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Abstract 

Biaxial testing is needed to evaluate the varying mechanical properties of fibrous soft 

tissue. A current gap in technology fails to effectively grip tissue so that each axis of load can 

behave independently of the other, while allowing an easy attachment method. The goal of this 

project was to develop a gripping and loading system that would allow force distribution, 

preserve the specimen, and have high usability. Using rapid prototyping, a gripping and loading 

mechanism was developed for a biaxial test device at WPI. Through the use of force distribution 

calculations and experimental testing, comparisons to current technology were made.  From 

these results, the team can conclude that the objectives were met.     
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1. Introduction 

 Tissue engineering is a branch of regenerative medicine that aims to synthesize materials 

that function like biological soft tissue to replace or repair those of diseased or damaged organs. 

Soft tissue is a pseudoplastic and anisotropic material that is flexible and has soft mechanical 

properties. Anisotropic means that the tissue exhibits mechanical properties that differ based on 

the axis of load [1].  Soft tissue is constantly subjected to physical, chemical, and biological 

stresses so it has a dynamic structure [2]. Ideally, artificial tissue aims to mimic the mechanical 

properties of its respective biological tissue. To ensure that these bioengineered tissues will 

function successfully in the body, various mechanical properties, like tensile strength, elasticity, 

and compliance, must be tested to forces that the body would impart on the tissue in vivo [3]. As 

engineered materials aim to mimic biological tissue structure and function, these tissues often 

exhibit mechanical properties that vary depending upon the direction of load. To adequately 

quantify the anisotropic stress-strain performance of tissue engineered materials, mechanical 

testing must occur in multiple directions. 

Biaxial testing measures the mechanical properties of both biological and engineered 

tissue by capturing the properties of tissue in multiple directions. These measurements provide 

important data on stress-strain relationships within the material, and other mechanical properties 

such as elasticity and compliance, and tensile strength that are necessary to improve engineered 

tissue to better mimic biological properties [4]. Biaxial testing has its advantages over uniaxial 

testing, as uniaxial tests do not sufficiently recognize the 3D behavior of the tissue. 

Currently, there are various biaxial test devices on the market that measure these 

mechanical properties, but they are costly. CellScale and Instron are namely two of the main 

companies that make biaxial test devices. Both of these companies offer devices of high quality 
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that allow users to easily test specimens to obtain more accurate data than could be obtained 

through uniaxial testing. Worcester Polytechnic Institute (WPI) also owns a similar device that 

was engineered by a student team in 2005. It offers similar capabilities to marketed devices; 

however, all of these devices lack an ideal gripping mechanism to effectively measure the 

properties of compliant tissue. The current methods of specimen attachment within these devices 

include clamps, rakes, and suture/pulley systems. Though each of these methods are currently 

used today, each method has specific limitations that prevent effective attachment of soft tissue 

and comprehensive evaluation of mechanical properties. 

The overall objective of this project is to improve WPI’s biaxial test device to effectively 

load and grip very compliant tissue. Biaxial testing offers a unique challenge in attachment as 

each axis must behave independently of the other without influence of the grips for effective 

testing. To achieve this goal, the team developed a complete loading and attachment system that 

allows for lateral movement and shear in a sample, that is easy to use to test compliant tissue.  
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2. Literature Review 

2.1 Medical Significance 

 The need for artificial engineered tissue is critical in the United States. There are millions 

of connective tissue diseases and injuries that require treatment. For example, millions of people 

worldwide suffer from heart failure [5]. Heart failure occurs when healthy heart muscle dies. 

Unlike other tissues in the body, the heart cannot regenerate functional cardiac tissue. Instead, 

the heart repairs the injury with scar tissue that is unable to contact or conduct electrical signals 

to the rest of the organ like the surrounding cardiac muscle. In this case, the scar tissue is unable 

to achieve the necessary mechanical properties to mimic the native tissue, resulting in loss of 

function and ultimately heart failure [6]. 

  Tissue engineering is a promising field of growing research that has the potential to 

effectively treat many connective tissue problems, such as heart failure. One growing area of 

research includes the development of a cardiac heart patch intended to repair the injured heart 

tissue by matching the mechanical properties of healthy biological tissue. The patch is implanted 

over the injury to restore conduction of electrical signals and muscle contraction. However, the 

evaluation of these needed mechanical properties is critical to the success of such a patch. A 

patch that is too stiff restricts contractions that pump blood to the rest of the body. A patch that is 

too compliant fails to provide adequate support needed within the heart to circulate blood. To 

ensure these vital properties are met, cardiac patches and all other engineered artificial tissue 

must be tested mechanically to evaluate their ability to perform their intended functions [7]. 
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2.2 Soft Tissue 

Mimicking the biological environment when testing artificial tissue is important to ensure 

it will perform well in the body. Because tissues in the body are constantly subjected to a variety 

of physical, chemical, and biological stresses, every tissue structure is dynamic. Most soft tissue, 

like cardiac tissue is anisotropic, meaning varying fiber orientations in the tissue contribute to 

differing mechanical properties depending on the direction of an applied load [8], as seen in Fig. 

2.1. Soft tissues also exhibit viscoelasticity, hysteresis, and stress relaxation, enhancing the 

tendency of the tissue to produce nonlinear stress-strain relationships [9].   

  
Figure 2.1: Fiber orientation of soft tissue showing unidirectional alignment, intra-lamellar alignment, and interspersed 

alignment [10]. 

 
 

An example of this non-linear behavior can be seen by the typical force-displacement curve for 

soft tissue shown in Fig. 2.2. This image graphs the variation in displacement depending on 

direction of the force applied. In a mechanical test, the loading of the sample can be equivalent in 

both directions (equibiaxial loading), proportional between directions (proportional loading), or 

independent from direction (general/non-equibiaxial loading) [11].  
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Figure 2.2: Typical Force-Displacement Curve for Soft Tissue [11]. 

 The most common method of mechanical testing is done uniaxially in which a specimen 

is clamped on two ends and a load is applied along one axis, illustrated in Fig. 2.3. However, 

both biological and engineered tissue are often anisotropic due to varying fiber alignments, 

exhibiting various mechanical properties in different directions. Additionally, these tissues are 

intended for use in the body where they will be loaded in multiple directions. Uniaxial testing is 

limited to evaluating tissue in one direction and fails to incorporate any multiaxial evaluations 

crucial to characterizing the tissue’s comprehensive mechanical properties [12]. 

 
Figure 2.3: Illustration of uniaxial testing (left) vs. biaxial testing (right). 
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2.3 Biaxial Testing 

Biaxial testing is needed to develop constitutive models of biological and bio-engineered 

soft tissue [9].  Constitutive models are crucial to the accurate analysis of the mechanical 

properties of soft tissue. These models and analysis provide critical information for the 

development and fabrication of synthetic soft tissue to successfully mimic biological tissue 

properties [4]. 

Although biaxial testing is superior to uniaxial testing in determining the properties of 

soft tissues, it poses its own challenges. Biaxial testing is much more complex than uniaxial 

testing as there exists a need to control two boundary conditions corresponding to the two axes. 

Additionally, the attachment method must also move freely in the lateral direction [9]. Modeling 

tissue property using planar biaxial testing cannot completely capture the three-dimensional 

properties of anisotropic soft tissue; however, there are various other biaxial tests to fill in these 

gaps [9], [13]. These tests include inflation and extension biaxial tests and equibiaxial stretching 

tests [13]. Additional challenges to evaluating soft tissue include small specimen size due to 

limited sources, difficulty gripping due to the delicate structure, and difficulty in inducing strain 

within the center of the sample due to high stress concentrations at the attachment sites [9]. 

Several current devices aim to overcome these challenges in various ways as detailed in Section 

2.5.  

 Biaxial testing typically follows the same procedure regardless of the device. A 

schematic of the basic biaxial test setup is shown in Fig. 2.4.  There are four main components in 

a biaxial test device: 

1. Force Mechanism: Force is controlled and produced through the use of force transducers 

partnered with a servo motor and load cell [14]. Force transducers vary in nominal force 
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range, resolution, and overload protection depending on the intended use of the device. A 

detailed background on the mechanisms of force transducers can be seen in Appendix A.  

2. Displacement Measurement: Displacement is measured optically to avoid mechanical 

error and interference with the fragile specimen [1], [9]. Optical software is typically 

used with a programmable CCD camera to measure the displacement in both axis 

directions [1]. From displacement, strain in the specimen is then estimated. 

3. Environment: The specimen should be submerged in a pH and temperature-controlled 

media bath, typically phosphate-buffered saline (PBS) that simulates a physiological 

environment. To achieve in vivo conditions, the temperature is maintained at 37℃ and 

the pH at approximately 7.4 [9]. 

4. Attachment Mechanism: The attachment method ideally distributes the applied force 

evenly throughout the specimen and effectively attaches the specimen to the force 

mechanism throughout the duration of testing [1]. Currently used attachment methods for 

this type of testing are detailed in Section 2.6.  

 

Figure 2.4: A schematic of the basic components of a biaxial test device [1]. 
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In addition to these components, the specimen is prepared with several markers at the 

center of the specimen to track the displacement accurately. The displacement is tracked in the 

center of the specimen to mitigate any potential effects, such as stress concentrations, of the 

attachment method on the behavior of the tissue [9], [14]. The device typically applies the load at 

a set strain rate or loading rate. The device can also run based on a set stress input [12]. Other 

parameter inputs include preloading, stretching, holding, recovering, and resting phases [11].  

 

2.4 Gripping Mechanisms 

 When designing a biaxial test device, one of the most critical aspects is determining 

specimen attachment. With delicate samples such as soft tissue, it is difficult to grip them 

properly without altering their mechanical properties or damaging the tissue. Various gripping 

mechanisms, shown in Fig. 2.5 below, have been constructed in previous biaxial test studies and 

are outlined in more detail in this section. 

 
Figure 2.5: Specimen deformation vs. gripping mechanism [15]. 
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Clamps 

 Clamps offer the fastest loading, highest usability, and most repeatable attachments for a 

tensile test; however, clamps are ideally suited for uniaxial tests. When applying a load to a 

compliant specimen, like soft tissue, the specimen will stretch and elongate along the axis of the 

load applied. Perpendicular to that axis, the specimen contracts to allow stretching with the 

tensile force; however, in biaxial testing, clamps also attach to the specimen along this 

perpendicular axis. Introducing these additional clamps often induces undesirable restriction of 

the specimen. For example, the specimen can no longer contract along this axis to allow for 

elongation in the original axis of load. Instead, the large surface area of the clamps restricts 

specimen movement and significantly influences the load distribution within the sample. These 

restrictions can lead to stress shielding and altered physical properties [15]. 

To mitigate this problem, an alternative specimen shape was introduced. A cruciform 

shaped sample allows more movement within the sample as clamps are applied to the arms and 

the load is distributed to the central area [16]. Testing cruciform samples over square-shaped 

samples results in a higher strain range and simpler data acquisition, but an inverse modeling 

adjustment of constitutive model parameters is needed [17]. Therefore, to utilize a clamp 

attachment method, researchers should prepare specimens in a cruciform shape and mathematical 

analysis should be altered. Additionally, this shape is extremely difficult to obtain for biological 

or bioengineered specimens. Both biological and artificial specimens come from limited sources, 

including the body or complex tissue engineering procedures. It is highly unfeasible to prepare 

these specimens into a cruciform shape due to limited sources, cost, and time. For these reasons, 

clamps are not well-suited to adequately grip anisotropic soft tissue. They offer a repeatable, 
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user-friendly method for a uniaxial testing grip system, but severely restrict necessary specimen 

stress-strain response in a biaxial test. 

Sutures 

 Another specimen attachment method involves suturing or tethering each side of the 

sample to the load cell. To use this gripping mechanism, the user must be extremely cautious and 

gentle to securely and precisely attach the sutures without tearing the sample [18]. A typical 

suture-pulley test consists of a set of four sutures secured to each side of the specimen by hooks. 

Each suture is then looped around a pulley. This setup maintains uniform tension throughout the 

sample by allowing for lateral movement of the sample. Previous biaxial testing of mitral valve 

leaflets utilized two loops of 000 nylon suture connected to four stainless steel surgical staples. 

These loops encircled two stainless steel pulleys mounted on a stainless-steel ball bearing [19].  

Testing with a suture and pulley system ensures uniform force is applied throughout the 

sample by allowing contralateral movement and rotation of the sample. An anisotropic sample 

may exhibit a stiffer or stronger area due to its varying fiber alignments, resulting in shear, or a 

geometric shift within the sample as each fiber is loaded; however, this method does not ensure 

uniform displacement [15].  It is also a highly variable attachment method that requires 

considerable time and surgical skill to attach each suture [17]. By hand, it is extremely difficult 

to insert the attachment hooks at precise spacing from the edges of the sample and from the other 

sutures. Then, looping the sutures over the pulleys may induce unwanted pre-loading to the 

sample and the puncture points. Therefore, the main limitations of sutures are usability, 

repeatability, and specimen preservation. 
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Rakes 

 A third attachment method, rakes are commonly used as a method of gripping soft tissue 

samples during biaxial testing. They function in a similar manner to sutures, by puncturing the 

specimen along the edges and attaching to the load cell. Rakes, however, do not allow for any 

shear available with the suturing method. The rakes are rigid tines secured by a common fixed 

base, driven by the load cell.  

To best apply this method, research shows that increasing the number of rakes and 

increasing the width between rakes improves the quality of a biaxial test. The inner rakes should 

be as far apart as possible, and the outer rakes should be as close as possible to the adjacent rake 

along the additional axis. More widely spacing the load points improves the loading distribution. 

As the load is applied to a larger area on the specimen, stress concentrations between the 

puncture points are reduced [15]. The advantages of using rakes for specimen gripping include 

repeatability, usability, and accuracy. Hooking the rakes through the specimen requires less skill 

and the spacing of the rakes remains consistent from the fixed base [20]. This fixed spacing also 

ensures a more uniform load distribution. However, rakes may inconsistently apply the intended 

load as they can transfer contralateral forces onto the specimen during testing. As the rakes are 

fixed and extremely stiff, they offer the specimen no freedom of movement to respond 

anisotropically to the applied load. Consequently, they are not suitable for use in cases of large 

shear deformations, which are commonly seen in anisotropic specimens [15]. 

2.5 Current Market Devices and Gold Standards 

 There are currently devices available for purchase on the market that are designed for the 

biaxial testing of soft tissue and other biomaterials. These devices can be purchased with a 
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variety of grips, force transducers, or other accessories depending on specimen type. These 

systems can be very costly, but incorporate some design aspects worth noting. 

CellScale 

 One biaxial device available, which can test very delicate tissue such as blood vessels, 

heart valves, and membranes is the BioTester, offered by CellScale. It is designed for small 

biomaterial and biological specimens with in-plane dimensions ranging from 3 to 15 mm. It 

performs biaxial testing by requesting an input of either a desired applied force or desired 

displacement for each axis. The software used to run the device is called LabJoy and has two 

modules: one module sets test parameters and one module monitors test progress. The test 

progress monitor includes a live video display of the test as it runs and the specimen as it 

deforms, which can also be replayed and accelerated or decelerated [21].  

 When tested, the specimen is placed in a temperature-controlled media bath. The device 

has four high performance actuators with in-line load cells to run a biaxial tensile test while 

keeping the specimen stationary. Live imaging is supplied during testing as well as real-time 

graphs displaying position, force, and temperature [20]. The load cells available for purchase 

include cells with nominal forces of 0.5 N, 1.5 N, 2.5 N, 5 N, 10 N, and 23 N, with a force 

accuracy of 0.2% of load cell capacity. The maximum velocity for these cells reaches 10 mm/s 

[22].  Each component is removable and washable, and the entire device can easily fit on a lab 

bench, with dimensions of 60 cm by 60 cm by 80 cm and a weight of 18 kg [20]. A list of the 

mechanical parts of the BioTester and their functions is included below in Table 2.1 [21], [22]. 
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Table 2.1: CellScale’s BioTester Capabilities 

Equipment Function 

Camera High resolution, CCD, synchronized video tracking and analysis 

Lens Provides illumination, high image quality 

BioRake Patented technology, quick and easy mounting of samples 

Data collection Integrated, compact, offers testing flexibility 

Control High resolution, precision measurement of small samples 

USB interface Simple, easy connection to host computer 

 
The BioTester can determine the properties of a wide variety of samples due to the 

various grips it can accommodate for biaxial testing. Depending on the sample, a user can attach 

the specimen with either a tether mounting system, BioRakes, or clamps. These gripping 

mechanisms are magnetically mounted for easy interchanges between grips or for cleaning 

between samples [20].  

Standard BioRakes consist of four grips, two for each axis. Each grip is composed of five 

tines attached to a common base so that one set of grips can simultaneously puncture a specimen 

at 20 attachment points [20]. These sets are available for purchase for $316 [23]. Each tine of a 

BioRake, shown in Fig. 2.6, is electrochemically sharpened to pierce tissue samples of a wide 

range of toughness. The ideal specimen size compatible with this gripping mechanism is a square 

specimen with sides approximately 5.5 to 6 mm in length. Larger BioRakes are available for 

larger specimens [21]. The BioRakes are available with consistent tine spacings of 0.7 mm, 1 

mm, 1.4 mm, 1.7 mm, and 2.2 mm. All of these sets, with the exception of the set with the 

smallest tine spacing, 0.7 mm, are 30 mm in length and 0.3 mm in diameter. The 0.7 mm spaced 

tines are consistent in length, at 30 mm, but have a diameter of 0.25 mm. For the BioRakes, the 

manual lift mechanism positions and raises the specimen into place for the insertion of the hooks 
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[20]. BioRakes allow for reliable repeatability, fast mounting, and uniform displacement. One 

drawback to this type of grip is that although there is even displacement, uniform force is not 

ensured throughout the specimen. These rakes are also considerably more expensive than other 

attachment methods. 

 
Figure 2.6: Representation of CellScale’s Biorakes. 

Another mechanism for specimen attachment is the balanced pulley mechanism, by 

which sutures are inserted into a square specimen at four points along each side. The sutures 

tether from the pulley to the sample using two double-ended custom suture hooks. Each of the 

sutures, shown in Fig. 2.7, are held at the same tension during testing as a result of a two-stage 

stainless steel pulley mechanism [20]. This type of grip is advantageous because it ensures the 

load cell induces uniform force throughout the specimen. However, it requires more time to 

apply the sutures and mount the specimen, and the space between sutures may not be consistent, 

therefore lowering attachment repeatability.  
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Figure 2.7: Representation of CellScale’s Balanced Pulley mounting system. 

CellScale also offers a clamp mounting system, shown in Fig. 2.8, which is the simplest 

form of specimen attachment. The stainless-steel clamps do not puncture the specimen, but 

rigidly clamp the four ends. Therefore, this gripping mechanism is ideal for a cruciform 

specimen, whose shape allows stress to distribute to the center of the specimen, rather than 

concentrate in the corners. This attachment method allows for fast loading and secure gripping of 

the specimen [20].    

 
Figure 2.8: Representation of CellScale’s Clamp mounting system on a cruciform test specimen [20]. 
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 The BioTester is an ideal device for testing the mechanical properties of soft tissue and 

has been used for various applications. This device is suitable for testing soft tissue similar to 

that of the lab at WPI, but costs $80,000, which surpasses the allotted budget [23].  

Instron-Sacks Planar Biaxial Soft Tissue Testing System 

 Instron offers a planar biaxial testing device for the characterization of natural and 

bioartificial soft tissue. Tests can be performed in single- or multi-axis using either position, 

load, or strain control [24].  

 The device is constructed of four Instron electromechanical MicroTester actuators and 

two four-axis FastTrack 8800 digital controllers. The strain measurement is accomplished 

through video imaging which tracks markers placed on specimen. This tracking controls the 

actuators based on imaged displacement and calculated strain in real-time [25]. The device 

comes with various accessories including a temperature-controlled saline bath, to maintain 

specimen hydration, clamps with adjustable grip pressure, a vibration isolation table, and a video 

camera, VCR, and monitor [26]. Additional specifications of this device are listed in Table 2.2 

[26]. 

Table 2.2: Specifications of Instron-Sacks Biaxial Test Device 

 Range Accuracy Resolution 

Displacement 110 mm 0.1 μm 0.05 μm 

Load Cell Set 1 5 N 0.05% of reading 0.05 N 

Load Cell Set 2 500 N 0.05% of reading 5 N 

 

This device is ideal for testing various types of soft tissue and has been used in 

applications such as the dynamic characterization of viscoelastic properties, assessment of 

reorientation of fibers under mechanical loading, the determination of mechano-structural 
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properties of soft tissue, and planar mechanical testing; however, this device is also extremely 

expensive at a cost of over $200,000 [26]. 
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3. Project Strategy 

3.1 Initial and Revised Client Statement 

The initial client statement, determined through correspondence and interviews with the 

client, was to design a biaxial test device to measure the mechanical properties of soft tissue such 

as myocardium or cardiac heart patches. After further discussion with the client and completed 

evaluation of the resources available to the team, the initial client statement was revised for 

specificity and feasibility. 

The next revision of the client statement resulted in the statement, “to design or improve 

a biaxial test device to measure the mechanical properties of cardiac heart patches.” A previous 

major qualifying project team from Worcester Polytechnic Institute in 2005 created a working 

biaxial test device intended for mechanically testing the stress-strain behavior of artificial skin. 

Considering this device’s capabilities and the project budget, the team revised the client 

statement to include the possibility of improving this existing device. Additionally, after meeting 

with a graduate student interested in the adaptation of the device to test bioengineered cardiac 

heart patches, the team narrowed the project scope for use on low tensile strength cardiac 

patches. 

Upon further discussion of the potential applications and improvements to the existing 

biaxial device, and after extensive research of the properties and characteristic of the engineered 

heart patches, the team revised the client statement again. This final client statement reads, “To 

develop a gripping mechanism and loading system for the existing biaxial test device to measure 

the sub-failure mechanical properties of soft tissue”. Worcester Polytechnic Institute has a 

faculty and student body that invests considerable time and resources into the development and 

research of various soft tissues and bioengineered materials for applications in tissue engineering 
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and regenerative medicine. To better serve this community, the team broadened the project scope 

from cardiac patches alone to include materials that are smaller and softer than typical 

anisotropic tissue. Newly engineered materials include low-layered tissue developed after less 

than one month. Due to the extremely low tensile strength, high modulus, and anisotropic nature 

of these tissues, biaxial testing is the preferred method for determining mechanical properties 

such as stress, strain, modulus of elasticity, and shear. A system accessible by Worcester 

Polytechnic Institute researchers and engineers for biaxial testing to determine these properties is 

needed to evaluate the ability of biomedically engineered materials to adequately mimic 

biological tissue in vivo for its intended applications, such as the replacement of diseased tissue 

for healthy regeneration. 

 

3.2 Technical Design Requirements 

Objectives 

To address the final client statement, the project team identified the objectives of the 

device needed to accomplish the overarching goal. These objectives include: 

1. Force Distribution. An effective gripping mechanism should allow for lateral movement 

and shear in the sample. Maximizing the lateral movement of the grips minimizes 

restriction of movement of the sample. Further, bending stiffness in the grips should be 

minimized to allow the sample to exhibit shear properties characteristic of the anisotropic 

material. These properties are necessary for the comprehensive study of the sample’s 

mechanical sub-failure properties.   

2. Usability and Repeatability. The specimen must be loaded and accurately tested by a 

user. To ensure that the user introduces minimal human error, such as damage to the 
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specimen prior to testing or inconsistent loading and/or testing of the specimen, the area 

of the loading stage should be large enough to allow for maneuvering and handling of the 

specimen. To accomplish this goal, a loading tool should fit within the bath of the device, 

3.8 cm x 3.8 cm x 2.5 cm in dimension and should integrate into the biaxial testing 

machine without difficulty. The loading process should be repeatable, so the same test 

can be performed multiple times without variation. Ideally, a user can load a specimen in 

under one minute without damaging the specimen. 

3. Specimen Preservation.  To accurately test the sample, damage to the specimen must 

not be induced prior to testing. The system should limit any additional preloading of the 

sample. Preloading the sample may contribute to inaccurate force readings as the grips 

will apply a small force to the sample prior to data collection.  

4. Manufacturability.  The attachment and loading system must be easily manufacturable. 

The process should be repeatable, inexpensive, and compatible with the existing device. 

To effectively complete the project, the team must stay within the stated $1,000 budget.  

Constraints 

Additionally, the team identified three main design constraints. All parts and 

improvements must be compatible with the existing biaxial test device, developed by the WPI 

major-qualifying project in 2005, to limit costs and ensure proper device function. The current 

device operates through LabVIEW programming, so any improvements must also be compatible 

with this programming. The device must also be safe for user operation, maintain the integrity of 

the test specimens, and demonstrate successful function, by biaxially testing the material 

specimen and measuring the stress-strain properties. All objectives must be met within the 

project timeline scheduled for completion in May 2018. 
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Functions 

 The device needs to accomplish a number of functions in order to meet the goal of 

allowing lateral movement and shear in the sample. It must grip the soft tissue specimens with 

minimal damage and biaxially test to sub-failure conditions. In order to do this, the device needs 

to test the specimens in two directions simultaneously so as to simulate an in vivo environment of 

multiaxial loading and biological stresses. 

Additionally, the device must output the desired mechanical properties measured during 

testing. Sufficient data consists of force and displacement accompanied by a graph. This data 

allows the user to obtain any other desired values such as modulus, compliance, tensile strength, 

etc. with the calculations described in section 4.2. Having a visual representation of the force-

displacement data gives the user an idea for the general properties of the specimen. In addition to 

outputting desired results, the device must require basic inputs from the user. These inputs 

should include length, width, and thickness of the specimen and the length of the attachment 

arm, as well as the strain, maximum force, etc. The device should also allow a maximum or 

constant stress to be inputted, to allow the user to test tissue response. This will instruct the 

device how to run and will ensure the accuracy of the outputs. 

Specifications 

 This device must be able to test specimens fully within the designated ranges. Having 

specified limits for any device is a requirement. These limits include the size of the specimen, the 

range of applied forces, and the maximum strain. The maximum size specimen that this device is 

capable of accommodating is that of a 2.5 cm width, 2.5 cm length, and 1 mm thickness. The 

maximum distance this device will move in either direction is 120% of the maximum width and 

length of the specimen. This limit is due to the maximum strain, 120%, of the extremely elastic 
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soft tissue that the device can test. The maximum force this device can exert is 2N. Soft tissue 

varies in regard to properties, but this nominal force range accommodates most soft tissue 

specimens. 

Functional Blocks 

Some options for the shape of the specimens compatible with the device include circular, 

cruciform, and rectangular. While all of these shapes may not work for all types of soft tissue, 

they are viable options that will comply with the device. 

In terms of grips, options include rakes, sutures/pulleys, clamps, and alternative methods. 

These types of grips are considered because they all have different benefits, whether it is ease of 

loading the specimen, minimum stress concentrations, or allowing lateral movement. This range 

of grips will be narrowed down through testing.  

 This device will have the capability to test both uniaxial and biaxial directions. The 

device can apply a tensile force in either one direction or two depending on the user’s needs.  

The camera and force transducers measure specific properties of the soft tissue 

specimens. The camera focuses on small points on the specimen and determines the deformation 

of the soft tissue during testing. From deformation, strain can then be estimated. The load cells 

apply a tensile force the sample, and the force transducers measure the corresponding response in 

the test material. 

LabVIEW software runs the code that controls the machine. An alternative software 

capable of accomplishing the same goal is MATLAB, and this software may be considered or 

used in the event that LabVIEW is unable to successfully run the device. 

A feasible list of these functions and the potential methods for accomplishing each 

function are organized in a functions-means table below in Table 3.1. 
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Table 3.1: Design Function/Means 

Design Function Means of Achieving Function 

Specimen preparation 
(shape) 

Circular Cruciform Rectangular 

Grip specimen Rakes Sutures/pulleys Clamps 

Apply tensile force Biaxial Uniaxial  

Force transducers Strain gauges Piezoelectric Torque 

Data input/output LabVIEW MATLAB  

 

3.3 Standard Design Requirements 

 The International Organization for Standardization, ISO, is an independent organization 

that creates international standards for products, services, and systems, to ensure quality, safety, 

and efficiency. Similarly, the ASTM is an international standards organization that develops and 

publishes technical standards concerning a wide range of materials, products, systems, and 

services. The team researched applicable ISO and ASTM standards pertaining to the biaxial 

testing of soft tissue and medical device testing standards.  It is important to note that tissue 

engineering is still a developing field so standards relating to this subject may still be under 

development. 

The team produced computer aided design models for the attachment and loading system. 

The ISO publishes standards associated with technical drawings, including computer aided 

design models, of devices and parts. These standards regulate the creation, completeness, and 

layout of design drawings and models for manufacturing. These considerations are necessary to 

follow when using 3D printing as the drawing must be detailed so that the printer can 

successfully print the part to the needed specifications [27]. 
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 ASTM D76 - 11 “Standard Specification for Tensile Testing Machines for Textiles” 

concerns the operation of tensile testing machines for the evaluation of force-displacement 

characteristics of fabric textiles. It includes specifications for constant rate of extension and 

constant rate of loading machines, like the device considered in this project. Though the primary 

use of this device is bioengineered and biological materials, this standard may specifically apply 

to operating controls of the machine [28]. 

Another applicable standard, ISO 376:2011 “Metallic materials — Calibration of force-

proving instruments used for the verification of uniaxial testing machines” is the standard 

method to calibrate force-proving instruments that determine force by measuring the elastic 

deformation of a loaded member. This standard also provides a procedure to classify these 

instruments. Standardizing the calibration of force-proving devices, such as the force transducers 

used in the biaxial test device, allows there to be consistency of material testing and data 

obtained from such tests [29].  

ASTM F2150 - 13 “Standard Guide for Characterization and Testing of Biomaterial 

Scaffolds Used in Tissue-Engineered Medical Products” is a guide containing currently available 

test methods for the characterization of biomaterial scaffolds used to develop and manufacture 

tissue-engineered medical products. The included test methods can be used to characterize bulk 

mechanical properties of a scaffold, such as that of bioengineered replacement tissue. As this 

device and this project aims to improve upon mechanical test methods of biological and 

replacement tissue, these test method standards may be particularly relevant [30]. 

 Additionally, ISO 7198:2016 “Cardiovascular implants and extracorporeal systems — 

vascular prostheses — tubular vascular grafts and vascular patches” sets standards for evaluating 

vascular prostheses, their associated design attributes, and nomenclature. This standard is used 
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for vascular patches constructed for repair of the vascular system and includes the test methods 

required for the process of designing the graft materials. This standard can be applied to the 

design of the bioengineered materials that may be tested within our biaxial device. The standard 

test methods included in ISO 7198:2016 may be important considerations in the testing ranges 

and specifications of the biaxial device so as to satisfy test requirements identified in the 

standard to evaluate and verify bioengineered vascular grafts [31].   

An ASTM standard that is relevant to this project is ASTM F2258 “Tensile Strength of 

Tissue Adhesives Test Equipment”. Its purpose is to outline a procedure to contrast the strength 

of tissue adhesives for use on soft tissue, as well as for quality control when creating tissue 

adhesive based medical devices. This standard can be applied to possible materials and adhesives 

to be applied to the edges of soft tissue for attachment to grips in biaxial test devices. Similarly, 

another ASTM standard that can be applied to this project is ASTM 52458 “Wound Strength 

Tissue Adhesives Sealant Test Equipment” [32]. 

 

3.4 Management Approach 

General Project Approach 

 To complete our design objectives as determined by the client statement, the team 

developed the following approach scheduled over the course of the year. This schedule is 

intended to evaluate the improvements to the biaxial test device with the necessary dimensions, 

force range, gripping and loading mechanisms, and sensitivity, while remaining within budget.  

 Throughout the 2017-2018 academic year, the team created various preliminary designs 

to compare and evaluate before determining a final design. A Gantt chart was created to outline 

project objectives with specific dates to ensure project needs are completed on time. The Gantt 
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chart, shown in Fig. 3.1, schedules the team tasks, categorized by main project milestones, with 

specific deadlines for completion.  

 
Figure 3.1: Gantt Chart for Design Process 

Background Research 

 To design a biaxial test device to measure the mechanical properties of extremely delicate 

anisotropic soft tissue, the team decided it was first necessary to conduct comprehensive 

background research concerning biaxial testing and soft tissue. The team researched the 

properties and formation process of anisotropic soft tissue. It is necessary to define the range of 

mechanical properties of this tissue, as well as general deformation characteristics in order to 

determine the specifications the device must accommodate. The team also evaluated current 

devices that biaxially test soft tissue. 

From this research and through phone interviews with suppliers and manufacturers, the 

project team identified the gold standard for biaxial soft tissue testing devices. The various types 

of available gripping mechanisms for soft tissue were also outlined through this research. Other 
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potential gripping mechanisms were investigated. The team researched the structure, function, 

and available types of force transducers. Verifying the capabilities of the current equipment is 

vital to the device design, and force transducers are the costliest design component.  The required 

sensitivity of the device force transducers and load cells was then determined based on current 

biaxial testing studies and quantitative values of various soft tissues in deformation. A 

comprehensive overview of the testing and sensitivity of the current force transducers can be 

seen in Appendix B. After this extensive background research and multiple client interviews, the 

team defined the objectives, constraints, and functions of the final design.  

Idea Generation and Evaluation 

 The team created a pairwise comparison chart to quantitatively compare the identified 

design objectives. Next, the team devised preliminary designs and functional blocks following 

the requirements and specifications determined through the client statement, the needs statement, 

and relevant literature. In addition, a set of design constraints was created to ensure product 

feasibility within given physical and financial limits. A variety of design alternatives were 

constructed for each design aspect and all possible approaches were considered by the team. 

When developing the preliminary designs, the components of current market designs were also 

considered. It is important to consider design ideas from all scientific aspects to ensure limiting 

factors have been evaluated. Each design is compared based on practicality, reliability, 

repeatability, cost, and speed. From the evaluation of these preliminary ideas, using the formerly 

developed objectives, functions, and constraints, a final design was identified. It is necessary to 

apply numerical values to each alternative design to define dimensions, functions, materials, and 

costs.  
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Prototyping 

 The prototyping of the biaxial test device consisted of various phases based on iterative 

design. Experimental parameters and design calculations were applied to each design, and 

computer-based simulations were used to evaluate the feasibility of preliminary designs. The 

first iteration of grip prototypes was constructed from materials at hand, such as wires or various 

adhesives, to test dimensions, functions, and practicality. To simulate soft tissue scaffolds, 

material such as rice paper and chicken skin were used as the “tissue” to biaxially test early 

prototypes. Each design was evaluated for advantages and disadvantages before continuing to the 

next prototyping phase.  

 The highest functioning designs, characterized using the pairwise objective chart, were 

selected to be modeled with Computer Aided Design (CAD) and then machined. Based on the 

testing of these designs for function, reliability, and repeatability, secondary plans for designs 

with limited feasibility were determined. The grips were tested with the debugged program and 

force transducers, and all designs were constructed, and parts ordered within the $1,000 budget.  

After the evaluation of these early prototypes, a final design was chosen for 

manufacturing. This design was verified through the testing of cardiac patches and lay user trials, 

and necessary changes were made based on results and conclusions. The design was validated by 

the client and advisor to ensure user need and requirements are met. 

Financial Statement 

 The team is confined to a $1000 budget when designing this device as stated by the 

Department of Biomedical Engineering at Worcester Polytechnic Institute.  If the team was not 

confined to this budget, the cost of this device could increase drastically. Research was 

conducted to explore the possible updates that could be made to the current device. If the 
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transducers were updated, using the same manufacturer, Futek, it would cost a minimum of 

$1200 per transducer [33]. Depending on the specifications and manufacturer of transducers, this 

cost could increase to $6400 per transducer. Transducer specifications are detailed in Appendix 

C. In addition to new transducers, there is the option to purchase Biorakes as a grip option. The 

Biorakes are available in packs of four from CellScale for $316 [23]. 

Additionally, through discussions with National Instruments, a source of both software 

and hardware incorporated into the device, a comprehensive cost estimate was generated to 

update the current equipment. This device and subsequent testing requires high sensitivity, 

increased control, and increased lifespan. Overall, updating the National Instruments technology 

of the device would cost an estimated $4090, but would extend the lifespan of the device for use 

over the next 10 years, and would improve the data acquisition and analysis rates as well as 

motor control. The comprehensive quote is detailed in Appendix D.  

Based on the information above, a cost analysis was completed. This device, if modified 

to have the most precise and up to date equipment, would cost $6800. This cost includes an 

updated and compatible software and hardware system from National Instruments, increased 

sensitivity force transducers from Futek, and precisely manufactured rakes, using CellScale as a 

price reference.  
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4. Design Process 

4.1 Needs Analysis  

The need for this project was to improve Worcester Polytechnic Institute’s biaxial testing 

system to effectively grip anisotropic soft tissue and bioengineered materials for biomedical 

applications. Researchers at WPI need a device to effectively grip and accurately evaluate stress-

strain properties of newly developed bioengineered tissue. The currently accessible technology at 

the university does not sufficiently grip these soft tissues. Uniaxial testing does not accurately 

evaluate sub-failure characteristics of soft tissue due to the anisotropic and nonlinear stress-strain 

properties. The current biaxial device is programmed to test sub-failure properties, but cannot 

effectively grip extremely soft specimens to meet the needs of the client.  

The biaxial device provides the user with reliable data to determine the functionality of 

soft tissue or bioengineered materials. The device needs to produce forces below 2 N, in order to 

capture the properties of very small specimens of extremely soft tissue. Cardiac heart patches act 

as a baseline for sensitivity of this device, as they consist of very few, soft layers, that each 

exhibit a low tensile strength. Myocardium of a healthy adult has a contractile force as low as 20-

50mN/mm2. When a 1 cm by 1 cm patch is tested, the force acting over this area could be as low 

as 2N. The patch size used in this device will range from 1 to 2.5 cm in width and length. It is 

important that the sensitivity of the device is low enough to produce and measure these forces.  

The attachment method of the soft tissue specimen is important in facilitating accurate 

testing. The method of attachment or the gripping system must allow for lateral movement. 

Additionally, it should not affect the mechanical properties of the sample or the results of the 

testing. The attachment should allow for sub-failure properties to be accurately measured and 

should not fail at any point during testing. 
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The team ranked the objectives of the attachment system using a pairwise comparison 

chart, seen in Table 4.1. Through this comparative method, a cell with a row objective deemed 

more important than a column objective received a “1”. A cell corresponding to a row objective 

deemed less important than the column objective received a “0”. The team then summed the total 

of the row and ranked the objectives in order of importance, with the objective scored a “5” 

representing the most important. 

Table 4.1: Pairwise Comparison Chart of Attachment System Objectives 

 Usable Force 
Distribution 

Specimen 
Preservation Manufacturable Repeatable Total 

Usable ------ 0 0 1 1 2 

Force 
Distribution 1 ------ 1 1 1 4 

Specimen 
Preservation 1 0 ----- 1 1 3 

Manufacturable 0 0 0 ----- 0 0 

Repeatable 0 0 0 1 ----- 1 

 

The main objectives of this project are to provide a method of effectively gripping and 

loading anisotropic specimens for biaxial testing; therefore, the related objectives, force 

distribution and specimen preservation, both received the highest scores of 4 and 3 respectively. 

Another important objective, usability, was ranked third in importance because current 

attachment methods for this kind of testing exist, but require extreme skill and time to attach 

without deforming the specimen. Following usability, repeatability was ranked fourth in 
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importance as the proposed gripping mechanism may be coupled with loading tool to ensure 

precise attachment of the specimen for a repeatable loading system. Finally, manufacturability 

was ranked as the least important objective as there exist many manufacturing resources for this 

design process. Manufacturing the proposed gripping mechanism does not pose as a considerable 

limitation to the final design. 

Secondary constraints of the design include the compatibility of the loading system with 

the existing device, the biaxial test device developed by the WPI major-qualifying project team 

of Chong, Hung, Steinhart, and Trexler in 2005 [34]. The specifications of each component of 

the loading system must be within the size and geometric constraints of the existing device. The 

device must also be safe for the user to operate and demonstrate successful function by biaxially 

testing the specimen and measuring the sub-failure stress-strain properties. The final constraint 

limits the timeline of the project with completion scheduled for May 2018. 

 

Figure 4.1: Crucial components for consideration of the current device at WPI (left). The cruciform-shaped bath (center) and the 
bearings (right). 

 

4.2 Concept Maps and Designs/Prototyping/Feasibility Studies   

 Based on research of biaxial testing, the team developed conceptual designs to 

successfully test anisotropic soft tissue. These designs were developed in order to meet the 
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previously specified objectives of the device. These specifications include usability, 

repeatability, and the allowance of lateral movement and shear. Each of the conceptual designs 

pursued below offer various advantages and limitations. 

Velcro 

 Research of biomimetics is growing in popularity for use in biomedical applications. 

Biomimetics is the imitation of the models, systems, and elements of nature for the purpose of 

solving seemingly unrelated problems. One example of a biomimetic design is Velcro, which is a 

synthetic adaptation of burrs. Velcro was originally created when George de Mestral was 

walking through the woods and a number of burrs stuck to his clothing. He wanted to utilize that 

attachment design by engineering a similar gripping mechanism of very small hooks and loops 

on two pieces of fabric that stick together [35]. The team hypothesized that this method may be 

an ideal gripping mechanism for soft tissue, with tiny compliant hooks to hold the sample in 

place with minimal damage to the specimen and an even distribution of forces.  

The feasibility of this design was evaluated through uniaxially testing hydrated rice paper 

on an Instron 5544 with strips of Velcro. Two square pieces of Velcro were placed around the 

edges of a square sample of rice paper, 2.5 cm by 2.5 cm, overlapping about 3 mm of the sample. 

The opposite end of the hydrated rice paper was secured the same way with two additional 

squares of Velcro. The Velcro was loaded into the Instron in Goddard Lab 207 at WPI as shown 

in Fig. 4.2.  
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Figure 4.2: Uniaxial Instron test of hydrated rice paper with Velcro grips 

 This sample was uniaxially pulled in tension at a rate of 20 mm/min. Within the first 

second of testing, the hydrated rice paper slipped from the Velcro grips. This test was run three 

times, and each time the Velcro could not efficiently secure the sample in place. It was 

concluded that Velcro is not an effective gripping mechanism for soft tissue as the hooks are too 

shallow to both pierce the sample and secure to the other fabric strip. 

Setting 

The team researched the feasibility of strengthening the edges of the test specimen to 

minimize damage during gripping while maintaining the mechanical properties of the center of 

the specimen for evaluation. This additional setting of the edges to prepare for gripping may be 

accomplished through the application of heat, light, or chemicals. Both quick-freezing and 

cryogenic wave jaws have been shown to be an effective method to set the edges of a specimen.  

Cryogenic wave jaws are clamps which both hold the specimen in place and freeze the edges 
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[36]. Quick-freezing the edges of a specimen strengthens it so that it may be held by clamps, 

while the material properties at the center of the specimen are maintained for evaluation by 

biaxial testing [37].  

Setting the edges of soft tissue maintains some of the material properties of the sample 

and has been used as a method for biaxial testing. However, it is not a feasible attachment 

method for this application of the biaxial test device, because the technology is expensive, and it 

may alter properties of these incredibly delicate and soft specimens further than the edges. 

Grips 

The team considered the best gripping mechanisms for soft tissue that would minimize 

stress concentrations and not damage the samples. To determine the most efficient gripping 

mechanism, the team researched, designed, and tested various attachment methods and materials 

using the Instron 5544 in the lab of Goddard Hall 207 and the biaxial device in Gateway Park at 

WPI. The following attachment methods were considered: 

● Clamps 

● Sutures 

● Rakes 

 The testing performed provided an assessment of possible attachment methods for the 

final prototype. This section describes the testing completed and a comparison between the 

effectiveness of each gripping mechanism.  

 Clamps are often used to test soft tissue due to their ease of use and repeatability, but are 

known to allow very limited range of motion at the attachment site, limiting their use for biaxial 

soft tissue tests. The team evaluated their effectiveness by testing a specimen of hydrated rice 

paper in the clamps of the uniaxial Instron machine. It was observed that the rice paper proved to 
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be quite elastic and stretched to twice its original length, but failed at the grips. The team 

performed this test three times, and during each test the sample failed at the grips. This testing 

supported the hypothesis of considerable stress concentrations created at the grips, which limits 

use for the biaxial testing of very compliant soft tissue. 

 The team evaluated the effectiveness of sutures by performing tests on both latex gloves 

and rice paper samples. The sutures tested on rice paper were constructed using pieces of thread 

and staples. Thread was tied to each staple once secured to the specimen, and the ends of the 

thread on each side were commonly joined by using a piece of tape. These sutures were tested in 

the Instron, shown in Fig. 4.3. For uniaxial testing, the team found these sutures very difficult to 

use and attach to the sample, which was evident in their quick detachment during testing.  It was 

noted that when preparing a sample to be tested biaxially with sutures, attachment of the sample 

to the sutures took approximately 30 mins. It took an additional 10 minutes to attach the sutures 

to the device. The amount of time it took to load the sample led the team to conclude that a much 

more effective loading system is necessary in order to maintain the integrity of samples and offer 

high usability.  
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Figure 4.3: Uniaxial tensile testing of hydrated rice paper using sutures 

 The team assessed the effectiveness of using stainless steel rakes as grips. The material 

used for the rakes was 1 mm diameter stainless steel braided wire obtained from Home Depot. 

One rake was constructed by cutting four pieces of wire to a length of 30mm and inserting one 

end of each wire in between two foam pads obtained from Goddard Lab, as seen in Fig. 4.4. The 

opposite ends of the wire were bent to a 90-degree angle with pliers to be inserted into the 

specimen. Two of these rakes were constructed to be used in uniaxial testing in the Instron in 

Goddard, shown in Fig. 4.5. It took multiple attempts to insert the wire into the hydrated rice 

paper, and it proved difficult to successfully insert all four prongs of a rake at once. However, 

upon testing the team found the rice paper successfully failed at the middle of the sample. This 

shows that the stress was able to transfer from the attachment point to the center.  
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Figure 4.4: Stainless Steel Braided Wire Rake Prototype 

 
Figure 4.5: Uniaxial test of hydrated rice paper using initial rake prototype design 

After testing each method, the team concluded that rakes are the most user-friendly 

gripping mechanism and also perform the best during testing with low load time, satisfactory 

specimen preservation, and reliable attachment repeatability. The rake grips also remained 

attached to the sample throughout testing. The Velcro was easy to load, but ineffectively gripped 

the sample as the specimen detached from the Velcro early in the uniaxial test. Finally, the 
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loading time for the sutures was considerably longer than desired; however, the sutures did 

provide the most lateral movement during testing. After completion of this preliminary testing, 

the team determined the most effective gripping mechanism would combine a rake attachment 

that freely pivots at the base to incorporate the sutures’ advantage of lateral movement.  

4.3 Alternative Designs 

After conducting feasibility studies with the aforementioned conceptual ideas, the team 

decided that grips were the most viable option. Taking into consideration the benefits of both 

sutures and rakes as gripping mechanisms led the team to identify individually pivoting rake 

tines with a separately pivoting base as the ideal mechanism to allow for shear and lateral 

movement in the specimen. The basis for this mechanism used pivots as an element to allow for 

lateral movement, like sutures, while incorporating rakes for repeatability and usability. Based 

on this mechanism, the team designed several alternative designs.  

Gripping Mechanism 

The first design the team generated was a stage design seen in Fig. 4.6. This design is 

composed of a T-shaped base of UHMWPE with four 0.5 mm diameter holes that act as pivots 

for the rakes. The purpose of the T-shape is to provide a supportive base underneath the thin 

tines during loading. The entire system can be mounted onto the existing bearings on the device 

using a small clamp. The holes allow for the tines to move freely in the lateral direction, 

allowing for lateral movement in the sample during testing. Attaching the base of the system to 

the bearing on the machine allows for further range of motion and for shear in the sample. This 

design is easy to manufacture, as the base is a simple T-shape, and is easily attachable to the 

existing device.  
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Figure 4.6: The first alternative design idea - Stage Design 

 Another design the team created is a system of paired pivots in order to increase the 

limited range of motion offered by the first design. This design uses two individual, circular 

pivots on a base, seen in Fig. 4.7 below, in order to achieve additional range of motion. The two 

circular pivots move independently of each other and the tines are able to freely pivot as well. 

The entire base can attach to the existing bearing on the machine. This design, while allowing for 

maximum range of motion, would be difficult to manufacture because of the many small parts it 

requires. One dimension of the individual pivots is under 5 mm in diameter, which would be 

difficult to manufacture. Also, because of all the moving parts, it would be more difficult for the 

user to handle. 

 
Figure 4.7: Alternative grip design - Paired pivots 
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Another alternative design developed was similar to the paired pivots but attached the 

tines to one circular base, seen in Fig. 4.8 below. This grip was designed mainly for ease of 

manufacturing. It is user friendly and requires very little material for the base, limiting the cost as 

well. However, the circle design has the lowest range of motion and will also require two 

different length tines in order to align correctly in the tissue. 

 
Figure 4.8: Alternative grip design - Circular base design 

The final alternative design focused more on the attachment method to the existing 

device. This design is two separate parts that mirror each other and attach on to the bearing pole 

of the biaxial device, shown in Fig. 4.9. It prevents rotation of the base in all directions, 

providing stability. It is also user friendly because the attachment method is simple and quick. 

However, this design requires much more material than the others, so it is costlier. It is also 

difficult to manufacture due to the holes on the inside of the base for attachment. 
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Figure 4.9: (left) Alternative grip design - Chairlift design, (right) bearing pole on existing device 

 
 

Loading Mechanism 

 In addition to grip designs, the team also developed multiple loading mechanisms. The 

designs had to be compatible with all of the alternative grip designs. The main thought process of 

the team was to have two parts; one piece to evenly space out the tines and hold them in place 

during loading, and the second piece to mount the specimen onto the rakes. The team decided to 

rapid prototype these parts because of the intricacy of the parts, the size, and the precision 

required. It is also important, mainly for the spacing tool, that it be prototyped out of a material 

that is denser than water, so it will not float in the liquid bath  

 The first idea the team generated was the tine spacers, seen below in Fig. 4.10. For this, 

something simple was needed that could be placed over the middle of the tines to keep them 

equidistant apart during loading. This spacer could be used over any of the tines on the 

alternative grip designs because they are all the same distance apart from each other. The design 

would be a 1 cm square and 5 mm thick and have extruded cuts the width of the tines and spaced 

correctly apart on one surface, so it could simply be placed over the tines and hold them in the 

correct position during loading. This design is simple, requires very little material, and is easy to 

rapid prototype. 
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Figure 4.10: Alternative loading tool - Tine spacer 

Another alternative design is for the platform loading tool. The team came up with a 

“sandwich” mechanism, seen below in Fig. 4.11, that would be two 2.5 cm square pieces, each 

with four 0.5 mm cuts going into 0.5 cm from the center on every side. These slits would be able 

to be placed over the tines after being separated by the spacer tool. The idea with this loading 

tool is to puncture the specimen, of dimensions between 1.5 cm and 2.5 cm, through the cuts in 

both pieces by simply lowering the assembly onto the rakes. The bottom piece would ideally fall 

away after loading is complete and the top piece could be taken off manually. This design is easy 

to manufacture using rapid prototyping and is simple to use. 

 

 
Figure 4.11: Alternative loading tool design - Platform tool 
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Another loading tool the team came up with is a stamp method. This method would use a 

handle and loading area for the specimen to stick to, then the user would, after spacing the tines 

out with the spacing tool, press the specimen onto the rakes. The loading area would be made of 

a spongy material that would allow the rakes to puncture through. This method is simple to use 

but could induce harm to the sample if not handled gently, because the stamp must be peeled off 

of the specimen after loading.  

Finally, the team developed an alternative design that works like a stapler. This design 

would consist of two parts, like the platform tool, with notches in the bottom piece to be placed 

under the rakes for alignment. The top part has holes through which the tines will puncture, and 

the user would simply stick the specimen to the top piece and press the bottom and top pieces 

together to puncture the specimen. This method would most likely be the most difficult to 

manufacture and use and would require multiple top pieces with differently spaced holes in order 

to accommodate a wide range of specimen sizes. 

4.4 Final Design Selection 

Gripping Mechanism 

 Through qualitative comparisons, the team evaluated the achievement of the identified 

objectives by each potential grip design, detailed in the previous section. This evaluation was 

completed through a weighted comparison matrix. Each design objective was assigned an 

objective weight, from 1 to 5, based on its importance to the effectiveness of the design. An 

objective assigned a weight of 5 represents an objective with the highest importance. The 

proposed designs were then scored a rank, 1 through 4, representative of the design’s ability to 

achieve that objective in relation to the other designs. The weighted total of each design was then 

calculated using the following equation, with i representing each of the 5 objectives: 
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weighted total = ⅀ (design rank)i * (objective weight)i 

The resulting comparison matrix is shown below in Table 4.2. 

Table 4.2: Weighted Grip Design Comparison Matrix 

 

Based on this weighted comparison matrix, the team determined the Stage grip design to be the 

most effective in achieving the identified grip design objectives. After finalizing the grip design, 

the student researchers proceeded to manufacture preliminary prototypes. For cost efficiency and 

device compatibility, ideal design dimensions were identified, and a scaled prototype was created 

in SolidWorks.  

The two main components of the final design include four rake tines, bent at opposing 

90-degree angles on each end, and a stage base to support those tines and allow for lateral 

movement through free pivots. First, the rake tine dimensions were considered. To allow 

maximum shear in the sample while maintaining attachment through the duration of testing, the 

tines must be sharpened to a point to precisely puncture the specimen at the attachment points, 

while minimizing surrounding sample damage. Additionally, the tines must be thin to create 

those small attachment points; however, these tines must remain erect during loading and testing 

of a sample and must withstand bending forces in all directions. To ensure lateral movement, the 

tines will freely pivot on one end to allow for shear within the sample, characteristic of 

anisotropic specimens. Lastly, the tines must also resist wear, degradation, or rusting when 

submerged in solutions of PBS media used within the bath of the device to hydrate the samples 

to simulate in vivo conditions. 
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Considering each of these tine-specific objectives, the team identified stainless steel as an 

ideal tine material. Stainless steel is a rigid, rust-resistant metal that can be manipulated to hold a 

specific shape. Stainless steel is also available in the form of quilter’s pins with a 0.5 mm 

diameter and pre-sharpened end.   

The second design element is the base. The stage is designed with four precise holes 

puncturing the thickness of the stage to act as free pivots for the tines. It also includes a larger 

hole to serve as a device-compatible attachment location for the grip to the inverted T-bar 

currently on the device. The stage also must be small and lightweight to minimize any additional 

weight on the motors and force transducers during testing. Because the stage design is intended 

to support the rake tines from bending under gravitational forces, the tines interface with the 

stage material along their full length. 

To ensure manufacturability, maximum lateral movement, and minimal friction, the team 

determined manufacturable and cost-efficient materials to use for the stage element. Low friction 

materials identified were ultra-high molecular weight polyethylene (UHMWPE) and 

polytetrafluoroethylene (PTFE), also known as Teflon. UHMWPE interfaces with stainless steel 

at a low friction coefficient of 0.18, while Teflon interfaces with stainless steel at a coefficient of 

friction of 0.04. However, upon further research, the team chose UHMWPE due to availability, 

cost, and manufacturability. Teflon was harder to obtain, more expensive, and harder to fix 

during manufacturing due to its extremely low friction surface. 

The team first manufactured a large-scale prototype using stainless steel rod of 1.5 mm 

diameter, obtained from Washburn Machine Shops at WPI, and UHMWPE of 0.95 cm thickness, 

obtained through Amazon.com. The manufacturing of this prototype was done manually, using 

wire cutters, a press, and grinding wheel and drill to shape the tines, and saw and drill to create 
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the stage base. This large prototype, shown in Fig. 4.12, helped the team to identify necessary 

revisions to the design and highlighted the variability of production from manual manufacturing. 

 
Figure 4.12: First prototype of the final grip design produced on a large scale. The tines are 1.5mm diameter stainless steel 

mounted in a 0.95 cm thickness base of UHMWPE 

The team repeated the manual manufacturing of the final design using smaller 

dimensions. Quilter’s pins 0.6 mm in diameter, from A.C. Moore, were obtained for the tines and 

the same stage base material was used. The pins came pre-sharpened, eliminating the need for 

manual sharpening and minimizing the variability in production of the tine points. However, the 

team identified the need for a tool to precisely bend the tines to the opposing 90 degrees on each 

end. The smaller prototype, shown in Fig. 4.13, supported the team’s previous conclusion that 

manual manufacturing was too variable to produce the necessary quality of the final grip design. 

 
Figure 4.13: Second prototype of the final grip design produced on a smaller scale. The tines are 0.6mm diameter stainless steel 

mounted in a 0.95 cm thickness base of UHMWPE 

The third prototype was produced using fine quilter’s pins, measuring 0.5 mm in 

diameter and the same base material. To increase the precision of the stage base, the team used a 

programmable mill in Washburn Machine Shops at WPI. The stage design was translated from a 
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SolidWorks part to an Esprit model. This program was then uploaded on to the Haas VM2 

programmable mill. Using a vacuum plate, the team secured the base to the machine and 

precisely machined the stage base following the Esprit program model, leaving 0.02 cm 

thickness of the base material intact during the cut to maintain the vacuum seal. The pieces were 

then removed from the UHMWPE sheet using an exacto knife. The produced stage set was 

considerably cleaner and more precise than the manually manufactured bases. However, the team 

felt that due to the small scale of the design, further precision was necessary to produce a 

repeatable, usable gripping system.  

The final iteration of the grip design utilized 3D printing to maximize cost efficiency and 

precision. After careful consideration of the space available in the device and the size of the 

specimens to be tested, the team shortened the stage to allow for enough room to test all 

specimen sizes. Further, a hole was placed at the end of the stage to allow for easy attachment to 

the current device, utilizing the existing bearing-shaft mechanism. The stage was manufactured 

from low-friction Nylon in the MarkForged Mark Two 3D printer and is shown below in Fig. 

4.14.  

 
Figure 4.14: : Final grip design using a 3D printed stage of low-friction nylon with four stainless steel quilter’s pin tines 
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Loading Tools 

 After selecting the final gripping mechanism, the team qualitatively compared each 

loading tool. The criteria for this comparison was based on the objectives previously explained. 

Similarly, to the gripping mechanism, each design was then evaluated based on how well each 

objective was met. This evaluation was completed through a weighted comparison matrix. Each 

design objective was assigned an objective weight, from 1 to 5, based on its importance to the 

effectiveness of the design. An objective assigned a weight of 5 represents an objective with the 

highest importance. The proposed designs were then scored a rank, 1 through 4, representative of 

the design’s ability to achieve that objective in relation to the other designs. The weighted total 

of each design was then calculated using the following equation, with i representing each of the 5 

objectives: 

weighted total = ⅀ (design rank)i * (objective weight)i 

The resulting comparison matrix is shown below in Table 4.3. 

Table 4.3: Weighted Loading Mechanism Design Comparison Matrix 

 
 

 The objectives of the loading mechanism were changed to better represent the goal of the 

tool. Our final loading tool must be compatible with the grips, as they will work as a system to 

facilitate easy specimen loading. Based on the weighted matrix, the team determined that the 

Tine Spacers and the Specimen Sandwich would be the most effective in achieving the 

objectives. The team realized that the Tine Spacers alone would not fully accomplish the goal 
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and utilizing two design mechanisms would be the most effective. Once the final design was 

chosen, the team could begin to prototype the designs.  

 Each design was modeled using SolidWorks, iterating the optimal dimensions and 

geometry. The simplicity and precision of each design, led the team to choose 3D printing as the 

rapid prototyping method. Worcester Polytechnic Institute has four options for 3D printers, each 

with different capabilities and material options. One consideration for the loading tooling was to 

use a low friction material for the tool interacting with the specimen, as minimal friction 

enhances specimen preservation. The material had the biggest influence on the machine chosen. 

Each machine was researched to learn about the capabilities and material options. Based on this 

research, the team learned that due to the simple geometry and size of the design, all four of the 

3D printers owned by WPI could adequately print the prototype. The best choice for the loading 

tools was the Markforged Mark Two, due to the material options. The material this printer uses is 

nylon, which is a low friction material. Additionally, this material is durable and will not be 

affected by the PBS solution used during testing.  

Rapid prototyping allowed the team to make multiple prototypes as changes were made 

from testing. It was a low cost, repeatable way to manufacture both the Tine Spacers and Load 

Platform. The loading tools were optimized through various testing to determine the best size 

and shape to be compatible with the grips, specimen, and the user. The first iteration of the 

prototype can be seen in Fig. 4.15.  



   
 

60 
 

 
Figure 4.15: First prototype of tine spacers and loading platform 

 After testing using the first iterations of the loading tools, the team noticed some 

problems with the design. The indentations on the tine spacers were too shallow, not allowing 

adequate depth to grip the tines to hold them in place. Additionally, the parts were very small, 

making them difficult to handle.  

The second iteration of the loading tools was intended to maximize usability. The loading 

area within the bath walls of the device is extremely small, making it difficult to maneuver the 

load platform within the confined area. To facilitate the use of the tine spacers, the team made 

each spacer taller, to serve as a handle for easier gripping, seen in Fig. 4.16. In the loading 

platform, both pieces were redesigned to incorporate vertical handles so that a user can easily 

lower a specimen into the bath, utilizing the free space above the device rather than the restricted 

area within the bath walls. The team also included two pegs on the bottom piece of the load 

platform that align with two notches within the top piece to ensure proper alignment of the whole 

assembly during use. 
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Figure 4.16: Second iteration of tine spacers 

 After additional testing, the team noticed that while the tine spacers kept the tines in 

place, it did not minimize movement of the grip from the bearing. The final iteration of the tine 

spacers altered the dimensions of the spacer so that each unit sits on top of the tines and 

supporting stage of the grips, then spans the width of the bath so that the grips are unable to pivot 

while the user is loading the specimen. The long handle and the alignment pegs of the load 

platform were shortened to facilitate the removal of the bottom piece by sliding it out from under 

the specimen and grips. This final iteration is shown below in Fig. 4.17 as an assembly of all of 

the parts. 

 

 
Figure 4.17: Final iteration of loading tools including both tine spacers and load platform (Shown from left to right, the load 

platform is lowered onto the tines, aligned by the tine spacer. The top piece of the platform is lifted by the handle, and the bottom 
piece is removed from the long handle, leaving the specimen mount on the rake tines). 

 
The team created three sets of these loading tools for use with varying specimen dimensions. The 

average specimen dimensions within the range of the system, 1.75 cm x 1.75 cm, was the base 

dimension for the load tools. For a smaller specimen, 1 cm x 1 cm, or larger specimen, 2.5 cm x 
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2.5 cm, the loading tools incorporate angled grooves to align the rake tines to pierce a specimen 

of those dimensions. These alternative dimension tools are shown below in Fig. 4.18. 

 
Figure 4.18:Varying dimensions for tine spacers and load platform to incorporate a range of specimens (Represented on the left 
is a medium sized load platform spaced for a 1.75 cm x 1.75 cm sample, in the middle is a load platform for a smaller 1 cm x 1 

cm sample with angled grooves, and on the right for a large sample of 2.5 cm x 2.5 cm with angled grooves). 
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5. Final Design Verification 

 The final design of the complete attachment method was evaluated for achievement of 

the objectives of force distribution: shear allowance and lateral movement, and usability. The 

performance of the gripping system was verified through several evaluation methods that are 

detailed in this section, and the results were compared to accepted attachment methods, including 

the gold standard suture/pulley system, and the currently available BioRakes offered by 

CellScale. 

 

5.1 Shear Evaluation 

 Allowing shear is necessary to evaluate anisotropic properties of soft tissue specimens. 

To evaluate the shear allowance of the final grip design, the team conducted biaxial tensile tests 

using square specimens, measuring 3.5 cm x 3.5 cm, of anisotropic gauze. Three specimens each 

were prepared with the more prominent fibers aligned along the X axis of the device, and with 

the fibers angled 45 degrees from the X axis. All specimens were marked with four dots in an 

exact square of 1 cm x 1 cm. They were then loaded onto the rakes and the force transducers 

were zeroed. The aperture and zoom of the overhead camera was adjusted to capture all four 

markers. Then, a tensile test moving all four axes in a stepwise fashion at a rate of 200 rpm was 

conducted until specimen failure. At each step, the force in X, in N, and the force in Y, in N, was 

recorded. A video continuously captured the displacement of the dots during the test. 

 Force-displacement of each sample was calculated after measuring the distances between 

the marks and finding the average length of the specimen’s side in both the X and Y direction. 

The force-displacement curves were generated by plotting the recorded force in newtons in X 

and Y against the average X length and average Y length of each sample, respectively. The 
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force-displacement curves for the averages of three samples of gauze tested with fibers angled 

along the x axis are shown in Fig. 5.1. The force-displacement curves for the averages of three 

samples of gauze tested with fibers angled 45 degrees from the x axis are shown in Fig. 5.2.  

 

Figure 5.1: Force-displacement curves for biaxial testing of anisotropic gauze with fibers angled 45 degrees from the X axis 

 

Figure 5.2: Average force-displacement curves for biaxial testing of anisotropic gauze with fibers aligned along the X axis 

As seen in these graphs, it is evident that the samples are experiencing different mechanical 

properties on each axis due to the differences in the data series between the x and y force-

displacement. 
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 The amount of shear allowed with pivoting tines versus fixed rakes was compared. Rakes 

with a fixed base, to represent CellScale’s BioRakes, were tested first with a sample of 

anisotropic gauze. The gauze also was marked with four dots in a square of 1 cm x 1 cm. The 

gauze was then loaded into the device to have its fibers angled at 45 degrees from the X axis. 

Images from this testing can be seen in Fig. 5.3. As seen in these images, the dots closely 

maintain the square shape and the specimen deforms uniformly despite the varying fibers, 

demonstrating how fixed rakes minimize the amount of shear that can be induced in the sample.  

 
Figure 5.3: Anisotropic gauze before testing (left) and after testing (right) with fixed rakes 

We then compared these rakes to our design, which has pivoting mechanisms. Another 

sample of gauze was marked with a 1 cm x 1 cm square and loaded into the device with fibers 

angled at 45 degrees to the X axis. As seen in Fig. 5.4, the square changes from a square to a 

rhombus after testing. The pivoting rakes allow shear to be induced in the sample. These tests 

were repeated over three samples to verify the results. 
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Figure 5.4: Anisotropic gauze before testing (left) and after testing (right) with pivoting rakes. 

5.2 Lateral Movement Evaluation 

 Allowing lateral movement of the tines is necessary for an anisotropic specimen to 

accurately deform when biaxially tested. To evaluate the lateral movement of our design, we 

compared our tines to CellScale’s BioRakes. To calculate the force needed to bend a BioRake’s 

30 mm long tines, we used bending calculations for a cantilevered rod of stainless steel about its 

end, shown below. 

P = (3EIΔmax) / L3 

I = 0.78r4 

 In this equation, P represents the force, E is modulus of elasticity, I is moment of inertia, Δmax 

represents maximum deflection, L represents length, and r represents radius. The maximum 

deflection of the tines is 21 mm, the distance to rotate from the center of the bath to reach its 

walls. The force required to reach this deflection was calculated for each diameter of available 

BioRakes, 0.25 mm and 0.3 mm. The team also calculated the force required to reach the same 

deflection for a fixed tine of 0.5 mm diameter for comparison to our design. These calculations 

are shown below in Table 5.1. 
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Table 5.1: Bending Calculations of a Fixed Tine 

Variable units BioRake 1 BioRake 2 BioRake 3 

r mm 0.125 0.150 0.250 

L mm 30 30 30 

E MPa 190000 190000 190000 

I mm4 0.000190 0.000395 0.00305 

Δmax mm 21 21 21 

P N 0.0844 0.175 1.35 

 

 These calculations were then verified using a 20 oz-in Futek TFF400 rotary force 

transducer. A 0.5 mm stainless steel tine was fixed on one end by a clamp. The free end was then 

deflected 21 mm using the arm of the rotary transducer, and the corresponding average force 

required was measured to be 1.50 N. Then the transducer was used to measure the force required 

to pivot the 0.5 mm diameter tines within the stage of the grips to the same deflection of 21 mm. 

The two tests are shown in the schematic below in Fig. 5.5. 
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Figure 5.5: Lateral Movement Evaluation Schematic 

The average force required to deflect the pivoting tines was less than the resolution of the 

transducer, 0.001 N. Overall, the pivoting rake tines in our device surpass CellScale’s thinnest 

rake, 0.25 mm in diameter, in terms of lateral movement due to decreased bending stiffness. Our 

tine requires a significantly smaller force to deflect to the walls of the bath reaching full range of 

motion than any of CellScale’s available BioRakes.  

5.3 Usability 

 Usability was continuously evaluated through testing of the whole gripping system, 

including the use of the loading tools, as well as grips themselves. To ensure the compatibility of 

each component with the other components, assemblies were created in SolidWorks, Fig. 5.6. 

These assemblies allowed the team to ensure the dimensions and geometries of each piece 

aligned with all other components. Although these assemblies did not utilize the actual 
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components, it provided insight as to the compatibility and function of the components as a 

system. After it was confirmed that each component was compatible and usable with the other 

components, they were all sent for 3D printing.  

 
Figure 5.6: : Preliminary usability trial with all components of the system aligned 

 
Design improvements were identified through the use of the loading tools and grips 

during testing of gauze samples. These identified design improvements included the 

incorporation of vertical handles on each piece of the load platform, as well as all tine spacers, 

the widening of the tine spacers to prevent the grips from pivoting during loading, and the 

inclusion of alignment pegs within the load platform. The final design of the entire system was 

used to load an anisotropic gauze specimen onto the grips. The process was timed, and the 

average load time to use this gripping system was less than 1 minute. The utilization of the 

loading system was repeated three times to verify usability.  
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6. Final Design Validation  

6.1 Feedback on Final Design 

Throughout the design process, the team gathered feedback from testing and using the 

components of system. This feedback allowed the team to make the necessary iterations to reach 

the final design. Most of the feedback came from the team and project advisor and was based on 

the limitations of the current device. The project advisor and project mentor provided useful 

feedback for each iteration that would facilitate ease of use. The main concern with the designs 

of the loading system was the size of components. The dimensions needed to be small enough to 

fit within the constraints of the bath, but large enough that the loading system was easy to handle 

by the user. It was recommended that a handle be placed on both pieces of the loading platform 

to facilitate usability. Additionally, the project advisor recommended using the narrow bath to 

our advantage rather than a limitation. The tine spacers were redesigned to incorporate the width 

of the bath to fix the grips during loading. The last recommendations were to develop additional 

components for the loading system to aid in alignment of the entire attachment system and to 

develop this system for small, medium, and large sample sizes. The recommendations and 

feedback received from the project advisor and project mentor helped the team to realize and 

manufacture the final design.  

6.2 Economics and Manufacturability 

The final design of this project was entirely 3D printed, making the fabrication process 

very repeatable and cost effective. However, the final design was made to be specifically 

compatible with the current device at WPI. This project was able to successfully produce a 

product that is economically affordable. If this design were to be used in industry, adjustments 
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would need to be made to the design to fit the industry device or adjustments would be made to 

the device to allow the system to properly attach. 

The final design was made from nylon and stainless steel, both of which are inexpensive 

materials and readily available. The use of 3D printing for the fabrication of the design allows 

for very quick and precise production. Currently, biaxial test devices are sold as entire units and 

attachment and loading systems are not commonly sold independently. CellScale does offer their 

Biorakes for individual sale, which are priced at $316 for a set of four [23]. The gripping system 

developed during this project could be available at a much lower cost, due to the simplicity and 

low cost of manufacture. Further, the concerns regarding the precision of rake tines that the team 

had during the manufacturing process would not apply in a large-scale production of the design. 

At a large scale, the rake tines could be effectively and repeatedly produced.  

The downside in using additive manufacturing methods to produce the design is that any 

iterations of the design now become waste as they can't be reused. However, little waste is 

created from the actual manufacturing process as a piece is built up, not cut out. The only waste 

from the actual process comes from any support material needed. As the designs in this project 

are very simple, the support material is minimal. It can be seen that there are both positive and 

negatives to this manufacturing process. Overall, the team felt that the benefits of additive 

manufacturing outweighed the downsides.  

Lastly, the design of this system is very simple allowing for easy manufacture in any 

setting. The simplicity of the device also allows easy changes to be made to the dimensions to 

best suit the intended test device. Overall, the attachment and loading system is economically 

efficient with high manufacturability.  
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6.3 Environmental Impact 

The intended use of this system is to provide a repeatable attachment method for as long 

as possible. There should be little environmental impact and no waste from the system. If for 

some reason the system needs to be replaced after sufficient use, the materials used will have no 

harmful effects on the environment. Stainless steel is a common material often used and 

recycled. Further, nylon can typically be recycled through various programs. The device does not 

require sterilization or advanced packaging, creating no waste from the distribution of the 

product. Overall, this device should not negatively impact the environment from the recyclable 

products and limited waste.  

6.4 Societal and Political Concerns 

Overall, this project does not have any societal concerns. The use of the product is 

intended for laboratory research. The only concern that may arise is what this system is being 

used to test. For example, the device could have an impact on society if the tissue being tested is 

an animal-derived material that threatens animal rights. Further, this device could be used to test 

and provide data on life saving tissue, having a positive impact on society. However, both of 

these concerns do not directly pertain to the device and are therefore unlikely to have an impact.  

Further, there would be negligible political concerns due to the use of this device in lab. 

This system has no intended use on humans or animals and will not require the involvement of 

any government organization. Additionally, this device is for scientific purposes and relatively 

low-controversial use resulting in little political concern.  
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6.5 Ethical Concerns 

This system has little ethical concerns. The use of this device is restricted to in lab 

research and will have no impact with anyone outside the lab. The attachment system is 

removable from the device, but does not have any harmful effects. Further, the entire biaxially 

device is stationary and presents no concern for the user. The samples being tested with the 

device are intended to be tested for sub-failure and failure properties, therefore showing that 

damage to the specimen is intentional. A positive attribute of the design is the low cost. This 

allows users with low budgets to access a biaxial test device capable of performing to the same 

quality as much more costly devices.  

6.6 Health and Safety Issues 

The system was designed to be safely used by all users, without the need for prior 

training. Each component of the system is made from non-toxic materials. Some caution does 

need to be taken when handling the attachment system due to the sharp tips at the end of the 

rakes. These rake tines were produced from stainless steel quilting needles to ensure they are safe 

for use. This material will present no health concerns to the common user. All other components 

of this system do not have sharp pieces and the material is not a health or safety concern.  

6.7 Sustainability 

The final design incorporates components meant for long-term use. The reusable nature 

of the system plays an important role in the sustainability of the device. Further, the design 

incorporates recyclable materials. The attachment and loading system is a relatively low-cost 

device and is intended for a one-time purchase. The device itself is not directly related to 

renewable energy, but the manufacturing process is a low power, low cost process. This process 
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can be powered through renewable energy and ideally, would only need to be executed once for 

each system.   
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7. Discussion 

 To evaluate if the grip system met the objectives of usability and shear allowance (force 

distribution), tests were conducted to biaxially deform a sample of anisotropic gauze. This 

testing was repeated with samples of rice paper and cardiac patches to validate the findings. To 

evaluate if the objective of lateral movement (force distribution) was met, calculations of 

bending stiffness were performed and validated. The results of each of these tests were compared 

to the current gold standard for biaxial test grips. The gripping and loading system designed for 

this biaxial test device successfully met our objectives of allowing shear, lateral movement, and 

offering high usability. The following section reflects upon the findings of testing and the extent 

to which the objectives were met.   

7.1 Shear Evaluation 

 The gripping mechanism the team designed proved to successfully induce shear in the 

samples when biaxially tested. The squares marked on the samples of gauze tested with our 

pivoting tines changed from a square to a rhombus after testing in every sample. This shape 

change demonstrates that shear was induced in the sample. When similar samples of gauze were 

tested with fixed rakes, the squares marked on the samples deformed uniformly and maintained 

their original shape. The fixed rakes minimized the amount of shear that could be induced in the 

sample. The effect of shear in the sample when tested with pivoting rake tines can be compared 

to the effects produced by sutures. The team compared the gripping mechanism to sutures when 

evaluating shear as it was established that sutures are the gold standard for inducing shear. The 

comparison of the two gripping methods showed that the developed rake tines are equivalent to 

sutures in producing shear in the specimen.  
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7.2 Lateral movement 

 The final design for the gripping system maximized lateral movement by minimizing 

bending stiffness through the individually pivoting tines. In comparison to CellScale’s marketed 

BioRakes, this design surpassed all available sizes of BioRakes in terms of lateral movement. A 

BioRake of the same diameter as our design, 0.5 mm, would require 1.35 N of force to reach full 

range of motion within the bath walls, whereas our rakes require less than 0.001 N. CellScale’s 

thinnest rakes, 0.25 mm in diameter, still require up to 0.084 N of force to reach full range of 

motion. These calculations can be seen detailed in Appendix E. From these results, it is 

appropriate to say that it takes negligible force to produce lateral movement in the developed 

rake tines. However, even CellScale’s smallest rakes require a force approximately equivalent to 

two nickels. Due to the delicate nature of sutures, they cannot be tested for a measurable force 

during bending. From this experiment, it is clear that the developed rake tines and sutures have 

negligible bending stiffness, allowing for maximum lateral movement. The design produced by 

the team, therefore, meets the gold standard of sutures and surpasses CellScale’s BioRakes.   

7.3 Usability 

 The overall system increased usability of the device by offering a gripping method for 

soft, anisotropic material in a biaxial test. Through the use of the loading tools, including the tine 

spacers and load platform, the team shortened the loading time for each specimen to under 1 

minute. CellScale experts require up to 5 minutes to load one specimen into a suture/pulley 

system on their device, creating opportunities for damage to the specimen due to prolonged 

manipulation of the specimen. Our design surpasses the load time of suture/pulley systems and 

meets the usability of BioRakes. 
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8. Conclusions and Recommendations 

 In conclusion, our combined gripping and loading mechanism meets the objectives of the 

project in terms of usability, shear, and lateral movement allowance. Current gripping 

mechanisms on the market for the biaxial testing of soft tissue do not overcome all three of the 

previously stated limitations. These grips include clamps, rakes, and suture/pulley systems. Our 

design includes individually pivoting rake tines to incorporate shear and lateral movement, 

surpassing CellScale’s BioRakes. Additionally, our design surpasses suture/pulley systems in 

terms of usability.  

To test our grip design, we compared our prototypes to BioRakes and suture/pulley 

systems. Shear was induced in the tested sample when using our pivoting rake design. 

Comparatively, shear was shown to be limited when tested with fixed rakes. The lateral 

movement of our tines outperforms that of CellScale’s BioRakes, which was determined through 

bending calculations and validated by deflecting our tines with our force transducers. The team’s 

design required significantly less force to deflect against the wall of the bath, making it 

comparable to sutures.  

In terms of usability of our design, users can load a specimen with our design in a 

fraction of the time it takes a professional to load a device with sutures. The gripping and loading 

mechanism designed exceeds sutures and is comparable to rakes in terms of usability. 

In the future, the team would recommend designing the gripping and loading mechanism 

to be compatible with other biaxial test devices. This project was specific to one device, but it 

could be beneficial to universalize this design be usable in different equipment.  Furthermore, 

because the scale of these tools is in millimeters, ensuring an extremely precise method of 

manufacturing the tines is crucial. Machining or 3D printing the metal tines to ensure equivalent 
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angles of bending is recommended to improve usability. Lastly, the team recommends 

incorporating 4 circular wells spanning the thickness of the top piece of the load platform, 

arranged in a perfect square in the center. These wells serve as exact guides to mark the 

specimen for displacement tracking prior to loading. 
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Glossary 
 
Anisotropy - (n.) the characteristic of exhibiting mechanical properties that vary depending upon 

the direction of load 

ASTM - (n.) American Society for Testing and Materials; an international standards organization 

that develops and publishes voluntary consensus technical standards for a wide range of 

materials, products, systems, and services 

Bending stiffness - (n.) resistance of a member against bending deformation 

Biomimetic - (adj.) relating to or denoting synthetic methods that mimic biochemical processes 

Compliance - (n.) the inverse of stiffness, flexibility 

Contralateral - (adj.) of or pertaining to the other side 

Displacement - (n.) the moving of something from its original position 

Hysteresis - (n.) the phenomenon in which the value of a physical property lags behind changes 

in the effect causing it 

ISO - (n.) International Organization for Standardization; an international standard-setting body 

composed of representatives from various national standards organizations 

Lateral movement - (n.) range of motion in a plane, inversely related to bending stiffness 

Modulus - (n.) also known as modulus of elasticity; a measure of the stiffness of a solid material 

Pseudoplastic - (adj.) a material whose viscosity, or consistency due to internal resistance, 

decreases as shear stress increases 

Scaffold - (n.) biomaterials, which act as templates for tissue regeneration, to guide the growth of 

new tissue 

Shear - (n.) a strain in the structure of a substance produced by pressure, when its layers are 

laterally shifted in relation to each other 
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Strain - (n.) a measure of deformation within a material as a result of some applied force 

Stress - (n.) a force per unit area applied to a material 

Stress relaxation - (n.) a decrease in stress in a material being held under a constant strain for a    

      finite amount of time 

Tensile strength - (n.) a measurement of the maximum amount of force exerted on a material or 

member before failure 

Viscoelasticity - (n.) the property of a substance of exhibiting both elastic and viscous behavior, 

the application of stress causing temporary deformation if the stress is quickly removed but 

permanent deformation if it is maintained 
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Appendix A: 
 

Force Transducer Research 

 A transducer transforms a physical stimulus into a measurable output through a known 

relationship. Force transducers measure the resulting force in a specimen from a mechanically 

applied stress or strain, usually input as a value into mechanical testing equipment. Common 

force transducer applications include testing the force acting on an object, supplying reference 

measurements for comparison between measured values, bench testing, such as the ability of a 

product or material to withstand a certain force, and as force control in industrial machines and 

systems. 

 

Strain Gauge Transducers 

The most common force transducers are strain gauge force transducers that incorporate 

strain gauges in their internal structure. Strain gauges are conductors on a film. Under tension or 

compression, the length of these conductors change, resulting in a change in resistance which can 

determine the strain in the tested material. Resistance increases under strain and decreases in 

contraction [38]. This strain gauge is then firmly attached to a spring element. Through an 

applied force, like tension or compression, a mechanical stress is induced in the spring, resulting 

in a change in length and corresponding strain in both the spring and strain gauge. Strain gauge 

force transducers can be utilized for the measurement of forces in multiple directions, such as 

biaxial testing. In such multiaxial test methods, the Poisson’s ratio calculates the relationship 

between transverse and axial strain. This ratio is directly dependent on the basic mass of a 

material; bulkier material requires higher forces. Therefore, higher nominal forces, or the 

intended maximum loads, in the force transducer are required. 
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The typical strain gauge force transducer incorporates four strain gauges oriented in a 

“ring”. This orientation is called a Wheatstone Bridge. The output of this circuit shows the 

change in resistance of the conductor of the strain gauge to determine the deformation of the 

spring of a known material. Then, the transducer can output the force induced that caused the 

measured deformation.  

The strain gauge force transducer operates primarily on linear relationships. The force is 

directly proportional to stress, stress is proportional to strain, the change in resistance of the 

strain gauge conductor is proportionally dependent on the strain, and the output signal of 

Wheatstone bridge is proportional to that change in resistance. This transducer typically operates 

in a force range from 0.01 N to 50 MN depending on the specific type [39]. The strain gauge 

force transducer can measure both positive and negative forces of stress and strain, in tension or 

compression. These transducers are also calibrated once after production to last throughout the 

lifetime of each device. They need to exhibit reproducibility and robustness to continuously 

measure accurate and precise values of applied forces. To standardize the production and 

performance of force transducers, the International Organization for Standardization published  

ISO 376:2011 “Metallic materials -- Calibration of force-proving instruments used for the 

verification of uniaxial testing machines”, which details the needed requirements for the design, 

manufacture, and function of force transducers. Another relevant standard concerning similar 

requirements is VDI/VDE 2635 “Strain gauge standard for bonded electric resistance strain 

gauges, characteristics and testing conditions” [40].  
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Transducer Considerations 

There are multiple kinds of force transducers and using transducers at all points of 

loading will reduce uncertainty. For any mechanical testing equipment that requires the use of a 

force transducer, the transducer must have adequate sensitivity to measure the applied force. It 

also must demonstrate an appropriate force range so that the tested material is not stretched to 

plastic deformation. Table A.1, compares several force transducers, including strain gauge and 

piezoelectric, and their ranges, uncertainties, and temperature sensitivities [39]. Various 

displacement transducers may be used with the gyroscopic and force balance load cells. Their 

performance limits will depend on the specific type of displacement transducer used, as denoted 

by the double asterisk, “**”, in the table. 

Table A.1. Guide to Force Transducer Types and Characteristics 

Device type Typical range of 
rated capacities 

Typical 
uncertainty 

(% of reading) 

Typical temp. 
Sensitivity and 
operating range 

(% of reading/°C) 

Strain gauge load cells: 
Semiconductor gauges 
Thin film gauges 
Foil gauges 

 
0.01 N to 10 kN 
0.1 N to 10 MN 
5 N to 50 MN 

 
0.2 to 1 
0.02 to 1 
0.02 to 1 

 
0.02(-40°C to +80°C) 
0.02(-40°C to +80°C) 
0.01(-40°C to +80°C) 

Piezoelectric crystal 1.5 mN to 120 MN 0.3 to 1 0.02(-190°C to +200°C) 

Hydraulic 500 N to 5 MN 0.25 to 5 0.05(+5°C to +40°C) 

Pneumatic 10 N to 500 kN 0.1 to 2 0.05(+5°C to +40°C) 

LVDT, capacitive, 
tuning-fork, vibrating 
wire 

10 mN to 1 MN 0.02 to 2 0.02(-40°C to +80°C) 

Magnetostrictive 2 kN to 50 MN 0.5 to 2 0.04(-40°C to +80°C) 

Gyroscopic 50 N to 250 N 0.001 0.0001(-10°C to +40°C) 

Force balance 0.25 N to 20 N 0.0001 0.0001(-10°C to +40°C) 
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To determine the proper transducer for a mechanical test device, the range of force to be 

measured, the number of loading points, the direction of the forces, including tension or 

compression, the duration and rate of the application of the force, and the environmental 

conditions of testing must all be considered. Consequently, overloading the transducer can result 

in damaging the calibration intended to withstand the lifetime of the device. 
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Appendix B: 
 

Hardware Testing 

There are multiple ways to increase the sensitivity of the device. The team considered 

strain gauge, piezoelectric, and vibrating load cells for increased sensitivity. The new hardware 

must be able to produce and measure the low forces needed to test the soft tissue. The team is in 

the process of investing the advantages and capabilities of the various load cells and force 

transducers available. The main focus for this research is to find the most accurate and sensitive 

components for the lower cost. Additionally, the team found it may be beneficial to obtain a 

newer computer to allow for reliable usage. Purchasing a new camera for improved displacement 

measurement may also be beneficial for results. Also, depending on the difficulty of loading into 

the existing device, the team may look into an automated loading device for improved ease of 

loading and improved loading time. After using the existing device, the team will decide which 

electronics are necessary to purchase. 

To evaluate the functionality and accuracy of current hardware on the device, the team 

conducted several simple circuit tests to measure input and output of all force transducers, the 

signal conditioner, and the signal conditioner strain gauge modules. 

The team tested all four Futek FT400 torque transducers for functionality through the use 

of a multimeter and programmable power source. These torque transducers work as resistors in a 

simple circuit after applying a load. The four torque transducers tested included two 20-oz. in 

transducers, with rated outputs of approximately 2.1 mV/V when a maximum load of around 2 

Newtons is applied, and two 160-oz. in transducers, with rated outputs of approximately 1.8 

mV/V when a maximum load of around 16 Newtons is applied. First, the team attached the 

positive and negative excitation leads of the programmable power source, set to output 10 V, to 
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the respective multimeter leads to ensure proper excitation. The expected output was 10 V, and 

the observed output was 10.00 V ± 0.002; therefore, the team continued to test the transducers 

with this known excitation voltage from the calibrated power source. 

The team connected one transducer to the multimeter and programmable power source 

through its four-wire cord. The positive excitation and negative excitation wires, red and black 

respectively, were attached to the corresponding nodes on the programmable power source. The 

power source was set to output 10 V of analog power to the transducer. The transducer’s positive 

signal and negative signal leads, green and white respectively, were attached to the 

corresponding leads on the multimeter. The power source was turned on and the multimeter 

digital display was observed. Without loading, the multimeter read 0.000 V, which was expected. 

The force transducer was then loaded to approximately the maximum load using a slotted weight 

set with a hanger, in grams. The display was again observed. The expected output from each 

transducer, with an approximate rated output of 2 mV/V, at an excitation of 10 V was 2.000 mV. 

The observed output of all four torque transducers, after maximum loading, was 2.000 mV ± 

0.020. Through this simple circuit test, the team was able to verify that each transducer was 

functioning as intended and replacements do not need to be ordered for both 20-oz. in and 160-

oz. in if those nominal loads are needed for future use in the machine. 

Similarly, the team tested the signal conditioner block, SC-2345 in inputs 2/10 and 3/11, 

and the strain gauge modules, two SCC SG24 strain input signal conditioning modules Biax 

Strain Gauge and Strain Gauge 1. First, with a torque transducer attached to the corresponding 

nodes on Strain Gauge 1 in channel 3/11 within the signal conditioner block, positive excitation 

(red) in 1, negative excitation (black) in 2, positive signal (green) in 3, and negative signal 

(white) in 4, the input channels were tested using the same multimeter. The signal conditioner 
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specifications indicate an output excitation of 10 V, so the expected reading from attaching the 

multimeter to channels 1 and 2 was 10 V. The observed reading was 2.800 V ± 0.003. The team 

removed Strain Gauge 1 and attached Biax Strain Gauge to the channel 3/11 in the signal 

conditioner block and repeated the test. The observed reading was 2.800 V ± 0.003. The team 

removed Biax Strain Gauge and repeated the test with Strain Gauge 1 in channel 2/10 of the 

signal conditioning block. The observed excitation was the same, 2.800 V ± 0.003. The team 

repeated the test using Biax Strain Gauge in channel 2/10 on the signal conditioning block and 

received the expected excitation of 10.000 V ± 0.002. 

The team then tested the output channels, 3 and 4, on Biax Strain Gauge in 2/10 within 

the signal conditioning block. After loading the transducer in the same manner as described 

previously, the expected display on the multimeter was 2 mV. The observed output was 

confirmed at 2.000 mV ± 0.020. The team then tested the output of the strain gauge module by 

attaching the multimeter to the corresponding pins before entering the computer. The strain 

gauge modules have a specified gain factor of 100, so the expected output of the whole system 

was 0.2 V. After loading the force transducer following the same methods, the observed output 

was 0.200 V ± 0.004. The team concluded that signal conditioner channel 2/10 with Biax Strain 

Gauge was functioning properly in excitation, force transducer signal input, and rated output. 

This hardware setup can now be used to test the software functioning of the device. Strain Gauge 

1 and channel 3/11 of the signal conditioner failed to output the proper excitation for the system 

and should not be used unless the problem is further investigated or identified. 
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Appendix C:  
 

Transducer Specifications 
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Appendix D: 
 
System Diagram 

 The current biaxial test device is intended to measure force and displacement to analyze 

sub-failure properties of very soft, delicate, anisotropic biological and engineered materials. It is 

available for use by WPI faculty and students in Gateway Park. The current system is laid out as 

a biaxial tension test in a cross configuration with a force range of 0.001N to 2N. It follows a 

“patch system” setup in which each separate piece of hardware or software, such as the 

transducers, strain gauge modules, signal conditioner connector block, computer, and LabVIEW, 

communicates data or motion control to the next piece. This system is composed of various 

hardware and software, including: 

● PC Computer: operating on Windows 2000 

● LabVIEW ‘07: to program the device hardware to test the specimen and collect the 

needed data, obtained under a teaching license within a WPI contract with National 

Instruments (NI) 

● Motor drive: NI MID-7604 to drive the motion control portion of the device 

● Motion controller: NI PCI-7334 to operate the 4 compatible stepper motors 

● Stepper motors: Advanced Microsystems 17-44-3MT to induce stress/strain in the test 

specimen by driving the tensile motion of the grips 

● Camera: Sony XC-ST50 CCD to aerially visualize and track the displacement of 4 

markers placed on the test specimen to control stress/strain in the sample 

● Force transducers: 2 Futek rotary torque transducers, TF4400 (20 oz-in), used to measure 

the force induced in the specimen from the torque experienced by the arm attached to the 

transducer and specimen grips 
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● Amplifier: NI SCC-SG24 Strain Gauge Module to amplify the output of the force 

transducer by a gain factor for input into the AD board 

● AD board: NI SC-2345 Signal Conditioning Connector Block to receive the amplified 

signal of the force transducers for transmission back to the computer and LabVIEW for 

analysis 

This system is diagrammed in Fig. D.1 below with each arrow indicating the flow of data and 

each number representing the sequence of data flow. 

 

Fig. D.1. System Diagram (Figure D1 shows the flow of data, indicated by arrows, in the current biaxial test device 

system. The chronology of data flow is represented by the numbers next to each arrow on the diagram). 

Future Recommendations 

The team identified several main improvements to the current biaxial test device system 

including increasing device sensitivity, control, reliability, and quality of function and data 

collection. Through personal communication with National Instruments U.S. academic account 
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manager David Melendez, the research team identified the ideal device hardware and software 

updates to consider in the future to achieve the aforementioned improvements. 

The first concern Mr. Melendez mentioned for the existing device is the age of some of 

the hardware. On this device, all of the signal conditioning (SC) units, including the strain gauge 

modules and signal conditioning connector block, have been phased out of National Instruments’ 

products and would not be serviceable in the future. To increase the functioning lifespan of the 

device, Melendez recommended first updating these pieces with newer, more reliable technology 

offered by NI. 

As far as improving data quality in terms of hardware and/or software, quality can be 

affected by sampling rate and resolution. Additionally, to improve sensitivity and control, future 

recommendations include synchronizing the stepper motors and actuators with the data 

acquisition system. This improvement minimizes the latency, or delayed response due to data 

flow from the separate pieces, in the current patch system. 

The comprehensive quote of updates to the device obtained through personal 

communication with National Instruments U.S. Account Manager David Melendez is shown 

below in Fig. D.2. 



   
 

97 
 

 

Fig. D.2. Quoted hardware and software updates from David Melendez at National Instruments 
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Appendix E: 

Relevant design calculations and experimental parameters 

Using specimen dimensions, 1 cm x 1 cm x 1 mm, shown in Fig. E.1, the cross-sectional 

area of the specimen during testing was calculated. 

 

Fig. E1: Specimen Dimensions 

Across-section = 10 mm * 1 mm = 10 mm2 

Using this cross-sectional area, the nominal force range needed to test soft tissue specimens was 

calculated. A low threshold was determined through the use of the tensile strength, UTS, of the 

weakest soft tissue, arteries and veins: UTSartery/vein = 0.01 MPa. As ultimate tensile strength is 

calculated by force over cross-sectional area, the following equation was used, and the results are 

shown. 

UTS = F / A → F = UTS * A 

0.01 MPa * 10 mm2 = 0.1 N 

 Because we are testing these soft tissues for sub-failure properties, the force transducers 

and load cells must have a sensitivity below this value, to mN. For an upper limit, one of the 

skin, was used; UTSligament = 27.2 MPa. 

UTS = F / A → F = UTS * A 

27.2 MPa * 10 mm2 = 27.2N 
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Therefore, the approximate nominal range for our load cells and force transducers requires mN 

to approximately 680N. 

 Additionally, the device will measure sub-failure properties of stress, modulus of 

elasticity, and compliance. These properties can be determined through the following equations. 

Stress, σ, is measured by the force, F, over the cross-sectional area, A, upon which this force is 

applied in the specimen. 

σ = F/A 

Strain, ε, is calculated by the displacement of the specimen under an applied load, or the change 

in length, L, over the initial length, L0: 

ε = ΔL / L0 

Modulus of elasticity, E, in the region plastic deformation of a material, is a linear relationship 

between an applied stress, σ, and the resulting strain, ε, in the material. 

E = σ/ε 

Compliance, J, is directly related to modulus of elasticity, E. 

J = 1/E 

 Another aspect of our gripping mechanism includes the bending stiffness of the grips 

themselves. Should the grips be too stiff, they may induce additional force on the test specimen 

and damage the specimen during testing. Should the grips have less than adequate stiffness, the 

grips may not induce enough force to effectively secure the specimen to experience the biaxial 

forces needed to test the specimen properties. To analyze the bending stiffness of alternative 

grips, such as CellScale’s biorakes, we calculated the force required to deflect the rakes the 

maximum distance in the bath, measured to be 21mm. The following equations were used, in 

which P represents the force in N, L represents length in mm, r represents radius of each tine in 
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mm, E represents modulus of elasticity in MPa, I represents moment of inertia in mm4, Δ is the 

maximum deflection. 

𝛥 =  𝑃𝐿3/3𝐸𝐼 

P = 3ΔEI/L3 

For a rake with a circular cross section of radius r, the following equation was used to calculated 

moment of inertia, I. 

I = πr4/4 

The calculated bending moments of CellScale’s circular cross-section biorakes of diameters 

.125mm, .15mm, and 0.25 mm are summarized in Table E.1 below.  

Table E1. BioRake Bending Moment Calculations 

 

To innovate a new gripping mechanism that improves upon the biorakes offered by CellScale, 

we will analyze the ideal shape and bending stiffness for our grips based on the desired 

maximum deflection. 
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Appendix F 

Biaxial Device Testing 

 The device itself operates through multiple LabVIEW virtual instruments, or VIs. One VI 

controls the interpretation of the displacement images taken by the video camera positioned 

above the specimen while testing. Four marks are placed on the specimen prior to loading. Then, 

during testing, the video camera records the displacement of these marks as force is applied. The 

VI obtains an image signal from the camera through an NI PCI-1405 image acquisition board. 

The VI then uses image contrast to recognize the graphite markers; light pixels are shown in 

black while dark pixels are shown in red. There is a threshold range to allow the user to adjust 

the threshold range depending on the lighting. The VI also includes motor controls for the user to 

tighten and center the sample prior to testing. The virtual instrument front panel that interprets 

these images to calculate displacement, taken from the 2005 MQP report, is shown in Fig. F.1. 
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Fig. F.1: INITIALIZE.VI for Displacement Image Recognition 

 Image acquisition, IMAQ, then monitors the specimen’s movement during loading. 

Centroids of the graphite markers, marked red, in the contrast image from the camera are tracked 

in real-time on the interface. The displacement of the centroids from their initial positions are 

then used to calculate average strain, which is plotted over strain in a stress-strain graph.  

 The second virtual instrument that is used to operate the machine is FINAL.VI. This 

virtual instrument performs the biaxial stretch test of the specimen while recording stress and 

strain. The two main inputs, from the user, to control the strain are percent strain and strain rate. 

Percent strain refers to the change in original dimensions that the user wants the specimen to 

experience. For example, to stretch the sample 10%, the user inputs a strain percent of 0.1. Strain 



   
 

103 
 

rate controls the rate at which the specimen is stretched, in s-1. To stretch a the specimen by 10% 

in one second, the user inputs 0.1 into the strain rate. 

 Finally, data from the force transducers is used to measure the force applied to the 

specimen during testing. Data is collected from the transducers through the NI SC-2345 Signal 

Conditioning board. The FINAL.VI incorporates inputs from the user needed to calculate stress, 

shown in Fig. F.2.  

 

Fig. F.2: FINAL.VI 

These inputs include the width of the sample, in both axes, the sample thickness, and the length 

of the arm attached to the transducer. Using these values, the VI then calculates the average 

stress in response to the force applied in a while loop to continuously graph the average stress in 

real-time. This graph is also displayed to the user on the interface. 

 

 



   
 

104 
 

Camera Acquisition 

While the team was testing the LabVIEW code for the strain test, we came across a 

problem with the camera. The camera was not effectively locating the markers on the sample, 

which is problematic during testing, because the device is unable to monitor the movement of the 

sample. Several possibilities were discussed about why this was happening. The first was 

aliasing, which is when frequencies are sampled at a given rate, they give the same set of sample 

values or are indistinguishable from each other, so the camera needs to record at either a faster or 

slower rate to distinguish them. Another possibility discussed was that the contrast between the 

markers and the sample was not big enough. Because the latter was easier to test, the team tested 

it first. In order to do this, a sample of a lighter color was marked with black sharpie. We placed 

it in the testing position and we ran the program that provides the visual of the markers. The 

normal program was able to locate the markers perfectly. The contrast was enough so that we 

could see each marker without any discrepancy. The next test is to test a darker sample with light 

markers and see if it yields the same results. If it does, the team believes that the problem is 

mitigated and, unless additional problems arise, no further research or testing is required for our 

purposes.  

 


