

BNP Paribas: Budget Automation

A Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

In Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science

Submitted By:

Jacqueline Nancy Ngo, Business and Economic Science

Nan Zhang, Computer Science and Industrial Engineering

Submitted to:

On-site Liaison:

Andrew Clark

Project Advisors:

Professor Michael Ciaraldi, Department of Computer Science

Professor Renata Konrad, Foisie School of Business

Professor Kevin Sweeney, Foisie School of Business

Submitted on:

January 25, 2017

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiAzpybzbrQAhWC44MKHVavAssQjRwIBw&url=http://odk.org/circle/wpi/&psig=AFQjCNFf10jzTxq6I7dKM1LzmrFAu_xNaQ&ust=1479843616715308
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi_6dH8zbrQAhVn4YMKHSpyA8kQjRwIBw&url=http://www.montmartre-guide.com/en/shops/banque-bnp-paribas/&bvm=bv.139250283,d.amc&psig=AFQjCNF8GzFsGZOoLnP-hK0Zm75YZhg86A&ust=1479843820094402

i

Abstract
To reduce the time and effort required to complete the semi-annual budgeting process for

the Global Markets IT division of BNP Paribas, our team designed an automated process

consisting of a Python server, SQL database, and web-based front-end. Currently, to budget and

forecast headcount and discretionary costs, the process requires hundreds of hours among the

ITO Business Management team, team leads, and senior management. The process is complex,

time-consuming, and labor intensive; it lacks a single system to input allocations, an easy way to

audit activity, and a way to track multiple versions of the data sources. The new process our team

designed addresses the identified bottlenecks within the current process and aims to lessen the

complexity and time of the overall process.

ii

Acknowledgements
Our team received tremendous support throughout the duration of the project from our sponsor -

BNP Paribas - and from our faculty advisors at Worcester Polytechnic Institute. We would like

to especially thank the following people at BNP Paribas who guided us during our eight weeks

on-site and made the success of our project possible:

Andrew Clark

Val Ryjouk

Kunal Changela

Artun Koktug

Wassim Najjar

Robert Kraft

Jacques Dillies.

Second, we express our gratitude to our advisors at WPI who supplied us with resources and

advice and helped us along every step of this project:

Kevin Sweeney

Michael Ciaraldi

Renata Konrad.

iii

Executive Summary
 Semi-annually, BNP Paribas’s Global Markets (GM) IT division conducts a budget

allocation process. In January and again mid-year, senior management and team leads allocate

their headcount and discretionary costs to profit centers (also referred to as front-desks, which

are money-making divisions in the front office). In January, team leads and management forecast

the percentages of their expenses to charge to specific profit centers, then team leads and

management reforecast the percentages (referred to as allocation keys) in June when they have a

better idea of their costs. The identified bottlenecks that needed to be addressed were: the lack of

a single system for team leads and management to submit their budget allocations, the lack of a

process to track revision history, and the complexity associated with tracking multiple versions

of headcount and discretionary costs data.

 The objective of our project was to design an automated process to reduce the complexity

of this budget allocation process which includes creating the budget, mapping the data together,

creating the allocation template, and the actual allocations. We identified the bottlenecks in the

system and aimed to address them with our new budget allocation process design which consists

of a Python Server, SQL database, and front-end web-based application.

 The creation of the SQL database was a top priority in this project; it was critical to have

a database that is easy to maintain. Therefore, over a dozen database designs were created before

finalizing the design – illustrating the complexity of the data. The final database design has 44

normalized tables; by normalizing the database, we were able to avoid having redundant data.

The data that makes up the database is from the extracts pulled from the project management

tools, from mapping files provided by the ITO Business Management team, and from users’

inputs in the front-end.

 In our front-end design, not only are team leads and management able to allocate their

expenses, but they are also able to view recent activity which eases the auditing process (see

Appendix D for possible use cases). Not being able to track edits is a major concern in the

current process, but in our application design, the ITO Business Management team and

management will be able to track who’s making what edits. The other problem that needed to be

solved was versioning the data sources, and that is also addressed in our new design.

 We conducted significant data and system analyses throughout the duration of this project,

and we hope that the progress we had made with our designs and implementation will simplify

the process and significantly reduce the amount of time required to complete this semi-annual

process.

iv

Authorship

Section Author

Title Page Jacqueline Ngo

Abstract Jacqueline Ngo

Acknowledgements Jacqueline Ngo

Executive Summary Jacqueline Ngo

Table of Contents Jacqueline Ngo

I. Introduction

 1.1 BNP Paribas Background Jacqueline Ngo

II. Background

 2.1 Current Budgeting Process Jacqueline Ngo

 2.2 Problem Statement Jacqueline Ngo

III. Methodology

 3.1 Objectives Jacqueline Ngo

 3.2 New Process Overview Jacqueline Ngo

 3.3 Technology Tools Nan Zhang

IV. SQL Database

 4.1 Database Jacqueline Ngo

 4.2 Data Loading Complexities Jacqueline Ngo

 4.3 Test Cases Jacqueline Ngo

V. System Analysis

 5.1 System Components Nan Zhang

 5.2 Front End Design Nan Zhang

VI. Results

 6.1 Progress We Made Nan Zhang

 6.2 Special Features Nan Zhang

VII. Recommendations

 7.1 Data clean-up Jacqueline Ngo

 7.2 Usage Clarity API Nan Zhang

VIII. Future Extensions Nan Zhang

IX. Conclusion Jacqueline Ngo

Bibliography Nan Zhang & Jacqueline Ngo

Appendix A: Current General Budget Allocation Process Jacqueline Ngo

Appendix B: Deliverables and Corresponding Objectives Jacqueline Ngo

Appendix C: New General Budget Allocation Process Jacqueline Ngo

Appendix D: Use Case Diagram Jacqueline Ngo

Appendix E: Sequence Diagram Nan Zhang

Appendix F: Data Flow Diagram Nan Zhang

Appendix G: Final Database Design Jacqueline Ngo

Appendix H: Un-Normalized Database Design Jacqueline Ngo

v

Table of Contents

Abstract .. i

Acknowledgements ... ii

Executive Summary ... iii

Authorship.. iv

Chapter I: Introduction .. 1

1.1 BNP Paribas Background .. 1

Chapter II: Background... 2

2.1 – Current Budget Allocation Process .. 2

2.1.1 – Current General Process .. 2

2.1.2 – Current Blended Keys Process .. 3

2.1.3 – Current Re-Allocation Process .. 5

2.1.4 – Allocations Aggregated by Program ... 7

2.2 – Problem Statement ... 7

Chapter III: Methodology ... 9

3.1 Objectives .. 9

3.1.1 Deliverable 1 Automating General Allocation Process and Corresponding Objectives 9

3.1.2 Deliverable 2 Blended Keys Automated Allocation Process and Corresponding

Objectives .. 9

3.1.3 Deliverable 3 Automating Reallocation Process and Corresponding Objectives 10

3.2 New Process Overview ... 10

3.3 Technology Tools .. 11

3.3.1 Microsoft SQL Server .. 11

3.3.2 Python (Flask Framework) ... 11

3.3.3 MVC Architectural Pattern ... 12

3.3.4 Front End .. 12

3.3.5 Overview .. 13

Chapter IV: SQL Database ... 14

4.1 Database .. 14

4.1.1 Un-Normalized Database Design ... 14

4.1.2 Normalized Database Design ... 16

4.2 Data Loading Complexities ... 18

4.3 Test Cases .. 19

Chapter V: System Analysis ... 20

5.1 System Components .. 20

5.1.1 Startup ... 20

5.1.2 Authentication .. 20

5.1.3 Authorization .. 21

5.1.4 Menu ... 21

5.1.5 File Upload ... 22

5.1.6 File Read ... 22

5.1.7 Edit Profit Center .. 22

5.1.8 Generate Allocation Template .. 23

5.1.9 Edit Allocation Percentage ... 23

5.1.10 Save Allocation Percentage .. 24

5.1.11 Revision .. 24

vi

5.1.12 Permission Edit ... 24

5.2 Front End Design .. 25

Chapter VI: Results ... 30

6.1 Progress We Made .. 30

6.2 Special Features... 30

6.2.1 Versioning .. 30

6.2.2 Pandas Library .. 31

6.2.3 Bootstrap ... 31

6.2.4 Master Detail Grid .. 31

Chapter VII: Recommendations ... 32

7.1 Data Clean up .. 32

7.2 Usage of Clarity API ... 32

Chapter VIII: Future Extensions ... 33

Chapter IX: Conclusion .. 34

Bibliography ... 35

Appendix A: Current General Budget Allocation Process ... 36

Appendix B: Deliverables and Corresponding Objectives ... 38

Appendix C: New General Budget Allocation Process .. 39

Appendix D: Use Case Diagram ... 41

Appendix E: Sequence Diagram ... 42

Appendix F: Data Flow Diagram .. 43

Appendix G: Final Database Design... 44

Appendix H: Un-Normalized Database .. 45

List of Figures
Figure 1 – An Example of a Minimal Flask Application.. 12

Figure 2 – Structure of this Application ... 13

Figure 3 – Authentication Process .. 21

Figure 4 – Authorization Process .. 21

Figure 5 – Major Fields that Form Allocation Template .. 23

Figure 6 – Overview of Revision .. 24

Figure 7 – User Log In Page ... 25

Figure 8 – Main Menu Page.. 26

Figure 9 – File Upload Page ... 26

Figure 10 – Edit Profit Center Page .. 27

Figure 11 – Permission Edit Page ... 27

Figure 12 – Allocation Keys Edit Page ... 28

Figure 13 – Allocation Keys View Page ... 28

Figure 14 – Revision History Page ... 29

vii

List of Tables
Table 1 – Example of Headcount Allocation .. 2

Table 2 – Example of Discretionary Cost Allocation ... 3

Table 3 – Example of Part 1 of the Blended Keys Process .. 4

Table 4 – Example of Part 2 of the Blended Keys Process .. 4

Table 5 – Example of Part 3 of the Blended Keys Process .. 4

Table 6 – Example of Allocations to Dummy Profit Centers from Step 2 5

Table 7 – Example of Re-allocation from Dummy Profit Center 1 to Real Profit Centers 5

Table 8 – Example of Blended Keys for Re-allocation from Dummy Profit Center 1 to Real

Profit Centers .. 6

Table 9 – Example of Blended Keys for Re-allocation from All Dummy Profit Centers to Real

Profit Centers .. 6

Table 10 – Example of Reallocated Keys in Step 4 .. 6

Table 11 – Example of Allocations with Corresponding Programs ... 7

Table 12 – Example of Allocations Aggregated by Program ... 7

Table 13 – Example of Rows from Headcount Extract .. 14

Table 14 – Projects with Multiple Cost Centers and Charge Codes ... 16

Table 15 – Example of an Independent Table in the Database... 16

Table 16 – Example of a Dependent Table in the Database ... 17

Table 17 – Example of a Table with Redundant Data .. 17

Table 18 – Missing Data in Clarity Extract .. 18

Table 19 – Clarity Extract without Missing Data ... 18

Table 20 – Examples of Test Cases .. 19

Table 21 – All the System Components ... 20

Table 22 – Basic Elements of Startup ... 20

Table 23 – Basic Elements of Menu ... 21

Table 24 – Basic Elements of File Upload ... 22

Table 25 – Basic Elements of Edit Profit Center .. 22

Table 26 – Basic Elements of Editing Allocation Percentage .. 24

Table 27 – Basic Elements of Permission Edit ... 25

Table 28 – An Example of the Versioning Mechanism .. 30

1

Chapter I: Introduction
 BNP Paribas, a multi-national French investment bank, encourages innovation

(Innovation: our responses to a changing world). This is exemplified by our project to automate

the budget allocation process for Global Markets (GM) IT. With guidance from multiple

departments across the division, our team was given the opportunity to develop a solution to

address the complexity of the current budget allocation process. By simplifying and automating

the semi-annual process, hundreds of man hours can be saved annually and this time can be spent

further improving the customer experience. As a result, BNP staff can focus on projects to

improve the bank.

1.1 BNP Paribas Background
Banque Nationale de Paris (BNP) Paribas has history dating back to the 19

th
 century,

when its two forerunners, Comptoir National d’Escompte de Paris (CNEP) and Comptoir

National d’Escompte deMulhouse, were established in 1848. These “comptoirs d’escompte”

(discounting houses) were formed to facilitate credit circuits in France while the country was

undergoing an economic meltdown and political revolution which had destroyed the country’s

former credit system. In 1872, European bankers wanted to “raise funds to borrow to free up

regions and, on a longer term, to acquire shareholdings in companies and acquire a stake on

capital markets (BNP History);” thus, Banque de Paris et des Pays-Bas (Paribas) was established.

 After several more European banks were created and mergers occurred, a merger of

Banque Nationale de Paris and Paribas in 2000 led to the creation of BNP Paribas which has

remained a strong European leader since. Today, BNP Paribas has a presence in over 70

countries on 5 continents (BNP History; i.e., North America, South America, Europe, Africa, and

Asia) and employs approximately 189,000 employees as of 2015.

 BNP Paribas’s key activities include retail banking (i.e., corporate vehicle leasing, rental

and financial solutions, and online savings and brokerage) and financial services (i.e., private

banking, asset management, and real estate services) as well as corporate and institutional

banking (e.g., solutions across capital markets, securities services, financing, treasury, and

financial advisory).

 BNP Paribas recognizes that it is a changing world, and encouraging innovation is the

firm’s response to better serve their customers. An example of BNP Paribas’s commitment to

innovation is through hosting “International Hackathon” where eight countries simultaneously

compete to create solutions for a given theme (BNP Paribas International Hackathon). In 2016, at

the second International Hackathon, the theme was “Streamlining the customer journey through

co-creation with startups;” 96 startups participated in the 51-hour long event and 18 winners

were chosen. BNP Paribas then supports and collaborates with the winning startups (BNP

Paribas International Hackathon). This event (along with many other events and sponsorships)

exemplifies BNP Paribas’s commitment to supporting actors of innovation and innovating to

serve their customers.

2

Chapter II: Background
2.1 – Current Budget Allocation Process

According to Andrew Clark, a senior manager within GM IT and our onsite liaison, the

current semi-yearly budgeting process requires hundreds of man-hours between GM IT’s senior

management, team leads, and the ITO Business Management team. At the beginning of the year

and again mid-year, the three groups must forecast where GM IT’s expenses will be charged. As

GM IT does not directly contribute to BNP’s revenues, but represents an expenditure, GM IT

must charge their expenses to “Profit Centers” which are the front-desks within the front office.

These front-desks that GM IT supports bring in money for the bank through trades and other

activities. Different managers within GM IT have different allocation processes, and this chapter

provides background on each of the processes addressed in our project.

2.1.1 – Current General Process
 Appendix A represents the current general budget allocation process used by Andrew

Clark and his team.

Clarity, a project management tool, was the primary source of our data for this project.

Team leads and management update “Headcount” data quarterly and “Discretionary Costs” data

yearly in Clarity. “Headcount” data is information on all resources (employees) in IT and the

corresponding projects they are assigned to. Additional information includes country, which

programs their projects correspond to, corresponding cost centers, corresponding charge codes,

etc. Each resource has a limited number of “man-days;” the resource’s time must be budgeted

since each resource has a cost (e.g., salary and benefits). Team leads and management allocate

their resources’ monthly “man-days” in Clarity to track the expected headcount costs for each

project. “Discretionary Costs” are fees that must be paid to outside vendors for licenses and

other services. Parameters used to track these costs are: vendor name, budget source, cost center,

charge code, etc. The ITO Business Management team pulls two extracts from Clarity – one for

Headcount and one for Discretionary Costs – and uses these extracts to determine the budget for

the upcoming year.

The data from these two extracts is mapped with other parameters and used to create a

single allocation template. An allocation template is an Excel sheet where team leads and

managers assign percentages of their costs to the profit centers. For example, as shown in Table

1, a team lead is responsible for Project A. This team lead must assign allocation keys

(percentages of their costs) to profit centers, summing to 100%.

Project/Vendor

Name

Man-

Days

Cash Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Project A 50 $50,000 20% 10% 70% 0%

Table 1 – Example of Headcount Allocation

In this simplified example, a team lead must allocate costs for Project A’s headcount costs. For

2016, the team lead has a budgeted amount of 50 man-days (e.g., one employee working for 50

days, five employees working 10 days each, or fifty employees working one day each, etc.)

which is equivalent to $50,000. The team lead must charge these costs to the profit centers since

IT does not directly make any money; in this scenario the team lead is charging 20% of Project

A’s costs ($10,000) to Profit Center 1, 10% of the costs to Profit Center 2 ($5,000), and 70% of

the costs to Profit Center 3 ($35,000). Because 100% of the costs have already been charged,

3

Profit Center 4 is not charged any amount. Note that the percentages assigned to each profit

center are the “allocation keys.”

 A similar process is followed for discretionary costs as illustrated in Table 2.

Project/Vendor

Name

Man-

Days

Cash Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Vendor A 0 $100,000 100% 0% 0% 0%

Table 2 – Example of Discretionary Cost Allocation

In this example, a manager has to assign allocation keys for this $100,000 fee for Vendor A (note

that because this is a discretionary cost and not a headcount cost, the number of man-days is zero

because man-days do not apply to vendors and licenses). The manager assigned all the costs to

Profit Center 1 because the other three profit centers did not use the license from the vendor, and

thus do not need to be charged. The ITO Business Management team has to create the allocation

template where all headcount costs (and their corresponding parameters) and discretionary costs

(and their corresponding parameters) are included for team leads and management to input

allocation keys.

 Once the allocation template is complete, it is sent to senior managers within IT who then

email the team leads. The managers and team leads must then sort through the 550+

projects/vendors and filter out the ones that are irrelevant to them and must do the same for the

74 profit centers. Because managers and team leads are not assigned rows in the template to

input their allocations and because there is no defined list of which profit centers relate to which

projects and vendors, there can often be confusion when assigning allocation keys.

 Next, each team lead sends back their completed allocation keys to their manager. Each

team lead filled out the allocation keys in their own version of the template because there is not a

system where multiple people can edit the allocation template. Thus, the manager must

consolidate all the different allocation keys from all the team leads to make one overall file. This

file is then sent back to the ITO Business Management team.

 This process takes place twice a year, once in January to forecast where all the charges

will be allocated for the entire year and once again in June when managers have a better idea of

what costs they have used and which profit centers those costs corresponded to.

2.1.2 – Current Blended Keys Process
Another senior manager within GM IT has automated his allocation process, and he has

done so by using “Blended Keys.” The steps prior to his allocation process are similar to the

general process, except his extracts are pulled from a tool called Bam+, instead of Clarity, and he

creates his own allocation template that is used in addition to the template provided by the ITO

Business Management team. After extracting his data and setting up his template, he and his

team leads use weighted averages for their allocations:

Part 1 - Allocation keys are input for “applications” instead of for projects; each of these

applications is assigned a weight, and each of these applications belongs to a “stream” as

exemplified in Table 3.

4

Global

Stream

Name

Application

Name

Stream

Weight

Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Stream 2 App A 0.10 25% 10% 30% 35%

Stream 2 App B 0.20 50% 30% 0% 20%

Stream 2 App C 0.30 100% 0% 0% 0%

Stream 2 App D 0.40 10% 40% 5% 45%
Table 3 – Example of Part 1 of the Blended Keys Process

Team leads input values under the “Stream Weight” column for their corresponding applications

and then inputs allocation keys for the Profit Centers.

Part 2 – The “Blended Keys” for each stream is calculated as exemplified in Table 4.

Global

Stream

Name

Application

Name

Stream

Weight

Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Stream 2 App A 0.10 25% 10% 30% 35%

Stream 2 App B 0.20 50% 30% 0% 20%

Stream 2 App C 0.30 100% 0% 0% 0%

Stream 2 App D 0.40 10% 40% 5% 45%

Stream 2 Blended

Keys

 46.5% 23% 0.05% 25.5%

Table 4 – Example of Part 2 of the Blended Keys Process

The “SUMPRODUCT” Excel function is used to calculate the blended keys; it “multiplies the

corresponding items in the arrays and returns the sum of the results

(TechontheNet).” For

example, the blended key of 46.5% under Profit Center 1 is the sum of: App A’s allocation key

of 25% multiplied by the weight of 0.10, App B’s allocation key of 50% multiplied by the

weight of 0.20, App C’s allocation key of 100% multiplied by the weight of 0.30, and App D’s

allocation key of 10% multiplied by 0.40. Note that the allocation keys for each application

across the profit centers must total 100% and the calculated blended keys must also total 100%.

Part 3 – The blended keys are populated in the general allocation template as exemplified in

Table 5.

Stream Project/

Vendor

Name

Man-

Days

Cash Methodology Profit

Center

1

Profit

Center

2

Profit

Center

3

Profit

Center

4

Stream 2 Project B 50 $50,000 Stream 2 46.5% 23% 0.05% 25.5%

Stream 2 Project C 10 $10,000 Stream 2 46.5% 23% 0.05% 25.5%

Stream 2 Project D 25 $25,000 Stream 2 46.5% 23% 0.05% 25.5%

Stream 2 Project E 5 $5,000 Stream 2 46.5% 23% 0.05% 25.5%

Table 5 – Example of Part 3 of the Blended Keys Process

5

Additional columns in the general allocation template that were not shown in Table 2 and 3 are

“Stream” and “Methodology.” Each project corresponds to a stream which is provided in the

allocation template by the ITO Business Management team through their mapping process. In the

general process, team leads or managers will type up their methodology, which is how they

decided upon their allocation keys, but in this process, the senior manager selects a methodology

which is the name of one of his corresponding streams, and populates the blended keys. Thus, all

projects belonging to that stream will have the same set of percent allocations to the profit

centers. By populating these numbers, he does not have to assign allocation keys to each profit

center for each project; instead, he finds weighted averages for his applications and populates the

template with these blended keys.

2.1.3 – Current Re-Allocation Process
 Out of the 74 profit centers, 7 are “dummy” profit centers. These belong to the third

manager who we met with regarding this project. Allocation keys are assigned to these

“dummies” that fall under “Operations.” Because these are not real profit centers, the charges

allocated to these dummy profit centers must be reallocated to the actual front-desks (the

remaining 67 profit centers) in order for the costs to be accurately accounted for. This

reallocation process is called “Step 4.” The process we have discussed so far where team leads

and managers assign allocations to all 74 profit centers is Step 2 (i.e., Step 4 is reallocating the

assigned percentages to the dummy profit centers from Step 2); Step 3 is not addressed in this

project.

 For example, suppose Table 6 represents the allocations for “Project F” made in Step 2.

Project/Vendor

Name

Man

Days

Cash Dummy

Profit

Center 1

Dummy

Profit

Center 2

Dummy

Profit

Center 3

Dummy

Profit

Center 4

Project F 10 $10,000 10% 20% 30% 40%
Table 6 – Example of Allocations to Dummy Profit Centers from Step 2

The 10% allocated to Dummy Profit Center 1 ($1,000 out of the $10,000 for Project F) has to be

reallocated to real profit centers. The process used to calculate the allocation keys for Step 4 is

similar to the Blended Keys process where a weighted average is calculated. Team leads input

weights and allocation keys to the real profit centers by traits instead of by applications, as

shown in Table 7.

Trait Weight Profit Center

1

Profit Center

2

Profit Center

3

Profit Center

4

Volume 25% 0% 50% 50% 0%

HC 10% 20% 10% 60% 10%

KPI 55% 10% 10% 80% 0%

Trades 10% 10% 40% 40% 10%
Table 7 – Example of Re-allocation from Dummy Profit Center 1 to Real Profit Centers

In Table 7, these are the inputs of a team lead to reallocate the $1,000 allocated to Dummy Profit

Center 1 back to real profit centers. “SUMPRODUCT” is used again to find the weighted

averages of these allocation keys, as shown in Table 8.

6

Project/Vendor

Name

Dummy

Profit Center

Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Project F Dummy Profit

Center 1

8.50% 23.00% 66.50% 2.00%

Table 8 – Example of Blended Keys for Re-allocation from Dummy Profit Center 1 to Real Profit Centers

The allocations must always total 100%. According to the calculated blended keys seen in Table

8, 8.50% of the $1,000 ($85) allocated to Dummy Profit Center 1 is being reallocated to Profit

Center 1, 23% of the $1,000 ($230) allocated to Dummy Center 1 is being reallocated to Profit

Center 2, 66.5% of the $1,000 ($665) is being reallocated to Profit Center 3, and 2% of the

$1,000 ($20) is being reallocated to Profit Center 4.

 This process is repeated for each of the allocation keys assigned to the dummy profit

centers for each project.

Project/Vendor

Name

Dummy Profit

Center

Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Project F Dummy Profit

Center 1

8.50% 23.00% 66.50% 2.00%

Project F Dummy Profit

Center 2

25.50% 58.00% 8.00% 8.50%

Project F Dummy Profit

Center 3

25% 9% 38% 28%

Project F Dummy Profit

Center 4

30% 6% 47% 18%

Table 9 – Example of Blended Keys for Re-allocation from All Dummy Profit Centers to Real Profit Centers

From Table 9, we have 16 allocation keys, but we only want one allocation key to each profit

center for Project F. Thus, we sum the products of the blended keys for each profit center by the

original allocation keys from Step 2. For example, to find the final allocation for Profit Center 1

for Project F, we multiply 8.50% (the blended key calculated from Dummy Profit Center 1) by

10% (the amount allocated to Dummy Profit Center 1 in Step 2), 25.50% (the blended key

calculated from Dummy Profit Center 2) by 20% (the amount allocated to Dummy Profit Center

2 in Step 2), 25% (the blended key calculated from Dummy Profit Center 3) by 30% (the amount

allocated to Dummy Profit Center 3 in Step 2), and 30% (the blended key calculated from

Dummy Profit Center 4) by 40% (the amount allocated to Dummy Profit Center 4 in Step 2); we

then sum these numbers together, as shown in Table 10.

Project/Vendor

Name

Man

Days

Cash Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Project F 10 $10,000 25.25% 18.80% 38.38% 17.58%

Table 10 – Example of Reallocated Keys in Step 4

Finally, these new allocation keys for the Step 4 re-allocation are charged to the real

profit centers and the dummy profit centers no longer have any charges in them because they

have been reallocated.

7

2.1.4 – Allocations Aggregated by Program
 Once the allocation keys are finalized, the ITO Business Management team must submit

the charges to the finance department. The charges are aggregated by program (each headcount

and discretionary cost corresponds to a program). Suppose the following headcount and

discretionary costs in Table 11 belong to Programs A and B.

Program

Name

Project/Vendor

Name

Man-

Days

Cash Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

A Project G 20 $20,000 20% 10% 60% 10%

A Vendor B 0 $100,000 50% 0% 50% 0%

B Vendor C 0 $40,000 15% 30% 20% 35%

B Vendor D 0 $70,000 55% 20% 10% 15%

B Project H 35 $35,000 5% 0% 90% 5%

Table 11 – Example of Allocations with Corresponding Programs

To calculate the cash amounts that will be charged to profit centers, we use the

“SUMPRODUCT” function again, as shown in Table 12.

Program

Name

Cash Profit Center

1

Profit Center

2

Profit Center

3

Profit Center

4

A $120,000 $54,000 $2,000 $62,000 $2,000

B $145,000 $46,250 $26,000 $46,500 $26,250

Table 12 – Example of Allocations Aggregated by Program

For example, the $54,000 being charged to Profit Center 1 from Program A is the summation of

the 20% of Project G’s $20,000 and the 50% of Vendor B’s budgeted $100,000. This is repeated

for all programs and all profit centers to be submitted to finance.

2.2 – Problem Statement
The current budget allocation process is complex, time-consuming, and labor intensive;

the process lacks a single system to input allocations, an easy way to audit the activity, and a way

to track multiple versions of the data sources.

Currently, the budgeting process takes hundreds of man-hours each year as a single

system does not exist in which everyone can simultaneously input their allocation keys. Rather,

team leads only have the allocation template sent from their manager and little other information.

The current process is also an inconvenient and confusing process for team leads and managers

to have to filter through the 500 rows of data in the allocation template to find the costs that only

correspond to them.

 In addition to the inconvenient process for the team leads and managers, the ITO

Business Management team identified two other critical problems with the current process. First,

keeping track of different versions of the headcount and discretionary costs files is difficult. For

example, if there are new hires, employees who leave the bank, or changes in vendors, the ITO

Business Management team must update the budget and the allocation template, affecting

8

everyone’s allocation keys as their budgets could have changed with the new versions of these

extracts. Tracking these versions and adjusting the budgets, templates, and allocations to the

updated data requires a lot of extra time, and there is currently no efficient way to handle these

different versions of the data sources (the extracts).

Second, a process does not exist to log the edits made to the allocation template. With the

confusion of which profit centers and costs correspond to which team lead or manager, there

exists a possibility that team leads and managers charge costs incorrectly. For example, if a team

lead were to input allocation keys on the wrong row (e.g., the cost does not belong to her) in the

allocation template, this would mean the profit centers are not being charged accurately for that

project. A way to track who was making which edits is necessary for the ITO Business

Management team, team leads, and senior management to be able to inquire about any concerns

or uncertainties they may have.

9

Chapter III: Methodology
To design the new process, we collaborated with multiple people. We met regularly with

the ITO Business Management team to understand their processes, with team leads to understand

what their experiences have been with the current system, and with senior management to

discuss what requirements they had for the new tool. This chapter describes the steps taken to

design and implement the application that was created to address the requirements from each of

the parties involved in the budgeting process.

3.1 Objectives
During the first two weeks of the quarter, our team had primarily addressed the concerns

and requirements of Andrew Clark, his team, and the ITO Business Management team. But the

next few weeks consisted of meetings with other managers, and their requirements significantly

added to the scope and complexity of the project. Thus, the project was organized into two

phases which was comprised of three deliverables. Phase 1, consisting of Deliverable 1, was

what we aimed to accomplish within the eight weeks on-site. Phase 2, consisting of Deliverables

2 and 3, would be begun but documented for a future extension (see Appendix B).

3.1.1 Deliverable 1 Automating General Allocation Process and Corresponding
Objectives
 The first deliverable was to address the original scope of the project, which were the

requirements of Andrew Clark and the ITO Business Management team. This deliverable was to

automate the general allocation process described in Section 2.1.1 – create an application for

team leads, managers, and the ITO Business Management team to enter allocation keys to charge

costs to profit centers and for them to track the edits and versions.

Objective 1: Create a SQL database consisting of the normalized data and mapping files.

Objective 2: Create a Python Server that reads the data sources and inputs the data into the SQL

database and maps the data together.

Objective 3: Create a front-end where users can input allocation keys, view revision history, and

compare different versions.

Deliverable 1 is the foundation of this budget automation project and the following

deliverables are additions to the database and additional features in the front-end.

3.1.2 Deliverable 2 Blended Keys Automated Allocation Process and Corresponding

Objectives

 The second deliverable was to address the Blended Keys automated allocation process.

Objective 1: Include functionality in the front-end for the team to assign weights and allocation

keys by application.

Objective 2: Include functionality in the database to calculate the blended keys based on the user

inputs.

Objective 3: Include functionality in the front-end to populate the blended keys to projects when

a stream is selected under the methodology column.

10

The manager of this Blended Keys process had indicated that to allow for flexibility,

“Applications” would be referred to as “Keys” and “Stream” would be referred to as “Blended

Keys” in the database. This makes it possible for the manager and his delegates to apply this

blended key process to other parameters (e.g., if he wanted to allocate by traits instead of

applications like in the reallocation process, the database would not restrict him to only

applications).

3.1.3 Deliverable 3 Automating Reallocation Process and Corresponding Objectives
The third deliverable was to address the reallocation process for Step 4.

Objective 1: Include functionality in the front-end for the Operations team to assign weights and

allocation keys by traits.

Objective 2: Include functionality in the database to calculate the reallocation percentages to the

real profit centers based on the user inputs.

Objective 3: Include functionality in the database to reallocate the charges from the dummy

profit centers to the real ones.

Objective 4: Create a view of the allocations by GBLs (a parameter corresponding to profit

centers) and include the functionality to take snapshots (baselines) of the data to be able to

compare allocations through time.

3.2 New Process Overview
The new process developed in this project consists of a Python Server, SQL Database,

and web-based front-end application. See Appendix C for a visual representation of the new

general budget allocation process.

Headcount and discretionary costs extracts will still be pulled from Clarity, but during

one of the discussions with the ITO Business Management team, it was suggested that managers

update their headcount numbers in Clarity monthly as opposed to quarterly (as done in the

current process). With this change, the ITO Business Management team will no longer have to

create the budget but can duplicate the monthly forecasts that managers input to become the

upcoming year’s budget (e.g., if Project A’s forecasted headcount cost for January 2016 was

$50,000, Project A’s budget for January 2017 will be $50,000). After logging into the web-based

application, the ITO Business Management team will upload these extracts and mapping files

into the database through the front-end. The server will read the data sources and input the

mapped data into the SQL database. In addition to no longer manually creating the budget,

having a server that automatically maps the data together and creates the allocation template

removes two time-consuming steps from the process, significantly reducing manual work

required from the ITO Business Management team.

When a user logs in, the application reads the credentials that are specified in the

permission table to fetch corresponding data from the database through the server. The

permission table defines the access for each user of the application. Previously, users saw all

expenses without a defined list of which costs to allocate, which created the risk of allocating

incorrectly, but limiting users’ access and only showing relevant fields diminishes confusion

because users no longer have to sort through hundreds of rows. These permissions are assigned

by the ITO Business Management team (given the role of “Admin” in the permission table) and

senior management (given the role of “Managers” in the permission table).

11

 Team leads (given the role of “User” in the permission table) will be able to allocate

their headcount costs and managers will be able to allocate both headcount and discretionary

costs – as well as override their team leads’ allocations. The application will verify that all

allocations total to 100%; if not, there will be an alert to re-input the allocation keys. Once the

allocations are complete, the server will store the allocations into the SQL database.

 As team leads and managers input allocations, the edits are tracked in the “Revision

History” table which logs all edits to the allocation keys as well as any other activity in the

application: updates to the permission able, data source uploads, or edits to the profit centers.

Having a revision history table allows for the ITO Business Management team and management

to refer back to changes and eases any necessary auditing.

The application will also create a view for the ITO Business Management team to view

the allocations by program. This view will be exportable into Excel format in order for ease in

submitting the charges to finance.

This application significantly decreases the amount of manual work required from the

people involved in this semi-annual process. With the creation of this new system: the complex

steps of creating the budget, mapping the data, and creating the allocation template is no longer

required from the ITO Business Management team, sorting through hundreds of rows of

irrelevant expenses is no longer necessary for team leads and managers, and a simple way to

view recent activity is no longer lacking. The server will now replace the labor-intensive steps of

the budget allocation process and the ITO Business Management team, team leads, and

management will have a single system for this process.

3.3 Technology Tools
 To achieve the new process that our team designed for budget allocations (see Appendix

E for the sequence diagram of the new process), several technology tools are needed. Our team

planned to use Microsoft SQL Server, Python (Flask framework), Model View Controller

(MVC) Architectural Pattern, and a front-end (AngularJS, HTML, and CSS) to achieve project

objectives. Each of the technology tools covers a major functionality. In this section, we are

going to elaborate on each tool we planned to adopt and analyze how they coordinate with each

other.

3.3.1 Microsoft SQL Server
 Microsoft SQL Server was used as the database engine. SQL Server is a stable, popular,

and fast platform for building databases, and it also provides security for the company’s data. We

were provided with SQL Server (on our desktops) at the beginning of the project.

To build a comprehensive database in Microsoft SQL Server, our team first wrote queries

to create tables. These tables capture the parameters that are used in the budget allocation process.

Each table contains several column headings, and we specified the data structure of each column

heading. We also specified the primary key and the foreign key for every table. By doing so,

mapping relationships among tables were properly taken care of. Then, we used SQL Server to

see the graphical representation of each table and its corresponding mapping relationships.

Finally, we manually wrote queries to insert data into the database.

3.3.2 Python (Flask Framework)

 Due to the complexity of this project, we planned to build a back-end for this web-based

application. Because we decided to code the back-end in Python, we found that using Flask

framework could quicken the development process. Flask framework is written in Python. Figure

12

1 below shows the simplicity of building a small Flask application (Quickstart). Our project size

is much bigger than this small application, but this example is considered as a basic template for

the project.

Figure 1 – An Example of a Minimal Flask Application

 Although Figure 1 only represents a minimal Flask application, it displays the most basic

structure of a Python server. It shows how the Flask framework gets imported and how the

framework renders a web page. That is why we consider it as a template and a starting point for

our project. According to our research on this framework, we found that it can be easily

maintained and there are numerous extensions that can be utilized. Another benefit of using

Flask framework is that it is more compatible with SQL Server than Django framework is.

Admittedly, Django is another option for choosing a Python framework. However, based on our

team’s research, there might be potential problems using Django to talk to the database, such as

handling database errors. Because we were new to both Django and Flask, we chose Flask

hoping to make the development process easier.

3.3.3 MVC Architectural Pattern

 “MVC” represents model, view, and controller. It is possible to let our front-end interact

with our Flask back-end directly. However, because we planned to use DevExpress (will be

elaborated in the following chapter) to help us build the front-end view of the allocation template,

we wanted to adopt MVC Architectural Pattern between the back-end and the front-end.

Considering that DevExpress provides user interface control in Visual Studio platform, to realize

the MVC pattern, we planned to use ASP.NET.

 In this MVC pattern, “Model” grabs data from the Python server, because the server talks

to the database directly. “View” binds to the front-end to generate everything a user can see.

“Controller” is like a commander of this overall process. It listens to every user request sent from

the front-end and talks to the server to find a solution to address it. After the “Controller” figures

out how to address the user request, it changes the “Model.” The change of the “Model” will

update the “View,” and the user can see the changes through the front-end. This pattern works as

an intermediate role between the server and the front-end, making the data flow easy to maintain.

3.3.4 Front End

 This project could not be complete without a front-end. We planned to build the front-end

in AngularJS, HTML and CSS. Specifically, AngularJS is a JavaScript framework for building

dynamic web pages. Since the web pages we designed are supposed to handle various types of

user requests, AngularJS is one of the most convenient tools to address dynamic changes of a

web page. As for HTML and CSS, they work together to form the basic structure of a web page.

By using HTML, a web page is broken down into many small pieces. Each of these pieces is a

building block of the web page, such as a paragraph or an image. By using CSS, we are able to

change the style of each piece, like changing colors or specifying font size.

13

3.3.5 Overview

 The four technology tools listed above are the most basic ones we planned to adopt in this

project. They are the foundation of this web-based application. Figure 2 provides an overview of

these four tools.

Figure 2 – Structure of this Application

 In this application, the database is a pure storage of all the data; the data can come from

the Excel files that have been uploaded by the ITO Business Management team or from users’

inputs in the front-end. This database feeds the Python server with data, and the server can

update the database when a user request comes in. The Model-View-Controller Architectural

Pattern serves as an intermediate role between the front-end and the server. Model binds to the

server to grab data; View binds to the front-end so the users can see the data; Controller

manipulates Model to address different kinds of user requests. Finally, the front-end provides the

users with various views and enables them to submit user requests.

 Besides these four basic technology tools, there are many more technologies and

methodologies that we planned to use. For example, a Python library called Pandas is needed for

reading the Excel files. We will talk about the other technologies in Chapter VI.

14

Chapter IV: SQL Database
Building a maintainable SQL database was the top priority for our sponsor, thus, the

majority of the term was spent designing the database and normalizing the data (see Appendix

G). In the database was data from our three extracts (headcount costs from Clarity, discretionary

costs from Clarity, and applications (keys) from Bam+), the mapping relationships provided

from the ITO Business Management team, tables to store users’ inputs from the front-end, a

permission table, and a logging table.

4.1 Database
 The first several versions of the database design were made in Microsoft Publisher, but

the final design was created using SQL Server. The tables were also created in the server and the

data was manually loaded through INSERT statements.

4.1.1 Un-Normalized Database Design
 Originally, our plan was to create exact copies of the data from the extracts into the

database (see Appendix H; e.g., there would be one table to store all 43 columns of data from the

headcount extract), but we realized this made the database difficult to maintain and it had to be

normalized. For example, one project could have multiple resources and each resource’s time

was allocated for every month of the year. Therefore, for just one project, one resource

(identified by a “resource code”) could account for 12 rows of the extract for each month. With

hundreds of resources and hundreds of projects, many of the values would be repeated in the

database.

Area Country Cost

Center

Project

Name

Charge

Code

Resource

Code

MM/YYYY Forecast

MD

North

America

United

States

AB Project A ABC 1234567 10/2016 14

North

America

United

States

AB Project A ABC 1234567 11/2016 14

North

America

United

States

AB Project A ABC 1234567 12/2016 14

North

America

United

States

AC Project A ABD 2345678 01/2016 10

North

America

United

States

AC Project A ABD 2345678 02/2016 12

North

America

United

States

AC Project A ABD 2345678 03/2016 10

Table 13 – Example of Rows from Headcount Extract

There are 43 columns in the headcount extract and the columns in Table 13 are a few of them.

For Project A alone, there can be hundreds of rows corresponding to the project depending on

how many resources are working on the project. As exemplified in the table, certain values such

as “United States” are repeated multiple times because it corresponds to this one project. In fact,

all projects in the headcount extract belong to North America; therefore, “North America” in the

“Area” column is repeated over 9000 times in the extract. If we were to copy the extract into the

database as is, and “North America” was to be changed to “N. America,” then 9000 rows would

need to be changed. This illustrates how if we were to stick to our original database designs of

15

taking pure copies of the extracts, many values would be repeated in our database making it

difficult to maintain.

 Although each of the tables in our original database designs had to be broken up into

independent tables, the relationships represented in Appendix H still apply. The logging table in

the database tracks recent activity made in the front-end, and the permission table is a list of all

users of the application and what they have access to. As mentioned in Section 3.2, this

permission table defines what the user will be able to see and edit in the front-end to avoid the

risk of incorrectly allocating costs.

 In this version of the database design, there are still pure copies of the extracts from

Clarity and Bam+. The “Keys Data” table contains data from the applications used in the

Blended Keys allocation process; this data is from Bam+ and from team leads. The “Headcount

Data” and “Discretionary Costs Data” tables are pure copies of the headcount and discretionary

costs extracts from Clarity.

 There are four mapping files, provided by the ITO Business Management team, to

represent the mapping relationships between parameters in the data. The headcount extract does

not have “Nature,” “Stream,” “SILO,” “WIP/NWIP,” or “Program Code” as columns; therefore,

the ITO Business Management team had to manually input these fields each time they created

the budget and allocation template.

Using the cost centers from the headcount extract, we were able to find the Nature (e.g.,

Regulatory); each cost center could only correspond to one Nature. Given the Resource Codes in

the headcount extract, we were able to identify the corresponding SILOs (in later versions of the

database design we used Cost Centers instead of Resource Codes to identify both Nature and

SILO). Given the Project Codes, we found the corresponding Streams – unlike the relationships

between Cost Center and Nature and SILO, a Project Code could correspond to more than one

stream. If this was the case, we used the Stream with the highest number of “man-years” which

is the number of collective years that the resources are expected to work. Once we knew these

streams, we were able to identify the corresponding applications used in the Blended Keys

process. The final mapping relationship was linking Charge Codes (codes to identify where to

charge) from the headcount extract to WIP/NWIP (used to identify whether a project can be

capitalized or not) and Program Code by using the VLOOKUP Excel function in the provided IT

Masterfile which contained all projects and the corresponding parameters. Also provided from

the ITO Business Management team is a file with all Profit Centers (the front-desks) and the

corresponding parameters (e.g., descriptions and owners); this is another table in the database.

The three other main tables in the database design are the Templates – the “HC

Allocation Template,” “Blended Keys Template,” and the “DC Allocation Template.” These

store users’ inputs from the front-end. Notice there are column headings underlined in each table

– these identify the primary keys for the tables. As exemplified in each of the three Template

tables, multiple column headings are underlined because the combination of these parameters

makes the value unique. For example, one project can have multiple corresponding budgets if it

belongs to more than one cost center or has multiple charge codes.

Project/Vendor

Name

Project

Code

Cost

Center

Charge

Code

Man-

Days

Cash Profit

Center 1

Profit

Center 2

Profit

Center 3

Profit

Center 4

Project I PROJI AB ABC 20 $20,000 10% 90% 0% 0%

Project I PROJI AB ABD 10 $10,000 25% 25% 25% 25%

Project I PROJI AC ABC 5 $5,000 30% 20% 20% 30%

Project I PROJI AC ABD 5 $5,000 50% 50% 0% 0%

16

Project J PROJJ AD ABC 25 $25,000 0% 0% 100% 0%

Project J PROJJ AD ABD 15 $15,000 5% 25% 40% 30%

Table 14 – Projects with Multiple Cost Centers and Charge Codes

Project I in Table 14 has four different budgets because it corresponds to multiple cost

centers and charge codes. Therefore, it requires the combination of Project Code – Cost Center –

Charge Code to be unique in the allocation template. Suppose a user inputs an allocation key of

10% for Project I, this is not enough information to know which budget Profit Center 1 is being

charged 10% of. We need to have “PROJI-AB-ABC” to identify the budgeted $20,000 to

appropriately charge the profit centers. As headcount costs require the combination of Project

Code – Cost Center – Charge Code to be unique, discretionary costs require the combination of

Vendor Name – Cost Center – Charge Code – Nature, and keys only required Key Name.

In addition to needing these combinations to identify the row in the allocation template

(which identifies the budget), when team leads and managers allocate their costs, they allocate

for both the current year and the upcoming year; therefore “Year” must also be a part of the

primary key combination to identify the row and budget. Because we are storing the allocation

keys that are being assigned to the profit centers, “Profit Center” must be included in the primary

key as well. Therefore, if we wanted to know what the team lead of PROJJ-AD-ABD allocated

to Profit Center 3 for 2016, the primary key we would need is 2016-PROJJ-ADABD-Profit

Center 3. Supposing Table 14 is for 2016, we would be able to identify “40%” as the allocation

key. Therefore, the combination of columns required to be the primary key in the headcount

allocation template is Year – Project Code – Cost Center – Charge Code – Profit Center; the

combination required to be the primary key in the discretionary costs allocation template is Year-

Vendor Name – Cost Center – Charge Code – Nature; the combination required to be the

primary key in the Blended Keys allocation template is Year – Key Name – Profit Center. (In

Appendix H “Step” is also an underlined column heading in the Template tables, however, this

pertains to Deliverable 3 which was not addressed during this phase.)

4.1.2 Normalized Database Design
As mentioned in Section 4.1.1, the database needed to be normalized for easy

maintenance. Normalization is the process of efficiently organizing data to avoid redundancy in

data (Chapple, 2016; e.g., repeating “North America” 9000 times). This required understanding

the relationships between all the parameters in the extracts to find out which parameters were

independent and which were dependent. This required studying the data in great detail.

It can be seen in Appendix G that there are significantly more tables in the new database

design (there are now 44 tables) compared to the original database design in Appendix H, but

each table now has fewer columns compared to the tables that were pure copies of the extracts.

When normalizing data, values are given a unique ID, as exemplified by Table 15.

ID Area

1 North America
Table 15 – Example of an Independent Table in the Database

Area, a column in the headcount extract, is an independent parameter. Because there was only

one “Area” (i.e., all projects belonged to “North America”) there was only one value in the table.

If there were other “Areas” they would also been given an ID (e.g., Europe could have an ID of 2

and Asia could have an ID of 3). Note that the “ID” columns in each of these tables are the

17

primary key. Although “Area” is an independent value, there were parameters that were

dependent on the field. As illustrated in the database design, the Region (Area) table is linked to

“CountryDepartmentLvl” which is one of its dependencies.

ID Name Department Level Area ID

1 United States United States 1

2 Canada Canada 1
Table 16 – Example of a Dependent Table in the Database

Table 16, is the “CountryDepartmentLvl” table in the database which includes the country that

the projects belonged to and the corresponding Department Level 1. If we first look at the “Name”

column, which is for Country Name, there are only two possible values because United States

and Canada are the only two countries the projects in this extract belonged to (since the only

“Area” all projects belonged to is North America). “Department Level,” another parameter in the

headcount extract, was dependent on the Country. There was a one-to-one relationship between

the parameters (i.e., a country could only have one corresponding department level; United

States under “Country” can only correspond to “United States” under “Department Level” and

nothing else). Because of this one-to-one relationship, we are able to put the two columns under

the same table and assign them the same ID number. Thus, if we know the ID is 1 for the

“CountryDepartmentLvl” table, we automatically know that the country name is United States

and that the Department Level is also United States.

Because both Country and Department Level are dependent on the Area, “Area ID” is a

column in this table as well. This means that for each country and department level, there can

only be one corresponding Area. Note that Area ID is a foreign key in the

CountryDepartmentLvl table because the ID is used to refer to a value in another table.

If there was not a one-to-one relationship between either Country Name or Department

Level with Area, then Area ID would not be a column in the table. Suppose Europe (given an ID

of 2) and Asia (given an ID of 3) were other Areas listed in the extract and there was not a one-

to-one relationship between the Country Name or Department Level values with Area (note this

is not a realistic example given United States and Canada would only belong to North America).

ID Name Department Level Area ID

1 United States United States 1

2 United States United States 2

3 United States United States 3

4 Canada Canada 1
Table 17 – Example of a Table with Redundant Data

Table 17 exemplifies the table if United States corresponded to more than one Area. “United

States” would have to be listed multiple times to accommodate for the multiple corresponding

Areas. This repetition is an example of the redundant data we are trying to avoid through

normalization; therefore, when normalizing these tables, the columns should have one-to-one

relationships.

 All the data from the extracts were analyzed to confirm which parameters had one-to-one

relationships in order to normalize the database to a reasonable level. The database design in

Appendix G was the final design of the SQL database. As mentioned, the relationships from the

18

Un-Normalized Database still apply for the normalized version; however, there are minor

changes such as the use of the IDs and the Template tables now refer to additional tables.

4.2 Data Loading Complexities
 As mentioned, the data in the database was manually loaded using INSERT statements.

However, this process had proven to be difficult for some tables because the Clarity extracts had

missing data that needed to be accounted for. For example, not all charge codes are printed in the

extract, as exemplified in Table 18.

Project

Code

Cost

Center

Charge

Code

MM/YYYY Forecast

MD

Actual

MD

Forecast

MY

Actual

MY

PROJK AB 7CW4381 11/2016 4.86 0.022086

PROJK AB NA 11/2016 1.63934 0.007452

PROJK AB 7CW4381 12/2016 2.7 0.01227

PROJK AB NA 12/2016 1.69399 0.0077

PROJK AB NA 01/2017 1.63934 0.007452

PROJK AB NA 02/2017 1.69399 0.0077

PROJK AC 7CW4382 11/2016 14.6 0.06636

PROJK AC NA 11/2016 16.93989 0.077
Table 18 – Missing Data in Clarity Extract

 “NA” is printed in the “Charge Code” column in a majority of the headcount extract’s 9000

rows. For months that have already passed, instead of printing the Forecast MD and Forecast

MY values on the same row as the Actual MD and Actual MY values (even though it

corresponds to the same resource for the same Project Code – Cost Center – Charge Code), the

forecasts are printed on a separate row without the charge code, and future months without

Actuals also receive a charge code of “NA.” If the data was printed accurately, the data would

look like Table 19:

Project

Code

Cost

Center

Charge

Code

MM/YYYY Forecast

MD

Actual

MD

Forecast

MY

Actual

MY

PROJK AB 7CW4381 11/2016 1.63934 4.86 0.007452 0.022086

PROJK AB 7CW4381 12/2016 1.69399 2.7 0.0077 0.01227

PROJK AB 7CW4381 01/2017 1.63934 - 0.007452 -

PROJK AB 7CW4381 02/2017 1.69399 - 0.0077 -

PROJK AC 7CW4382 11/2016 16.93989 14.6 0.077 0.06636
Table 19 – Clarity Extract without Missing Data

To find the charge code, we had to use the charge code in the row above and sometimes the row

below. Thus, to load the data, we had to write a script that would print the appropriate charge

code.

 Besides missing charge codes, there were other fields that were missing such as values in

the Org Chart Level columns. These are used to identify resources’ corresponding business units.

Many missing fields had to be manually input.

19

4.3 Test Cases
 To ensure the data was loaded correctly and that the script we wrote for the missing

charge codes was accurate, we created test cases to check our data. We tested that mapping

relationships were accurate (e.g., cost centers were linked to the correct natures, streams were

mapped to the correct project code, etc.) and that budgets were aggregated accurately (i.e., the

amounts that are required for the templates). Table 20 provides a sample of these cases.

Table(s) Year Test Data Sources SQL

HC Allocation

Template

F16 MYs for ProjectA-

ChargeCode1-CostCenter2

0.4875 0.4875

HC Allocation

Template

B17 MDs for ProjectA-

ChargeCode2-CostCenter3

220 220

HC Allocation

Template

F16 MDs for ProjectB-ChargeCode1-

CostCenter2

196.058 196.058

HC Allocation

Template

B17 MYs for ProjectC-ChargeCode4-

CostCenter4

0.4227 0.4227

HC Allocation

Template

F16 MDs for ProjectD-

ChargeCode5-CostCenter5

70.973 70.973

HC Allocation

Template

F16 MYs for ProjectE-ChargeCode6-

CostCenter2

0.4425 0.4425

HC Allocation

Template

F16 MDs for ProjectE-ChargeCode3-

CostCenter1

260.02 260.02

HC Allocation

Template

B17 MYs for ProjectE-ChargeCode4-

CostCenter8

0.7499 0.7499

HC Allocation

Template

B17 MYs for ProjectF-ChargeCode1-

CostCenter7

0.9999 0.9999

HC Allocation

Template

F16 MDs for ProjectF-ChargeCode4-

CostCenter5

220 220

Table 20 – Examples of Test Cases

We created 70 test cases to check the data in our SQL database compared with the data from the

extracts (the data sources). All the tests that were completed passed.

20

Chapter V: System Analysis
 We consider the whole application as a giant system. This chapter is an analysis of the

whole system. We want to focus on data flow (see Appendix F for the data flow diagram), as

everything we designed is in consideration of data transfer from the front-end to the database or

vice versa. First, we discuss the system components. To address various user requests, we broke

the whole system down into several key components. Second we discuss the front-end design as

it is based on the system components.

5.1 System Components
 System components are the key elements that form the whole system. Our team designed

these components in consideration of all the user requests anticipated by the stakeholders. The

system components specify the data flow in this web-based program. Since data binding between

the server and the front-end was not the major concern in this project, the data flow only

concentrates on the communication between the database and the front-end.

 There are twelve system components that we created. Out of these twelve system

components, some of them are back-end based. They represent back-end procedures. The rest are

front-end based. Each of them specifies the design of a single web page. Table 21 below shows

all the system components. The table breaks all the system components into front-end based

components and back-end based ones.

Table 21 – All the System Components

We provide details on each system components in the order of process.

5.1.1 Startup
 Startup is a front-end based system component. There is a web page that covers this

component. Table 22 shows the basic elements of this web page.

Table 22 – Basic Elements of Startup

5.1.2 Authentication
 Authentication is a back-end based system component. It tells the system whether the

login information refers to a valid user or not. For testing purposes, we store the (fake) password

Front End Based Back End Based

Startup Authentication

Menu Authorization

File Upload File Read

Edit Profit Center Generate Allocation Template

Edit Allocation Percentage Save Allocation Percentage

Permission Edit Revision

Elements Details

User ID The company employee ID such as AB6666.

Password A string which consists of numbers, uppercase and lowercase

characters, and all special characters.

Button The action is clicking on the button to submit the user ID and

password for authentication.

21

into the Permission Table in the database. Figure 3 displays all the processes that belong to

Authentication.

Figure 3 – Authentication Process

5.1.3 Authorization
 Authorization is a back-end based system component. Authorization starts when the

system checks Employee ID in the Permission table in the database. Figure 4 shows the

processes that Authorization contains.

Figure 4 – Authorization Process

5.1.4 Menu
 The menu is a front-end based system component. It contains two major elements, and

there is a web page that covers this component. Table 23 shows the elements that the menu

contains.

Elements Details

Tab A group of tabs on top of the website contains a menu of “Main

Menu”, “File Upload”, “Allocation Table”, “Profit Center”,

“Permission Change”, and “Revision History”.

Button A group of buttons contains a menu of “Main Menu”, “File

Upload”, “Allocation Table”, “Profit Center”, “Permission

Change”, and “Revision History”.
Table 23 – Basic Elements of Menu

22

5.1.5 File Upload
 File Upload is a front-end based system component. This system component is only for

admin users. There is a web page that covers this component. Table 24 shows its major elements.

Elements Details

Upload box There are 9 upload boxes in total for 9 files to upload (Headcount

Data, Discretionary Cost Data, Keys Data, Cost Center & Nature,

Project Code & Stream, Silo & Cost Center, Charge Code &

WIP/NWIP & Program Code, Activity Owner & Cost Center

Owner, and Vendor & Stream)

Button The action is clicking on the button to submit the file. An error

message is shown when the button is clicked but no file been

selected.
Table 24 – Basic Elements of File Upload

5.1.6 File Read
 File Read is a back-end based system component. The functionality of this system

component is to read the files that have been uploaded by admin users. All the columns from the

Excel files are assigned to a specific variable (as an object) and these variables are passed into

the database.

5.1.7 Edit Profit Center
 Edit Profit Center is a front-end based system component, and it is only for admin users.

There is a web page that covers this system component. Table 25 shows its major elements.

Elements Details

Existing Profit Center

Table

A table contains all the existing profit centers from the Profit

Center table in the database.

Field edits button There are six buttons in total. Click on one of the buttons to

trigger a pop out area (consisting of a field table, two text boxes

and a submit button) for users to input any possible changes for

one of the fields.

Field table This table is for admin users to see all the values of a certain

field and look up a certain value if any necessary changes needed

to be made. This field table is obtained by look up relevant table

in the database based on users’ selection.

Text box There are 2 text boxes for admin users to input both old value

and new value of a certain point in the field table.

Submit button Action is clicking on the button to submit changes on a certain

field. After the action is made, the new value get updated (update

statement) in the database, and the existing profit center table

gets refreshed.
Table 25 – Basic Elements of Edit Profit Center

23

5.1.8 Generate Allocation Template
 Generate Allocation Template is a back-end based system component. It provides a user

with the allocation data that corresponds to his or her permission, and it combines data for both

headcount costs and discretionary costs. By sending queries to the database, this component is

able to generate views to the front-end. Figure 5 displays the major fields that form the allocation

template.

Figure 5 – Major Fields that Form Allocation Template

5.1.9 Edit Allocation Percentage
Edit Allocation Percentage is a front-end based system component. It allows users to

make changes to allocation keys. When the percentages allocated across the same “Project Code

– Cost Center – Charge Code” does not add up to 100%, an alert box will appear indicating the

allocation keys need to be edited. Table 26 shows the major elements of this system component.

24

Elements Details

Allocation Template A view that is from “Generate Allocation Template” system

component.

Text box A text box that allows user to input the allocation percentage.

Button Action is clicking on the button to submit the change of

percent allocated. Refresh the master detail grid after the

action is finished.
Table 26 – Basic Elements of Editing Allocation Percentage

5.1.10 Save Allocation Percentage
 Save Allocation Percentage is a back-end based system component. To save the

allocation percentages entered by the user, the application needs to dive into the database and

check whether the allocation percentage is empty based on the key given by the front-end. To be

more precise, the job of the application now is to see whether there was a previous input. If this

is a first-time input, the Headcount Allocations and Discretionary Cost Allocations tables in the

database will be updated. If there was a previous input, a new row will be inserted with the same

local key.

5.1.11 Revision
 Revision is a back-end based system component. Whenever there is an edit (no matter

whether it is for changing an allocation percentage or editing Profit Center), the revision history

is stored into the Logging table in the database. Figure 6 shows the overview of Revision.

Figure 6 – Overview of Revision

5.1.12 Permission Edit
 Permission Edit is a front-end based system component. This system component can only

happen when the user is an admin or a manager account. For testing purposes, the admin user is

supposed to add the password for a new user (a complete user log in system needs to be built

based on the company’s security rules). Table 27 shows the basic elements of Permission Edit.

25

Elements Details

Current user list A table contains all the existing users’ data from the Permission

table in the database except password column.

Text box There are 6 text boxes in total (for ID, Password, Name, Cost

Center, Role, and Keys) for users to input.

Delete button Action is clicking on the button to delete a current user. The

system selects the user ID based on the input specified by the

admin account, and then it deletes the user and refresh the

current user list.

Add button Action is clicking on the button to add a new user. The system

inserts the user based on the input specified by the admin

account, and then it refreshes the current user list.
Table 27 – Basic Elements of Permission Edit

 For the delete button, an error message will appear when the user ID text box is empty.

For the add button, an error message will appear when any of the text boxes are empty.

5.2 Front End Design
 Based on the front-end based system components, designing the front-end interface is

straightforward. The following figures illustrate the views for our front-end design.

 Figure 7 is the user log in page.

Figure 7 – User Log In Page

 Figure 8 is the main menu page. The main menu page is the page that users will see after

they successfully log in. It serves as a redirection to all the functionalities we designed. In

addition to the tabs on the top of the page, we also display the options in the center to better

present all the key features of this application.

26

Figure 8 – Main Menu Page

 Figure 9 is a web page for admin users to upload files. The first three files on top are data

source files. The remaining six files are for the mapping relationships.

Figure 9 – File Upload Page

 Figure 10 is a web page for editing profit centers. When an admin user clicks on a

parameter to make an edit, text boxes pop out for the user to input the edits.

27

Figure 10 – Edit Profit Center Page

 Figure 11 is the Permission Edit Page. The ITO Business Management team and

management are able to add a user, delete a user, or edit a user’s permissions.

Figure 11 – Permission Edit Page

 Figure 12 is the Allocation Keys Edit Page. There are several filters on top for selecting

appropriate data. Notice that our team uses master detail grid to structure the rest of the

allocation template. Master detail grid is a type of view that contains a parent and a child

28

category. When a parent category is clicked, the whole view is expanded and an additional view

gets displayed. This additional view is the child category. Master detail grid uses the hierarchical

relationship to present data.

Figure 12 – Allocation Keys Edit Page

 Figure 13 is the Allocation Keys View Page. It is still presented by using master detail

grid. This view is for the ITO Business Management team to view the numbers they will be

submitting to finance.

Figure 13 – Allocation Keys View Page

29

 Figure 14 is the Revision History Page. Any edits will be documented here.

Figure 14 – Revision History Page

30

Chapter VI: Results
6.1 Progress We Made
 Due to the relatively short time frame we had on site, project management was critical to

the completion of our project. We wanted to set expectations with our managers and mentors on

the deliverables we planned to finish during our time on site and what we planned to be future

extensions. Accordingly, this project can be divided into two parts. One part is to design the big

picture and to create a database. The other part is towards data binding which requires a solid

back-end implementation. As mentioned previously, based on managers’ expectations and

limited time, data binding was not our major concern for this project. As a result, we

concentrated more on the first part, which is to conduct system analysis and build a database. We

finalized our progress into three points listed below:

1. Built the database with normalized tables to capture all the required parameters of the

process. Designed the tables to fit different kinds of allocation processes. Filled the

database with data from Clarity, the project management tool.

2. Delivered the front-end design to properly handle different kinds of user requests.

3. Conducted system analysis on how the application provides various services.

Documented the data flow between the front-end and the database.

6.2 Special Features
 Besides the three major points we achieved, there are some special features that we

implemented or designed. These features are not major technologies or methodologies to this

project, but they are very important to this web application.

6.2.1 Versioning
 Addressing versioning of the data sources was one of the most important problems we

needed to handle. The application we designed is supposed to receive continuous file uploads

and should be able to compare the data between different uploads. Because comparing data

requires historical data, the database should keep inserting data when a new upload comes in.

Instead of updating the rows in the database, the application does not lose history by inserting

data. However, that is not enough. In the database, for a row that comes from a past file upload,

there is no way that we can figure out its “version.” There should be some parameters that work

as identifiers of a row in the database.

 Our team developed a versioning mechanism that gives every row in the database an

identifier. Table 28 illustrates how the versioning mechanism works.

Table 28 – An Example of the Versioning Mechanism

In Table 28, the primary key column holds the unique identifiers of every row, so the numbers in

the column go from one to infinity. The “Version Number” column tells the “version” of that

row. To be more precise, whenever a new file upload comes in, the application increments the

Primary Key Version Number Local Key Data

1 1 1 AA

2 1 2 BB

3 1 1 CC

4 2 1 DD

5 2 2 AA

31

version number by one. For instance, say the current version number is 2. When an admin user

uploads a new data source only for Headcount data, all the rows generated by this new upload

have version number 3 now. Next time when this admin user uploads two files for both

Headcount and Discretionary Cost data, the version number goes to 4.

 The “Local Key” column only makes sense within two rows with the same version

number. For example, when a user makes a change on an existing allocation percentage, the

application inserts a new row with the same local key as the row that should be updated. In Table

28, the second row and the fourth row have the same local key and version number. That means

a user makes a change of data from “AA” to “CC”.

 By using a combination of primary keys, version numbers, and local key, the application

is able to compare different versions of data, and the old data does not get lost.

6.2.2 Pandas Library
 The files the application is expected to read have relatively large sizes; as such, the

application’s file reading performance was of concern. To address this concern, we suggested the

usage of a Python library called Pandas. It reads an Excel file column by column, and it stores

each column as an object. By assigning each object a variable, it is easier for us to put these

variables into the database. Moreover, using Pandas will improve the speed of reading Excel files.

6.2.3 Bootstrap
 Bootstrap is a front-end framework that we planned for constructing the front-end

interface. There are many templates that we can use, so there was not much need for us to think

about designing the web page using HTML and CSS. As readers may notice from the front-end

design, except for the log in page, all the other pages have tabs on top. Bootstrap provides some

colorful templates which can help us realize our front-end interface design. A lot of time will be

saved.

6.2.4 Master Detail Grid
 As illustrated in Figures 14 and 15, a master detail grid is used for presenting allocation

data. Our team believes that this kind of view is the best fit for presenting the allocation template,

because the allocation template we received from the ITO Business Management team uses

filters in Excel. By using a master detail grid, a kind of hierarchical relationship can be clearly

displayed. We also planned to use the template from DevExpress for constructing it. In that case,

all we need to do is to write our own controller classes.

32

Chapter VII: Recommendations
7.1 Data Clean up
 As mentioned in Section 4.2, Data Loading Complexities, a lot of data was missing in the

extracts (e.g., charge codes, organization chart levels, etc.) which made loading the data very

difficult. To ease the data load process, the extracts need to be cleaned up. For example, charge

codes need to be printed in each row because although we can write script to accommodate for

these missing fields, the more rules we write, the messier the process becomes and there is more

risk of error.

Another major problem was that many relationships had exceptions to being one-on-one,

sometimes due to historical data, which affects the database normalization. For example, a

resource should only have one corresponding Resource Type (e.g., employee, contractor, or

consultant) but there are sometimes exceptions because a resource’s employment status could

have changed during the year. Therefore, if the relationship is not one-on-one, a table such as

Table 16 would not work and we would need to link the parameters elsewhere. Fixing the

exceptions and having a standard rule/standard relationship between the parameters lessens the

complexity of the mapping relationships.

7.2 Usage of Clarity API
 Another recommendation we had for this project is to use Clarity API instead of reading

the uploaded Excel files. API is an abbreviation of Application Program Interface. It sets a

method for different program components to communicate. In this project, the method for

communicating with Clarity is called Clarity API. Although it may not exist within the company,

developing one can be beneficial. If it exists, we suggest using it directly.

Although we introduced Pandas as our Python library to read the files, processing a big

file all at once still consumes a large portion of time. This is something that we cannot avoid. In

addition, as long as there is a need to read the files, we need to set up some sort of

standardization to structure the Excel files. For example, the order of the columns in the data

sources should be fixed and there should not be any missing columns that are out of our

expectation. Making this kind of standardization is tedious, and it is possible that people may

ignore it when they create the data source. Admittedly, this example of setting up standardization

can be compromised by designing more intelligent spell checking. However, even with smarter

algorithms, some level of standardization or agreement is still needed for prompting the users to

follow the rules.

 To avoid the issues above, using Clarity API is a good solution. By doing that, the

application only needs to request for specific information from Clarity directly. Although it

would be difficult to get access to the Clarity API under the company’s policy, getting rid of

reading Excel files can significantly improve the application’s performance.

33

Chapter VIII: Future Extensions
After completing our term on site, we want to document the next steps for those at BNP

Paribas who continue the project. We strived to automate the budget allocation process as much

as possible and serve as a starting point for future development. The following four steps are to

be followed, and they are sequential.

1. Blended Keys and Reallocation Process. Although we designed the database for all three

managers’ allocation processes, there is still work that is needed to be done for the keys’

allocations (Blended Keys allocation process) and reallocation for the dummy profit

centers (Step 4). These two allocation processes also need the system analysis and the

front-end design.

2. Data Binding. As previously mentioned, data binding was not the major concern for this

project. However, in order to implement this project, the next step should focus on data

binding. The future developer needs to write code to achieve the data flow mentioned in

the System Analysis chapter. It is important to make sure that the front-end view and the

back-end server work together for data transfer. Corresponding testing work is also

needed.

3. Password encryption. Currently, for testing purposes, when an admin user adds a new

user into the system, he or she needs to create a password for the new user. This should

not happen when this application is used by the company. The permission table in the

database should also be fixed, since the table has a column for storing users’ passwords.

A complete password system needs to be built under the company’s security policy.

4. Web-based Deployment. This step ensures that all the users have access to it. Once the

application is deployed, this will save significant time for all the parties involved in the

budget allocation process.

34

Chapter IX: Conclusion
 The Global Markets IT division of BNP Paribas currently conducts a budget allocation

process that is complex, time-consuming, and labor intensive. The process lacks a single system

to input allocations, an easy way to audit the activity, and a way to track multiple versions of the

data sources; thus, our group designed an automated budget allocation process that addresses

these bottlenecks to reduce the amount of time required from the ITO Business Management

team, team leads, and senior management to complete the process.

The new process consists of a SQL database – which is normalized for easy maintenance,

a Python server – which is the back-end of our application, and a web-based front-end

application – which is for users to input their allocation keys and for the ITO Business

Management team and management to view allocations and revision history for auditing. The

new design addresses each of the problems that were identified by management and the ITO

Business Management team; it provides a single system for the semi-annual budget allocation

process to take place, replaces the labor-intensive steps that were previously required, and makes

tasks such as tracking data source versions less complex. In addition to the designs and database,

significant documentation and system analysis was provided for future reference and for future

extensions of this project.

35

Bibliography
"Benefits of Microsoft SQL Server." Acctivate Help. N.p., 09 Sept. 2015. Web. 07 Jan. 2017.

<https://help.acctivate.com/articles/5914/>.

"BNP Paribas International Hackathon 2016." International Hackathon. N.p., n.d. Web. 15 Nov.

2016. <https://international-hackathon.bnpparibas/>.

Chapple, Mike. "The Basics of Normalizing a Database." About.com Tech. N.p., 03 Aug. 2016.

Web. 12 Dec. 2016.

<http://databases.about.com/od/specificproducts/a/normalization.htm>.

"History: two centuries of banking." History: two centuries of banking. N.p., n.d. Web. 15 Nov.

2016. <https://group.bnpparibas/en/group/history-centuries-banking>.

"Innovation: our response to a changing world - BNP Paribas." Innovation : our response to a

changing world - BNP Paribas. N.p., n.d. Web. 18 Jan. 2017.

<https://group.bnpparibas/en/group/innovation-response-changing-world>.

"MS Excel: How to use the SUMPRODUCT Function (WS)." MS Excel: How to use the

SUMPRODUCT Function (WS). N.p., n.d. Web. 12 Dec. 2016.

<https://www.techonthenet.com/excel/formulas/sumproduct.php>.

"Quickstart." Quickstart — Flask Documentation (0.12). N.p., n.d. Web. 07 Jan. 2017.

<http://flask.pocoo.org/docs/0.12/quickstart/#a-minimal-application>.

Beal, Vangie. "API - Application Program Interface." What Is API - Application Program

Interface? Webopedia. N.p., n.d. Web. 14 Jan. 2017.

<http://www.webopedia.com/TERM/A/API.html>.

36

Appendix A: Current General Budget Allocation Process

B
u
si

n
es

s
M

an
ag

em
en

t

T
ea

m

M
an

ag
er

s
T

ea
m

 L
ea

d
s

Extract

Headcount

(HC) and

Discretionary

cost (DC) files

from Clarity

Create the HC

and DC

budgets using

these files and

additional

mapping files

Update Headcount

data quarterly and

Discretionary costs

annually in Clarity

Create the

allocation
template

The rest of the process is done twice:

once at the beginning of the year, and

once in the middle of the year

There are new

versions of the HC

or DC files

Input allocation

keys for
discretionary

costs

Sort through

projects and
profit centers

Sort through

vendors and

profit centers

Input allocation

keys for projects

Update the budgets

and allocation

template with new

data/budget

Allocation template is

sent to the managers

Allocation template is sent to the

team leads along with instructions

on how to input allocation keys

37

Managers tell team leads

allocations do not total 100%

and to re-do allocation keys

Re-inputs allocation

keys for projects

Each team lead sends back

their allocation keys to the

manager

Consolidates all

allocation keys to

create a final file

Input allocation

keys for projects

M
an

ag
er

s
T

ea
m

 L
ea

d
s

B
u
si

n
es

s
M

an
ag

em
en

t

T
ea

m

38

Appendix B: Deliverables and Corresponding Objectives

Deliverable 1:
Automating General
Allocation Process

•Create a SQL database consisting of the normalized data and mapping files.

•Create a Python Server that reads the data sources and inputs the data into the SQL
database and maps the data together.

•Create a front-end where users can input allocation keys, view revision history, and compare
different versions.

Deliverable 2: Blended
Keys Automated

Allocation Process

• Include functionality in the front-end for the team to assign weights and allocation keys by
application.

• Include functionality in the database to calculate the blended keys based on the user inputs.

• Include functionality in the front-end to populate the blended keys to projects when a stream
is selected under the methodology column.

Deliverable 3:
Automating Reallocation

Process

• Include functionality in the front-end for the Operations team to assign weights and allocation keys
by placeholders.

• Include functionality in the database to calculate the reallocation percentages to the real profit
centers based on the user inputs.

• Include functionality in the database to reallocate the charges from the dummy profit centers to
the real ones.

• Create a view of the allocations by GBLs and include the functionality to take snapshots (baselines)
of the data to be able to compare allocations through time.

39

Appendix C: New General Budget Allocation Process

M
an

ag
er

s
T

ea
m

 L
ea

d
s

A
p
p
li

ca
ti

o
n

Extract

Headcount (HC)

and Discretionary

cost (DC) files

from Clarity

Upload the HC

and DC files and

mapping files into

application as data

sources

Server uses the

mapping tables to

map all the data

sources together

The rest of the process is

done twice: once at the

beginning of the year,

and once in the middle of

the year

Update Headcount data

monthly and Discretionary

costs data annually in Clarity

Server reads the

data sources and

inputs it into the

SQL database

Front end reads credentials

to fetch corresponding data

from database through the

server

Enter

credentials to

log in as a

“User”

Enter

credentials to

log in as an

“Admin”

Assign/update
permission

table

Enter credentials

to log in as a

“Manager”

Assign/update
permission

table

B
u
si

n
es

s

M
an

ag
em

en
t

40

M
an

ag
er

s
T

ea
m

 L
ea

d
s

A
p
p
li

ca
ti

o
n

Front end reads credentials

to fetch corresponding data

from database through the

server

Input
allocation

keys for

projects

Input
allocation

keys for

discretionar

y costs

Application
verifies

allocations

total 100%

Server stores

all allocation

keys into the

SQL database

Receive an alert that

allocations do not

total 100%

Re-inputs

allocation keys

for projects

Receive an alert

that allocations do

not total 100%

Re-inputs

allocation keys

for projects

Server reads all the

data and creates

views of the data

and logging table.

B
u
si

n
es

s

M
an

ag
em

en
t

41

Appendix D: Use Case Diagram

42

Appendix E: Sequence Diagram

43

Appendix F: Data Flow Diagram

44

Appendix G: Final Database Design

ActivityOwner

Id

Name

View_Baseline

GBLID

BudgetThisYear

Forecast

BudgetNextYear

Baseline#

TimeCreated

BudgetSource

Id

Name

VendorCategory

Id

Name

ChargeCode

Code

Description

ProgramCode

CostCenterOwner

Id

Name

CountryDepartmentLvl

Id

Name

DepartmentLvl1

AreaID

Department

Code

DepartmentDescription

CountryDepartmentLvlID

ManagementId

NatureID

SILOID

GBLDesk

Id

Name

Keys

KeyID

KeyName

BlendedKeyNameID

KeyOwnerID

KeyDescription

Logging

EditTime

ID

Name

TableChanged

Value

PrimaryKey

DiscretionaryForecast

Id

VendorAssignmentId

BudgetThisYear

January

February

March

April

May

June

July

ActualsYTDMay

ActualsAnnualized

BudgetThisYearVsActualsAnnualized

Forecast

ForecastvsBudgetThisYear

BudgetNextYear

SubmittedBy

ForecastComment

BudgetNextYearComment

Metier

Id

Name

Nature

Id

Name

NewVendor

Id

Name

NewVendorDetail

Id

Name

VendorAssignment

Id

VendorID

NewVendorID

NewVendorDetailID

ExcoID

ExcoDirectID

BudgetSourceID

DepartmentCode

CategoryID

ManagerID

ScheduleofPaymentsID

ChargeCode

ProjectCode

PayingCenter

Id

PayingCenter

ProfitCenter

GBLId

OwnerId

MetierId

Description1

Description2

Project

ProjectCode

ProjectName

ProjectCTBRTBID

ProjectTypeID

StreamID

ProjectCTBRTB

ProjectCTBRTBID

ProjectCTBRTB

ProjectType

ProjectTypeID

ProjectType

Region

Id

Area

Resource

ResourceCode

FirstName

LastName

FullName

TeamOBSPathId

TypeId

ResourceType

Id

Name

ScheduleofPayments

Id

Schedule

SILO

Id

Name

Stream

StreamID

NewGlobalStream

TeamOBSPath

Id

Name

Level9ID

Vendor

Id

Name

ResourceForecast

Id

Period

ResourceCode

ChargeCode

ProjectCode

DepartmentCode

InitialEffortMY

RevisedEffortMY

ForecastMD

ActualMD

FYFMD

ForecastMY

ActualMY

FYFMY

Permission

ID#

Name

CostCenter

Title

Keys

ManagementRole

Id

Name

Description

OrgChartLevel_4

Id

Name

OrgChartLevel_5

Id

Name

Level4Id

OrgChartLevel_6

Id

Name

Level5Id

OrgChartLevel_7

Id

Name

Level6id

OrgChartLevel_8

Id

Name

Level7Id

Program

Code

Name

IsCap

OrgChartLevel_9

Id

Name

Level8Id

Management

Id

ManagementRoleId

ResourceCode

View_WeightedPrograms

ProgramCode

PayingCenterID

CashAllocated

KeysAllocations

KeyID

PayingCenterID

Step

BlendedKeyWeight

PercentAllocated

PercentBlendedKeys

VersionKeys

GlobalKey

LocalKey

TimeCreated
DiscretionaryCostAllocations

Id

DiscretionaryForecastId

Step

PayingCenterId

Methodology

PercentAllocated

CashAllocated

VersionDC

TimeCreated

Submitter

HeadcountAllocations

Id

ForecastId

Period

PayingCenterID

Step

Methodology

PercentAllocated

CashAllocated

VersionHC

TimeCreated

Submitter

45

Appendix H: Un-Normalized Database

46

