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Abstract

Space-based communications systems to be employed by future artificial satellites, or

spacecraft during exploration missions, can potentially benefit from software-defined radio

adaptation capabilities. Multiple communication requirements could potentially compete

for radio resources, whose availability of which may vary during the spacecraft’s operational

life span. Electronic components are prone to failure, and new instructions will eventually be

received through software updates. Consequently, these changes may require a whole new set

of near-optimal combination of parameters to be derived on-the-fly without instantaneous

human interaction or even without a human in-the-loop. Thus, achieving a sufficiently set of

radio parameters can be challenging, especially when the communication channels change

dynamically due to orbital dynamics as well as atmospheric and space weather–related

impairments.

This dissertation presents an analysis and discussion regarding novel algorithms propo-

sed in order to enable a cognition control layer for adaptive communication systems ope-

rating in space using an architecture that merges machine learning techniques employing

wireless communication principles. The proposed cognitive engine proof-of-concept reasons

over time through an efficient accumulated learning process. An implementation of the con-

ceptual design is expected to be delivered to the SDR system located on the International

Space Station as part of an experimental program.

To support the proposed cognitive engine algorithm development, more realistic satellite-

based communications channels are proposed along with rain attenuation synthesizers for

LEO orbits, channel state detection algorithms, and multipath coefficients function of the

reflector’s electrical characteristics. The achieved performance of the proposed solutions

are compared with the state-of-the-art, and novel performance benchmarks are provided

for future research to reference.
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Chapter 1

Introduction

1.1 Motivation

In light of the transition in advanced wireless communications research from software-

defined radio (SDR) systems, now mainly focused on technological development, to cognitive

radio (CR), many new questions must now be answered. Also, recent investments in the

development of powerful graphics processing units (GPUs) have renewed the interests of

the artificial intelligence (AI) research community in improving their current algorithms and

experimenting with more complex ones such as deep-Q networks (DQNs) and AlphaGo [5].

Meanwhile, the satellite communications industry is proposing business ventures with sa-

tellite fleets comprised of hundreds or even thousands of spacecraft. Such developments

have triggered renewed interest with respect to increasing investments in satellite-based

communications systems research, aimed at supporting not only the high throughput de-

mands on the terrestrial cellular backbone, but also to enabling novel missions to explore

other planets, such as Mars, or to mine asteroids [6]. These missions all have in common

the fact that they require high link availability as well as robustness in order to operate in

these extremely harsh environments. In addition, these future communication systems must

operate autonomously, and be aware of the environment, their own hardware and software

capabilities, and the mission they must complete with optimum performance. Given the

convergence of future requirements and demands for the satellite communications industry,
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the recent developments in AI, and the flexibility provided by SDRs in enabling CRs, a new

research field has emerged: space radio-machine learning (SRML).

1.2 Current State-of-the-Art

This section describes the current state-of-the-art of satellite communications, Kalman

filters, and cognitive radios.

1.2.1 Satellite Communications

Recently, several technology developments in satellite communications have been made

in the fields of adaptive coding and modulation (ACM) schemes; Kalman filters (KFs) and

their derivatives, high-throughput satellites; flexible payloads; cognitive and cooperative

radio systems; and more. In this section, an overview is provided of the state-of-the-art in

satellite communications technologies that relate to or will be potentially impacted by the

research presented by this dissertation, especially for systems operating at Ka-band.

An important part of any realistic communications simulator is the communications

channel. Previous studies have developed analytical mobile satellite channel models that

combine ionospheric scintillation and terrestrial multipath [7–10]. However, these studies

have omitted the contributions of the terrain material’s electrical properties on the Rician

factor and do not provide a communications performance analysis. Seeking to fill this

research gap, in this dissertation, a novel equation for the statistical multipath distribution

is derived, which connects the Rician factor to the terrain’s reflection coefficient. Thus, the

bit error rate (BER) performance is provided for an aircraft being affected simultaneously

by ionospheric scintillation and multipath based on the ground composition it flies over

while communicating with a geostationary orbit (GEO) satellite.

Regarding satellite channels in the presence of rain attenuation, there are two options

to acquire an attenuation time series: (i) Perform measurement campaigns (or use the data

from measurement campaigns), or (ii) Synthesize the channel effects using a channel time

series simulator with the advantage of trying several different parameter combinations.

Measurement campaigns play an important role when supporting the development of
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channel models and link performance analyses. Several research efforts have been done in or-

der to collect real-world rain attenuation measurements. For instance, several measurement

campaigns can be found in the open literature, such as the National Aeronautics and Space

Administration’s (NASA) Advanced Communications Technology Satellite (ACTS) [11,12]

and the European Space Agency’s (ESA) Olympus [13] program, and the Japanese Wide-

band InterNetworking engineering test and Demonstration Satellite(WINDS) program [14],

which conducted experiments at Ka-band in order to assess the attenuation levels occurring

in Digital Video Broadcasting (DVB) systems employed on GEO satellites. Furthermore,

the Australian Fedsat [15] program published Ka-band experiment results for low-Earth

orbit (LEO) satellite links, as well as a more recent French program using a GEO satellite

at Ka-band [16]. However, these campaigns did not publicly release their measurements da-

tasets, including the raw data required for research and performance analysis of adaptation

techniques for specific channel conditions. Therefore, an alternate way to perform research

experiments is by using a rain fading time series for Ka-band based upon International

Telecommunication Union (ITU) recommendations. This dissertation makes use of several

ITU Radiocommunication (ITU-R) sector recommendations on synthesizing attenuation

time series under different environmental conditions.

ACM is used in cases when the received signal power at the receiver changes due to

impairments in the channel such as fading resulting from the weather or the relative motion

between the transmitter and the receiver [17]. ACM has been applied to GEO satellite

channels operating in the S-band [18] as well as the Ka-band [19], and in this work it

is considered as the standard solution to be implemented in LEO satellite links. ACM

performance in LEO satellite channels during fading, using an end-to-end system simulation

have not been published in the open literature, except for theoretical approaches such as

reference [20].

DVB-S2 [21] is the second generation of the original DVB-S, the DVB technical stan-

dard for GEO satellite-based digital television broadcast system focused on direct-to-home

(DTH) services. It is mainly comprised of advances in the physical layer, using more effi-

cient channel coding, modulation, and error correction techniques, combined with the most

recent video compression technology for transmissions compatible with the Moving Picture
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Experts Group version 2 (MPEG-2) and MPEG-4 standards. It makes use of a powerful

forward error correction (FEC) scheme based on low-density parity check (LDPC) codes

concatenated with Bose–Chaudhuri–Hcquengham (BCH) coding, and a mix of four modula-

tion constellations combined with a wide range of code rates controlled by an ACM scheme

aimed at mitigation of propagation impairments, allowing adaptation on a frame-by-frame

basis. DVB-S2 and the most recent extension, S2X [22], increase the granularity of the

modulation and encoding schemes improving performance for mobile applications on land,

sea and in the air, while allowing channel bonding, which combines unused portions of the

spectrum by up to three transponders into one virtual channel that would have required

a higher bandwidth, not offered by the individual transponders. It is expected that with

this S2X update, ultra-high definition television will be made more efficient when combined

with the new high efficiency video encoding (HVEC) video-coding scheme.

1.2.2 Kalman Filter and Its Derivatives

The Kalman filter (KF) was conceived by Rudolph A. Kalman in 1960 as a recursive

solution to the discrete-data linear-filtering problem [23–25], i.e., a filter that is capable of

estimating variables (states) from noisy measurements and other inaccuracies of a known

approximation of the real system model. The most common applications of the Kalman

filter are in the fields of position tracking for guidance, navigation, and control (GNC)

of aircraft and spacecraft [26–29], as well as orbit predictions [30], for which the speed

and acceleration equations well describe the behavior of the objected being monitored. In

addition to GNC, KFs have been widely applied to communications systems for automatic

frequency control [31] and global navigation satellite system (GNSS) carrier tracking [32–34].

Since the KF has not been applied to support ACM yet, this research addresses this gap

and provides some analysis and simulations of its application when used to assist ACM

algorithms in a satellite communications channel.

Furthermore, KFs are used within Interactive Multiple Model (IMM) filters [35, 36],

which implement a refined version of the KF that uses a bank of KFs instead, where

each KF represents a model of one possible behavior of the variables being tracked. IMM

filters have been applied to aircraft tracking [26], in GNSS navigation [37], and for secure
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communications systems [38]. Design and performance analysis of IMM filters in satellite

communications applications have not been made available in the literature yet. Thus, this

dissertation addresses this research gap by providing an algorithm that deals with the lack of

knowledge of a system model while showing the application of an IMM filter as a shadowing

detector for Land-Mobile Satellite (LMS) channels in the presence of rain at Ka-band.

1.2.3 Cognitive Radios

The next technological leap for SDR is expected to be the implementation of on-board

cognition, which can potentially provide the SDR platform with environmental awareness

across several Open Systems Interconnection (OSI) layers [39]; real-time knowledge of the

current channel conditions; status of its communicating nodes and the network; and as-

sessment of its own available resources. Such information is very important for optimizing

the communications link performance. In the past, several optimization algorithms, such

as genetic algorithms [40], have been applied to cognitive radios [41]. These optimization

techniques do not always converge and might take several hundred or even thousands of ite-

rations, i.e., algorithm runs, until a stable solution is found. Changes in the environmental

conditions would require another series of iterations in order to search for a new solution,

increasing latency. Also, if these same scenarios repeat, the system is unable to use previous

solutions given that it cannot learn. Learning is considered to be the cornerstone of AI.

Therefore, CR systems must implement these principles in a computationally feasible way

in order to leverage true CR capabilities.

Machine learning (ML) techniques have been studied with respect to their approach to

CR, thus addressing the learning issue [42–45]. Both approaches, optimization and ML, have

been studied in order to determine how they can assist CR systems with respect to finding

the best configuration parameter set, with the majority of research focused on spectrum

management, including sensing techniques, for terrestrial links [45–47]. The scenario is the

same for satellite links, with the majority of CR research focused on spectrum resource

allocation [48–50], and to the best of the author’s knowledge, almost none on radio resource

management for point-to-point communication link.

Regarding adaptive medium access protocols (MACs), most research has been done for
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asynchronous transfer mode (ATM) over satellite links [51, 52], adaptive FEC, ACM for

ATM over satellite links [53], and hybrid models that adapt over time to different aspects

depending on the user needs and the channel conditions [48,49]. Theoretical approaches to

adaptive schemes for satellite communications over fading channels using ACM and power

adaptation have been pursued [54].

In this dissertation, the scope of the communications performance is beyond individually

offering minimum BER, maximum throughput, or power adaptation. During critical space

mission phases, communications systems might require proper management of resource

allocation while facing conflicting requests to achieve performance levels on specific metrics,

limited resource availability, and minimizing impact on other sub-systems sharing the same

resources. To the best of the author’s knowledge, there has not been any research reported

on an adaptive MAC protocols for resource allocation of radio parameters for SDRs in orbit

that consider multiple conflicting performance metrics.

In order to enable cognitive radios in space-based communication systems, this disser-

tation provides a conceptual cognitive engine as the core technology of an intelligent MAC

protocol, which leverages an AI system to efficiently manage multiple resources and to au-

tonomously control communications through dynamic channels while learning on-line how

to achieve the requested goals based on the hardware and software resources available and

current channel conditions.

1.3 Technological Challenges

To the best of the author’s knowledge, the research group formed by this dissertation’s

author and its collaborators seem to be the first to address the following technical chal-

lenges in the area of space radio-machine learning for enabling cognitive radios for space

communications on dynamically changing channels:

• Channel modeling of the influence of the physical properties of scatterers and reflectors

on multipath channel simulators for airborne terminals;

• Synthesis of attenuation time series for different environment conditions at Ka-band

for fixed and mobile terminals downlink from LEO and GEO satellites;
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• Communications channel state detection for fixed and mobile terminals experiencing

rain at Ka-band; and

• Cognitive-radio engine architecture for autonomous operation in space during different

mission phases.

1.4 Research Contributions

Given the state-of-the-art and the technological challenges presented above, this disser-

tation provides the following research contributions:

• Derivation of Rician factor function of the reflection coefficient of terrain for an air-

borne terminal communicating with a GEO satellite;

• Algorithm for rain attenuation time series for LEO orbits using ITU-R P.1853 recom-

mendation;

• Prediction algorithms using Kalman filter for QoS improvement of ACM schemes

during rain at Ka-band downlink from LEO satellite;

• Model-free prediction algorithm using an IMM filter for shadowing detection during

rain for mobile terminals experiencing rain at Ka-band downlink from GEO satellite;

and

• Cognitive engine architecture and ML algorithms that enable autonomous on-line

learning on stochastic environments during different multi-objective mission phases.

List of Journal Papers

• P. V. R. Ferreira and A. M. Wyglinski, “QoS improvement for LEO-based SATCOM

at Ka-band,” IEEE Transactions on Aerospace and Electronic Systems, Submitted,

October 2016.

• P. V. R. Ferreira, R. Paffenroth, and A. M. Wyglinski, “Interactive Multiple Model

Filter for land-mobile satellite communications at Ka-band,” IEEE Access, In print

preparation, January 2017.



Chapter 1 8

• P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilén, R.

Reinhart, and D. Mortensen “Multi-objective reinforcement learning for cognitive

satellite communications using deep neural networks ensembles,” In preparation for

IEEE Journal on Selected Areas in Communications, April 2017.

List of Conference Papers

• P. V. R. Ferreira, R. Metha, and A. M. Wyglinski, “Cognitive radio-based geosta-

tionary satellite communications for Ka-band transmissions,” in 2014 IEEE Global

Conference on Signal and Information Processing (GlobalSIP), December 2014.

• P. V. R. Ferreira and A. M. Wyglinski, “Performance analysis of UHF mobile satellite

communication system experiencing ionospheric scintillation and terrestrial multipath

fading,” in 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), September

2015.

• P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilén, R.

Reinhart, and D. Mortensen “Multi-objective reinforcement learning for cognitive

radio-based satellite communications,” in 34th AIAA International Communications

Satellite Systems Conference, October 2016.

• T. M. Hackett, S. G. Bilén, P. V. R. Ferreira, A. M. Wyglinski, and R. Reinhart,

“Implementation of a parameterized interacting multiple model filter on an FPGA

for satellite communications,” in 34th AIAA International Communications Satellite

Systems Conference, October 2016.

• P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett, S. G. Bilén, R.

Reinhart, and D. Mortensen “Multi-objective reinforcement learningbased deep neural

networks for cognitive space communications,” IEEE Cognitive Communications for

Aerospace Applications (CCAA) Workshop, Cleveland, Ohio, June 2017.

• T. M. Hackett, S. G. Bilén, P. V. R. Ferreira, A. M. Wyglinski, and R. Reinhart,

“Implementation of a space communications cognitive engine,” IEEE Cognitive Com-

munications for Aerospace Applications (CCAA) Workshop, Cleveland, Ohio, June

2017.



Chapter 1 9

1.5 Dissertation Outline

A brief introduction to key satellite communications topics is provided in Chapter 2,

including satellite orbits, satellite communication systems architecture, link budget items,

and propagation effects. In Chapter 3, a more realistic multipath channel model is described

by the derivation of the Rician factor considering the physical properties of the terrain. It

also addresses the implementation challenges of rain attenuation time series. Attention is

given to the details of attenuation time series for LEO orbits and an algorithm is provided

to derive these from the ITU-R P.1853 time series generator. In Chapter 4, novel algorithms

for channel state prediction are described, leveraging Kalman filters seeking to improve the

QoS of mobile satellite receivers operating at Ka-band when experiencing rain attenuation.

In addition, a new model-free Interactive Multiple Model filter algorithm is proposed to

detect shadowing in LMS channels during rain attenuation. Lastly, Chapter 5 provides a

novel cognitive radio architecture specially designed for space communications, including

new AI-based algorithms that allow on-line learning for cognitive autonomous operations

including reasoning, decision making, and channel awareness for the node.
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Chapter 2

Satellite Communications: A Brief

Tutorial

Satellite communications was first proposed by Arthur C. Clarke in 1945 [55,56]. Sput-

nik 1, the very first satellite was launched in 1957 into a LEO orbit by the U.S.S.R. (now

Russia). In 1962, under a multi-national agreement between several U.S. government agen-

cies and industries and several European industries, the Telstar-1 satellite was launched

into a medium Earth orbit (MEO) orbit to experiment with satellite communications over

the Atlantic Ocean. Three years later in 1965, Intelsat 1 (known as Early Bird), the first

GEO satellite, was launched. Since then, many more GEO satellites have been launched

once the technology was proven to be feasible [57]. Nowadays, much more complex satellite

systems co-exist in different orbits, including multiple Global Navigation Satellite System

(GNSS) systems for guidance and navigation, for instance the Global Positioning System

(GPS) [58], Galileo [59], Global Navigation Satellite System (GLONASS) [60], BeiDou [61],

and the Indian Regional Navigation Satellite System (IRNSS) [62], all in MEO orbits; Earth

observation satellites in LEO orbits; and hundreds of GEO satellites for telecommunications,

including TV and radio broadcast, broadband internet service access, weather monitoring,

and others [63]. Military satellites are known to operate in these orbits but are not covered

in this dissertation.

Communications via satellites has the ultimate goal to provide information access on
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a global scale given its wide coverage area, especially to areas not covered by terrestrial

network infrastructure in remote and low density population areas such as rural areas,

forests, deserts, and polar regions. For mobile operations in the air and at sea, satellite

offers the best communications option, especially if the communicating nodes are not in

line-of-sight (LOS) with each other or with a repeater in the vicinity that could relay the

signal.

2.1 Satellite Orbits

Satellite orbits obey Kepler’s Laws of Planetary Motion [64], with orbits having an

elliptical trajectory with the Earth at one focus. The orbits are divided into three main

zones based on the altitude range: (i) LEO ranges from 200 km to 2, 000 km, (ii) MEO

ranges from 2, 000 km to 36, 000, (iii) high Earth orbit (HEO) comprises any orbit higher

than 36, 000 km such as the Moon, which orbits the Earth at approximately 384, 000 km.

While orbiting around the Earth, the satellites are in an inclination plane (also known as

orbital plane), an imaginary plane that has an inclination with respect to an imaginary

plane intersecting the Earth at the equatorial line. Figure 2.1 illustrates these orbit zones

and the most common satellite orbits.

Satellites in LEO, such as the International Space Station (ISS), the Hubble Space

Telescope, Earth observation satellites such as Jason-3 [65], and smallsat’s (small satellites)

for science experiments or remote sensing missions such as Terra Bella [66] and Planet [67],

all have an orbital period between 80 and 120 minutes.

Satellites in MEO, mainly GNSS constellations for guidance and navigation such as

GPS, have an orbital period between 2 and 20 hours. In 2013, O3b Networks launched tele-

communications satellites into MEO aimed at commercializing broadband internet access.

Its satellite fleet is located at an 8, 000-km-altitude orbit with an orbital period of 6 hours.

The boundary between MEO and HEO is where satellites in GEO orbit are located. At

36, 000 km altitude, these satellites appear to be “fixed” in the sky for any communicating

node on the Earth. Satellites in GEO orbit have an orbital period of approximately 24 hours

and are located in the equatorial plane. From this location, beams from GEO satellites have
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Figure 2.1: Illustration of satellite orbit zones between the Earth and the Moon.

the potential to cover 1/3 of the Earth’s surface, making them ideal for broadcast services

and continuous coverage of very wide areas of the globe. Depending on the type of antenna

used, it is possible to focus the signal beam on certain regions within the portion of the

Earth in view. These individually focused antennas are known as spot beams. A more

complex antenna system, known as phased-array antenna, is capable of providing multiple

spots using the same antenna. It is also possible to combine different beams focused on

the same region by using different polarizations. The beam coverage area is known as the

satellite footprint. Concentrating beams over a certain region has the primary advantage

of increasing the power at the receiver, allowing for frequency reuse.

Ground stations located at the equatorial region have the highest ground station antenna

elevation angle when pointing to a GEO satellite, which decreases with increasing latitude,

which sometimes make it infeasible in regions close to the poles. In order to cover these

other regions there are other types of orbits, for instance the polar orbit is very similar to a

LEO orbit with an inclination close to 90 degrees. Another interesting orbit type is known

as sun-synchronous, which is also a LEO orbit. A sun-synchronous satellite combines its

altitude and inclination such that it passes over a certain region always at the same local

time. Derivations of this orbit include noon/midnight when the satellite passes over a

specific region at noon/midnight local time, and dawn/dusk which allows the solar panels

to always be in view of the sun while allowing on-board sensors to be hidden from the sun

or pointing to the night side of the Earth. The last most interesting orbit type is known

as Molniya, in which the satellite orbit is highly elliptical, i.e., having high eccentricity,

with an orbital period of half a day such that the satellite spends most of the time close to

apogee with altitude as high as 40, 000 km, and consequently spends much less time close
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to perigee. This is an alternative to polar orbits for regions at high latitudes.

2.2 Satellite Comunications Systems

In order to communicate with a satellite, an end-to-end infrastructure is required, com-

prised of the ground segment, which comprises all the equipment for the ground station, also

referred to as gateway or terminal, and the space segment, which comprises the spacecraft,

in this case the satellite or fleet of satellites.

A ground station is the terrestrial node that communicates directly with the satellite

in space and has all the necessary equipment to support this operation, such as antennas

and power amplifiers, connected to the satellite operator, which controls the satellite by

managing its operations and monitoring its telemetry data. There are two different types of

ground stations: gateways and end-user ground stations. Gateways are usually a complex

with several large antennas that act as hubs to transmit and/or receive large amounts of

data to/from satellites. Cable TV companies usually have a ground station with antennas

connected to several different satellites from which it acquires different channels and com-

bine them into its proprietary cable system for terrestrial distribution. On the opposite

side, satellite TV operators use gateways to send all the TV content up to the satellite for

broadcast distribution. Satellite operators usually control several satellites, doing maneu-

vers and receiving health telemetry data, and may do so through their own ground stations.

End-user ground stations can receive-only stations, such as the satellite TV receivers and

GPS receivers, or the very small aperture terminal (VSAT) that is a small ground station

that can transmit and receive to/from a satellite.

The satellite itself is the unit that is launched into space and positioned in a certain

orbit, located in a specified orbital plane. The satellite has three main parts: the bus, solar

panels, and the payloads. The bus contains all the equipment for house-keeping and control

of the unit; is responsible for storing fuel to be used by thrusters during its operational

life for orbital positioning corrections and maneuvers; gimbals and wheels for orientation

control; thermal control systems; radiation shields; power batteries control; and etc. The

solar panels are located outside the satellite, and depending on the mission, if they are too
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big to be installed on the outer surfaces, they are folded prior to launch and deployed in

space. The payload is comprised of the main electronics hardware and software to execute

and support the satellite’s missions. The basic payload includes the avionics payload that

controls the satellite itself and communication hardware for telemetry, command and control

of the satellite operations, as well as more specific payloads, for instance, communications

hardware for telecommunication missions and/or sensors for Earth observation missions.

Based on the mission, the communications payload divides the satellite into two catego-

ries: bent-pipe satellite, in which the information simply passes through the satellite acting

as a link relay, and a regenerative satellite, in which there is a complex and more robust on-

board processing payload capable of signal demodulation, data compression, multiplexing,

beam forming, and hopping.

Given that there are multiple orbit types with hundreds of satellites co-existing over a

certain region, interference is controlled by dividing the RF spectrum into bands. The ITU,

through the World Radiocommunication Conference (WRC) [68], manages the frequency

bands among the satellite operators for different usages. In the United States, the frequency

allocation is regulated by the National Telecommunications and Information Administration

(NTIA) [69]. The most used bands are L-band from 1.2 GHz to 1.6 GHz, S-band from 2 GHz

to 4 GHz, C-band from 4 GHz to 6 GHz, Ku-band from 11 GHz to 14 GHz, and, most

recently, Ka-band from 20 GHz to 30 GHz. Due to regulatory issues over the years lower

bands received a narrower bandwidths and today are crowded, which resulted in higher

frequency bands being allocated with wider bandwidths in order to support the increasing

number of users and demand for broadband services. For instance, bands at L-band are

usually 15 MHz wide, whereas at Ka-band they can be as wide as 2.2 GHz.

2.3 Link Budget Basics and Propagation Effects

The power irradiated by an isotropic antenna that is assumed to irradiate the same power

in all directions from a punctual source expands as a sphere with an increasing radius as the

wavefront travels away from the source. As a consequence, the power received at a certain

distance from the source decreases due to the power density reduction in an ideal medium
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without energy absorption or reflection. This effect is described by the Friis equation that

computes the received power as:

Pr =
PtGtGrλ

2

(4πd)2
, (2.1)

where Pr is the received power in watts, Pt is the transmitted power in watts, d is the

distance between the transmitter and the receiver in meters, λ is the wavelength, Gr and

Gt are the the receiver and transmitter antenna linear gains, respectively, given by:

G = ηA
4πA

λ2
, (2.2)

where ηA is the antenna aperture efficiency and A is the physical antenna aperture area

computed by A = πD2

4 where D is the antenna diameter.

In Eq. (2.1), the term PtGt is known as the effective isotropic radiated power (EIRP),

which is the transmitted signal power concentrated in a certain direction by a practical

antenna [57]. The term λ2

(4πd)2 is known as path loss. Depending on the environmental

conditions through which the signal propagates towards the receiver, a more realistic version

of Eq. (2.1) would also include losses in both transmitter and receiver antennas, from the

atmosphere, and miscellaneous losses through the transmitter and receiver chain such as

cables and connectors. The most important of these additional losses is the atmospheric

loss, which accounts for losses due to rain, clouds, fog, snow, ice, gases, sand, as well as

tropospheric scintillation and ionospheric scintillation [70,71]. These atmospheric losses are

functions of several parameters such as the terminal antenna elevation angle, signal carrier

frequency, and polarization. Other losses could be associated with the presence of objects

partially blocking the signal LOS, for instance trees with different foliage density; buildings

and other objects with different structural materials composition; or even dust, water, or

snow accumulated on the antenna. Depending on the combination of these factors, the

following effects can be experienced by the signal:

• Absorption: irreversible amplitude reduction of the electric field intensity;

• Scattering: signal energy dispersed in a given direction;

• Reflection: change in the signal propagation direction due to variations in the index

of refraction the medium;
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• Diffraction: change in the signal propagation direction due to an obstacle (reception

behind a building or mountain) based on the Huygens–Fresnel principle; and

• Multi-path: destructive or constructive summation of reflected and/or diffracted

components that arrive at the receiver.

For carrier frequencies below 30 MHz, the signals get absorbed or reflected by the Io-

nosphere layers D, E, and F, located at altitudes between 50 km and 1000 km. Thus, it

is almost impossible to communicate with a satellite at these frequencies. However, this

reflection effect is useful for terrestrial transmissions around the world beyond LOS. Signals

with carrier frequencies between 30 MHz and 3 GHz pass through the Ionosphere and are

more susceptible to the ionospheric scintillation (disturbances triggered by space weather

phenomena), Faraday polarization rotation, group delay, multi-path fading, tropospheric

fading, and refraction. Above 3 GHz signals are mainly affected by attenuation due to

atmospheric gases, hydrometeor attenuation, clouds and fog attenuation (only for frequen-

cies higher than 10 GHz), and depolarization by multi-path and hydrometeors (only for

frequencies higher than 12 GHz).

Attenuation due to rain is a function of the carrier frequency, terminal antenna elevation

angle, and amount of rain [3]. At 26 GHz, the specific attenuation varies from 1 dB/km

for a low intensity rain (5 mm/hour) to as high as more than 10 dB/km for heavy rain

(150 mm/hour).

Water vapor and oxygen are responsible for high signal attenuation levels for frequencies

of 10 GHz and above. For frequencies close to 23 GHz, rain can cause attenuation levels

as high as 0.1 dB/km. Oxygen makes communications in the atmosphere impracticable

for frequencies close to 60 GHz, at which attenuation levels reach more than 10 dB/km.

Figure 5 in Reference [72] shows the specific attenuation due to atmospheric gases, water,

and oxygen in dB/km for frequencies up to 350 GHz.

Signal fading causes the signal intensity to vary due to path-loss changes over time. For

a mobile terminal, the communications channel coherence time Tc is given by:

Tc =

√
9

16πf2
d

, (2.3)
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where fd is the Doppler frequency. If Tc is much bigger than the bit duration Tb, then the

fading is known as slow fading. Otherwise, it is known as fast fading, when rapid signal

fluctuations occur resulting in quick variations in the signal phase, angle of arrival, and

polarization. Scintillation, a fast fading type of signal attenuation, potentially decreases the

performance of a mobile receiver. However, atmospheric induced scintillation can also affect

the receiver performance of a fixed terminal. For instance, it plays a key role in defining the

GPS signal reception quality since, when in presence of scintillation, the systems loses track

of the phase, which results in computing erroneous locations [73]. Ionospheric scintillation,

covered in more detail in Section 3.4, is caused by space weather–related phenomena, while

tropospheric scintillation is caused by rain at low antenna elevation angles and air turbulence

during clear sky conditions [3].

On top of the power losses, noise plays a critical role in any wireless communications

system, and satellite communications is no exception. Any body with a physical thermal

temperature generates an electrical noise power Pn in watts, over a certain bandwidth Bn

in Hz, given by:

Pn = bTsBn, (2.4)

where b is the Bolzmann’s constant (1.3910−23J/K), Ts is the system noise temperature, a

sum of antenna noise temperature and receiver noise temperature in kelvin, and Bn is the

bandwidth in Hz. Noise can be generated by natural sources such as the Sun, atmospheric

events (rain, clouds, lightning, gases), distant galaxies (frequencies below 2 GHz) and cosmic

background (frequencies above 2 GHz), and also by artificial sources (man-made) such

as an electrical equipment operating in the proximity of the receiver antenna, and other

communication signals such as an interfering signal. An absorbing medium, such as the

atmospheric phenomena, generates noise that is usually accounted for in link budgets as

being coupled to the receiver’s antenna noise temperature.

Hence, the link performance is measured by the C/N ratio in dB, where C is the received

power Pr and N is the noise power Pn, or by the C/N0 ratio in dB-Hz, where N0 is the

noise power spectral density.
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2.4 Chapter Summary

In this chapter, a brief overview of the main satellite communications elements was

provided. The three most used satellite orbits, LEO, MEO, and GEO, were described in

terms of altitudes and types of satellites and services found in each. An introduction to

the basics of satellite systems and their main components (solar panels, bus, and payloads)

was given. The principles of link budget, including equations and propagation effects, were

covered as well.
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Chapter 3

Satcom Channel Modeling and

Simulator Implementation

In order to provide realistic satellite communications (Satcom) performance analysis,

field measurement campaigns should be done. However, field measurements not only require

robust equipment, they are time consuming and require the experimenter to be in place

where the equipment is installed and wait until all desired environmental conditions are

met. An alternative is to use data previously collected by other measurement campaigns,

when these are publicly available, or to generate synthetic time series using simulators.

Compared to the state-of-the-art described in Section 1.2.1, the main contributions of this

dissertation for satellite communications channel modeling are the following:

• A novel equation derivation for modeling the statistical multipath distribution, making

the Rician factor function of the terrain’s reflection coefficient;1

• Verified new Rician factor model through analysis of the combined effects of ionosp-

heric scintillation and terrestrial multipath over different terrain on the receiver BER

performance;1

• Step-by-step implementation description of the 3D rain attenuation field synthesizer

described in Reference [74] for LEO orbits. Emphasis is given to the multi-composite

1Published in the 82nd 2015 IEEE Vehicular Technology Conference [1]
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rain rate conversion to the resultant instantaneous path attenuation;2,3

• A novel rain attenuation time series synthesizer implementation for LEO orbits;4,3

and

• Algorithm implementation description of the LMS channel time series synthesizer with

variable sample rate, based on updated ITU recommendations from 2013 and 2015.5,6

All these aim to make time series generators more realistic such that the experimenter

can replicate a certain channel effect under different environmental conditions with the

convenience of changing some parameters while keeping others constant.

3.1 A More Realistic Multipath Rician Factor

Based on several public accounts of the operation described in References [79,80], it was

observed that communications were not reliable during this time period and that a number

of recent scientific studies [81] have identified space weather as one of the main contributors

for the communication link disruption during the military operation. These studies also

mentioned that the space weather effects were enhanced by the multipath fading caused by

the terrain, but did not quantify their combined effect.

In order to disrupt a satellite communication link, the event causing the fading does not

need to persist for a long time duration. Rather, it just needs to occur across a certain period

of time with a high intensity, which is the typical behavior of ionospheric scintillation. Given

that most robust satellite communication systems use some sort of network protocol, if the

fading event occurs during an exchange of synchronization messages between a transmitter

and a receiver, the link can no longer be sustained and a transmission disruption occurs.

When such a fading event occurs for a receiver moving over terrain such as mountains,

flat ground, or over the sea, the multipath contribution of the scintillated signals may

2Code available on GitHub [75]
3Submitted to IEEE Transactions on Aerospace and Electronic Systems [76]
4Code available on GitHub [2]
5Available on GitHub [77]
6In-print IEEE Access [78]
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Figure 3.1: Illustration of a communication link between a mobile node and a GEO satellite.

The received signal is a combination of the scintillated LOS and multiple reflections of

scintillated rays [1].

either be constructive or destructive. If the latter occurs during the same period of the

communication protocol when synchronization messages are exchanged, the fading effect

is enhanced and a link disruption occurs. The scenario when the multipath fading of

scintillated signals occurs is depicted in Figure 3.1.

In mobile satellite communications, there are several factors that contribute to the total

signal attenuation. The most significant factor is the free-space loss due to the decrease in

power density between a node on the ground and a GEO satellite. The loss is assumed to

be recovered by the receiver amplifiers and additional attenuation sources other than the

free-space loss are considered. Also, it is assumed that the moving node has a constant

speed of 250 km/h (70 m/sec) at a constant altitude of 2 km. Furthermore, two other

attenuation sources depicted in Figure 3.1 are considered: Ionospheric scintillation and

terrestrial multipath fading. It is pointed out that even though there can be fading on both

uplink and downlink, the analysis and simulations are done with regard to the downlink
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only.

3.1.1 Ionospheric Scintillation

The Ionosphere is a region in the Earth’s atmosphere located between 200 km and

2, 000 km in altitude [82, 83]. It is primarily characterized by the presence of ionized gas,

i.e., plasma. The ionization within this region occurs by the photo-ionization process as a

result of two main events: the daily illumination by the Sun and sporadic Sun disturbance

events, such as solar flares or geomagnetic storms [84–86].

The first event repeats every day, with the ionization intensity of the upper layers of the

ionosphere varying throughout the day. This event is more intense at latitudes between ±

40 degrees [83] around the Equator. Just after local sunset, the recombination of electrons

and ions begin. However, this process is not uniform throughout a column of the ionosphere

with a certain height. Thus, non-uniform density ion regions start to build up during the

night, known as ionospheric bubbles, at scales ranging from a few centimeters up to tens

of kilometers. This recombination event usually occurs during a daily local time window

starting at 20:00 local time and lasting up to local midnight.

Space weather is another factor that can enhance the ionization or cause ionospheric

disturbances during any time of day [87]. It also has the potential to extend the disturbance

up to higher latitudes. The space weather activity period tends to follow the 11-year solar

cycle according to the sunspot number [85]. Depending on the intensity of the solar event,

disruptions to satellite communication links can occur if the Earth is in view of the Sun

sector where the event occurred [88].

The power of an electromagnetic field traveling through a ionospheric disturbance varies

very quickly. This fading effect is called ionospheric scintillation [82], and its intensity is a

function of the current ionospheric density gradient faced by the traveling signal.

3.1.2 Multipath Fading

The scenario shown in Figure 3.1 demonstrates the importance of the terrain over which

the mobile node is moving. Depending on the terrain’s landscape and the electrical proper-

ties of its material, the incident rays will be reflected with different intensities and phases.
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It was assumed that there is no signal shadowing and the LOS signal component is always

present. Also, for the case where the receive antenna is located far from the scatterers, the

LOS power can be considered larger than the power of the multipath rays. These reflected

rays combine either constructively or destructively with the LOS component at the receive

antenna. It is assumed that both LOS and reflected rays are scintillated rays reflected by

the terrain profiles considered.

3.1.3 Proposed Channel Model

Several measurement campaigns have assessed the intensity of ionospheric scintillations

within the L-band for GPS systems [70, 82, 89]. Based on these measurements, statistical

models have been proposed, with the Rician [73, 90] and Butterworth 2nd-order filter [73]

models being widely accepted. The recommended approach is to model the scintillation

channel using a Butterworth filter since it relies heavily on measurements for defining fa-

ding intervals, i.e., the 3-dB autocorrelation time lag, for different frequency bands [90].

However, in the literature there is a lack of such measurements for the scintillation of sa-

tellite communications for nodes traveling more than 125 mph (200 km/h) over different

terrain profiles. Thus, a Rician channel model is used, which has the probability density

function [73]:

p(α) =
2α(1 +K)

Ω
I0

(
2α

√
K +K2

Ω

)
e

−K−α2(1+K)
Ω , (3.1)

where K is the Rician factor, the variable α is the magnitude of the complex channel

response function, it is normalized, α ≥ 0, and has a second moment, i.e., mean-square for

the fading amplitude Ω ≡ E[α2] = 1.

The scintillation index S4 is defined by the square-root of the normalized variance of

the signal intensity I over a given interval of time, usually is 1 minute with a measurement

sample rate of 1 Hz, defined by:

S4 =

√
E[I2]− E[I]2

E[I]2
. (3.2)

The Rician parameter that models the ionospheric effects, Kion is related to S4 by [73]:

Kion =

√
1− S2

4

1−
√

1− S2
4

, 0 ≤ S4 ≤ 1. (3.3)
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The multipath model has a Rician distribution with different parameters from the Rician

distribution of the scintillation model. A K-factor function of the reflection coefficient Γ was

derived, which, in turn, is a function of the carrier frequency f , incidence angle θi, reflection

angle θ0, and the electrical properties of the terrain’s material, such as relative permittivity

εr and conductivity σ. The approach taken is to define a Rician K-factor function of

the reflection coefficient using the classical two-ray propagation model [91], assuming that

θi = θ0 = θ, where θ is the satellite elevation angle.

The reflection coefficient Γ is given by [92]:

Γ =
Csinθ −

√
(εr − jχ)− (cosθ)2

Csinθ +
√

(εr − jχ)− (cosθ)2
, (3.4)

where C = εr − jχ for vertical polarization and C = 1 for horizontal polarization. Further-

more, χ is given by:

χ =
σ

ωε0
=

σ

2πfε0
=

1.8× 1010σ

f
, (3.5)

with ε0 = 8.854×10−12 F/m. The phase difference between the two reflected paths is given

by [91]:

∆φ =
2π

λ

(√
d2 + (ht + hr)2 −

√
d2 + (ht − hr)2

)
, (3.6)

where λ is the wavelength, d is the distance between the transmitter and receiver antennas,

ht and hr are the height of the transmitter and receiver antennas, respectively.

The resultant received power Pr is given by the sum of the LOS received power plus the

received multipath power, resulting in:

Pr = Pt

(
λ

4 π d

)2

GtGr[1 + |Γ|2+2|Γ|cos( 6 Γ− 6 ∆φ)], (3.7)

which is function of transmitter power Pt and the reflection coefficient [92], where Gt and

Gr are the transmitter and receiver antenna gains, respectively.

Since the K-factor is defined as the ratio of the LOS power to the multipath power, the

former cancels out, resulting in:

K =
1

|Γ|2+2|Γ|cos( 6 Γ− 6 ∆φ)
. (3.8)
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Figure 3.2: Schematic of the mobile satellite communication system simulation testbed

implemented in MATLAB. Two Rician channels model the effects of ionospheric scintillation

and multipath fading.

It is worth noting that, for the geometry considered in this case, the elevation angle

is assumed constant for the area where the mobile node is moving around. For longer

distances, one might consider θ to be function of time, especially if the satellite is in LEO.

The nature of this scenario, consisting of a mobile node, suggests that the propagation

delay is long [93, 94], in which case a “Gaussian I” type for the Doppler power spectrum

is used, suitable for multipath components with long delays in ultra high frequency (UHF)

communications [95], which is also proposed as a model for the aeronautical satellite channel

[96, 97]. For this Doppler spectrum, the propagation delay τ has an interval 0.5 µs ≤

τ ≤ 2 µs with a Doppler spread given by σDS = 0.45fmax, where fmax = vf
c is the

maximum Doppler frequency [93, 94], where v is the node linear speed in m/s, f is the

carrier frequency in Hz, and c is the speed of light in m/s. For the Gaussian I Doppler

power spectrum, the standard deviation σN normalized by fmax is σN =
σDS
fmax

= 0.45.

3.1.4 Simulation Results

The simulation testbed used in this work was implemented in MATLAB [98] and is

composed of a transmitter, a channel, and a receiver. Figure 3.2 shows the block diagram

of the simulation testbed. Based on the discussion about the channel parameters in the
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Table 3.1: Simulation parameters to be combined into four different scenarios

S4 Frequency Polarization Terrain profile Material

Medium S4 = 0.3 UHF (250 MHz) Horizontal Rural Area (RA) Poor Ground

High S4 = 0.9 Vertical Hilly Terrain (HT)

previous section, the implementation of the two main channel impairments, scintillation and

multipath, uses Rician channel models, each with different parameters, and the Additive

White Gaussian Noise (AWGN) channel representing the noise at the receiver.

For this experiment simulation, random bits are modulated using a Differential Binary

Phase Shift Keying (DBPSK) modulation scheme and sent through the channel to the

receiver. The ionospheric channel input is the S4 index. The multipath channel inputs are:

polarization type, material parameters, terrain profile, and Doppler power spectrum density

distribution. The simulations were performed for all the combinations of parameters shown

in Table 3.1.

The values used for the electrical material properties can be found in Table 4.1 in [91].

The L-path channel models the propagation delay in seconds and the path power in dB for

each of the terrain profiles described in Table 3.1. The European Cooperation in Science

and Technology (COST) COST 207 [94] recommendations are followed and can be found

in Table 7.2 in [93].

The noise is added to the signal using the AWGN channel, which had its Eb/N0 pa-

rameters varied from 0 dB to 20 dB at 2 dB step for the BER curve acquisition. Then,

20, 000 symbols were transmitted per frame with a total of 100 runs for each Eb/N0 value,

such that the minimum value for bit error for each Eb/N0 was guaranteed to be 100. The

maximum Doppler shift considered was 60 Hz for a node moving at 70 m/sec and a carrier

frequency of 250 MHz. Then, the Doppler spread is σ = 0.45fmax = 27 Hz. Since σ � fmax,

the channel is expected to be slow fading. Two S4 indexes were considered: S4 = 0.3 for

medium scintillation and S4 = 0.9 for high scintillation. Even though the considered satel-

lite uses circular polarization, simulations were performed for two different polarizations:

horizontal and vertical. Thus, the following results are bounds on BER performance, not
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Table 3.2: Rician K-factors for ionospheric scintillation and terrestrial multipath fading

filters

Filter 1 Filter 2

Parameter K-factor Parameters K-factor

Medium S4 = 0.3 20.7104 Horizontal pol. 6.2943

High S4 = 0.9 0.7727 Vertical pol. 16.6698

precise estimates. Two terrain profiles were considered for the path gains and delay profiles:

4-path Rural Area (RA) and 6-path Hilly Terrain (HT) channel models [93].

For the reflection coefficient of the K-factor for Filter 2 in Figure 3.2, which uses the

two-ray model, the antenna heights considered as shown in Figure 3.1 are 36, 000 km and

2 km for the satellite and mobile node, respectively. The range between the two antennas

is 36, 497 km and was computed using the STK software by AGI [99] for the Takur Ghar

region (33◦20′35′′ N, 69◦12′52′′ E) to the UFO-10 satellite (77.5◦ E).

The material parameters are defined in terms of their material electrical properties.

It was considered a Poor Ground material type with relative permittivity εr = 4 and

conductivity σ = 0.001 [91]. Regarding the terrain profiles, the values used for the path

gain and propagation delay were taken from the COST 207 [94] recommendation. The K-

factors for the scenarios considered are described in Table 3.2. Since the terrain material,

frequency, and antenna distances were constant for this experiment, the K-factor changes

with the polarization type only, but is function of all these parameters.

After running the simulations for the combinations of channel parameters in Table 3.1,

the results are split in terms of terrain profile and polarization. For a performance reference,

the BER for the link using only the AWGN channel is given. Next, results were obtained

by adding Filter 1 in order to analyze the effect of simulated ionospheric scintillation. The

Filter 2 was connected in series with Filter 1, allowing for the analysis of terrestrial multipath

fading of ionospheric scintillated signals. The results for RA and HT terrain profiles are

shown in Figure 3.3 and Figure 3.4, respectively. Both figures show distinct left and right
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Figure 3.3: BER performance of mobile communication link for a Rural Area (RA) 4-

path channel model under ionospheric scintillation. Left panel shows results for horizontal

polarization and right panel shows results for vertical polarization.

panels for the simulations using horizontal and vertical polarization, respectively.

From Figure 3.3, it is clear that the BER performance difference between polarizations is

minimal given the scenario assumptions as well as transmitter and receiver configurations.

Furthermore, the BER performances for a scenario with high S4 using only Filter 1 and

the scenario with medium S4 using Filters 1 and 2 are similar. Both panels in Figure 3.3

show a great decrease in BER performance for medium S4 while comparing a scenario with

only scintillation and another with multipath of scintillated signals (dashed and dotted lines

with triangle markers, respectively). This decrease is more than two orders of magnitude

for Eb/N0 = 12 dB. For high S4, the BER performance is worse as expected. However, the

decrease in performance in this last case is smaller, less than one order of magnitude over

the entire range of Eb/N0 simulated.

From Figure 3.4, minimal BER performance differences are also observed between the

two polarizations. As expected, the overall BER performance for the two polarizations in the

HT terrain profile are worse than the performances in the RA profile. The main performance

difference between the profiles are for the multipath fading of ionospheric scintillated signals,

from 3× 10−2 to 1.5× 10−2 for medium S4 and from 2× 10−2 to 3× 10−3 for high S4, both
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Figure 3.4: BER performance of mobile communication link for a Hilly Terrain (HT) 6-

path channel model under ionospheric scintillation. Left panel shows results for horizontal

polarization and right panel shows results for vertical polarization.

for Eb/N0 = 20 dB.

3.1.5 Conclusions

The BER performance of a mobile satellite communication system between a GEO

satellite and a moving node under multipath fading of scintillated signals was analyzed

while traveling through different terrain profiles under different scintillation indexes. In

order to implement the channel, a model composed of two Rician channels connected in

series was proposed. Furthermore, the K-factor in terms of the terrain’s reflection coefficient

was derived for the Rician channel implementing the multipath fading.

Simulations for RA and HT profiles were performed. The performance for horizontal

and vertical polarization were also analyzed. As expected, the performance for the HT

profile was found to be worse than the RA profile. The root cause assumed in [81] alone

does not seem to justify the possible message delivery failure based on the results shown

by Fig. 3.4, which assumes the scenario parameters and conditions close to the mountain

region. Depending on the polarization type used, the BER performance can be even worse

depending on the Eb/N0 being used. Thus, there is a significant BER performance de-
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crease when the communicating node changes from a scenario in which only ionospheric

scintillation is present, such as a node flying at high altitudes, to another in which there is

multipath fading of ionospheric scintillated signals, with the performance decrease reaching

some orders of magnitude depending on the Eb/N0 being used.

3.2 Step-by-Step Implementation of a 3D Rain Field Model

for LEO Orbit Attenuation Time Series Synthesizers

It is difficult to study the behavior of rain fading since it varies at each location on

Earth, as well as with the azimuth, elevation angle, and time of year. Due to the current

lack of publicly available rain fading time series data at Ka-band, an alternative approach

is to use rain cell and rain field models that take into account historic statistical data of

rain rate measurements [100] in order to generate synthetic time series of rain attenuation

profiles for a certain location [74].

The 3D synthetic rain field model simulates rain rates in mm/h for a specific geographical

area, and converts them into attenuation values based on the varying LOS geometry at each

time instant. The rain is characterized by rain cells distributed over a field. A rain cell is

assumed to be the region surrounding a local maximum rain rate limited by a minimum

rain rate, known as rain rate threshold [74], which is considered a designer parameter. For

a specific area, when the actual rain rate is higher than this threshold, it is assumed that

it is raining.

The exponential spatial rainfall cell distribution (EXCELL) model [101] used in this

work assumes rain cells having an exponential profile with a central peak. Thus, providing

the rain rate in mm/h distributed in an horizontal plane, the rain cell model is given by:

R(r) = RM exp

(
r

ρ0

)
, (3.9)

where r is the radial distance from the rain cell center, RM is the peak rain rate at the center,

and ρ0 is the characteristic distance from the cell center where the rain rate reduces to e−1

of RM . The EXCELL model is used by the rain field model proposed by Goldhirsh [102].

Knowing the rain rate variation over a specific area, rain attenuation can be computed for
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a given path distance, elevation angle, and rain height. The following is a brief step-by-step

description of the algorithm used in this work (Eqs. (3.10)–(3.14) are derived in [102]):

1. Determine the absolute complementary cumulative distribution function (CCDF) for

a specific location using the MATLAB code provided by Rec. ITU-R P.837-5 [103].

The code suggested by Rec. ITU-R P.837-6 [100] can only convert between higher

integration times down to 1-minute integration times. Notice that the rainfall rates

exceeded by a percentage of the year for each location on Earth, given by the source

code on Rec. ITU-R P.837-5, are already in the 1-minute integration time scale. The

absolute CCDF is shown in Figure 3.5.

2. Determine the conditional CCDF by dividing the absolute CCDF by the exceeded

percentage value (found in the absolute CCDF corresponding to the assumed rain rate

threshold). A rain rate threshold Rq of 0.5 mm/h is assumed, which translates into

rain exceedance of 4.84 % of the year in the absolute CCDF for the region considered.

The conditional CCDF is also shown in Figure 3.5.

3. Determine the modeled rain rate distribution parameters: the probability of rain

on the path P0, the percentage probability of rain in an average year R∗, and the

constant κ in the model proposed in [102], by fitting the conditional CCDF to P (Rq),

the probability that rain rate is greater than Rq, given by:

P (Rq) = P0

[
ln

(
R∗

Rq

)]κ
. (3.10)

Assuming that R∗ needs to be bigger than the maximum measured rain rate [102],

using R∗ = 250 mm/h, the fitting was performed using MATLAB curve fitting tool,

which resulted in P0 = 2.291× 10−5 and κ = 5.956.

4. Determine the amount of rain cells, within the A0 = 100 km × 100 km area for pairs

of peak rain rates within an interval of δ = 5 mm/h, from the minimum peak rain

rate RM = 2.5 mm/h up to the maximum being R∗ = 250 mm/h according to the

expression:

NUM(RQ) =

(
N(RM ) +N(RM + δ)

2

)
δA0, (3.11)
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Figure 3.5: Absolute and conditional CCDF’s for the percentage of time in one year that the

rain rate exceeds the rain rate value at the abscissa for the Worcester area based on the ITU-

R P.837-5. Curve fitting for conditional CCDF shows close agreement between the computed

conditional CCDF and the theoretical model assumed by the ITU recommendation.

where each N(RM ) is the density of rain cells in (number of cells)/km2/(mm/h), given

by:

N(RM ) =

(
P0

RM2πρ2
0

)
κ(κ− 1)(κ− 2)

[
ln

(
R∗

RM

)]κ−3

, (3.12)

and ρ0 is given by:

ρ0(RM ) =
10− 1.5log10RM

ln
(
RM
0.5

) . (3.13)

5. For each peak rain rate interval, randomly assign a peak rain rate value from the

respective interval using a uniform distribution. Then, randomly distribute these rain

cells throughout the considered area with a uniform distribution.

6. Divide the total area into smaller boxes of 0.5 km × 0.5 km area and determine the

total rain rate at the center of each box, which is given by the contribution of all cells

that lies within that particular box. After identifying all cells belonging to one box,
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compute their individual contribution by:

R(U, V ) = RM exp

(
−
√

(x− U)2 + (y − V )2

ρ0

)
, (3.14)

where RM is the randomly assigned peak rain rate centered at (x, y) within the box

centered at (U, V ), and ρ0 is computed using Eq. (3.13). Then, the total rain rate

contribution for each box is the sum of all the individual contributions of the cells

within that box.

The resultant contribution of all peak rain rates within the same box results in the peak

rain rate R(U, V ) for the (U, V ) location point within the area considered. One example of

a simulation output of the implementation of the 3D rain field synthesizer described above

is shown in Figure 3.6, centered on Worcester, MA, USA. This field contains the R(U, V )

grid point values. Since each R(U, V ) value is centered at a box with area dimensions of

0.5 km × 0.5 km, the resultant attenuation value will not be smooth, as shown by the

attenuation time series. However, in order to represent a natural transition of rain rates

between the grid points, a smoothing approach, such as spline interpolation, was used. The

rain rate histogram for this field is shown in Figure 3.7. For the simulations, a total of 44

rain cells randomly distributed across the entire Worcester, MA, USA was considered, and

the surrounding areas were used.

3.2.1 Orbit Simulator, Ground Path Acquisition and Rain layer Inter-

section

In order to generate realistic satellite passings, the license-free version of STK software by

AGI [99] was used. The LEO satellite considered in this work is the ISS, a science laboratory

that orbits the Earth at an average altitude of 420 km and a linear speed of 27, 600 km/h [84].

The passings over one month were simulated, assuming a ground station (GS) were located

on the rooftop of Atwater Kent Laboratories (42◦16′30.8′′ N, 71◦48′25.2′′ W), Worcester

Polytechnic Institute (WPI), Worcester, MA, USA.

For the analysis in this work, a pass that lasted 512 seconds is considered, with an

elevation angle range of (5.02◦–88.593◦) and a slant path range of (422.26 km–1870.24 km),

as shown in Figure 3.8.
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Figure 3.6: Simulated peak rain rate field area of 100 km × 100 km with resolution of

0.5 km × 0.5 km centered on Worcester, MA, USA. Rain rates provided by Rec. ITU-R

P.837-5, the EXCELL rain cell model, and Goldhirsh rain field cell distribution model were

combined to synthesize the resultant rain field.

According to Rec. ITU-R P.839-4 [104], the rain height for an antenna at the chosen

location is 4.53 km. Using the total slant path distance and elevation angle profiles provided

by STK, the distance between the GS and the point that intersects the rain layer for each

elevation angle is computed. This resultant distance experiences rain and is used to compute

the total rain attenuation for a specific attenuation and total rain attenuation along the

path, described below by Eqs. (3.15) and (3.16) at each time instant. The rain rates are

obtained by the simulated synthetic rain field, for each elevation and azimuth angle that

represents the satellite pass movement in sight of the GS. Figure 3.9 shows the rain rate

reading during the considered satellite pass at the LOS intersection with the synthesized

rain layer, accordingly to the elevation angle profile shown in Figure 3.8.

To compute the rain attenuation at each second, the range from the ground antenna

up to the point intersecting the rain layer is specified. However, along this path the rain

rate may vary. Thus, for each segment with a different rain rate and range, its attenuation

contributions are computed, as shown by Figure 3.10. For those segments that are not

covered by rain, only the slant path loss is accounted for and summed to the total attenu-

ation for that time instant. This entire process repeats for each time instant, in this case,
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Figure 3.7: Rain cell histogram of the peak rain rate field for an example of the simulation

run shown in Fig. 3.6. The resultant peak rain rate contribution in 0.5 km × 0.5 km

resolution follows the log-normal distribution of the rain rate exceedance probability.

each second, due to the satellite motion, tracked by variations of the elevation and azimuth

angles that results in changes on the LOS intersection point at the rain field, as well as the

distances involved.

Note that the rain rate values shown in Figure 3.9 are the ones read at the farthest-most

distance from the antenna, located at dn, having a value of Rn in Fig. 3.10, for each time

instant. Thus, at each time instant, as mentioned above, there is a set of rain rate values

for each segment when there is rain between the antenna and the point in which the LOS

intersects an imaginary plane at the rain height. This work does not consider elevation

angles below 5◦ since that would cause the LOS to never cross this imaginary plane.

According to Rec. ITU-R P.838-3 [3], the attenuation due to the rain depends on the

LOS range being affected by rain Lr(k), carrier frequency, and polarization type. For each

time instant k, Lr(k) is segmented into i segments, each with different values for range

∆li(k) and peak rain rate Ri(k). In the simulations the values used for Ri(k) are the grid

points R(U, V ) values computed for the 3D rain field. Each segment has its peak rain rate

value converted into specific attenuation value γRi(k) (dB/km) by:

γRi(k) = ν · (Ri(k))α, (3.15)
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Figure 3.8: Slant path and elevation angle profile for one ISS pass over a GS located at

WPI, Worcester, MA, simulated in STK. The pass is 512 seconds long. The minimum slant

path distance is achieved during the maximum elevation angle.

where ν and α are dependent on frequency, polarization, and elevation angle, computed

using tables provided by [3]. The rain attenuation contribution of all segments in dB at

time instant k is computed by:

Arain(k) =

n∑
i=1

γRi(k) ·∆li(k), (3.16)

which is the sum of the attenuation over each segment. Computing ∆li(k) requires some

attention since, given the peak rain rates distributed across the 3D rain field, one needs

to account for the LEO motion in terms of its elevation and azimuth angles, as well as for

the rain height, at each time instant k. Figure 3.10 illustrates the rain rate segmentation

during a generic time instant k.

For the particular case of circular polarization, which is assumed in this work, it turns

out that it is not a function of elevation angle. For the Ka-band, we used ν = 9.2249 · 10−5

and α = 1.0028. The relationship between γR and R is shown in Figure 4.2 for Ka-band

and S-band. More details on the resultant time series are provided in Section 4.1.7.
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Figure 3.9: Peak rain rate readings in mm/h for the LOS intersection with the synthesized

rain layer during the satellite pass considered. For the same synthesized rain field, different

passes having different elevation and azimuth angle profiles might result in different rain

rate readings.

3.3 Proposed Rain Fading Time Series Synthesizer for LEO

Orbits Based on ITU-R P.1853-1

Using the rain attenuation time series synthesizer implementation described above, a

technique to synthesize rain fading time series for LEO orbits in any orbital inclination is

proposed. This approach advances the applicability of ITU-R P.1853 [105] for scenarios

where rain fading affects communications links between a fixed or mobile GS and a LEO

satellite.

3.3.1 Overview of ITU-R P.1853

Released in 2013, the ITU-R P.1853 [105] only generates rain attenuation time series

for fixed elevation angles that can be used only with GEO satellites. Its current version

requires three inputs: a CCDF, the probability of rain on the path P0, and the attenuation

levels exceeded in dB for the percentages of time used to compute the CCDF. Following

the procedures described in ITU-R P.1853, the ITU-R P.837 [100] is used to compute both

the CCDF of the rain rate and P0 for a specific location. The time percentages used to
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Figure 3.10: Segmentation of rain attenuation at time instant k into different peak rain

rate Ri(k) and segment LOS range ∆li(k). Knowledge of elevation angle and sub-satellite

location allows computation of ∆li(k). Segments without rain contribute with only clear

sky slant path attenuation.

compute these are assumed to be equal to:

[0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.5 1 2 3 5 10]. (3.17)

The rain rates in the CCDF are converted into attenuation levels in dB using the ITU-R

P.618-12 [71] based on parameters from the ITU P.839 [104] and ITU-R P.838-3 [3], such

as rain height and circular polarization for a carrier frequency fc = 26 GHz.

The final step consists of feeding all of these values to the MATLAB implementation,

also provided by the ITU Study Group 3 [106], which is limited to synthesizing time series

only for GEO orbits.

3.3.2 Proposed Rain Fading Time Series Synthesizer for LEO Orbits

The main synthesizer design challenge was the generation of a rain attenuation time

series that is computed for a varying elevation angle at each time instant. In order to

achieve this, the conversion of a collection of synthesized GEO time series into one LEO

time series was proposed. As shown in Figure 3.11, for different fixed elevation angles there

is a different attenuation value for the same current channel conditions.
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Figure 3.11: Rain attenuation time series examples of outputs for two different fixed eleva-

tion angles using the available implementation of ITU-R P.1853 at Ka-band. For varying

elevation angles, as is the case of LEO orbits, several time series would be required, but

just a few points of each would be used.

However, for LEO satellite orbits, the elevation angles continuously change over time

following a non-linear relationship with the time, for each pass. Also, the attenuation time

series for GEO is different for each elevation angle. Thus, the attenuation levels should

transition between these attenuation time series that have fixed elevation angles. The goal

is to generate a time series such that the resultant amplitude changes across different fixed

elevation angle time series, based on the elevation angle of a LEO pass.

One approach would be to generate an amount of attenuation time series that would be

equal to the number of data points in the elevation angle time series. However that would

be computationally costly since only one attenuation data point would be used out of each

attenuation time series generated for each fixed elevation angle. Another approach would be

to generate an attenuation time series generated for a fixed number of elevation angles and

to obtain the resultant time series by roughly hopping between them. The problem with

this method is that it would not represent the smooth slant path loss for a LEO satellite,

as shown in Figure 4.9, due to the abrupt value changes. Another issue with this approach

would be to determine at what time instant the output should hop from one fixed elevation

angle time series to another. Figure 3.12 highlights this issue by illustrating these rough
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Figure 3.12: Rough transitions between time series examples shown in Fig. 3.11 with fixed

elevation angles at non specified time instants. LEO elevation angle shows how smooth

these transitions should be.

changes for time series shown in Figure 3.11.

To solve this interpolation problem, it was proposed to use the elevation angle profile

obtained from an orbital simulator such as STK [99] to aid the interpolation of attenuation

levels between time series with fixed elevation angles. This proposed method is called

“nonlinear weighted two dimensional interpolation of rain attenuation time series for LEO

satellites based on elevation angle profile using ITU-R P.1853”.

It is assumed that six elevation angle intervals between the minimum and maximum

values are obtained for a certain satellite pass, as shown in Table 3.3. Thus, in the proposed

approach the goal of generating a LEO time series containing 512 points was achieved

using only six attenuation time series. Note that there is a trade-off between accuracy of

the generated LEO time series and the number of GEO time series generated. Accuracy

performance analysis, such as statistical comparisons between the outputs of the proposed

method and measurement time series, will be possible as soon as measurement data become

publicly available.

An elevation angle profile is considered for a single pass ranging between 5◦ and 83.41◦.

Each interval time series was generated using the first elevation angle value of that interval.
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Table 3.3: Elevation angle intervals

Interval Elevation angle (in degrees)

1 5 – 8.869

2 8.869 – 14

3 14 – 21.37

4 21.37 – 33.48

5 33.48 – 56.48

6 56.48 – 83.41

Within an elevation angle interval, at each discrete time instant k, one LEO attenuation

value AttLEO(k) is computed by:

AttLEO(k) = [Attθ1(k) · t1(k)] + [Attθ2(k) · t2(k)], (3.18)

where Attθ1(k) and Attθ2(k) are the attenuation values from the time series computed using

the fixed elevation angles θ1 and θ2, and the weights W1(k) and W2(k) are given by:

t1(k) =
|θ1(k)− θref(k)|

θdiff
(3.19)

and

t2(k) =
|θ2(k)− θref(k)|

θdiff
, (3.20)

with

θdiff = |θ1 − θ2| (3.21)

being constant during one elevation interval between [θ1, θ2]. The function θref(k) is the

satellite elevation angle at instant k that drives the non-linearity for the weights. The

implementation code of this proposed method is available online via GitHub [2]. Figure 3.13

shows a smoother and more natural transition between the fixed elevation angle time series

relative to those transitions shown in Figure 3.12 as a result of the proposed method. Also,

the transitions occur at the correct time since they are driven by the elevation angle time
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Figure 3.13: Resultant LEO rain attenuation time series example showing computed AttLEO

values at each time instant k using proposed method “nonlinear weighted two dimensional

interpolation of rain attenuation time series for LEO satellites based on elevation angle pro-

file and ITU-R P.1853.” Elevation angle and rain attenuation time series for each elevation

sector is shown for reference.

series profile. It is worth noting that, for the total slant path loss, the slant path distance

loss for the LEO satellite needs to be added to the rain attenuation time series.

3.3.3 Conclusions

Due to the current lack of measurement data availability with respect to rain fading at

Ka-band for LEO satellites, two different methods to synthesize rain attenuation profiles

were used, one using a 3D rain field and another that was proposed by the author, based

on the ITU-R P.1853. Future measurement campaigns of rain fading at Ka-band from LEO

satellites will allow these synthesizers to be validated, or calibrated, in order to allow for the

convenience of testing communication algorithms while varying several channel attenuation

parameters without the need for performing in-field measurements.
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3.4 LMS Channel Experiencing Rain Fading at Ka-Band from

a GEO Satellite Downlink

As previously mentioned, due to the lack of available measurements, especially of rain

fading impairments at Ka-band, a time series had to be synthesized based on the recently

updated ITU recommendations. In order to generate the synthetic rain attenuation levels, a

method proposed by ITU-R P.1853 [105] was employed, in which three inputs were required:

CCDF; the probability of rain on the path, P0; and the attenuation levels exceeded in

decibels for the percentages of time used to compute the CCDF. In this work, the following

time percentages were used:

[0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10]. (3.22)

Using the ITU-R P.837 [100] and focusing on the location of Worcester, MA, USA (42◦16′30.8′′

N, 71◦48′25.2′′ W), a CCDF for rain rate and P0 were computed. Then, the rain rate values

from the CCDF were converted into attenuation levels (dB) based on the ITU P.618-12 [71]

specifications using parameters given by ITU P.839 [104], such as the rain height, as well

as parameters given by ITU-R P.838-3 [3], such as the circular polarization for a carrier

frequency fc at 26 GHz. Finally, using the method proposed by ITU-R P.1853 [105], a

rain attenuation time series was generated, which assumed an elevation angle of 34◦, at a

sampling rate of 1 Hz across a time period of 84, 600 seconds. A snapshot of 512 seconds

of a generated times series is shown in Figure 3.14, which is the same time series used in

other scenarios, further described in later sections.

3.4.1 LMSS Channel Simulation at Ka-Band

Given the ground station mobility, the Earth-space LMS service channel time series was

generated based on ITU-R P.681-8 [107] communicating across the Ka-band with a GEO

satellite. For a more realistic propagation simulation, both statistical and stochastic models

for mixed propagation conditions, such as rural, wooded, urban, and suburban areas, were

also employed. This model computes the cumulative distribution function (CDF) using a

semi-Markov two-state model represented by a non-shadowed (good) state and a shadowed
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Figure 3.14: Rain attenuation time series for Ka-band based on ITU-R P.1853. Note that

during the entire time interval the channel is facing rain fading.

(bad) state, where the state duration follows a log-normal distribution and the signal within

each state follows a Loo distribution. The log-normal shadowing affects only the direct

component, while the diffuse multipath components have a constant average power [108].

It is worth noting that ITU-R P.681-8 recommends the usage of parameters measured

specifically for a suburban area at 11.7 GHz rated to be used by any frequency between

10 GHz and 30 GHz, thus covering the lower portion of the Ka-band. The ground vehicle

speed vm was set to 33 km/h, while the elevation angle was set to 34◦. Furthermore, the

angle between the vehicle heading vector projected on the ground and the satellite azimuth

vector projected on the ground was specified to be equal to 0◦. The sampling frequency fs

was assumed to be equal to 10, 000 samples per second, which is a function of the carrier

frequency fc, as well as of the maximum speed of the vehicle vmax, given by [109]:

vmax ≤
c

2

fs
fc
, (3.23)

The synthesizer diagram block, shown in Figure 3.15, was implemented in MATLAB (source

code available from Reference [2]). Instead of the recommended Jakes model, a 10th-order

low-pass Butterworth filter with normalized 3-dB cutoff frequency equal to

fcutoff =
fDoppler

fs/2
, (3.24)
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was used to reproduce the fast variations due to multipath since it is more realistic for

an LMS channel than the Jakes model [110]. Note that fDoppler = vmfc
c is the maximum

Doppler frequency. The time series was generated as follows. Using the input parameters

provided by the ITU-R P.681-8, parameters are generated for the two states as well as

for the transitions between them (for implementation purposes, transitions are considered

states too). Then, a complex time series for both direct and multipath components were

generated. Since the direct signal suffers from slow fading, it is filtered by a low-pass filter

with transfer function:

T (Ssignal) =

√
1− ρ2

1− ρS−1
signal

, (3.25)

where

ρ = exp

(
−vm (1/fs)

Lcorr

)
(3.26)

and Lcorr is the correlation distance given by [107]. The phase of the direct signal is

defined by the maximum Doppler frequency, whereas the multipath series is filtered using

the Butterworth filter. Note that the proposed synthesizer implementation differs from

that of Reference [110] since the latter uses a maximum transition rate (shadowing slope)

of 5 dB/m whereas the former uses the recommended linear interpolation of the parameters

during all transitions between good (bad) and bad (good) states. This leads to a more

natural transition of the mean and standard deviations of the Gaussian random variables

used to generate the raw series for both direct and multipath signals.

The proposed implementation generates data at a sampling rate of fs, resulting in a

total of 5.12 million samples. However, to comply with the rain attenuation time series, the

LMS synthesizer output is down-sampled to 512 samples, as shown in Figure 3.16.

For the scenario with a mobile LMS channel during a rain fading event, the previous

two time series were added together. A step-by-step block diagram for the algorithm of the

complete fading time series generator is provided in Figure 3.17. The resultant attenuation

time series is shown in Figure 3.18. Several aspects that differ between the proposed ana-

lysis and those found in Reference [111] include the following: (i) The power attenuation

over both direct and multipath signals for both shadowed and non-shadowed scenarios is

assumed; and (ii) The proposed approach uses synthesized time series based on the updated
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Figure 3.15: LMS channel simulator diagram block based on ITU-R P.618-8. After the good

or bad state time series generation, the same input parameters are provided to the state

attenuation time series synthesizers, including good, bad and their transitions. MATLAB

code implementation provided at Reference [2].

ITU recommendations, with the goal of analyzing the attenuation values on a per-second

basis rather than an annual shortage percentage. However, both studies assume that the

rain possesses minimal influence on the probability density function (PDF) with respect

to shadowing events in clear sky scenarios. Consequently, the shadowing resulting from

both direct and multipath rays, as well as the rain attenuation from these same direct and

multipath rays, can be considered to be two independent stochastic processes.

When comparing the CDF of the LMS channel time series (shown in Figure 3.16) with

the CDF of the same LMS time series but with the effects of rain attenuation at Ka-band

included (shown in Figure 3.14), one can observe that the resultant channel possesses a log-
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Figure 3.16: Example of an LMS channel synthetic attenuation time series at Ka-band

based on ITU-R P.618-8. Shadowing due to mobile terminal LOS blockage by buildings

and trees are represented by deep attenuation values, where the good and bad states are

Loo distributed.

normal PDF since only the mean of the LMS PDF changes, which is observed in Figure 3.19.

Thus, it can be deduced that an LMS channel experiencing from rain fading possesses a

smaller mean.

3.4.2 Conclusions

A detailed description of the implementation of an LMS channel synthesizer was given

together with the addition of rain attenuation time series affecting the downlink from a

GEO satellite at Ka-band. The modularity of the implementation allows generation of time

series for different environments, such as suburban or rural, as well as for different sample

rates.

3.5 Chapter Summary

In this chapter, two new satellite channel models were proposed aiming to fill a few

research gaps in the literature. A new Rician factor function of the reflection coefficient

was derived, allowing signal multipath effects to be more realistic while accounting for the
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Figure 3.17: Block diagram of complete attenuation time series generator algorithm. Output

time series is a combination of the individual rain fading time series and the LMS channel

time series, generated individually.
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Figure 3.18: LMS channel time series during rain fading for a constant speed mobile ground

receiver communicating with a GEO satellite at Ka-band.
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Figure 3.19: Addition of rain fading to the LMS amplitude. Note the change of the mean

in the PDF. As expected, both events are independent.

material composition of the reflective surfaces, in this case the terrain, for mobile terminals.

A communications system performance was analyzed while ionospheric scintillated signals

from a GEO satellite experienced multipath on their way to an helicopter.

Furthermore, a 3D rain field synthesizer was described in details, with an emphasis

on the acquisition of the rain attenuation time series, resultant from the contribution of

the different rain rate segments, and how to compute them, was given for LEO orbits.

This implementation is available at [75]. A novel method for generating more realistic

rain attenuation time series for LEO orbits was proposed, available at [2] bundled with its

equations and an example of a time series used in this work for the simulations.

A detailed description of the implementation of an LMS channel synthesizer being af-

fected by rain attenuation for a downlink from a GEO satellite at Ka-band was provided.

It is worth noting that the channel attenuation time series synthesized using the methods

proposed and described in details by this chapter were used to test the algorithms proposed

in Chapter 4.
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Chapter 4

Kalman Filter and Interactive

Multiple Model Filter for Satellite

Communications

In this chapter, two KF applications are presented. Taking advantage of the channel at-

tenuation time series generation methods covered in detail in Chapter 3, first the end-to-end

satellite communication system simulator is described in detail, from the orbit generation

up to the ACM algorithm within the receiver. Our main contribution relies on the addition

of a Kalman filter at the receiver for signal-to-noise ratio (SNR) time-series predictions,

which considerably decreased the amount of ACM switching without using any hysteresis

for a satellite in LEO orbit. This achievement is important since it represents the potential

for more robust systems, such as the DVB-S2X, to enable adaptations to be performed at

the exact SNR level, resulting in an increase of throughput while meeting the BER requi-

rements, i.e., the QoS delivered can be improved with the proposed technique. First, the

performance of KF predictions of SNR time series is described for rain attenuation condition

while assisting the ACM at a downlink from a satellite in GEO orbit at Ka-band.1 Next,

QoS improvements achieved by the KF are presented for a downlink from a satellite in LEO

1Published in the 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP) [112]
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orbit while being attenuated by rain at Ka-band.2

Furthermore, a more complex version of the KF is explored, which uses a bank of

KF in parallel, called the IMM filter. This tool is proposed to be part of a receiver as

well. It is demonstrated that its prediction advantages are two-fold: first, for networks

suffering variable latency, it is possible to adjust the prediction interval with a smaller error

than simply using a KF alone. For instance, recent reports such as Reference [113] have

successfully gained a chance to demonstrate the impact of such variable network delays on

satellite-based networks, even for the ones using LEO satellites. Second, another application

of IMM filters is in assisting network relay mechanisms in selecting alternative routes during

shadowing events. Our proposed method seems to be immune to the presence of rain at an

LMS channel operating at a Ka-band downlink from a GEO satellite.3,4

4.1 QoS Improvent in Satellite Communication Link Adap-

tations Using Kalman Filter

In order to assess the performance of a communications system operating in different

scenarios, a communications system consisting of one transmitter, one receiver, and the

channel was implemented in MATLAB [98]. Since the adaptations are performed on the

downlink, the satellite acts as the transmitter while the GS is assumed to be the receiver

that performs filtering and predictions on the received signals, as well as decisions upon

adaptation schemes. Figure 4.1 shows the diagram blocks of enhancements required by the

receiver-side of a communications system to perform predictions and adaptations. Note that

the satellite channel dynamics, such as slant path loss and rain attenuation, are accounted

for in the AWGN channel block for simulation purposes.

The system is designed such that the receiver continuously measures the signal attenu-

ation, filters out sensor noise, and predicts its future value depending on the amount of

delayed samples. Then, it decides whether modulation adaptation scheme is needed or not,

and reports its decision back to the transmitter. An ideal feedback channel is assumed to

2Submitted to IEEE Transactions on Aerospace and Electronic Systems [76]
3In-print IEEE Access [78]
4Published in 34th AIAA International Communications Satellite Systems Conference [114]
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Figure 4.1: Block diagram of a communication system architecture showing the enhance-

ments added to the receiver, such as the predictor and decision logic. Channel impairments

are accounted for by the AWGN channel block.

be operating also at Ka-band. Although these actions will have an immediate impact on

the higher-layer protocols, the analysis of such impacts are not the focus of this research.

For adaptation, the allowed modulation schemes consist of 4- and 16-QAM uncoded

modulation schemes for GEO orbit simulations and 4-, 16-, and 64-QAM Hamming-encoded

schemes at a rate of 4/7 for LEO orbit simulations. Perfect synchronism between transmitter

and receiver is assumed. Considering a band-limited channel with constant noise power over

the bandwidth, the channel is modeled as AWGN [57].

At the receiver input, the SNR is filtered and predicted k samples ahead, assuming k

equal to the known number of delayed samples. Then, predicted values are converted into

Eb/N0. Based on these predictions, the decision logic decides upon the need to reconfigure

the radios according to the link performance requirements established by the network ma-

nager. Each of these receiver subsystems is described in detail on the following subsections.

4.1.1 Channel Adaptation Concept

Ideally, all the SDR parameters should be reconfigurable. Without loss of generality,

this research work considers that only the modulation scheme can be changed. Note that

it is also possible to reconfigure parameters such as encoding schemes, power levels, and

waveforms. In this case, two frequency-independent downlink channels are considered. They
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Figure 4.2: Theoretical specific rain attenuation for different rain rates at Ka-band and S-

band for a carrier frequency at 26 GHz and 2 GHz, respectively, circularly polarized, based

on the ITU-R P.838-3 [3]. For circular polarization the specific attenuation versus rain rate

does not vary with the elevation angle.

are referred to as the control channel and the data channel. The data channel operates at

the Ka-band and is responsible for the high data rate transmission, and it is where the

adaptation takes place. The control channel is intended to operate at the S-band, where

the rain fading is not as severe as in the Ka-band (see Figure 4.2). Its transmissions are

primarily performed when a connection starts up for the first time, such as during a hand-

shake protocol, as well as every time the Ka-band link enters an outage state due to deep

attenuation or when the Ka-band transmitter is turned off.

Such an approach guarantees control over the satellite during the outage periods at

Ka-band and allows battery power to be saved if the Ka-band transponder is turned off.

While transmitting at S-band, the system might use a robust low-rate modulation scheme,

such as DBPSK, for radio control purposes, as well as to probe the channel when the main

Ka-band transmitter is deactivated. The communications performance analysis at S-band

is outside the scope of this work and, similar to the feedback channel, it is assumed to be

ideal. Instead, more focus is given to the adaptation performance at the Ka-band downlink

data channel. As soon as the channel conditions achieve favorable link quality levels, the

transmitter is instructed to start using the data channel and to turn off the control channel.
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Figure 4.3: Finite-state machine of the link adaptation and frequency band control bet-

ween S-band and Ka-band. Triggering events are ruled by the Eb/N0 conditions shown in

Table 4.1.

Figure 4.3 shows the finite-state machine illustrating this concept. Additional details about

the modulation scheme adaptation and Eb/N0 are given in the following subsections.

4.1.2 Prediction Using Kalman Filters

The predictor proposed for this work has a fundamental role of identifying the attenu-

ation level a few samples ahead in time based on the noisy receiver measurements, thus

allowing the transmitter to know what to reconfigure ahead of time. Although the round-

trip delay for LEO satellites is usually only 1.4 ms, as opposed to 250 ms when dealing with

GEO satellites [57], the additional delays induced by the processing equipment at the trans-
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mitter and receiver should be considered, which is a major contributor to the processing

delay of the packet buffering. Another delay source can be the protocol frame variable size,

which is a function of the ACM scheme being used. The delay can potentially be increased

if the link needs to be relayed over an additional link going through one or more satellites,

causing the total delay to be on the order of a few seconds in duration [113]. Note that, in

a scenario of full-duplex communications mode, some sort of attenuation prediction would

be required to be embedded within each node such that both can reconfigure their radios

at the correct time. In this research, just the downlink, i.e., only the GS receiver, has the

predictor implemented.

The main focus of this work is to improve QoS in adaptive satellite-based communica-

tions, i.e., the ACM performance in terms of adaptation stability for applications that are

sensitive to data rate. Regarding applications that require a stable data rate, adaptation

systems that blindly change their modulation schemes, such as those that just rely on raw

measurements, might end up degrading the end-user performance instead of improving the

communications link. On the other hand, if hysteresis is used, the SNR threshold levels

bringing the modulation scheme up or down are different, inhibiting the system to success-

fully use resources for a certain time period. Thus, predictions have to be made such that

the decision logic does not inherit the measurement noise or fast fading oscillations around

the ACM thresholds, which would cause quick adaptations in series, while being aware of

the Eb/N0 variations caused by the adaptation itself. The predictor output should be ro-

bust enough to recognize and to filter out noise in the boundaries of the adaptation levels

between different modulation schemes, such that hysteresis approaches are not required,

allowing the correct adaptations to be performed immediately after the signal crosses the

theoretical Eb/N0 threshold.

Usually, the measurements are contaminated by noise from several sources, such as the

channel and both transmitter and receiver antennas and amplifiers, which result in noisy

measurements at the predictor input. In order to tackle the problems of noisy measurements

causing oscillations on the adaptations, while allowing for predictions to be done, the usage

of a KF is proposed, and performance analyses are proposed for three different scenarios

mentioned above: clear sky, rain fading using the 3D rain field, and rain fading using the
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proposed LEO attenuation time series synthesizer in Chapter 3.

Therefore, a scheme is proposed to predict the attenuation level k-steps ahead using the

well-known linear KF equations without control [23–25]. The most challenging part of using

a KF is to model the system precisely. In the present approach, a simple mode, constant

velocity, is used and all the model uncertainties are accounted for in the noise variance

matrices. The search for these noise matrices is an open question regarding the system

being modeled, and the interested reader can refer to [27,29,115,116]. However, a solution

to this noise variance matrices search problem is proposed in Section 4.2. In this work,

the only measurement used is the SNR value at the receiver. However, during the filtering

process, a second state, the SNR slope rate, which cannot be measured, is estimated and

predicted as well. This is the reason why the matrices in the model have two dimensions

(see Appendix A for detailed matrix descriptions).

The KF, fully explained in Reference [117], estimates a signal contaminated by two

noise sources, the process noise ω(k) and the measurement noise υ(k), using the state space

equations without control, namely:

X(k + 1) = F ·X(k) + ω(k), (4.1)

which is responsible for modeling the state evolution with F being the transition matrix

implementing the constant velocity model that allows for the projection of the current

estimated state, and:

z(k) = H ·X(k) + υ(k) (4.2)

describes the noisy outputs of the measurement sensor. The observable state z(k) is the

measured received power amplitude, thus, measurement matrix H = 1. The process noise

ω(k) and the measurement noise υ(k) are both zero-mean Gaussian-distributed with cova-

riance matrices Q and O, respectively. O is known since it can be measured on the receiver,

differently from Q, which is assumed known for the QoS analysis but requires a search

method that has been proposed and described in Section 4.2.

The KF approach used in this work can be summarized by the following equations,

which can be further divided into two sets of equations. The first set is responsible for
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predictions of X̂j , given by:

X̂j(k + 1 | k) = F · X̂j0(k | k), (4.3)

with the error covariance matrix Zj given by:

Zj(k + 1 | k) = F · Zj0(k | k) · F T +Q. (4.4)

The second set performs updates of the Kalman gain Jj :

Jj(k + 1) = Zj(k + 1 | k) ·HT
j · (Sj(k + 1))−1, (4.5)

where the residual covariance matrix S is computed by:

Sj(k + 1) = H · Zj(k + 1 | k) ·HT
j +Oj . (4.6)

X̂j and Zj are updated using the expressions:

X̂j(k + 1 | k + 1) = X̂j(k + 1 | k) + Jj(k + 1) · ej(k + 1), (4.7)

Zj(k + 1 | k + 1) =Zj(k + 1 | k)

− Jj(k + 1) · Sj(k + 1) · JTj (k + 1),
(4.8)

where the residual e is computed using the expression:

ej(k + 1) = z(k + 1)−H · X̂j(k + 1 | k). (4.9)

4.1.3 Decision Logic

The predictor outputs, i.e., SNR values that are expected to affect the channel k-steps

ahead, are used by the decision logic in Eb/N0 format. If there is a need for adaptation

of the modulation scheme or frequency band, in case of system outage at Ka-band, the

receiver sends commands containing new parameters to the transmitter. Decisions are

made considering the performance thresholds set by the network manager, left as designer

parameters. The target BER is monitored through predictions of Eb/N0 values. Thus, based

on the maximum BER allowed, Eb/N0 thresholds for the available modulation schemes are

set. For instance, BER thresholds used in the simulations are detailed in Table 4.1. Without

loss of generality, the maximum BER assumed was 10−3.
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Table 4.1: Eb/N0 adaptation thresholds.

Mod. scheme Freq. band GEO LEO

4-QAM Ka-band 7.6 5.9

16-QAM Ka-band 11.6 9.45

64-QAM Ka-band N/A 13.55

4.1.4 Complete Simulator Algorithm

To summarize, the overall flow graph of the simulator algorithm is illustrated by the

block diagram in Figure 4.4. The left feedback channel represents the control channel at

S-band, whereas the right feedback channel is the data channel for the Ka-band, and both

are assumed to be ideal.

4.1.5 Simulator Setup

The satellite communication simulator is composed of a satellite orbit simulator, an

attenuation profile synthesizer, the satellite communication link simulator, and the proposed

improvements in the GS receiver, in which the Kalman filtering and adaptation decisions

are performed. The attenuation simulator receives the satellite orbit profile from the orbit

simulator and outputs the attenuation profile. For clear sky conditions, just the slant path

loss is considered. Next, the communication link is simulated using the attenuation profile

as the channel profile. At the end of each transmission, as mentioned above, the predicted

Eb/N0 is used to drive the adaptation for the next step. A general concept of the simulator’s

flow graph is depicted in Figure 4.5.

4.1.6 Simulation Results for GEO Orbit

Due to the lack of measurement data for analysis of rain fading at Ka-band for GEO

satellites and based on fading slopes provided by measurements from the literature [14,

118–120], the rain attenuation behavior was simulated. Later, this same synthetic signal

is considered as the measured Eb/N0 at the receiver, which represents the rain attenua-
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Figure 4.4: Simulator diagram block with the operational flow graph between the transmit-

ter and receiver. The channel is driven by the resultant synthesized attenuation weather

profile and slant path loss. Receiver contains additional blocks such as Kalman filter and

decision logic.

tion behavior. This signal is 15 minutes long and the sampling frequency is 1 Hz. Even

though there are ITU recommendations based on statistical models for GEO orbits, and

based on the purpose of testing the proof-of-concept of the proposed prediction algorithm,

this method was easier to implement. More complex ITU implementations for time se-

ries synthesizers and proposed equations for extending these synthesizers are provided in

Section 4.2. Figure 4.6 shows the synthetic attenuation signal representing the Eb/N0 me-

asured by the receiver during rain and the predicted value plotted at the instant it was

predicted to happen. Figure 4.7 shows a zoomed-in portion of Figure 4.6.
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Figure 4.5: Complete flow graph of simulators used to analyze the Kalman filter prediction

while driving the satellite communication adaptations. The rain attenuation profile can be

either the 3D rain field generated or the proposed LEO rain synthesizer based on the ITU-R

P.1853.

The number of symbols sent remained constant throughout all the simulations at 30, 000

symbols/sec. Our design considers link loss every time the Eb/N0 is lower than 7.6 dB, i.e.,

transmissions made with the BER higher than allowed represent a zero throughput for

the customer. The predictor values are initialized as follows (refer to Appendix A). The

initial values of the state x, the state variances zv and zc, the process variance q, and the

measurement noise O are unknown. It was chosen to be x0 = 0. Since the attenuation

value and the rate are uncorrelated zc = 0 and zv = 10, 000 since it will be corrected with

time. The value of q was varied from q = 1 (e.g., assuming an inaccurate model) up to a

low value as q = 10−10 (e.g., assuming a very accurate model). The noise was assumed to

be O = 1. With the exception of the q values and the noise in the added portion ∆x, the

initial choice of these does not have a considerable effect in the overall system performance.

The prediction window had the length of 10 samples and the prediction horizon considered

5 steps ahead, which represents 5 samples ahead, based on the sample rate used. In the

simulations, one sample per second was used. The system’s delay was set to be equal to

the prediction horizon, i.e., 5 seconds.

First, the system without the prediction and adaptive features was simulated during

the emulated rain event, the same shown in Figure 4.10, and collected the BER values.

Next, two additional scenarios were simulated: 1) both prediction and adaptive features on

and 2) with the predictor off and the adaptive feature on. Table 4.2 summarizes the BER
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Figure 4.6: Rain attenuation predicted values k-steps ahead using noisy measurements. The

true value cannot be seen due to the large number of samples

Table 4.2: BER for different simulated scenarios

Mod Scheme Total bits Error bits BER

4-QAM (No adapt) 44, 160, 000 1, 452 3.2880× 10−5

16-QAM (No adapt) 88, 320, 000 194, 805 2.2× 10−3

Adapt on and Pred on 63, 480, 000 4, 254 6.7013× 10−5

Adapt on and Pred off 88, 320, 000 194, 805 2.2× 10−3

performance for these four scenarios.

According to Table 4.2, without adaptation and prediction, the BER for 16-QAM was

higher than 4-QAM because before and after link outages the transmissions were made

when the attenuation levels were high. However, the interesting part of these results is

when the adaptation and prediction schemes were used, the BER performance was closer

to that of only 4-QAM but an additional of 19M bits were transmitted. This is due to the

fact that the predictor could “see” the increase in attenuation ahead of time and decreased

the data rate by switching to a more robust modulation scheme. After the receiver reported
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Figure 4.7: Zoomed-in section of Fig. 4.6. It can be seen that the predicted value is close

to the true value to be measured k-steps in the future.

that the BER was above the required threshold, the transmitter started transmitting again

according to the instructions received from the receiver and improved the data rate when

the attenuation level allowed to do so.

Also, when using the adaptation without the prediction the BER was high. This is due

to the fact that the modulation switching was being triggered at the wrong time instants

leading to a decrease on the system’s overall performance. Figure 4.8 shows the system

performance for the third scenario, showing the change in the data rates, or goodput, for

the customer over time. The instantaneous BER is also shown, where during the majority

of transmission time the system tried to keep the BER below the threshold of 10−3.

4.1.7 Simulation Results for LEO Orbit

The satellite communication simulator was implemented in MATLAB. Throughout this

work, the area considered is a 100 km square centered on Atwater Kent Laboratories,

located in Worcester, MA, USA. The attenuation due to free-space loss for a LEO ISS orbit

is shown in Figure 4.9. This profile, assumed to be a clear sky condition, is normalized and

inverted in order to be used as the received power amplitude due to the satellite motion.
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Figure 4.8: Received data rate changes according to the predicted Eb/N0 based on the

maximum allowed BER.

The transmitted signal is then affected by the attenuation profile (which is different for each

of the three scenarios considered in this work) plus the channel noise. At the receiver, the

attenuation profile corrupted by channel noise is corrupted by sensor noise with Gaussian

distribution and variance O. The original attenuation profile was offset by 10 dB above

zero dB such that the entire available range of Eb/N0 thresholds could be achieved. The

normalized offset version is shown in Figure 4.11 as the dotted curve.

As mentioned in Section 3.2, for the 3D rain field attenuation synthesizer, at each time

instant t the total contribution of each segment with different rain rate is accounted for,

up to the LOS intersection point with the rain height plane. In this work, the LOS range

for each segment ∆li(t) was assumed to be 1 km long. This resulted in an “staircase”-like

attenuation profile, computed by Eqs. (3.15) and (3.16). Arain(t) is shown by the marked

line in Figure 4.10. In order to make it more natural, since rain attenuation does not have

a discretized behavior, it was smoothed by applying a moving average with LOESS robust

regression. This smoothed version is also shown in Figure 4.10. The resultant smoothed

3D rain field-based profile was subtracted from the solid line in Figure 4.9, resulting in the

final rain attenuation profile, which is shown as a dotted line in Figure 4.11, and then used
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Figure 4.9: Slant path loss power from a signal being received at GS from a LEO satellite

in the ISS orbit, during one of the passes over Worcester, MA. Also the elevation angle

from an antenna at the GS shows the minimum attenuation during the maximum elevation

angle.

by the simulator for the 3D rain field scenario.

Regarding the attenuation profile provided by the proposed ITU-based method, the

resultant LEO attenuation profile shown in Figure 3.13 was subtracted from the normali-

zed offset slant path loss shown in dashed line by Figure 4.11. This yields another total

attenuation profile for the rain fading scenario, which is shown as a solid line in Figure 4.11.

For the communication system simulator implementation, the synthetic attenuation pro-

files were fed into the AWGN channel as the SNR values, such that both fading and noise

effects could be achieved at once. For all modulation schemes used, the average transmitted

power was kept constant, such that the channel effect was driven purely by the SNR profile.

A frame payload of 180, 000 bits/sec was transmitted. The predictor values were initi-

alized in the following order: The true initial values of the state x0, the state variances pv

and pc, the process variance q, and the measurement noise O are unknown. Thus, it was

assumed pc = 0, pv = 1, 000, and x0 = 0, since they will be computed and corrected over

time. The process noise variable q is assumed constant during the simulations and equal to
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Figure 4.10: Resultant rain attenuation computed using 3D rain field synthesizer. Marked

values were computed using Eqs. (3.15) and (3.16). Due to the segmentation of path

distances the output is not smooth. Smoothed version was achieved by applying moving

average using LOESS robust regression (solid line).

10−4. Simulations were run for measurement noise variances of O = 1 and O = 0.5 [23].

In terms of delay, it was assumed there was a delay of 5 and 10 samples. Thus, Eb/N0

was predicted for 6 and 11 steps ahead, which is when the output of the decision logic

would be used based on the last delayed measurement. All combinations of scenarios and

parameters (24 in total) were simulated 100 times and the mean of results, such as the BER

after the demodulator, the BER of decoded data, and the number of transitions between

modulation schemes, were collected and presented in Tables 4.3 and 4.4 for clear sky and

rain fading scenarios. The number of modulation scheme transitions is shown in Figure 4.12.

For the ideal case of no noise present either in the channel or at the measurement sensor,

as well as no delay, the total number of modulation transitions expected for a LEO orbit

with clear sky channel, considering the three available modulation schemes would be four,

the BER after demodulation was 2.74× 10−4, and BER after decoding was 1.57× 10−6.

Based on the numerical results shown in Tables 4.3 and 4.4, for the large majority of

scenarios simulated, the mean BER values are almost the same for the cases with and
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Figure 4.11: Normalized power amplitude at receiver, for clear sky condition, offset by 10

dB (dashed line). Received amplitude profiles after subtraction of attenuation shown in
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Table 4.3: Communication system average performance for 2 different delays during clear

sky; 100 runs

Clear sky

O=0.5 O=1

Delay (samples) ON OFF ON OFF

5
BER 8.6 · 10−4 6.04 · 10−4 1.11 · 10−2 4.12 · 10−4

BER uncoded 4.31 · 10−4 2.3 · 10−4 5.81 · 10−4 7.66 · 10−6

10
BER 9.97 · 10−4 3.5 · 10−4 1.1 · 10−3 4.53 · 10−4

BER uncoded 5.06 · 10−4 4.14 · 10−6 5.31 · 10−4 1.02 · 10−5

without the KF. This allows link performance analysis of improvements achieved when

adding KF to receivers operating in such a wide range of different scenarios.
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Regarding the QoS performance analysis for systems using adaptation, the number of

modulation scheme transitions was recorded. This number alone does not convey QoS

information since it only represents the number of times the system had to react to a

varying Eb/N0 measured and/or predicted due to relative motion between transmitter and

receiver, and/or other channel impairments such as weather-induced ones. It was noticed

that there was a big difference in the number of transitions in the modulation schemes for

when the KF was used as opposed to when it was not.

When there was no KF, the number of transitions ranged from 3.5 times (delay = 5,

O = 1, rain fading based on proposed synthesizer) up to 9 times (delay = 10, O = 0.5,

rain fading based on proposed synthesizer) more than systems with the KF included, while

keeping the average overall performance in terms of throughput or BER. For scenarios when

the measurement noise variance was O = 1 the system experienced many more transitions

than for the scenarios with O = 0.5, independent of the delay amount, the presence of the

KF at the receiver kept the transition numbers down, close to the ones in the scenarios with

O = 0.5.

It is worth noting that the improvement, in terms of reduction in the amount of adap-

tation transition, was similarly observed for the four combinations of delay and sensor

noise variance, for all three different channel fading profiles as shown in Figure 4.12. This

reinforces the potential for the applicability of more advanced ACM techniques that may

take advantage of the KF, even though knowledge of the system model was abstracted to

the noise covariance matrices, yielding adequate QoS performance without precise system

modeling.

This evident reduction in the amount of adaptation transitions for the same BER per-

formance due to the use of KF in receivers dealing with both clear sky and rain fading

conditions, while experiencing different measurement noise variances, in a LEO satellite

downlink at Ka-band, is believed to be novel to the best of the authors’ knowledge.

Other observations involving the link simulations include: there was no difference bet-

ween the BER computed after the demodulator and the BER after decoding, for a delay of

5 samples, with the exception of the case O = 1 for clear sky. These increased due to the

increase in the measurement sensor noise. Interestingly, for all the cases of rain fading, the
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Figure 4.12: Comparison of modulation scheme transitions between a receiver with the KF

predictions k-steps ahead ON and OFF, for three scenarios: 1) clear sky; 2) rain fading

generated by ITU-based proposed method for LEO; 3) rain fading generated by 3D rain

field.

effect of encoding was evident, which resulted in a much smaller BER after decoding than

the BER computed right after the demodulator, as expected.

4.1.8 Conclusion

Using a simple model KF, SNR time-series predictions were shown to improve the BER

performance of a receiver while using ACM. In addition, the KF also improved the QoS of

a satellite receiver through a channel experiencing rain fading at Ka-band on a downlink

from a LEO satellite. It was found that using KF to drive link adaptations improved the

adaptation stability by more than nine times when compared with a system without a KF,

for three different scenarios including the one using the proposed rain fading synthesizer

for LEO orbits, while minimizing the impact of measurements with different noise variance

values.

Our results show that, from the BER point of view, the effects of adding and remo-

ving the KF were similar, independent of the scenario, and the method of rain attenuation

synthesis. Also, the pattern observed in the number of adaptation transitions, shown in
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Figure 4.12, among the three different channel profiles, is due to the fading level, characte-

ristic of the method and statistics used to synthesize each attenuation profile. Even though

a performance comparison between these three channels is not recommended, they do de-

monstrate the QoS benefits in terms of adaptation performance achieved in systems using

a KF when dealing with variable delayed measurements from noisy sensors with different

variance levels in a downlink from a LEO satellite operating at Ka-band.

This might be of interest to future high throughput communications systems researchers

and designers that need to achieve an overall data throughput target, and a maximum BER

target, while improving the QoS for services that provide applications sensitive to data rate

through different channel conditions. This work showed that these QoS improvements

could be achieved in all three different scenarios and, most interesting, for two simulated

rain fading scenarios based on two different sets of ITU recommendations.

4.2 Shadowing Detection Using Interactive Multiple Model

Filter

An IMM filter was proposed to operate in a dynamic changing channel, such as a down-

link from a satellite in LEO orbit while experiencing rain at Ka-band. Its main application

is on assisting node relay selection mechanisms during signal shadowing for mobile terminals

experiencing LMS channels such as those described in Section 3.4.

In order to perform shadowing detection in the presence of rain, a signal state classifi-

cation is proposed to be done by a filter that is capable of state estimation in the presence

of noisy measurements such as the KF. In a KF, Eq. (4.1) is responsible for modeling the

state evolution and Eq. (4.2) describes the noisy outputs of the measurement sensor. In

this case, the transition matrix F in Eq. (4.1) is expressed as

F = [1 dt], (4.10)

which is a time-invariant constant-velocity model that allows for the projection of the current

estimated state, in this case the measured power k-steps ahead, controlled by dt assumed

to be equal to 1. The observable state z(k) is the measured received power amplitude,
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thus, H = 1. The process noise ω(k) and the measurement noise υ(k) are both zero-mean

Gaussian-distributed with covariance matrices Q and O, respectively.

The first step in setting up a KF is to have an accurate system model that describes

the majority of different system behaviors. For instance, several specific behaviors can be

modeled when tracking a target position for navigation purposes, such as the speed and

acceleration of an aircraft [26–29]. In these cases, the model fully describes the system

dynamics, with few uncertainties left to the noise functions ω(k) and υ(k).

For the atmospheric environment model, the goal was to include as many local weather

variables in the model as possible, such as the influence of the current tropospheric tempe-

rature, wind speed, amount of cloud over the area, and all the time evolutionary behaviors

for each of these variables. However, such modeling is known to be very complex, thus

developing both a state space model and a transition matrix that accounts for the effects of

all these variables and their evolution over time is considered to be outside the scope of this

work. Nevertheless, based on the assumption that these unknowns have the same Gaussian

distribution as the noise [28, 37, 38, 121], the proposed approach uses a very simple state

space model that accounts for the uncertainties in the process noise ω(k), which ends up

estimating parameters such as covariance matrices, described in the following subsection.

The KF approach used in this work is summarized by Eqs. (4.3)–(4.9).

Since in this case the conditions for an optimal KF are not satisfied (if known, a re-

alistic model of atmospheric impairments affecting the communications channel would be

non-linear), an extended version known as an IMM filter has been proposed in order to per-

form recursive estimation when continuous uncertainties are Gaussian-distributed, such as

AWGN, and discrete uncertainties such as finite system states are assumed [28,37,38,121].

The IMM filter is composed of a finite number of KFs, and each filter is designed to represent

a different system behavior, or state.

Each KF input X̂j0 is computed by [121]:

X̂j0(k | k) =
N∑
i=1

X̂i(k | k)µi,j(k), (4.11)

for i, j = 1, 2, · · · , N used to identify the KFs within the IMM filter (the subscript j0 refers
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Figure 4.13: Diagram block for the proposed design for search of Q matrix integrated with

the IMM filter design. Each matrix combination is tested individually. Q1 and Q2 are

the output matrices chosen by the learning blocks. The ultimate IMM output is the state

decision if there is shadowing or not.

to IMM mixed values only). The mixing probabilities µi,j at instant k are computed by:

µi,j(k) =
π(i, j)µi(k)

µ̂j(k + 1 | k)
, (4.12)

and mixes the original KF inputs X̂i with each other. The predicted model probability µ̂j

from instant k to k + 1 is computed by:

µ̂j(k + 1 | k) =
N∑
i=1

π(i, j)µi(k), (4.13)

where π(i, j) is the Markovian state transition probability matrix [38].

The next step is to use the standard KF equations in each parallel filter, with its re-

spective mixed inputs computed by Eqs. (4.11) and (4.14). Each KF in parallel has the

same update and prediction equations presented in Eqs. (4.3)–(4.9), with the only difference

being their respective Q matrices, which in this case are computed automatically, and the
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covariance matrices Zj0 computed by:

Zj0(k | k) =
N∑
i=1

[
Zi(k | k) + (x̂j0(k | k)

− x̂i(k | k)) · (x̂j0(k | k)− x̂i(k | k))T
]
µij(k).

(4.14)

Finally, the individual KF estimates are combined into one IMM filter estimate using

the expression:

X̂(k + 1 | k + 1) =
N∑
j=1

X̂j(k + 1 | k + 1)µj(k + 1), (4.15)

where the model probabilities µj are updated by using the expression:

µj(k + 1) =
µ̂j(k + 1 | k) · LLj(k + 1)∑N
j=1 µ̂j(k + 1 | k)LLj(k + 1)

. (4.16)

The likelihood function LLj is given by:

LLj(k + 1) =
exp

[
− 1

2e
T
j (k + 1) · S−1

j · ej(k + 1)
]

(|2πSj(k + 1)|)
, (4.17)

for j = 1, · · · , N . The process repeats itself for the next iteration, when a new set of

measurements is acquired from the sensors.

In order to initiate the proposed algorithm the following assumptions are made: X(0)

is equal to the received power level under clear sky conditions; Z = [10000] since the

covariances are expected to converge to a constant value; initial state probabilities µ =

[0.5; 0.5]; and the Markovian state transition probabilities are assumed to be:

π =

0.9 0.1

0.1 0.9

 . (4.18)

In this case, π was chosen to represent the behavior of the system staying at a certain

state with a higher probability than the probability of transitioning to another state. This

behavior was considered based on the slow-fading characteristic of the rain attenuation

effect and on the deep-fading characteristic of shadowing in LMS channels. In the following

subsection, a more detailed explanation regarding the choice of the filter number present

on the IMM filter is provided in the following subsection.
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During online operations, after choosing the Q matrices, at each iteration one SNR

measurement is input and two output probability values, computed by Eq. (4.16), from

each KF inside the IMM filter, are compared against a threshold. Figure 4.13 presents the

state decision output for a threshold value equal to 0.5.

4.2.1 Defining Number of Filters in IMM

When designing an IMM filter, one of the key requirements is to define how many KF

should be used. Each KF in an IMM filter is often used to model one system state [28, 29,

121], and the IMM filter computes probabilities to most accurately identify which model

reflects the system current behavior. Thus, one must know beforehand which system beha-

viors will be tracked by the IMM filter, such that a KF can be designed for each of them.

Two filters model the detection of shadowing in LMS channels, being able to distinguish

deep fading from slow fading, such as due to rain attenuation. The primary idea here is to

have one filter that quickly follows the noisy SNR measurements steep transitions caused

by shadowing, and the other filter to follow the slower transitions caused by rain fading.

4.2.2 Automatic Search for Q

In the previous section, the problem of modeling the system was left to defining values for

the O and Q matrices, which represent the measurement and noise process noise variances

based on the assumption that these noise sources are Gaussian. Since O is an independently

generated value of the system relative to the measurements, O is assumed to account for

only the noise resulting from the sensor. Thus, O is assumed to be known, and can be

measured offline using a known input.

Considering the primary goal of allowing the system to estimate measurements from

noisy inputs, the cost function to be minimized is the mean-squared error (MSE). In order

to achieve this goal, an approach that tests and builds the different Q matrices for each

parallel KF is proposed as shown in Figure 4.13, which illustrates their diagram blocks.

The algorithm is initiated with different sets of possible variance values for each parallel

KF. In order to tailor each parallel filter to a different behavior, or mode, one needs to

provide different ranges of values for each set, through which the search algorithm will look
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for and build the Q matrices. One of the goals is to demonstrate and analyze the IMM

performance using a simple model that distinguishes between attenuation slopes, with slower

changes being a characteristic of clear sky or rain conditions, and very steep slopes being a

signature of shadowing events. Thus, only two different modes, i.e., two differentQmatrices,

are necessary: (i) A mode with small values indicating slower attenuation slopes, and (ii)

A mode with large values indicating steeper attenuation slopes. This idea is standard for

IMM filter designers, in which there is one model and two filters representing the system

state being in that model or not. In the literature [29, 36, 121], values used to distinguish

states in various model approximations, such as aircraft tracking, are two-to-three orders

of magnitude apart. Further details are described in Section 4.2.3.

Given that both filter models run in parallel within the IMM, the output of each iteration

is a combination of both operations depending on their respective probabilities to distinguish

between no fading and/or slow fading, and deep fading modes. As a result, the technical

challenge associated with this operation is identifying the correct mode, or at least the most

probable one at each instant.

While designing these filters, it was noted that large values in a Q matrix make the IMM

filter rely more on its noisy inputs, thus its output follows the noisy inputs more closely.

Furthermore, this choice of Q causes the output to quickly change its values in an attempt

to follow the rapidly changing input, such as when noise or deep fading is present. On the

other hand, for small values of Q the output of the IMM slowly follows the changes in the

inputs. Thus, the result is a smoothed output with respect to its input. Each KF attempts

to track the signal within the noise, thus when the IMM mixes their output probabilities,

it makes easier to distinguish deep fading from noise and slow fading, allowing for the

detection of shadowing events even in the presence of rain.

It is worth noting that, when building Q matrices by combining the values available in a

set, for the Kalman filtering equations to be computed properly one needs to make sure that

Q be symmetric and all of its eigenvalues must be positive, i.e., Q be positive definite since

it needs to be invertible. In the following section, the proposed IMM approach performance

is discussed for each of the scenarios mentioned in the previous section.

For each set of values, Q matrices are constructed by evaluating all possible combinations
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of these values within the Q matrix. The process occurs in parallel and iteratively for all

KF until all the possible Q matrices are evaluated. In Figure 4.13, this parallel process is

depicted by the “Combiner 1” and “Combiner 2” blocks.

The outputs of each “Combiner” are used by the individual KF using only Eqs. (4.3)–

(4.9). The filters are operated using a training dataset and the MSE of the outputs from

each individual filter is recorded. Then, each individual “Learner” independently decides

which Q matrix met a certain requirement, in this case, the minimum MSE. The result

of each “Learner” is then fed into the main IMM, for validation and online estimations.

Comments about its performance evaluation are provided in Section 4.2.3.

This proposed methodology allows the system to update its Q matrices in order to ope-

rate under changing environments for achieving a better performance. The determination

of how frequently Q should be re-evaluated is currently under investigation by the authors,

and is outside the scope of this work.

4.2.3 Simulation Results

In this section, the proposed IMM filter performance is analyzed for five different channel

conditions: (i) fixed receiver under rain, (ii) LMS rural under clear sky, (iii) LMS rural under

rain, (iv) LMS suburban under clear sky, and (v) LMS suburban under rain. The input to

the IMM filter is the time series of synthesized noisy SNR measurements at the receiver.

For simulation purposes, the noise measurement process is assumed to be Gaussian with

zero mean and standard deviation O with values equal to 0.1, 0.5, and 1. The search

for the Q matrices Q1 and Q2 was performed building matrices using all combinations of

values from two independent sets. The set for Filter 1 is [0, 10−10, 10−3], and for Filter 2

is [10−10, 10−1, 1, 10]. The careful reader might note that included in the ranges are 0 and

10−10, which are very close to each other; however, results show that there is a difference

in performance when choosing one over the other. Note that the sets used contain different

number of values, since there is no requirement regarding the maximum number of elements

of each set. However, an increase in the number of elements increases the total number of

combinations that must be tested during training of the KF. The IMM proposed approach

was tested using the MSE of the SNR estimations, the same metric used for the automatic
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search of Q matrices during training.

Considering the time series length, the IMM filter performance was evaluated using

three different training dataset sizes, with the largest one being half of the time series

duration. After the Q1 and Q2 matrices were chosen, the testing dataset was used to

validate the performance of the IMM filter. Table 4.5 shows the validation MSE statistics

for 100 simulation runs for three different O values for a scenario with a fixed terminal

experiencing rain fading only, and for the three different training dataset sizes. Despite

the smallest mean error values for the measurement standard deviation O = 1, the mean

error for O = 0.1 and O = 0.5 can be considered similar, with O = 0.1 presenting the

smallest standard deviation error values, as expected. Also, for all different values of O, the

mean error linearly decreased with the increase of the training dataset size, as expected.

Since O is a parameter directly related to the hardware being used, the discussion of better

approaches to improve the IMM performance function of O values is out of the scope of this

work. Thus, O = 0.1 assumed for the remaining simulations in this chapter. For the five

scenarios mentioned above, the Q values for the IMM inner Filters 1 and 2, were computed,

respectively, as:

Q1 =

10−3 0

0 10−3

 , (4.19)

Q2 =

 10 10−10

10−10 10−10

 . (4.20)

For Q1, the algorithm preferred the value of 10−10 over 0 for the variance value of the rate.

This shows that a very small change of values had an impact on the decision of the final Q

matrix, indicating the level of sensibility that the automatic Q search method provides.

Tracking the inner filter probabilities values µ indicates which filter has a higher pro-

bability of having a model that best describes the current environment behavior, defined

as the channel states. Using a threshold of 0.5 the IMM inner Filters 1 and 2 represent

the states 0 and 1, no-shadowing and shadowing states, respectively. For instance, during

the deep-fading events, IMM filter outputs higher than the threshold probability values for

Filter 2, leads to the detection of State 1 indicating shadowing is being experienced by the
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Table 4.5: IMM filter MSE of rain faded channel – 100 runs.

O = 0.1

Training dataset size 50 samples 150 samples 250 samples

Mean 33.99 26.66 17.22

Std. dev 0.9 0.79 0.56

O = 0.5

Training dataset size 50 samples 150 samples 250 samples

Mean 31.87 25.95 19.41

Std. dev 1.95 1.78 1.58

O = 1

Training dataset size 50 samples 150 samples 250 samples

Mean 10.02 8.05 5.85

Std. dev 1.64 1.39 1.22

signal. The complete detector is described by Algorithm 1. Figure 4.14 illustrates a snippet

of the state decision time series output together with the measured SNR at the receiver.

Several shadowing events were detected at different attenuation levels, in this case solely

due to rain fading. Notice that the detection is not ideal and a few samples caused false

alarm detection. It is worth noting that the dominance of one of the filters occurs based

upon the current channel shadowing conditions and how each filter was designed, indepen-

dently of the fading. This is implied within the order of magnitude difference among the

values available for the initial set that each Q matrix is constructed from.

In order to assess the performance of the proposed shadowing detector through diffe-

rent scenarios and to compare the proposed approach with some common state-of-the-art

detection methods, simulations were conducted for five different scenarios, described above.

Each scenario was sampled at two different rates, 1-Hz and 10-Hz, and divided into 100
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Algorithm 1 Proposed shadowing detector operational routine

Require: Initial parameters

1: Define training window size n

2: Select number of states to be detected s

3: Choose s sets of Q-values of any size within different ranges each

4: Define s− 1 thresholds values for state detection

5: Build all possible cs combinations of matrices for each of the s sets

6: Choose optimization metric

7: for t=1:end of operation do

8: if t > n then

9: Receive new measurement z

10: for k = 1 : 1 : s do

11: for j = 1 : 1 : cs do

12: Train individual Kalman filters

13: Learn Q-matrices for optimized chosen metric

14: Run IMM filter

15: Get detected state value

16: end for

17: end for

18: else

19: Update training window

20: end if

21: end for

different slices of 512 seconds duration each, resulting in more than 14 hours of synthesized

attenuation time series, containing only rain, shadowing, or a combination of these two im-

pairment sources. For each scenario, 5 detection methods were compared: SNR threshold,

mean SNR, and the proposed IMM with three different training dataset sizes (30, 150, and

250 samples).

Since the shadowing events were simulated, the ideal detection time series are known
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Figure 4.14: IMM outputs of state detection for mobile terminal using a Ka-band link with

a GEO during rain fading through an suburban LMS channel. The measured amplitude

values and the is shown for comparison. Shadowing detection is achieved at different levels

of attenuation due to rain fading. Samples recorded at 10 Hz.

beforehand and were used as a baseline for comparison against the detector outputs. Statis-

tical shadowing detection performance was assessed on three major categories, over the time

slices: mean time duration of wrong detection, standard deviation of wrong detection, and

percentage of total time of wrong detection. Figure 4.15 shows the detection performance in

a scenario with a fixed terminal experiencing only rain fading, without shadowing, allowing

evaluation of false detection performance. Both threshold SNR and mean SNR detection

methods showed poor performance with more than 60% of the time making false detection

at a sample rate of 10 Hz. However, the IMM filter showed a very good performance with

close to zero false detection. These results motivated the aforementioned research to be

extended to several different LMS channels, under different atmospheric conditions.

Regarding the sample rate, a comparison between 1-Hz and 10-Hz results is presented

in order to show to the reader the impact of choosing a different sample rate value to

track a certain channel phenomena, as well as to illustrate its potential to be used within

similar scenarios but with different purposes of state tracking. The remaining performance
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Figure 4.15: Shadowing detection performance in scenario with rain fading, and no shado-

wing, for a fixed terminal using a Ka-band link with a GEO satellite. Lower false detection

mean time duration is better. Both threshold SNR and mean SNR methods show poor

performance.

evaluation discussion considers only the 10-Hz sample rate, since it is the most appropriate

to capture the shadowing effects based on the minimum time-series sample rate for a mobile

terminal, as mentioned in Reference [109].

On suburban scenarios, shadowing detection was evaluated under clear sky and rain

conditions. The results, illustrated in Figure 4.16, show that the IMM filter behavior in

terms of mean time duration of detection error and total percentage of time doing wrong

detection is similar and immune to the presence of rain. However, the performance of the

other methods, SNR threshold and mean SNR, will vary substantially depending on the

channel atmospheric conditions. These possess a relative good performance during clear

sky conditions, even somewhat better than the proposed IMM filter, but an extremely poor

performance during rain with a difference of more than 32% in this case for the percentage

of total time duration making wrong decisions.

Simulations were performed for rural scenarios as well, for both clear sky and rain

conditions. The results shown in Figure 4.16 also confirm that the proposed IMM filter
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method has a better performance for shadowing detection during rain on LMS channels

in rural scenarios, where a minimum of 8.5% improvement in percentage of time duration

of wrong detection was achieved by the IMM filter over the SNR threshold method. As

in the suburban scenario, the IMM filter performance during clear sky and rain conditions

was similar. The SNR threshold and mean SNR showed a better performance during clear

sky conditions with very low mean time duration of detection error and percentage of time

duration.

4.2.4 Conclusions

Using synthesized attenuation time series for five different GEO satellite channels ex-

periencing clear sky and rain conditions, simulation results presented the advantages of

using the IMM filter for shadowing detection for fixed and mobile terminals during rain

conditions. Preliminary results exposed a major flaw in current state-of-the-art shadowing

detection methods while operating during rain, presenting very poor performance in terms

of false alarm for shadowing detection when no shadowing event was actually present. Ho-

wever, these methods still have better detection performance than the proposed IMM filter

when there is no slow attenuation caused by rain.

Considerable detection performance improvements could be achieved by the proposed

IMM filter approach when comparing it against current state-of-the-art methods. This is

the case for a mobile terminal using an LMS channel experiencing rain fading in a GEO

satellite link operating at Ka-band.

Future high throughput mobile satellite communication systems using GEO satellites

at Ka-band will be able to rely on better adaptive designs based on detailed and more

accurate channel state information, as those provided by filter-based detectors such as the

proposed IMM method. These systems will be aware of the current communication channel

conditions while dealing with channel uncertainties, such as precise space and atmospheric

weather models. In addition, multiple states can be configured in order to represent specific

channel conditions, with the potential to improve the performance of adaptive radios and

increase the overall network cooperative aspect.
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4.3 Chapter Summary

This chapter provided prediction algorithms for satellite-based receivers. Simulation

results showed that a simple model KF is capable of improving the QoS of receivers through

incredible decrease of the number of adaptation switches during clear sky and rain conditions

at Ka-band. Also, with the proposed model-free approach of the IMM filter, shadowing can

be more accurately detected during rain for mobile terminals, which has the potential to be

used in future network node relay selection mechanisms in cognitive networks.
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(a)

(b)

Figure 4.16: Shadowing detection performance on suburban (a) and rural (b) LMS channels

during clear sky and rain conditions. Lower time duration means better performance.

Shadowing detection on LMS channels by IMM filter is invariant to atmospheric conditions

when sampled at 10 Hz, and better performance was achieved during rain by spending less

time in erroneous shadowing detection condition when compared to current state-of-the-art

detectors.
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Chapter 5

Cognitive-Radio Engine

Architecture for Autonomous

Space Communications

This chapter describes the cognitive radio (CR) principles and core architectures1,2,3

required to enable learning and decision-making on SDRs for future autonomous space-based

communications systems. In Section 5.1, the cognitive engine (CE) architecture proposed

to NASA John H. Glenn Research Center (GRC) Space Communications and Navigation

(SCaN) Testbed project is described. Next, in Section 5.2 a new comprehension about the

Reinforcement Learning role in adaptive wireless communications is provided with a focus

on satellite-based communications, which forms the groundwork for the description of the

autonomous MAC protocol containing the physical (PHY) layer parameter scheduler. This

scheduler leverages a novel hybrid machine learning algorithm, described in Section 5.3

as the primary component of the proposed cognitive engine. Numerical simulations and

results analysis are provided within the end of each subsection. Concluding remarks close

the discussion in Section 5.4.

1Published at the 34th AIAA International Communications Satellite Systems Conference, October

2016 [4]
2Submitted to IEEE Cognitive Communications for Aerospace Applications Workshop [122]
3In preparation [123]
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5.1 Intelligent MAC Protocol for SDR-based Satellite Com-

munications

In 2012, NASA GRC installed the SCaN Testbed [124–126] on-board the ISS and con-

tinues to operates it from a mission control center at GRC. The SCaN Testbed is an ex-

perimental communication system comprised of three different SDRs [127, 128], and is the

first space-based testbed of its kind available to selected researchers to propose implementa-

tion solutions to address issues related to SDR-based communications systems to and from

space. The radios operate at S-band and Ka-band with NASA’s satellite relay infrastruc-

ture, i.e., Tracking and Data Relay Satellite System (TDRSS), and S-band direct-to-ground

stations on Earth. The communication links to and from the SCaN Testbed provide real-

world satellite dynamics between user spacecraft and relay satellites and user spacecraft

directly with ground stations. These dynamics include time-varying Doppler changes, ther-

mal variations, differences in waveform characteristics, real-time interference, significant

range variation, ionospheric effects and scintillation, and other propagation impairments.

The radios onboard the testbed are flight-grade systems, fully compliant with NASA’s

SDR architecture, the Space Telecommunications Radio System (STRS) [129, 130]. The

STRS Architecture provides abstraction interfaces between radio software and proprietary

hardware (general-purpose processors and field-programmable gate array processors), allo-

wing third-party software waveforms and applications such as the CR system software to

interact and run on the radio. STRS also makes a library of waveforms available to deve-

lopers to provide various modulation, coding, framing, and data rate options (the so-called

radio “knobs”) available to the decision-making algorithms.

Solutions such as adaptive communications based on cognitive decision making needs

to be researched, not only to solve communications issues on Earth, but also to allow the

development of systems that will enable space exploration in the near future [131]. SDRs

will become a larger part of the communications infrastructure as exploration continues over

the next decade. These flexible and reconfigurable systems are generally more complex than

traditional fixed-operation radios and CR systems offer a solution to reduce the complexity

and risk associated with these new systems. The work presented in this chapter is part of
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this effort, providing CR algorithm research and development for SDR systems in space.

5.1.1 Applications of CE for NASA4

Applying cognitive applications to space poses a number of challenges due to the risk-

adverse culture of space missions coupled with the resource-constrained environment of

space platforms. These two driving conditions will heavily influence where and when CR

systems are used within mission spacecraft and throughout the communication system.

Three areas have emerged as candidate application areas for CR systems. The different

areas are node-to-node communications, system-wide intelligence, and intelligent internet-

working. The first application entails the radio-to-radio link between mission spacecraft

and ground terminal (either through relay or direct-to-ground). Cognitive decision making

may improve (increase) throughput across a communication link by consuming otherwise

unused designed link margin or mitigating impairments. Algorithms that sense performance

and understand the entire link capacity could adjust waveform settings to maximize user

data and symbol rate by minimizing coding or other overhead. Taking advantage of signifi-

cant range changes during a ground station pass or operating at reduced data rates at low

elevation angles (normally outside the traditional link design) or through weather events

offers additional opportunities for additional science data return. Signal recognition among

nodes may alleviate missed opportunities due to configuration errors or mitigate unexpected

interference.

The second application of CR systems is system-wide intelligence where CR systems

make operational decisions normally performed by operators or data-intensive aspects not

currently done. For example, CR systems could be applied to relay and ground station

scheduling, asset utilization (proper asset loading and accommodating mission priority),

optimum link configuration and access times, infrastructure fault monitoring, and failure

prediction, among others. Many of the applications will help reduce operation oversight

(and cost) and help reduce operational complexity due to the large number of possible con-

figurations. Large data analysis opens a new area to discover performance and operational

benefits from all aspects of data collected including: link performance, platform environ-

4Provided by NASA GRC SCaN Testbed engineers Dale J. Mortensen and Richard Reinhart.
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ment (e.g., radiation, thermal, and mechanical/vibration), asset availability, and system

performance.

Finally, as communications infrastructure becomes more network-based using commer-

cial and international standard protocols, CR systems may benefit the control and data

functions of the communications network. Optimizing data throughput according to QoS

metrics such as bit error rate, loss packet rate, routing decisions, store-and-forward pro-

tocols, and publish-and-subscribe techniques may benefit from cognitive control. Allowing

algorithms to learn network behavior, especially small networks with repeatable data flows,

may yield throughput and reliability benefits.

One notable aspect regarding CR systems for space is the need for verification or ground

testing of all operational conditions before launch. To minimize risk on orbit, missions

generally test each mode of operation prior to flight. This helps provide confidence in the on-

orbit operation. Having CR systems make unplanned and potentially unpredictable changes

to the flight systems on-orbit will take considerable research and technology demonstrations

such as those described in this dissertation.

5.1.2 Project Overview

NASA GRC, in Cleveland, Ohio, accepted a proposal entitled “Intelligent MAC proto-

col for SDR-based satellite communications” with the goal to develop a cognitive engine

algorithm for future space-based communications systems, with the unique opportunity of

experimenting with SCaN Testbed SDR’s.

The R&D team is composed of members from WPI and The Pennsylvania State Univer-

sity, in collaboration with the SCaN team at NASA GRC. Commenced in November 2014,

the project is expected to be completed in the May 2017 time frame.

During this collaboration, the team has designed and developed a proof-of-concept of an

intelligent MAC protocol to maximize data link performance and to improve the robustness

of space communications systems, by using SDRs for low margin data links operating on

dynamically changing channels, especially at low elevation angles. This protocol’s core is

made up of a CE that must be capable of dealing with conflicting multi-objective issues

during radio-resource allocation. Adaptation of radio parameters might be required while
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mitigating channel impairments according to the current channel conditions and/or when

meeting new performance requests. Key capabilities to perform cognition are prediction

and learning techniques, assisted by third-party databases whenever these are available.

This CE project is aligned with NASA’s Communication and Navigation Systems Ro-

admap Technology Area 5 [132], which focuses on cognitive radios in space that sense their

environment, autonomously determine when there is a problem, attempt to fix it, and learn

as they operate. This experiment is also one step in the direction of removing communication

as a constraint for future missions and their critical phases, and emergency communications

to enable safe and efficient human exploration and autonomous robotic space explorations.

The CE algorithm, as well as simulation and future space-based experiment results will be

used to assess the adaptive MAC protocol performance for the on-orbit SDRs, which will

help in the design of future MAC protocols and mitigation techniques that can make use of

the radio flexibility in terms of intelligent radio parameter reconfiguration.

5.1.3 Scenario Description

There are four different communication channels between the fixed ground stations at

GRC/White Sands, the moving ScaN Testbed SDR on board the ISS, and the TDRSS

satellite at a GEO orbit, as illustrated by Figure 5.1. Radio parameter reconfiguration might

be done during periods of signal fading, especially those happening during low elevation

angles of the SCaN Testbed antenna, while tracking the TDRS satellite, or low elevation

angles from a GRC ground station antenna, while tracking the ScaN Testbed.

A higher level overview of the proposed CE diagram blocks is shown in Figure 5.2. This

basic architecture consists of a gathering observation data, i.e., telemetry data reported

from the transmitter or measured at the receiver. A predictor uses past information to

predict radio parameters values and builds learning in an efficient way in order to keep

under control storage memory growth. The decision logic receives the predictions and, based

on the link performance requirements and resource availability, decides upon the need for

adaptation. Future applications and additional sources of information might include third-

party databases providing atmospheric/space weather data.

During radio adaptations, the CE is expected learn the environment behavior by building
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Figure 5.1: Examples of scenarios where the proposed Intelligent MAC protocol could to

be tested. They consist of a links using the Near-Earth Network in S-band and links using

the Space Network at both S- and Ka-bands.

a model that maps observations into actions, i.e., radio parameter sets, while the channel

dynamically changes while at a certain channel state. Figure 5.3 illustrates the proposed

CE architecture diagram block at a lower level perspective from that shown by Figure 5.2.

An initial proof-of-concept ML algorithm implementation of the proposed design shown

in Figure 5.2 is a modified version of the classic Reinforcement Learning (RL) algorithm,

described in Section 5.2.1. It is specially designed to deal with multi-objective resource

allocation in space communications systems. A more complex and autonomous version of

this algorithm is proposed in Section 5.3.

5.2 Multi-Objective Reinforcement Learning (MORL) for Cog-

nitive Radio-based Satellite Communications

In this section, a basic CE design based on reinforcement learning (RL) is described

specifically to enable a satellite-based CR to learn, reason, and make decisions over multiple

available resources and multiple goals based on its past experiences. Regarding a satellite
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Figure 5.2: High level block diagram of proposed cognitive engine. Inputs are environment

measurements and communications system performance metrics. Outputs are actions com-

posed by radio parameters. The learning algorithm reasons over the inputs in order to

propose outputs that may or may not be accepted by the decision-making block.

communications channel, some additional factors play a significant role that usually are

not considered in terrestrial links including orbital dynamics, such as spacecraft trajectory,

velocity, and antenna elevation angle profile, space weather, spacecraft mission, and payload

status.

All of these factors magnify the complexity of the decision-making process being per-

formed by the CR since the dimensionality of the multi-objective function, radio resources,

and end-to-end link conditions are much more diverse than on a point-to-point terrestrial

link. Not only does the resource management complexity for satellite-based CR increase,

but also the learning, reasoning, and decision-making algorithms that must be redesigned

in order to cope with all these new challenges while operating in a dynamically changing

and complex environment.

Based on the increasing demand for high-throughput satellite-based communications

systems, the need for CR systems operating on board satellites possessing different orbits

at the same time, with nodes potentially spread throughout the Earth experiencing very

different channel conditions, is of high importance and represents as a research gap.
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Figure 5.3: Low level diagram block of proposed cognitive engine showing inter-relationships

between the channel state detector, learning algorithm, decision logic, and their parameters.

5.2.1 Reinforcement Learning Overview

The contents of this subsection provide a brief summary of relevant concepts underpin-

ning RL found in [133] for the proposed algorithms presented in the following sections. RL

is an algorithm designed to learn through interactions with the environment in a trial-and-

error fashion, as shown in Figure 5.4. Based on predefined goals, RL looks for actions that

optimize its performance.

Multi-armed bandit (MAB) [134–137] models RL problems in which an action set results

in rewards, a measurement of how well a certain task was executed. Thus, it can be seen

as an optimization problem to find the action set that results in the maximum reward.

Instead of using MAB, these problems could be modeled as state-transition problems.

The state-transition itself is modeled as a Markov decision process (MDP) [138]. State-

transitions can be deterministic, i.e., executing a certain action will always lead the system

to that same state, as assumed in this dissertation, or it will make the next state to behave

as a random variable.

Usually control problems require the computation of an optimal policy that maps obser-

ved states into actions that will be taken when the system is in one of those states. Thus,

the work presented herein is concerned about controlling radio parameters such that opti-
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Figure 5.4: Diagram block of reinforcement learning elements within the feedback loop for

a down-link pair with the receiver at ground and transmitter in space. At, St, and Rt are

the action, state, and reward at time t, respectively.

mal performance is achieved based on the current environmental conditions and kept there

for the entire time, like a regulator. The environment is comprised of the satellite commu-

nications channel through which propagating signals are affected by the dynamic geometry

of the line-of-sight between transmitter and receiver and its surroundings (buildings in the

vicinity of ground stations or structures in the vicinity of the antennas on-board the space-

craft), as well as dynamics of atmospheric and space weather. Therefore, a state-transition

model and the action-state mapping takes all these variables into account and it is assumed

to be unknown due to its high level of complexity.

Fortunately, there are several techniques to compute policies, for which most of the

time the environment model, i.e., state-transition model, is unknown due to being too

complex or difficult to obtain. In this case, the agent must interact with the environment

in an efficient way to find the best policy possible while balancing exploration of new

actions and exploitation of known actions. In these cases an action-value functionQRLπ(s, a)

representing the value of a certain action a taken when in state s while following policy π,

should be evaluated at all actions possible from state s through a greedy policy given by:

π(s) = arg max
a

QRL(s, a), (5.1)

where, for every state s ∈ S an action a ∈ A with maximal action-value is chosen given the

state space S and action space A. For some problems with either continuous or discrete
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A containing thousands of actions a, it may not be feasible to evaluate all action-values

when in a certain state s. This is the case of radio communications, for which exploring

each action a over the air may cost time and force the radio receiver to experience a certain

performance level. The practical alternative is to ensure that the agent keeps exploring

them using either on-policy or off-policy approaches. On-policy approaches evaluate or

improve policies used to make decisions, whereas off-policy methods evaluate or improve a

policy that is learned about, known as target policy, that is different from a policy used to

generate behavior, known as behavior policy [133].

A common model-free method to find these policies is Temporal-Difference (TD), which

updates the action-value function QRL(s, a) using past experiences at each time step, suit-

able for on-line, i.e., time-sensitive applications. The on-policy TD control is known as

State-Action-Reward-State-Action (SARSA) and updates QRL by computing:

QRLk+1(sk, ak) = QRLk(sk, ak) +

αRL[rRL + γQRL(sk+1, ak+1)−QRL(sk, ak)],
(5.2)

where αRL is the learning rate, rRL is the reward, γ is the discount factor, sk+1 and ak+1

are the state and action chosen for the current target policy, before the QRL update. The

difference within the brackets in Eq. (5.2) is known as TD error and computes the difference

between the estimated value of QRL(sk, ak) and a better estimate, rRL +γQRLk(sk+1, ak+1).

The off-policy TD control algorithm is known as Q-learning and is computed by:

QRLk+1(sk, ak) = QRLk(sk, ak) +

αRL[rRL + γmax
a

QRLk(sk+1, a)−QRLk(sk, ak)],
(5.3)

where the TD error uses the Q-value with the highest value independent of the action.

Eqs. (5.2) and (5.3) are derived from the well-known Bellman equations [133,138].

As mentioned in [4], within the context of decision-making in radio communications the

discounted factor does not have a practical meaning, since the cognitive radio is interested

in the immediate reward (γ = 0), and any action can be taken from any state without the

need for planning. These assumptions result in a modified version of the Q-value functions

for both on- and off-policy, which turn out to be the same, given by:

QRLk+1(sk, ak) = QRLk(sk, ak) + αRL[rRLk −QRLk(sk, ak)]. (5.4)
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Even though the state-transition model is unknown, some functions need to be defined,

for instance, the action exploration function, the state-action policy function h used in

ak = h(sk), and the reward function g, used in rRL = g(sk, ak).

5.2.2 States, Goals and Rewards

Within a communication system, the RL agent is located at the receiver and feeds

the output control, i.e., the action to be taken during the next transmission, back to the

transmitter, as shown by Figure 5.4. A key requirement for any RL algorithm is the

definition of its states, goals, and rewards.

In this case, the goal is to maximize a performance value, known as reward. After

choosing an action and executing it in the environment, a reward is given to the RL agent,

and the system is brought to a new state. Rewards measure how close to the goal the

system was able to get using a certain action.

The performance value function is composed by several individual performance functi-

ons, which may or may not be conflicting among themselves, referred to throughout this text

as multi-objective performance function. Each individual function is weighted according to

the current communications mission profiles (described below).

Thus, the proposed approach in this section consists of defining the RL state value as

a reward value, in percentage. Then, the RL agent might choose actions, i.e., a new set

of radio parameters that may bring this system closer to the “goal state”, represented by

100%. A threshold must be set so that any chosen action that brings the system performance

above the threshold is recognized as part of the solution set by a reward. These actions are

described in the following subsection.

Because communication channels are assumed to be a Markov process, with the current

channel state being independent from the previous states, every time a RL agent chooses

an action, the system can be sent to any possible state. Besides choosing actions, the RL

agent also builds a knowledge base, called a Q-table, where it stores previous experiences,

i.e., learning. This Q-table maps updated Q-values, computed by the Bellman’s equations,

Eqs. (5.2)-(5.4), to specific state-action pairs.

Actions that resulted in reward values below the defined threshold receive zero reward.
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Figure 5.5: State change concept for communications system Markov process. Rewards are

given for actions that sends the system to states that are above a certain threshold. No

rewards are given otherwise. Even if the previous state was rewarded, if a different action

results in an state above threshold it must be rewarded.

Doing so, the system “reinforces” actions that make the system achieve its goals, as illus-

trated by Figure 5.5.

The following performance functions’ goals are considered: maximizing throughput

(TRL), minimizing BER, minimizing power consumption (PRL) to maximize on-board satel-

lite battery life, and keeping the bandwidth W constant.5 An analysis is provided based on

the proposed approach for using RL to handle the cases when multiple goals are required

during a certain satellite communications mission phase.

These goals are achieved individually by parameter adaptation, such as bit rate RRL,

modulation scheme M (hereafter comprised of modulation type and index, and coding rate),

available power Pmax for transmission (then Eb is enabled to adapt as well).

Table 5.1 provides relationships between the adaptable parameters, presented as equa-

tions for the individual goals [139]. The parameter W can be computed by:

W =
NRLRRL

2 log2(M)
, (5.5)

where NRL is the number of orthogonal dimensions in the modulation constellation, e.g.,

NRL = 2 for QAM. M is the constellation size of the modulation scheme being used.

5Although a decrease in W could be beneficial for cooperation, for critical missions it could end up

attracting secondary users that could cause interference.
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Table 5.1: Radio parameter adaptation inter-relationship

Adaptation Goals Consequences Conflicts Constants

↓ M min(BER), min(PRL) ↓ TRL, PRL, BER max(TRL) Eb

↑ M max(TRL) ↑ TRL, PRL, BER min(BER), min(PRL) Eb

↑ RRL max(TRL), W const.* ↑ W , PRL min(PRL), W const.* M , Eb

↓ RRL min(PRL), W const.* ↓ W , TRL max(TRL), W const.* M , Eb

* Keeping W constant can be a goal or a conflicting goal while adapting R
RL

.

PRL is given by:

PRL = RRL Eb, (5.6)

where Eb is the energy per bit. For two-dimensional modulation schemes, the parameter

PRL can be rewritten as:

PRL = W log2(M) Eb. (5.7)

Based on the bit error probability equations for QAM modulation schemes provided in

Reference [139], BER relates to the previous equations by:

BER ≈ 1

Eb
, (5.8)

for a fixed M , and by:

BER ≈ log2(M), (5.9)

for fixed Eb. When both M and Eb are varied at the same time, there is a nonlinear

relationship with BER.

Thus, the cognitive engine must learn how to tune these parameters while considering

other objectives. Clearly, there are several trade-offs while adapting RRL, M , PRL, W , and

BER in order to achieve a certain goal. Adaptation of these parameters for one goal might

affect the achievement of other goals at the same time. These adaptation consequences are

described in Table 5.1.
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Attempting to achieve multiple goals at the same time can cause resource competition.

An approach to minimize this dispute is to prioritize each goal individually using weights.

Thus, communications mission phases are defined such that, for each mission, a predefined

set of weight values, vector w̄, is used during the decision-making process. Therefore, the

goal of the approach presented is to maximize:

fdecisionmax(w̄k, x̄k, āk) = w1fmax(RRL) + w2fmin(BER) + w3fmin(PRL) + w4fconstant(W ),

(5.10)

with w̄k = (w1k , w2k , w3k , w4k), 0 < w1k , w2k , w3k , w4k < 1,
∑n

i=1 w̄ik = 1, and x̄k =

(TRLk,BERk, PRLk,Wk), which is a vector containing the observed values after choosing

an action āk = (RRLk,Mk, Ebk) containing the adaptable parameters. Among the obser-

ved values, values of TRLk, PRLk, and Wk are monitored at the transmitter and sent to

the receiver, where BER is estimated in real time at the receiver, by using Eq. (17) in

Reference [140], which requires Eb/N0 to be obtained by SNR measurements.

fmax,min is a normalized value of each element of x̄k, based on the current system’s

available parameter ranges:

fmax(TRL) =
TRL

TRLmax
, (5.11)

fmin(BER) =
BERmin

BER
, (5.12)

and

fmin(PRL) =
PRLmin

PRL
, (5.13)

with the exception of fconstant(W ), which is computed as:

fconstant(W ) =


0, if W ≤ BW,

−1, if W > BW,

(5.14)

where BW is the bandwidth allocated to the communication channel of concern.

In order to reward a chosen action āk, the equivalent of state transition function, in this

case, is:

sk+1 = fdecisionk(x̄k), (5.15)

computed using the same structure of Eq. (5.10), where x̄k is observed at the receiver,

which results in fdecisionk(x̄k) reflecting the effects of the combined uncertainty imposed by



Chapter 5 99

Table 5.2: Communication mission phases and weights wi
PPPPPPPPPPPPP
Mission

Weights
w1 w2 w3 w4

1 - Launch/Re-entry 0.1 0.6 0.2 0.1

2 - Multimedia 0.6 0.3 0.05 0.05

3 - Power saving 0.2 0.1 0.6 0.1

4 - Normal 0.25 0.25 0.25 0.25

5 - Cooperation 0.1 0.2 0.1 0.6

both channel impairments and spacecraft orbital dynamics. Therefore, values for rRLk+1 in

Eq. (5.2) are given by:

rRLk+1 =


fdecisionk(x̄k), if fdecisionk(x̄k) > tr,

0, otherwise,

(5.16)

where tr is a threshold value that guarantees that only actions that brought the system

performance above a certain level should be accounted for in the learning process. Rewards

computed that have a value less than the threshold do not represent a successful action

choice, given the current channel environment. Thus, it must not be reinforced and should

be forgotten instead.

For simulation purposes, Table 5.2 shows the communication mission phases considered

in this section, with a suggestion for their respective weight vectors w̄. Each mission phase is

composed of some individual objectives, four in this case, demonstrating the multi-objective

optimization facet of the proposed RL learning. Each objective is affected somehow by the

combination of several impairment sources such as current weather conditions encountered

by the LOS, spacecraft orbital dynamics and on-board electronics status, etc., described in

the next section.
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5.2.3 Actions and How to Choose Them

An action a, as mentioned above, consists of a set of radio parameters that can be em-

ployed by an SDR platform. When choosing an action, the agent might first decide if it

should explore new actions in order to expand its knowledge about the current environmen-

tal conditions, or if it should exploit already known actions that resulted in bringing the

system above the state’s threshold tr in the past. It is worth noting that, while following

a certain algorithm to choose an action, the decision-making process can be informed by

additional knowledge of certain communication channel conditions, reading from external

sensors, databases, or predictors such as the IMM proposed by the authors in Reference [78].

In future applications, this bias can be inserted directly into the decision function or indi-

rectly as a modification of the main goal of the current mission.

Several methods were proposed in Reference [133] to solve the explore–exploit trade-

off. They propose the classical εk-greedy algorithm with ε ∈ (0, 1), which represents the

exploration probability with uniform distribution that also picks a uniformly-distributed

random action, with exploitation for the remaining portion of time. Since εk is function of

k, it should decrease as the time goes by in order to reflect the system-learning capability,

i.e., explore more during the first steps.

One of the main challenges with using εk is that it needs to be manually tuned. The

adaptive εk, value-difference based exploration (VBDE), was proposed to adaptively change

the εk value based on a temporal-difference error, making the εk value a function of state,

i.e., εk(x̄k) [141, 142]. Other common solutions for the exploration versus exploitation

problem include the Boltzmann exploration [133], probability matching [143], contextual

bandit [144], on-line clustering [145], etc., each requiring its own functions and parame-

ters, usually a designer’s choice. This work considers the classic εk-greedy algorithm, and

analyzes the multi-objective performance with both fixed and varying ε values.

5.2.4 Algorithm

The proposed algorithm covered this subsection, Algorithm 2, implements the basic

RL for communications systems illustrated by the block diagram in Figure 5.4. During
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the communications mission, the range of radio parameters might change due to system

upgrades or failures. When this is the case, Ū , a matrix containing all the current possible

adaptable combinations (for instance, TRL, M , and Eb) must be updated.

The proposed RL method requires knowledge of the observable x̄k. Due to the impair-

ments imposed by the current channel conditions, each different action might result in a

specific overall performance value, measured by fdecisionk , that has the same structure as

Eq. (5.10).

While deciding its actions, the agent uses policy h to choose an action ak, an entry from

matrix Ū . This policy is detailed in the next subsection, and covers how the exploit–explore

trade-off was treated. The vector of weights w̄ is chosen based on the multi-objective goals

of the current communications mission profile. Next, the agent chooses an action, forwards

the parameters set to the transmitter, which sends data back using that radio configuration.

Finally, the receiver takes measurements, computes the new state and reward, and updates

the Q-table.

5.2.5 Simulation Results

Before presenting the numerical results, the communication channel profiles, as well as

some parameters and functions considered by the simulations are defined. It is assumed a

GEO satellite equipped with flexible-radio payloads communicating at Ka-band (26 GHz)

with a fixed ground station, with adaptation occurring on the return link only. Considering

clear sky conditions, an additive white Gaussian noise (AWGN) channel is assumed.

The adaptive SDR parameters RRL, M , and Eb are presented in Table 5.3. M is

comprised of all combinations of the available QAM modulation constellation sizes Ms and

encoding rates Mr. In this section, the action search space Ū is comprised of all possible

combinations among the values available within the parameters ranges shown in Table 5.3.

Any study of RL algorithms involving simulation or experimentation requires the resear-

cher to address the challenge of efficiently exploiting known actions while exploring available

actions, looking for better ones. An ideal strategy would consist of long exploitation periods

mixed with short exploration periods to identify suitable actions as quick as possible. For

comparison reasons, four different scenarios of ε values were simulated. The first is called
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Algorithm 2 MORL for cognitive radio-based satellite communications

Require: Initial parameters ( ¯RRL, M̄ , Ēb, ¯PRL,W, tr, εk, αk)

1: U← all combinations of ( ¯RRL, M̄ , Ēb)

2: QRL0 ← 0

3: Measure and compute initial state s0:

4: a0 ← Ū

5: Apply a0 and measure x0 = (TRL0,W0, PRL0,BER0)

6: Compute fdecision(x0)

7: while termination condition is not met, k = 0, 1, 2, · · · do

8: if (R̄, M̄ , Ēb, P̄ ) has changed then

9: U← all combinations of ( ¯RRL, M̄ , Ēb)

10: end if

11: zz← uniform random number [0, 1]

12: if zz> εk then . with probability 1− εk (Exploit)

13: ak ← a ∈ arg maxāQRLk(sk, ā)

14: else . with probability εk (Explore)

15: ak ← U randomly chosen action with uniform probability

16: end if

17: w̄ ← Communications goals

18: Apply ak and measure xk = (TRLk,Wk, PRLk,BERk)

19: Compute next state sk+1 and next reward rRLk+1

20: Update QRLk+1(sk, ak)

21: end while
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Table 5.3: SDR parameter ranges

Parameters
Bit rate

(RRL)

Constellation size

(Ms)

Encoding rate

(Mr)

Tx gain

(Eb)

Values [128 kbps, 1 Mbps]* [4, 16, 64] [4/7, 11/15] [1, 20]† dB

* Steps of 128 ksps.

† Transmitter gain range achievable depending on combinations of available values

for Eb and R.

the “brute force” (BF) scenario, in which all actions are evaluated once. In this case, ε = 1

and only exploration is performed, with its duration in time being equal to the total number

of possible actions. The second and third scenarios consider fixed values for ε, 0.5 and 0.01,

respectively.

The last scenario considers a varying ε that decreases with the iteration number k, and

gets reset when it reaches a value below a threshold, in this case assumed to be equal to

10−4. The analysis of the rate at which ε decreases and gets reset is beyond the scope of

this work.

Decisions of whether to explore or exploit consist of drawing a random number that is

uniformly distributed before the transmission of each packet. The current ε has the role of

serving as the threshold, since it represents the exploration probability.

In the case of exploitation, the chosen action is the one associated with the current

maximum Q-value, h = arg max
a

QRL(s, a), computed by Eq. (5.4). When exploring, a

random action is chosen from a uniform distribution, its corresponding radio parameters

are applied at the transmitter, and its performance is measured by the receiver. Regarding

the threshold shown in Figure 5.5, it is assumed zero in order to allow a more detailed study

of the algorithm’s behavior at any performance level. Also, the learning rate is initialized

as 1 for each possible action and decreased as it gets reused, making sure that selecting

repeated actions does not provide new knowledge.

Assuming an SNR reading rate of 1 reading/second, each action is used during 1 second.

Given an universe of 540 available actions, combinations of the available tunable radio
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Figure 5.6: Time-series for chosen action and multi-objective communication performance

for ε = 0.5. Knowledge of good performing actions is taken for granted due to the fixed

exploration probability.

parameters, the BF scenario also lasts 540 seconds. In order to allow a fair comparison, all

scenarios also have the same simulation duration as the BF.

Examples of time series for actions chosen and their respective multi-objective perfor-

mance value as normalized are provided in Figure 5.6 for a fixed ε, and in Figure 5.7 for

varying ε. The communication channel assumed was a direct link from a GEO satellite

during clear sky conditions to a fixed ground station at Ka-band.

One can observe that, for a fixed ε, the system does not take full advantage of the

knowledge previously acquired. Thus it keeps exploring with a constant pace even after

finding sufficient rewarding actions. On the other hand, the varying ε the knowledge is

used wisely with exploration being performed only sporadically.

In order to provide an overview of the multi-objective performance, each mission was

simulated 1, 000 times, with a duration of 540 seconds each. The 25th, 50th and 75th per-

centiles for the mean multi-objective performance of the four scenarios, for each mission, are

shown in Tables 5.4–5.8. Higher percentile values represent a better performance, since the

percentiles themselves refer to multi-objective performance levels, with the 25th percentile

considered a baseline for performance evaluation between different ε values. Having large
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Figure 5.7: Time-series for chosen action and multi-objective communication performance

for varying ε. The best known actions are exploited for a while, and eventually new ones

are explored.

25th percentile values means that the lowest 25% of the multi-objective performance values

are equal or less than that percentile. In addition to performance percentiles, integral values

of histograms’ areas are also provided.

Histograms for BF and varying ε scenarios, including standard error bars for these, for

each mission are provided in Figure 5.8. For all missions, the effect of using the RL algorithm

to manage exploration and exploitation periods while learning which actions were the best

ones, results in a higher time spent on those high-rewarding actions when compared to a

scenario without this reinforced learning capability, such as the BF.

Since the multi-objective function weights are different for each mission, each one has

a different performance profile. Independent of the profile, based on both results shown in

Tables 5.4–5.8 and in Figure 5.8, the RL effect is to focus on the most rewarding actions,

located on the rightmost side of the BF histograms, for the whole operation time duration.

The best performances for clear sky conditions are achieved for Missions 1 and 2, since

the 25th percentile difference between BF and varying ε scenarios, as well as their respective

integral values, are the largest ones. For instance, the improvement achieved for Missions

1 and 2 was sufficiently good that the 25th percentile difference between BF and varying
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Table 5.4: Multi-objective Communications Performance Distribution for Mission 1
PPPPPPPPPPPPP
Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε

25th 0.1917 0.6109 0.5923 0.6892

50th 0.6476 0.6203 0.6467 0.6937

75th 0.6769 0.6282 0.6754 0.7095

Integral 0.4863 0.6224 0.6294 0.7002

Table 5.5: Multi-objective Communications Performance Distribution for Mission 2
PPPPPPPPPPPPP
Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε

25th 0.3699 0.708 0.6559 0.8114

50th 0.5487 0.7151 0.7209 0.8289

75th 0.6903 0.7205 0.7665 0.8679

Integral 0.531 0.7235 0.7092 0.8428

ε scenarios was 0.49 and 0.44, respectively. Also, depending on the mission requirements

multiple parameters need to be taken into consideration. Even though Mission 1 had a

larger difference value, representing an improvement of more than 3.59 times between these

two scenarios, the 25th percentile for Mission 2 was the highest among all the missions

simulated.

5.2.6 Conclusions

For clear-sky GEO satellite channel, results demonstrated improvements of 3.59 times

in the 25th percentile compared to systems without a learning algorithm under the same

channel condition. The results also demonstrated that, even though the multi-objective

performance can be improved by the proposed algorithm, depending on the communication
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Table 5.6: Multi-objective Communications Performance Distribution for Mission 3
PPPPPPPPPPPPP
Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε

25th 0.1861 0.3824 0.2752 0.3524

50th 0.2285 0.4222 0.3023 0.3791

75th 0.2721 0.441 0.3211 0.403

Integral 0.2308 0.4094 0.2982 0.3789

Table 5.7: Multi-objective Communications Performance Distribution for Mission 4
PPPPPPPPPPPPP
Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε

25th 0.2379 0.4172 0.3996 0.4688

50th 0.3438 0.4203 0.4309 0.4758

75th 0.4233 0.4236 0.4501 0.4934

Integral 0.3291 0.4251 0.4247 0.4851

Table 5.8: Multi-objective Communications Performance Distribution for Mission 5
PPPPPPPPPPPPP
Percentile

Scenarios
BF ε = 0.5 ε = 0.01 Varying ε

25th 0.1139 0.2506 0.2427 0.2877

50th 0.2375 0.2526 0.2649 0.2904

75th 0.2693 0.2544 0.2771 0.2979

Integral 0.2007 0.2613 0.2598 0.2998
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Figure 5.8: Normalized histograms for average time spent on a certain multi-objective

normalized performance level for a GEO satellite-based link under clear sky conditions. For

varying ε scenario, in all missions, more time was spent at higher performance levels when

compared to the BF scenario.
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mission requirements certain choices of the exploration probability ε can be made to achieve

a specific goal, such as minimum acceptable performance level, or overall performance within

a time window period, by imposing conditions on the percentiles and integral values.

Based on the improvements shown in this subsection, the potential for RL is further

explored in Section 5.3 to assist cognitive satellite-based systems dealing with varying com-

munication channels.

5.3 Hybrid Machine Learning Methods for Cognitive Space

Communications

In the previous section the benefits of RL were presented as a method to control radio

adaptations on return links from a GEO satellite to a fixed ground station assuming an

AWGN channel during clear sky conditions. However, there are several other situations in

which the proposed approach does not seem to be suitable, requiring a complete new way

of approaching the problem. This new approach is covered in this section and resulted in a

whole new set of solutions, described in the following subsections.

Some of the main issues with the previous approach is that it relied completely on the

Q-table, where discrete performance percentage values were mapped into actions through

Q-values. In that case, the number of actions were relatively small, only 540 parame-

ter combinations. For real-world applications, both state and action universe needs to be

considered continuous, making the usage of a Q-table impractical from a practical imple-

mentation perspective, due to memory limitations.

In addition to both adaptive parameters and multi-objective function being limited to

four parameters each, adaptations took place just once per second, and the channel was

assumed constant over time. For future applications to be more realistic and robust, a

learning system is expected to operate across a dynamically changing channel, on a packet

basis, and capable of dealing with several thousands of different actions compliant with

current state-of-the-art communications standards.

In Section 5.2.1 the normalized multi-objective performance time-series in Figures 5.6

and 5.7 showed several time instants when the system experienced performance values extre-
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mely below the one currently being exploited. Future critical space-based communications

systems may not tolerate the problem of RL spending too much time on exploring actions

that result in low performance scores.

Thus, a novel hybrid algorithm is proposed to solve this issue. It is composed by the

RL structure proposed in Section 5.2 and neural networks (NN) [146], known as NN-based

RL, or RLNN. This proposed algorithm enables the radio to predict the effect of multi-

dimensional radio parameters on multi-dimensional conflicting performance goals before

allowing the radio to actually try these parameters over the air, avoiding the cost of spending

time and resources on learning action–performance mapping that will not be useful in the

near future. In addition, the second version of the RLNN, RLNN2, proposes to implement

the RL exploitation through an array of ensembles of shallow NNs.

5.3.1 Machine Learning Overview

Machine learning (ML) is a term used to describe several theories and algorithms that

aim to automate computational decision-making tasks. The ultimate goal of an autonomous

system is to learn, reason, and make decisions without human interventions, applying the

knowledge acquired from different tasks to tasks it has never learned before. Another big

challenge is to accumulate all that knowledge over time in an efficient way without the

need for additional storage, making the information available whenever it is required to be

used on different tasks. However, such complex autonomous systems are tens of years away

from being implemented due to hardware and software not being available today. Thus,

researchers have been working on developing and improving simpler algorithms capable of

learning a few different specific tasks.

Two big research advancements recently took place in 2015, with the DQN system used

to play Atari games better than a human [147] and in 2016, after the AlphaGo [5] system

won the world championship in the game of Go. Both systems, and the ones that have

been built upon them, have been pushing the research boundaries of ML in all different

fields of application, with the main driver being computer vision systems to assist self-

driving cars [148]. Among the most notorious companies involved with ML R&D are Google

Brain [149], DeepMind [150], OpenAI [151], Facebook AI Research [152], NVIDIA [153],
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and all self-driving car research companies. These companies conduct research on a wide

range of topics, including neuroscience and non-convex optimization algorithms and their

implementation in dedicated hardware processors. Other specialized research centers try to

focus on the big picture, putting together all these different knowledge fields in the same

office, such as MIT’s Center for Brains, Minds, and Machines (CBMM) [154].

All these systems have in common the following: both leverage RL, fully described in

Section 5.2.1, and deep NNs, briefly described below (including references that will provide

the reader with an in-depth theoretical description). This recent technological revolution

has inspired the proposal of a satellite-based communications system control that makes

use of both these concepts. Nevertheless, the requirements are different and, to the best of

the author knowledge, lead to the research and development of algorithms that were not

available in the current literature. With the basic principles of RL and NN, the proposed

hybrid approach design is presented, followed by simulation results and a brief discussion

on the findings.

5.3.2 Neural Networks Overview

An artificial NN is a method for mapping inputs to outputs, usually used for classifica-

tion, such as in pattern recognition problems, or non-linear function approximation, such as

in function fitting problems [146]. For instance, NN is used to approximate the non-linear

environment effects by mapping actions into rewards, and states into actions. Over the

past 10 years considerable improvements have been made to NN that resulted in the “deep

learning” concept [155], where very complex relationships between inputs and outputs can

be mapped through “deep” NN consisting of three layers or more.

NN algorithms are composed of two main steps: training and prediction. Initially,

examples containing input and output data are preprocessed and provided to the NN for

training. After meeting some minimum performance requirements, the trained NN, which

consists basically of the NN architecture and its weights, can be used as a predictor.

For detailed description of NN basics, derivations, and algorithm details, the interested

reader should refer to Chapter 6 in [155]. When using NN, each different problem seems

to require a specific NN architecture, comprised of a training function, performance me-
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trics, and number and size of hidden layers such that its usage becomes feasible for the

desired application in terms of required processing capabilities and processing time, as well

as generalization error performance. Currently there are no general guidelines in the li-

terature on how to pick these items. Reference [156] provides some useful comments and

advice on what to consider when making these decisions. For implementation purposes,

the standard multi-layer fully connected NN architecture is considered, which is trained

by a backpropagation-based algorithm. More details on the chosen NN architectures are

provided in the following subsection.

5.3.3 MORL and Deep Neural Networks: The RLNN Algorithm

The NN is used as an approximation of the environment in terms of the RL experience,

chosen actions, and its respective rewards achieved so far, as shown in Figure 5.9. By having

the luxury of approximating the mapping of actions into states and rewards, the NN allows

for actions to be explored all at once, or as many as one would like to, without having to

actually spend time trying those actions in the real environment. This proposed approach

is called “virtual exploration”. It improves exploration performance by eliminating the time

the RL agent would spend exploring actions that are predicted to result in bad performance.

This additional feature is called “action rejection”.

Poor actions are defined by a “rejection performance threshold” value defined by the

user, such that actions resulting in performance below that threshold are classified as bad.

The action rejection probability defines the time percentage that bad actions will be rejected

during exploration, i.e., prevented from being used over the air by the radio. Whenever

the RL agent is exploring, it predicts the actions’ performance using the trained NN and

classifies them into good or bad. Then, according to the rejection probability it randomly

chooses one action from either a good or bad set.

Regarding the deep exploration NN architecture, a feedforward with Levenberg–Marquardt

backproapgation training algorithm [157,158] was used. The NN has three fully-connected

layers without bias: two hidden layers that contain 7 and 50 neurons each (resulting in

449 weight parameters per NN), both using a log-sigmoid transfer function, and the output

layer with one neuron using the standard linear transfer function. With respect to the
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Figure 5.9: The proposed RLNN block diagram, composed by the hybrid multi-objective

reinforcement learning assisted by a deep neural network. “Virtual exploration”, driven

by “action rejection” probability, prevents time expenditure exploring “bad actions” using

radio resources over-the-air.

performance function, the mean-squared error was used with two different training stop

conditions: minimum error gradient of 10−12 and maximum validation checks equal to 20.

During training the data were randomly split into 70% for training, 15% for testing, and

15% for validation, all scaled to the [−1, 1] range.

In order to improve the NN prediction error, an ensemble of NN1m = 20 NNs were used

during both training and prediction, as shown in Figure 5.10, and the output was simply

the average among all these NNs. The reason for the choice of the ensemble size was made

using the MSE during NN training, similar to the way the NN architecture itself is chosen,

due to the lack of a more formal theoretical method. Additional discussion on this size is

provided at the end of Section 5.3.7.

This hybrid approach is depicted in Figure 5.9 where the RL interacts with the ensemble

of exploration NNs, receiving the same actions sent to the environment and the same rewards

and state information from the environment during training. When used for prediction, this

information is exchanged only with the RL agent, avoiding the cost of executing such actions

in a real-world environment.
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Figure 5.10: Deep neural networks used by RL exploration receive the same multi-

dimensional input. Ensemble learning trains several NNs in parallel, and averages their

outputs into a single multi-objective performance value. For AWGN channel, the mean

ES/N0 was kept constant.

5.3.4 RLNN Simulation Results

In order to comply with the DVB-S2 standard, the radio-adaptable parameters are

the same as defined in [159], considering all four modulation schemes (QPSK, 8-PSK, 16-

APSK, and 32-APSK) and their respective encoding schemes. In addition to all roll-off

factors, the following were considered: bandwidth range of [0.5−5 MHz], additional variable

transmission symbol power range of [0−10 dB] in steps of 1 dB, and long-frame with frame

length equal to 64,800 bits. The action space is comprised of more than 30,400 possible

actions. Each action vector ā is composed of six parameters an, where n = 1, · · · , 6: symbol

rate (Rs), energy per symbol (Es), roll-off factor (rof), modulation order (M), number

of bits per symbol (bs), and encoding rate (er). Values for the ranges of each of these

parameters are described in Table 5.9.

The GEO satellite channel is assumed to be an AWGN during clear sky conditions,

with adaptation taking place on the downlink to a fixed ground station only, similar to the

channel presented in [4]. In these simulations, for proof-of-concept purposes it was assumed

that the satellite’s transmitter amplifier operates in the close-to-linear region.

Regarding performance, the conflicting multi-objective target considered is comprised of

six parameters: bit error rate (BER) estimated at the receiver, throughput (Thrp), band-
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width (BW), spectral efficiency (Spc eff), consumed power (Pwr con), and power efficiency

(Pwr eff) measured at the transmitter and sent over to the receiver, all of which are scaled

to the range of [0, 1]. The reward function g is computed by the fitness function fobs given

by the weighted sum computed by:

fobs(x) =w1fThrp + w2fBER + w3fBW+

w4fSpc eff + w5fPwr eff + w6fPwr con,
(5.17)

where x is a vector containing the performance parameters, described above, and the weights

wi for each performance parameter, specified according to each different communications

mission and defined by the user. The following simulation results considered all wi = 1/6.

As mentioned in Section 5.2.1, the action exploration functions are: (i) constant explo-

ration probability ε = 0.5 and the well-known ε-greedy exploration algorithm [160,161] with

variable exploration probability ε = 1/k, where k is the step size between resets of ε back to

1 whenever it reaches a minimum, in this case assumed to be equal to 4 · 10−3. In this pro-

posed hybrid solution, the state-action policy function h is approximated by the NN during

virtual exploration followed by uniform random sampling between the bad and good action

sets, based on the rejection probability value. During exploration, h is greedy and chooses

the action with the maximum Q-value, computed by Eq. (5.4), with αRLk = αRLk−1/2,

another user-defined parameter that decreases from 1 until it meets a threshold of 10−3,

when it gets reset.

Figure 5.11 illustrates an example of a time series performance of the NN rejecting

actions chosen by the RL exploration algorithm that were predicted to perform below the

threshold of 0.7. Instead, it suggests actions predicted to perform above that threshold

value.

Simulations were performed for the proposed hybrid RLNN algorithm and for a modified

version of the RL algorithm proposed by the authors in [4], this time considering DVB-

S2 and additional adaptable parameters as mentioned above. Figure 5.12 presents the

average distribution of the amount of network packets according to their fitness score for

both algorithms while using exploration probabilities equal to ε = 0.5 and ε = 1/k. This

distribution accounts for performance during exploration only. A total of 100 simulations
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Figure 5.11: Example of a 50 seconds time series multi-objective RL using only “virtual ex-

ploration” NN with action rejection probability equal to 1 and performance threshold equal

to 0.68. During the first 200 packets, the NN collects training data. Clearly, exploration of

actions with predicted performance values below the threshold are avoided. Performance

predictions had good accuracy with respect to their respective true values.

were run for each of the four different configurations (combinations between exploration

functions and virtual exploration set on/off), with the same simulation duration of 512

seconds. Even though the channel considered in these simulations is assumed constant over

time (no slow or fast fading), this time duration represents the average duration of a LEO

orbit and may allow performance comparisons to be done in future research by the authors.

5.3.5 Remarks on RLNN Performance

As expected, the introduction of the NN for virtual exploration allows the radio to

drastically decrease the time spent, and consequently the number of packets, on exploring

actions that resulted in poor performance when compared to the maximum performance

achieved while rejecting all those actions predicted to perform below a threshold. This

improvement can be seen as a shift to the left in the distributions shown on the right-

hand side panels in Figure 5.12. For these results the rejection performance threshold was

considered to be equal to 95% of the current maximum performance predicted by the NN.
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(a) (b)

(c) (d)

Figure 5.12: Boxplots of proposed RLNN algorithm multi-objective performances. On

the left panels virtual exploration was turned off (likewise the algorithm proposed in [4]

considering the DVB-S2 standard), and on the right panels it was turned on with rejection

probability equal to 1. Top panels used fixed exploration probability value equal to 0.5, and

bottom panels used the variable exploration probability function. High number of packets

concentrated around larger fitness scores is better.

The virtual exploration feature was disabled and enabled by setting the rejection probability

to 0 and 1, respectively, meaning that 0 no action is to be rejected and 1 all actions with

performance below the selected performance threshold will be rejected.

In terms of resultant numerical performance, in scenarios with virtual exploration disa-

bled, the average number of packets experiencing multi-objective performance values above

0.56 when using a fixed and variable exploration probability values, was 33% and 25% re-

spectively, as shown by Figure 5.12 panels (a) and (c). In both scenarios, the majority of

packets experienced a performance score value of 0.485.

However, in scenarios with virtual exploration enabled, the average number of packets

experiencing multi-objective performance values above 0.56 when using a fixed and variable
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exploration probability values, was 82% and 98%, respectively, as shown by Figure 5.12

panels (b) and (d). In both scenarios, the majority of packets experienced a performance

score value of 0.685. This represents an improvement in the number of packets experiencing

performance values above 0.56 of 2.48 times and 3.92 times for fixed and variable exploration

probabilities, respectively.

In terms of the integral values of the average of histograms, both scenarios with vir-

tual exploration disabled have an integral equal to 0.472, while the scenarios with that

feature enabled have an integral equal to 0.67 and 0.62, for fixed and variable exploration

values, respectively. Thus, improvements of 1.32 times and 1.42 times on the integral values

were achieved by the proposed RLNN for fixed and variable exploration probability values,

respectively.

It should be noted that using a fixed exploration probability value, the number of pac-

kets used during exploration represented 50.58% and 50.7% of the total for scenarios with

and without virtual exploration, respectively. When using the variable exploration function

these percentage values were 3.17% and 3.12%, respectively. These values combined with

the distributions shown in Figure 5.12 and with the improvements in the integral values

demonstrate the effectiveness of the proposed virtual exploration in increasing the num-

ber of packets experiencing high multi-objective performance values independently of the

exploration probability function chosen.

For comparison, a GA simulation was run for 100 times, each with the same time

duration of the RLNN simulations mentioned above. Its average performance distribution

is shown in Figure 5.13. Although it was able to find higher performance scores than the

proposed RLNN, the cost to achieve that was to spend 66% of the time exploring actions

that resulted in very low performance values, scored between 0.18 and 0.26. Only 0.8% of

the time was spent on performance values between 0.69 and 0.81.

Batch methods, such as GA might have an advantage over standard RL and the pro-

posed RLNN for the cases when the environment remains constant and/or the system can

spend a long time exploring a large number of different actions, resultant from different GA

generations. However, if the environment changes, a reset may be required, which will make

the system to spend a considerable amount of time experiencing low performance values
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Figure 5.13: Boxplot of the genetic algorithm multi-objective performance during the same

time duration used by the proposed RLNN simulations. The majority of the time is spent

in very low performance levels.

after restarting the search again. If the system cannot wait until the GA convergence, it

might stick with using an action that can have any performance level.

Even though evolutionary methods might be good as searching methods, they do not

guarantee a minimum performance. The proposed RLNN method does not guarantee a

specific performance level either. However, through virtual exploration it provides guidance

in which actions to explore, giving control over the performance levels experienced during

exploration by performing action rejection. In addition to that, through the rejection pro-

bability value, the RLNN provides control over the amount of time spent on actions that

may result in a certain performance level.

5.3.6 Exploiting Reinforced Multi-dimensional Actions: The RLNN2 Al-

gorithm

A novel algorithm combines the RLNN algorithm with a new one capable of dealing

with dynamically changing attenuation levels on the satellite communications channel is

proposed in this subsection. To address this issue the usage of a hybrid MORL using two

different NN’s is proposed: one for exploration and another one for exploitation, as illustra-
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Figure 5.14: Multi-objective reinforcement learning using deep neural networks ensem-

bles block diagram. Virtual environment exploration prevents communications systems

from spending time exploring combinations of radio parameters that would result in poor

performance, while exploitation networks enables learning of actions best suitable for a

dynamically changing environment.

ted by Figure 5.14. Leveraging the proposed RLNN algorithm, the agent interacts with the

environment, and either explores different actions or exploits actions already tried before.

This is shown by Figure 5.15. During exploration the aforementioned virtual exploration

is used, and during exploitation a novel technique is introduced, called “multi-dimensional

action predictor”.

Before proceeding with the proposed algorithm, it is worth mentioning the distinction

of two important terms: RL state and environment state levels. RL states are the observed

individual performance metrics measured and/or monitored from the environment and they

change in response to the execution of different RL actions. As described in Section 5.12,

these RL states are features of the fitness function. In satellite communications, the channel

itself is assumed to convey all the environment changes, represented and measured by the

SNR levels at the receiver. Thus, environment state levels are also referred to as channel

conditions.
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Figure 5.15: RL work flow for choosing an action to be used in the real-world environment

after training both exploration and exploitation NN. The exploration probability aides the

choice between exploration and exploitation.

One of the main limitations of the basic RL, proposed in Section 5.2, and the RLNN

algorithms is that both consider only non-changing environments, since the channel was

assumed to be a downlink from a GEO satellite to a fixed ground station. When the

channel remains constant over time, the action performance vector also holds the same

values. Figure 5.16 shows a time series example of the multi-objective fitness score over time

for each action when a constant environment level was assumed during the communications

Mission 4 (more details on mission profiles are given in Section 5.12). After randomly

exploring actions for a few seconds, the RL starts to alternate between exploitation (using

the same selected action during a certain period of time, shown by the constant amplitude

bands in Figure 5.16) and exploration.

Each discrete action used over-the-air had its fitness score value stored in a Q-vector

(assuming the rewards to be equal to the RL states, see References [4,122]), which received

new values for new positions during exploration and updated existing ones during exploi-

tation. Therefore, every explored action decision considered performance values of actions

explored in the past.

However, there are three main limitations in using this approach when the channel is

assumed to change dynamically: (i) A discrete action performance value in the present

might be different from a value registered in the past for that same action; (ii) Performance

values regarding a certain action must be stored for each different multi-dimensional RL
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Figure 5.16: RL algorithm searching for better actions to be exploited over a GEO satellite

communications channel during Mission 4. Before any transmission the RL exploitation

action decision-maker considers performance values of actions when they were last explo-

red. Exploited actions are represented by bands of constant amplitudes for a certain time

duration.

state, with each RL state being represented by a continuous variable; and (iii) Each action-

RL state performance value must be stored for a specific channel condition that changes

dynamically, which is also a continuous variable.

Limitation (i) results in outdated performance values leading to erroneous decision-

making when deciding to exploit a certain action that was explored in the past when the

environment condition was different. A possible solution to this issue would be to update

that specific action performance. Although this update must be done for all other actions

previously explored, it would be just another exploration round, still making their perfor-

mance unknown during the exploitation round. In Figure 5.16, during the very first seconds

the RL agent only explores different actions. Next, it starts to alternate exploration with

exploitation, resulting in the constant fitness score value bands for exploited actions during

a certain time duration. When looking for an action to exploit the RL agent considers

the fitness scores of all actions when they were last explored (actions never explored were

assumed to have a score equal to 0). For an environment that does not change over time

this does not seem to be an issue.
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(a)

(b)

Figure 5.17: Multi-objective performance for two different actions aA and aB, shown in

panels (a) and (b), respectively. Each action was kept fixed during the entire time the envi-

ronment changed, following the SNR profile, also shown in both panels. The performance of

action aA does not seem to change too much over time for each different mission. However,

the performance of action aB changes abruptly in all missions as the environment changes.

However, for dynamically changing channels, one certain action might have different

fitness score values for each different environment condition, making previous explorations’

fitness scores outdated. This is well illustrated by Figure 5.17 that shows the simulated
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performance values of two different actions aA
6 and aB

7 (action structure is described in

Section 5.12), which were kept fixed while the communications channel changed. Some

actions performance show minimal difference over time, as shown by the left-side panel,

even for different communications missions (more details on these missions are provided

in Section 5.12). On the other hand, there are actions that have performance changes

over time, according to the different environment conditions. Sometimes these performance

variations have a non-linear behavior, as is the case for the action performance shown on

the right-side panel, with different actions showing different behaviors for different missions

during different environment conditions. This fact represents one of the main drivers for

the research presented by this section.

Limitation (ii) results in an exponential increase in memory size requirement due to

the different performance levels for each action when experiencing different environment

condition levels, when these are assumed to be discrete. The former Bellman’s equation

for the communications problem, Eq. (5.4), would then have the RL state and action to be

function of continuous time t, computed by:

QRLk+1(sk(t), ak) =QRLk(sk(t), ak)+

αRL[rRLk(t)−QRLk(sk(t), ak)],
(5.18)

which represents the dynamic behavior of a given action’s fitness score over time.

In addition to the limitations imposed by (ii), limitation (iii) adds another dimension to

the performance values, which is their variation over time, making the data storage problem

even worse. Thus, from the implementation perspective of online system operations it is

impractical and almost impossible to save all that information.

Seeking to solve the limitations mentioned above the computation of the Q-values was

dropped and, instead, the usage of another NN was proposed to predict which action should

be exploited, given the current environment state level, i.e., the communications channel

conditions. The proposed “exploitation NN” provides the following features: (i) it solves

the problem of using outdated performance values for deciding which action to exploit, (ii)

it does not require storage of all action-RL state performance values for all environment

6aA = (4.16 · 105, 0, 5, 0.35, 32, 0.9)
7aB = (4.16 · 105, 0, 5, 0.20, 32, 0.75)
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conditions, and (iii) it allows for the action performance, i.e., the RL state to be decoupled

from the action itself. This last feature is the most important because it allows the agent

to exploit different actions in an attempt to achieve the same previous performance level

while the environment dynamically changes.

Therefore, the proposed exploitation NN architecture is composed of an array of en-

sembles of NNs, each predicting one dimension of the multi-dimensional action vector. All

exploitation NNs have the same shallow architecture and receive the same input multi-

dimensional performance vector, as shown in Figure 5.18. The exploitation NN output

vector is the average output of NN2m = 10 parallel NNs for each output vector element.

The choice of this architecture was made based on the one that showed the smallest MSE

averaged over 100 simulation runs, and its performance analysis is outside the scope of

this work. Each NN is composed by two fully-connected layers without bias: the hidden

layer contains 20 neurons (resulting in 160 parameters) and uses the log-sigmoid transfer

function, and the output layer uses the linear transfer function. All the other functions are

the same as the ones used for the individual exploration NNs mentioned in Section 5.3.3.

The logic used to decide the exploitation NN input, the multi-objective performance va-

lues, are quite complex, requiring several conditional statements. Algorithm 3 describes the

general operational procedure of the novel proposed hybrid architecture, called RLNN2, in-

cluding the interactions between the RL, exploration NN and exploitation NN. Algorithm 5

describes the logic used to choose the exploitation NN inputs, required within Algorithm 3.

All the required parameters are described and defined in Section 5.12.

Regarding the exploration method presented in Section 5.3.3, it was demonstrated that

one NN ensemble can be used to explore the environment by predicting each action perfor-

mance [122]. Making action performance predictions for all possible actions before every

single packet transmission over-the-air might be impractical if the action space of all possible

actions is continuous. Additionally, it breaks the principle of RL exploitation, in which an

action should be exploited only if it has actually been explored, otherwise it is only another

action exploration. However, it is feasible if the number of selected actions is discrete and

there is enough processing power to perform computations before a packet transmission, as

is the case assumed in this work.
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Figure 5.18: Ensemble of NN for action prediction by performance exploitation. Different

sets of NN predict a specific action element by averaging their outputs. All NN receive the

same multi-objective performance vector, in addition to the measured Es/N0.

For the initial RLNN exploration ensemble of deep NNs, shown in Figure 5.10 to be

used by the proposed RLNN2 algorithm, different ES/N0 values are used at the input while

operating on dynamically changing environments. Explored actions are still classified based

on the action rejection threshold and rejection probability, as shown by Figure 5.19. The

Exploration NN block is an ensemble of parallel NNs, with the same architecture defined

in Section 5.3.3.

.

5.3.7 RLNN2 Simulation Results

Before presenting any results achieved by the proposed hybrid solution RLNN2, some

terms and other additional requisites that are part of the simulation need to be defined.

In order to make the systems simulations compliant with the current state-of-the-art

satellite communications technology, the DVB-S2 standard [159] adaptable parameters,

such as modulation scheme and encoding rate, were assumed to be used by both space-based
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Algorithm 3 RLNN2 operational routine - Part 1

Require: Exploration NN (NN1) and Exploitation NN (NN2) setup, and initial parameters

(R̄s, Ēs, b̄s, β̄, M̄ , ēr,NNbs,NNdump, f(ε), tra,min˙good%)

1: U← all combinations of (R̄s, Ēs, b̄s, β̄, M̄ , ēr)

2: loop

3: if (R̄s, Ēs, b̄s, β̄, M̄ , ēr) has changed then

4: U← all combinations of (R̄s, Ēs, b̄s, β̄, M̄ , ēr)

5: end if

6: while NN training data buffer not full do

7: ‘Forced exploration’: only explore

8: end while

9: zz ← uniform random number [0, 1]

10: if zz < f(ε) = εk then . with probability εk (Explore)

11: Predict actions using NN1

12: Classify actions into ‘good’ or ‘bad’ using mingood%

13: u← uniform random number [0, 1]

14: if u < tra then . Action rejection

15: Randomly select one ‘good’ action a

16: else

17: Randomly select one ‘bad’ action a

18: end if

19: else . with probability 1− εk (Exploit)

20: Predict action to be exploited using NN2

21: Execute selected a

22: Measure and/or read RL states s̄

23: Compute multi-objective fitness function fobs(x)

24: Select next NN2input . see Algorithm 2
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Algorithm 4 RLNN2 operational routine - Part 2

25: Update NN training data buffer

26: Build NN1 and NN2 training datasets

27: if NN training dataset is full then

28: Remove NNdump entries from NN training dataset

29: end if

30: end if

31: end loop

transmitter and ground-based receiver radios. Other parameters8 were also considered to

be adaptable, with ranges described in Table 5.9.9 Following the operational sequence

described in Algorithm 3, a multi-dimensional action composed of six parameters ā =

(Rs, Es, bs, β,M, c) is used by the transmitter for a transmission to the receiver over a

dynamically changing environment.

For the simulations results presented below, a communications channel was assumed

with the attenuation time series given in Figure 5.17 for clear sky conditions. This profile is

an example of path loss, obtained from the STK orbit simulator [99], during a single LEO

satellite pass at an orbit similar to the one flown by the ISS. This represents the environment

variations through the natural attenuation experienced by the transmitted signal due to the

satellite flight trajectory over the ground station.

Optimum action adaptation is the ultimate goal of the proposed RLNN2 algorithm.

Because NN training is not perfect, NN outputs represent a best effort towards predicting

an action as close as possible to the optimum action, given the currently available kno-

wledge of the training buffers. These adaptations occur by the communications system

selecting different actions during either exploration or exploitation phases of the RL algo-

rithm. Throughout transmissions, the RL agent seeks to optimize the fitness function score

composed of conflicting multi-objective functions. Communications mission target is a vec-

tor comprised of six metrics: bit error rate (BER), throughput (Thrp), bandwidth (BW),

8All the simulations presented in this work assumed that the satellite transmitter amplifier operates in

the close-to-linear region.
9Different modulation schemes use different encoding rate sets
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Algorithm 5 RLNN2 exploitation NN input selection algorithm

Require: max fobs = 0, mreset, Exploitscore = [ ]

1: while Training data buffer not full do

2: if ‘Forced exploration’ then

3: Exploitscore = max(fobs(x))

4: end if

5: end while

6: if thenfobs > max fobs

7: max fobs = fobs(x)

8: if zz< εk then . with probability εk (Explore)

9: NN2input = s̄

10: else . with probability 1− εk (Exploit)

11: if fobs(x) < Exploitscore then

12: if Exploitscore − fobs(x) > mreset & ak = ak−1 then

13: Reset NN training data buffer

14: Start ‘Forced exploration’

15: else if fobs(x) < 0.9Exploitscore then

16: NN2input receives s̄ from NN training data buffer

17: else if fobs(x) > 0.9Exploitscore then

18: Exploitscore = fobs(x)

19: else

20: NN2input = last NN2input

21: end if

22: else

23: Exploitscore = fobs(x)

24: last NN2input = s̄

25: end if

26: end if

27: end if
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Figure 5.19: Actions are classified into ‘good’ or ‘bad’ based on their multi-objective perfor-

mance values predicted by the ensemble of exploration NN using the performance threshold

value. Next, a class is selected based on the ‘rejection probability’ value. The chosen action

to be used on the environment is then randomly picked up from that class.

spectral efficiency (Spc eff), additional consumed power (Pwr con), and power efficiency

(Pwr eff), with all values scaled to the range of [0, 1]. The additional power is assumed to

be a variable power amount added to the constant power rated for the worst case condition

already used by the satellite.

For proof-of-concept purposes, the multi-objective considered in this work is composed

by functions that compute the throughput by:

fThrp = Rsbser, (5.19)

the bandwidth is computed by:

fBW = Rs(1 + β), (5.20)

the spectral efficiency is computed by:

fSpc eff = bser/(1 + β), (5.21)

the power efficiency is computed by:

fPwr eff = (bser)/[10[(Es/N0)/10]Rs], (5.22)

and the additional power consumed is computed by:

fPwr con = EsRs. (5.23)
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Table 5.9: RLNN2 adaptable parameters

Parameter Variable Value range

Modulation order M̄ [4, 8, 16, 32]

Bits per symbol b̄s [2, 3, 4, 5]

Encoding rate ēr [1/4− 9/10]

Roll-off factor β̄ [0.2, 0.3, 0.35]

Bandwidth ¯BW [0.5− 5] MHz

Symbol rate R̄s [0.41 : 0.1 : 3.7] MSamples/sec

Additional Tx Es Ēs [0 : 1 : 10] dB

The BER10 is computed by interpolating the curve functions acquired by simulations

of the DVB-S2 communications system provided by MATLAB [98]. Although MATLAB

provides the end-to-end modulators, demodulators, LDPC, and BCH encoders, both 16-

APSK and 32-APSK modulation schemes constellations and all other encoding rates had

to be added to the simulator. All the frames were assumed to have a length of 64, 800 bits,

representing the DVB-S2 long-frame type.

Then, the reward rk, previously defined by function g is computed as the multi-objective

fitness function fobs(x), given by the weighted sum computed by:

fobs(x) =w1fThrp + w2fBER + w3fBW+

w4fSpc eff + w5fPwr eff + w6fPwr con,
(5.24)

where wi are the weights for each performance parameter according to the communications

mission selected, defined by the user. Examples of mission profiles used in the simulations

are given by Table 5.10, and x represents all wi values and all the other variables that the

multi-objective functions depend on.

Algorithm 3 defines the usage of a NN training data buffer, containing a total of NNbs

entries each composed by the action, the RL states s, and the fitness function value, collected

10Plots of BER curves and MATLAB functions are available at [162].



Chapter 5 132

Table 5.10: Weight values for communications missions

Mission w1 w2 w3 w4 w5 w6

1 - Launch/reentry 0.2 0.4 0.1 0.1 0.1 0.1

2 - Multimedia 0.5 0.3 0.05 0.05 0.05 0.05

3 - Power saving 0.05 0.05 0.05 0.05 0.3 0.5

4 - Normal 1/6 1/6 1/6 1/6 1/6 1/6

5 - Cooperation 0.05 0.05 0.4 0.4 0.05 0.05

6 - Emergency 0.1 0.8 0.025 0.025 0.025 0.025

during exploration. Whenever this buffer gets filled up both exploration NN (NN1) and

exploitation NN (NN2) are re-trained and the oldest NNdump entries are removed from the

buffer.

Before each packet transmission the RL agent decides between exploration and exploita-

tion by computing the exploration probability value εk through the exploration probability

function f(ε). Then, if a random number z is less than εk, the agent virtually explores

the environment through NN1, draws another random value u, and checks it against the

“action rejection” value tra in order to pick an action from either the good or bad sets.

These sets contain virtually explored actions classified by their respective fitness score ba-

sed on a threshold value defined by the percentage of the maximum fitness score achieved

during virtual exploration, defined by mingood%.

For the simulation results presented in this section, it was assumed NNbs = 200,

NNdump = 50, tra = 0.95, min% = 0.9. f(ε) varies with time steps k, assumed to be

equal to εk = 1/k, starting at 1 and reset every time εk = 10−4.

Algorithm 5 defines the logic to select the input for NN2 through two main mechanisms:

slow recovery and fast recovery. The former refers to the exploitation of performance values

stored on the NN training buffer in a descending order of fitness score values. The latter

resets the NN training buffer, which results in re-training of both NNs after enough data is

collected while in the “forced exploration” mode. Since the fast recovery forces continuous
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exploration for the duration of NNbs packets, a threshold value mreset controls when it is

triggered. Although it is an operator parameter, the results consider mreset = 0.5 for all

missions.

Simulations were run for all the missions presented in Table 5.10. Because the time

duration required by each iteration simulation for each mission was too long (simulation

runs varied between 4 and 8 hours each, a total of 320 simulation hours), the performance

results were averaged over 10 runs for each mission.

For the interested reader, Figure 5.20 provides examples of fitness score time series

for each mission, with the duration of a LEO orbit mentioned in previous sections, i.e.,

512 seconds. These time series include performance values during both exploration and

exploitation periods.

5.3.8 Remarks on RLNN2 Performance

As shown in Figure 5.21, panels (a) to (f) present the normalized packet count distri-

bution over fitness score values for Missions 1 to 6, respectively. Even though each mission

has a different profile, which is function of the chosen weight values, in all panels the perfor-

mance is concentrated on high fitness score values. Since the goal is to have the majority of

packets experiencing the highest fitness score as possible, the plots show that the RLNN2

was able to select good actions, learning the relationship between rewards and actions while

the channel dynamically changed.

In order to provide a better understanding of the accuracy achieved by the proposed

solution, the simulations’ fitness score values of each mission were compared against their

respective ideal performance values. These ideal values were computed by evaluating the

performance of all actions at each channel profile value through exhaustive search. The

error between the performance achieved by the proposed algorithm and the ideal solution

is shown as accuracy distributions in Figure 5.22. For all missions, the RLNN2 algorithm

resulted in the majority of packets being concentrated around very low fitness score error

values, i.e., at high accuracy values, as desired. Mission 3, shown in panel (c) had the best

performance in terms of accuracy with a minimum accuracy percentage value of 91%, and

an average of 80% of packets experiencing an accuracy of 99%. Mission 2 had the worst
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accuracy performance, where some packets experienced accuracy values as low as 61%, and

less than 40% of packets experienced accuracy values of 99%. These accuracy distributions

are expected to serve as benchmarks for future research on cognitive engines for space-based

communications systems.

Another metric used to measure the performance of both the average fitness score and

its error against the ideal case is the integral value of the areas under the distribution

curves shown in Figures 5.21 and 5.22, shown in Table 5.11. In terms of performance,

the average integrals in Figure 5.21 present a minimum equal to 0.72 for Mission 4, and a

maximum equal to 0.88 for Mission 6. In terms of accuracy, the integral values for the error

distributions in Figure 5.22 has a minimum equal to 0.01 for Mission 3 and a maximum

equal to 0.06 for Mission 2. Thus, because of the values chosen for the fitness score function

weights, each mission has its own ideal performance profile, and the error becomes a better

metric to assess the efficiency of the proposed solution in choosing good actions during each

different channel condition.

Regarding the ensemble size, Table 5.11 also shows the integral values for performance

and the error between that performance and its ideal values when the ensemble size is equal

to one for both exploration and exploitation NNs NN1m = NN2m = 1. This ensemble size

choice directly impacts on the processing time of both training and prediction for NN, with

the former being the most sensitive for the case being studied. Although, for simulations

running on MATLAB, the processing time was decreased by 12 times, when implemented

in dedicated hardware, such as FPGA, this gain in terms of execution time has yet to be

defined, and is out of the scope of this work. This analysis was aimed at showing the

trade-offs involved with accelerating the simulation time versus the performance errors.

Therefore, for all missions, the integral of the performance distribution is similar when a

larger ensemble size is chosen. However, with the exception of Mission 6, the error increased

for all other mission performances. Mission 3 experienced an error of almost 6 times higher,

with all other errors being around 2 times higher or more.

It is worth noting that future research on this topic of CE space-based communications

systems might need to compare against real-world performance. Comparisons between

real-world experiments are expected to be performed against the accuracy for the missions
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Table 5.11: Integral values for average performance and error distribution curves

Integral values

Mission NN1m = 20, NN2m = 10 NN1m = NN2m = 1

Performance Error Performance Error

1 - Launch/reentry 0.7605 0.0525 0.7631 0.1278

2 - Multimedia 0.7878 0.0643 0.7643 0.158

3 - Power saving 0.8316 0.0177 0.7894 0.1055

4 - Normal 0.7237 0.0491 0.7049 0.0927

5 - Cooperation 0.8382 0.0366 0.7834 0.0651

6 - Emergency 0.8836 0.0387 0.8931 0.044

profiles suggested in this dissertation. However, if any additional limitations on the number

of adaptable parameters or number of goals change, new simulations need to be run and

the accuracy for that specific case needs to be registered. Therefore, the process is the same

and the RLNN2 general architecture to be used is the same, with the caveat that sizes of

NNs ensembles, number of array elements, inputs, and outputs must match the ones being

considered in the experiment.

5.3.9 RLNN2 Performance Trade-off

As mentioned above, the ideal performance achieved by exhausted search establishes an

upper-bound performance. The simulation results in Section 5.21 verifies that the proposed

solution is compliant with this bound, since the results never achieve a performance higher

than the ideal. Besides the limitations that inspired the Exploitation NN proposal, men-

tioned in Section 5.3.6, using NN for choosing actions to be exploited provides flexibility

instead of performance improvements, when compared to systems that do not use NN. Sy-

stems without Exploration NN can achieve similar performance if the granularity provided

by the state-action mapping is high enough (assuming there is enough memory to store this
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information, not to mention sufficient memory access time), and the exploration probability

is also high enough.

However, the cost for training and predicting using NN provides flexibility in terms

of relieving the requirements of memory size by allowing the state–action mapping to be

performed for continuous action and/or state dimensions, a more realistic approach to the

real world. As a byproduct of using NN for exploitation, a fixed memory size learning

capability is achieved. Although the research presented in this dissertation used the learned

knowledge to predict actions, future communication systems could potentially use it to

achieve more optimized performance or other tasks.

In addition to that, the usage of NN also provides scalability. Future implementations

can extend the Exploitation NN design to deal with larger scales of action parameters

available, and more state variables monitored, trading off memory size and access time

for NN training and prediction processing requirements. This dissertation shows that this

trade-off is technically feasible by providing algorithms to implement the proposed solution,

and error benchmarks against ideal cases, for future research reference.

5.3.10 Hardware Implementation Considerations

The simulation results presented in this dissertation were executed using MATLAB

scripts, a very high level language that is not optimized for performance. For instance, the

real-time duration of the simulated missions was 15 minutes, but the total time spent on the

RLNN2 simulations were more than four hours using an Intel-based multi-core processor

being tasked by many other applications at the same time.

Since the proposed algorithms are intended to be deployed in real-world applications

they are expected to run in real-time. For example, for a network experiencing round-trip

time (RTT) delay of 30 ms, adaptation can then take place anytime after this interval, but

as fast as possible, e.g., for a parameter update rate of 40 ms, the computation of the new

parameters should be done in the next 10 ms or so after the RTT.

As mentioned in Section 5.3.8, this execution time can be decreased, while keeping

the same hardware, by decreasing the size of the NN ensembles, trading-off latency for

accuracy of results. Since this kind of trade-off is not recommended, future space-based
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communication systems are expected to have enough computing power in order to keep the

latency of performing this processing close to an acceptable limit.

In addition, the current radio receivers in space are very limited in processing power,

since they were not designed to deal with NN training or more advanced processing tasks.

This is one of the main reasons NASA has been flying the SCaN Testbed and why this

dissertation is proposing this algorithm, so future communication systems will be cognition-

enabled. Thus, it might take a while for the space industry to start making available more

powerful radiation-hardened FPGAs on-board spacecraft.

One major recommendation is the usage of real-time operating systems in order to

decrease the variability of task execution time for the CE, and to perform the processing

on GPUs, especially the training and predictions for the NNs, given their great capability

of dealing with floating point arithmetics.

Regarding currently available technology to allow experimentation, by the time of the

writing of this dissertation, there was a limitation in the radio waveforms available on the

terminal modems and the ones implemented on the SCaN Testbed. Because the current

implementation uses the DVB-S2 standard, it does not allow full adaptability to be done

on all the parameters as proposed by the RLNN2 algorithm, and that is expected to be

available for space-based radio systems in the future.

5.4 Chapter Summary

This chapter provided algorithms that constitute the cognitive engine core. A novel

RL algorithm for satellite-based communications concept was proposed, and simulations

presented promising improvements in the multi-objective performance when compared to

a totally random algorithm. Next, the proposed RLNN algorithm introduced the virtual

exploration concept, reducing costs of testing actions in the real-world environment. Finally,

the RLNN2 was presented. It relies on exploring and exploring RL actions using NNs for

dynamically changing channels. Simulation results showed that very low performance errors

can be achieved when compared to the ideal solutions.

It is worth noting here that, to the best of the author’s knowledge, there is no simi-
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lar approach in the literature related to space communications systems capable of finding

multi-dimensional actions to achieve a multi-dimensional objective while the environment

changes dynamically. Thus, it would not be fair to compare the proposed algorithms against

individual approaches that aim to adapt only individual parameters, such as ACM. Other

approaches that operate in batch mode, as GA, would cause extremely high latency to the

system, as compared to the incremental approach of RLNN2. Therefore, the results and er-

ror distributions presented here considered the ideal solutions and allow for future research

on CE for space communications systems to be compared against.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.20: Examples of fitness score value time series per packet. Panels (a) to (f) show

performances for Missions 1 to 6, respectively. In all missions, the majority of simula-

tion packets experienced performances close to the ideal. Constant score levels represent

exploitation, while spikes below and above them represent exploration.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.21: Boxplots of normalized packet count distribution over fitness score values

obtained using RLNN2. Panels (a) to (f) represent performances for Missions 1 to 6. More

packets concentrated around larger score values is better.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Boxplots of normalized packet count distribution over fitness score error values

between proposed RLNN2 and ideal solution. Panels (a) to (f) represent performances for

Missions 1 to 6. More packets concentrated around lower error score values is better.
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Chapter 6

Conclusion and Future Work

In this dissertation, several research gaps were covered by providing more realistic sa-

tellite channel communications models and time series synthesizers. Also, leveraging these

models and synthetic data generators, channel state detectors for fixed and mobile ground

receivers at Ka-band were proposed, aimed to increase the QoS for the user during rainy

conditions. Finally, a novel cognitive engine design for future space-based communications

systems was proposed for both fixed and dynamically changing channel conditions. Below,

the main achievements described throughout this study, and future work are summarized.

6.1 Research Achievements

Based on the current state-of-the-art, several research gaps were identified. Each gap

represented specific challenges that are addressed by this dissertation through the following

contributions:

• A new Rician factor equation for more realistic channel models: A novel

Rician factor equation was derived coupling it directly with the reflection coefficient

of the terrain’s material constitution and electrical properties. The study case consi-

dered the application of this new derivation on computing the BER experienced by an

airborne receiver communicating with a GEO satellite during different levels of iono-

spheric scintillation events. The results showed the potential of the terrain structure
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in affecting the communications performance.

• Novel attenuation time series synthesizers: Rain time series generators for LEO

obrits, and LMS scenarios for satellite-based communication systems were proposed.

These algorithms considered operation at Ka-band. The novel method for LEO orbits

enables the recent ITU-R P.1853 recommendation for GEO to be applied at any eleva-

tion angle profile desired. For mobile nodes experiencing rain attenuation at Ka-band,

the current LMS channel model had the rain attenuation synthesizer incorporated.

• QoS improvements using Kalman filters: Leveraging the novel attenuation time

series synthesizers proposed proposed by this dissertation, one of its first usages was in

the design of channel state detectors and predictors. It was showed that, during rain

attenuation at Ka-band, ACM schemes can decrease the number of modcod switching

by using Kalman filtered signals., which keeps the service quality more steady for

the receiver. For mobile receivers experiencing rain attenuation at Ka-band in urban

environments, IMM filters are more accurate in detecting signal shadowing when

compared to the current state-of-art methods.

• A novel cognitive engine for autonomous space communications: A cogni-

tive communications algorithm for future aerospace applications was proposed. It

leverages hybrid machine learning algorithms emphasized to satellite communications

dynamic channels. Its performance is evaluated for different communications missions,

and it is described in terms of multi-objective performance scores. Comparison of si-

mulated performance results against optimal values show that the proposed approach

is feasible, and qualifies for in-orbit experiments.

6.2 Future Work

The contributions presented in this dissertation provides solutions to some research pro-

blems related to satellite communications. In addition, novel algorithms were also proposed

that enable further investigations to be performed that may support the development of

future communications systems. Several future works are enabled by the research discussed
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in this dissertation, with the most important ones being the following:

• The proposed Rician K-factor derivation enables future research to evaluate more

complex communication scenarios, with receivers moving at different speeds experien-

cing signal multipath reflections from different materials surface compositions, as well

as, various terrain conditions.

• Statistical research may be done through the analysis of rain attenuation time series

experienced by LEO for receivers located at any region of the planet during any

elevation angle profiles for different passings.

• Further investigations might study the statistics of satellite downlink signals in various

urban conditions while being affected by atmospheric weather, such as attenuation

caused by rain at Ka-band.

• Next-generation satellite-based networking systems may rely on IMM-based solutions

to detect signal blockages and trigger node relay mechanisms.

• The RLNN2 could be investigated from a Generative Adversarial Nets (GANs) per-

spective. Since the exploration NNs outputs become inputs to the exploitation NNs,

and vice-versa. One of the interests in this method resides on the possibility of using

it as a technique to generate more training data.

• Future cognitive engines for space-based communications systems will enable ope-

rations during critical mission phases, for instance, during launch and re-entry and

emergency modes. An autonomous radio scheduler is a very important feature requi-

red future exploration missions, employed by either orbiting satellites or spacecraft,

when no immediate human intervention may be possible. Thus, the proposed CE

is among the first ones to qualify for in-orbit experimentation, defining the path for

future research on more robust cognitive communications systems for space applica-

tions.
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Appendix A:

Kalman Filter Matrices

We model the true attenuation value x based on derivations found in the open literature

[163], [164]. Our system observable state xt is a past value plus or minus a certain amount

dependent on the estimated slope ∆x:

xt = xt−1 + ∆x. (6.1)

We can measure only the state variable, but not its slope. On the other hand, we can

estimate both. Thus, we define our continuous linear system by:

ẋ = Ax. (6.2)

The state matrix X̂ is given by:

X̂t =

(
x̂t

dx̂t
dt

)T
, (6.3)

and the A matrix in continuous mode is:

A =

0 1

0 0

 . (6.4)

While in discrete mode, we have:

Ft = e∆tA =

1 ∆t

0 1

 . (6.5)
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with ∆t being the discrete sampling interval. ∆t = 1 for filtering and ∆t = k for predictions

k − steps ahead. The measurement consists only of the noisy SNR at the receiver, and as

mentioned above, the slope will be computed on-line. The measurement mapping matrix

H is given by:

H =

(
1 0

)
; (6.6)

and it maps the values from yt, the measurement vector, given by:

yt =

(
yt 0

)T
(6.7)

that are used by the filter. The variance matrix Q was modeled in the same way as in [23]

for continuous case:

Q =

0 0

0 q

 , (6.8)

where q is the noise in the added portion ∆x, and for discrete case:

Q =

∆t∫
0

eAτ Q eA
T τdτ =


∆t3q

3
∆t2q

2

∆t2q
2 ∆t q

 . (6.9)

The covariance matrix Zt has the form:

Z =

zv zc

zc zv

 , (6.10)

where zv is all the diagonal elements representing the variance and zc are the elements

representing the covariance between the measurement and the rate it is changing.
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