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ABSTRACT 

 
A 6061 aluminum probe was quenched with a CHTE probe-quenching system in 

distilled water while varying bath temperature and the level of agitation.  Time vs. 

temperature data was collected during the quench by use of an ungrounded K-type 

thermocouple embedded inside the probe.  Cooling rates and heat transfer coefficients, h, 

were calculated and Quench Factor Analysis (QFA) was also performed to quantitatively 

classify the quench severity.  The data showed an increase in both maximum cooling rate 

and heat transfer coefficient and a decrease in the Quench Factor, Q, as bath temperature 

decreased and agitation level increased.  Maximum heat transfer coefficient values 

ranged from 1000 W/m2K to 3900 W/m2K while maximum cooling rates of 50°C/s to 

190°C/s were achieved.  In addition, it was found that at higher levels of agitation, there 

was also an increase in the standard deviation of the cooling rate. 
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1.0 INTRODUCTION 
 
 Solution heat-treating of aluminum alloys allows the maximum concentration of a 

hardening solute to be dissolved into solution.  This procedure is typically carried out by 

heating the alloy to a temperature at which one single, solid phase exists [1].  By doing 

so, the solute atoms that were originally part of a two phase solid solution dissolve into 

solution and create one single phase.  Once the alloy has been heated to the recommended 

solutionizing temperature, it is quenched at a rapid rate such that the solute atoms do not 

have enough time to precipitate out of solution [2].  As a result of the quench, a saturated 

solution now exists between the solute and aluminum matrix.  

The cooling rate associated with the quench can be controlled through the 

variation of the quenching parameters such as bath temperature and degree of agitation.  

The variation of these parameters allows the heat treater the ability to increase or 

decrease the cooling rate to achieve certain mechanical properties as well as eliminate 

distortion and the possibility of cracking [3]. 

The cooling rate data can be quantitatively characterized by Quench Factor 

Analysis (QFA).  QFA can classify the severity of a particular quench for a particular 

alloy by one value, Q.  Generally speaking, the smaller the quench factor, Q, the higher 

the quench rate.  Totten, Bates, and Mackenzie have done extensive work on the quench 

factor analysis of aluminum alloys and steel in hopes to prove the validity of QFA and its 

ability to classify a quench (i.e. the quench conditions and alloy being quenched) [4-9]. 

1.1 Goals and Objectives 

The primary goal of this thesis is to experimentally determine the effect that 

quenching parameters have on the quench severity of 6061 aluminum probes in distilled 
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water.  The parameters of interest include: initial bath temperature and agitation rate.   

The effects of these parameters will be quantified through the calculation of cooling rates, 

heat transfer coefficients, and Quench Factor Anaysis.. 

 1.2 Thesis Organization  

The thesis is divided into six chapters.  Chapter 1 is an introduction that provides 

an overview of the research within and why is it important.  Chapter 2 is a thorough 

review of relevant literature and previous work completed by others in the field of heat 

treating and quenching.  The literature review focuses on the key aspects of the stages of 

quenching as well as a mathematical analysis called Quench Factor Analysis, which can 

classify the severity of a quench for the alloy being quenched.  These research topics 

allowed for an understanding of the project at hand.  Chapter 3 details the experimental 

set-up and testing procedures along with a test matrix that laid out the experiments to be 

conducted.  Chapter 3 also describes the equipment used as well as sample preparation 

and methods for analyzing the collected data.  Chapter 4 presents a series of two papers 

that were written and submitted to journals.  The first paper entitled, “The Effect of 

Temperature and Agitation Level on the Quench Severity of 6061 Aluminum in Distilled 

Water”, written by M. Fontecchio, M. Maniruzzaman, and R.D. Sisson, Jr. describes the 

effect of quenching parameters through quenching 6061 aluminum in distilled water.  

This article was submitted to the American Society of Metals’ (ASM) 13th Annual 

International Federation for Heat Treatment & Surface Engineering (IFHTSE) Congress.  

The second article, entitled, “Quench Factor Analysis and Heat Transfer Coefficient 

Calculation for 6061 Aluminum Alloy Probed Quenched in Distilled Water”, written by 

M. Fontecchio, M. Maniruzzaman, and R.D. Sisson, Jr. presents a comparison of QFA 
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and heat transfer coefficients calculations in 6061 aluminum probes.  This paper will be 

submitted to the “Journal of Materials Processing Technology”.  Chapter 5 is a 

compilation of conclusions that were drawn, not only in the published papers, but from 

all research and experimentation conducted in this thesis.  The final chapter, Chapter 6, 

explains how the work could be improved through recommendations on equipment used 

as well as expanded through the use of polymer quenchants and different alloy types.     
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2.0 LITERATURE REVIEW 

 The scope of this research covers solution heat treating of aluminum alloys and 

quenching in distilled water.  Factors affecting the effectiveness of the quench, such as, 

initial bath temperature and degree of agitation were also experimentally determined to 

fully understand their effect on the overall quench severity [10].  These areas, as well as 

equations for heat transfer coefficients in a cylinder were calculated in hopes to fully 

understand the process at hand.  Furthermore, a mathematical analysis of quenching, 

called Quench Factor Analysis, is discussed and illustrates how the severity of a quench 

can be quantitatively classified for a specific alloy [11]. 

2.1 Solution Heat Treating of Aluminum Alloys 

The purpose of solution heat treating in aluminum is to obtain the maximum 

concentration of the hardening solute, such as zinc, magnesium and copper, in solution by 

heating the alloy to a temperature in which a single phase will be created [12].  By doing 

so, the solute atoms that were originally part of a two phase solid solution dissolve back 

into solution and create one single phase in equilibrium.  Once the alloy has been heated 

for a considerable amount of time, it is quenched at a rapid rate such that the solute atoms 

do not have enough time to precipitate out of solution.  As a result, a saturated solution 

now exists between the solute and aluminum matrix. 

The heat-treating process is best understood by examining a phase diagram to 

better understand the temperature ranges and phase regions that are involved. These 

diagrams do not show the actual structures formed during the heat treating processes, but 

they are a useful tool in predicting the solid-state reactions that will take place at a given 

temperature and composition [12].  Below, Figure 2.1 illustrates a portion of the 
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Aluminum–Magnesium phase diagram.  The region in which solutionizing can take place 

for this particular allow lies between 3 and 14.9 wt % Mg, which is the maximum 

concentration level at which the alloy can be solution heat treated.  

 

Figure 2.1: Aluminum-Magnesium Phase Diagram 

Source: http://cyberbuzz.gatech.edu/asm_tms/phase_diagrams/pd/al_mg.gif  

First, the alloy must be heated into the α range of the diagram.  In doing so, the β 

phase dissolves back into solution and the alloy becomes a homogeneous solution of Al 

and Mg.  The solutionizing temperature is independent upon the concentration of the 

solute; that is to say, the temperature is the same regardless of the initial amount of Mg in 

the system [12].  In general, for most commercial applications, the solution heat treating 

temperature is specified to be 10-15°F below the eutectic temperature (indicated by line 

A Line B 

α 

14.9%

A Line B

14.9% 

αααα 
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B on the phase diagram); therefore, good control and uniformity of the furnace is 

essential [2].  Although the temperature range is quite small, more latitude in the solution 

heat-treating temperature can be tolerated for the 7000 series than for the 2000 series 

alloys due to the varying amounts of alloying elements [14]. The table below lists the 

solutionizing temperatures for various solution heat treatable alloys.  

 

Table 2.1: Solutionizing Temperatures for Various Aluminum Alloys [15] 

The time needed for complete solutionizing is not dependent upon the 

composition of the alloy, but rather the size and shape of the part being heat-treated.  In 

addition, the phase distribution and composition of the alloy plays a large role in the 

solutionizing time [16].  In general, the time required at the solution heat treatment 

temperature is dependent upon the product, alloy, fabrication process used, and the 

section thickness of the material [12].  These factors determine the proportions of the 

solute that are in and out of solution and the size and distribution of the precipitated 

phase.  For example, sand castings are held at temperature for at least 12 hours, whereas 

permanent mold castings only require 8 hours of heating due to their finer grain structure 

[12].  In addition, wrought products heating times are determined from the cross section 

thickness of the part.  Generally, thick slabs are heated for 1 hour per inch of thickness, 

whereas sheet metal only requires 10-30 minutes.  Although the time varies depending on 

Si Fe Cu Mn Mg Cr Zn
2219 0.20 0.30 5.8 - 6.8 0.2 - 0.4 0.02 - 0.10 535
2024 0.50 0.50 3.8 - 4.9 0.3 - 0.9 1.2 - 1.8 0.10 0.25 495
6005 0.6 - 0.9 0.35 0.10 0.10 0.4 - 0.6 0.10 0.10 530
6061 0.4-0.8 0.70 0.15 - 0.40 0.15 0.8 - 1.2 0.04 - 0.35 0.25 530
6070 1.0 - 1.7 0.50 0.15 - 0.4 0.4 - 1.0 0.50 - 1.2 0.10 0.25 545
7075 0.40 0.50 1.2 - 2.0 0.30 2.1 - 2.9 0.18 - 0.28 5.1 - 6.1 490

Alloy Principle Alloying Elements (wt%) Solutionizing 
Temperature C
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the size and production method, Table 2.2 illustrates the times needed to heat treat 

wrought alloys, in general terms [2]. 

 
Time (min) Thickness (in) 

Salt Bath Air Furnace 
  Min Max Min Max 

0.016 and less 10 15 20 25 
0.017 - 0.020 10 20 20 30 
0.021 - 0.032 15 25 25 35 
0.033 - 0.063 20 30 30 40 
0.064 - 0.090 25 35 35 45 
0.091 - 0.125 30 40 40 55 
0.126 - 0.250 35 45 55 65 
0.251 - 0.500 45 55 65 75 
0.501 - 1.00 60 70 90 100 

Each additional 0.50 inches Add 20 min Add 30 min 
 
 

Table 2.2. Soaking Time for Solutionizing of Wrought Aluminum Alloys 

In an air furnace, time is measured from when the furnace recovers to the heat treating 

temperature after the part has been submersed, whereas in a salt bath, time starts at the 

second the part is immersed (provided it doesn’t drop the bath temperature more than 10° 

F) [17]. 

2.2 Quenching 

       Once the material has been held at temperature for a sufficient amount of time, it is 

then rapidly quenched to room temperature to preserve the solute in solution. The cooling 

rate needs to be fast enough to prevent solid-state diffusion and precipitation of the 

second phase [1].  The rapid quenching creates a saturated solution and allows for 

increased hardness and improved mechanical properties of the material.  In addition, 

studies have shown that the highest degrees of corrosion resistance have been obtained 

through the maximum rates of quenching [12].    
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 In general terms, liquid quenching is performed in water, oil, and, more recently, 

in aqueous polymer solutions.  Water and oil quenching cover the extremes in terms of 

cooling rates, with water being the fastest and oil being the slowest.  The introduction of 

aqueous polymer solutions allowed for cooling rates to be achieved between the two 

extremes [4].   

2.2.1 Stages of Quenching 

Quenching takes place in three distinct stages, namely: Vapor Blanket Stage, 

Boiling Stage, and Liquid Cooling Stage.   The Vapor Blanket Stage begins when the hot 

part makes contact with the quenching medium.  As the part is submersed, an unbroken 

vapor blanket surrounds the piece.  This blanket exists because the supply of heat from 

the surface of the part exceeds the amount of heat needed to form the maximum vapor per 

unit area on the piece [10].  This stage is characterized by a relatively slow cooling rate 

since the vapor of the quenching medium surrounds the part and acts as an insulator.  In 

this particular stage, heat is removed from the part by radiation and conduction through 

the vapor layer.  As the component cools, the vapor blanket cannot be maintained and 

therefore breaks down.  After this breakdown, the Boiling Stage immediately begins.  

The surface of the part is now in direct contact with the fluid and results in violent boiling 

of the medium.  This stage is characterized by rapid heat transfer through the heat of 

vaporization.  Size and shape of the vapor bubbles are important in controlling the 

duration of this stage as well as its corresponding cooling rate [10].  As the part continues 

to cool below the boiling point of the medium, the Boiling Stage can no longer exist and 

it too breaks down giving way to the Liquid Cooling Stage.  This stage, much like the 

Vapor Blanket Stage, is also characterized by slow rates of heat transfer.  Heat is 
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dissipated from the part by movement of the quenching medium by conduction currents.  

The difference in temperature between the boiling point of the medium and actual 

temperature of the medium is the major factor influencing the rate of heat transfer in 

liquid quenchants [10].  Furthermore, viscosity of the medium at this point also affects 

the cooling rate since a less viscous medium will dissipate heat faster than one of high 

viscosity [18].  The final stage of quenching is the most important in controlling and 

reducing distortion and cracking [Hasson., 1992 September #24].  Figure 2.2 below 

illustrates the stages of quenching and where they can be seen on a typical cooling curve 

as the quench is being monitored.  The slope of the curve between the stages is the 

cooling rate, so it can easily be seen that the first and third stages have slow cooling rates 

since the slope of the line at those points is small.  On the other hand, the slope of the 

second stage is quite large and therefore, the cooling rate is high.    

 
 
 

 

 

 

 

 

 

Figure 2.2: Typical Cooling Curve with Corresponding Cooling Rate and Stages of 

Quenching 

 

Time 

Temperature 

Vapor Layer Stage

Boiling Stage

Convection Stage 

dT/dt 

Cooling Curve 
Cooling Rate Curve 



 10

2.2.2 Factors Affecting Quenching 

Several factors influence the effectiveness of a quenching medium in its ability to 

withdraw heat from a quenched part.  These factors include: temperature of the medium, 

degree of agitation, surface conditions of the part, and the type of quenching medium [3].  

In addition, the configuration of the quenched part also plays a role in the rate of heat 

transfer during quenching, but since this particular research mainly deals with simple 

geometries, it will not be discussed. 

2.2.2.1 Effect of Temperature  

 The temperature of the medium has a drastic effect on its ability to extract heat 

from a hot part, but that is not to say that the lowering the bath temperature increases the 

heat transfer rate [8].  The heat extraction is still dependent on the characteristics of the 

medium itself.  In general, higher quenchant temperatures lower the temperature at which 

a total vapor blanket is maintained in the medium.  As a result, it will lengthen the 

duration of the first stage of quenching, which lengthens the time at which the part is 

cooled at slower cooling rates [10].  Depending on the medium itself, higher bath 

temperatures may decrease viscosity, which affects bubble size and therefore, decrease 

the rate of heat transfer during the third stage of quenching.    

 In the case of water, since it produces the fastest cooling rates, lower temperatures 

produce high thermal gradients between the bath and the part [3].   As a result, high 

thermal stresses will be induced and the risk of distortion or cracking will increase.  On 

the other hand, as the temperature of the water is increased to avoid cracking, the 

physical properties of the material decrease due to incomplete saturation of the solution 

during quenching [9].  
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2.2.2.2 Effect of Agitation    

 Agitation plays a large role in the effectiveness of a particular medium to quench 

a part.  Some will say that it is the most important factor in determining the success of the 

quench [9].  In general, agitation increases the rate of heat transfer throughout the 

quenching process.  During the Vapor Blanket Stage, agitations will breakdown the 

blanket much earlier in the quench and force the Boiling Stage to begin.  As a result, a 

stage of slow cooling is cut short and replaced with a stage of rapid heat transfer. Overall, 

the part will be cooled at a faster rate.  In addition, it will also produce smaller, more 

frequent bubbles during the Boiling Stage, which, in turn, creates faster rates of heat 

transfer throughout the part [9].  

In terms of its mechanical effects, any solids that have formed on the test piece 

will be agitated off of the surface and allow for maximum heat transfer since the medium 

will be in direct contact with the exposed surface.  These gels would have acted as an 

insulating layer to slow down the cooling rate, but with the use of agitation, this layer is 

mechanically removed and maximum heat transfer can be achieved.  Finally, agitation 

forces cool liquid to constantly be circulated to the workpiece in place of the hot liquid 

[3].  Therefore, higher temperature differences will always exist between the medium and 

the surface, resulting in faster rates of heat dissipation [18].       

2.2.2.3 Effect of Surface Finish 

Lowest cooling rates are observed on surfaced that are newly machined or bright-

etched, whereas faster rates are obtained by surfaces with oxide films and stains.  In 

addition, surface roughness has a similar relationship regarding cooling rates; the rougher 

the surface, the faster the cooling rate [19].  This phenomenon can be attributed to the 
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stability of the vapor phase on each surface.  If the surface is smooth, then the vapor layer 

becomes uniform and stable, whereas if there are discontinuities on the surface, then it 

becomes easier to break down the layer and induce the Boiling Stage [9].  Furthermore, 

the application of non-reflective coatings will increase heating and affect the quench of 

the material [12].  Figure 2.3 shows the corresponding cooling rate and heating rate for a 

machined surface and a surface with a black carbon coating (black coated).  It is readily 

seen that the coated surface not only heats up faster, but also is quenched to room 

temperature faster.  

 

 

 

 

 

 

 

Figure 2.3: Effect of Surface Finish on Heating and Cooling of an Aluminum Cylinder 

2.2.3 Aqueous Quenching Mediums 

 As mentioned previously, water, oil, and polymer solutions are common 

quenching mediums for aluminum alloys.  The mediums differ in the rate at which they 

dissipate heat out of a quenched part.  Water, by far, has the fastest cooling rate, followed 

by polymer solutions and finally oil.  For the scope of this research, only distilled water 

will be considered since we are mainly dealing with quenching of aluminum alloys and 

higher cooling rates are preferred for desirable mechanical properties. 

Source: [39] 
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2.2.3.1 Water Quenching  

 Water is widely used in the quenching of non-ferrous alloys, austenitic stainless 

steels, and many other solution heat treatable alloys.  Water is commonly used because it 

is inexpensive, readily available, and easily disposed of without any health or 

environmental concerns [12].  It is also one of the fastest quenching mediums and 

approaches the fastest cooling rate attainable in a liquid bath.  As a result, high hardness 

values can be obtained and excellent mechanical properties can be produced.  Although 

high cooling rates are desirable, they can cause problems in the quenching process.  

These high cooling rates are consistent throughout the quench, even at low temperatures; 

therefore, the risk of distortion and cracking is high.   

One study showed that water does not sufficiently ‘wet’ the surface of the 

aluminum during quenching [20].  There are three distinctly different cooling regimes 

with dramatically different heat transfer characteristics present on the surface of 

aluminum during the quench process, which will produce different thermal gradients that 

will increase distortion [9].  As a result, water is generally used to quench simple 

geometric parts.  If the temperature of the bath is initially low (cold water –> 50-90°F, 

10-32°C), a high thermal gradient exists between the part and the quenching medium.  If 

cold water is used and there is a considerable amount of cracking/distortion, an 

alternative is to increase the bath temperature and quench in hot water (140-160°F, 60-

71°C) [9].  As the temperature of the bath increases, there is more of a tendency for the 

vapor blanket to be prolonged due to the nature of water to form vapor as it approaches 

the boiling point [Hasson., 1992 September #24].  The obvious disadvantage to this is 

that the cooling rate will be slower and the desired mechanical properties may not be 
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achieved.  The Boiling and Convection Stage, on the other hand, are not affected by the 

increase in bath temperature.   

Aside from distortion, uneven hardness and soft-spot distribution can be seen with 

a water quench.  The vapor blanket is prolonged, which encourages vapor and bubble 

entrapment in certain locations.  Because of this, uneven heat transfer will be experienced 

throughout the part and consequently, soft-spots will develop in these areas [12].  Studies 

have shown that the optimal temperature window for creating uniform quenching and 

reproducible parts is when the water remains between 15-25°C [17].  Figure 2.4 below 

illustrates the effect changing the bath temperature has on the stability of the vapor 

blanket. 

 

Figure 2.4: Effect of Bath Temperature on Quench Rates [10] 

As seen above, the cooling rate of the quenched part is increased as the bath 

temperature is raised from 40 C to 90°C.  Furthermore, at temperatures above 50°C, there 

is an increase in vapor blanket stability as seen by the extended linear region of the 
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cooling curve.  As a result, a stage of low cooling rate is prolonged before giving way to 

the rapid cooling boiling stage.  The study corresponding to the plot above showed that 

the stability of film boiling is affected by the ability of the agitated fluid to breakdown the 

vapor blanket [21].  The sensitivity of quench rate as agitation is increased was also 

correlated to an increase in bath temperature.   So, overall, regardless of the bath 

temperature, the quench rate can still be further varied by the introduction of agitation 

[21].   

2.3 Conductive Heat Transfer 

 Heat transfer deals with the withdrawal of heat or energy from a body.  There are 

three methods of heat transfer, namely: conduction, convection and radiation [18].  For 

the scope of this analysis, conduction and convection are discussed while radiation does 

not play an important role.  The best way for fully understand conduction is to analyze a 

differential element of size ∆x of constant mass equal to the density times volume (ρV).  

This derivation will allow complete understanding of the origin of the useful equations 

and theories.  The figure below depicts a differential element with heat entering and 

leaving. 

 

 

 
 
  
 
 

Figure 2.5: Differential Element of Size ∆x 
  

 x         ∆x

Q in Q out ρV
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 Above illustrates an open system where heat is entering and leaving.  It is also 

important to note that no heat is being generated within the body.  So, by the first law of 

thermodynamics, the conservation of energy states that the change in internal energy of 

the system is equal to the heat transferred into the system minus the heat generated within 

the system [18].  In mathematical representation: 

Generateddtransferre QQ
dt

dU +=            (2.1) 

           

 As illustrated above, the system has a fixed mass of ρV, so we can 

substitute dU = ρVdu, where u is the specific internal energy of the body.  In addition, for 

an incompressible solid, du = cvdT, where cv is the constant volume specific heat.  The 

heat transfer is also taking place through a constant cross-section ‘A”.  Now, we can 

substitute into the above equation and get the following: 

generateddtransferrep QQ
dt
dTAVc +=ρ           (2.2) 

 
 

The left side of the equation is finished, but the right side must be simplified.  We 

know that no generation is taking place, so Qgenerated = 0 and Qtransferred can be determined 

by a simple heat balance from Figure 2.5. 

[ ]
dx

xQxxQAQQQ inoutdtransferre
)()( −∆+−=−=         (2.3) 
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By simplifying the right side, we get the following: 

dx
dQAQQQ inoutdtransferre −=−=           (2.4)

 As a result of the above simplifications and substitutions, we can rewrite the 

general equation.  It can be seen below.  

dx
dQA

dt
dTAVc p −=ρ             (2.5) 

 

 The area (A) will cancel out and Q can be substituted with Q = -k dT/dx.  This 

relationship is known as Fourier’s Law for Conduction.  Finally, the general equation 

can be written as: 

 

 

 

 

 

 

This final equation is Fourier’s Second Law for heat conduction in a solid [18].  

2.3.1 Physical Properties of 6061 Aluminum 

  The physical properties of 6061 aluminum are not constant over all temperature 

ranges[22, 23].  That is to say, as the temperature increases or decreases, the properties 

will change.  For the purpose of this research, values of the specific heat, cp, density, ρ, 

and thermal conductivity, k, of 6061 aluminum will be utilized for calculations of heat 

transfer coefficients and the Biot number.  The values used for these physical variables 

2

21
dx

Td
dt
dT

K
=

k
cV

K
Where pρ

=1

ρ = Material Density [kg/m3] 
cp= Specific Heat [J/kg K] 
V = Volume of Part [m3] 
k = Thermal Conductivity [W/m K] 
T = Absolute Temperatuer [K] 

2.(6)
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will be calculated as a function of temperature during the quench in order to increase the 

accuracy of the calculations.  Below, Figure 2.7 shows the dependency of cp on 

temperature for various aluminum alloys [22].   
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Figure 2.6: Specific Heat as a Function of Temperature for Various Aluminum Alloys  

 

It can be seen that the lines of best fit for the four alloys all lie directly on each 

other whereas the curves for pure aluminum deviate from them at higher temperatures.  

For this reason, it will be assumed that the specific heat of 6061 aluminum will follow a 

similar trend as the other alloys presented within the figure.  In addition, the specific heat 

of 6061 aluminum at room temperature is equal to 0.896 J/g K, which falls directly on the 

line of best fit above.  For these reasons, it will be assumed that 6061 will follow similar 

trends at higher temperatures and the curve with equation equal to Cp [J/KgK] = 0.007T 

+ 0.644, will be used for our heat transfer coefficient calculations.   
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 In addition, the density, ρ, of the material can be calculated as a function of 

temperature.  The density of the material is not constant because the volume of the part 

will increase with increasing temperature.   

 

                          (2.7) 

 

 

 

 

The coefficient of thermal expansion, α, for 6061 aluminum is equal to  

2.26 x 10-6 /K[2].  The equation below illustrates the formula used to calculate the density 

as a function of temperature.    

 The plot below shows the dependence of density on temperature.  It is clear to see 

that the relationship of density to temperature is linear, but with an extremely small, 

negative slope.  So, the variation in density over the temperature range of interest is quite 

small.  The values range from 1.875g/cm3 to 1.94 g/cm3, which is a variation of only 

1.7% about the mean.   For this reason, it will be assumed that the density is constant and 

a value equal to 1.905 g/cm3 will be used in our calculations. 

m = mass of probe [g] 
α = Coefficient of thermal expansion [cm/cmK]
lo = Initial length of probe at room temp [cm] 
do = Initial diameter of probe at room temp [cm]
∆T = Change in temperature (Tpart - 273) [K] 

( )( )2TddTll
m

oooo ∆+∆+
=

αα
ρ
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 Figure 2.7: Density Variation of 6061 Aluminum as a Function of Temperature 

Finally, Figure 2.8, below, shows the dependency of the thermal conductivity, k, 

for an Aluminum-Magnesium Alloy as a function of temperature [23]. 
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Figure 2.8: Thermal Conductivity of an Aluminum-Magnesium Alloy as a Function of 

Temperature 
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This particular plot is not data directly taken from alloy 6061, but the chemical 

composition is very similar and will be used for the Biot Number calculation 

2.3.2 Heat Transfer Coefficient h 

The heat transfer coefficient ‘h’ [W/ m2 K] during quenching can be calculated by 

an inverse method.  This procedure is done by calculating the cooling rate (dT/dt) that is 

taking place in the part, and then using it to calculate the heat transfer coefficient h.  

Since time and temperature curves are continually collected via data acquisition software, 

it is a simple derivative of the curve that allows us to calculate the cooling rate. 

The following equation was derived and will be used in relevant calculations of 

the heat transfer coefficient. 

)( lsp TThA
dt
dTVc −−=ρ                     (2.8) 

 

The above equation can be manipulated to directly solve for h.  The equation is 

shown below: 

 
 

           (2.9) 

 

 

 

 

The above equation is derived from convective properties of the medium with respect to 

the quenched body [19].   

 

)( ls

p

TTA
dt
dTVc

h
−

=
ρ

Ts = temperature of the part [K] 
Tl = temperature of the quenching liquid [K] 
A = surface area of the part being quenched [m2] 
V = volume of part [m3] 
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 2.3.3The Biot Number 

 The Biot number can be defined as the ratio of internal conduction resistance to 

external convective resistance.  The mathematical equation of the Biot number is shown 

below. 

  

                    (2.10) 

 

 

The Biot Number has relevance to quenching because it deals with the conduction 

that is taking place within the metal sample as well as the conduction that is taking place 

at the surface of the part as the vapor layer convectively cools the part.   

To use this dimensionless number for a cylinder, the characteristic length is the 

ratio of the surface area to the volume.  In this ratio, we neglect end effects and simply 

calculate the surface area as the surface of the cylinder without the area of the ends.  As a 

result, L = r/2 for the cylindrical probe that we are considering [19].   

 For bodies such as a cylinder, sphere, or plate, if Bi < 0.1, then the temperature at 

the center will not differ greatly from the temperature at the surface by more than 5% 

[18].  As a result, Bi < 0.1 is a suitable criterion for determining if the uniform 

temperature assumption is valid for a given part [18]. 

 

 

 

 

k
hLBi =

h = heat transfer coefficient [W/m2K] 
L = characteristic length for the part [r/2] [m] 
k = thermal conductivity of the quenched part [W/m K] 
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2.4 Quench Factor Analysis (QFA) 

 To successfully predict the metallurgical consequences of quenching, it is 

necessary to determine the heat transfer properties produced by the quenching medium 

during the cooling.  Cooling curve analysis has been considered to be the best method to 

obtain such information [7].  Quench factor analysis (QFA) has several advantages over 

other methods.  Quench factor analysis provides a single value describing quench 

severity for the specific alloy being quenched.  In addition, the quench factor is directly 

related to the hardness of the quenched part and intermediate manual interpretations are 

not required.  So, it can be seen that QFA is highly beneficial in the quenching process [4, 

6-8, 10, 24].   

To fully understand QFA, one must recognize that the rate of precipitation depends of 

both supersaturation and diffusion.  These two factors are competing with each other as 

the temperature increases and decreases [6].  The two extremes allow for the slowest 

precipitation rate whereas intermediate temperatures result in the highest rates.  At high 

temperatures, supersaturation is low, so the precipitation rate is low despite the high 

diffusion rate.  And conversely, at low temperatures diffusion is low and supersaturation 

is high, but the precipitation rate is still low.   

The determination of the Quench Factor, Q, begins with the calculation of a 

variable called the incremental quench factor (τ).  This variable is calculated for each 

time step in the cooling process and can be seen below in Equation 2.11.  

   

                    (2.11) 

   

TC
t∆=τ

τ = incremental quench factor 
t∆ =  time step used in cooling curve data acquisition 
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The CT function is defined below as well as the variables that help create it [4, 6-

8, 10, 11, 24, 25]. 

   

          (2.12) 

Where: 

CT = critical time required to form a constant amount of a new phase or reduce the 
hardness be a specific amount. 

K1 = constant which equals the natural logarithm of the fraction untransformed during 
quenching (the fraction defined by the TTP curve) 

K2 = constant related to the reciprocal of the number of nucleation sites 
K3 = constant related to the energy required to form a nucleus 
K4 = constant related to the solvus temperature 
K5 = constant related to the activation energy for diffusion 
R = 8.3143 J/K mole 
T = absolute temperature (K) 

 

Values for the above constants were found experimentally by Totten, Bates and 

Jarvis [4].  The table below illustrates these constants for four different aluminum alloys.   

 

 

Table 2.3: K-Constants for Various Aluminum Alloys 

Looking above, the values for K1, K3, and K4 are relatively consistent from alloy 

to alloy, but K2 is different by several orders of magnitude. This indicates that the 

number of nucleation sites present is much smaller for 2024-T851 than that of 7075 and 
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Alloy K1 K2 K3 K4 K5 Temp Range 
(deg C)

7050-T76 -0.00501 2.20E-19 5190 850 1.80E+05 425 - 150
7057-T6 -0.00501 4.10E-13 1050 780 1.40E+05 425 - 150

2024-T851 -0.00501 1.72E-11 45 750 3.20E+04 440 - 110
7075-T73 -0.00501 1.37E-13 1069 737 1.37E+05 425 - 150
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7050.  In addition, 7050-T76 possesses the greatest number of sites since its value for K2 

is by far the smallest. 

The incremental quench factor (τ), represents the ratio of the amount of time an 

alloy was held at a particular temperature divided by the time required for 1% 

transformation at that given temperature.  This value is then summed over the entire 

transformation range to produce the cumulative quench factor (Q).  The summation 

equation is seen below. 

                     (2.13) 

 

In the above equation, the values of T1 and T2 are taken as the maximum and 

minimum temperature values, respectively, off of any TTP Curve.  A typical TTP Curve 

is seen below and the location and values of T2 and T1 can be readily seen as well as how 

the CT function fits into the analysis [3, 7]. 
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Figure 2.9: Cooling Curve and TTP Analysis  

Above, the dashed line represents the cooling curve as the part is quenched and 

the corresponding TTP Curve is seen to its right.  The ∆t value is taken as the time 

interval in which data points are collected.  In the second set of plots, it can be seen 

where the temperature from the cooling curve can be found on its corresponding TTP 

Curve.  From these curves, the quench factor (Q) can be calculated as the summation of 

∆t/CT.  The quench factor is proportional to the heat removal characteristics of the 

quenchant as depicted in the cooling curve for the quenching process.  The Q value is a 

single number that can classify the severity of the quench.  This value can also be related 

to certain mechanical properties in materials such as hardness.  A study has been done 

which correlated QFA to the hardness of an as-quenched 4130 steel [3].  Below in Figure 

2.10, there is a plot of Q vs Rc, which shows the extent of the prediction.  Looking at the 

curve below shows that the prediction is fairly accurate over a wide range of Rc values. 

10-2  10-1  100  101  102  103 
     log (t)  (sec) 

TTP Curve 

T2 = 425 

T1 = 150

T (°°°°C) 

Cooling Curve 

∆∆∆∆t 

CT 



 27

 

 

Figure 2.10: Correlation of QFA to Hardness of As-Quenched 4130 Steel [6] 

As the cooling rate decreases, the QFA increases and can be used to predict the 

hardness of as-quenched materials.  If this value is compared to the measured hardness, it 

is almost perfectly correlated. The plot on the right shows the extent of the correlation.  

The line of best fit is represented by the equation Y=0.9957X with an R2 correlation of 

0.9909.  These two values indicate that QFA does an excellent job of predicting the 

hardness of as-quenched 4130 steel [6].  In addition, QFA has been correlated to 

mechanical properties such as yield strength, ultimate tensile strength and % elongation 

for 7057 aluminum alloys [5].  Having done so, it was shown that a QFA value of 20 or 

below allows for full properties to be achieved.  If the QFA value exceeds 20, then the 

properties decrease considerably.    
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3.0 PROCEDURE 

 Aluminum probes, machined from 6061 aluminum, was quenched in distilled 

water while varying the initial bath temperature and amount of agitation to determine the 

effect each of these variables has on the overall quench severity.  In order to fully 

understand the procedure used, it is important to have a good knowledge base of the 

equipment, experimental set-up, and metallurgical samples used during the quenching 

operation. 

3.1 Experimental System 
 

For the purpose of this research, the CHTE quench probe system was used [19, 

26-29].  There are two main operations in the experiments, namely, heating and 

quenching.  In the case of heating, a Thermolyne Model 1300 Box Furnace was used to 

heat the probe to the desired solutionizing temperature of 530°C.  Once heating was 

complete, the probes were quenched in an aqueous bath contained in a Blue M, Model 

MW-1110A-1 Constant Temperature Bath Tank, which, in turn, was agitated by an 

Arrow 6000 Variable Agitation Unit.  By introducing agitation into the system, it allows 

cooler bath water to be forced towards the part being quenched.  As a result, the cooling 

rate will be increased and the degree of saturation of the material will be higher at the end 

of the quench [30].  

The probe is connected to a coupling and connecting rod, both machined out of 

the same material, 6061 aluminum.  The connecting rod is controlled by a pneumatic 

piston, which lowers the probe from inside the furnace to the quenching bath.  A K-type 

thermocouple is inserted through the connecting rod down through the center of the 
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probe.  This allows temperature data to be taken at the geometric center of the test piece.  

Below, Figure 3.1 shows a schematic of the quenching system. 

 

 

Figure 3.1: Schematic of Complete Agitation System  
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As seen from Figure 3.1, the bath is constantly mixed by the use of the variable 

agitation rod, which forces flow from the right side of the tank to the left side by the help 

of a baffle located in the center.  The baffle is an H-shaped bracket that acts as an exit 

gate for water to be forced from the right side of the tank to the left and then a re-entry 

gate for water to return to the agitation side.  The opening of the baffle is aligned with the 

agitation propeller to allow for a maximum degree of agitation flow. 

3.2 Sample Preparation   

The quenching experiments were conducted through the analysis of a 

standardized probe.  The aluminum probes were machined based on the assumption of 

negligible temperature gradients within the system; that is to say, the temperature at the 

center of the probe does not vary from that at the surface.  By using this negligible 

temperature gradient, we assume that the internal conductive resistance to heat transfer is 

small compared to the external convective resistance [18].  By doing so, a dimensionless 

number, the Biot Number (Bi), is created and mathematically defined as:   

    

 

 

In order to use the lumped sum analysis, as presented in Section 2.3.2, we must 

ensure that for solids, such as a cylinder, Bi < 0.1.  This value ensures that the 

temperature of the center will not differ from that of the surface by more than 5.0% [18].  

As a result, the following dimensions were selected for the experimental probes. 

 
 
 

S

C

k
LhBi =

Where: L = characteristic length (radius of cylinder/2) 
  kS = thermal conductivity of the solid 
  hC = conductive heat transfer coefficient 
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Figure 3.2: CHTE Probe-Coupling Dimensions 

As mentioned previously, the thermocouple is located at the midpoint of the probe 

so the temperature data is taken at its geometric center.  In addition to the Biot Number, 

the aspect ratio of length to diameter must be at least 4.0 in order to ignore end effects of 

the cylinder and solely concentrate on the heat transfer that is taking place radially at the 

location of the thermocouple [19]. 

In preparing the probe and coupling for actual experimentation, the interface 

where the probe connects to the coupling was sealed in order to eliminate the possibility 

of water leakage into the probe.  Water leakage would cause the thermocouple to cool 

faster than the probe and result in inaccurate readings. 

To solve this problem, Resbond 989, High-Purity Alumina Ceramic, purchased 

from Cotronics Corporation, was used to create the seal since it can be exposed to 

temperatures as high as 1650°C without melting.  In addition, it is insoluble in water, so 

when quenched, the seal will remain in tact and not dissolve into the quenching medium.  

Below, Figure 3.3 illustrates a cross-sectional view of the probe-coupling set-up with the 

alumina paste seal. 
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Figure 3.3: Cross-Section of Probe-Coupling Interface with Alumina Seal and embedded 
Thermocouple 

 

The alumina paste was applied and let air harden over night at room temperature.  

Once hard, it was further cured by baking in a box furnace for 4 hours at 200°C.  This 

curing operation ensures the removal of all moisture within the alumina paste itself.  As a 

result, the risk of the paste cracking is minimized.  

To ensure an excellent electrical connection between the thermocouple and the 

probe, fine mesh graphite powder was placed in the hole of the probe where the 

thermocouple is embedded.  As a result, better, continuous data will be collected during 

heating and quenching. 
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3.3 Conducting the Experiments 

The CHTE probe is heated in the box furnace and held at the desired solutionizing 

temperature for five minutes.  In the case of 6061 aluminum, ASM standards suggest a 

solutionizing temperature of 530°C [2, 16].  After the material has been successfully 

solutionized, the probe is lowered into the agitated bath by means of a pneumatic 

connecting rod.  Once the rod begins its decent towards the quenching medium, it triggers 

the data acquisition software, LabVIEW, to begin recording the Time vs. Temperature 

cooling data.  

After the completion of the quench, the probe is removed from the medium and 

sanded with 600-grit sand paper.  The sanding is done after each quench in order to 

maintain a consistent surface finish of the probes as more experiments are carried out 

[19]. 

3.4 Test Matrix    

 A simple test matrix was devised for the experiments conducted in distilled water 

since there were only 2 quenching parameters that could be varied.  The test matrix below 

lays out the conditions to be tested based on these parameters. 

 
Table 3.1: Test Matrix for Quenching in Distilled Water 
 
 

 

 

 

Each ‘X’ represents 5 quenches at a given condition, so a total of 75 quenches 

will be completed.  In the case of the distilled water bath, the testing parameters include 

Bath Temperature (°C) Agitation 
Level (rpm)

5 25 40 80 100 

AG0 0 X X X X X 

AG1 880 X X X X X 

AG2 1850 X X X X X 
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the agitation level and initial bath temperature.  An agitation level of 0 indicates no 

agitation will be present, level 1 indicates a medium level of agitation classified by an 

impeller speed of 880 rpm and level 2 indicates a high degree of agitation classified by an 

impeller speed of 1850.  As for the bath temperature, 5 distinct values were selected, 

namely: 5, 25, 40, 80, and 100°C.  This variation will allow us to see the effect that initial 

bath temperature has on the quench.  

3.5 Quench Factor Analysis Calculations 

 Once all the data from the test matrix was collected, a Quench Factor Analysis 

calculation was done to classify the severity of each quench.  A spreadsheet was created 

which calculated the incremental quench factor parameter, τ, based on the the cooling 

data (as described in Chapter 2.4 Quench Factor Analysis).  In addition, the spreadsheet 

summed all the τ values over the testing range of 150°C - 425°C in order to create the 

single-number classification value, Q.  These values were then compared for each quench 

criterion in order to characterize the severity of each quench.  

 

 

 

 

 

 

 

 

[3, 20, 27-29, 31-45] 
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4.0 PUBLICATIONS 

This chapter contains two papers that have been submitted for publication.  The 

papers present all of the results that were collected through this research. 

The first paper entitled, “The Effect of Temperature and Agitation Level on the Quench 

Severity of 6061 Aluminum in Distilled Water”, written by M. Fontecchio, M. 

Maniruzzaman, and R.D. Sisson, Jr. describes the effect of quenching parameters through 

quenching 6061 aluminum in distilled water.  This article was submitted to the American 

Society of Metals’ (ASM) 13th Annual International Federation for Heat Treatment & 

Surface Engineering (IFHTSE) Congress.  The second article entitled, “Quench Factor 

Analysis and Heat Transfer Coefficient Calculation for 6061 Aluminum Alloy Probed 

Quenched in Distilled Water”, written by M. Fontecchio, M. Maniruzzaman, and R.D. 

Sisson, Jr. presents a comparison of QFA and heat transfer coefficients calculations in 

6061 aluminum probes.  This article was submitted to “Journal of Materials Processing 

Technology”. 
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Abstract 
  

A 6061 aluminum probe was quenched with a CHTE probe-quenching system in 

distilled water while varying bath temperature and the level of agitation.  Time vs. 

temperature data was collected during the quench by use of an ungrounded K-type 

thermocouple embedded inside the probe, while cooling rates were calculated.  A Quench 

Factor Analysis (QFA) was also performed to quantitatively classify the quench severity.  

The data showed an increase in maximum cooling rate as bath temperature decreased and 

agitation level increased.  In addition, it was found that at higher levels of agitation, there 

was also an increase in the standard deviation of the cooling rate. 

Introduction  
 
 The main goals of this work are to experimentally determine the effect of bath 

temperature and agitation rate of the quenching medium on cooling behavior and Quench 

Factor, Q [1]. 

 Understanding how quenching parameters affect the outcome of the quench is 

important for control of mechanical properties as well as elimination of distortion and 

cracking [2].  In many cases, cold water (10-32°C) is typically used in the quenching of 

aluminum alloys, but cold water occasionally produces unacceptable distortion due to 

high thermal gradients that exist in the part.  If this problem exists, the part can be 

quenched in hot water (60-70°C) to reduce these thermal gradients and eliminate the 
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possibility of cracking [3].  However, the slower cooling may reduce the mechanical 

properties obtained after heat treating.  

 The time-temperature cooling associated with the rapid quenching of the material 

can be controlled through the variation of the quenching parameters such as the bath 

temperature and agitation level.   For example, as the temperature of the bath increases, 

there is more of a tendency for the vapor blanket stage to be prolonged due to the nature 

of water to form vapor as it approaches the boiling point [4]. The obvious disadvantage is 

that the cooling rate will be slower and the desired mechanical properties may not be 

achieved.  Aside from distortion, uneven hardness and soft-spot distribution can be seen 

with a water quench when the vapor blanket is prolonged and encourages vapor and 

bubble entrapment in certain locations.  Because of this, uneven heat transfer will be 

experienced throughout the part and consequently, soft-spots can develop in these areas 

[5]. 

The second parameter of interest is the agitation level.  In general, agitation 

increases the rate of heat transfer throughout the quenching process regardless of the bath 

temperature.  Agitation will breakdown the vapor blanket much earlier in the quench and 

force the transition to nucleate boiling [2].  As a result, a stage of slow cooling is cut 

short and replaced with a stage of rapid heat transfer.  In addition, agitation will also 

produce smaller, more frequent bubbles during the Boiling Stage, which, in turn, creates 

faster rates of heat transfer throughout the part [3].  Finally, agitation forces cool liquid to 

constantly be circulated to the workpiece in place of the hot liquid at the surface of the 

part [2].  Therefore, higher temperature differences will always exist between the medium 

and the surface, resulting in faster rates of heat dissipation [6].  
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Quench Factor Analysis (QFA) 
 
 Quench factor analysis (QFA) provides a single value that quantitatively classifies 

quench severity for a specific alloy [1, 7-13]. QFA is an analysis of the cooling curve 

associated with a particular quench coupled with a Time Temperature Property (TTP) 

curve defined by Eq. 2 below [1, 7-13].  The analysis begins with calculation of a 

variable called the incremental quench factor (τ), which is performed for each time step 

in the cooling process.   

   
The CT function is defined below in Eq. 2 as well as the variables that help create 

it [1, 7, 8, 10, 11, 13-15] 

 
 

 
 
Where: 
CT = critical time required to form a constant amount of a new phase or reduce the hardness be a specific 

amount. 
K1 = constant which equals the natural logarithm of the fraction untransformed during quenching (typically 

99.5%: (ln (0.995)) = -0.00501 
K2 = constant related to the reciprocal of the number of nucleation sites 
K3 = constant related to the energy required to form a nucleus 
K4 = constant related to the solvus temperature 
K5 = constant related to the activation energy for diffusion 
R = 8.3143 J/K mole 
T = absolute temperature (K) 
 

The incremental quench factor (τ) above, represents the ratio of the amount of time 

an alloy was held at a particular temperature divided by the time required for 1% 

transformation at that given temperature.  This value is then summed over the entire 

τ = incremental quench factor 
t∆ =  time step used in cooling curve data acquisition 

TC
t∆=τ Eq. 1 
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transformation range to produce the cumulative quench factor (Q).  The summation 

equation is seen below. 

 

 
 

 
 
In Equation 3, the values of T1 and T2 are taken as the maximum and minimum 

temperature values, respectively, off of any TTP Curve.  A typical TTP Curve is seen 

below and the location and values of T2 and T1 can be readily seen as well as how the CT 

function fits into the analysis [2, 10].  For the purpose of this analysis, T1 and T2 are 

equal to 150°C and 425°C, respectively [1]. 

Figure 1: Cooling Curve and TTP Curve Analysis[9] 

Above, the dashed line represents the temperature of the alloy as a function of 

time and the corresponding TTP Curve is seen to its right.  The ∆t value is taken as the 
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time interval in which data points are collected.   From these curves, the quench factor 

(Q) can be calculated as the summation of ∆t/CT.  The quench factor is proportional to 

the heat removal characteristics of the quenchant as depicted in the cooling curve for the 

quenching process [9].  The Q value can classify the severity of the quench for a 

particular alloy.  The cooling rate is inversely proportional to QFA, that is to say, the 

greater the cooling rate, the smaller the quench factor, Q. 

 
Experimental Procedure 
 
 The quenching system used in this analysis is composed of a modified box 

furnace, constant temperature bath tank and variable agitation unit [16-20].  The constant 

temperature bath tank heated and maintained 12 liters of distilled water while the 

agitation was induced via a 2.5-inch diameter impeller located on one side of the quench 

tank.  The impeller forced fluid to flow from one side of the tank to the other with the 

help of a baffle located in the center of the tank.   

The test piece, a CHTE probe and coupling machined out of 6061 aluminum is 

shown below in Figure 2.    

 

 
Figure 2: Probe-Coupling Dimensions 

 

1.50”  

2.50”  
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An ungrounded K-type thermocouple was embedded in the center of the probe, in 

order to take temperature data at its geometric center.  In addition, graphite powder was 

placed in the center of the probe to maintain an excellent electrical contact between the 

test piece and thermocouple.  Initially, a grounded K-type thermocouple was used, but 

created several data acquisition problems due to an electrochemical reaction between the 

sheath of the thermocouple and the center of the aluminum probe.  The switch to the 

ungrounded thermocouple alleviated these problems and allowed for the collection of 

smooth, continuous data.   

 In order to eliminate the possibility of water leaking into the probe center, 

Resbond 989, High-Purity Alumina Ceramic, purchased from Cotronics Corporation, was 

applied to the interface between the probe and coupling.  Once applied, it was air 

hardened for 4 hours then baked at 200C for 4 hours to insure proper curing and decrease 

the risk of cracking.   

 
 

 
 
 
 
 
 
 
 
 

     Table 1: Distilled Water Test Matrix 
 

In terms of agitation rate, at 880 rpm, the flow in the quench tank appears to be 

lamellar, whereas at 1850 rpm, the flow is highly agitated and assumed to be turbulent.  

Water Temperature (deg C) Agitation 
Rate 
(rpm) 5 25 40 80 100 

0  X X X X X 

880  X X X X X 

1850 X X X X X 
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The fluid velocity at the location of the probe could not be measured; therefore, the 

Reynolds number could not be calculated to quantify the fluid flow.  

Five quenching experiments were performed for each condition.  Once all 

quenches were complete, cooling rates and quench factor analysis were conducted. 

Results 

As presented by the test matrix above, each condition was tested 5 times.  Once 

collected, the cooling rate data from each curve was averaged and plotted to see the 

variation of cooling rates as a function of water temperature and agitation.  Below, 

Figures 3-5 show this variation for each level of agitation.  Important aspects to note on 

these figures are the fact that as the temperature of the water decreases, the maximum 

cooling rate increases.  The maximum cooling rates at 5°C, 25°C, and 40°C are relatively 

close in magnitude, but as the temperature of the water is increased further, there is a 

considerable decrease in maximum cooling rate.  In addition, as the temperature 

approaches 80°C, a Liedenfrost point becomes visible on each plot indicating that the 

probe is being alternatively covered with a vapor blanket and liquid layer resulting in 

oscillating surface temperatures [18].  Furthermore, the temperature at which the 

maximum cooling rate occurs is much lower than that of the other bath temperatures.  

The same trend is observed at 100°C, but with an even lower maximum cooling rate 

temperature.   

In addition, as the three figures are compared, it can be seen that as the level of 

agitation increases, the maximum cooling rates at each temperature increase.  This trend 

is observed in each corresponding temperature of the bath.  This increase can be due in 

part to the constant recirculation of cool bath water to the quenched part during the 
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cooling process, as well as the mechanical breakdown of the vapor layer stage at the start 

of the quench [3].     

The final important aspect of these three plots is the maximum cooling rate ranges 

that can be achieved.  At an agitation level of 0, values that range from 40°C/s to 105°C/s 

can be achieved whereas at levels 1 and 2, ranges of 50°C/s to 140°C/s and 60°C/s to 

190° C/s can be achieved, respectively. 
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Figure 3: Average Cooling Curves at Various Temperatures with No Agitation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Average Cooling Curves at Various Temperatures at 880 rpm 
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n addition to cooling curves, quench factor analysis was completed to quantify the 

severity of the quench.  Table 2 presents the maximum cooling rates at a given condition 

as well as the quench factor, Q.  Looking at the table, it is clear to see that within each 

temperature region, the quench factor decreases as the agitation level increases.  In terms 

of a cooling curve, it indicates that the quench was performed at a faster rate, which is 

also supported by the maximum cooling rate in the second row.  As mentioned 

previously, and supported here, the cooling rate increases with decreased water 

temperature and increased agitation.  So, the quench factor does a good job at quantifying 

the quench based on maximum cooling rate information.   

 

 

 

 

 

  

0

100

200

300

400

500

600

0 50 100 150 200

dT/dt (C/s)

Te
m

pe
ra

tu
re

 (C
)

5 C

25 C

40 C

80 C

100 C

Figure 5: Average Cooling Curves at Various Temperatures at 1850 rpm 



 49

 Bath Temperature (deg C) 
 5 25 40 80 100 
 AG0 AG1 AG2 AG0 AG1 AG2 AG0 AG1 AG2 AG0 AG1 AG2 AG0 AG1 AG2

T max 439 429 422 452 452 449 468 479 427 358 365 354 235 231 232 
dT/dt max 106 141 188 105 127 182 94 135 148 50 74 104 34 46 56 
QFA (Q) 6.82 5.27 3.78 8.31 6.45 4.67 8.26 5.86 5.21 12.5 7.51 6.18 40.6 32.97 29.52

 
Table 2: Maximum Cooling Rates and Quench Factor Q as a Function of Water 

Temperature and Agitation Level 
 
Statistical Variation in Cooling Rate With Increasing Agitation 
 

In conducting these experiments, it is important to note that there existed a wide 

variation in the experimental data as the temperature and agitation level increased.  Table 

3 presents the standard deviation of the cooling rate associated with each quench 

condition.  The experimental data shows that as agitation level increases, the variation in 

the data also increases; that is to say that at lower levels of agitation, the variation in the 

data is smaller, but as the agitation is increased, the variation increases.  Table 3 shows 

that at all bath temperature, the standard deviation increases with increasing agitation 

level.  Furthermore, looking at Table 4, it can be seen that the ratio of standard deviation 

to the mean cooling rate also increases with increasing agitation rate. This range can be 

attributed to the nature of the agitated flow.  It could be possible that the turbulent flow at 

higher agitation levels was not a true circular flow, but rather interfered with itself and 

caused the warmer water to remain in contact with the part and not be circulated away.  

In addition, there could be entrapped gas within the agitated water.  As a result, as the 

water is circulated towards the probe, the gas would essentially be quenchiung the part 

and not the fresh, cooler bath water.  This cooling rate would be slower since the heat 

capacity of air is much less that that of water.  That is to say that it would take more 
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energy to heat water than it would to heat gas and as a result, the cooling power of water 

with entrapped gas is much less than that of water [6]. 

 
Bath Temperature (deg C) Agitation Level 

(rpm) 5 C 25 C 40 C 80 C 100 C 
AG0 0 6.278 10.278 7.822 5.828 3.955 
AG1 880 12.080 13.211 12.143 14.752 7.281 
AG2 1850 18.562 35.894 21.217 16.770 10.551 

 
Table 3: Standard Deviation of Maximum Cooling Rate as a Function of Agitation 

Level and Bath Temperatures 
 

Bath Temperature (deg C) Agitation Level 
(rpm) 5 C 25 C 40 C 80 C 100 C 

AG0 0 0.179 0.271 0.218 0.247 0.335 
AG1 880 0.195 0.337 0.265 0.397 0.455 
AG2 1850 0.216 0.432 0.349 0.267 0.488 

 
Table 4: Ratio of Standard Deviation to Maximum Cooling Rate as a Function of 

Agitation Level at Different Bath Temperatures 
 
Conclusions 
 
Based on the experimental data presented above, it can be concluded that: 
 

•  An increase in agitation causes an increase in cooling rate and a decrease in 
Quench Factor, Q. 

•   
•  A decrease in bath temperature causes an increase in cooling rate and a decrease 

in Quench Factor, Q. 
•   
•  The standard deviation and range of the cooling rates at all temperatures 

increases with agitation 
•   
•  The Quench Factor, Q, appears to be an excellent parameter for characterizing 

the quenching system (i.e. the quenching fluid and the alloy being quenched) 
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Abstract 
 
 A 6061 aluminum probe was quenched with a CHTE probe-quenching system in 

distilled water while varying bath temperature and the level of agitation.  Time vs. 

temperature data was collected during the quench by use of an ungrounded K-type 

thermocouple embedded inside the probe. Heat transfer coefficients were calculated via a 

Newtonian Cooling Analysis and Quench Factor Analysis (QFA) was performed for each 

experiment to quantitatively classify the quench severity.  Heat transfer coefficient values 

ranged from 1000 W/m2K to 3900 W/m2K.  The data also showed that at higher levels of 

agitation and lower bath temperatures, the maximum heat transfer coefficient increased, 

while the Quench Factor, Q, decreased.   

 
Introduction 
 
 The main goal of this work is to calculate the heat transfer coefficient, ‘h’ as a 

function of temperature as well as make comparisons with Quench Factor Analysis for 

aluminum alloys.  The quenching conditions were varied to obtain a wide range of 

cooling rates for the data analysis. 

 Understanding how quenching parameters affect the outcome of the quench is 

important for control of mechanical properties as well as elimination of distortion and 

cracking [1].  In many cases, cold water (10-32°C) is typically used in the quenching of 
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aluminum alloys, but cold water occasionally produces unacceptable distortion due to 

high thermal gradients that exist in the part.  If this problem exists, the part can be 

quenched in hot water (60-70°C) to reduce these thermal gradients and eliminate the 

possibility of cracking [2].  However, the slower cooling may reduce the mechanical 

properties obtained after heat-treating.  

 The time-temperature cooling associated with the rapid quenching of the 

material can be controlled through the variation of the quenching parameters such as the 

bath temperature and agitation level.   For example, as the temperature of the bath 

increases, there is more of a tendency for the vapor blanket stage to be prolonged due to 

the nature of water to form vapor as it approaches the boiling point [3].  The obvious 

disadvantage is that the cooling rate will be slower and the desired mechanical properties 

may not be achieved.  Aside from distortion, uneven hardness and soft-spot distribution 

can be seen with a water quench since the vapor blanket is prolonged and will encourage 

vapor and bubble entrapment in certain locations.  Because of this, uneven heat transfer 

will be experienced throughout the part and consequently, soft spots can develop in these 

areas [4]. 

The second parameter of interest is the agitation level.  In general, agitation 

increases the rate of heat transfer throughout the quenching process regardless of the bath 

temperature.  Agitation will breakdown the vapor blanket much earlier in the quench and 

force the transition to nucleate boiling [1].  As a result, a stage of slow cooling is cut 

short and replaced with a stage of rapid heat transfer.  In addition, agitation will also 

produce smaller, more frequent bubbles during the Boiling Stage, which, in turn, creates 

faster rates of heat transfer throughout the part [2].  Finally, agitation forces cool liquid to 
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constantly be circulated to the workpiece in place of the hot liquid at the surface of the 

part [1].  Therefore, higher temperature gradient will always exist between the medium 

and the surface, resulting in faster rates of heat dissipation [5]. 

 
Stages of Quenching 
 

Quenching takes place in three distinct stages, namely: Vapor Blanket Stage, 

Boiling Stage, and Convective Stage.   The Vapor Blanket Stage begins when the hot part 

makes contact with the quenching medium.  As the part is submersed, an unbroken vapor 

blanket surrounds the piece.  This blanket exists because the supply of heat from the 

surface of the part exceeds the amount of heat needed to form the maximum vapor per 

unit area on the piece [6].  This stage is characterized by a relatively slow cooling rate 

since the vapor of the quenching medium surrounds the part and acts as an insulator.  In 

this particular stage, heat is removed from the part by radiation and conduction through 

the vapor layer.  As the component cools, the vapor blanket cannot be maintained and 

therefore breaks down.  After this breakdown, the Boiling Stage immediately begins.  

The surface of the part is now in direct contact with the fluid and results in violent boiling 

of the medium.  This stage is characterized by rapid heat transfer.  As the part continues 

to cool below the boiling point of the medium, the Boiling Stage can no longer exist and 

it too breaks down giving way to the Convective Stage.  This stage, much like the Vapor 

Blanket Stage, is also characterized by slow rates of heat transfer.  Heat is dissipated 

from the part by movement of the quenching medium by conduction currents.  The 

difference in temperature between the boiling point of the medium and actual temperature 

of the medium is the major factor influencing the rate of heat transfer in liquid 

quenchants [6].  Furthermore, viscosity of the medium at this point also affects the 
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cooling rate since a less viscous medium will dissipate heat faster than one of high 

viscosity [5].  

 Figure 1 presents the stages of quenching as seen on a typical cooling curve 

acquired during quenching.  Also seen on this figure is the corresponding cooling rate 

curve associated with the quench.  The slope of the cooling curve between the stages is 

the cooling rate, so it can easily be seen that the Vapor Layer Stage and Convection Stage 

have slow cooling rates since the slope of the line at those points is small.  On the other 

hand, the slope of the Boiling Stage is quite large and therefore, the cooling rate is high.    

 
Figure 1: Typical Cooling Curve with Corresponding Cooling Rate and Stages of 

Quenching 
 
 
Heat Transfer Coefficient Calculations 
 

The heat transfer coefficient ‘h’ [W/ m2 K] during quenching can be calculated by 

an inverse method [7].  This procedure is done by calculating the cooling rate (dT/dt) that 

is taking place in the part, and then using it to calculate the heat transfer coefficient ‘h’.  

Time 

Temperature

Vapor Layer Stage

Boiling Stage

Convection Stage

dT/dt 

Cooling Curve 
Cooling Rate Curve 
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Since time and temperature curves are continually collected via data acquisition software, 

the cooling rate is calculated by taking the derivative of the cooling curve. 

Newtonian Cooling (i.e. lumped sum analysis) will be used in our calculations 

[5]. 

 
 

 
 

       (1) 
 
 
Equation 1 is derived from convective properties of the medium with respect to 

the quenched body.  The V/A ratio is a constant (0.238 m) and equal to the radius of the 

test probe divided by two.  Both density (ρ) and specific heat (cp) of the material as a 

function of temperature during the quench were used to increase the accuracy of the 

calculation.  Below, Figure 2 presents the dependency of cp on temperature for various 

aluminum alloys.  
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Figure 2: Specific Heat as a Function of Temperature for Various Aluminum Alloys 
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Ts = temperature of the part [K] 
Tl = temperature of the quenching liquid [K] 
A = surface area of the part being quenched [m2] 
V = Volume of Part [m3]
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It can be seen that the lines of best fit for the four alloys all lie directly on each 

other whereas the curves for pure aluminum deviate from the alloys at higher 

temperatures.  For this reason, it was assumed that the specific heat of 6061 aluminum 

will follow a similar trend as the other alloys presented within the figure.  In addition, the 

specific heat of 6061 aluminum at room temperature is equal to 0.896 J/Kg K, which falls 

directly on the line of best fit above.  For these reasons, it will be assumed that 6061 will 

follow similar trends at higher temperatures and this curve, with an equation of  

Cp [J/KgK] = 0.007T + 0.644, will be used in our heat transfer coefficient calculations.  

 In addition, the density of the material can be determined as a function of 

temperature.  The density of the material is not constant because the volume of the part 

will increase with increasing temperature.  The linear coefficient of thermal expansion, α,  

for 6061 aluminum is equal to 2.26 x 10-6 /K [4].  Equation 2 illustrates the formula used 

in calculating this variation at elevated temperatures.  

 
The variation in density over the temperature range of interest is quite small.  The 

values range from 1.875 g/cm3 to 1.94 g/cm3, which is a variation of only 1.7% about the 

mean [4].   For this reason, it will be assumed that the density is constant and an average 

value equal to 1.905 g/cm3 will be used in our calculations. 

 
 

m = mass of probe [g] 
α = Coefficient of thermal expansion [cm/cmK] 
lo = Initial length of probe at room temp [cm] 
do = Initial diameter of probe at room temp [cm] 
∆T = Change in temperature (Tpart - 273) [K] 

( )( )2TddTll
m

oooo ∆+∆+
=

αα
ρ (2) 
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Quench Factor Analysis (QFA) 
 

Quench factor analysis (QFA) provides a single value that quantitatively classifies 

quench severity for a specific alloy [9-16]. QFA is an analysis of the cooling curve 

associated with a particular quench coupled with a Time Temperature Property (TTP) 

curve defined by Eq. 4 below [9-16].  The analysis begins with calculation of a variable 

called the incremental quench factor (τ), which is performed for each time step in the 

cooling process.   

   
The CT function is defined below in Eq. 4 as well as the variables that help create 

it [6, 9-11, 13, 14, 16, 17] 

 
 

 
 
Where: 
CT = critical time required to form a constant amount of a new phase or reduce the 

hardness be a specific amount. 
K1 = constant which equals the natural logarithm of the fraction untransformed during 

quenching (typically 99.5%: (ln (0.995)) = -0.00501 
K2 = constant related to the reciprocal of the number of nucleation sites 
K3 = constant related to the energy required to form a nucleus 
K4 = constant related to the solvus temperature 
K5 = constant related to the activation energy for diffusion 
R = 8.3143 J/K mole 
T = absolute temperature (K) 

 

 

 

 

τ = incremental quench factor 
t∆ =  time step used in cooling curve data acquisition 

TC
t∆=τ (3) 
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The values of the constants used in this research were found in literature and shown 

below in Table 1. 

 
K1 K2 K3 K4 K5 

-0.00501 2.20E-19 5190 850 1.80E+05
 

Table 1: K-Constant Values for Quench Factor Analysis[12] 
 
The incremental quench factor (τ) above, represents the ratio of the amount of time 

an alloy was held at a particular temperature divided by the time required for 1% 

transformation at that given temperature.  This value is then summed over the entire 

transformation range to produce the cumulative quench factor (Q).  The summation 

equation is seen below. 

 
 
 
 
 
In Equation 5, the values of T1 and T2 are taken as the maximum and minimum 

temperature values, respectively, off of any Time-Temperature-Property (TTP) Curve.  A 

typical TTP Curve is seen below and the location and values of T2 and T1 can be readily 

seen as well as how the CT function fits into the analysis [1, 13].  For the purpose of this 

analysis, T1 and T2 are equal to 150°C and 425°C, respectively [10]. 

∑ ∑ ∆==
2

1

T

T TC
tQ τ (5) 
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Figure 3: Cooling Curve and TTP Curve Analysis[12] 

Above, the dashed line represents the temperature of the alloy as a function of 

time and the corresponding TTP Curve is seen to its right.  The ∆t value is taken as the 

time interval in which data points are collected.   From these curves, the quench factor 

(Q) can be calculated as the summation of ∆t/CT.  The quench factor is proportional to 

the heat removal characteristics of the quenchant as depicted in the cooling curve for the 

quenching process [12].  The Q value can classify the severity of the quench for a 

particular alloy.  The cooling rate is inversely proportional to QFA, that is to say, the 

greater the cooling rate, the smaller the quench factor, Q. 

 

10-2  10-1  100  101  102  103 
     log (t)  (sec) 

TTP Curve 

T2 = 425 

T1 = 150

T (°°°°C) 

Cooling Curve 

∆∆∆∆t 

CT 



 62

Experimental Plan 

 To determine the effect of bath temperature and agitation level on heat transfer 

coefficients and QFA, the following test matrix was created.  Table 2 lays out the 

conditions to be tested.  Each bath temperature will be tested with each corresponding 

agitation level, so a total of 15 conditions will be explored.  Five samples were quenched 

at each test condition to determine the repeatability of the quench. 

 
 
 
 
 
 
 
 
 
 

Table 2: Distilled Water Test Matrix 
 

The agitation rate will be quantified by the rotations per minute of the immersed 

impeller. The fluid velocity at the location of the probe could not be measured; therefore, 

the Reynolds number could not be calculated to quantify the fluid flow.  At 880 rpm, the 

flow in the quench tank appears to be lamellar, whereas at 1850 rpm, the flow is highly 

agitated and appears to be turbulent. 

 

Water Temperature (°°°°C) Agitation 
Rate 
(rpm) 5 25 40 80 100 

0  X X X X X 

880  X X X X X 

1850 X X X X X 
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Experimental Procedure   
 

The test piece, a CHTE probe and coupling machined out of 6061 aluminum is 

shown below in Figure 4 [18-21].    

 

 
Figure 4: Probe-Coupling Dimensions 

 
An ungrounded K-type thermocouple was embedded in the center of the probe, in 

order to take temperature data at its geometric center.  In addition, graphite powder was 

placed in the center of the probe to maintain an excellent electrical contact between the 

test piece and thermocouple.  Initially, a grounded K-type thermocouple was used, but 

created several data acquisition problems due to an electrochemical reaction between the 

sheath of the thermocouple and the center of the aluminum probe.  The switch to the 

ungrounded thermocouple alleviated these problems and allowed for the collection of 

smooth, continuous data.   

 In order to eliminate the possibility of water leaking into the probe center, 

Resbond 989, High-Purity Alumina Ceramic, purchased from Cotronics Corporation, was 

applied to the interface between the probe and coupling.  Once applied, it was air 

hardened for 4 hours then baked at 200°C for 4 hours to insure proper curing and 

decrease the risk of cracking. 
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 This probe was used in conjunction with a CHTE probe quench system in order to 

conduct the experiments.  The CHTE quenching system is composed of a modified box 

furnace, constant temperature bath tank and variable agitation unit [18-23].  Figure 5 is a 

schematic of the system illustrating the location of each component and the nature of the 

agitated fluid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Schematic of CHTE Quench System 
 

The probe is connected to a coupling and connecting rod, both machined out of 

the same material, 6061 aluminum.  The connecting rod is controlled by a pneumatic 

piston, which lowers the probe from inside the furnace to the quenching bath.  The probe 

is solutionized to 530°C before quenching in the distilled water quenching tank.  The bath 
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is 12 liters in volume and its temperature is controlled by the variable heating elements 

located on the tank floor. 

The bath is constantly mixed by the use of the variable agitation rod, which forces 

flow from the right side of the tank to the left side with the help of a baffle located in the 

center.  The baffle is an H-shaped bracket that acts as an exit gate for water to be forced 

from the right side of the tank to the left and then a re-entry gate for water to return to the 

agitation side.  The opening of the baffle is aligned with the agitation propeller to allow 

for a maximum degree of agitation flow. 

  Once the probe is lowered from inside the furnace, a switch triggers a data 

acquisition to begin collecting time-temperature data from the embedded thermocouple at 

a rate of 1000 data points per second.  From start to finish, 40,000 data points are 

collected.  The data is then reduced to 1000 data points by a smoothing operation by 

taking a running average of the data.  Furthermore, the derivative (dT/dt) of the data is 

taken in order to analyze the cooling rates associated with each quench condition.  The 

derivative is calculated by use of a four-point numerical method [24].  Equation 6 shows 

the equation that was used focused around data point 3 in the time-temperature data 

collected during the quench. 

 
      
    (6) 

 
 
Once all experiments were completed, heat transfer coefficients and Quench 

Factor Analysis was performed for each quench condition. 

 

t
TTTT

dt
dT

∆
−+−=

12
88 5421 ∆t = time difference between data points 

T = temperature at a given data point
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Experimental Results: Heat Transfer Coefficients 
 

Heat transfer coefficients were calculated using Equation 1.  The data from each 

of the five quench experiments was averaged and plotted below in Figures 6 through 8.  

These three figures illustrate the change in ‘h’ as a function of initial bath temperatures 

for each of the three agitation levels.  Figure 6 demonstrates that as the bath temperature 

increased, the effective heat transfer coefficient decreases.  The curves for 5°C and 25°C 

are relatively similar in magnitude starting at 530°C until 460°C where the curve at 5°C 

achieves higher ‘h’ values.  In addition, as the temperature approaches 80°C and 100°C, a 

Liedenfrost point becomes clearly visible on each plot indicating that the probe is being 

alternatively covered with a vapor blanket and liquid layer which causes oscillating 

surface temperatures [23].  Furthermore, at 100°C, the Liedenfrost point is prolonged 

much further before the maximum ‘h’ value is achieved.  As a result, the temperature at 

which the maximum ‘h’ value occurs decreases from 360°C to 225°C.  The low 

temperature gradient between the quenching medium and the hot 6061 probe may 

stabilize film boiling before leading into nucleate boiling, thus causing this decrease in 

temperature [23]. 
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Figure 6: Effective Heat Transfer Coefficients for Various Temperatures With No 

Agitation 
  
 

Figures 7 and 8 show similar trends that were observed in Figure 6, except the 

presence of the Leidenfrost point does not appear in the curves for 80°C.  It is believed 

that since agitation is now present, the fluid flow mechanically broke down the vapor 

layer and promoted nucleate boiling.  As a result, film boiling could not become stable 

and, therefore, does not appear on either curve [25].   
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Figure 7: Effective Heat Transfer Coefficients for Various Temperatures With An 

Agitation Level of 880 rpm  
 
The final noteworthy aspect of these three figures is the maximum heat transfer 

coefficient that is attainable for each condition.  At an agitation rate of 0 rpm, values that 

range from 1100 W/m2K to 2100 W/m2K can be achieved whereas at agitation rates of 

880 and 1850 rpm, ranges of 1500 W/m2K to 2800 W/m2K and 2000 W/m2K to 3850 

W/m2K can be achieved, respectively 
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Figure 8: Effective Heat Transfer Coefficients for Various Temperatures With An 

Agitation Level of 1850 rpm 
 
Experimental Results: Quench Factor Analysis (QFA) 
 

Using Equation 5, Quench Factor Analysis (QFA) was performed.  Table 3 

presents the Quench Factor, Q, for each quench condition.  Looking down the columns of 

the table, it can be seen that Q decreases with increasing agitation level, indicating that 

the quench rate increases with increasing agitation.  In addition, Q increases with 

increasing bath temperature as seen by the increasing values across the rows of the table.  

Overall, the fastest quench rate was observed at 5°C with an agitation level of 1850 rpm 

and the slowest at 100°C with no agitation.  The Q values for these conditions are equal 

to 3.78 and 40.6, respectively. 
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Table 3: Variation in Quench Factor as a Function of Agitation and Bath 

Temperature 
Figure 9 plots the data presented in Table 3 against the corresponding maximum 

heat transfer coefficient seen in Figures 6 through 8.  A hyperbolic curve was fit to the 

data, but looking at the R2 value, the relationship does not appears to be hyperbolic since 

R2 = 0.49.  Overall, there is a general trend of higher maximum heat transfer coefficients 

at lower values of Q. The greatest value of maximum heat transfer coefficient was 

obtained at the same condition as the lowest Q value from Table 3.  This data is 

consistent with theory since it is understood that low temperature and high agitation 

should yield high rates of heat transfer and low values in QFA [1]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 9:  Hyperbolic Regression of QFA as a Function of ‘h’ Max 
 

Temperature C Agitation Level 
(rpm) 5 25 40 80 100 

AG0 0 6.82 8.31 8.26 12.5 40.6 
AG1 880 5.27 6.45 5.86 7.51 32.97 
AG2 1850 3.78 4.67 5.21 6.18 29.52 
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 Figure 10 presents a second method of analyzing the data in Figure 9.  The figure 

below presents the correlation between these two parameters in terms of a linear 

regression.  The data at the bottom of the figure can be fit with a linear regression curve 

with a high correlation coefficient.  The line of best fit is not representative of the data as 

a whole because the labeled data points to the left are not included in the linear 

relationship. 
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Figure 10: Quench Factor As a Function of Maximum Heat Transfer Coefficient 
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 Upon further investigation, the eliminated data points were found to be the 

conditions with a Liedenfrost point present in their heat transfer coefficient curves.  It 

appears that data with this point present cannot be compared to data without it.  One 

explanation is that since the Liedenfrost point drives the temperature at which maximum 

heat transfer occurs to a lower temperature, the Q calculation in the Quench Factor 

Analysis is not summing the values at ‘h’ max, but rather at the temperature of the 

Liedenfrost point.  As a result, these values are quite high and will not correlate well with 

the data collected from curves without a Liedenfrost point.  Figure 11 illustrates the 

regions of interest on the heat transfer coefficient curve. 

Figure 11: Summation Region of Q as Seen on Heat Transfer Coefficient Curves  
 
The dashed lines represent the summation region in the QFA calculation [9].  

Looking at the curve for 5°C, it is clear to see that the summation region is focused 

mainly on the location of maximum heat transfer, whereas at 100°C, the region is focused 

around the location of the Liedenfrost point.  As a result, the majority of the summation 

values are coming from a region of very low heat transfer and not from the location of the 
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maximum heat transfer coefficient.  In addition, if the stages of quenching are 

superimposed onto the curves above, it can be seen that the summation region at 5°C is 

mainly nucleate boiling, whereas at 100°C, the region encompasses film boiling and 

nucleate boiling.  For these reasons, it is concluded that conditions with a Liedenfrost 

point cannot be directly compared to those without by means of QFA and ‘h’ 

relationship.  

 
 
Conclusions 
 
 Based on the experimental data presented above, it can be concluded that: 
 

•  An increase in agitation causes an increase in maximum heat transfer coefficient 
and a decrease in Quench Factor, Q. 

 
•  A decrease in bath temperature causes an increase in maximum heat transfer 

coefficient and a decrease in Quench Factor, Q. 
 

 
•  When a relationship between QFA and ‘h’ max is desired, conditions with a 

Liedenfrost point cannot be directly compared to those without due to the location 
of the summation region used in Quench Factor Analysis. 
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APPENDIX A: Polyalkylene Glycol (PAG) Quenching 

 There are several commercial polymers quenchants that are readily accepted and 

used today such as Polyvinyl Alcohol, Polyvinylpyrrolidone, Polyacrylates, and 

Polyalkylene Glycol (PAG).  Of these, PAG’s are most common and will be considered 

extensively in this chapter [1]. 

 The molecular formula for PAG is as follows: 

 

 

 

 High molecular weight PAG is completely soluble in water at room temperature 

and therefore has been used extensively in the quenching of hot metal.  PAG also exhibits 

a unique property in which it has inverse solubility as temperature increases in the water.  

As the temperature rises, the PAG precipitates out of the solution and deposits on the 

surface of the part.  The deposited layer serves as an insulator, which, in turn, governs the 

rate of heat extraction from the quenched part.  This layer also causes complete wetting 

of the surface and therefore does not prolong the vapor blanket stage.  As a result, a more 

uniform quench is experienced and the risk of distortion and cracking is minimized.  As 

the temperature of the part decreased, the polymer dissolves back into the aqueous 

solution and maintains the concentration of the quenchant bath [2]. 

The three main factors that govern the rate of heat transfer with the use of PAG 

quenchants include: 

1. Quenchant concentration 
2. Quenchant temperature 
3. Quenchant agitation 
 

CH3 

HO - (CH2 – CH2 – O)n – (CH2 – CH – O)n – H 



 82

  This relationship between polymer concentration and quench rate can be 

attributed to the insulating layer that is deposited on the surface of the part as the 

temperature increases in the bath [1].  If there exists is a greater concentration of PAG in 

the bath, then the deposited insulating layer will be thicker.  As a result, the rate of heat 

transfer will be controlled to a greater extent and slowed considerably.  On the other 

hand, if the concentration is low, the insulating layer will be thin and the cooling rates 

achieved will approach those of plain water. 

 A similar relationship between bath temperature and quench rate is also well 

understood.  As was the case with water, the cooling rates decrease as the temperature of 

the bath increases.  This is due, primarily, to the thermal gradients that exist between the 

hot part and the bath temperature.  If the gradient is high, then the cooling rate and the 

rate of heat transfer will also be high.   

 Finally, the relationship between agitation and cooling rate is understood by 

knowing that as the degree of agitation increases, so does the cooling rate.  The use of 

some degree of agitation in PAG systems is almost essential.  Agitation will allow 

adequate amounts of the polymer to come in contact with the hot surface and create its 

insulating layer as well as provide uniform heat transfer from the hot surface to the cooler 

liquid.  These two factors will create a faster quench, uniform hardness and better 

mechanical properties [2]. 

In addition to the benefits that polymers exhibit in quenching, several concerns 

exist in the minds of some consumers [1].  Some are concerned with the potential 

contamination of water vapor from the quenchant in carburizing atmospheres, its 

corrosion protection, and its overall quenching performance.  One study compared the 
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performance of PAG to oil in the quenching of an 8620 steel.  The same procedure was 

carried out and physical properties were measured to compare the effectiveness of both 

mediums.  Table 1 shows the collected data after the quench. 

 
 

Property   Oil Quench Polymer Quench 

% Martensite (at surface) 56 86 

% Carbon (at surface) 1.6 - 1.8 1.6 - 1.8 

Hardness at surface (Rc) 59 – 64 63 - 64 

Hardness at Core (Rc) 45 44 - 45 

 
Table A.1: Comparison of AISI Carburized 8620 Metallurgical Properties of and 

Oil and Polymer Quench 
 

The use of the PAG quench outperformed the oil quench in two of the four 

categories.  The percentage of martensite on the surface was much greater with PAG than 

with oil, which indicates that the cooling rate was higher allowing more austenite to 

convert during the quench.  In addition, the range of hardness values was smaller, 

indicating that the uniformity of the hardness was greater.  Therefore, it can be said that 

the PAG quenchant outperformed the quenching oil considerable [1].  In addition, it is 

important to note that no corrosion was encountered on the quenched parts and no water 

contamination was experienced in the bath.  As a result, many of the concerns of 

consumers were eliminated by this study. 

 In addition, this study showed that PAG was also more cost efficient on an annual 

basis, costing 28% less than the oil [1]. 

 Although PAG shows promise in its quenching ability, several precautions must 

be taken to maintain its performance over time.  The concentration of the bath must be 
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maintained to ± 1.0 % [3].  If the concentration varies considerably, the rates of heat 

transfer will change from quench to quench.  Furthermore, the bath temperature should 

not rise more than 10°C to ensure that thermal gradients do not vary as different parts are 

quenched [2].  In terms of agitation, the system must be on prior to the quench to 

minimize the potential for water contamination of the furnace atmosphere.   

 In addition to these factors, the degradation of the polymer itself is also very 

important.  The operator must ensure that the polymer is not degrading below an 

unacceptable level.  As the polymer degrades and the molecular weight decreases over 

time, the quench rates will increase and the insulting layer that controls the rate of heat 

transfer is effectively lost [3].    

Figure A.1: Comparison of Old and New Polymer Cooling Curves 

 

 

 

 

 

 

 

 

 Several tests can be done to determine the degree of degradation of the polymer.  

Viscosity of the solution, which depends directly on the molecular weight of the polymer, 

can be measured and compared to a control to ensure that the viscosity level is not 

dropping over time.  Also, a refractive index measurement can be taken.  This test is not 

Time 

Temperature 

New Polymer  
1 Quench 

Old Polymer 
100 Quenches
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sensitive to molecular weight, but is sensitive to polymer concentration, polymer 

degradation and impurities in the bath.  It is a rapid test, so it is preferred among several 

industrial plants [3].  These tests will allow the user to monitor the degradation level of 

the polymer in the bath over time. 

 

TAGUCHI EXPERIMENTAL APPROACH 

 Dr. Genechi Taguchi is a Japanese scientist who spent most of his life researching 

ways to improve the quality of manufactured parts [4].  His approach stemmed from the 

work conducted by Sir R.A. Fisher who tried to determine the optimal growing 

conditions to produce the best crops.  Fisher was able to lay out the possible 

combinations that could be used in a matrix, which allowed each factor an equal number 

of test conditions.  Taguchi realized that to carry out all possible combinations would 

take far too long; so much work was done to statistically eliminate test conditions and 

reduce the total number of experiments to conduct.  The table below shows several 

testing criteria including the number of factors and the number of levels associated with 

each factor.  It also shows the total number of possible combinations that are present and 

the corresponding number of experiments proposed by Taguchi.       
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Table A.2 Various Experimental Situations and Corresponding Taguchi Experiment Size 

 
 

Experimental Situation Maximum Possible 
Conditions 

Number of Taguchi 
Experiments 

      
3 two-level factors 8 4 

      
7 two-level factors 128 8 

      
11 two-level factors 2024 12 

      
15 two-level factors 32768 16 

      
4 three-level factors 81 9 

      
7 three-level factors 2187 18 

            

 

 It is clear to see from the table above that the number of total experiments is 

reduced considerably by using the Taguchi approach.  The highlighted row above 

indicates the experimental situation of interest.  A situation with 4 three-level factors is 

termed an L9 array.  Although the maximum number of factors is equal to 4, an L9 array 

can be used in the following three ways [4]: 

1. 2 three level factors  

2. 3 three level factors 

3. 4 three level factors 

In this research, 3 three level factors will be considered, so an L9 array fits the 

experimental design criteria.  An L9 array is shows below with the corresponding levels 

of each factor placed in the matrix to dictate the testing conditions. 
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Table A.3: L9 Orthogonal Array for Experimental Testing 

  

Condition A B C D  

Number Level 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

          
 

 Columns A, B, and C will be utilized while Column D will not since there are 

only 3 factors to be considered in the experiment of interest.  

Once the recommended experiments are carried out, a statistical analysis called 

Analysis of Variance (ANOVA) is conducted to determine the optimal condition for 

running a particular process as well as the contribution of each factor in the experiment.   
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ANOVA CALCULATIONS  
 
Table A.4:  L9 Array with Results Column 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The table above is the L9 array with the results column shown to its right.  This 

column contains the average of several trials at a given condition.  The results column 

can contain a variety of information.  For the research contained in this thesis, the results 

column can be filled with QFA, maximum cooling rate, or maximum heat transfer 

coefficients.  For the purpose of this analysis, the values will be shown as R1 to R9. 

 Once tabulated, the Analysis of Variance (ANOVA) can begin.  The analysis 

starts with a calculation of the standard deviation of the results carried out by the 

equation below: 

∑
=

−=
N

i
iT RRS

1

2)(  

  

 

Condition A B C  Ave 
Result 

Number Level 

1 1 1 1 R1 

2 1 2 2 R2 

3 1 3 3 R3 

4 2 1 2 R4 

5 2 2 3 R5 

6 2 3 1 R6 

7 3 1 3 R7 

8 3 2 1 R8 

9 3 3 2 R9 
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To determine the variation caused by an individual factor (A, B, or C), a ‘factor 

sum of squares’ calculation is performed.  The equation below shows this calculation for 

factor A. 

 

The two previous calculations were the basic equations needed for ANOVA.  The 

following equations are also necessary: 

 

 
 
 

A1 =  The sum of the results for trials containing factor A at level 1 
A2 =  The sum of the results for trials containing factor A at level 2 
A3 =  The sum of the results for trials containing factor A at level 3 
NA1 = Total number of experiments containing factor A at level 1  
NA2 = Total number of experiments containing factor A at level 2 
NA3 = Total number of experiments containing factor A at level 3 
T =  Total of all results values  
N =  Total number of results 
T2/N = Correction Factor 
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fA = Degrees of Freedom of Factor A:  Equal to the number of levels to factor A -1 
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 With these calculations, a table can be created to see the overall effect of each of 

the factors and their contribution to the total experiment. 

Table A.5: ANOVA Table 

Column#/ Factor DOF (f) 
Sum of 
Squares 

(S) 
Variance 

(V) 
F-Ratio 

(F) 
Pure 

Sum (S') 
Percent 

P(%) 

        
Factor A 2 SA VA FA S'A PA 

        
Factor B 2 SB VB FB S'B PB 

        
Factor C 2 BC VC FC S'C PC 

        
Error 0         0 

        
Total           100% 

                
 

 The summation of PA, PB, and PC must equal 100% since they all contribute to 

the experiment, so they all play a role in its outcome.  If one or more of the percentages 

in less than 10% of the total value, it becomes ‘pooled’ and the calculations are carried 

out again without that particular factor’s influence. 

 A software called Qualitek-4: Automatic Design and Analysis of Taguchi 

Experiments (Q4) will be utilized for this analysis.  This piece of software will also 

calculate the optimal conditions for the desired output of the process.  For example, say a 

low value of QFA is desired, we can select, ‘Smaller is Better’ on the software and it will 

T

A
A S

SPluencePercentInf ': =

)*(': AeAA fVSSquaresPureSumofS −=



 91

determine the conditions necessary to create the smallest QFA as well as the predicted 

value given those particular conditions.  A similar process known as “Bigger is Better’ 

can be carried out for an analysis for maximum cooling rate or maximum heat transfer 

coefficient. 

 Although it is important to understand how to calculate all ANOVA variables, For 

the experiments conducted in this thesis, Q4 will be used for all calculations. 

 

3.4.2 Polymer Testing 

In the case of the polymer solution, Houghton Aqua Quench 260 was selected.  

For polymers, three variables were determined to be, bath temperature, agitation level 

and polymer concentration.  Within these variables, there exists three levels in each for a 

total of 81 different combinations or conditions to test.  At 5 runs per condition, it would 

have been necessary to conduct 405 quenches to fully analyze the data.  As a result, the 

Taguchi Method for experimental design will be instituted to statistically eliminate the 

total number of quenches.  In doing so, we will be able to determine interactions between 

parameters.  The test matrix below illustrates an L9 (34) layout for testing [5].   

Table A.6: Taguchi Design of Experimentation for Polymer Quenching  

          Factor 
      

Level 1
  

Level 2
  

Level 3

         
A: Polymer Concentration, %  10  20  30 
         
B: Bath Temperature, degree C  25   33   40  
         
C: Agitation Rate, 
rpm   880  1390  1850 
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Table A.7: Taguchi Test Matrix for Polymer Quenching 

 

Condition A B C D  

Number % deg C Level  

1 10 25 880  

2 10 33 1390  

3 10 40 1850  

4 20 25 1390  

5 20 33 1850  

6 20 40 880  

7 30 25 1850  

8 30 33 880  

9 30 40 1390  

          
  

 The variables above are classified as letters A-D for simplicity.  The breakdown 

can be seen in Table A.2 above.  Looking at Table A.3, it can be see that there are only 9 

conditions to be tested and as a result only 45 quenches need to be done.  The 

temperature range to be analyzed is small, while the concentration and agitation levels 

vary considerably.  The actual values can be seen in the table above.   
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6.0 RECOMMENDATIONS AND FUTURE WORK 
 
 After completing the research contained within this thesis, it is possible to extend 

this area of research by means of using different alloys and quenching mediums.  Having 

worked extensively with the current CHTE probe quenching system, several problems 

exist and can be changed to improve the data acquisition and ease of use.  

6.1 Modifications to CHTE Probe-Quench System 

 The CHTE probe quenching system should be modified such that each component 

is electrically isolated from every other component.  The steel table that is currently used 

should be eliminated and replaced with a frame which would increase the access to each 

component and eliminate grounding issues during the data collection.   By isolating the 

agitation unit, quench tank and furnace, the level of electrical noise collected by the 

thermocouple will also be reduced.  As a result, smoother data will be collected during 

the quench.  

In addition to the overall layout, it should be noted that an ungrounded K-type 

thermocouple should be used with this system since it picks up a smaller amount of 

outside noise and does not get ‘shorted’ by contact with external metal surfaces.  

Furthermore, electrochemical noise occurring between the thermocouple sheath and 

probe center will not be transmitted through the thermocouple and seen in the collected 

data. 

 The constant temperature quench tank is also an item of concern.  The Blue M 

tank used is adequate for quenching and is very convenient in heating the quench bath, 

but is does not allow the user the ability to videotape the quench as it is taking place.  

Additional experiments must be conducted in a plexyglass tank for videotaping purposes.  
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For this reason, it is recommended that this tank be changed.  Also, as seen in the results 

presented in the paper entitled “The Effect of Bath Temperature and Agitation Rate on 

the Quench Severity of 6061 Aluminum in Distilled Water”, as the level of agitation is 

increased, a high level of scatter in the data is observed.  The agitation mechanism must 

be improved to provide better fluid flow towards the part being quenched and thus reduce 

the high degree of scatter.    

 To alleviate the heating and agitating problems associated with the quench tank, it 

is suggested that the current tank be replaced with one constructed out of plexyglass.  By 

doing so, the videotaping issue is solved and experiments can be taped as they are 

conducted.  Furthermore, an immersion heater and pump must be purchased in order to 

created a heated and agitated quench bath.  The only issue with this tank is the risk of 

meting the plexyglass with the immersion heater.  So, the tank must be designed such that 

the immersion heater does not make contact with the walls of the tank. 

 Once these changed are made, it is recommended that the experiments conducted 

in this thesis be redone.   By collecting data with the current system and the proposed 

system, it will be possible to make comparisons on the effect of agitation design as well 

as show the importance of eliminating noise from data collection.  In addition to 6061 

aluminum, other heat-treatable alloys in the 2000, 6000 and 7000 series can be quenched 

and analyzed via Quench Factor Analysis and Cooling Rate Data 

6.2 Polymer Quenchants   

 As stated in this thesis, many heat treaters are turning to aqueous polymer 

solutions as their quenching medium since it offers good control of cooling rates and 

allows cooling rates between water and oil quenching to be achieved [24].   
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 Aqua Quench 251, 260 and 3600 have been acquired from Houghton International 

to perform experiments to determine the effect of bath temperature, agitation rate, and 

polymer concentration on quench severity.  To determine the effect of these variables, it 

is suggested that a Taguchi Design of Experimentation be utilized.  A simple L9 array can 

be used which allows a maximum of 4 variables with 3 levels in each.  In this case, there 

are only 3 variables with 3 levels, but L9 can still be used.  By using a Taguchi Approach, 

a fewer number of experiments can be conducted while still collecting adequate data for 

statistical analysis.   

 Once the data is collected, Analysis of Variance (ANOVA) should be performed 

to determine which variables are most important when conducting a polymer quench.  

The groundwork and test matrix has already been laid out and can be seen in Appendix 

A.  Within this appendix, a literature review of polymer quenching has been done as well 

as the layout for an L9 Taguchi Experiment.  In addition, the ANOVA calculations are 

presented and can simply be followed when these experiments are conducted. 

 The experiments should be conducted for all three types of Houghton Aqua 

Quench since the material is now available.     
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5.0 CONCLUSIONS 
 
 The following conclusions were drawn on the effect of bath temperature and 

agitation rate on the quench severity of 6061 aluminum probes in distilled water.  These 

three conclusions were drawn through an analysis of Cooling Rate data and Quench 

Factor, Q. 

1. An increase in agitation and a decrease in bath temperature causes an increase in 

cooling rate and a decrease in Quench Factor, Q.  This variation in quenching 

parameters allows for a high temperature gradient to exist between the part and 

quenching medium as well as fresh bath water to be circulated to the quenched part.  

As a result, the quench rate increases and Q decreases indicating a more sever quench 

has occured.   

2. The standard deviation and range of the cooling rates at all temperatures increases 

with agitation.  For this reason, design of the agitation system is critical in providing 

continuous fluid flow to the part being quenched.  If the fluid is not circulated 

properly, the repeatability from experiment to experiment will not be consistent.  

3. The Quench Factor, Q, is an excellent parameter for characterizing the quenching 

system.  The value, Q, directly changes as a function of both the bath temperature and 

level of agitation.  Therefore, this variation proves that as the quench conditions 

change, Q is an acceptable parameter for quantifying the quench in terms of 

quenching medium and alloy used. 
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 Similarly, conclusions were drawn on the effect of these parameters as determined 

through Quench Factor Analysis and heat transfer coefficient calculations. 

1. An increase in agitation and a decrease in bath temperature causes an increase in 

maximum heat transfer coefficient and a decrease in Quench Factor, Q.  Since ‘h’ is 

directly calculated from an experimental value of dT/dt, heat transfer coefficients 

should follow similar trends as those for cooling rate data.  For this reason, they both 

react similarly as the quenching parameters are changed. 

2. When a relationship between QFA and ‘h’ max is desired, conditions with a 

Liedenfrost point cannot be directly compared to those without due to the location of 

the summation region used in Quench Factor Analysis.  The location of interest in 

this calculation focuses on the region of nucleate boiling and the location of 

maximum heat transfer for curves without a Leidenfrost temperature.  When a curve 

possesses a Liedenfrost point, the summation region is focused mainly on a film 

boiling mechanism and then on nucleate boiling.  For this reason, these two types of 

curves cannot be directly compared via QFA and ‘h’.   
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APPENDIX B: COOLING RATE PROGRAM 
 
;**** Computation of Derivatives **** 
 
;This transform takes an t,T data set with increasing  
;ordered t values and computes the first and second  
;derivatives. 
 
;       ********** Input Variables ********** 
 
cx=3           ;t data column number 
cy=4           ;T data column number 
 
;        ************ RESULTS ************ 
;The results are placed into a block of 3 columns 
;starting at column cr.  Columns 
;cr to cr+2 contain the first two derivatives.   
;Column cr+3 is for working variables. 
 
cr=5           ;1st column of results block 
 
;        ************ PROGRAM ************ 
cr1=cr 
cr2=cr+1 
cr3=cr+20       ;working column  
n=size(col(cx)) 
cell(cr3,1)=cx 
cell(cr3,2)=cy 
cell(cr3,3)=cr 
 
;compute first derivative for 3 to n-2 rows 
 
nm1=n-1 
nm2=n-2 
cell(cr3,4)=cell(cx,2)-cell(cx,1)          ;dt1 
cell(cr3,5)=(cell(cy,2)-cell(cy,1)) 
  /cell(cr3,4)                           ;dT1 
;cell(cr1,1)=cell(cr3,5) 
;cell(cr1,2)=cell(cr3,5) 
 
dt2=-12*cell(cr3,4)            ;dt2 
 
for i=3 to nm2 do 
  dT2=(cell(cy,i-2)-8*cell(cy,i-1)+8*cell(cy,i+1)-cell(cy,i+2))/dt2    ;dT2 
  cell(cr1,i)=dT2 
end for 
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;cell(cr1,nm1)=(cell(cy,n)-cell(cy,1))/cell(cr3,4)*6 
;cell(cr1,n)=cell(cr1,nm1) 
 
;compute second derivative for 5 to n-4 rows 
 
nm4=n-4 
;cell(cr3,6)=(cell(cr1,2)-cell(cr1,1)) 
;  /cell(cr3,4)*6                           ;ddT1 
;cell(cr2,1)=cell(cr3,6) 
;cell(cr2,2)=cell(cr3,6) 
 
for i2=5 to nm4 do 
  ddT2=(cell(cr1,i2-2)-8*cell(cr1,i2-1)+8*cell(cr1,i2+1)-cell(cr1,i2+2))/dt2    ;ddT2 
  cell(cr2,i2)=ddT2 
end for 
 
;cell(cr2,nm1)=(cell(cr1,n)-cell(cr1,1))/cell(cr3,4)*6 
;cell(cr2,n)=cell(cr2,nm1) 
 
 


