the MLB, we found our highest backedge weight percentages. Unlike the other

sports we analyzed, the MLB season is made up of many series in which teams will

play each other 2 to 4 times in succession. Often times, one teams will not win every

game in the series, leading to at least one of the resulting games becoming a backedge.

This phenomenon is the most likely reason for the high backedge weight percentages we

found.

5.5 Summary

This chapter detailed our results from our algorithms and postprocesses. First, the

raw results (no postprocess) from each algorithm for NFL 2018 were presented. Then each

postprocess method was introduced and shown to improve the rankings. Our rankings

were then compared against external rankings to show validity as well as figure out

what factors may have been considered when creating these external rankings. Finally,

our overall best ranking for each data set was presented.
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6
FUTURE WORK

Although this project explored several different approaches to sports rankings, there

is still more work that can be done to improve upon and expand its results. One area

that would benefit from further work relates to our pruning approximation algorithms.

Currently, our Dynamic Programming Brute Force Pruning algorithm estimates backedge

weight by calculating backedges within ranked teams and calculating backedges from

ranked teams to unranked teams, which dictates how the pruning is executed. The

Dynamic Programming Brute Force Pruning does not perform as well as our other

approximation algorithms, likely because of the way it calculates weight. In particular, if

it estimates poorly in the beginning, the ranking cannot be adjusted in latter steps, and

it does not estimate backedge weights amongst unranked teams. If a better heuristic

for estimating weight could be applied to this algorithm, it would greatly improve its

performance.

Another area within this project that could be explored further involves further

exploration of the ToC Structure. In the project, we were able to demonstrate that the

ToC Method generates new rankings that have less than or equal backedge weight to

the original ranking. However, we did not focus on improving a ranking’s total backedge

weight using the ToC Method. In order to achieve this, we must implement an algorithm

that chooses edges that can be moved from the backedge set to the forward edge set,

ultimately reducing the total backedge weight. By implementing this, we think that it

would significantly improve our approximation algorithms, getting them closer to an

optimal solution.

When it comes to ranking sports teams, this project takes into account game recency

and point differential. These factors have a significant effect on final rankings. However,

recency and point differential are not the only factors that affect game outcomes. Rank-

ings might improve if we researched other factors affecting games such as location (home

vs. away) and weather conditions.

It would also be interesting to look into expanding the scope of sports that this
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project attempts to rank. This project ranks teams within several professional and

collegiate sports leagues. However, it never addresses ranking sports that involve direct

competition between individuals, as opposed to teams. It would be interesting to explore

ranking sports such as swimming, track, and ski racing to figure out how to handle

sports where several individuals compete in a single outing. It would also be interesting

to explore ranking sports like boxing, where two individuals compete directly against

each other.

Outside of the direct context of this project, it might be useful to explore other np-

complete problems. In this project, we utilized several strategies to reduce the time

complexity of solutions to the minimum feedback arc set problem. If we apply these

strategies and algorithms to other np-complete problems, we would likely be able to

reduce the time complexity of those problems as well. Overall, this project could expand

in several different directions in the future, all of which would produce interesting

results.
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CONCLUSION

We were able to successfully complete the goals of this project. Through the algorithms

we developed, we generated rankings with minimal backedge weight. For professional

leagues (32 or less teams), we were able to find the optimal backedge weight for a ranking.

Previous attempts to find optimal rankings could only complete a ranking for 10 teams

in a reasonable amount of time. However, by using dynamic programming, we were able

to significantly improve the number of teams that can be ranked using brute force.

Our approximation algorithms also performed very well. Sliding window reliably

found the optimal ranking for professional leagues when using a window size of 23, which

provided immense time savings. While we cannot compare its performance to optimal

rankings for NCAA sports, the rankings produced were close to real world rankings,

and the backedge percentage was similar to what was found for professional leagues.

Brute Force Pruning was able to find rankings with the minimum backedge weight even

faster than Sliding Window, although it provided inconsistent results until many trials

were conducted. Dynamic Brute Force Pruning gave results close to optimal, but was less

successful than the other two approximations.

Using postprocesses, we were able to further improve the backedge scores for subop-

timal rankings. Given several rankings with minimum backedge weights, we were able

to choose the “best" one based on a second metric. Our RoC Reorder method produced

the best postprocess results based on speed and backedge weight reduction.

Comparing our rankings to external rankings, we found that ours differed slightly

more than external rankings differed from each other. However, this is to be expected

as many external rankings do not focus exclusively on backedge weight, which was the

main problem we were trying to solve. Our rankings are still comparable, but have a

much better backedge weight. Ultimately, our ranking generation processes were able

to create rankings that appear to reflect the true strength of each team by taking into

account important game information and results.
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