BNP Paribas: Budget Automation

A Major Qualifying Project Report

Submitted to the Faculty of
Worcester Polytechnic Institute
In Partial Fulfillment of the Requirements for the
Degree of Bachelor of Science

Submitted By:
Jacqueline Nancy Ngo, Business and Economic Science
Nan Zhang, Computer Science and Industrial Engineering

Submitted to:
On-site Liaison:
Andrew Clark

Project Advisors:
Professor Michael Ciaraldi, Department of Computer Science
Professor Renata Konrad, Foisie School of Business
Professor Kevin Sweeney, Foisie School of Business

Submitted on:
January 25, 2017

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiAzpybzbrQAhWC44MKHVavAssQjRwIBw&url=http://odk.org/circle/wpi/&psig=AFQjCNFf10jzTxq6I7dKM1LzmrFAu_xNaQ&ust=1479843616715308
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi_6dH8zbrQAhVn4YMKHSpyA8kQjRwIBw&url=http://www.montmartre-guide.com/en/shops/banque-bnp-paribas/&bvm=bv.139250283,d.amc&psig=AFQjCNF8GzFsGZOoLnP-hK0Zm75YZhg86A&ust=1479843820094402

Abstract

To reduce the time and effort required to complete the semi-annual budgeting process for
the Global Markets IT division of BNP Paribas, our team designed an automated process
consisting of a Python server, SQL database, and web-based front-end. Currently, to budget and
forecast headcount and discretionary costs, the process requires hundreds of hours among the
ITO Business Management team, team leads, and senior management. The process is complex,
time-consuming, and labor intensive; it lacks a single system to input allocations, an easy way to
audit activity, and a way to track multiple versions of the data sources. The new process our team
designed addresses the identified bottlenecks within the current process and aims to lessen the
complexity and time of the overall process.

Acknowledgements
Our team received tremendous support throughout the duration of the project from our sponsor -
BNP Paribas - and from our faculty advisors at Worcester Polytechnic Institute. We would like
to especially thank the following people at BNP Paribas who guided us during our eight weeks
on-site and made the success of our project possible:
Andrew Clark
Val Ryjouk
Kunal Changela
Artun Koktug
Wassim Najjar
Robert Kraft
Jacques Dillies.
Second, we express our gratitude to our advisors at WPI who supplied us with resources and
advice and helped us along every step of this project:
Kevin Sweeney
Michael Ciaraldi
Renata Konrad.

Executive Summary

Semi-annually, BNP Paribas’s Global Markets (GM) IT division conducts a budget
allocation process. In January and again mid-year, senior management and team leads allocate
their headcount and discretionary costs to profit centers (also referred to as front-desks, which
are money-making divisions in the front office). In January, team leads and management forecast
the percentages of their expenses to charge to specific profit centers, then team leads and
management reforecast the percentages (referred to as allocation keys) in June when they have a
better idea of their costs. The identified bottlenecks that needed to be addressed were: the lack of
a single system for team leads and management to submit their budget allocations, the lack of a
process to track revision history, and the complexity associated with tracking multiple versions
of headcount and discretionary costs data.

The objective of our project was to design an automated process to reduce the complexity
of this budget allocation process which includes creating the budget, mapping the data together,
creating the allocation template, and the actual allocations. We identified the bottlenecks in the
system and aimed to address them with our new budget allocation process design which consists
of a Python Server, SQL database, and front-end web-based application.

The creation of the SQL database was a top priority in this project; it was critical to have
a database that is easy to maintain. Therefore, over a dozen database designs were created before
finalizing the design — illustrating the complexity of the data. The final database design has 44
normalized tables; by normalizing the database, we were able to avoid having redundant data.
The data that makes up the database is from the extracts pulled from the project management
tools, from mapping files provided by the ITO Business Management team, and from users’
inputs in the front-end.

In our front-end design, not only are team leads and management able to allocate their
expenses, but they are also able to view recent activity which eases the auditing process (see
Appendix D for possible use cases). Not being able to track edits is a major concern in the
current process, but in our application design, the ITO Business Management team and
management will be able to track who’s making what edits. The other problem that needed to be
solved was versioning the data sources, and that is also addressed in our new design.

We conducted significant data and system analyses throughout the duration of this project,
and we hope that the progress we had made with our designs and implementation will simplify
the process and significantly reduce the amount of time required to complete this semi-annual
process.

Authorship

Section Author
Title Page Jacqueline Ngo
Abstract Jacqueline Ngo

Acknowledgements

Jacqueline Ngo

Executive Summary

Jacqueline Ngo

Table of Contents

Jacqueline Ngo

l. Introduction

1.1 BNP Paribas Background

Jacqueline Ngo

I1. Background

2.1 Current Budgeting Process

Jacqueline Ngo

2.2 Problem Statement

Jacqueline Ngo

I11. Methodology

3.1 Objectives

Jacqueline Ngo

3.2 New Process Overview

Jacqueline Ngo

3.3 Technology Tools

Nan Zhang

IV. SQL Database

4.1 Database

Jacqueline Ngo

4.2 Data Loading Complexities

Jacqueline Ngo

4.3 Test Cases

Jacqueline Ngo

V. System Analysis

5.1 System Components Nan Zhang

5.2 Front End Design Nan Zhang
VI. Results

6.1 Progress We Made Nan Zhang

6.2 Special Features Nan Zhang

VII. Recommendations

7.1 Data clean-up

Jacqueline Ngo

7.2 Usage Clarity API

Nan Zhang

VIII. Future Extensions

Nan Zhang

IX. Conclusion

Jacqueline Ngo

Bibliography

Nan Zhang & Jacqueline Ngo

Appendix A: Current General Budget Allocation Process

Jacqueline Ngo

Appendix B: Deliverables and Corresponding Objectives

Jacqueline Ngo

Appendix C: New General Budget Allocation Process

Jacqueline Ngo

Appendix D: Use Case Diagram

Jacqueline Ngo

Appendix E: Sequence Diagram

Nan Zhang

Appendix F: Data Flow Diagram

Nan Zhang

Appendix G: Final Database Design

Jacqueline Ngo

Appendix H: Un-Normalized Database Design

Jacqueline Ngo

Table of Contents

AADSTTACT ...t bRttt bbbttt ne e [
ACKNOWIEAGEMENTS ...t bbbttt b bbb I
EXECULIVE SUMMIAIYeeiiiiiciee ettt te e e s e teeae e st e s teenteanaessaenteanseaneenneens iii
AUENOTSIID. ..ttt bbbt b et 1\
(@8 T o) 1 gl R F g1 (0o [0 Tox 1 o o ISR 1
1.1 BNP Paribas BaCKgroUNQ..........ccoouiiiiiiiie et 1
Chapter I1: BaCKGIrOUNG.........cc.oiiiiiee ettt te e e taeae et enneesreenee e 2
2.1 — Current Budget AIIOCAtION PrOCESSccuveieiierieeiesiesieeiesiee et 2
2.1.1 — CUIrent GENEIal PrOCESScuiiiiiiiieiieite sttt sttt st 2
2.1.2 — Current Blended KEYS PrOCESSc.ooiiiiiriiiiiieieieie et 3
2.1.3 — Current Re-AllOCatiON PrOCESSccuoiviiiiiiiiiiiisisieie ettt 5
2.1.4 — Allocations Aggregated DY Program ... 7

2.2 — ProbIem SEALEIMENTcoiiiiie et ane e 7
Chapter H1: MethodolOgycc.ooiiiiiiie e 9
TN IO o] 1= od 111 USSR 9

3.1.1 Deliverable 1 Automating General Allocation Process and Corresponding Objectives 9
3.1.2 Deliverable 2 Blended Keys Automated Allocation Process and Corresponding

ODJECTIVES ...ttt bbb bbbt s et bbbt bbb bbbt 9
3.1.3 Deliverable 3 Automating Reallocation Process and Corresponding Objectives 10
3.2 NEW PrOCESS OVEIVIBWeevieiieiiesieeieesiesieesteestesteesteasaesseeseeaseesseesseessesseesseessesseessesssessessses 10
3.3 TEChNOIOQY TOOIS......eeeiiciece ettt e e st enre e e sneenns 11
3.3.1 MICIOSOTt SQL SEIVEN ...eeeviiiiie sttt sttt e sreenneenee e 11
3.3.2 Python (FIask FrameWOrK)cceciiiieiiiie et 11
3.3.3 MV C ArchiteCtural Pattern..........cccviiiiieiiie e 12
KT I (o] 0| =1 o [USRS 12
KR BT O AV < Y 1= SR 13
Chapter IV: SQL DatabaSecccveiiieieiieiie ettt sttt steen e beesreeeesneeanas 14
I D U 0 - -SSR 14
4.1.1 Un-Normalized Database DESIgNccveueiieiieie et 14
4.1.2 Normalized Database DESIONccvecviiieiieiie ittt 16
4.2 Data Loading COMPIEXITIES.........coiiiiiiieieie e 18
4.3 T ST CASES. ..uteeueeetee ettt et e ettt ettt ekt etk e st e bt e e s bt e e bt e a bt ekt e e R Rt e e R e e e R bt e Re e b e e nRe e e re e nreeneen 19
Chapter V: SYSIEM ANAIYSISooviiiiiiiiiieiee bbbttt eneas 20
5.1 SYStEM COMPONENTSeiiiiiie ittt e e e e s b e e sab e e e nsb e e e seeeennneeenes 20
5.1 T SEAMTUPD ...ttt bbbt bbbt bbb 20
5.1.2 AUTNENTICALIONveiviiiiie ittt sttt b e b e nas 20
TN IR AN 140 172 L1 o] o P SRS 21
D11 IMIBINU ..ttt bRt b et b e b e R e b e e b e n e nnre e 21
B5.LE FIE UPIOA ... bbb bbb 22
5.L6 FIle REAG.... .o et 22
5.1.7 EQIt Profit CoNTEI.....ccie ittt ettt et e enneennas 22
5.1.8 Generate Allocation TEMPIALE.........ccvviiieiiicie et 23
5.1.9 Edit AIlOCAtION PEICENTAGEc.viieeieeieieite ittt 23
5.1.10 Save AllOCation PerCENTAGEecivve i eiee ettt ettt et rae s 24
5.1 11 REVISION ..ttt bbbt bbbt bbbt e bbb bbb enes 24

5.1.12 PErmiSSION Edit.....ccoo oo 24

oI (0] 01 =T [1= Lo SR 25
CNAPLEE V2 RESUILS ... bbbttt 30
6.1 ProgreSs WE MAUEc..ccviiiiiicii ettt et st te et nteenaenneenns 30
6.2 SPECIAI FRAIUIES.......oeiiiieii ettt bbbt 30
I RV =T £ To] T oo OSSPSR 30
6.2.2 PANCAS LIDIAIYveiiiieie ettt bt ettt b e e 31
IR B = T Lo 1] = o [PPSR OPROPRTPRN 31
6.2.4 MASEEr DELall Gridcciveiiiiiiieie ettt ettt neas 31
Chapter VII: RECOMMENUALIONScc.eoieiiieiieeieiiesie e e se et e e steeae e sraeaesneesreeeesneennas 32
7.1 DALA CIBAN UP ...ttt b bbbttt bbb neene s 32
7.2 Usage Of CIArity AP ..ottt ns 32
Chapter VI FULUIE EXIENSIONSciiiieieieieite ettt sttt 33
Chapter IX: CONCIUSIONooiiiiiccc ettt e e re e ae e e e sneennas 34
BIDHOGIAPNY ..ot 35
Appendix A: Current General Budget AHOCation ProCeSScccovveveeieiieie e 36
Appendix B: Deliverables and Corresponding ODBJECHIVESccociviiiiiiiiiiieeee e 38
Appendix C: New General Budget AllOCation PrOCESSccveveiieiiieiesie e seese e 39
AppPendix D: USe Case DIAGIAMcuiiiieieiiiterie sttt sr bbb b enes 41
AppendiX E: SEQUENCE DIAGIAMccviiiieieiie ettt et e e e sreenreenee e 42
Appendix F: Data FIOW DIAGIAM.........ccouiiiiiiiieiesiesesee e 43
Appendix G: Final Database DESIgN......ccciuiiieiieeieeie ettt sre e 44
Appendix H: Un-Normalized Databaseccooiiiiiiiiiiiieieesic s 45

List of Figures

Figure 1 — An Example of a Minimal Flask Application............ccccocoiiiiiiniiiniii e 12
Figure 2 — Structure of this APPHCALIONccooiviiiiiece e 13
Figure 3 — AUtNENTICALION PIOCESSoiveiiiiiieiieieie sttt bbbttt 21
Figure 4 — AULNOTIZAtION PIOCESS.ccuviiiiiieiteeite st s et e et te e e s teeste s e e steesnesneesaeeeeas 21
Figure 5 — Major Fields that Form Allocation Template..........cccccoveiiiiiiniinic e 23
Figure 6 — OVErVIEW OF REVISION.......cciiiiiiiiice et sae e 24
FIQUIe 7 — USEI LOG IN PAJE ..ottt 25
Figure 8 — Main MENU PAGE........ccuiiieiieie ettt e e e te e e sae e e 26
Figure 9 — File Upload PAgEcooiiiiiiiiieeieee et 26
Figure 10 — Edit Profit CENEr PAQEcoivi ittt 27
Figure 11 — Permission EQIt PAgE.........cccuiiiiiiiieie et 27
Figure 12 — Allocation Keys Edit PAge........cccuoiiiiiiiiie ettt 28
Figure 13 — Allocation Keys VIEW PAgE.........cceiiiiiiiiiiiiieiee e 28
Figure 14 — ReViSioN HIiStOrY PAgEccoviiiiiiie ettt 29

Vi

List of Tables

Table 1 — Example of Headcount AHOCALION...........ccooiiiiiiiiiiee e 2
Table 2 — Example of Discretionary Cost AHOCALIONccevveiieiiieii e 3
Table 3 — Example of Part 1 of the Blended Keys ProCessccccoeriiinininiieieienc e 4
Table 4 — Example of Part 2 of the Blended Keys ProCessccccvoveiveieiieiieese e 4
Table 5 — Example of Part 3 of the Blended Keys ProCesscccooeiiririninieieienc e 4
Table 6 — Example of Allocations to Dummy Profit Centers from Step 2.......ccccceeevvevviceiienns 5
Table 7 — Example of Re-allocation from Dummy Profit Center 1 to Real Profit Centers............ 5
Table 8 — Example of Blended Keys for Re-allocation from Dummy Profit Center 1 to Real

e 0] {1 =T 1 £ RUORTR 6
Table 9 — Example of Blended Keys for Re-allocation from All Dummy Profit Centers to Real
0] {1 =T (= £ ST SR 6
Table 10 — Example of Reallocated Keys iN STEP 4.......ccveiiiieiieie e 6
Table 11 — Example of Allocations with Corresponding Programsccceceveienenencnesennenns 7
Table 12 — Example of Allocations Aggregated by Programcccccveveiieeieeiecie s 7
Table 13 — Example of Rows from Headcount EXIractcccoeveiiiiiinininieieec e 14
Table 14 — Projects with Multiple Cost Centers and Charge Codes............ccceevvevvereiiieieesieennnn, 16
Table 15 — Example of an Independent Table in the Database............ccccooevviieiieniiie e, 16
Table 16 — Example of a Dependent Table in the Database...........cccccoveviveviicicce e, 17
Table 17 — Example of a Table with Redundant Data.............ccccvreiiiiiininineieec e 17
Table 18 — Missing Data in Clarity EXraCtccccceeveiiiiieic e 18
Table 19 — Clarity Extract without MiSSING Data...........ccocuviiiiiiieiiseseeeeeeee s 18
Table 20 — EXaMPIES OF TESE CASESecveirieiieiiiitieie ettt sre e 19
Table 21 — All the System COMPONENTScoviiiiiieiieier s 20
Table 22 — Basic Elements Of StartUp..........ccocvoveiieiiiie et 20
Table 23 — BasiC EIeMENTS OF MENUcoieiiiie e 21
Table 24 — Basic Elements of File Uploadc.cooooviiiiiiciiccce e 22
Table 25 — Basic Elements of Edit Profit CENter..........cocooiiiiiiiiieieeeeee s 22
Table 26 — Basic Elements of Editing Allocation Percentagecccooevveveiieieeie e, 24
Table 27 — Basic Elements of Permission Edit...........cccoooiiiiiiiinieeiise e 25
Table 28 — An Example of the Versioning MechaniSm............cccccvveiiiieiiicie s 30

vii

Chapter I: Introduction

BNP Paribas, a multi-national French investment bank, encourages innovation
(Innovation: our responses to a changing world). This is exemplified by our project to automate
the budget allocation process for Global Markets (GM) IT. With guidance from multiple
departments across the division, our team was given the opportunity to develop a solution to
address the complexity of the current budget allocation process. By simplifying and automating
the semi-annual process, hundreds of man hours can be saved annually and this time can be spent
further improving the customer experience. As a result, BNP staff can focus on projects to
improve the bank.

1.1 BNP Paribas Background

Banque Nationale de Paris (BNP) Paribas has history dating back to the 19" century,
when its two forerunners, Comptoir National d’Escompte de Paris (CNEP) and Comptoir
National d’Escompte deMulhouse, were established in 1848. These “comptoirs d’escompte”
(discounting houses) were formed to facilitate credit circuits in France while the country was
undergoing an economic meltdown and political revolution which had destroyed the country’s
former credit system. In 1872, European bankers wanted to “raise funds to borrow to free up
regions and, on a longer term, to acquire shareholdings in companies and acquire a stake on
capital markets (BNP History);” thus, Banque de Paris et des Pays-Bas (Paribas) was established.

After several more European banks were created and mergers occurred, a merger of
Banque Nationale de Paris and Paribas in 2000 led to the creation of BNP Paribas which has
remained a strong European leader since. Today, BNP Paribas has a presence in over 70
countries on 5 continents (BNP History; i.e., North America, South America, Europe, Africa, and
Asia) and employs approximately 189,000 employees as of 2015.

BNP Paribas’s key activities include retail banking (i.e., corporate vehicle leasing, rental
and financial solutions, and online savings and brokerage) and financial services (i.e., private
banking, asset management, and real estate services) as well as corporate and institutional
banking (e.g., solutions across capital markets, securities services, financing, treasury, and
financial advisory).

BNP Paribas recognizes that it is a changing world, and encouraging innovation is the
firm’s response to better serve their customers. An example of BNP Paribas’s commitment to
innovation is through hosting “International Hackathon” where eight countries simultaneously
compete to create solutions for a given theme (BNP Paribas International Hackathon). In 2016, at
the second International Hackathon, the theme was “Streamlining the customer journey through
co-creation with startups;” 96 startups participated in the 51-hour long event and 18 winners
were chosen. BNP Paribas then supports and collaborates with the winning startups (BNP
Paribas International Hackathon). This event (along with many other events and sponsorships)
exemplifies BNP Paribas’s commitment to supporting actors of innovation and innovating to
serve their customers.

Chapter II: Background

2.1 - Current Budget Allocation Process

According to Andrew Clark, a senior manager within GM IT and our onsite liaison, the
current semi-yearly budgeting process requires hundreds of man-hours between GM IT’s senior
management, team leads, and the ITO Business Management team. At the beginning of the year
and again mid-year, the three groups must forecast where GM IT’s expenses will be charged. As
GM IT does not directly contribute to BNP’s revenues, but represents an expenditure, GM IT
must charge their expenses to “Profit Centers” which are the front-desks within the front office.
These front-desks that GM IT supports bring in money for the bank through trades and other
activities. Different managers within GM IT have different allocation processes, and this chapter
provides background on each of the processes addressed in our project.

2.1.1 - Current General Process

Appendix A represents the current general budget allocation process used by Andrew
Clark and his team.

Clarity, a project management tool, was the primary source of our data for this project.
Team leads and management update “Headcount” data quarterly and “Discretionary Costs” data
yearly in Clarity. “Headcount” data is information on all resources (employees) in IT and the
corresponding projects they are assigned to. Additional information includes country, which
programs their projects correspond to, corresponding cost centers, corresponding charge codes,
etc. Each resource has a limited number of “man-days;” the resource’s time must be budgeted
since each resource has a cost (e.g., salary and benefits). Team leads and management allocate
their resources’ monthly “man-days” in Clarity to track the expected headcount costs for each
project. “Discretionary Costs” are fees that must be paid to outside vendors for licenses and
other services. Parameters used to track these costs are: vendor name, budget source, cost center,
charge code, etc. The ITO Business Management team pulls two extracts from Clarity — one for
Headcount and one for Discretionary Costs — and uses these extracts to determine the budget for
the upcoming year.

The data from these two extracts is mapped with other parameters and used to create a
single allocation template. An allocation template is an Excel sheet where team leads and
managers assign percentages of their costs to the profit centers. For example, as shown in Table
1, a team lead is responsible for Project A. This team lead must assign allocation keys
(percentages of their costs) to profit centers, summing to 100%.

Project/VVendor Man- Cash Profit Profit Profit Profit

Name DEVH Center 1 Center 2 Center 3 Center 4
Project A 50 $50,000 20% 10% 70% 0%

Table 1 — Example of Headcount Allocation

In this simplified example, a team lead must allocate costs for Project A’s headcount costs. For
2016, the team lead has a budgeted amount of 50 man-days (e.g., one employee working for 50
days, five employees working 10 days each, or fifty employees working one day each, etc.)
which is equivalent to $50,000. The team lead must charge these costs to the profit centers since
IT does not directly make any money; in this scenario the team lead is charging 20% of Project
A’s costs ($10,000) to Profit Center 1, 10% of the costs to Profit Center 2 ($5,000), and 70% of
the costs to Profit Center 3 ($35,000). Because 100% of the costs have already been charged,

Profit Center 4 is not charged any amount. Note that the percentages assigned to each profit
center are the “allocation keys.”
A similar process is followed for discretionary costs as illustrated in Table 2.

Project/Vendor Man- Cash Profit Profit Profit Profit

Name DEVA Center 1 Center 2 Center 3 Center 4
Vendor A 0 $100,000 100% 0% 0% 0%

Table 2 — Example of Discretionary Cost Allocation

In this example, a manager has to assign allocation keys for this $100,000 fee for Vendor A (note
that because this is a discretionary cost and not a headcount cost, the number of man-days is zero
because man-days do not apply to vendors and licenses). The manager assigned all the costs to
Profit Center 1 because the other three profit centers did not use the license from the vendor, and
thus do not need to be charged. The ITO Business Management team has to create the allocation
template where all headcount costs (and their corresponding parameters) and discretionary costs
(and their corresponding parameters) are included for team leads and management to input
allocation keys.

Once the allocation template is complete, it is sent to senior managers within IT who then
email the team leads. The managers and team leads must then sort through the 550+
projects/vendors and filter out the ones that are irrelevant to them and must do the same for the
74 profit centers. Because managers and team leads are not assigned rows in the template to
input their allocations and because there is no defined list of which profit centers relate to which
projects and vendors, there can often be confusion when assigning allocation keys.

Next, each team lead sends back their completed allocation keys to their manager. Each
team lead filled out the allocation keys in their own version of the template because there is not a
system where multiple people can edit the allocation template. Thus, the manager must
consolidate all the different allocation keys from all the team leads to make one overall file. This
file is then sent back to the ITO Business Management team.

This process takes place twice a year, once in January to forecast where all the charges
will be allocated for the entire year and once again in June when managers have a better idea of
what costs they have used and which profit centers those costs corresponded to.

2.1.2 - Current Blended Keys Process

Another senior manager within GM IT has automated his allocation process, and he has
done so by using “Blended Keys.” The steps prior to his allocation process are similar to the
general process, except his extracts are pulled from a tool called Bam+, instead of Clarity, and he
creates his own allocation template that is used in addition to the template provided by the ITO
Business Management team. After extracting his data and setting up his template, he and his
team leads use weighted averages for their allocations:

Part 1 - Allocation keys are input for “applications” instead of for projects; each of these
applications is assigned a weight, and each of these applications belongs to a “stream” as
exemplified in Table 3.

Global Application Stream Profit Profit Profit Profit
Stream Name Weight Center1l Center 2 Center 3 Center 4
NEW
Stream 2 App A 0.10 25% 10% 30% 35%
Stream 2 App B 0.20 50% 30% 0% 20%
Stream 2 App C 0.30 100% 0% 0% 0%
Stream 2 App D 0.40 10% 40% 5% 45%

Table 3 — Example of Part 1 of the Blended Keys Process

Team leads input values under the “Stream Weight” column for their corresponding applications

and then inputs allocation keys for the Profit Centers.

Part 2 — The “Blended Keys” for each stream is calculated as exemplified in Table 4.

Global Application Stream Profit Profit Profit Profit
Stream Name Weight Center1l Center 2 Center 3 Center 4
NEE
Stream 2 App A 0.10 25% 10% 30% 35%
Stream 2 App B 0.20 50% 30% 0% 20%
Stream 2 App C 0.30 100% 0% 0% 0%
Stream 2 App D 0.40 10% 40% 5% 45%
Stream 2 Blended 46.5% 23% 0.05% 25.5%
Keys

Table 4 — Example of Part 2 of the Blended Keys Process

The “SUMPRODUCT” Excel function is used to calculate the blended keys; it “multiplies the
corresponding items in the arrays and returns the sum of the results (TechontheNet).” For
example, the blended key of 46.5% under Profit Center 1 is the sum of: App A’s allocation key
of 25% multiplied by the weight of 0.10, App B’s allocation key of 50% multiplied by the
weight of 0.20, App C’s allocation key of 100% multiplied by the weight of 0.30, and App D’s
allocation key of 10% multiplied by 0.40. Note that the allocation keys for each application
across the profit centers must total 100% and the calculated blended keys must also total 100%.

Part 3 — The blended keys are populated in the general allocation template as exemplified in

Table 5.

\ETE Profit Profit Profit Profit
Vendor DEVA Center Center Center Center

Name 1 2 3 4
25.5%

Cash Methodology

Stream

Project/

Stream 2 Project B 50 $50,000 Stream 2 46.5% 23% 0.05%

Stream 2 Project C 10 $10,000 Stream 2 46.5% 23% 0.05% 25.5%
Stream 2 Project D 25 $25,000 Stream 2 46.5% 23% 0.05% 25.5%
Stream 2 Project E 5 $5,000 Stream 2 46.5% 23% 0.05% 25.5%

Table 5 — Example of Part 3 of the Blended Keys Process

Additional columns in the general allocation template that were not shown in Table 2 and 3 are
“Stream” and “Methodology.” Each project corresponds to a stream which is provided in the
allocation template by the ITO Business Management team through their mapping process. In the
general process, team leads or managers will type up their methodology, which is how they
decided upon their allocation keys, but in this process, the senior manager selects a methodology
which is the name of one of his corresponding streams, and populates the blended keys. Thus, all
projects belonging to that stream will have the same set of percent allocations to the profit
centers. By populating these numbers, he does not have to assign allocation keys to each profit
center for each project; instead, he finds weighted averages for his applications and populates the
template with these blended keys.

2.1.3 - Current Re-Allocation Process

Out of the 74 profit centers, 7 are “dummy” profit centers. These belong to the third
manager who we met with regarding this project. Allocation keys are assigned to these
“dummies” that fall under “Operations.” Because these are not real profit centers, the charges
allocated to these dummy profit centers must be reallocated to the actual front-desks (the
remaining 67 profit centers) in order for the costs to be accurately accounted for. This
reallocation process is called “Step 4.” The process we have discussed so far where team leads
and managers assign allocations to all 74 profit centers is Step 2 (i.e., Step 4 is reallocating the
assigned percentages to the dummy profit centers from Step 2); Step 3 is not addressed in this
project.

For example, suppose Table 6 represents the allocations for “Project F”” made in Step 2.

Project/VVendor Man Cash Dummy Dummy Dummy Dummy

Name Days Profit Profit Profit Profit
Center 1 Center 2 Center 3 Center 4
Project F 10 $10,000 10% 20% 30% 40%

Table 6 — Example of Allocations to Dummy Profit Centers from Step 2

The 10% allocated to Dummy Profit Center 1 ($1,000 out of the $10,000 for Project F) has to be
reallocated to real profit centers. The process used to calculate the allocation keys for Step 4 is
similar to the Blended Keys process where a weighted average is calculated. Team leads input
weights and allocation keys to the real profit centers by traits instead of by applications, as
shown in Table 7.

Trait Weight Profit Center Profit Center Profit Center Profit Center
1 2 K] 4
Volume 25% 0% 50% 50% 0%
HC 10% 20% 10% 60% 10%
KPI 55% 10% 10% 80% 0%
Trades 10% 10% 40% 40% 10%

Table 7 — Example of Re-allocation from Dummy Profit Center 1 to Real Profit Centers

In Table 7, these are the inputs of a team lead to reallocate the $1,000 allocated to Dummy Profit
Center 1 back to real profit centers. “SUMPRODUCT” is used again to find the weighted
averages of these allocation keys, as shown in Table 8.

Project/VVendor Dummy Profit Profit Profit Profit

NETE Profit Center Center 1 Center 2 Center 3 Center 4
Project F Dummy Profit 8.50% 23.00% 66.50% 2.00%
Center 1

Table 8 — Example of Blended Keys for Re-allocation from Dummy Profit Center 1 to Real Profit Centers

The allocations must always total 100%. According to the calculated blended keys seen in Table
8, 8.50% of the $1,000 ($85) allocated to Dummy Profit Center 1 is being reallocated to Profit
Center 1, 23% of the $1,000 ($230) allocated to Dummy Center 1 is being reallocated to Profit
Center 2, 66.5% of the $1,000 ($665) is being reallocated to Profit Center 3, and 2% of the
$1,000 ($20) is being reallocated to Profit Center 4.

This process is repeated for each of the allocation keys assigned to the dummy profit
centers for each project.

Project/Vendor Dummy Profit Profit Profit Profit Profit
Name Center Center 1 Center 2 Center 3 Center 4
Project F Dummy Profit 8.50% 23.00% 66.50% 2.00%
Center 1
Project F Dummy Profit 25.50% 58.00% 8.00% 8.50%
Center 2
Project F Dummy Profit 25% 9% 38% 28%
Center 3
Project F Dummy Profit 30% 6% 47% 18%
Center 4

Table 9 — Example of Blended Keys for Re-allocation from All Dummy Profit Centers to Real Profit Centers

From Table 9, we have 16 allocation keys, but we only want one allocation key to each profit
center for Project F. Thus, we sum the products of the blended keys for each profit center by the
original allocation keys from Step 2. For example, to find the final allocation for Profit Center 1
for Project F, we multiply 8.50% (the blended key calculated from Dummy Profit Center 1) by
10% (the amount allocated to Dummy Profit Center 1 in Step 2), 25.50% (the blended key
calculated from Dummy Profit Center 2) by 20% (the amount allocated to Dummy Profit Center
2 in Step 2), 25% (the blended key calculated from Dummy Profit Center 3) by 30% (the amount
allocated to Dummy Profit Center 3 in Step 2), and 30% (the blended key calculated from
Dummy Profit Center 4) by 40% (the amount allocated to Dummy Profit Center 4 in Step 2); we
then sum these numbers together, as shown in Table 10.

Project/Vendor Man Cash Profit Profit Profit Profit

Name Days Center 1 Center 2 Center 3 Center 4
Project F 10 $10,000 25.25% 18.80% 38.38% 17.58%

Table 10 — Example of Reallocated Keys in Step 4

Finally, these new allocation keys for the Step 4 re-allocation are charged to the real
profit centers and the dummy profit centers no longer have any charges in them because they
have been reallocated.

2.1.4 - Allocations Aggregated by Program

Once the allocation keys are finalized, the ITO Business Management team must submit
the charges to the finance department. The charges are aggregated by program (each headcount
and discretionary cost corresponds to a program). Suppose the following headcount and
discretionary costs in Table 11 belong to Programs A and B.

Program Project/Vendor Man- Cash Profit Profit Profit Profit

Name Name DEVA Center1 Center2 Center3 Center4
A Project G 20 $20,000 20% 10% 60% 10%
A Vendor B 0 $100,000 50% 0% 50% 0%

B Vendor C 0 $40,000 15% 30% 20% 35%
B Vendor D 0 $70,000 55% 20% 10% 15%
B Project H 35 $35,000 5% 0% 90% 5%

Table 11 — Example of Allocations with Corresponding Programs

To calculate the cash amounts that will be charged to profit centers, we use the
“SUMPRODUCT” function again, as shown in Table 12.

Program Profit Center Profit Center Profit Center Profit Center

Name 1 2 3 4
$120,000 $54,000 $2,000 $62,000 $2,000

B $145,000 $46,250 $26,000 $46,500 $26,250

Table 12 — Example of Allocations Aggregated by Program

For example, the $54,000 being charged to Profit Center 1 from Program A is the summation of
the 20% of Project G’s $20,000 and the 50% of Vendor B’s budgeted $100,000. This is repeated
for all programs and all profit centers to be submitted to finance.

2.2 - Problem Statement

The current budget allocation process is complex, time-consuming, and labor intensive;
the process lacks a single system to input allocations, an easy way to audit the activity, and a way
to track multiple versions of the data sources.

Currently, the budgeting process takes hundreds of man-hours each year as a single
system does not exist in which everyone can simultaneously input their allocation keys. Rather,
team leads only have the allocation template sent from their manager and little other information.
The current process is also an inconvenient and confusing process for team leads and managers
to have to filter through the 500 rows of data in the allocation template to find the costs that only
correspond to them.

In addition to the inconvenient process for the team leads and managers, the ITO
Business Management team identified two other critical problems with the current process. First,
keeping track of different versions of the headcount and discretionary costs files is difficult. For
example, if there are new hires, employees who leave the bank, or changes in vendors, the ITO
Business Management team must update the budget and the allocation template, affecting

7

everyone’s allocation keys as their budgets could have changed with the new versions of these
extracts. Tracking these versions and adjusting the budgets, templates, and allocations to the
updated data requires a lot of extra time, and there is currently no efficient way to handle these
different versions of the data sources (the extracts).

Second, a process does not exist to log the edits made to the allocation template. With the
confusion of which profit centers and costs correspond to which team lead or manager, there
exists a possibility that team leads and managers charge costs incorrectly. For example, if a team
lead were to input allocation keys on the wrong row (e.g., the cost does not belong to her) in the
allocation template, this would mean the profit centers are not being charged accurately for that
project. A way to track who was making which edits is necessary for the ITO Business
Management team, team leads, and senior management to be able to inquire about any concerns
or uncertainties they may have.

Chapter III: Methodology

To design the new process, we collaborated with multiple people. We met regularly with
the ITO Business Management team to understand their processes, with team leads to understand
what their experiences have been with the current system, and with senior management to
discuss what requirements they had for the new tool. This chapter describes the steps taken to
design and implement the application that was created to address the requirements from each of
the parties involved in the budgeting process.

3.1 Objectives

During the first two weeks of the quarter, our team had primarily addressed the concerns
and requirements of Andrew Clark, his team, and the ITO Business Management team. But the
next few weeks consisted of meetings with other managers, and their requirements significantly
added to the scope and complexity of the project. Thus, the project was organized into two
phases which was comprised of three deliverables. Phase 1, consisting of Deliverable 1, was
what we aimed to accomplish within the eight weeks on-site. Phase 2, consisting of Deliverables
2 and 3, would be begun but documented for a future extension (see Appendix B).

3.1.1 Deliverable 1 Automating General Allocation Process and Corresponding
Objectives

The first deliverable was to address the original scope of the project, which were the
requirements of Andrew Clark and the ITO Business Management team. This deliverable was to
automate the general allocation process described in Section 2.1.1 — create an application for
team leads, managers, and the ITO Business Management team to enter allocation keys to charge
costs to profit centers and for them to track the edits and versions.

Obijective 1: Create a SQL database consisting of the normalized data and mapping files.

Objective 2: Create a Python Server that reads the data sources and inputs the data into the SQL
database and maps the data together.

Objective 3: Create a front-end where users can input allocation keys, view revision history, and
compare different versions.

Deliverable 1 is the foundation of this budget automation project and the following
deliverables are additions to the database and additional features in the front-end.

3.1.2 Deliverable 2 Blended Keys Automated Allocation Process and Corresponding
Objectives
The second deliverable was to address the Blended Keys automated allocation process.

Objective 1: Include functionality in the front-end for the team to assign weights and allocation
keys by application.

Objective 2: Include functionality in the database to calculate the blended keys based on the user
inputs.

Obijective 3: Include functionality in the front-end to populate the blended keys to projects when
a stream is selected under the methodology column.

The manager of this Blended Keys process had indicated that to allow for flexibility,
“Applications” would be referred to as “Keys” and “Stream” would be referred to as “Blended
Keys” in the database. This makes it possible for the manager and his delegates to apply this
blended key process to other parameters (e.g., if he wanted to allocate by traits instead of
applications like in the reallocation process, the database would not restrict him to only
applications).

3.1.3 Deliverable 3 Automating Reallocation Process and Corresponding Objectives
The third deliverable was to address the reallocation process for Step 4.

Obijective 1: Include functionality in the front-end for the Operations team to assign weights and
allocation keys by traits.

Objective 2: Include functionality in the database to calculate the reallocation percentages to the
real profit centers based on the user inputs.

Obijective 3: Include functionality in the database to reallocate the charges from the dummy
profit centers to the real ones.

Obijective 4: Create a view of the allocations by GBLs (a parameter corresponding to profit
centers) and include the functionality to take snapshots (baselines) of the data to be able to
compare allocations through time.

3.2 New Process Overview

The new process developed in this project consists of a Python Server, SQL Database,
and web-based front-end application. See Appendix C for a visual representation of the new
general budget allocation process.

Headcount and discretionary costs extracts will still be pulled from Clarity, but during
one of the discussions with the ITO Business Management team, it was suggested that managers
update their headcount numbers in Clarity monthly as opposed to quarterly (as done in the
current process). With this change, the ITO Business Management team will no longer have to
create the budget but can duplicate the monthly forecasts that managers input to become the
upcoming year’s budget (e.g., if Project A’s forecasted headcount cost for January 2016 was
$50,000, Project A’s budget for January 2017 will be $50,000). After logging into the web-based
application, the ITO Business Management team will upload these extracts and mapping files
into the database through the front-end. The server will read the data sources and input the
mapped data into the SQL database. In addition to no longer manually creating the budget,
having a server that automatically maps the data together and creates the allocation template
removes two time-consuming steps from the process, significantly reducing manual work
required from the ITO Business Management team.

When a user logs in, the application reads the credentials that are specified in the
permission table to fetch corresponding data from the database through the server. The
permission table defines the access for each user of the application. Previously, users saw all
expenses without a defined list of which costs to allocate, which created the risk of allocating
incorrectly, but limiting users’ access and only showing relevant fields diminishes confusion
because users no longer have to sort through hundreds of rows. These permissions are assigned
by the ITO Business Management team (given the role of “Admin” in the permission table) and
senior management (given the role of “Managers” in the permission table).

10

Team leads (given the role of “User” in the permission table) will be able to allocate
their headcount costs and managers will be able to allocate both headcount and discretionary
costs — as well as override their team leads’ allocations. The application will verify that all
allocations total to 100%; if not, there will be an alert to re-input the allocation keys. Once the
allocations are complete, the server will store the allocations into the SQL database.

As team leads and managers input allocations, the edits are tracked in the “Revision
History” table which logs all edits to the allocation keys as well as any other activity in the
application: updates to the permission able, data source uploads, or edits to the profit centers.
Having a revision history table allows for the ITO Business Management team and management
to refer back to changes and eases any necessary auditing.

The application will also create a view for the ITO Business Management team to view
the allocations by program. This view will be exportable into Excel format in order for ease in
submitting the charges to finance.

This application significantly decreases the amount of manual work required from the
people involved in this semi-annual process. With the creation of this new system: the complex
steps of creating the budget, mapping the data, and creating the allocation template is no longer
required from the ITO Business Management team, sorting through hundreds of rows of
irrelevant expenses is no longer necessary for team leads and managers, and a simple way to
view recent activity is no longer lacking. The server will now replace the labor-intensive steps of
the budget allocation process and the ITO Business Management team, team leads, and
management will have a single system for this process.

3.3 Technology Tools

To achieve the new process that our team designed for budget allocations (see Appendix
E for the sequence diagram of the new process), several technology tools are needed. Our team
planned to use Microsoft SQL Server, Python (Flask framework), Model View Controller
(MVC) Architectural Pattern, and a front-end (AngularJS, HTML, and CSS) to achieve project
objectives. Each of the technology tools covers a major functionality. In this section, we are
going to elaborate on each tool we planned to adopt and analyze how they coordinate with each
other.

3.3.1 Microsoft SQL Server

Microsoft SQL Server was used as the database engine. SQL Server is a stable, popular,
and fast platform for building databases, and it also provides security for the company’s data. We
were provided with SQL Server (on our desktops) at the beginning of the project.

To build a comprehensive database in Microsoft SQL Server, our team first wrote queries
to create tables. These tables capture the parameters that are used in the budget allocation process.
Each table contains several column headings, and we specified the data structure of each column
heading. We also specified the primary key and the foreign key for every table. By doing so,
mapping relationships among tables were properly taken care of. Then, we used SQL Server to
see the graphical representation of each table and its corresponding mapping relationships.
Finally, we manually wrote queries to insert data into the database.

3.3.2 Python (Flask Framework)

Due to the complexity of this project, we planned to build a back-end for this web-based
application. Because we decided to code the back-end in Python, we found that using Flask
framework could quicken the development process. Flask framework is written in Python. Figure

11

1 below shows the simplicity of building a small Flask application (Quickstart). Our project size
is much bigger than this small application, but this example is considered as a basic template for
the project.

from flask import Flask
app = Flask(__name__)

@app.route('/")
def hello_world():
return 'Hello, World!'

Figure 1 — An Example of a Minimal Flask Application

Although Figure 1 only represents a minimal Flask application, it displays the most basic
structure of a Python server. It shows how the Flask framework gets imported and how the
framework renders a web page. That is why we consider it as a template and a starting point for
our project. According to our research on this framework, we found that it can be easily
maintained and there are numerous extensions that can be utilized. Another benefit of using
Flask framework is that it is more compatible with SQL Server than Django framework is.
Admittedly, Django is another option for choosing a Python framework. However, based on our
team’s research, there might be potential problems using Django to talk to the database, such as
handling database errors. Because we were new to both Django and Flask, we chose Flask
hoping to make the development process easier.

3.3.3 MVC Architectural Pattern

“MVC” represents model, view, and controller. It is possible to let our front-end interact
with our Flask back-end directly. However, because we planned to use DevExpress (will be
elaborated in the following chapter) to help us build the front-end view of the allocation template,
we wanted to adopt MV C Architectural Pattern between the back-end and the front-end.
Considering that DevExpress provides user interface control in Visual Studio platform, to realize
the MVC pattern, we planned to use ASP.NET.

In this MVC pattern, “Model” grabs data from the Python server, because the server talks
to the database directly. “View” binds to the front-end to generate everything a user can see.
“Controller” is like a commander of this overall process. It listens to every user request sent from
the front-end and talks to the server to find a solution to address it. After the “Controller” figures
out how to address the user request, it changes the “Model.” The change of the “Model” will
update the “View,” and the user can see the changes through the front-end. This pattern works as
an intermediate role between the server and the front-end, making the data flow easy to maintain.

3.3.4 Front End

This project could not be complete without a front-end. We planned to build the front-end
in AngularJS, HTML and CSS. Specifically, AngularJS is a JavaScript framework for building
dynamic web pages. Since the web pages we designed are supposed to handle various types of
user requests, AngularJS is one of the most convenient tools to address dynamic changes of a
web page. As for HTML and CSS, they work together to form the basic structure of a web page.
By using HTML, a web page is broken down into many small pieces. Each of these pieces is a
building block of the web page, such as a paragraph or an image. By using CSS, we are able to
change the style of each piece, like changing colors or specifying font size.

12

3.3.5 Overview

The four technology tools listed above are the most basic ones we planned to adopt in this
project. They are the foundation of this web-based application. Figure 2 provides an overview of
these four tools.

Feed
with Python Generate Show
Data Model ; View Front End
Database > Server.(F.laSk > MCOdeI V;Iew > (Angularjsr
(SQL and J|n]a2 Ol'.ltl"O er HTML &
Server) : attern (ASP.NET) CSS)
engine) Controller| P) Send
Update talks to User
Server Request

Figure 2 — Structure of this Application

In this application, the database is a pure storage of all the data; the data can come from
the Excel files that have been uploaded by the ITO Business Management team or from users’
inputs in the front-end. This database feeds the Python server with data, and the server can
update the database when a user request comes in. The Model-View-Controller Architectural
Pattern serves as an intermediate role between the front-end and the server. Model binds to the
server to grab data; View binds to the front-end so the users can see the data; Controller
manipulates Model to address different kinds of user requests. Finally, the front-end provides the
users with various views and enables them to submit user requests.

Besides these four basic technology tools, there are many more technologies and
methodologies that we planned to use. For example, a Python library called Pandas is needed for
reading the Excel files. We will talk about the other technologies in Chapter V1.

13

Chapter IV: SQL Database

Building a maintainable SQL database was the top priority for our sponsor, thus, the
majority of the term was spent designing the database and normalizing the data (see Appendix
G). In the database was data from our three extracts (headcount costs from Clarity, discretionary
costs from Clarity, and applications (keys) from Bam+), the mapping relationships provided
from the ITO Business Management team, tables to store users’ inputs from the front-end, a
permission table, and a logging table.

4.1 Database

The first several versions of the database design were made in Microsoft Publisher, but
the final design was created using SQL Server. The tables were also created in the server and the
data was manually loaded through INSERT statements.

4.1.1 Un-Normalized Database Design

Originally, our plan was to create exact copies of the data from the extracts into the
database (see Appendix H; e.g., there would be one table to store all 43 columns of data from the
headcount extract), but we realized this made the database difficult to maintain and it had to be
normalized. For example, one project could have multiple resources and each resource’s time
was allocated for every month of the year. Therefore, for just one project, one resource
(identified by a “resource code”) could account for 12 rows of the extract for each month. With
hundreds of resources and hundreds of projects, many of the values would be repeated in the
database.

Area Country Cost Project Charge Resource MM/YYYY Forecast

Center Name Code Code MD

North United AB Project A ABC 1234567 10/2016 14
America States

North United AB Project A ABC 1234567 11/2016 14
America States

North United AB Project A ABC 1234567 12/2016 14
America States

North United AC Project A ABD 2345678 01/2016 10
America States

North United AC Project A ABD 2345678 02/2016 12
America States

North United AC Project A ABD 2345678 03/2016 10

America States

Table 13 — Example of Rows from Headcount Extract

There are 43 columns in the headcount extract and the columns in Table 13 are a few of them.
For Project A alone, there can be hundreds of rows corresponding to the project depending on
how many resources are working on the project. As exemplified in the table, certain values such
as “United States” are repeated multiple times because it corresponds to this one project. In fact,
all projects in the headcount extract belong to North America; therefore, “North America” in the
“Area” column is repeated over 9000 times in the extract. If we were to copy the extract into the
database as is, and “North America” was to be changed to “N. America,” then 9000 rows would
need to be changed. This illustrates how if we were to stick to our original database designs of

14

taking pure copies of the extracts, many values would be repeated in our database making it
difficult to maintain.

Although each of the tables in our original database designs had to be broken up into
independent tables, the relationships represented in Appendix H still apply. The logging table in
the database tracks recent activity made in the front-end, and the permission table is a list of all
users of the application and what they have access to. As mentioned in Section 3.2, this
permission table defines what the user will be able to see and edit in the front-end to avoid the
risk of incorrectly allocating costs.

In this version of the database design, there are still pure copies of the extracts from
Clarity and Bam+. The “Keys Data” table contains data from the applications used in the
Blended Keys allocation process; this data is from Bam+ and from team leads. The “Headcount
Data” and “Discretionary Costs Data” tables are pure copies of the headcount and discretionary
costs extracts from Clarity.

There are four mapping files, provided by the ITO Business Management team, to
represent the mapping relationships between parameters in the data. The headcount extract does
not have “Nature,” “Stream,” “SILO,” “WIP/NWIP,” or “Program Code” as columns; therefore,
the ITO Business Management team had to manually input these fields each time they created
the budget and allocation template.

Using the cost centers from the headcount extract, we were able to find the Nature (e.g.,
Regulatory); each cost center could only correspond to one Nature. Given the Resource Codes in
the headcount extract, we were able to identify the corresponding SILOs (in later versions of the
database design we used Cost Centers instead of Resource Codes to identify both Nature and
SILO). Given the Project Codes, we found the corresponding Streams — unlike the relationships
between Cost Center and Nature and SILO, a Project Code could correspond to more than one
stream. If this was the case, we used the Stream with the highest number of “man-years” which
is the number of collective years that the resources are expected to work. Once we knew these
streams, we were able to identify the corresponding applications used in the Blended Keys
process. The final mapping relationship was linking Charge Codes (codes to identify where to
charge) from the headcount extract to WIP/NWIP (used to identify whether a project can be
capitalized or not) and Program Code by using the VLOOKUP Excel function in the provided IT
Masterfile which contained all projects and the corresponding parameters. Also provided from
the ITO Business Management team is a file with all Profit Centers (the front-desks) and the
corresponding parameters (e.g., descriptions and owners); this is another table in the database.

The three other main tables in the database design are the Templates — the “HC
Allocation Template,” “Blended Keys Template,” and the “DC Allocation Template.” These
store users’ inputs from the front-end. Notice there are column headings underlined in each table
— these identify the primary keys for the tables. As exemplified in each of the three Template
tables, multiple column headings are underlined because the combination of these parameters
makes the value unique. For example, one project can have multiple corresponding budgets if it
belongs to more than one cost center or has multiple charge codes.

Project/VVendor Project Cost Charge Man- Cash Profit Profit Profit Profit

Name Code Center Code Days Center 1 Center 2 Center 3 Center4
Project | PROJI AB ABC 20 $20,000 10% 90% 0% 0%
Project | PROJI AB ABD 10 $10,000 25% 25% 25% 25%
Project | PROJI AC ABC 5 $5,000 30% 20% 20% 30%
Project | PROJI AC ABD 5 $5,000 50% 50% 0% 0%

15

Project J PROJJ AD ABC 25 $25,000 0% 0% 100% 0%

Project J PROJJ AD ABD 15 $15,000 5% 25% 40% 30%

Table 14 — Projects with Multiple Cost Centers and Charge Codes

Project | in Table 14 has four different budgets because it corresponds to multiple cost
centers and charge codes. Therefore, it requires the combination of Project Code — Cost Center —
Charge Code to be unique in the allocation template. Suppose a user inputs an allocation key of
10% for Project 1, this is not enough information to know which budget Profit Center 1 is being
charged 10% of. We need to have “PROJI-AB-ABC” to identify the budgeted $20,000 to
appropriately charge the profit centers. As headcount costs require the combination of Project
Code — Cost Center — Charge Code to be unique, discretionary costs require the combination of
Vendor Name — Cost Center — Charge Code — Nature, and keys only required Key Name.

In addition to needing these combinations to identify the row in the allocation template
(which identifies the budget), when team leads and managers allocate their costs, they allocate
for both the current year and the upcoming year; therefore “Year” must also be a part of the
primary key combination to identify the row and budget. Because we are storing the allocation
keys that are being assigned to the profit centers, “Profit Center” must be included in the primary
key as well. Therefore, if we wanted to know what the team lead of PROJJ-AD-ABD allocated
to Profit Center 3 for 2016, the primary key we would need is 2016-PROJJ-ADABD-Profit
Center 3. Supposing Table 14 is for 2016, we would be able to identify “40%” as the allocation
key. Therefore, the combination of columns required to be the primary key in the headcount
allocation template is Year — Project Code — Cost Center — Charge Code — Profit Center; the
combination required to be the primary key in the discretionary costs allocation template is Year-
Vendor Name — Cost Center — Charge Code — Nature; the combination required to be the
primary key in the Blended Keys allocation template is Year — Key Name — Profit Center. (In
Appendix H “Step” is also an underlined column heading in the Template tables, however, this
pertains to Deliverable 3 which was not addressed during this phase.)

4.1.2 Normalized Database Design

As mentioned in Section 4.1.1, the database needed to be normalized for easy
maintenance. Normalization is the process of efficiently organizing data to avoid redundancy in
data (Chapple, 2016; e.g., repeating “North America” 9000 times). This required understanding
the relationships between all the parameters in the extracts to find out which parameters were
independent and which were dependent. This required studying the data in great detail.

It can be seen in Appendix G that there are significantly more tables in the new database
design (there are now 44 tables) compared to the original database design in Appendix H, but
each table now has fewer columns compared to the tables that were pure copies of the extracts.
When normalizing data, values are given a unique ID, as exemplified by Table 15.

ID Area
| 1 North America |
Table 15 — Example of an Independent Table in the Database

Area, a column in the headcount extract, is an independent parameter. Because there was only
one “Area” (i.e., all projects belonged to “North America”) there was only one value in the table.
If there were other “Areas” they would also been given an ID (e.g., Europe could have an ID of 2
and Asia could have an ID of 3). Note that the “ID” columns in each of these tables are the

16

primary key. Although “Area” is an independent value, there were parameters that were
dependent on the field. As illustrated in the database design, the Region (Area) table is linked to
“CountryDepartmentLv]” which is one of its dependencies.

ID Name Department Level Area ID
1 United States United States 1
2 Canada Canada 1

Table 16 — Example of a Dependent Table in the Database

Table 16, is the “CountryDepartmentLv]” table in the database which includes the country that
the projects belonged to and the corresponding Department Level 1. If we first look at the “Name”
column, which is for Country Name, there are only two possible values because United States
and Canada are the only two countries the projects in this extract belonged to (since the only
“Area” all projects belonged to is North America). “Department Level,” another parameter in the
headcount extract, was dependent on the Country. There was a one-to-one relationship between
the parameters (i.e., a country could only have one corresponding department level; United
States under “Country” can only correspond to “United States” under “Department Level” and
nothing else). Because of this one-to-one relationship, we are able to put the two columns under
the same table and assign them the same 1D number. Thus, if we know the ID is 1 for the
“CountryDepartmentLv]” table, we automatically know that the country name is United States
and that the Department Level is also United States.

Because both Country and Department Level are dependent on the Area, “Area ID” is a
column in this table as well. This means that for each country and department level, there can
only be one corresponding Area. Note that Area ID is a foreign key in the
CountryDepartmentLvl table because the ID is used to refer to a value in another table.

If there was not a one-to-one relationship between either Country Name or Department
Level with Area, then Area ID would not be a column in the table. Suppose Europe (given an ID
of 2) and Asia (given an ID of 3) were other Areas listed in the extract and there was not a one-
to-one relationship between the Country Name or Department Level values with Area (note this
is not a realistic example given United States and Canada would only belong to North America).

ID Name Department Level Area ID
1 United States United States 1
2 United States United States 2
3 United States United States 3
4 Canada Canada 1

Table 17 — Example of a Table with Redundant Data

Table 17 exemplifies the table if United States corresponded to more than one Area. “United
States” would have to be listed multiple times to accommodate for the multiple corresponding
Areas. This repetition is an example of the redundant data we are trying to avoid through
normalization; therefore, when normalizing these tables, the columns should have one-to-one
relationships.

All the data from the extracts were analyzed to confirm which parameters had one-to-one
relationships in order to normalize the database to a reasonable level. The database design in
Appendix G was the final design of the SQL database. As mentioned, the relationships from the

17

Un-Normalized Database still apply for the normalized version; however, there are minor
changes such as the use of the IDs and the Template tables now refer to additional tables.

4.2 Data Loading Complexities

As mentioned, the data in the database was manually loaded using INSERT statements.
However, this process had proven to be difficult for some tables because the Clarity extracts had
missing data that needed to be accounted for. For example, not all charge codes are printed in the
extract, as exemplified in Table 18.

Project Cost Charge MM/YYYY Forecast Actual | Forecast Actual

Code Center Code MD MD \% 0% \% 0%
PROJK AB 7CW4381 11/2016 4.86 0.022086
PROJK AB NA 11/2016 1.63934 0.007452
PROJK AB T7CW4381 12/2016 2.7 0.01227
PROJK AB NA 12/2016 1.69399 0.0077
PROJK AB NA 01/2017 1.63934 0.007452
PROJK AB NA 02/2017 1.69399 0.0077
PROJK AC T7CW4382 11/2016 14.6 0.06636
PROJK AC NA 11/2016 16.93989 0.077

Table 18 — Missing Data in Clarity Extract

“NA” is printed in the “Charge Code” column in a majority of the headcount extract’s 9000
rows. For months that have already passed, instead of printing the Forecast MD and Forecast
MY values on the same row as the Actual MD and Actual MY values (even though it
corresponds to the same resource for the same Project Code — Cost Center — Charge Code), the
forecasts are printed on a separate row without the charge code, and future months without
Actuals also receive a charge code of “NA.” If the data was printed accurately, the data would
look like Table 19:

Project Cost Charge MM/YYYY Forecast Actual | Forecast Actual
Code Center Code MD MD L\%0'% \%0%
PROJK AB 7CW4381 11/2016 1.63934 4.86 0.007452 0.022086

PROJK AB 7CW4381 12/2016 1.69399 2.7 0.0077 0.01227

PROJK AB 7CW4381 01/2017 1.63934 - 0.007452 -

PROJK AB 7CW4381 02/2017 1.69399 - 0.0077 -

PROJK AC 7CW4382 11/2016 16.93989 14.6 0.077 0.06636

Table 19 — Clarity Extract without Missing Data

To find the charge code, we had to use the charge code in the row above and sometimes the row
below. Thus, to load the data, we had to write a script that would print the appropriate charge
code.

Besides missing charge codes, there were other fields that were missing such as values in
the Org Chart Level columns. These are used to identify resources’ corresponding business units.
Many missing fields had to be manually input.

4.3 Test Cases

To ensure the data was loaded correctly and that the script we wrote for the missing
charge codes was accurate, we created test cases to check our data. We tested that mapping
relationships were accurate (e.g., cost centers were linked to the correct natures, streams were
mapped to the correct project code, etc.) and that budgets were aggregated accurately (i.e., the
amounts that are required for the templates). Table 20 provides a sample of these cases.

Table(s) Year Test Data Sources SQL

HC Allocation F16 MYs for ProjectA- 0.4875 0.4875
Template ChargeCodel-CostCenter2

HC Allocation B17 MDs for ProjectA- 220 220
Template ChargeCode2-CostCenter3

HC Allocation F16 MDs for ProjectB-ChargeCodel - 196.058 196.058
Template CostCenter2

HC Allocation B17 MYs for ProjectC-ChargeCode4- 0.4227 0.4227
Template CostCenter4

HC Allocation F16 MDs for ProjectD- 70.973 70.973
Template ChargeCode5-CostCenter5

HC Allocation F16 MYs for ProjectE-ChargeCode6- 0.4425 0.4425
Template CostCenter2

HC Allocation F16 MDs for ProjectE-ChargeCode3- 260.02 260.02
Template CostCenterl

HC Allocation B17 MYs for ProjectE-ChargeCode4- 0.7499 0.7499
Template CostCenter8

HC Allocation B17 MYs for ProjectF-ChargeCodel- 0.9999 0.9999
Template CostCenter7

HC Allocation F16 MDs for ProjectF-ChargeCode4- 220 220
Template CostCenter5

Table 20 — Examples of Test Cases

We created 70 test cases to check the data in our SQL database compared with the data from the
extracts (the data sources). All the tests that were completed passed.

19

Chapter V: System Analysis

We consider the whole application as a giant system. This chapter is an analysis of the
whole system. We want to focus on data flow (see Appendix F for the data flow diagram), as
everything we designed is in consideration of data transfer from the front-end to the database or
vice versa. First, we discuss the system components. To address various user requests, we broke
the whole system down into several key components. Second we discuss the front-end design as
it is based on the system components.

5.1 System Components

System components are the key elements that form the whole system. Our team designed
these components in consideration of all the user requests anticipated by the stakeholders. The
system components specify the data flow in this web-based program. Since data binding between
the server and the front-end was not the major concern in this project, the data flow only
concentrates on the communication between the database and the front-end.

There are twelve system components that we created. Out of these twelve system
components, some of them are back-end based. They represent back-end procedures. The rest are
front-end based. Each of them specifies the design of a single web page. Table 21 below shows
all the system components. The table breaks all the system components into front-end based
components and back-end based ones.

Front End Based Back End Based

Startup Authentication
Menu Authorization
File Upload File Read
Edit Profit Center Generate Allocation Template
Edit Allocation Percentage Save Allocation Percentage
Permission Edit Revision

Table 21 — All the System Components

We provide details on each system components in the order of process.

5.1.1 Startup
Startup is a front-end based system component. There is a web page that covers this
component. Table 22 shows the basic elements of this web page.

Elements Details

User ID The company employee 1D such as AB6666.
Password A string which consists of numbers, uppercase and lowercase
characters, and all special characters.
Button The action is clicking on the button to submit the user ID and
password for authentication.

Table 22 — Basic Elements of Startup

5.1.2 Authentication
Authentication is a back-end based system component. It tells the system whether the
login information refers to a valid user or not. For testing purposes, we store the (fake) password

20

into the Permission Table in the database. Figure 3 displays all the processes that belong to
Authentication.

When the user requests to get
authenticated, the user ID entered is
looked up in the Permission table.

ID does not exist Alert message shows on the startup

page that the user ID is invalid.

ID exists

Password does not match

Alert message shows on the startup

For the current user ID, see if the
page that the password entered is

password input matches the
password in Permission table. wrang.

Password matches

Authentication finishes.

Figure 3 — Authentication Process

5.1.3 Authorization
Authorization is a back-end based system component. Authorization starts when the

system checks Employee ID in the Permission table in the database. Figure 4 shows the
processes that Authorization contains.

Employee ID Role (User, Manager, Keys (The portion of data
Admin) the user is able to see
and edit).
Figure 4 — Authorization Process
5.1.4 Menu

The menu is a front-end based system component. It contains two major elements, and
there is a web page that covers this component. Table 23 shows the elements that the menu

contains.

Elements Details

Tab A group of tabs on top of the website contains a menu of “Main
Menu”, “File Upload”, “Allocation Table”, “Profit Center”,
“Permission Change”, and “Revision History”.
Button A group of buttons contains a menu of “Main Menu”, “File
Upload”, “Allocation Table”, “Profit Center”, “Permission
Change”, and “Revision History”.
Table 23 — Basic Elements of Menu

21

5.1.5 File Upload
File Upload is a front-end based system component. This system component is only for

admin users. There is a web page that covers this component. Table 24 shows its major elements.

Elements Details

Upload box There are 9 upload boxes in total for 9 files to upload (Headcount
Data, Discretionary Cost Data, Keys Data, Cost Center & Nature,
Project Code & Stream, Silo & Cost Center, Charge Code &
WIP/NWIP & Program Code, Activity Owner & Cost Center
Owner, and Vendor & Stream)

Button The action is clicking on the button to submit the file. An error
message is shown when the button is clicked but no file been
selected.

Table 24 — Basic Elements of File Upload

5.1.6 File Read

File Read is a back-end based system component. The functionality of this system
component is to read the files that have been uploaded by admin users. All the columns from the
Excel files are assigned to a specific variable (as an object) and these variables are passed into

the database.

5.1.7 Edit Profit Center
Edit Profit Center is a front-end based system component, and it is only for admin users.
There is a web page that covers this system component. Table 25 shows its major elements.

Elements Details
Existing Profit Center A table contains all the existing profit centers from the Profit
Table Center table in the database.
Field edits button There are six buttons in total. Click on one of the buttons to

trigger a pop out area (consisting of a field table, two text boxes
and a submit button) for users to input any possible changes for
one of the fields.

Field table This table is for admin users to see all the values of a certain
field and look up a certain value if any necessary changes needed
to be made. This field table is obtained by look up relevant table

in the database based on users’ selection.

Text box There are 2 text boxes for admin users to input both old value
and new value of a certain point in the field table.
Submit button Action is clicking on the button to submit changes on a certain

field. After the action is made, the new value get updated (update
statement) in the database, and the existing profit center table
gets refreshed.

Table 25 — Basic Elements of Edit Profit Center

22

5.1.8 Generate Allocation Template
Generate Allocation Template is a back-end based system component. It provides a user

with the allocation data that corresponds to his or her permission, and it combines data for both
headcount costs and discretionary costs. By sending queries to the database, this component is
able to generate views to the front-end. Figure 5 displays the major fields that form the allocation

template.

Project/Vendor —_

Nature

Charge Code

Charge Code Name

Program Code

Program Name Join, Union etc.

— Allocation Template

WIP/NWIP

MD

MY

Cash

Country

Methodology

List of Profit Centers

Figure 5 — Major Fields that Form Allocation Template

5.1.9 Edit Allocation Percentage
Edit Allocation Percentage is a front-end based system component. It allows users to

make changes to allocation keys. When the percentages allocated across the same “Project Code
— Cost Center — Charge Code” does not add up to 100%, an alert box will appear indicating the
allocation keys need to be edited. Table 26 shows the major elements of this system component.

23

Elements Details

Allocation Template A view that is from “Generate Allocation Template” system
component.
Text box A text box that allows user to input the allocation percentage.
Button Action is clicking on the button to submit the change of
percent allocated. Refresh the master detail grid after the
action is finished.

Table 26 — Basic Elements of Editing Allocation Percentage

5.1.10 Save Allocation Percentage

Save Allocation Percentage is a back-end based system component. To save the
allocation percentages entered by the user, the application needs to dive into the database and
check whether the allocation percentage is empty based on the key given by the front-end. To be
more precise, the job of the application now is to see whether there was a previous input. If this
is a first-time input, the Headcount Allocations and Discretionary Cost Allocations tables in the
database will be updated. If there was a previous input, a new row will be inserted with the same
local key.

5.1.11 Revision

Revision is a back-end based system component. Whenever there is an edit (no matter
whether it is for changing an allocation percentage or editing Profit Center), the revision history
is stored into the Logging table in the database. Figure 6 shows the overview of Revision.

ID Name Table Value = ID (Name) + Table + Old data + new
data

Logging Table (in
database)

Figure 6 — Overview of Revision

5.1.12 Permission Edit

Permission Edit is a front-end based system component. This system component can only
happen when the user is an admin or a manager account. For testing purposes, the admin user is
supposed to add the password for a new user (a complete user log in system needs to be built
based on the company’s security rules). Table 27 shows the basic elements of Permission Edit.

24

Elements Details

Current user list A table contains all the existing users’ data from the Permission
table in the database except password column.
Text box There are 6 text boxes in total (for ID, Password, Name, Cost
Center, Role, and Keys) for users to input.
Delete button Action is clicking on the button to delete a current user. The

system selects the user ID based on the input specified by the
admin account, and then it deletes the user and refresh the
current user list.
Add button Action is clicking on the button to add a new user. The system
inserts the user based on the input specified by the admin

account, and then it refreshes the current user list.
Table 27 — Basic Elements of Permission Edit

For the delete button, an error message will appear when the user ID text box is empty.
For the add button, an error message will appear when any of the text boxes are empty.

5.2 Front End Design

Based on the front-end based system components, designing the front-end interface is
straightforward. The following figures illustrate the views for our front-end design.

Figure 7 is the user log in page.

User Log In

User ID: | |

Password: | |

Log In

Figure 7 — User Log In Page

Figure 8 is the main menu page. The main menu page is the page that users will see after
they successfully log in. It serves as a redirection to all the functionalities we designed. In
addition to the tabs on the top of the page, we also display the options in the center to better
present all the key features of this application.

25

Main Menu File Upload Edit Profit Center ‘ Edit Permission ‘VlswAllamtiﬂnTemplate‘ Edit Allocation Template ‘ Revision History

Main Menu

| File Upload |

| Edit Profit Center |

| Edit Permission |

| View Allocation Template |

| Edit Allocation Template |

| Revision History |

Figure 8 — Main Menu Page

Figure 9 is a web page for admin users to upload files. The first three files on top are data
source files. The remaining six files are for the mapping relationships.

Main Menu File Upload ‘ EditProfit Center I EditPermission View Allocation Template edit Allocation Template Revision History
File Upload
Please upload Headcount Data: | | | Browse |
Please upload Discretionary Cost Data: | | | Browse |
Please upload Keys Data: | | | Browse |
Please upload Cost Center & Nature: | | | Browse |
Please upload Project Code & Stream: | | | Browse |
Please upload SILO & Cost Center: | | | Browse |
Please upload Charge Code, WIP/NWIP &
Program Code: | | | Browse |
Please upload Activity Owner & Cost -
-Submlt
Center Owner: | | | Browse |
Please upload Vendor & Stream: | | | Browse |

Figure 9 — File Upload Page

Figure 10 is a web page for editing profit centers. When an admin user clicks on a
parameter to make an edit, text boxes pop out for the user to input the edits.

26

Edit Allocation Tempate | Revision History.

Main Menu FileUpload Edit ProfitCenter ‘ Edit Permission ‘ View Allocation Template |
Edit Paying Center
Current Paying Center List:
Name Cost Center Metier Description 1 Description 2 GBL Activity Owner
Owner
Profit Center 1| Doe John Ops ex- Middle Office Operations Ops N/A
GECD
Profit Center 2 Doe Jane OPS ex-PB Global Step 2 Ops N/A
Markets

Edit: Profit Center | | Metier | | CC Owner | | Description 1 | | Description 2 | | GBL | |Activity Owner |

Value

Old Value New Value
1 | |

Figure 10 — Edit Profit Center Page

Figure 11 is the Permission Edit Page. The ITO Business Management team and
management are able to add a user, delete a user, or edit a user’s permissions.

File Upload Edit Profit Center Edit Permission View Allocation Template

Main Menu Edit Allocation Template | Revision History

Edit Permission

Current User List:

ID Name Cost Center Role Permissions Keys
1234567 Nan Zhang NBITOO User Allocation keys - projects ProjectA —
ChargeCodel-
CostCenter2-
ProfitCenter3
2345678 | Jacqueline Ngo | NBITOO Manager Allocation keys - projects, ProjectB —
allocation keys - discretionary ChargeCodel-
costs, permission tables CostCenter2-
ProfitCenter3
3456789 John Doe NBITO1 Admin File uploads, permission tables, N/A
allocation keys view

Add: |U5er\D| |Passw0rd| | Name | |CostCenter| | Role | | Keys || Add |

Figure 11 — Permission Edit Page

Figure 12 is the Allocation Keys Edit Page. There are several filters on top for selecting
appropriate data. Notice that our team uses master detail grid to structure the rest of the
allocation template. Master detail grid is a type of view that contains a parent and a child

27

category. When a parent category is clicked, the whole view is expanded and an additional view
gets displayed. This additional view is the child category. Master detail grid uses the hierarchical
relationship to present data.

Main Menu | File Upload ‘ Edit Profit Center ‘ Edit Permissions ‘ View Allocation Template | Allocation Template Revision History
Year v
F16
Country v SILO v Nature | v Program Name v Stream v
USA APS
Country SILO Nature Program Name Stream
USA APS BAU Program WPI Business Intelligence
Bl -4
USA APS BAU Program MQP Business Intelligence
~ g B
Clarity Project/Vendor Charge Code Charge Code Name Cost Center Nature WIP/NWIP
> Project A 75W0393 Credit cCc1 Man Days Ncap
—> ProjectB 75W1060 Support cc2 Man Days | Ncap
5 ProjectB 75FI570 eTrading cc3 Man Days |Ncap
—> ProjectC 75W7222 Trading Support cca Man Days | Ncap
—> ProjectC ICLWO380 Bug Fix ccs Man Days | Ncap

Figure 12 — Allocation Keys Edit Page

Figure 13 is the Allocation Keys View Page. It is still presented by using master detail
grid. This view is for the ITO Business Management team to view the numbers they will be
submitting to finance.

Main Menu | File Upload ‘ Edit Profit Center ‘ Edit Permissions ’ View Allocation Template | Allocation Template Revision History
Year v
Fl6
Country v siLo v Nature | V | Program Name v Stream v
USA APS
Country siLo Nature Program Name Stream
— USA APS BAU Program WPI Business Intelligence
N USA APS BAU Program MQP Business Intelligence
Clarity Project/Vendor Charge Code Charge Code Name Cost Center |Nature WIP/NWIP
—> ProjectA 75W0393 Credit CcCl Man Days Ncap
“\A ProjectB 75W1060 Support cc2 Man Days | Necap
Man Days: 440.00 Man Years: 2.00 Cash: 440,000.02
Activity | Cost Center Owner |GBL Metier Description 1 | Description 2 Profit % Methodology
Owner Center | Allocated
N/A DOE JOHN Equities COO (Arbitrage 100%) | Equity Management Profit 70% JIRA
Centerl
N/A DOE JANE Equities |GM - EQD EQD AMM EQD AMM Profit 30% JIRA
Center2
SUBMIT

Figure 13 — Allocation Keys View Page

28

Figure 14 is the Revision History Page. Any edits will be documented here.

Main Menu ‘ File Upload | Edit Profit Center ‘ Edit Permission | View Allocation Template | Edit Allocation Template ‘ Revision History

Revision History

Edit Time Iyl D Iyl Name IE Table Changed @ Value @

2016-11-08 1234567 Nan Zhang Headcount Allocations Changed allocation key for B17-
16:10:32

ProjectA-ChargeCode6 - CostCenter3
from 0% to 30%. For ProfitCenter2

2016-12-01 2345678 Jacqueline Ngo Discretionary Costs Changed allocation key for B17-

10:30:02 Allocations ProjectB-ChargeCode6 - CostCenter3

from 50% to 75%. For ProfitCenter9

Figure 14 — Revision History Page

29

Chapter VI: Results

6.1 Progress We Made

Due to the relatively short time frame we had on site, project management was critical to
the completion of our project. We wanted to set expectations with our managers and mentors on
the deliverables we planned to finish during our time on site and what we planned to be future
extensions. Accordingly, this project can be divided into two parts. One part is to design the big
picture and to create a database. The other part is towards data binding which requires a solid
back-end implementation. As mentioned previously, based on managers’ expectations and
limited time, data binding was not our major concern for this project. As a result, we
concentrated more on the first part, which is to conduct system analysis and build a database. We
finalized our progress into three points listed below:

1. Built the database with normalized tables to capture all the required parameters of the
process. Designed the tables to fit different kinds of allocation processes. Filled the
database with data from Clarity, the project management tool.

Delivered the front-end design to properly handle different kinds of user requests.
3. Conducted system analysis on how the application provides various services.
Documented the data flow between the front-end and the database.

N

6.2 Special Features

Besides the three major points we achieved, there are some special features that we
implemented or designed. These features are not major technologies or methodologies to this
project, but they are very important to this web application.

6.2.1 Versioning

Addressing versioning of the data sources was one of the most important problems we
needed to handle. The application we designed is supposed to receive continuous file uploads
and should be able to compare the data between different uploads. Because comparing data
requires historical data, the database should keep inserting data when a new upload comes in.
Instead of updating the rows in the database, the application does not lose history by inserting
data. However, that is not enough. In the database, for a row that comes from a past file upload,
there is no way that we can figure out its “version.” There should be some parameters that work
as identifiers of a row in the database.

Our team developed a versioning mechanism that gives every row in the database an
identifier. Table 28 illustrates how the versioning mechanism works.

1 1 1 ' AA
2 1 2 BB
3 1 1 cC
4 2 1 DD
5 2 2 AA

Table 28 — An Example of the Versioning Mechanism

In Table 28, the primary key column holds the unique identifiers of every row, so the numbers in
the column go from one to infinity. The “Version Number” column tells the “version” of that
row. To be more precise, whenever a new file upload comes in, the application increments the

30

version number by one. For instance, say the current version number is 2. When an admin user
uploads a new data source only for Headcount data, all the rows generated by this new upload
have version number 3 now. Next time when this admin user uploads two files for both
Headcount and Discretionary Cost data, the version number goes to 4.

The “Local Key” column only makes sense within two rows with the same version
number. For example, when a user makes a change on an existing allocation percentage, the
application inserts a new row with the same local key as the row that should be updated. In Table
28, the second row and the fourth row have the same local key and version number. That means
a user makes a change of data from “AA” to “CC”.

By using a combination of primary keys, version numbers, and local key, the application
is able to compare different versions of data, and the old data does not get lost.

6.2.2 Pandas Library

The files the application is expected to read have relatively large sizes; as such, the
application’s file reading performance was of concern. To address this concern, we suggested the
usage of a Python library called Pandas. It reads an Excel file column by column, and it stores
each column as an object. By assigning each object a variable, it is easier for us to put these
variables into the database. Moreover, using Pandas will improve the speed of reading Excel files.

6.2.3 Bootstrap

Bootstrap is a front-end framework that we planned for constructing the front-end
interface. There are many templates that we can use, so there was not much need for us to think
about designing the web page using HTML and CSS. As readers may notice from the front-end
design, except for the log in page, all the other pages have tabs on top. Bootstrap provides some
colorful templates which can help us realize our front-end interface design. A lot of time will be
saved.

6.2.4 Master Detail Grid

As illustrated in Figures 14 and 15, a master detail grid is used for presenting allocation
data. Our team believes that this kind of view is the best fit for presenting the allocation template,
because the allocation template we received from the ITO Business Management team uses
filters in Excel. By using a master detail grid, a kind of hierarchical relationship can be clearly
displayed. We also planned to use the template from DevExpress for constructing it. In that case,
all we need to do is to write our own controller classes.

31

Chapter VII: Recommendations

7.1 Data Clean up

As mentioned in Section 4.2, Data Loading Complexities, a lot of data was missing in the
extracts (e.g., charge codes, organization chart levels, etc.) which made loading the data very
difficult. To ease the data load process, the extracts need to be cleaned up. For example, charge
codes need to be printed in each row because although we can write script to accommodate for
these missing fields, the more rules we write, the messier the process becomes and there is more
risk of error.

Another major problem was that many relationships had exceptions to being one-on-one,
sometimes due to historical data, which affects the database normalization. For example, a
resource should only have one corresponding Resource Type (e.g., employee, contractor, or
consultant) but there are sometimes exceptions because a resource’s employment status could
have changed during the year. Therefore, if the relationship is not one-on-one, a table such as
Table 16 would not work and we would need to link the parameters elsewhere. Fixing the
exceptions and having a standard rule/standard relationship between the parameters lessens the
complexity of the mapping relationships.

7.2 Usage of Clarity API

Another recommendation we had for this project is to use Clarity API instead of reading
the uploaded Excel files. API is an abbreviation of Application Program Interface. It sets a
method for different program components to communicate. In this project, the method for
communicating with Clarity is called Clarity API. Although it may not exist within the company,
developing one can be beneficial. If it exists, we suggest using it directly.

Although we introduced Pandas as our Python library to read the files, processing a big
file all at once still consumes a large portion of time. This is something that we cannot avoid. In
addition, as long as there is a need to read the files, we need to set up some sort of
standardization to structure the Excel files. For example, the order of the columns in the data
sources should be fixed and there should not be any missing columns that are out of our
expectation. Making this kind of standardization is tedious, and it is possible that people may
ignore it when they create the data source. Admittedly, this example of setting up standardization
can be compromised by designing more intelligent spell checking. However, even with smarter
algorithms, some level of standardization or agreement is still needed for prompting the users to
follow the rules.

To avoid the issues above, using Clarity API is a good solution. By doing that, the
application only needs to request for specific information from Clarity directly. Although it
would be difficult to get access to the Clarity API under the company’s policy, getting rid of
reading Excel files can significantly improve the application’s performance.

32

Chapter VIII: Future Extensions

After completing our term on site, we want to document the next steps for those at BNP
Paribas who continue the project. We strived to automate the budget allocation process as much
as possible and serve as a starting point for future development. The following four steps are to
be followed, and they are sequential.

1.

Blended Keys and Reallocation Process. Although we designed the database for all three
managers’ allocation processes, there is still work that is needed to be done for the keys’
allocations (Blended Keys allocation process) and reallocation for the dummy profit
centers (Step 4). These two allocation processes also need the system analysis and the
front-end design.

Data Binding. As previously mentioned, data binding was not the major concern for this
project. However, in order to implement this project, the next step should focus on data
binding. The future developer needs to write code to achieve the data flow mentioned in
the System Analysis chapter. It is important to make sure that the front-end view and the
back-end server work together for data transfer. Corresponding testing work is also
needed.

Password encryption. Currently, for testing purposes, when an admin user adds a new
user into the system, he or she needs to create a password for the new user. This should
not happen when this application is used by the company. The permission table in the
database should also be fixed, since the table has a column for storing users’ passwords.
A complete password system needs to be built under the company’s security policy.
Web-based Deployment. This step ensures that all the users have access to it. Once the
application is deployed, this will save significant time for all the parties involved in the
budget allocation process.

33

Chapter IX: Conclusion

The Global Markets IT division of BNP Paribas currently conducts a budget allocation
process that is complex, time-consuming, and labor intensive. The process lacks a single system
to input allocations, an easy way to audit the activity, and a way to track multiple versions of the
data sources; thus, our group designed an automated budget allocation process that addresses
these bottlenecks to reduce the amount of time required from the ITO Business Management
team, team leads, and senior management to complete the process.

The new process consists of a SQL database — which is normalized for easy maintenance,
a Python server — which is the back-end of our application, and a web-based front-end
application — which is for users to input their allocation keys and for the ITO Business
Management team and management to view allocations and revision history for auditing. The
new design addresses each of the problems that were identified by management and the ITO
Business Management team; it provides a single system for the semi-annual budget allocation
process to take place, replaces the labor-intensive steps that were previously required, and makes
tasks such as tracking data source versions less complex. In addition to the designs and database,
significant documentation and system analysis was provided for future reference and for future
extensions of this project.

34

Bibliography
"Benefits of Microsoft SQL Server." Acctivate Help. N.p., 09 Sept. 2015. Web. 07 Jan. 2017.
<https://help.acctivate.com/articles/5914/>.

"BNP Paribas International Hackathon 2016." International Hackathon. N.p., n.d. Web. 15 Nov.
2016. <https://international-hackathon.bnpparibas/>.

Chapple, Mike. "The Basics of Normalizing a Database.” About.com Tech. N.p., 03 Aug. 2016.
Web. 12 Dec. 2016.
<http://databases.about.com/od/specificproducts/a/normalization.htm>.

"History: two centuries of banking." History: two centuries of banking. N.p., n.d. Web. 15 Nov.
2016. <https://group.bnpparibas/en/group/history-centuries-banking>.

"Innovation: our response to a changing world - BNP Paribas." Innovation : our response to a
changing world - BNP Paribas. N.p., n.d. Web. 18 Jan. 2017.
<https://group.bnpparibas/en/group/innovation-response-changing-world>.

"MS Excel: How to use the SUMPRODUCT Function (WS)." MS Excel: How to use the
SUMPRODUCT Function (WS). N.p., n.d. Web. 12 Dec. 2016.
<https://www.techonthenet.com/excel/formulas/sumproduct.php>.

"Quickstart." Quickstart — Flask Documentation (0.12). N.p., n.d. Web. 07 Jan. 2017.
<http://flask.pocoo.org/docs/0.12/quickstart/#a-minimal-application>.

Beal, Vangie. "API - Application Program Interface." What Is API - Application Program

Interface? Webopedia. N.p., n.d. Web. 14 Jan. 2017.
<http://www.webopedia.com/TERM/A/API.htmlI>,

35

Appendix A: Current General Budget Allocation Process

Update Headcount

data quarterly and
Discretionary costs

annually in Clarity

N

é’ Extract Create the HC

15y Headcount Create the Update the budgets

%‘) (HC) and budgets using allocation —_— and allocation

= Discretionary these files and template template with new

S g cost (DC) files P There are new data/budget

2 E from Clarity mapping files versions of the HC

Q or DC files

= 4

wn

=

~ I

I The rest of the process is done twice:
once at the beginning of the year, and
once in the middle of the year Allocation template is

g sent to the managers

o0 Input allocation
<

- T &—| e
= discretionary

profit centers

costs

Team Leads

Allocation template is sent to the ‘

team leads along with instructions
on how to input allocation keys

Sort through

projects and

Input allocation

profit centers

> l keys for projects

36

1=

=

)] _>O
.

§ g A

w

wn

O
R=

w2

=3
aa]

Each team lead sends back
their allocation keys to the
manager

z

g)b Consolidates all
< > allocation keys to
(=} v . .
§ create a final file

A

Team Leads

Managers tell team leads
allocations do not total 100%
and to re-do allocation keys

Q) «—— —

Input allocation — — Re-inputs allocation 1

keys for projects keys for projects J

37

Appendix B: Deliverables and Corresponding Objectives

Deliverable 1:
Automating General
Allocation Process

~N

e Create a SQL database consisting of the normalized data and mapping files.

e Create a Python Server that reads the data sources and inputs the data into the SQL
database and maps the data together.

e Create a front-end where users can input allocation keys, view revision history, and compare
different versions.)

Deliverable 2: Blended
Keys Automated

Allocation Process

~N

e Include functionality in the front-end for the team to assign weights and allocation keys by
application.

e Include functionality in the database to calculate the blended keys based on the user inputs.

e Include functionality in the front-end to populate the blended keys to projects when a stream
is selected under the methodology column.)

Deliverable 3:
Automating Reallocatior
Process

¢ Include functionality in the front-end for the Operations team to assign weights and allocation key}
by placeholders.

¢ Include functionality in the database to calculate the reallocation percentages to the real profit
centers based on the user inputs.

¢ Include functionality in the database to reallocate the charges from the dummy profit centers to
the real ones.

e Create a view of the allocations by GBLs and include the functionality to take snapshots (baselines)
of the data to be able to compare allocations through time. /

38

Appendix C: New General Budget Allocation Process

) Extract Enter Upload the HC _
% %_ Headcount (HC) credentials to and DC files and Asmgn_/update
g ¢ and Discretionary | == log in as an — map_ping files into permission
4 g cost (DC) files “Admin” application as data table
M « from Claritv sources

= 3

The rest of the process is
done twice: once at the

@ beginning of the year,
and once in the middle of

w2

) Enter credentials Assign/update

P 4 the year tologinasa permission — -

g “Manager” table

= Update Headcount data

monthly and Discretionary
costs data annually in Clarity

3

8 Enter

— credentials to

% Iog{;n asa

q) (13 Sel’”

i |

v

: v v

.g Server reads the Server uses the Front end reads credentials
3 Qata sources and mapping tables to to fetch corresponding data
= inputs it into the map all the data from database through the
2_ SQL database sources together server

T

Business
NManaoerment

Re-inputs
%) Input allocation keys 'I
= . FAv nrainnta
o allocation
80
< keys for
% discretionar Receive an alert
> V costs that allocations do
not total 100%
Re-inputs

n allocation keys —
9 Input for proiects
9 allocation A

keys for)
g projects Receive an alert that
g allocations do not

4 total 100%
I '

g
= Front end reads credentials I Application Server sto_res Server reads all the
S to fetch corresponding data verifies _| allallocation data and creates
a, from database through the — allocations »| keys into the views of_ the data
é’* server total 100% SQL database and logging table.

40

Appendix D: Use Case Diagram

Edit paying centers

Wpload extracts

Ugload mapping
flles

T Business

View allocations by
Maragemant

program

Update permizsion
table

Input sllocation keys
for discretionary
costs

Allocate headcount
casts

Qverrice team leads”
allacation keys far

hzadeaunt Tearn Lead
Marager Allosata to

applications

‘Wiew revisian hiskary

41

Appendix E: Sequence Diagram

User Account Manager Account Admin Account Front End Database
1. &Admin upload files Upload [File Set) Inse rt()
Edit [Profit Center Parameter] Update (Profit Cemer Parameater)
2. Adrnin edit Profit Center > >
RefreshProfitCenter()

a4+
=

Edit [User Permission Parameter]
3. Admin and Manager

) o - Delete() / Inse rti)
Edit Perrissions Edit [User Perrission Parameter) >

L 2

Refre shPermission()

SelectCashallocate diKey)

4. Wiew Allocation -
Provide Wiew

-
+

Progide Wiew

Provide Wiew

3

EditPercentageltndiethodology(Kev)
5. Edit Allocation -

EditFercemtageAndhdethodology(Key)

EditPerce ntagzeAndhethodaologyiKey)
"l Update(Key) / Insert(Key]

Refreshallocationt)

'Y

42

Appendix F: Data Flow Diagram

Upload File

Admin Account " Upload Set p *
Upload Set

Prafit Center Parameters Data Set
Cash Cash
: Allocated Allocared .
N";:i‘l::"s Edit Allocation Pe'c:q"f::rf:di'l":‘:“d' lﬁ;;.r:t::s;f View Allacation A '?:‘1‘:;"5
Edit Profit Center Percent Allocated
Methodology
History
Profft Center Parameters
Revision Histary
Paying Center ID
Fermission
Tzble
Metier, CC Cwiner, History
Dazcription 1 & 2,
GBL, Activity Dwnar User List
User Infa I
ing Table
Edit Permission Uzer Info Manzger Account s

43

Appendix G: Final Database Design

‘GBLDesk

rettants OrechartLavels OrgChartLevel [TemmonsP=h
rame same am . Project
....... T - PrfecicronTs
o reciews rachanient s J
e f— —
 Thee e ActhtegCuner
e o ‘ ‘
e 0 = =~
S JSa—
b View Besaine
MMMMMMMMMMMMMMMMMM
e e
........
e .
- S I I et
...... - e s
—— e e e L e
eyOuscipion CoumDepamentnio. ;"::‘ View WeightedPrograms
........
Nature -
prr—— .
o "
= —
,,,,,, e
“““““““
e —— e
o ol e o
e -
——— e
‘ ‘
Permission Loat
e ’m.m o

44

Appendix H: Un-Normalized Database

Logging

Tiraestarp, ID), Narne,
Table, Value, Prirary
ey

Permissions

ID#, Naree, CC, Role,
Keys

1:11— | Cost Center

every
e

orly 1
natre

Hature

Keys Data

Eey Mame

Kew Camer
Decision Doroain
Blended Eey Name

Sub Blended Key
HMarne

KFI
Fersion Egys

Hotl:l—a
project
code can
have 1+
streams —
use stream
with most
W¥s

L:1-every
TESOUITE
code has

GUID

1 5ILO

SILO

1:1 every
charge
code has
one WIS
WWIF
walue,
EVEIY
charge
code cor-
responds
o one
program
code

QE
53
B
o

WIPS
HNWIP

Prograr

45

Headeount Data

Aryes

Connty
Deparimend Code
Diapartment Dies cxiption
Department Lvl 1
Department Manager
Crg Chart Lvl 4

Oz ChartLvl 5

Crg Chart Lvla

Crg Chart Lvl 7

Crg Chart Lvl B

Cirg Chart

Team OFBS Path
GECD Exception
Portfolio Cade
Fortfolio Hame
Program Hame
Project Level 1 Code
Project Level 1 Hame
Project Code
Project Hame

Project CTE ETE
Project Type
Functional Drdver
Inves tment Diriver
Eesource Type Hame
Resource Last Hame
Fesource First Hame
Eesource Code
Time Month

Tirme Maonth (3m)
TYTTMM

Charge Code
Charge Code Descriphon
Initial Effort MY
Fevised Effoat MY
Forecast MD

Aetaal M

FYF ML [dct + Faorecasf)
Forecast MY

Aetaal MY

FYF MY (4ct+ Forecast)
Fersian HC

Year

HC Allbcation Temp late

Baselines

Year — string

Project Code — siving
Charge Code — sfring
Cost Certer — sfring
Profit Center — siving
Step—walue

Strearn — siring
Iulethodology — string
MD—walue

IV —wafue

% Allocated — value
Wersion — walue
GUID — waiue

Local Key — walue

Time Starp — sring

GBL Desk

Budget This Year

Forecast

Budget Mext Vear

Forecast Vs Budget This Year
Budget Hext Year Vs Forecast

Budget Mext Year Vs Budget This Year

Forecast Vs Budget This Vear ¥
Budget Hext Year Vs Forecastys

Budget Hext Year Vs Budget This Yeart

Baseline #
Timestarap
Profit Center
Profit Center

Letivity Owmer
Cost Center Owmer
Iletier

Description 1

Diescription 2
GBL
Validation
DC Albeation Temp late
Year — siring

Bended Eeys Temp late

Eey Hatne — siving
Profit Center — séving

Step—welue
Blended Key Weight— wefue

¥ Allocated (Unweighted) — welue

% Blended Keys — walue
Version — walue

CGUID —ralug

Local Bey — walue

Tirne 5tamp — séring

Vendor — sérimg

Cost Centey — séring
Charge Code—sfring
Hahwre — sfring
Profit Center — sfring
Step—welue

Strearn — string
Wethodology — siving
Cash—uwalue

¥ Allocated — value
Version — walug
GUID — walue

Local Key — welue
Tirme Starmp — sfrmg

46

1

Discretionary Costs Data

Vendor

Mew Vendor

Hew Wendor Detail
ExCo

Ezxeo Direct
Budget Somee
SILO

Cost Center
Category

Ilanager

Budget (This Vear)
Jarnary

Febrany

Ilarch

bl

Wy

June

Tuly

Lemals ¥TD (Mlay)
Liotoals &rvalized

Budget (This Year) ¥s. Actuals
Lunroalized

Forecast

Forecast vs Budget (This Vear)
Budget (Mext Tear)

Subratted By

Forecast Corarnent

Budget (Mext Vear) Corament
Update

Hature

Schedule of Payirents
Schedule of Accruals

Charge Code

Program

Program Mame

Capitlcap

Projeet Code

Project Narne

Farsion D

