
Rare Earth Elements and Their Behavior 

During Water Treatment in Nancy, France 

 
A Major Qualifying Project Report 

 

Submitted to the Faculty of 

WORCESTER POLYTECHNIC INSTITUTE 

 

In partial fulfillment of the requirements for the 

Degree of Bachelor of Science 

By: 

 

__________________________________ 

Matthew Biondi 

 

__________________________________ 

David Lech 

 

Date: 

March 1, 2019 

 

Report Submitted to: 

Sponsor: Marie-Noëlle Pons (ENSIC) 

Advisor: Stephen Kmiotek (WPI) 

 

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a 

degree requirement. WPI routinely publishes these reports on its web site without editorial or peer 

review. For more information about the projects program at WPI, see 

http://www.wpi.edu/Academics/Projects 

http://www.wpi.edu/Academics/Projects


- 1 - 
 

Acknowledgements 
 

This content and success of this project was made possible by the support of numerous individuals. We 

would like to recognize their contributions as they were essential to complete this work in a short period of 

time: 

 

Michelle Adrian for her endless enthusiasm and going out of her way to teach us the French language and 

culture. 

 

Professor Marie-Noëlle Pons and Professor Stephen Kmiotek for their guidance and knowledge throughout 

the duration of the project. We could not have achieved the level of experimentation and analysis in this 

report without their continual support. Thank you, both, for helping us grow as researchers and achieve 

excellence in our Major Qualifying Project. We would also like to acknowledge the cooperation that 

established a program between WPI and ENSIC. Our experience in Nancy, France and the travelling that 

was made possible will be unforgettable. Thank you for organizing this project and for advising our team.  

 

Pauline Louis for her dedication and assistance throughout the project, including operating and 

troubleshooting the ICP-AES, guiding us through the analysis, and helping us become familiar with the 

laboratories.  

 

  



- 2 - 
 

Abstract 

 Rare Earth Elements (REEs) are gaining significant global demand in multiple development 

sectors, resulting in greater presence in water sources. Water production and wastewater treatment were 

two identified processes to aid in removal of these elements. In this study, the effects of different 

treatment techniques were analyzed for the impact on the following REEs: Ce, Nd, Gd, Tb, and Yb. 

Commercial and biological activated carbon samples proved to be effective adsorbents for REEs at an 

optimal dose and time of 125 mg • L-1 and 120 minutes, respectively. Activated carbon samples refined 

from banana and orange peels proved to have a higher adsorption capacity than the commercial 

alternative. Wastewater treatment processes also proved effectiveness in REE removal, demonstrating 

nearly 100% removal regardless of the iron (III) chloride dose. 

  



- 3 - 
 

Table of Contents 
 

Acknowledgements ........................................................................................................................................ 1 

Abstract .......................................................................................................................................................... 2 

Table of Tables .............................................................................................................................................. 5 

Table of Figures ............................................................................................................................................. 7 

Introduction.................................................................................................................................................... 8 

Background .................................................................................................................................................. 10 

Rare Earth Elements ................................................................................................................................ 10 

Rhine-Moselle Watershed ....................................................................................................................... 12 

Water Production ..................................................................................................................................... 14 

Wastewater Treatment Plant .................................................................................................................... 16 

Primary Treatment ............................................................................................................................... 16 

Secondary Treatment ........................................................................................................................... 17 

Tertiary Treatment ............................................................................................................................... 17 

Methodology ................................................................................................................................................ 19 

Chemicals and Reagents .......................................................................................................................... 19 

Lab Safety ................................................................................................................................................ 19 

Preparation of Biological Activated Carbon and Biochar ....................................................................... 20 

Water Production Experiments ................................................................................................................ 21 

Characterization of Activated Carbon and Biochar ................................................................................. 22 

Wastewater Treatment Experiments ........................................................................................................ 22 

Results and Discussion ................................................................................................................................ 24 

REE Concentration versus Time ............................................................................................................. 24 

Water Production Optimal Dose .............................................................................................................. 28 

Effects of Activated Carbon on REEs ..................................................................................................... 32 

Adsorption Selectivity of REEs ............................................................................................................... 36 

Effects of Banana Peel Biochar on REEs ................................................................................................ 39 

Characterization of Activated Carbon and Biochar ................................................................................. 41 

Wastewater Treatment Results ................................................................................................................ 46 

Conclusion ................................................................................................................................................... 50 

Recommendations ........................................................................................................................................ 52 

List of Acronyms and Abbreviations ........................................................................................................... 54 

References .................................................................................................................................................... 56 



- 4 - 
 

Appendix A: Experimental Data Tables ...................................................................................................... 61 

Appendix B: Raw Data Tables .................................................................................................................... 74 

Appendix C: Supplementary Tables .......................................................................................................... 100 

Appendix D: Sample Calculations ............................................................................................................. 101 

Concentration Calculations .................................................................................................................... 101 

Adsorption Calculations ........................................................................................................................ 101 

Activated Carbon Adsorption Capacity Calculations ............................................................................ 102 

Appendix E: Design Analysis .................................................................................................................... 103 

Appendix F: Motive for Obtaining a Professional Engineer License ........................................................ 105 

 

 

  



- 5 - 
 

Table of Tables 
 

Table 1: Applications of rare earth elements .............................................................................................. 11 

Table 2: Treatment stages and objectives in wastewater treatment plants.................................................. 16 

Table 3: Maximum reductions in concentration from Figure 6 .................................................................. 30 

Table 4: Atomic percentages of various elements in commercial and banana peel activated carbon ........ 45 

 

Table A.1: Concentration of an identical cerium solution using two different preparation materials ........ 61 

Table A.2: Concentration of an identical neodymium solution over time using two different preparation 

materials ....................................................................................................................................................... 61 

Table A.3: Concentration of REEs in ultrapure water versus time using 0.05 g • L-1 of commercial 

activated carbon ........................................................................................................................................... 62 

Table A.4: Concentration of REEs in ultrapure water versus time using 0.5 g • L-1 of commercial 

activated carbon ........................................................................................................................................... 63 

Table A.5: Concentration of REEs in ultrapure water versus time using 2.5 g • L-1 of commercial 

activated carbon ........................................................................................................................................... 64 

Table A.6: Concentration of cerium in ultrapure water versus time using various doses of commercial 

activated carbon. .......................................................................................................................................... 65 

Table A.7: Concentration of REEs in ultrapure water versus time using 0.125 g • L-1 of commercial 

activated carbon ........................................................................................................................................... 66 

Table A.8: Concentration of REEs in ultrapure water versus time using 0.125 g • L-1 of banana peel 

activated carbon ........................................................................................................................................... 67 

Table A.9: Concentration of cerium in ultrapure water versus time using 0.125 g • L-1 of various activated 

carbon types ................................................................................................................................................. 68 

Table A.10: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in ultrapure 

water versus time using 0.125 g • L-1 of commercial activated carbon ....................................................... 69 

Table A.11: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in river 

water versus time using 0.125 g • L-1 of commercial activated carbon ....................................................... 70 

Table A.12: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in river 

water versus time using 0.125 g • L-1 of banana peel activated carbon ....................................................... 71 

Table A.13: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in ultrapure 

water versus time using 0.125 g • L-1 of banana peel biochar...................................................................... 72 

Table A.14: Adsorption capacity of commercial, banana peel, and orange peel activated carbon for 

various REEs ............................................................................................................................................... 72 

Table A.15: Concentration of gadolinium versus dose of FeCl3 using two types of stock solution ........... 73 

 

Table B.1: Raw data collected from ICP-AES showing concentration of REEs in ultrapure water versus 

time using 0.05 g • L-1 of commercial activated carbon .............................................................................. 74 

Table B.2: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.5 g • L-1 of commercial activated carbon ..................................................................... 76 

Table B.3: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 2.5 g • L-1 of commercial activated carbon ..................................................................... 78 

Table B.4: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.125 g • L-1 of commercial activated carbon ................................................................. 80 



- 6 - 
 

Table B.5: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.125 g • L-1 of banana peel activated carbon ................................................................. 82 

Table B.6: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.125 g • L-1 of orange peel activated carbon.................................................................. 84 

Table B.7: Raw data collected from the ICP-AES showing concentration of equal parts cerium, 

gadolinium, and ytterbium in ultrapure water versus time using 0.125 g • L-1 of commercial activated 

carbon .......................................................................................................................................................... 84 

Table B.8: Raw data collected from the ICP-MS showing concentration of equal parts cerium, 

gadolinium, and ytterbium in river water versus time using 0.125 g • L-1 of commercial activated carbon

 ..................................................................................................................................................................... 85 

Table B.9: Raw data collected from the ICP-MS showing concentration of equal parts cerium, 

gadolinium, and ytterbium in river water versus time using 0.125 g • L-1 of banana peel activated carbon

 ..................................................................................................................................................................... 86 

Table B.10: Raw data collected from the ICP-AES showing concentration of equal parts cerium, 

gadolinium, and ytterbium in ultrapure water versus time using 0.125 g • L-1 of banana peel biochar....... 87 

Table B.11: Raw data collected from the ICP-AES of 3 tests showing concentration of gadolinium in 

synthetic wastewater versus dose of FeCl3 using a 5x synthetic wastewater stock solution........................ 88 

Table B.12: Raw data collected from the ICP-AES of 3 tests showing concentration of gadolinium in 

synthetic wastewater versus dose of FeCl3 using a 20x synthetic wastewater stock solution...................... 89 

Table B.13: Raw data collected from the ICP-AES of 3 tests showing concentration of gadolinium in 

wastewater versus dose of FeCl3 ................................................................................................................. 90 

Table B.14: Raw data collected from the ICP-AES of 3 tests showing concentrations of equal parts 

cerium, gadolinium, and ytterbium in wastewater versus dose of FeCl3 ..................................................... 91 

Table B.15: Effluent concentrations of sodium, magnesium, calcium, and potassium in waste water 

samples (Batch 1). ....................................................................................................................................... 93 

Table B.16: Effluent concentrations of sodium, magnesium, calcium, and potassium in waste water 

samples (Batch 2). ....................................................................................................................................... 94 

Table B.17: Effluent concentrations of sodium, magnesium, calcium, and potassium in waste water 

samples (Batch 3). ....................................................................................................................................... 95 

Table B.18: Influent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water samples 

(Batch 1). ..................................................................................................................................................... 96 

Table B.19: Influent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water samples 

(Batch 2). ..................................................................................................................................................... 97 

Table B.20: Effluent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water 

samples (Batch 1) ........................................................................................................................................ 98 

Table B.21: Effluent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water 

samples (Batch 2) ........................................................................................................................................ 98 

Table B.22: Raw data collected from the ICP-MS showing concentration of elements in river water ...... 99 

 

Table C.1: Formula for synthetic wastewater treatment samples ............................................................. 100 

Table C.2: ICP-AES concentrations of elements in synthetic wastewater ............................................... 100 

 

  



- 7 - 
 

Table of Figures 
 

Figure 1: Periodic table with rare earth elements highlighted .................................................................... 10 

Figure 2: Map of the Rhine River (yellow), Moselle River (orange), other tributaries (blue), and major 

cities ............................................................................................................................................................. 14 

Figure 3: Process flow diagram of wastewater treatment plants ................................................................ 18 

Figure 4: Concentrations of identical Ce solutions made with ultrapure water and prepared using 

volumetric flasks and storage containers constructed of different materials ............................................... 25 

Figure 5: Concentrations of identical Nd solutions made with ultrapure water over time and prepared 

using volumetric flasks and storage containers constructed of different materials ..................................... 27 

Figure 6: Concentrations of REE solutions made with ultrapure water over time using 50 mg • L-1 of 

CAC ............................................................................................................................................................. 29 

Figure 7: Concentrations of REE solutions made with ultrapure water over time using 500 mg • L-1 of 

CAC ............................................................................................................................................................. 30 

Figure 8: Concentrations of Ce solutions made with ultrapure water over time using varying doses of 

CAC ............................................................................................................................................................. 31 

Figure 9: Concentrations of REE solutions made with ultrapure water over time using 125 mg • L-1 of 

CAC ............................................................................................................................................................. 32 

Figure 10: Concentrations of REE solutions made with ultrapure water over time using 125 mg • L-1 of 

BPAC ........................................................................................................................................................... 34 

Figure 11: Concentrations of Ce solutions made with ultrapure water over time using 125 mg • L-1 of 

CAC, BPAC, and OPAC ............................................................................................................................. 35 

Figure 12: Concentration of mixed REE solutions made with ultrapure water over time using 125 mg• L-1 

of CAC ......................................................................................................................................................... 37 

Figure 13: Concentration of mixed REE solutions made with river water over time using 125 mg • L-1 of 

CAC and BPAC ........................................................................................................................................... 38 

Figure 14: Concentration of mixed REE solutions made with ultrapure water over time using 125 mg• L-1 

of banana peel biochar ................................................................................................................................. 40 

Figure 15: Adsorption capacities of REEs for commercial, banana peel, and orange peel activated carbon

 ..................................................................................................................................................................... 41 

Figure 16: Banana peel activated carbon under SEM. (a) Banana powder after being dried and 

pulverized, (b) Banana powder after carbonization at 400°C, (c) Banana powder after going through 45% 

NaOH bath and dried at 105°C, (d) Banana peel activated carbon sample ................................................. 43 

Figure 17: SEM images of finished orange peel activated carbon samples ............................................... 44 

Figure 18: SEM images of finished banana peel biochar samples ............................................................. 44 

Figure 19: SEM images of finished commercial activated carbon samples ............................................... 44 

Figure 20: (a) Jar testing experimental set-up; (b) 2 mg • L-1 FeCl3 during rapid mix period; (c) 2 mg • L-1 

FeCl3 during flocculation period; (d) 2 mg • L-1 FeCl3 during settling period ............................................ 47 

Figure 21: Concentration of gadolinium versus dose of FeCl3 using two types of stock solution ............. 48 

 

 

  



- 8 - 
 

Introduction 
 

Rare Earth Elements (REEs) are gaining exponential attention in modern society, with uses in 

energy, optics, automotive, and chemical sectors. As a result, global demand for these abundant elements 

is rapidly increasing (United States Environmental Protection Agency, 2012). From this increase in uses 

in industrial production, REEs are becoming prevalent in water sources, such as lakes or rivers, as 

byproducts or through runoff. The health risks associated with REEs, especially heavy REEs, have not 

been studied in depth. Cerium (Ce), Gadolinium (Gd), and Lanthanum (La) are the only REEs with 

extensive research performed on their health impacts; and both were determined to be toxic to human 

health (Pagano et al, 2015). 

Depending on its level of contamination, water is generally treated in two different facilities: 

drinking water production and wastewater treatment plants. In the drinking water production process, safe 

and sufficient water is produced for drinking, food preparation, and cleaning purposes (The Water 

Treatment Process, 2019). While this process varies in each plant, activated carbon is generally used as an 

adsorbent for contaminants during the treatment process, due to its high surface area and pore volume. An 

adsorbent works by physically or chemically attracting liquids or gases to its surface, including internal 

surfaces such as pores. 

            Wastewater treatment plants reduce the concentrations of harmful contaminants to a level at which 

it can be released back to the environment without adversely affecting human health or the environment 

(Perlman & USGS, 2016). In Europe, tertiary treatment, the focus of this project, is typically a chemical 

process to remove superfluous phosphorus from the water (Perlman & USGS, 2016; Peirce et al, 1998). 

Many of the processes in tertiary treatment utilize iron (III) chloride (FeCl3), as it is proven to be effective 

at removing nutrients from water (Zhou et al, 2008; DeVries, 2011). 

            In the Rhine-Moselle Watershed of Northern Europe, studies have found a growing presence of 

REEs due to anthropogenic sources (Tricca et al, 1998). The main hypothesis accredited to the presence 

of Gd is the use of Gd in MRI contrast media (Carr et al, 1984; Bau & Dulski, 1996; Ferris & Goergen, 
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2017; Lerat-Hardy et al 2019). In addition, many chemical production complexes are built around the 

Rhine (Frijter & Leentvaar, 2003), with large amounts of heavy metals discharged into the river, which 

may contribute to the presence of REE.  

            The removal of five REEs in water production and wastewater treatment were explored in this 

paper: Ce, Nd, Gd, Tb, and Yb. It was determined if activated carbon could be an effective adsorbent for 

the removal of REEs in water production facilities. In addition, FeCl3 was tested as a chemical agent to 

remove REEs in wastewater treatment plants.   
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Background 

Rare Earth Elements 

 REEs are 17 elements on the periodic table that include all of the Lanthanides, as well as 

Scandium (Sc) and Yttrium (Y). Despite their name, REEs are not rare. They are abundant in nature, but 

due to their low concentrations in ores, they are difficult to separate and process. Monazite and 

bastnaesite are two ores found in metamorphic rocks that naturally incorporate light rare earth elements 

(LREEs) in their composition. The LREEs include lighter lanthanides on the periodic table such as La, 

Ce, and Nd. There is not an agreed upon definition of a LREE, but generally they have atomic weights 

less than 158 grams per mole (Geological Survey of Queensland, 2014). Xenotime is another ore 

commonly found in igneous rocks and the primary source for heavy rare earth elements (HREEs). The 

HREEs include heavier lanthanides such as Ytterbium (Yb) and Lutetium (Lu). Authors frequently 

disagree about the classification of lanthanides that are in the center of the spectrum, such a Gd and 

Terbium (Tb) (Voncken, 2016). The location of the REEs on the periodic table can be seen in Figure 1. 

 

Figure 1: Periodic table with rare earth elements highlighted 



- 11 - 
 

 

 REEs are critical components to power electronics, and are used in other sectors including 

energy, optics, chemicals, automotive, and defense industries. There is an increasing global demand for 

REEs to use as materials in advanced technologies (United States Environmental Protection Agency, 

2012). Exploration and production of these resources will have to expand to accommodate the growing 

demand. Specific applications for REEs discussed in this report can be found in Table 1. 

Table 1: Applications of rare earth elements 

 
 

 Natural anomalies such as La, Gd, and Lu in seawater or Ce and Europium (Eu) in rivers are 

common (Kulaksız et al, 2013). Evidence suggests that these anomalies can occur based on the geology of 

the river basin (Goldstein et al, 1988). This was noted near the city of Epinal, as the concentrations of Eu 

were higher downstream of the river. It is still uncertain whether this was due to natural geographic 

changes or not. However, there is established and growing evidence of REE contamination and 

bioaccumulation past this expected baseline. Anomalies of REEs in water sources are being caused by the 

Rare Earth Element Application 

Cerium (Ce) Glass polishing agents, fluorescent lamps, catalytic converters, petroleum 

cracking catalysts, fuel additives 

Neodymium (Nd)  Permanent magnets, hard disks, digital video discs, regenerative systems, 

audio equipment 

Gadolinium (Gd) Televisions, compact discs, computer parts, intravenous radiocontrast 

agent, scintillator in positron emission tomography (PET) scans, neutron 

radiography, magnetic refrigeration 

Terbium (Tb) Phosphors in cathode ray tubes, phosphors in liquid crystal displays, 

fluorescent lamps, televisions 

Ytterbium (Yb) Radiation source in portable x-ray devices, ceramic magnetic devices 
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increasing use and disposal into water sources (Rabiet. et al, 2009). Runoff from agricultural uses, due to 

REE implementation as fertilizer supplements in China, is an additional source of REEs in water supplies 

(Gwenzi et al, 2018). REEs may adsorb onto solid sources like sediments, which in turn bring them into 

streams, estuaries, and finally water and wastewater treatment plants (Gwenzi et al, 2018). Gd is the most 

common REE by anthropogenic contamination. Gd is used as a contrast agent in magnetic resonance 

imaging machines (MRIs), thus are quickly released into wastewater systems through humans (Carr et al, 

1984; Bau & Dulski, 1996; Bau et al, 2006). However, due to their inert and stable behavior, treatment 

systems have limited capacity to remove this element before discharging back to the environment 

(Gwenzi et al, 2018). 

 While the demand for REEs in manufacturing continues to grow, the health effects of most REEs, 

especially HREEs, are generally unexplored. La, Gd, and Ce are the only extensively studied REEs 

monitored for adverse health effects; each was determined to be toxic to human health (Pagano et al, 

2015). Other ecological effects by LREEs have been observed in agriculture. An agricultural toxicity 

study concluded that La and Ce inhibited cell growth and decreased root sizes of onions (Kotelnikova et 

al, 2019). Studies investigating the effects of heavier REEs on ecosystems are not well-documented, but 

current trends have raised concerns for those dependent on contaminated water sources. 

Rhine-Moselle Watershed 

The Rhine River is one of Europe’s best known rivers and among the most important. Beginning 

in Switzerland, it flows through France, Germany, the Netherlands, and into the North Sea. The 200,000 

km2 watershed supports agriculture across Europe and provides potable water to over 20 million 

Europeans (Frijters & Leentvaar, 2003; Uehlinger, 2009). The pH of this river is neutral to slightly 

alkaline, measuring between 7.5 and 8.5 between seasons (Uehlinger, 2009; Hommen & Rudel, 2012). 

The Rhine is also the most densely populated shipping route in Europe. It connects the world’s largest 

inland port in Duisburg, Germany to the world’s largest shipping port in Rotterdam, Netherlands. 

Tributary rivers expand access and navigable connections to the Rhine. Among the most important 
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tributaries, and the one that will be sampled from in this report, is the Moselle River. The Moselle is the 

longest tributary to the Rhine and, similarly, is important for providing agricultural water supply, potable 

water, and ship routes (Frijters & Leentvaar, 2003). 

Despite its use as a water supply for agriculture and drinking, there is a surprising history of REE 

contamination from anthropogenic sources. Vast industrial complexes are built around the Rhine, making 

up most of Europe’s chemical production (Frijters & Leentvaar, 2003). The river basin is an advantageous 

location to build industries because of nearby ports for quick product shipping. Moreover, these industries 

use the river to dispose of industrial waste up to a certain limit. Several large cities around the river also 

contribute contamination by medical devices or direct waste disposal to the river. The largest medical 

contamination is Gd, resulting from its use as a contrast media in MRIs. The REE media is injected into 

patients before an MRI and excreted by the body within 24 hours, directly entering public wastewater 

treatment from toilet waste. Studies have shown a significant presence of Gadolinium in water sources 

that may be attributed to MRIs (Bau & Dulksi, 1996; Bau et al, 2006; Rabiet et al, 2009; Lerat-Hardy et 

al, 2019). A map of the Rhine, Moselle, and major cities can be found in Figure 2. 
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Figure 2: Map of the Rhine River (yellow), Moselle River (orange), other tributaries (blue), and major 

cities 

 

Water Production 

 The goal of the water production process is to produce a safe and sufficient supply of water for 

drinking, food preparation, hygiene, and cleaning (Drinking Water, 2018). Water treatment plants bring in 

surface or groundwater of varying contamination levels and treat it accordingly to become potable. 

Certain water production plants, as mentioned later on, maintain secrecy of their processes for security 
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reasons. However, in a typical water production plant, flocculation, filtration, and disinfection prepare the 

water for distribution to the given population (The Water Treatment Process, Retrieved January 2019). 

            A supplemental step in the water production process is adsorption with activated carbon, an 

adsorbent with use dating back to 450 BC in Hindu documentation (Çeçen & Aktaş, 2012). By the early 

20th century, activated carbon developed presence in water treatment facilities, to remove odor, color, and 

disinfection by-products. Characteristics such as high surface area, pore size, and density allow adsorption 

of a variety of different contaminants to its surface (Dvorak & Skipton, 2013). Applications for activated 

carbon are growing, as a wider range of pollutants enter the hydrosphere through human activity. 

            Commercial activated carbon (CAC) is mainly produced from bituminous coal, coconut shell, and 

wood (Calgon Carbon, 2012). Bituminous coal is transformed into activated coal by devolatilization, 

followed by activation with steam or oxygen (Akash & O’Brien, 1997). Activated carbon from 

agricultural waste sources, such as peels from various fruits and coconut shells require more refining than 

the coal to produce the same quality substance with equal or greater pore volume. Various experiments 

have found it possible to produce activated carbon with the banana peels (Kadirvelu et al, 2003; 

Mohammed & Chong, 2014; Kusrini et al, 2018). Utilizing different raw materials for production results 

in different characteristics of the final product, such as varying surface area and pore volume. Banana 

peels are a more desirable choice for production because despite the additional refining required, banana 

peels are more environmentally friendly, as the banana tree is not killed to harvest the fruit. 

One of the newly tested applications of activated carbon adsorption is for the removal of heavy metals, 

such as REEs. With an increasing demand for REEs in modern technology, they are becoming more 

prevalent in water supplies (Kano et al, 2017). The removal and recovery of these heavy metals is 

important from both an environmental protection and a resource recovery standpoint. Recent studies have 

concluded that activated carbon has the capacity to remove REE from water samples (Kano et al, 2017, 

Kusrini et al, 2018). 
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Wastewater Treatment Plant 

 Wastewater treatment plants (WWTP) perform with the goal of reducing the concentrations of 

harmful pollutants to the level at which it can be released back into the environment without adversely 

affecting human health or the environment (Perlman & USGS, 2016). Wastewater treatment occurs in 

three distinct stages, each with different objectives, laid out in Table 2. In small scale testing, temperature 

of treatment and pH are typically considered, as both are essential parameters in the optimization of 

chemical processes (Gabor, 2017). However, WWTPs operate using millions of gallons of water per day, 

so the temperature and pH are not altered during treatment. A simplified version of the wastewater 

treatment process can be found in Figure 3.  

 

Table 2: Treatment stages and objectives in wastewater treatment plants 

Treatment Stage Objective 

Primary 
Physical removal of suspended solids 

and some biochemical oxygen 

demand (BOD) 

Secondary Biological removal of BOD 

Tertiary 
Physical, biological, and chemical 

removal of nutrients and inorganic 

pollutants, such as REEs 

 

 

Primary Treatment 

 Primary wastewater treatment is effective in removing about sixty percent of suspended solids 

and around 30 percent of BOD from the influent (Peirce et al, 1998; Perlman & USGS, 2016; Lenntech, 

n.d). Influent water is screened through bars then pumped through a grit chamber to remove or break 

down any large materials that may cause damage to the equipment in the later stages of treatment (Peirce 

et al, 1998). The water then moves into the primary settling tank, where the larger particles and organic 

matter settle to the bottom of the tank over 24 hours. 
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Secondary Treatment 

 After primary treatment, the wastewater no longer contains a majority of the suspended solids, 

but it still contains a large portion of nitrogen and BOD; an indirect measurement of the amount of 

organic material in water. Secondary treatment focuses on this removal, typically through an aeration tank 

with activated sludge, or with biofilters. In an aeration tank, water flows through activated sludge from 

the primary clarifier along with microorganisms. Sludge from the clarifier is pumped to the tank as it 

contains microorganisms which are in an environment without food, and are ready to consume dissolved 

organic matter (Peirce et al, 1998). Additional oxygen is added to the aeration tank to provide sufficient 

oxygen for the aerobic processes. A biofilter consists of a bed full of “fist-sized” rocks, home to active 

microbial growth (Peirce et al, 1998). Water is pumped from beneath the filter bed and, like an aeration 

tank, the microbes consume the organic matter present in the influent water. Secondary treatment is 

responsible for the removal of over 85 percent of nitrogen, 95 percent of suspended solids, and over 90 

percent of BOD (Peirce et al, 1998; Zhao et al, 2013; Perlman & USGS, 2016). 

Tertiary Treatment 

 The effluent of secondary treatment is still polluted with nutrients and toxic substances (Pierce et 

al, 1998). Tertiary treatment is important for the removal of excess BOD, organic, and inorganic 

substances. Processes involved in this stage of treatment can include disinfection, oxidation, coagulation 

and filtration, or reverse osmosis (Muralikrishna & Manickam, 2017). 

            Coagulation is very effective at removing dissolved material from water, such as inorganic 

particles and nutrients such as phosphorus. FeCl3 is the most common coagulant used in water or 

wastewater treatment. FeCl3 is effective at removing excess phosphorus from water sources (Zhou et al, 

2008; DeVries, 2011). Currently, its ability to remove REEs from wastewater is not heavily researched.  
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Figure 3: Process flow diagram of wastewater treatment plants 

 The Grand Nancy WWTP operates in Nancy, France, treating the wastewater of the 350,000 

inhabitants of the metropolis. This treatment facility operates very similarly to the process as described 

above. The tertiary treatment at this plant is primarily focused on the removal of excess phosphorus with 

FeCl3. This is essential, as excess nutrients in surface water can be harmful to the ecosystem.  
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Methodology 
 

Chemicals and Reagents 

A Moselle River sample for water production absorption tests was collected near the intake point 

for Nancy drinking water production. Stock solutions at different concentrations were prepared from 

gadolinium (III) nitrate hexahydrate (Sigma-Aldrich), cerium (III) nitrate hexahydrate (MilliporeSigma), 

terbium (III) chloride hexahydrate (Sigma-Aldrich), neodymium (III) nitrate hexahydrate (Sigma-

Aldrich), and ytterbium (III) chloride hexahydrate (Sigma-Aldrich) in deionized ultrapure water. Sodium 

hydroxide (NaOH) was used to prepare the biological activated carbon (BAC). The adsorbents used in the 

water production study include a CAC called Acticarbone (CECA) as well as BACs produced from 

banana and orange peels. 

Wastewater samples were collected from the effluent of the secondary treatment step of the 

Grand Nancy WWTP. A synthetic wastewater stock solution was also made to complete the study 

without microbial influences using wastewater composition data in Appendix C Table C.1. The stock was 

prepared with Calcium carbonate (R.P. Normapur), Magnesium sulphate heptahydrate (Merck), Sodium 

chloride (Prolabo), Potassium nitrate (Rectapur), and Dipotassium phosphate (Fluka-Garantie). The 

coagulants used in the WWTP include iron (III) chloride hexahydrate (Acros Organics), fine sand, and 

Floerger® AN 923 VHM anionic polymeric flocculent. 

 

Lab Safety 

 Before entering the lab, a mandatory safety training course was completed with a safety instructor 

at ENSIC. Then, general laboratory safety was taken into consideration for every experiment. This 

required wearing a lab coat, safety glasses, long pants, and closed toe shoes. No food or drinks were 

permitted in the lab. In addition to these safety requirements, there were safety considerations that were 

specific to our experiments. The primary safety concern involved work with hazardous chemicals such as 
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REEs, acids, and bases. To ensure that we followed the relevant safety procedures when working with 

these chemicals, the bottle labels and material safety data sheets were referred to for each chemical. 

 NaOH is strong base that could be fatal if ingested; it can cause severe irritation to the skin, eyes, 

and the respiratory tract (Central Drug House, n.d.). Special storage cabinets isolated from other 

chemicals will be used for bases in the lab. Ce, Nd, and Yb are REEs that are toxic to human health and 

can cause acute irritation to the skin, eyes, and respiratory tract (Central Drug House, n.d.). Gd and Tb are 

other REEs that can also cause acute or serious irritation to the skin, eyes, and respiratory tract, but their 

toxicity to humans is not well documented (Pagano et al, 2015). 

 

Preparation of Biological Activated Carbon and Biochar 

 Procedures from Mohammed & Chong (2014) and Kusrini et al. (2018) were evaluated for the 

production of BAC from banana peels. The experiments performed by Kusrini et al. (2018) aligned with 

our goals more directly, so that procedure was followed in testing, with additional assumptions gathered 

from Mohammed & Chong (2014). Orange peels have also been tested for the production of activated 

carbon, so the following procedure was followed for banana peel activated carbon (BPAC) and orange 

peel activated carbon (OPAC) in separate batches to produce two BACs. 

            First, banana peels (Musa acuminata) and orange peels (Citrus reticulata & Citrus x sinensis) 

were gathered and cut into 1-2 cm pieces. The peels were twice washed: initially with tap water and 

secondly with deionized ultrapure water. The pieces were dried in the oven at 110°C for 24 hours. They 

were then pulverized in a mill blender to a uniform size of 250 µm. The fragments were then carbonized 

in a furnace at 400°C for 1 hour, then cooled until they reached room temperature. Then, the material was 

left in a 45 percent NaOH solution at a ratio described by Mohammed & Chong (2014) of 4:1 NaOH to 

carbonized material for 16 hours at room temperature. The 45 percent NaOH solution was obtained by 

putting 45g of NaOH (pellet form) into a 100 mL volumetric flask with deionized ultrapure water until a 
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total volume of 100mL was reached. The resulting solution was filtered with a 20 µm coffee filter, and 

the remaining residue was dried in the oven at 110°C for 24 hours. The material was then placed in a 

furnace at 500°C for 1 hour. The material was washed and filtered using deionized ultrapure water until a 

pH of 7 was obtained. Finally, the material was dried in the oven at 110°C for 8 hours. The resulting BAC 

was used in the later testing. 

 Banana peel biochar was produced by Yann Le Brech from the pulverized banana fragments. 

After pulverization, the powder was placed in a furnace at room temperature. The furnace was heated to 

500°C with a temperature increase of 10°C per minute. The powder then stayed in the furnace at 500°C 

for one hour under 500 normal mL • min-1 of nitrogen gas. 

 

Water Production Experiments 

 The effect of dose and type of activated carbon was measured in batch experiments, along with 

varying concentrations and mixtures of REEs. Both a CAC and BAC from banana and orange peels were 

tested as adsorbents. Stir tables were used to keep the mixing rate constant at 250 rpm. The mixing time 

for prepared solutions was 60 minutes to dissolve the REEs completely, measured at 3,000 µg • L-1. The 

proper concentration was obtained by measuring a stock solution using mass balance on the given REE 

salts. Various doses of activated carbon were tested to determine an optimal dose where the activated 

carbon is not in surplus to remove all of the REEs. The mixing time for optimal adsorption was 

determined by measuring the adsorption at 15, 30, 45, 60, 120, and 180 minutes and selecting the time at 

which there was no significant changes in REE concentration for most samples. The concentration was 

measured using inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively 

coupled mass spectrometry (ICP-MS) when river water was present. This was repeated for all REEs in 

this study, which consist of Ce, Nd, Gd, Tb, and Yb. The longest adsorption time was chosen as the 

optimal experimental duration for all REEs. 
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 The effects of a mixed REE solution were then tested to determine favorability of adsorption onto 

the activated carbon. Three REEs, one LREE, one HREE, and one with an intermediate atomic weight, 

were mixed together at 1 mg • L-1 each. 

 

Characterization of Activated Carbon and Biochar 
 

 A Scanning Electron Microscope (SEM) was used to visually analyze the pore size and 

distribution of the CAC, BACs, and biochar. In addition, this provides insight to the density of pores and 

the relative surface area available for which contaminants to adhere. 

 Energy Dispersive X-Ray (EDX) analysis was performed on each activated carbon sample. This 

analysis provided elemental identification within each carbon sample to allow for further comparison 

between the BACs and CAC. 

The adsorption capacity for CAC, BPAC, OPAC, and banana peel biochar were quantified by 

equation 1: 

 Where 𝑄𝑐 is the REE adsorption capacity of the adsorbent [mg of REE • mg of adsorbent -1], 𝐶𝑖  

and 𝐶𝑓  are the initial and final concentration of REE [mg • L-1], respectively, 𝑉 is the volume of the 

solution [L], and 𝑚 is the weight of the adsorbent [mg]. A higher adsorption capacity is desirable, as this 

means less carbon is required to reduce the concentration of REE in solution. 

 

Wastewater Treatment Experiments 
 

 Jar testing was used to test FeCl3 in different small scale scenarios for simulated wastewater 

treatment. Jar tests mimic the treatment processes of rapid mixing, coagulation and flocculation, and 

finally settling, in an experimental setting. Dose of FeCl3 and mixtures of REEs were evaluated 

𝑄𝑐 =
(𝐶𝑖 − 𝐶𝑓) 𝑉

𝑚
 (1) 
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parameters. Each test was performed with six, 800 mL capacity beakers, with a rapidly mixed coagulation 

period at 250 rpm for 3 minutes, followed by a slow mixing flocculation period at 50 rpm for 7 minutes, 

and finally a settling period of 30 minutes with the paddles turned off. Experiments were performed for 

individual REEs as well as mixtures to identify selectivity of settling in solution. The first set of 

experiments was performed using 800 mL of synthetic wastewater to avoid microbial influences, 

followed by experiments with 800 mL of actual wastewater. 

 The synthetic wastewater was fabricated in accordance with research performed by Louis (2017). 

A 1,000 mL capacity volumetric flask was filled about halfway with deionized ultrapure water, and put on 

a stir table with a magnetic stir bar. Sodium (Na), calcium (Ca), magnesium (Mg), and potassium (K) 

were added in doses as described by the wastewater composition raw data in Appendix C Table C.1. 

Anion concentrations, such as phosphates, chlorides, and sulfites were also measured, and remained in the 

same magnitude as the actual wastewater composition. The solution was stirred until a homogeneous 

mixture was achieved; adding additional deionized ultrapure water as needed. The volume was then 

brought to 1 L using the deionized ultrapure water. The subsequent tests were performed with this water 

as follows. 

 The effect of dose of FeCl3 was tested with constant REE concentration, temperature, and pH. 

Jars 1-6 were dosed with 0, 1, 2, 3, 4, and 5 mg • L-1 FeCl3 respectively at a neutral pH, room 

temperature, and REE concentration of 3 mg • L-1. In addition, 1 mL • L-1 of 1 g • L-1 Floerger® AN 923 

VHM solution and 1 g of fine sand were added to each jar to aid in the coagulation process. From this, the 

maximum adsorption levels were determined and an optimal dose was obtained.  
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Results and Discussion 
 

REE Concentration versus Time 

 Initial experiments were organized to understand the behavior of REEs in containers over time. A 

test was conducted to measure the uncertainty of results from the ICP-AES by testing samples of the same 

solution with a Ce concentration of 3,000 μg • L-1. Two separate batches were prepared using strictly 

glassware or plasticware to determine if there was any effect from the material of the storage container as 

well. This was done because silica infused activated carbon and other silica based materials are another 

method to adsorb REEs (Iftekhar et al, 2018). Borosilicate lab-grade glass is primarily composed of silica 

and could potentially lower the expected concentration of the samples by adsorbing REEs to the surface 

of the container. Data collected from the glass versus plastic experiments can be seen in Figure 4. 
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Figure 4: Concentrations of identical Ce solutions made with ultrapure water and prepared using 

volumetric flasks and storage containers constructed of different materials 

 

Measured concentrations, based on ICP-AES, were between 3,350 and 3,975 μg • L-1 with an 
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the glass bottles was much higher than in plastic bottles, showing higher variability of REE concentration 

with glass. However, all values were significantly higher than the expected 3,000 μg • L-1 concentration, 

potentially due to an error in preparing the stock solutions at a higher concentration and diluting them to 

the desired concentration. 75% of the glass bottle samples showed lower concentrations than plastic 

bottles, with 25% showing statistical significance of lower concentrations, which may be a result of the 

REEs adsorbing to the walls of the container. The statistical significance in a concentration change 
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appeared to occur more frequently over time, as samples were prepared in order from sample 1 to 12, so 

the last sample had a longer residence time in the container. This may suggest that adsorption to walls of 

the material occurs instantly, and continues over time for solutions kept in storage, such as stock solutions 

or samples in test tubes. Initial concentrations throughout this section may show variability from the 

desired concentrations for this reason. Solutions were prepared with stocks that ranged in age from 0-14 

days and were not always tested immediately after they were prepared, which can cause the initial 

concentration to decrease over a longer period of time. Each transfer of the solution to a new container 

could start the adsorption process again and continue to reduce the concentration.   

 Time was a controlled variable in a secondary experiment to validate a downward trend from 

REE adsorption to the surface of the preparation material. Two 3,000 μg • L-1 Nd solutions were made 

using glassware and plasticware. Samples were pipetted every minute for the first 10 minutes and every 5 

minutes after until the solution had been prepared for 20 minutes. Data from this experiment can be found 

in Figure 5. 
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Figure 5: Concentrations of identical Nd solutions made with ultrapure water over time and prepared 

using volumetric flasks and storage containers constructed of different materials 
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experiments to follow may be affected by the downward trend apparent in the plastic bottles. There were 

differences between the desired concentration and the initial measured concentration depending on the 

duration the stock solutions and prepared solutions aged. Time and equipment limitations prevented 

testing the concentration of the stock solutions over a long period of time to confirm this hypothesis. 

 

Water Production Optimal Dose 

 The goal of this experiment was to determine the optimal dose and time of contact for activated 

carbon to treat a 3,000 μg • L-1 REE solutions. An optimal dose was defined here as the amount of 

activated carbon needed to moderately reduce the amount of REE in solution without being in surplus. 

This way, the time it takes to reach the adsorption capacity of the activated carbon can be determined 

when adsorption of REEs ceases. 

            CAC was initially added at a dosage of 50 mg • L-1 to 3,000 μg • L-1 REE solutions (or an REE 

loading of 60 mg of REE per gram of activated carbon). A plot of the data can be seen in Figure 6.  
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Figure 6: Concentrations of REE solutions made with ultrapure water over time using 50 mg • L-1 of 

CAC 

 

     It was found that Yb, the heaviest of the REEs tested, had the highest maximum concentration 
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concentration was lower, and therefore adsorption was higher. 
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Table 3: Maximum reductions in concentration from Figure 6 

Element Maximum Reduction (%) 

Ce 9.0 

Nd 27.5 

Gd 41.1 

Tb 17.9 

Yb 43.8 

 

 The dose was subsequently increased to 2,500 mg • L-1, which resulted in nearly 100% adsorption 

of REEs onto the activated carbon within 15 minutes. The dose was reduced to 500 mg • L-1 but also 

resulted in 99.99% removal of all REEs after 15 minutes, although there were slightly higher final 

concentrations than the 2,500 mg • L-1 dose. In both cases, each tested REE is removed in the first few 

minutes, showing an oversaturation of activated carbon. A plot of the concentrations over time with a 500 

mg • L-1 dose can be seen in Figure 7. 

 

Figure 7: Concentrations of REE solutions made with ultrapure water over time using 500 mg • L-1 of 

CAC 
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 From these experiments, it was determined that the optimal dose of activated carbon must be 

between 50 mg • L-1 and 500 mg • L-1. In this range, the activated carbon must reach its adsorption 

capacity while also removing only a moderate amount of all REEs. 

            It was decided to test Ce as a representative REE for a period of 120 minutes using CAC doses of 

75, 125, 250, and 375 mg • L-1 to determine the optimal dose within the 50 - 500 mg • L-1 range. Ce 

concentration over time at increments of CAC doses can be seen in Figure 8. 

 

Figure 8: Concentrations of Ce solutions made with ultrapure water over time using varying doses of 

CAC 

 

 The optimal dose was determined to be 125 mg • L-1. At higher doses, too much Ce is adsorbed to 

claim the activated carbon reached its adsorption capacity. At lower doses, such as 50 mg • L-1, there is 

almost no change in concentration and therefore the adsorption capacity cannot be determined. This dose 

poses the same outlier as noted previously. Uncertainty in the data was taken into consideration when 
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deciding the optimal dose. Fluctuations in initial concentrations may be a result of inaccurate readings 

from the ICP-AES or from adsorption to the bottle as previously mentioned. This can also be attributed to 

the fluctuations seen in the 250 mg • L-1 dose where the concentration suddenly spikes at 45 and 60 

minutes, despite similarities between the concentrations at 30 and 120 minutes. The optimal dose of 125 

mg • L-1 of activated carbon was used for the remaining water production experiments. 

 

Effects of Activated Carbon on REEs 

 For the first experiment, CAC was added at 125 mg • L-1 to 3,000 μg • L-1 REE solutions made 

with ultrapure water and sampled across 120 minutes. Each REE was tested individually to identify the 

effect on each element. The results from this experiment can be found in Figure 9. 

 

Figure 9: Concentrations of REE solutions made with ultrapure water over time using 125 mg • L-1 of 

CAC 
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 For all five REEs, there was an excess of REE in the solution, so the activated carbon reached its 

adsorption capacity before all of the REEs were adsorbed. Satisfying this criterion allows the data to be 

used in adsorption capacity calculations, which are discussed in Characterization of Activated Carbon 

section of this report. An unexpected result was found where Yb, the heaviest of the REEs, decreased in 

concentration by 58.69% and ended with the highest concentration remaining in the solution while Nd, 

the second lightest REE, decreased in concentration by 70.54% and ended with the lowest concentration. 

It was expected that Yb would adsorb the most and follow the same trend where adsorption increases with 

the atomic weight as seen in previous experiments and in experiments that will be discussed later. Nd 

started at an unusually low initial concentration which allowed it to be the lowest concentration among all 

of the REEs over time. Even if it started at this low concentration, we would have expected all of the Nd 

to be adsorbed at this dose. We are unsure of what else may have caused this trend in the data. However, 

Ce, Gd, and Tb follow the expected trend where the adsorption increases with the atomic weight of the 

REE. 

 Following these experiments with CAC, the biologically produced banana and orange activated 

carbon samples were tested as feasible adsorbents for REE removal in water production. BPAC was 

produced in abundance, allowing for experimentation at the optimal dose for each individual REE. The 

results of these experiments can be seen in Figure 10. 
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Figure 10: Concentrations of REE solutions made with ultrapure water over time using 125 mg • L-1 of 

BPAC 

 

 In all tested elements, there is a clear decrease in concentration of REE over the 120 minute 

sampling period. Yb showed the highest decrease in concentration at 90.2%, which is a consistent trend 

for the heaviest REE tested. Nd, the second lightest element tested, resulted in the lowest adsorption, with 

a decrease in concentration of 63.0%. Ce showed a concentration decrease of 82.0%, however the 

unusually high initial concentration of 4,488 μg • L-1 plays a major role in this decrease. It appeared that 

Ce did not reach its adsorption capacity because of a continuous decrease in concentration from 60 to 120 

minutes, but all other REEs showed a minor change during this time. This may be due to uncertainty in 

measurements while preparing stock solutions. From this data, it is evident that BPAC is a reliable 

adsorbent for the removal of REEs in water production. 
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 Next, the OPAC was analyzed for its effectiveness of REE removal. However, due to the limited 

supply of OPAC, only a single experiment was performed. Ce was chosen as the preferred experimental 

element, as it was the most extensively tested REE to this point and its behavior under activated carbon 

treatment was the best understood. 

 

 

Figure 11: Concentrations of Ce solutions made with ultrapure water over time using 125 mg • L-1 of 

CAC, BPAC, and OPAC 
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Activated Carbon section. Based on previous results, it is expected that further experiments with OPAC 

would show equally, if not higher, adsorption of the heavier REEs. 

 

Adsorption Selectivity of REEs 

 Selectivity in adsorption between LREEs and HREEs in ultrapure deionized water was the next 

tested parameter. Three REEs were selected ranging from LREE to HREE to determine if certain REEs 

are preferentially adsorbed. A 3,000 μg • L-1 REE solution was made by adding 1,000 μg • L-1 of each 

REE. The REEs used were Ce (LREE), Yb (HREE), and Gd as the third with an approximately average 

molecular weight of the LREE and HREE. The selectivity was determined by assessing if one element’s 

concentration was lower than the others when the adsorption capacity was reached. Data from this 

experiment using CAC can be seen below in Figure 12. 
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Figure 12: Concentration of mixed REE solutions made with ultrapure water over time using 125 mg• L-1 

of CAC 

 

 The largest decline in concentration for all REEs occurred at the 15 minute sampling period, 

however an overall negative trend continued throughout the 120 minute experimental period. The Yb 

concentration decreased more substantially than both the Gd and Ce. After the 120 minute experiment, 

Yb concentrations decreased 48%. The Ce concentration, by contrast, showed the lowest decrease in 

concentration, at 31%. Gd, as expected, was adsorbed at a rate between the LREE and HREE, with a 

decrease in concentration of 45% over the course of experimentation. From this, we can conclude that 

REEs with higher atomic weights adsorb onto activated carbon more favorably than their lighter 

counterparts. 
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            A similar experiment was run to determine if there was selectivity in adsorption of various REEs 

in river water. In these experiments, anions and cations in the river water could compete for adsorption to 

the activated carbon and change the selectivity of the REEs in the previous experiment. The full 

composition of the Moselle River water can be found in Appendix B Table B.22. Experiments were run 

using the optimal dose of CAC and BPAC in 1,000 μg • L-1 Ce, Gd, and Yb solutions made with river 

water. The data from this experiment can be found in Figure 13. 

 

Figure 13: Concentration of mixed REE solutions made with river water over time using 125 mg • L-1 of 

CAC and BPAC 
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with river water. From this, it can be concluded that the other constituents in the river water have a 

significant impact on the removal of REEs using activated carbon. Elements such as sodium, potassium, 

and calcium are prevalent in the river water, possibly adsorbing to the activated carbon more favorably 

than the REEs. 

 In addition, the BPAC removed a higher percentage of Ce and Gd than the CAC, but the final 

concentrations appear higher for BPAC due to higher initial concentrations. This is consistent with our 

previous BPAC experiments, reinforcing the effectiveness of the biologically produced activated carbon 

samples. 

            Another notable result from this experiment is the overall increase in Ce concentration across the 

120 minute duration for the CAC. The low initial concentration could play a role in this result, as the dose 

of Ce in solution was 1,000 μg • L-1. In addition, all other concentrations prior to the 120 minute sample 

are lower than the initial concentration, with a spike at the 120 minute mark. This could potentially be 

attributed to an error in the ICP-MS readings. 

 

Effects of Banana Peel Biochar on REEs 

 Banana peel biochar produced by Dr. Le Brech was tested under similar experimental conditions 

to observe its effectiveness in REE removal. Three mixed REEs (Ce, Gd, and Yb) were added to ultrapure 

water in 1,000 μg • L-1 doses, with 125 mg • L-1 of the banana biochar added at the beginning of testing. 

Figure 14 represents the results gathered from this experiment. 
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Figure 14: Concentration of mixed REE solutions made with ultrapure water over time using 125 mg• L-1 

of banana peel biochar 

 

 As seen in the figure above, the banana biochar works much faster than the activated carbon 

samples, removing 98.9% of REEs within 30 minutes of addition. The banana biochar is produced with a 

slightly different procedure than the BAC samples, which may develop a higher surface area or larger 

pores that result in faster adsorption. In addition, this experiment demonstrates a similar pattern as seen 

throughout these results. The LREE, Ce, did not adsorb as completely as the medium or heavy weight 

REEs in solution. As mentioned, this could be a result of the weight of the REE, being a smaller element 

it may not adhere as easily to the available pores in the biochar. Banana biochar does prove to be an 
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effective adsorbent for REEs in water treatment, with very quick results. However, further 

experimentation is recommended to verify these results. 

 

Characterization of Activated Carbon and Biochar 

 The data from Figure 9, Figure 10, and Figure 11 were used to calculate the adsorption capacity 

for CAC, BPAC, and OPAC, respectively, using equation 1.  The adsorption capacity results are 

summarized in Figure 15. 

 

Figure 15: Adsorption capacities of REEs for commercial, banana peel, and orange peel activated carbon 
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Overall, the BPAC shows the highest adsorption capacity across 4 out of 5 of the tested REEs. A 

higher adsorption capacity means that less carbon is required to reduce the concentration of REE. In a 

water treatment facility, the BPAC would be favorable, as less carbon would need to be added for 

sufficient removal of REE. However, the OPAC also shows a very high adsorption capacity for Ce, the 

only REE tested with this activated carbon. Further experimentation is required to determine if the OPAC 

would perform equally well with other REEs. The BPAC, as a result of current available data, can be 

identified as the most effective activated carbon for REE removal in water production. The banana peel 

biochar adsorption capacity was not included because nearly 100% of the REEs were removed. The 

optimal dose for activated carbon is not the optimal dose for the banana peel biochar. 

No trend between the weights of the REE compared to the adsorption capacity can be identified. 

This could be a result of the pore size and surface area of each activated carbon sample being sufficient to 

adsorb even the heavy REEs tested. Another potential explanation can be related to the initial 

concentrations of REEs. The high variation in starting concentration can alter this finding. Further 

experimentation is required with controlled initial concentrations to determine if this lack of trend remains 

consistent. 

An SEM was used to analyze the pore size and distribution on the activated carbons. For the 

BPAC, images were taken at each preparation step to observe how the activated carbon progressed to its 

final form. For the CAC, OPAC, and banana peel biochar, images of just the final product were obtained. 

Figure 16 shows SEM images of BPAC in the steps leading up to make activated carbon. 
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 (a)  (b) 

 (c)  (d) 

Figure 16: Banana peel activated carbon under SEM. (a) Banana powder after being dried and 

pulverized, (b) Banana powder after carbonization at 400°C, (c) Banana powder after going through 45% 

NaOH bath and dried at 105°C, (d) Banana peel activated carbon sample 

 

From Figure 16, it is evident that a larger surface area develops on the structure of the BPAC. A 

higher concentration of pores becomes prominent as the steps progress. For comparison, SEM images of 

finished CAC, OPAC, and banana peel biochar can be found in Figure 17, Figure 18, and Figure 19, 

respectively. 
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Figure 17: SEM images of finished orange peel activated carbon samples 

 
 

Figure 18: SEM images of finished banana peel biochar samples 

 

 

Figure 19: SEM images of finished commercial activated carbon samples 
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 The pore size of BPAC and OPAC is relatively large compared to CAC. The CAC showed fewer 

pores and more of a crystalline structure with flatter surfaces. The OPAC had a unique characteristic 

where small beads were scattered across the structure. Both characteristics can be attributed to a high 

surface area, and therefore high adsorption capacity.  The structure of the banana peel biochar had few 

similarities with the activated carbon samples. It appeared to be a solid mass with a lower surface. This 

was expected because it does not undergo the same procedure as activated carbon to increase the surface 

area. The banana peel biochar, however, outperformed all activated carbon samples by completing 

removing REEs from a solution at the optimal dose of 125 mg • L-1, suggesting that the surface area may 

be larger or that there is another mechanism that promotes adsorption. A BET analysis is recommended in 

a later study to analyze the specific surface areas of each sample. 

In addition to the SEM analysis performed on each sample, EDX analysis provided quantitative 

elemental identification to give insight to the composition of CAC and BPAC samples. Notable atomic 

percentages of elements for CAC and BPAC are outlined in Table 4. EDX analyses of OPAC and banana 

peel biochar were not completed due to equipment complications. 

 

Table 4: Atomic percentages of various elements in commercial and banana peel activated carbon 

Element Commercial (%) Banana (%) 

Na 10.72 36.98 

Al 6.65 4.98 

Si 5.84 5.01 

P 5.34 4.95 

S 7.09 0.00 

K 5.52 5.33 

Ca 5.27 5.30 

Fe 7.27 4.94 
Ni 9.85 6.75 

Cu 12.17 8.30 

Zn 15.25 10.36 

As 6.41 5.46 

Pb 2.61 1.65 

 

 From the EDX Analysis, it is seen that the BPAC is composed of a much higher atomic 

percentage of sodium than the CAC, at 36.98% and 10.72%. In addition, another notable change can be 
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seen in the sulphur content of the activated carbon samples. The BPAC has no sulphur content, while the 

CAC is composed of 7.09% sulphur on the atomic level. Aside from these notable differences, the 

compositions of the activated carbons are relatively similar. 

 While still not a researched topic, these small changes in composition could be responsible for the 

immense changes in REE adsorption, as seen in the Effect of Activated Carbon on REEs section of the 

results. 

 

Wastewater Treatment Results 

 The synthetic wastewater composition was analyzed using an ICP-AES. This was done prior to 

wastewater testing to ensure the accuracy of the synthetic wastewater. The accuracy of the wastewater 

was based off influent wastewater samples from the Grand Nancy WWTP. The original synthetic solution 

was a stock solution 20 times the strength of the desired composition, to allow for multiple experiments to 

be conducted. Upon analysis, the full elemental composition, which can be found in Appendix B Tables 

B.15-B.21, matched the composition of the actual wastewater aside from the Ca concentrations, which 

were significantly lower. One potential reason for this difference could be the strength of the stock, being 

so densely packed the Ca had precipitated out of solution. As a result, an additional stock solution was 

prepared at five times strength, to allow for less precipitation to occur. Both stocks were used in 

experimentation for comparison. The entire results of these compositions can be found in Appendix C 

Table C.2. 

            Dose of FeCl3 was the first analyzed parameter: for 0, 1, 2, 3, 4, and 5 mg • L-1, with an initial Gd 

concentration of 3000 μg • L-1. Initially, the FeCl3 was added as a solid, resulting in the 0 and 1 mg • L-1 

jars creating large clumpy flocs that formed at the base of the jar. The higher doses of FeCl3 created more 

abundant flocs that were smaller in size and spread more evenly throughout the jars. In later tests, the 

FeCl3 was added as a liquid solution, to allow for more efficient distribution of FeCl3 to the solution. 

Figure 20 depicts the experimental setup, as well as the jar dosed at 2 mg • L-1 during the rapid mix, 

flocculation, and settling stages. 
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Figure 20: (a) Jar testing experimental set-up; (b) 2 mg • L-1 FeCl3 during rapid mix period; (c) 2 mg • L-1 

FeCl3 during flocculation period; (d) 2 mg • L-1 FeCl3 during settling period 

  

 Testing ensued for both the original 20 times strength stock solution as well as the five times 

strength stock. This was done to see the effect of the Ca on the settling process. The results of these 

experiments can be seen in Figure 21. 
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Figure 21: Concentration of gadolinium versus dose of FeCl3 using two types of stock solution 

 

 As seen from the figures above, there is no trend between the dose of FeCl3 and the amount of Gd 

removed from solution. The concentration of Gd reaches 0 μg • L-1 in the absence of FeCl3, and remains 

nearly 0 μg • L-1 as the dose is increased. In addition, the varying stock solutions had little effect on the 

results, with Gd concentrations in solution never exceeding 7 μg • L-1. A possible cause of these results 

could come from the wastewater treatment process. The coagulation, flocculation, and settling periods 

could be sufficient for the removal of Gd, regardless of the dose of coagulant. It is possible that the 

Floerger® AN 923 VHM solution and fine sand were able to bind to the Gd and settle it out of solution, 

as these components were constant across each sample. Phosphate presence can also be attributed to this 

result, as it is proven to precipitate REEs out of solution. 
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            The above experiment was repeated with unfiltered secondary treatment effluent wastewater from 

the Grand Nancy WWTP, under two conditions. The first condition was with an additional 3000 μg • L-1 

Gd added to solution, and the second was with a mixture of REEs, mimicked from the water production 

experiments. Similar results were obtained from these experiments, showing the complete removal of 

REEs regardless of the presence of FeCl3. Again, this could be a result of the other components added to 

solution to aid in the coagulation process. From previous research, it was determined that phosphates 

present in wastewater precipitate REEs out of solution. As this wastewater, including the synthetic 

wastewater, both had phosphates present; it is likely that the REEs precipitated out of solution by aid of 

the phosphate, and not the FeCl3. In addition, filtration through a 0.45 μm filter was required for each 

sample to not damage the analytical equipment. It is possible that some REEs were filtered out of the final 

samples. The full results of these experiments can be found in Appendix B Tables B.11-B.14. 
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Conclusion 

 Global demand for REEs is increasing at an exceptional rate, with no anticipated decrease in 

future development. With this increase manufacturing demand, there is anticipated growth of REE 

contamination in water bodies and the Rhine River of Europe. And while still not well-documented, there 

are proposed health concerns of ingesting REEs. We sought to determine optimal means of removing 

these REEs in water production and wastewater treatment, to provide safe drinking water for those in the 

Rhine River watershed, as well as safe water to be used by the ecosystem. 

            In water production, activated carbon is the most common adsorbent used to remove contaminants 

by physical means. Activated carbon, with high surface area and pore volume, is ideal for which 

contaminants to adhere. We tested activated carbon in varying doses to different REEs and REE mixtures 

to determine the effect of removal. Aside from commercially produced activated carbon, we developed 

two biological activated carbon samples: one from banana peels (BPAC), the other from orange peels 

(OPAC). 

 An optimal dose of 125 mg • L-1 of activated carbon for a solution containing  3,000 µg • L-1, or 

a loading corresponding to 24 mg of REE per gram of activated carbon was identified; where REE 

removal was moderate, without being present in surplus. BPAC and OPAC both proved to be effective 

means of removing REEs in water production; with a higher removal rates and higher adsorption 

capacities than the commercially produced activated carbon. When mixing three REEs in solution 

together and repeating the experiment, it was found that the heavier REEs tend to be more easily adsorbed 

to the activated carbon than its lighter counterparts. Jar testing was performed to mimic the wastewater 

treatment process for further testing. FeCl3 was tested at five different doses to identify the optimal dose 

to remove REEs without being in excess. From these experiments, no dose of FeCl3 proved to be more 

effective than any other, when tested with synthetic or actual wastewater. There was a near 100% removal 

of REEs when tested with Gd individually or with Ce, Gd, and Yb mixed in solution. From this, we 
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concluded the effectiveness of coagulation, flocculation, and sedimentation for the removal of REEs 

using only fine sand and Floerger® AN 923 VHM solution. This result is independent of weight of REE, 

as proven through the mixed REE experiment. 

 With an overwhelming number of uses in various fields of development, it is no surprise that the 

uses of REEs are growing at their current rate. With this growing use, it is imperative to move forward 

with caution, as health risks to humans and the environment are still not well-documented. We pursued 

means of removing these elements from water supplies, with positive results for both water production 

and wastewater treatment. While further testing is still required to develop this research to completion, 

this project demonstrates promise for the removal of REEs by the means outlined in this report. 
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Recommendations 

Moving forward, the next immediate steps are to finish experiments using OPAC. First, 

additional activated carbon from orange peels must be prepared. Then, the activated carbon must be tested 

at the optimal dose of 125 mg • L-1 with four individual REEs at 3,000 μg • L-1 (Nd, Gd, Tb, and Yb) as 

well as a test with three REEs mixed together at 1,000 μg • L-1 each (Ce, Gd, and Yb). Afterwards, further 

experiments can be conducted using the banana peel biochar method that was briefly introduced but was 

not assessed in depth. Orange peel biochar can also be tested. The biochar preparation is easier and faster 

than the activated carbon. 

In preparation of BACs, we recommend pulverizing the BAC into fine particles after the final 

step. Our observations of the activated carbon experiments have found that CAC scatters across the 

solution while the BACs remain in clumps. So while successful at lowering the REE concentrations, the 

adsorption capacity could potentially increase with this additional step. To aid in the characterization of 

the activated carbon and biochar samples, BET analysis could be completed. This will give an accurate 

reading of the surface area of the samples, which will strengthen the characterization. 

Based on the findings identified in the water production study, the future directions should focus 

on determining the factors that contribute to uncertain results before moving forward with 

experimentation. Separate investigations should be made to determine the concentration of the stock 

solution using more precise measurements as well as the effects on the REE concentration in the 

refrigerator over a long period of time. Both factors are possible explanations for the unusually low data 

points in our report, primarily the initial concentrations of many experiments. 

            In the wastewater treatment study, we suggest using a new jar testing station. The current 

station is equipped with six stirrers that stir at inconsistent speeds. In an experiment such as coagulation 

and flocculation where stir speed is essential, we highly recommend resolving this issue before 

experimentation continues if strong results are desired. In preparation of the synthetic wastewater 

solution, a stock solution with a concentration no higher than five times the concentration outlined in the 
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formula should be prepared to avoid precipitation of elements. Finally, we recommend that an organic Gd 

chemical be tested in addition to the mineral salt, in both wastewater and water production testing. This 

test can help prevent Gd precipitation due to phosphates in the wastewater, and strictly identify the effects 

of FeCl3 on precipitation. 
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List of Acronyms and Abbreviations 
 

ABET Adult Basic Education and Training 

BAC Biological Activated Carbon 

BOD Biochemical Oxygen Demand 

BPAC Banana Peel Activated Carbon 

Ca Calcium 

CAC Commercial Activated Carbon 

Ce Cerium 

CSTR Completely Stirred Tank Reactor 

EDX Energy Dispersive X-Ray 

ENSIC École Nationale Supérieure des Industries Chimiques 

Eu Europium 

Gd Gadolinium 

HREE Heavy Rare Earth Element 

ICP-AES Inductively Couple Atomic Emission Spectrometry 

ICP-AES Inductively Coupled Plasma Mass Spectrometry 

K Potassium 

La Lanthanum 

LREE Light Rare Earth Element 

Lu Lutetium 

Mg Magnesium 

MRI Magnetic Resonance Imaging 

Na Sodium 

NaOH Sodium Hydroxide 

Nd Neodymium 

OPAC Orange Peel Activated Carbon 

Sc Scandium 

SEM Scanning Electron Microscope 
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Tb Terbium 

WPI Worcester Polytechnic Institute 

WWTP Wastewater Treatment Plant 

Y Yttrium 

Yb Ytterbium 
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Appendix A: Experimental Data Tables 
 

Table A.1: Concentration of an identical cerium solution using two different preparation materials 

Glass Bottles Plastic Bottles 

Sample Concentration (µg • L-1) Sample Concentration (µg • L-1) 

1 3842.55 1 4057.59 

2 3470.84 2 3954.43 

3 3811.50 3 3995.20 

4 3509.34 4 3900.98 

5 3675.46 5 3837.46 

6 3349.61 6 3952.78 

7 3517.37 7 3759.14 

8 3602.98 8 3813.82 
9 3679.62 9 3897.80 

10 3973.69 10 3793.16 

11 3975.17 11 3824.16 

12 3947.06 12 3818.49 

 

Table A.2: Concentration of an identical neodymium solution over time using two different preparation 

materials 

Glass Bottle Contact 

Time (min) 
Concentration (µg • L-1) 

Plastic Bottle 

Contact Time (min) 
Concentration (µg • L-1) 

0 3324.27 0 2867.33 

1 2967.17 1 3522.80 

2 2934.88 2 2993.61 

3 2757.97 3 3091.92 

4 2810.53 4 2975.36 

5 2568.58 5 3281.75 

6 3027.68 6 3196.91 

7 2858.98 7 3164.00 

8 3099.39 8 3185.99 

9 2929.19 9 3123.31 

10 2973.34 10 3161.34 

15 3018.24 15 2989.70 

20 3300.73 20 2788.83 
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 Table A.3: Concentration of REEs in ultrapure water versus time using 0.05 g • L-1 of commercial 

activated carbon 

  

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Nd 0.05 Commercial 

0 2766.20 

15 2517.24 

30 2005.23 

45 2045.16 

60 2197.07 

120 2300.12 

180 2071.81 

Yb 0.05 Commercial 

0 2830.92 

15 1841.72 

30 1815.65 

45 1751.96 

60 1590.49 

120 1723.01 

180 1648.67 

Gd 0.05 Commercial 

0 3221.08 

15 2069.18 

30 2318.01 

45 1898.64 

60 2254.37 

120 1931.06 

180 2283.79 

Ce 0.05 Commercial 

0 2811.55 

15 2817.15 

30 2743.06 

45 2638.17 

60 2584.33 

120 3380.63 

180 2559.40 

Tb 0.05 Commercial 

0 2124.86 

15 1834.35 

30 1897.59 

45 1995.27 

60 1790.40 

120 1744.44 

180 1839.52 
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Table A.4: Concentration of REEs in ultrapure water versus time using 0.5 g • L-1 of commercial 

activated carbon 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Yb 0.5 Commercial 

0 1713.66 

15 0.31 

30 12.31 

45 17.01 

60 24.60 

120 23.25 

180 17.46 

Gd 0.5 Commercial 

0 1609.38 

15 0.30 

30 6.42 

45 7.74 

60 11.14 

120 10.91 

180 9.36 

Tb 0.5 Commercial 

0 1605.90 

15 0.03 

30 0.90 

45 10.87 

60 12.09 

120 9.23 

180 9.07 

Nd 0.5 Commercial 

0 1774.83 

15 -0.26 

30 8.11 

45 9.04 

60 10.44 

120 2.61 

180 6.47 

Ce 0.5 Commercial 

0 2751.77 

15 -1.81 

30 5.52 

45 10.56 

60 6.76 

120 -13.21 

180 -7.73 
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Table A.5: Concentration of REEs in ultrapure water versus time using 2.5 g • L-1 of commercial 

activated carbon  

  

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Nd 2.5 Commercial 

0 1563.84 

15 17.18 

30 2.79 

45 0.53 

60 0.59 

120 0.23 

180 0.25 

Yb 2.5 Commercial 

0 1063.01 

15 17.67 

30 4.31 

45 2.05 

60 1.00 

120 0.45 

180 0.68 

Gd 2.5 Commercial 

0 1292.41 

15 34.99 

30 1.72 

45 0.81 

60 0.27 

120 -0.11 

180 0.01 

Ce 2.5 Commercial 

0 2374.93 

15 38.33 

30 11.47 

45 6.35 

60 4.23 

120 4.85 

180 3.41 

Tb 2.5 Commercial 

0 1238.54 

15 31.12 

30 0.95 

45 0.88 

60 0.20 

120 0.31 

180 0.11 
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Table A.6: Concentration of cerium in ultrapure water versus time using various doses of commercial 

activated carbon 

 

 

 

 

 

 

 

  

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.075 Commercial 

0 2769.51 

15 1724.53 

30 1558.64 

45 1492.30 

60 1756.51 

120 1431.84 

Ce 0.125 Commercial 

0 1953.62 

15 1642.59 

30 1603.34 

45 1542.74 

60 1518.23 

120 1205.77 

Ce 0.250 Commercial 

0 2158.14 

15 457.70 

30 378.17 

45 2011.16 

60 1182.20 

120 225.15 

Ce 0.375 Commercial 

0 1775.53 

15 152.11 

30 113.51 

45 239.45 

60 42.84 

120 70.50 
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Table A.7: Concentration of REEs in ultrapure water versus time using 0.125 g • L-1 of commercial 

activated carbon 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.125 Commercial 

0 1953.62 

15 1642.59 

30 1603.34 

45 1542.74 

60 1518.23 

120 1205.77 

Nd 0.125 Commercial 

0 2240.17 

15 1163.21 

30 1148.50 

45 805.67 

60 1057.46 

120 392.21 

Gd 0.125 Commercial 

0 1237.37 

15 433.73 

30 417.82 

45 363.32 

60 324.18 

120 304.97 

Tb 0.125 Commercial 

0 491.74 

15 275.41 

30 252.86 

45 209.21 

60 231.76 

120 144.59 

Yb 0.125 Commercial 

0 2555.32 

15 -  

30 1832.33 

45 1635.11 

60 1055.57 

120 1463.59 
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Table A.8: Concentration of REEs in ultrapure water versus time using 0.125 g • L-1 of banana peel 

activated carbon 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.125 Banana Peel 

0 4487.44 

15 2839.44 

30 1984.85 

45 2101.64 

60 1582.52 

120 659.64 

Nd 0.125 Banana Peel 

0 2300.71 

15 1368.29 

30 1363.54 

45 1050.72 

60 1182.28 

120 850.12 

Gd 0.125 Banana Peel 

0 2124.84 

15 805.54 

30 665.37 

45 784.59 

60 645.86 

120 460.29 

Tb 0.125 Banana Peel 

0 1877.17 

15 1024.26 

30 817.91 

45 483.13 

60 481.44 

120 420.86 

Yb 0.125 Banana Peel 

0 2625.69 

15 1596.23 

30 891.41 

45 612.22 

60 599.90 

120 256.70 
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Table A.9: Concentration of cerium in ultrapure water versus time using 0.125 g • L-1 of various activated 

carbon types 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.125 Commercial 

0 1953.62 

15 1642.59 

30 1603.34 

45 1542.74 

60 1518.23 

120 1205.77 

Ce 0.125 Banana Peel 

0 4487.44 

15 2839.44 

30 1984.85 

45 2101.64 

60 1582.52 

120 659.64 

Ce 0.125 Orange Peel 

0 3705.07 

15 948.49 

30 434.97 

45 431.80 

60 162.38 

120 73.00 
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Table A.10: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in ultrapure 

water versus time using 0.125 g • L-1 of commercial activated carbon 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.125 Commercial 

0 711.08 

15 390.80 

30 517.77 

45 502.10 

60 470.79 

120 488.44 

Gd 0.125 Commercial 

0 768.61 

15 366.19 

30 446.72 

45 444.41 

60 434.99 

120 420.43 

Yb 0.125 Commercial 

0 754.07 

15 342.79 

30 422.80 

45 423.61 

60 427.65 

120 416.28 
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Table A.11: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in river 

water versus time using 0.125 g • L-1 of commercial activated carbon  

 

   

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.125 Commercial 

0 274.67 

15 261.16 

30 264.99 

45 269.59 

60 261.23 

120 288.55 

Gd 0.125 Commercial 

0 322.18 

15 239.63 

30 229.32 

45 225.64 

60 221.09 

120 243.30 

Yb 0.125 Commercial 

0 348.12 

15 232.28 

30 219.69 

45 215.28 

60 209.85 

120 214.16 
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Table A.12: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in river 

water versus time using 0.125 g • L-1 of banana peel activated carbon 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Activated 

Carbon 

Time (min) Concentration (µg • L-1) 

Ce 0.125 Banana Peel 

0 350.12 

15 307.89 

30 303.58 

45 300.14 

60 304.94 

120 310.97 

Gd 0.125 Banana Peel 

0 363.71 

15 304.92 

30 293.79 

45 272.19 

60 279.70 

120 274.06 

Yb 0.125 Banana Peel 

0 416.00 

15 335.11 

30 324.01 

45 293.73 

60 302.61 

120 291.72 
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Table A.13: Concentration of equal parts cerium, gadolinium, and ytterbium mixed together in ultrapure 

water versus time using 0.125 g • L-1 of banana peel biochar 

 

Table A.14: Adsorption capacity of commercial, banana peel, and orange peel activated carbon for 

various REEs 

Type of Activated 

Carbon 
Element Adsorption Capacity (mg of REE • mg of adsorbent-1) 

Commercial 

Ce 0.00120 

Nd 0.00056 

Gd 0.00296 

Tb 0.00149 

Yb 0.00240 

Banana Peel 

Ce 0.00612 

Nd 0.00232 

Gd 0.00266 

Tb 0.00233 

Yb 0.00379 

Orange Peel Ce 0.00581 

 

 

Element 
Activated Carbon 

Dose (g • L-1) 

Type of 

Adsorbent 
Time (min) Concentration (µg • L-1) 

Ce 0.125 Biochar 

0 798.22 

15 437.05 

30 26.19 

45 24.66 

60 26.67 

120 29.51 

Gd 0.125 Biochar 

0 768.00 

15 467.33 

30 0.33 

45 -0.38 

60 0.48 

120 0.17 

Yb 0.125 Biochar 

0 715.12 

15 428.13 

30 -0.02 

45 -0.02 

60 -0.11 

120 -0.30 
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Table A.15: Concentration of gadolinium versus dose of FeCl3 using two types of stock solution 

  

Dose of FeCl3 (mg • L-1) 
Concentration of Gd using 5x 

Stock Solution (µg • L-1) 

Concentration of Gd using 5x 

Stock Solution (µg • L-1) 

0 -0.82 -0.71 

1 2.95 3.13 

2 6.57 4.59 

3 5.74 4.89 

4 6.44 5.84 

5 6.12 3.98 
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Appendix B: Raw Data Tables 
Table B.1: Raw data collected from ICP-AES showing concentration of REEs in ultrapure water versus 

time using 0.05 g • L-1 of commercial activated carbon 

Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Nd 

0 56.12 2791.03 2732.93 2774.64 28.00 13.90 16.76 

15 52.66 2502.72 2470.81 2578.20 10.38 -2.59 0.11 

30 44.99 1933.69 1918.82 2163.18 9.52 -1.81 0.10 

45 43.90 1967.06 1966.78 2201.64 12.90 1.42 3.48 

60 39.01 2068.18 2135.91 2387.12 12.23 -0.69 1.90 

120 48.57 2293.83 2327.62 2278.91 9.80 -2.20 0.21 

180 49.71 1974.27 2008.71 2232.45 10.46 -1.25 0.50 

Yb 

0 -359.92 9.63 7.87 9.35 0.79 0.93 0.30 

15 -796.73 2.61 -1.02 0.97 3.52 2.92 3.19 

30 -559.77 0.93 -1.83 -3.52 0.46 -0.08 0.50 

45 -720.41 1.85 -2.78 -1.10 6.58 5.96 6.48 

60 -866.56 0.63 -3.28 3.67 0.27 -0.07 0.20 

120 -561.05 0.73 -1.13 0.15 0.26 0.17 0.39 

180 -890.12 -0.98 -2.89 -1.54 1.21 -0.45 0.26 

Gd 

0 24.06 135.01 -2.04 15.15 3369.59 3082.39 3211.28 

15 28.66 81.16 -11.15 0.36 2160.29 1979.02 2068.23 

30 20.35 71.45 -14.02 -12.64 2421.02 2218.81 2314.20 

45 26.93 64.99 -13.58 -5.70 1981.72 1813.83 1900.37 

60 20.45 73.58 -14.47 -5.54 2224.01 2417.85 2121.24 

120 23.95 66.16 -14.58 -8.97 2007.35 1875.24 1910.58 

180 26.73 68.23 -15.70 -6.20 2397.37 2172.34 2281.67 

Ce 

0 2811.55 -0.30 -3.11 19.42 2.49 15.01 4.78 

15 2817.15 -9.25 -14.21 11.94 -0.32 12.87 1.55 

30 2743.06 -9.74 -12.95 13.40 -1.62 11.94 1.36 

45 2638.17 -2.01 -7.35 21.38 -1.00 11.55 1.23 

60 2584.33 -7.63 -11.92 11.54 5.88 18.05 7.26 

120 3380.63 -10.15 -15.37 13.37 -2.02 13.66 1.47 

180 2559.40 -7.32 -13.65 8.06 0.82 13.18 2.58 

Tb 

0 16.86 -63.04 5.14 36.09 12.97 9.98 0.41 

15 15.56 -55.94 -3.15 18.64 10.37 7.96 0.73 

30 22.11 -55.19 -4.05 24.35 10.45 8.39 0.97 

45 18.53 -58.25 -5.47 24.28 11.24 8.71 0.69 

60 7.79 -45.51 -1.06 19.05 10.89 7.33 0.42 

120 61.26 -49.52 -5.83 16.12 11.02 8.32 0.99 

180 16.91 -50.39 -4.27 15.82 10.21 7.49 0.44 
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Table B.1: (Continued) 

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Nd 

0 1.36 4.38 -19.98 5.47 5.27 4.80 

15 1.24 5.76 -18.24 4.84 4.59 4.46 

30 0.92 2.31 -14.63 7.40 7.35 6.79 

45 0.92 4.89 -16.11 4.79 4.28 4.49 

60 -0.16 5.44 -17.37 21.59 21.87 21.78 

120 0.85 6.20 -14.96 10.76 10.87 10.60 

180 0.58 3.73 -16.84 3.97 3.54 2.59 

Yb 

0 7.71 26.12 9.71 2647.27 2869.54 2975.97 

15 4.41 17.57 7.21 1569.35 1946.95 2008.85 

30 8.13 22.35 11.53 1788.18 1799.03 1859.75 

45 3.75 16.30 5.68 1599.06 1796.55 1860.27 

60 2.31 14.38 5.47 1435.68 1636.30 1699.48 

120 3.54 15.86 6.36 1387.56 1856.32 1925.15 

180 4.15 14.69 5.62 1511.28 1683.10 1751.61 

Gd 

0 -3.25 1.45 -8.77 2.00 1.03 -0.16 

15 -1.37 1.04 -4.50 1.42 0.50 -0.46 

30 -1.69 1.30 -3.96 1.24 0.32 -0.54 

45 -1.54 0.53 -4.38 0.89 -0.12 -1.40 

60 -1.69 0.38 -5.03 7.53 7.03 6.30 

120 -1.77 0.40 -5.05 1.92 0.76 -0.16 

180 -2.19 1.17 -3.56 1.17 0.27 -1.57 

Ce 

0 -11.23 -20.72 -3.67 0.09 -0.82 -2.00 

15 -10.97 -21.13 -3.69 0.95 0.06 -1.44 

30 -10.98 -20.94 -3.44 3.06 2.55 1.71 

45 -10.77 -21.29 -2.32 0.04 -0.94 -2.36 

60 -10.61 -18.05 -4.13 0.04 -0.90 -2.58 

120 -11.73 -23.40 -4.55 4.91 4.50 3.53 

180 -10.58 -21.68 -3.66 0.03 -0.73 -2.64 

Tb 

0 1873.37 2333.36 2167.84 0.07 3.33 -1.87 

15 1617.36 2012.29 1873.39 0.05 2.64 -2.26 

30 1672.68 2081.04 1939.06 0.01 2.90 -2.98 

45 1757.27 2190.25 2038.28 0.61 3.72 -2.18 

60 1575.12 1961.64 1834.43 0.60 3.15 -2.75 

120 1536.54 1910.37 1786.40 -0.02 2.71 -3.40 

180 1618.26 2020.32 1879.97 0.16 2.72 -3.48 
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Table B.2: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.5 g • L-1 of commercial activated carbon 

 Element 
Time 

(min) 

Ce 535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Yb 

0 -433.932 18.617 19.895 35.193 2.644 3.816 3.260 

15 -10.939 -0.552 -0.828 5.755 0.114 -0.142 0.533 

30 -12.970 -0.953 0.229 0.062 0.403 0.312 -0.096 

45 -14.479 0.938 -1.867 3.885 -0.219 -0.449 -0.553 

60 -29.271 2.461 -1.509 -1.346 0.960 0.795 -0.762 

120 -30.979 -1.928 -1.177 -1.327 -0.492 0.311 -0.201 

180 -24.839 -0.226 -1.368 -0.084 0.448 -0.041 -0.631 

Gd 

0 -10.596 89.992 -5.726 18.297 1595.741 1608.596 1623.805 

15 -10.681 -1.126 -2.559 0.125 0.679 0.146 0.082 

30 -14.028 -1.643 -0.978 1.528 6.426 6.817 6.018 

45 -8.516 -0.939 -1.814 1.068 8.208 8.028 6.978 

60 -6.703 0.457 -1.418 -2.069 11.100 11.221 11.087 

120 -7.418 -2.931 -0.939 -0.372 10.945 10.702 11.077 

180 -14.987 -1.902 -1.570 -1.187 9.271 9.523 9.277 

Tb 

0 -10.523 -30.957 1.089 16.582 13.483 10.487 4.466 

15 -5.475 0.758 -2.826 1.501 0.180 0.457 0.115 

30 -13.032 -1.967 -1.886 -5.535 0.008 0.446 0.461 

45 -10.507 -1.441 -1.745 -4.961 0.364 0.335 0.159 

60 -8.554 -0.371 -2.669 -6.271 1.063 0.066 0.007 

120 -3.406 -0.579 -2.270 -3.812 0.847 0.660 -1.028 

180 -4.415 -0.076 -1.186 -1.310 1.120 0.523 -0.035 

Nd 

0 8.498 1660.06 1697.27 1967.16 10.508 -1.185 -0.593 

15 0.348 -0.670 -2.029 1.913 0.937 0.707 -0.136 

30 1.888 8.140 9.601 6.592 0.965 0.011 0.061 

45 -3.186 9.131 7.964 10.028 0.139 -0.353 -0.299 

60 2.380 10.438 9.723 11.172 1.063 0.371 0.084 

120 5.120 5.148 2.936 -0.247 1.163 0.102 -0.322 

180 -2.955 3.460 4.612 11.341 0.958 0.414 -0.065 

Ce 

0 2751.769 24.672 19.294 66.547 2.013 16.183 3.382 

15 -1.812 -1.977 -2.358 -4.485 0.477 -0.007 -0.776 

30 5.518 1.431 -3.308 -5.721 1.050 0.294 0.124 

45 10.560 -1.338 -2.835 0.061 0.898 0.232 0.134 

60 6.765 0.293 -2.782 -4.010 0.771 0.489 0.286 

120 -13.208 2.750 -2.727 0.613 0.449 0.139 -0.635 

180 -7.734 -0.851 -2.631 -4.413 0.967 0.105 -1.246 
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Table B.2: (Continued) 

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Yb 

0 4.929 19.009 3.021 1686.433 1725.085 1729.450 

15 -1.184 0.398 -0.399 0.374 0.573 -0.007 

30 -1.164 2.479 0.298 12.511 12.804 11.616 

45 -0.907 2.630 -1.649 16.901 17.561 16.569 

60 -1.433 4.046 -2.033 24.338 25.028 24.424 

120 -2.408 3.443 -2.618 23.191 23.874 22.690 

180 -1.297 3.403 -2.097 17.449 18.202 16.732 

Gd 

0 48.324 67.909 50.016 2.142 1.894 0.346 

15 -1.183 2.092 -1.266 0.011 0.277 -0.214 

30 -1.726 0.469 -1.456 0.026 0.257 -0.645 

45 -2.649 1.107 -1.351 0.007 0.364 -1.177 

60 -2.073 1.887 -1.133 0.023 0.530 -0.784 

120 -0.850 2.693 -1.378 0.059 0.295 -0.363 

180 -2.251 3.123 -2.743 0.140 0.388 -1.150 

Tb 

0 1454.372 1787.719 1575.619 0.309 3.324 -3.534 

15 -2.392 3.639 -1.147 -0.048 0.148 -0.103 

30 -0.021 3.034 -0.322 -0.016 0.207 -1.507 

45 8.277 14.511 9.821 0.038 0.115 -1.025 

60 8.045 17.288 10.934 -0.051 0.288 -0.927 

120 5.784 13.854 8.041 0.047 0.191 -0.752 

180 5.538 12.311 9.371 0.009 0.174 -1.191 

Nd 

0 -1.289 5.967 -16.964 8.569 8.726 8.283 

15 -3.558 3.369 -1.398 0.033 0.141 -0.780 

30 -1.652 2.313 -1.365 0.027 0.112 -0.747 

45 -2.746 -2.060 -2.779 0.038 0.177 -0.971 

60 -1.332 1.538 -1.147 0.003 0.267 -1.653 

120 -2.022 1.270 -1.546 0.045 0.033 -0.161 

180 -3.918 2.738 -0.578 0.211 0.114 -0.972 

Ce 

0 -10.397 -19.843 -4.129 0.655 0.838 -0.973 

15 -3.157 2.483 -1.403 -0.022 0.002 -1.342 

30 -1.099 2.303 -1.316 0.006 -0.037 -1.093 

45 -3.618 1.732 -1.942 -0.060 0.030 -1.251 

60 -3.232 1.517 -0.268 0.005 0.030 -1.002 

120 -3.285 2.474 -0.277 -0.004 0.342 -1.012 

180 -2.941 3.403 -1.809 -0.041 0.119 -0.851 

 

  



- 78 - 
 

Table B.3: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 2.5 g • L-1 of commercial activated carbon 

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Nd 

0 39.18 1509.60 1482.85 1699.06 13.12 3.35 4.76 

15 7.71 17.81 16.87 16.85 -0.05 0.20 -0.46 

30 9.54 4.05 3.50 0.83 0.16 0.02 -0.62 

45 2.35 0.78 0.32 0.48 0.84 0.37 -0.52 

60 4.27 1.46 0.09 0.22 0.18 0.20 -0.91 

120 4.91 0.15 0.19 0.35 0.12 0.24 -0.49 

180 0.02 0.96 0.80 -1.02 -0.06 0.35 -0.29 

Gd 

0 12.83 51.33 -7.32 2.54 1316.92 1259.14 1301.17 

15 9.74 1.40 1.08 -1.05 35.88 33.85 35.23 

30 8.77 0.96 0.46 -2.04 1.77 1.87 1.53 

45 8.67 -0.07 1.04 0.41 0.92 1.15 0.36 

60 7.78 0.66 0.01 -2.55 0.61 0.62 -0.40 

120 5.39 1.46 0.60 -1.19 0.16 0.60 -1.09 

180 5.82 0.05 -0.12 0.31 0.38 0.56 -0.91 

Ce 

0 2374.93 -7.54 -10.29 15.09 -1.20 11.50 -0.41 

15 38.33 0.38 -0.12 -1.22 0.40 0.39 -0.45 

30 11.47 2.34 -0.21 -5.92 0.49 0.19 -0.32 

45 6.35 -0.13 -0.51 -4.45 0.23 0.20 -0.37 

60 4.23 0.33 -0.66 -2.01 0.50 0.02 -0.36 

120 4.85 1.32 -0.15 -0.30 -0.67 0.05 -0.73 

180 3.41 0.62 -0.12 0.35 -0.13 0.51 -0.86 

Tb 

0 16.45 -37.62 -1.12 11.93 7.87 5.14 0.04 

15 6.57 0.01 0.29 -3.57 0.02 0.01 -0.81 

30 7.28 -0.11 -0.65 -2.81 0.49 -0.18 -0.43 

45 4.74 0.97 0.05 1.60 -0.11 0.18 -0.69 

60 10.17 0.74 0.08 -3.31 0.35 0.23 -0.40 

120 4.15 1.40 -0.47 0.79 0.38 0.16 -0.83 

180 -0.99 0.68 -0.08 0.70 -0.46 0.40 -0.29 

Yb 

0 -292.77 7.68 8.01 10.55 1.41 0.28 -0.48 

15 0.65 1.49 -0.50 -3.05 0.37 -0.20 -0.09 

30 3.32 0.38 -0.72 -3.51 0.20 0.23 -0.77 

45 7.05 1.67 -0.72 -1.86 -0.11 0.24 -1.14 

60 7.28 0.26 -0.36 -4.34 0.22 0.31 -0.80 

120 5.98 1.98 -0.82 -4.42 0.69 0.13 -1.06 

180 4.17 -0.80 0.26 -4.27 0.61 0.08 -1.45 
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Table B.3: (Continued) 

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Nd 

0 3.30 7.17 -8.58 3.52 3.35 3.29 

15 -0.19 -0.25 0.40 0.10 -0.14 -0.48 

30 0.49 0.06 0.10 0.02 0.05 -0.31 

45 -0.63 -0.15 -0.25 -0.03 -0.21 -0.48 

60 -0.61 1.88 -0.11 0.00 -0.11 -0.73 

120 -0.96 1.86 -0.64 0.00 0.13 -0.67 

180 -0.80 0.36 -0.95 0.00 0.21 -0.88 

Gd 

0 5.10 8.29 4.19 0.58 0.07 -0.70 

15 0.25 1.11 -0.34 -0.01 -0.40 -0.95 

30 -0.54 -0.28 0.35 -0.02 -0.22 -0.95 

45 -0.22 -0.91 -0.18 0.00 -0.24 -0.44 

60 -0.14 0.06 -0.79 0.01 -0.11 -0.59 

120 -0.79 0.10 -0.45 -0.01 -0.09 -0.69 

180 -0.36 0.34 -1.42 -0.03 -0.07 -0.77 

Ce 

0 -4.92 -12.66 1.89 -0.01 -0.45 -1.26 

15 -0.37 0.30 0.75 -0.01 -0.31 -0.52 

30 -1.50 0.78 -0.51 -0.01 -0.26 -1.08 

45 -0.11 -1.36 -0.47 -0.01 -0.45 -1.40 

60 -0.24 0.19 -0.89 -0.01 -0.25 -1.42 

120 -0.48 0.19 0.16 -0.03 -0.10 -1.13 

180 -0.85 1.36 0.09 0.06 0.09 -1.13 

Tb 

0 1075.60 1362.93 1277.09 0.19 2.15 -2.69 

15 26.27 35.88 31.22 0.01 -0.14 -1.44 

30 0.27 1.93 0.63 -0.02 -0.30 -1.04 

45 0.81 1.55 0.28 0.00 -0.46 -1.57 

60 -0.39 1.14 -0.14 0.02 -0.27 -1.36 

120 -0.40 1.53 -0.20 -0.02 -0.21 -1.46 

180 -0.78 1.39 -0.29 0.00 -0.07 -1.37 

Yb 

0 1.76 13.25 4.56 1010.73 1061.39 1116.90 

15 -1.35 0.75 -0.29 16.94 18.23 17.84 

30 -0.96 0.79 -0.67 4.58 4.72 3.62 

45 -0.49 0.34 0.80 2.52 2.32 1.32 

60 -1.33 1.03 -1.11 1.49 1.25 0.27 

120 -0.98 1.20 -0.57 1.06 0.89 -0.59 

180 -0.88 0.27 -0.73 1.32 1.39 -0.68 

 

 



- 80 - 
 

  

Table B.4: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.125 g • L-1 of commercial activated carbon 

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Yb 

0 -521.248 29.678 33.467 51.939 2.464 1.868 1.774 

30 -1194.462 8.665 7.944 19.451 54.507 54.891 56.761 

45 -545.726 2.996 3.518 15.383 32.423 32.400 32.134 

60 -489.107 0.241 3.462 9.449 24.538 25.122 25.471 

120 -1000.286 7.374 9.848 12.743 20.611 19.885 20.163 

Gd 

0 -10.178 136.470 -16.735 28.391 2224.904 2214.588 2281.031 

15 3.050 78.108 -1.711 26.643 1155.115 1138.969 1195.553 

30 -3.210 83.878 0.795 32.232 1240.209 919.673 1285.604 

45 1.131 75.449 -3.292 26.191 802.132 788.146 826.718 

60 -16.852 65.793 -4.427 21.000 1051.563 1037.049 1083.767 

120 -9.270 39.565 1.042 21.666 390.124 381.894 404.615 

Tb 

0 -2.847 -58.085 -2.268 2.647 15.103 13.569 8.613 

15 -21.007 -17.032 8.922 7.550 8.219 7.047 5.315 

30 176.599 -17.223 6.092 10.083 5.874 6.213 4.765 

45 185.836 -17.907 4.164 13.250 4.266 4.415 2.975 

60 -4.848 -14.841 4.756 6.104 6.196 5.073 4.553 

120 -6.987 -16.439 5.659 7.904 7.270 6.414 5.233 

Nd 

0 -7.535 463.444 475.626 536.165 6.069 2.242 3.423 

15 197.817 256.224 263.472 306.525 7.597 5.371 5.434 

30 184.359 239.711 241.530 277.353 3.210 2.855 2.693 

45 173.290 201.615 198.726 227.304 4.927 4.080 2.689 

60 -16.751 220.618 223.840 250.823 1.909 0.856 1.577 

120 178.264 199.534 5.437 228.801 2.861 1.301 1.721 
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Table B.4: (Continued)  

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Yb 

0 -4.607 20.042 -1.522 2417.592 2596.352 2652.004 

30 5.460 27.500 9.149 1790.626 1836.221 1870.130 

45 9.391 26.969 13.222 1772.579 1550.946 1581.807 

60 -1.611 16.356 5.401 1695.272 726.959 744.485 

120 1.813 15.994 3.942 1338.976 1508.021 1543.775 

Gd 

0 10.083 21.349 17.782 7.389 6.940 6.125 

15 15.304 27.920 20.954 11.262 11.190 11.237 

30 7.215 16.686 12.995 9.077 8.891 7.290 

45 12.111 20.247 17.108 8.389 8.388 7.402 

60 11.466 24.421 16.939 8.515 8.387 8.361 

120 3.078 13.928 8.969 4.663 4.578 3.535 

Tb 

0 1161.326 1413.162 1137.625 5.302 7.269 1.975 

15 392.141 483.452 425.610 6.582 7.581 4.724 

30 379.387 460.998 413.062 4.028 4.791 1.520 

45 328.802 403.063 358.104 2.005 2.868 -0.097 

60 292.562 362.237 317.752 3.291 3.992 1.327 

120 172.355 395.069 347.495 5.038 5.762 3.356 

Nd 

0 4.349 14.946 3.372 3.663 3.682 1.581 

15 -4.552 5.962 -2.222 5.991 5.976 4.308 

30 -3.495 4.640 -3.789 5.454 5.048 3.568 

45 -4.237 1.672 -3.586 2.253 1.817 -0.553 

60 -5.448 1.649 -2.993 2.093 1.925 -0.404 

120 -4.997 2.524 -5.078 2.569 2.694 0.883 
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 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Ce 

0 4487.437 -86.804 -27.675 54.403 1.144 31.115 3.958 

15 2839.435 -43.810 -4.842 45.426 3.096 20.282 4.399 

30 1984.846 -39.133 -8.823 26.182 1.448 15.974 4.755 

45 2101.639 -41.219 -11.792 21.096 2.623 16.479 3.224 

60 1582.521 -30.100 -9.228 19.964 2.113 13.607 3.956 

120 659.639 -16.055 -1.984 7.509 0.049 4.977 0.735 

Tb 

0 31.967 -80.332 17.365 18.378 13.541 8.902 1.724 

15 24.532 -39.975 14.845 17.022 15.245 11.349 9.157 

30 23.063 -37.279 3.507 5.606 23.936 21.084 21.127 

45 27.614 -21.902 2.597 3.636 4.920 4.722 2.958 

60 33.686 -20.707 1.816 6.933 12.423 10.614 9.323 

120 29.581 -22.024 3.193 -1.178 9.663 7.933 5.834 

Yb 

0 -728.687 4.423 6.504 19.377 33.489 31.198 32.850 

15 -1046.797 14.755 13.122 22.656 48.455 45.549 48.852 

30 -706.738 5.858 7.002 10.196 20.426 19.260 19.371 

45 -400.572 5.108 8.725 12.614 8.183 8.982 9.463 

60 -369.302 15.988 21.614 32.180 12.415 12.787 14.054 

120 -138.275 2.689 2.821 -2.267 0.956 1.641 1.488 

Gd 

0 9.624 161.227 -10.934 35.010 2154.056 2024.032 2196.438 

15 17.311 69.633 5.512 25.247 820.260 766.973 829.372 

30 27.343 127.720 13.505 47.227 735.235 519.323 741.556 

45 22.278 72.475 7.668 29.675 799.687 741.470 812.600 

60 16.953 56.932 7.082 26.291 658.124 608.846 670.609 

120 20.099 39.855 7.189 14.626 470.165 434.201 476.492 

Nd 

0 42.310 1958.751 2379.522 2563.865 51.568 32.384 36.452 

15 18.755 1168.027 1410.254 1526.581 17.199 8.031 10.464 

30 16.267 1156.168 1411.852 1522.602 24.801 14.547 16.360 

45 19.121 911.148 1079.424 1161.576 17.534 9.348 9.687 

60 14.752 1003.774 1219.146 1323.917 23.496 14.604 15.158 

120 18.310 728.066 875.371 946.910 21.064 13.622 15.278 

Table B.5: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.125 g • L-1 of banana peel activated carbon 



- 83 - 
 

Table B.5: (Continued)  

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Ce 

0 -9.619 -32.171 -10.122 25.676 23.585 23.452 

15 -2.477 -12.335 -0.600 1.782 1.169 -0.020 

30 16.606 12.003 21.991 4.184 3.783 3.324 

45 6.335 0.715 9.722 1.568 1.059 0.280 

60 -2.014 -7.436 0.635 7.651 6.863 6.648 

120 4.786 6.877 9.648 0.529 -0.080 -0.240 

Tb 

0 1656.753 2041.324 1933.424 -0.914 2.646 -5.749 

15 902.968 1110.140 1059.671 23.094 23.933 20.731 

30 721.136 885.482 847.117 21.952 21.991 20.062 

45 425.061 526.226 498.111 7.021 7.410 5.092 

60 422.094 524.951 497.287 8.156 8.300 7.174 

120 370.503 457.304 434.780 7.960 8.256 6.529 

Yb 

0 -1.710 20.820 3.725 2455.080 2628.923 2793.062 

15 -1.419 14.628 2.467 1820.623 1440.993 1527.084 

30 -4.763 6.916 -0.889 1323.065 655.409 695.760 

45 -4.162 5.987 -1.844 545.689 624.956 666.006 

60 -1.933 9.550 -0.039 763.179 501.246 535.282 

120 -3.978 1.679 -0.067 261.536 246.060 262.515 

Gd 

0 -14.603 -7.961 -8.287 28.622 26.816 26.783 

15 -7.459 -3.852 -2.145 2.882 2.401 1.366 

30 -10.431 -4.346 -3.347 11.472 10.021 10.014 

45 -6.248 -1.157 -2.059 4.104 3.439 2.479 

60 -6.122 -2.051 -1.743 9.377 8.289 7.872 

120 -6.045 0.214 -2.590 2.883 2.234 1.630 

Nd 

0 1.673 10.840 -16.486 4.949 4.274 2.960 

15 -0.311 9.709 -9.563 30.581 28.619 29.272 

30 1.283 12.016 -7.588 38.912 36.764 37.158 

45 6.282 16.069 0.216 21.508 19.966 19.737 

60 1.441 10.249 -5.158 38.394 36.033 37.022 

120 0.575 10.831 -3.143 23.304 21.587 21.076 
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Table B.7: Raw data collected from the ICP-AES showing concentration of equal parts cerium, 

gadolinium, and ytterbium in ultrapure water versus time using 0.125 g • L-1 of commercial activated 

carbon 

 

 Table B.7: (Continued) 

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Ce 

Gd 

Yb 

0 -12.481 -7.258 -9.990 748.642 750.838 762.728 

15 -11.550 9.900 2.824 339.582 341.484 347.301 

30 -9.866 -13.581 2.094 420.227 421.314 426.856 

45 -26.391 -17.288 -5.768 417.799 423.292 429.735 

60 -8.482 11.609 6.058 424.251 425.348 433.347 

120 -12.491 -3.325 -9.227 412.781 416.865 419.186 

 

  

Table B.6: Raw data collected from the ICP-AES showing concentration of REEs in ultrapure water 

versus time using 0.125 g • L-1 of orange peel activated carbon 

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Ce 

Gd 

Yb 

0 711.076 1.319 -21.519 -8.801 745.354 765.234 795.229 

15 390.798 40.432 -18.535 -28.601 357.870 360.952 379.737 

30 517.770 44.558 -22.973 22.529 432.033 438.444 469.672 

45 502.097 -3.144 -18.333 -27.984 429.273 439.395 464.567 

60 470.787 33.020 -17.368 -28.754 424.829 434.106 446.025 

120 488.444 41.845 -18.631 -12.690 414.206 413.791 433.299 

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Ce 

0 3705.067 -76.399 -24.745 44.312 0.624 26.190 3.665 

15 948.490 -19.241 -5.005 9.101 1.471 8.009 1.682 

30 434.973 -7.779 -3.609 5.240 -0.575 3.073 -0.300 

45 431.803 -9.419 -4.023 6.399 0.138 3.382 0.706 

60 162.384 -5.149 -2.493 -2.406 -0.583 1.068 -0.987 

120 73.001 -5.192 -1.653 -1.565 -1.232 0.537 -0.971 
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Table B.8: Raw data collected from the ICP-MS showing concentration of equal parts cerium, 

gadolinium, and ytterbium in river water versus time using 0.125 g • L-1 of commercial activated carbon 

 

 

Table B.8: (Continued) 

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Ce 

Gd 

Yb 

0 -1.738 -0.876 -3.050 357.597 331.001 355.753 

15 -1.747 -3.388 -2.985 238.657 219.980 238.200 

30 -1.914 -3.726 -2.685 225.646 207.336 226.098 

45 -2.599 -3.980 -1.941 221.164 203.009 221.656 

60 -1.526 -5.656 -1.924 215.522 198.212 215.808 

120 -1.943 -3.280 -2.978 220.307 202.015 220.163 

  

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Ce 

Gd 

Yb 

0 274.675 10.128 -8.991 9.941 343.925 305.290 317.321 

15 261.161 8.796 -6.536 10.643 255.662 225.675 237.547 

30 264.994 6.215 -7.671 11.792 245.529 215.358 227.064 

45 269.587 6.448 -8.444 6.877 241.015 211.583 224.332 

60 261.235 5.758 -7.872 8.381 237.453 207.877 217.944 

120 288.553 8.422 -6.994 6.263 260.610 227.693 241.587 
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Table B.9: Raw data collected from the ICP-MS showing concentration of equal parts cerium, 

gadolinium, and ytterbium in river water versus time using 0.125 g • L-1 of banana peel activated carbon 

 

Table B.9: (Continued) 

   

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Ce 

Gd 

Yb 

0 350.116 14.921 -9.067 16.821 389.255 337.862 364.018 

15 307.885 10.766 -9.684 9.101 327.271 284.076 303.407 

30 303.582 11.917 -8.995 6.758 314.960 273.852 292.548 

45 300.144 8.866 -8.087 11.537 292.466 254.068 270.026 

60 304.935 11.090 -9.709 8.620 301.288 260.664 277.150 

120 310.973 6.950 -8.693 7.671 295.283 255.796 271.112 

 Element 
Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Ce 

Gd 

Yb 

0 -2.075 -3.388 -2.779 428.593 390.789 428.633 

15 -1.765 -3.774 -2.275 345.634 315.071 344.635 

30 -1.817 -4.879 -2.870 333.756 304.949 333.333 

45 -2.099 -4.850 -2.867 302.871 276.084 302.224 

60 -2.618 -4.974 -2.206 312.558 284.071 311.213 

120 -3.037 -3.634 -3.330 301.309 273.762 300.092 
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Table B.10: Raw data collected from the ICP-AES showing concentration of equal parts cerium, 

gadolinium, and ytterbium in ultrapure water versus time using 0.125 g • L-1 of banana peel biochar 

 

Table B.10: (Continued) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Element 
Time 

(min) 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

Ce 

Gd 

Yb 

0 798.215 23.853 -6.317 24.18 780.373 761.337 762.3 

15 437.049 13.412 -5.619 5.046 477.057 457.542 467.396 

30 26.186 -0.989 -0.608 -3.791 0.838 0.116 0.032 

45 24.66 -0.792 -1.072 -1.971 0.322 -0.385 -1.081 

60 26.666 -0.395 -0.975 -5.324 0.647 0.295 0.499 

120 29.505 -0.056 -2.122 -7.333 0.599 -0.282 0.189 

 

 Element 

Time 

(min) 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Ce 

Gd 

Yb 

0 -3.374 -2.595 -1.11 725.764 702.386 717.221 

15 -1.559 -0.634 1.354 431.812 419.56 433.028 

30 -1.621 1.227 0.162 0.24 0.132 -0.436 

45 -1.91 2.045 0.509 0.116 -0.09 -0.096 

60 -1.741 0.974 -0.127 0.123 -0.191 -0.255 

120 -1.295 0.081 0.261 0.093 -0.363 -0.634 
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Table B.11: Raw data collected from the ICP-AES of 3 tests showing concentration of gadolinium in 

synthetic wastewater versus dose of FeCl3 using a 5x synthetic wastewater stock solution 

Dose of 

FeCl3 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

0 47.15 0.791 -9.972 -1.182 -0.644 0.163 -2.187 

1 44.925 0.314 -10.523 -6.504 3.133 3.655 2.161 

2 44.758 -0.234 -9.714 -0.678 8.374 7.251 5.824 

3 40.782 0.699 -9.768 -0.285 7.671 7.543 5.56 

4 44.799 -0.561 -9.242 -3.599 7.171 7.478 5.831 

5 47.943 1.372 -9.303 -5.687 7.645 6.333 5.824 

0 50.49 1.448 -10.049 -6.147 -0.919 0.397 -1.038 

1 47.557 0.834 -9.959 -6.918 3.229 3.511 1.921 

2 46.002 1.214 -8.81 -2.902 5.761 6.703 5.045 

3 43.656 2.209 -10.415 -3.568 5.775 5.385 3.713 

4 50.465 0.548 -9.422 -2.244 7.692 7.021 5.947 

5 51.143 1.329 -10.209 0.879 5.435 5.772 4.593 

0 45.567 -0.251 -9.624 -2.551 -1.581 0.269 -1.85 

1 52.324 1.335 -10.167 -2.561 3.812 3.567 1.525 

2 44.925 1.112 -10.654 -5.048 7.27 6.91 6.034 

3 52.465 -0.851 -8.846 -1.735 5.927 5.575 4.555 

4 47.895 -0.484 -10.624 -1.77 6.502 5.538 4.81 

5 48.508 0.64 -9.91 -3.22 7.511 6.721 5.22 
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Table B.12: Raw data collected from the ICP-AES of 3 tests showing concentration of gadolinium in 

synthetic wastewater versus dose of FeCl3 using a 20x synthetic wastewater stock solution 

Dose of 

FeCl3 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

0 47.15 0.791 -9.972 -1.182 -0.644 0.163 -2.187 

1 44.925 0.314 -10.523 -6.504 3.133 3.655 2.161 

2 44.758 -0.234 -9.714 -0.678 8.374 7.251 5.824 

3 40.782 0.699 -9.768 -0.285 7.671 7.543 5.56 

4 44.799 -0.561 -9.242 -3.599 7.171 7.478 5.831 

5 47.943 1.372 -9.303 -5.687 7.645 6.333 5.824 

0 50.49 1.448 -10.049 -6.147 -0.919 0.397 -1.038 

1 47.557 0.834 -9.959 -6.918 3.229 3.511 1.921 

2 46.002 1.214 -8.81 -2.902 5.761 6.703 5.045 

3 43.656 2.209 -10.415 -3.568 5.775 5.385 3.713 

4 50.465 0.548 -9.422 -2.244 7.692 7.021 5.947 

5 51.143 1.329 -10.209 0.879 5.435 5.772 4.593 

0 45.567 -0.251 -9.624 -2.551 -1.581 0.269 -1.85 

1 52.324 1.335 -10.167 -2.561 3.812 3.567 1.525 

2 44.925 1.112 -10.654 -5.048 7.27 6.91 6.034 

3 52.465 -0.851 -8.846 -1.735 5.927 5.575 4.555 

4 47.626 0.138 -5.753 -3.629 7.126 6.033 4.892 

5 44.002 0.967 -8.634 1.564 3.938 4.175 3.424 
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Table B.13: Raw data collected from the ICP-AES of 3 tests showing concentration of gadolinium in 

wastewater versus dose of FeCl3  

Dose of 

FeCl3 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

0 -31.682 -1.88 -16.603 -2.513 -9.288 1.187 -15.258 

1 -30.542 -0.815 -15.519 -1.435 -10.13 1.267 -16.262 

2 -23.511 -2.108 -15.568 -3.272 -8.825 1.031 -15.344 

3 -27.16 -1.238 -15.485 -4.29 -8.813 1.144 -15.278 

4 -21.013 -0.718 -14.937 -3.467 -9.567 0.896 -15.954 

5 -22.165 0.638 -16.425 -3.286 -9.296 1.182 -15.47 

0 -25.401 -0.23 -15.979 -1.33 -9.418 0.941 -16.476 

1 -25.425 -1.912 -16.977 -1.879 -7.425 0.896 -15.878 

2 -19.139 -1.26 -15.384 -2.963 -9.305 1.447 -15.987 

3 -20.749 -2.766 -15.506 4.102 -9.413 1.609 -16.412 

4 -24.933 -1.734 -16.859 -1.978 -8.764 1.621 -16.581 

5 -16.927 -1.548 -16.686 -0.568 -9.424 0.831 -16.099 

0 -19.633 -3.552 -16.564 2.305 -10.383 1.494 -16.74 

1 -13.498 -0.723 -16.359 2.457 -10.793 1.031 -17.003 

2 -20.38 1.984 -16.353 -0.093 -9.803 1.147 -16.565 

3 -16.746 -1.227 -16.348 -4.107 -9.945 1.849 -16.297 

4 -13.731 -4.778 -16.709 -0.992 -9.815 0.983 -16.444 

5 -16.26 -3.773 -17.831 -0.633 -9.661 1.167 -16.388 
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Table B.14: Raw data collected from the ICP-AES of 3 tests showing concentrations of equal parts 

cerium, gadolinium, and ytterbium in wastewater versus dose of FeCl3 

Dose of 

FeCl3 

Ce 

535.353 

{63} 

(Axial) 

Nd 

406.109 

{83} 

(Axial) 

Nd 

430.358 

{78} 

(Axial) 

Nd 

378.425 

{89} 

(Axial) 

Gd 

335.047 

{101} 

(Axial) 

Gd 

342.247 

{98} 

(Axial) 

Gd 

310.050 

{109} 

(Axial) 

0 -17.747 0.808 -17.617 -0.842 -10.365 0.533 -17.155 

1 -5.783 1.372 -17.274 1.167 -10.53 0.406 -18.028 

2 -14.138 -0.473 -16.62 0.863 -10.317 1.362 -17.101 

3 -12.851 0.479 -17.371 0.506 -10.645 0.786 -17.801 

4 2.29 -0.102 -17.651 2.138 -10.895 1.114 -17.294 

5 3.189 -1.154 -15.844 -1.937 -10.671 1.527 -16.761 

0 0.848 -1.685 -15.199 -5.358 -12.059 0.458 -18.067 

1 2.107 -1.246 -16.727 -3.842 -10.676 1.108 -18.319 

2 -0.078 0.209 -16.329 -2.154 -10.941 0.798 -17.787 

3 0.576 -0.177 -16.383 -0.246 -11.452 1.254 -17.618 

4 2.167 -1.703 -16.925 -1.357 -11.069 0.954 -18.167 

5 5.233 0.912 -16.389 0.913 -10.547 1.696 -17.368 

0 -6.076 0.344 -16.094 -4.994 -11.568 0.361 -18.348 

1 -3.403 -0.734 -16.803 -0.114 -10.897 0.717 -17.124 

2 3.466 0.709 -17.322 -3.87 -10.805 1.437 -16.933 

3 -2.427 -0.289 -17.257 0.981 -10.412 1.027 -17.757 

4 -2.186 0.634 -16.808 -1.108 -11.444 1.083 -17.555 

5 5.848 -2.615 -16.736 -2.256 -10.374 1.846 -16.942 
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Table B.14: (Continued) 

Dose of 

FeCl3 

Tb 

350.917 

{96} 

(Axial) 

Tb 

332.440 

{101} 

(Axial) 

Tb 

367.635 

{92} 

(Axial) 

Yb 

328.937 

{102} 

(Axial) 

Yb 

289.138 

{116} 

(Axial) 

Yb 

297.056 

{113} 

(Axial) 

Tb 

350.917 

{96} 

(Axial) 

0 -0.152 -0.578 -4.281 1.461 1.282 2.301 -0.152 

1 -0.092 -1.952 -3.748 1.517 1.243 2.723 -0.092 

2 0.47 -2.791 -4.748 1.706 1.298 3.29 0.47 

3 -0.354 -0.84 -4.291 1.303 0.704 2.623 -0.354 

4 0.023 -0.408 -3.742 1.416 1.234 2.44 0.023 

5 0.07 -0.947 -3.854 1.341 1.039 2.586 0.07 

0 0.218 -3.709 -3.64 1.545 1.264 2.229 0.218 

1 0.017 -1.497 -4.417 1.762 1.26 2.705 0.017 

2 -0.227 -1.279 -4.166 1.756 1.547 2.997 -0.227 

3 0.294 -3.168 -3.35 1.535 1.265 2.586 0.294 

4 -0.237 -1.623 -3.715 1.462 0.933 2.782 -0.237 

5 -0.116 -0.863 -4.215 1.431 0.929 2.783 -0.116 

0 -0.292 -0.925 -3.531 2.148 1.811 3.518 -0.292 

1 -0.175 -0.453 -3.975 1.996 1.609 3.458 -0.175 

2 0.297 -2.166 -3.257 1.721 1.153 2.958 0.297 

3 -0.672 -2.494 -4.537 1.742 1.401 2.956 -0.672 

4 0.619 -1.523 -4.794 1.512 1.062 2.953 0.619 

5 -0.414 -1.23 -4.384 1.694 1.215 2.669 -0.414 
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Table B.15: Effluent concentrations of sodium, magnesium, calcium, and potassium in waste water 

samples (Batch 1). 

Sample Na (µg • L-1) Mg (µg • L-1) Ca (µg • L-1) K (µg • L-1) 

E2 66093 7891 77777 11376 

E3 83923 8604 86396 11591 

E4 70439 8097 85400 11306 

E5 75508 8644 88250 12689 

E6 86378 9909 101810 14986 

E7 90949 9246 93517 13956 

E8 98828 9209 93768 13323 

E9 77451 9235 91557 12504 

E10 76229 9533 97983 13183 

E11 82973 9966 103980 12300 

E12 95049 10049 110431 12274 

E13 75160 9950 100637 10889 

E14 83022 10769 114709 10293 

E15 84485 11253 121725 10635 

E17 90904 12237 131118 9165 

E20 83650 11358 103461 14465 

E22 74503 10540 88939 14120 

E23 82549 11709 101386 14257 

Average 82116.33 9900.01 99602.58 12406.26 
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Table B.16: Effluent concentrations of sodium, magnesium, calcium, and potassium in waste water 

samples (Batch 2). 

Sample Na (µg • L-1) Mg (µg • L-1) Ca (µg • L-1) K (µg • L-1) 

E1 84262 14963 85735 12421 

E2 91553 16098 89939 15117 

E3 98834 16458 86303 18693 

E4 97362 16005 83749 18002 

E5 91592 15697 80347 17042 

E6 94631 15818 80687 17657 

E7 101731 16115 79418 16724 

E8 103431 15726 81294 17239 

E9 97348 16080 82876 18754 

E10 91262 15272 76008 18092 

E11 101829 17600 90238 19888 

E12 139854 18019 91420 20709 

E13 102498 18542 93399 21103 

E14 94638 18348 89947 20395 

E15 107024 19179 94328 20688 

E16 105162 18246 90417 18406 

E17 108865 18824 95042 18391 

E18 99505 18493 91039 18081 

E19 98107 18250 88806 15856 

E20 99888 17451 90246 13974 

E21 89960 17304 96379 12004 

E22 95247 17183 101493 11185 

E23 99974 17284 99170 11799 

E24 88815 17171 105140 11633 

Average 99307.29 17088.53 89309.13 16827.16 
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Table B.17: Effluent concentrations of sodium, magnesium, calcium, and potassium in waste water 

samples (Batch 3). 

Sample Na (µg • L-1) Mg (µg • L-1) Ca (µg • L-1) K (µg • L-1) 

E1 85125 16644 92301 10649 

E2 85217 17266 92924 11957 

E3 84761 17824 87493 14629 

E4 90390 18282 89827 15846 

E5 89113 18083 80691 15984 

E6 88771 18890 83389 16320 

E7 108421 18403 81175 16647 

E8 100477 18837 84061 16399 

E9 102296 19031 83265 17103 

E10 107089 18861 87877 17667 

E11 105708 18486 86368 17864 

E12 100017 18441 84309 18912 

E13 98284 17687 81877 19781 

E14 86035 17681 78194 17458 

E15 85099 17765 78708 16449 

E16 83143 18163 80678 16744 

E17 82717 17841 81606 15229 

E18 77404 17569 78264 15017 

E19 81528 17109 80588 14164 

E20 80517 17395 85699 13179 

E21 82053 15700 88131 11806 

E22 87335 15768 92698 11063 

E23 91778 14384 97398 10058 

E24 89007 14577 91044 8979 

Average 90511.89 17528.57 85356.87 14996.06 
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Table B.18: Influent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water samples 

(Batch 1). 

Sample NO3 (mg • L-1) SO4 (mg • L-1) Cl (mg • L-1) PO4 (mg • L-1) 

E1  - 83.25   132.34   6.82   

E2  - 75.88   94.85   4.36   

E3  - 74.95   127.23   3.93   

E4  - 76.09   105.90   4.18   

E5 0.03   80.13   98.29   4.11   

E6 0.24   81.55   111.27   5.07   

E7 0.02   85.07   123.60   4.72   

E8  - 83.55   133.88   4.87   

E9 0.02   81.32   111.37   4.84   

E10  - 81.24   112.24   4.63   

E11  - 81.77   116.37   3.94   

E12  - 84.34   126.67   4.36   

E13 0.03   84.36   120.43   4.44   

E14 0.06   83.26   127.14   3.22   

E15  - 85.24   137.09   2.81   

E16 0.03   84.24   144.25   2.59   

E17 0.04   85.17   143.57   3.08   

E18  - -   - -  

E19  - -   - -  

E20 -  84.97   130.46   8.82   

E21  -  -  -  - 

E22 0.04   85.26   113.51   8.38   

E23 0.06   84.60   116.04   7.04   

E24  - -   - -  

Average 0.06   82.31   121.33   4.81   
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Table B.19: Influent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water samples 

(Batch 2). 

Sample NO3 (mg • L-1) SO4 (mg • L-1) Cl (mg • L-1) PO4 (mg • L-1) 

E1 - 133.3786 113.11754 1.96 

E2 - 130.8462 123.09482 3.00 

E3 - 135.3239 125.68224 3.83 

E4 - 145.7476 131.14263 3.20 

E5 - 129.1355 106.29836 2.55 

E6 - 145.9418 117.51504 2.63 

E7 - 140.7060 148.70993 2.40 

E8 - 110.4902 107.64278 1.55 

E9 - 112.3708 94.66780 1.45 

E10 - 83.4846 67.74874 1.11 

E11 - 116.9686 98.61051 1.49 

E12 - 138.8746 182.67107 2.18 

E13 - 142.9956 113.22942 2.10 

E14 - 139.6582 114.31904 2.70 

E15 - 139.9258 129.82106 2.18 

E16 - 129.9964 131.97954 2.59 

E17 - 139.9748 137.97989 2.26 

E18 - 136.3109 115.86080 2.01 

E19 - 123.4424 112.99013 2.01 

E20 - 131.7714 120.23956 1.67 

E21 - 99.1467 92.61853 1.03 

E22 - 109.3203 114.75824 0.91 

E23 - 130.8873 128.26213 1.50 

E24 - 126.3996 124.57331 1.59 

Average - 128.04575 118.89721 2.07839 
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Table B.20: Effluent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water 

samples (Batch 1) 

Sample NO3 (mg • L-1) SO4 (mg • L-1) Cl (mg • L-1) PO4 (mg • L-1) 

S1 - 139.3694 140.58562 0.06 

S2 - 143.7758 149.90593 0.09 

S3 - 138.7407 148.15972 0.11 

S4 - 143.8770 154.76218 0.16 

Average - 141.44 148.35 0.10 

 

Table B.21: Effluent concentrations of nitrates, sulfates, chlorides, and phosphates in waste water 

samples (Batch 2) 

Sample NO3 (mg • L-1) SO4 (mg • L-1) Cl (mg • L-1) PO4 (mg • L-1) 

S1 26.14083 85.8323 162.76644 1.11493 

S2 23.72259 83.4621 161.44017 1.38863 

S3 - - - - 

S4 19.12863 82.7814 149.21612 1.02976 

S5 19.38229 82.1737 147.28665 0.89623 

Average 22.09 83.56 155.18 1.11 
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Table B.22: Raw data collected from the ICP-MS showing concentration of elements in river water 

Measurement Concentration (µg • L-1) 

139La (KED) 0.058769 

140Ce (KED) 3.067872 

141Pr (KED) 0.017972 

146Nd (KED) 0.072114 

147Sm (KED) 0.023193 

151Eu (KED) 0.004545 

152Sm (KED) 0.024873 

153Eu (KED) 0.004599 

157Gd (KED) 0.103312 

158Gd (KED) 0.10491 

159Tb (KED) 0.003163 

161Dy (KED) 0.016369 

163Dy (KED) 0.015949 

165Ho (KED) 0.003383 

166Er (KED) 0.010293 

169Tm (KED) 0.001473 

172Yb (KED) 0.119198 

173Yb (KED) 0.118767 

174Yb (KED) 0.119352 

175Lu (KED) 0.001785 
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Appendix C: Supplementary Tables 
 

Table C.1: Formula for synthetic wastewater treatment samples 

Component Concentration (mg • L-1) 

Sodium 93.30 

Magnesium 15.19 

Calcium 100.25 

Potassium 14.72 

Phosphate 1.71  

 

Table C.2: ICP-AES concentrations of elements in synthetic wastewater 

Component Concentration (mg • L-1) 

Sodium 82.92 

Magnesium 14.72 

Calcium 6.45 

Potassium 12.02 

Phosphate -  
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Appendix D: Sample Calculations 

Concentration Calculations 
In this example, magnesium sulphate heptahydrate (MgSO4 • 7H2O) is used to reach the desired 

concentration of 15,190 µg of magnesium per liter.  

Known: 

𝑀𝑊MgSO4 • 7H2O = 246.47 
𝑔

𝑚𝑜𝑙
 

𝑀𝑊Mg = 24.31 
𝑔

𝑚𝑜𝑙
 

𝑀𝑊SO4 = 96.06 
𝑔

𝑚𝑜𝑙
 

𝑀𝑊7H2O = 126.10 
𝑔

𝑚𝑜𝑙
 

𝐶𝑀𝑔 = 15,190 
µ𝑔

𝐿
     (Desired Concentration) 

𝐶𝑆𝑂4 = 𝐶𝑀𝑔 •  
𝑀𝑊SO4

𝑀𝑊Mg
= 15,190 

µ𝑔

𝐿
• 

96.06 
𝑔

𝑚𝑜𝑙

24.31 
𝑔

𝑚𝑜𝑙

= 60,035.03
µ𝑔

𝐿
 

𝐶7𝐻2𝑂 = 𝐶𝑀𝑔 •  
𝑀𝑊7H2O

𝑀𝑊Mg
= 15,190 

µ𝑔

𝐿
• 

126.10 
𝑔

𝑚𝑜𝑙

24.31 
𝑔

𝑚𝑜𝑙

= 78,811.76
µ𝑔

𝐿
 

𝑀𝑎𝑠𝑠 = 𝑉𝑜𝑙𝑢𝑚𝑒 • (𝐶𝑀𝑔 + 𝐶𝑆𝑂4 + 𝐶7𝐻2𝑂) 

𝑀𝑎𝑠𝑠 = 1 𝐿 • (15,190 
µ𝑔

𝐿
+  60,035.03

µ𝑔

𝐿
+ 78,811.76

µ𝑔

𝐿
)  

𝑀𝑎𝑠𝑠 = 154,036 µ𝑔   This is the amount of magnesium sulphate heptahydrate (MgSO4 • 7H2O) that 

needs to be weighed to achieve 15,190 µg of magnesium per liter. 

 

Adsorption Calculations 
This example is for the maximum adsorption of Ce by BPAC at a 125 mg/L dose: 

Knowns: 

Initial Ce concentration: 4487.44 g/L 

Final Ce concentration: 659.64 g/L 

Percent reduction equation: 

% 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐹𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛
• 100 
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Calculation: 

% 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐶𝑒 =  
4487.44 

𝑔
𝐿 − 659.64

 𝑔
𝐿

4487.44 
𝑔
𝐿

• 100 

% 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑒 = 85.3% 

 

Activated Carbon Adsorption Capacity Calculations 

In this example, we will calculate the adsorption capacity of BPAC for Ce 

Knowns: 

Initial Ce concentration, Ci: 4487.44 g/L 

Final Ce concentration, Cf: 659.64 g/L 

Volume of solution, V: 0.2 L 

Weight of adsorbent, m: 125 mg 

 

Adsorption capacity equation: 

 

𝑄𝑐 =  
(𝐶𝑖 − 𝐶𝑓) ∗ 𝑉

𝑚
 

Calculation: 

 

𝑄𝑐 =  
(4487.44

g
L − 659.64

g
L ) ∗ 0.2𝐿

125 𝑚𝑔
∗

1 𝑚𝑔

1000 g
 

 

𝑄𝑐 = 0.0061 
𝑚𝑔 𝑜𝑓 𝑅𝐸𝐸

𝑚𝑔 𝑜𝑓 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑛𝑡
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Appendix E: Design Analysis 
 

The urban wastewater treatment plant of Grand Nancy is responsible for treatment of wastewater 

for 60,000 people in the North-East of France (Pons et al, 2011). There are two parallel biological lines, 

each containing a reactor and a clarifier. The reactor, similar to a completely stirred tank reactor (CSTR), 

and the clarifier have respective volumes of 5,000 m3 and 3,000 m3. After these stages, the two lines 

combine to a tertiary treatment step for phosphorus removal. Recent analysis has shown a high 

concentration of Gd in the influent and effluent of the treatment plant at 3.0 mg • L-1 and 2.8 mg • L-1 

respectively. MRI tracer dyes include Gd, and the REE is excreted by people in urine within 24 hours of 

injection. In accordance with the Urban Waste Water Treatment Directive of the European Union, the 

effluent concentration of Gd in wastewater discharges cannot exceed 0.4 mg • L-1 (European Commission, 

2019) The managers of the plant decided to add FeCl3 as a coagulant in their tertiary treatment to help 

remove the Gd. 

FeCl3 has been proven to remove REEs in wastewater treatment. The managers of the plant use 

previous experimental data to determine that they will dose their wastewater with 3 mg • L-1 of FeCl3 

solution in tertiary treatment for the effective removal of Gd. Previous treatment experiments revealed 

that at a pH of 4-7, the removal of REEs is optimal (Quinn et al, 2006; Anastopoulos et al, 2016). 

However, this is only desirable in small scale experimentation. WWTPs must maintain a neutral pH in 

order to be discharged back into the ecosystem. As a result, the cost to lower the pH for treatment, then to 

raise it for discharge is too high and unnecessary for the plant managers. The managers decided to omit 

this step of the treatment process. As a result, 3 mg • L-1 was determined to be the optimal dose for this 

plant’s tertiary treatment phase. 

Tertiary treatment can be altered to the specific needs of a treatment plant. In this design, the 

parallel biological lines will meet in a tank with a capacity of 20,000 m3, where the water will be dosed 

with 60 kg of FeCl3 to achieve the 3 mg • L-1 dose. Mixers in the tank will rapidly mix the solution for 20 
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minutes, followed by a flocculation period of 40 minutes, and finally a settling period of 180 minutes to 

allow for flocs to sufficiently settle to the bottom of the tank. 

The Grand Nancy treatment plant already had the necessary equipment to complete the tertiary 

treatment. However, the FeCl3 was an additional cost to the treatment process. Considering a dose of 3.0 

mg • L-1 and the daily influent for the treatment plant to be 120 million liters per day, the total amount of 

FeCl3 on a daily basis would be 360 kg. The average cost of FeCl3 is about $551 per metric ton (FeCl3 

Price, 2018), therefore the total daily cost for the plant would be $198.36 without any bulk deals. This 

compounds to a yearly fee of $72,401.40 for the treatment plant. 
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Appendix F: Motive for Obtaining a Professional Engineer License 
 

 Being a Professional Engineer (PE) is a title obtained through hard work and diligence in both the 

classroom and out in the field. There are several steps that must be taken in order to obtain this license. 

Prospective PEs must first obtain a bachelors or masters engineering degree from an Adult Basic 

Education and Training (ABET) accredited four-year college. Next, they must pass the Fundamentals of 

Engineering exam. Afterwards, they need to complete four years of engineering experience under a 

licensed PE. Finally, the candidate is qualified to take the Principles and Practice of Engineering exam. In 

order to retain the PE license, the engineer must maintain and improve their skills throughout their career. 

Obtaining this license is an enormous benefit to any engineer, and should be a title sought out by any 

young engineer. 

 Professionally, the PE title opens many new doors and opportunities. Individuals holding this title 

are generally more sought after by employers. Only a licensed engineer can prepare, sign, seal, and 

submit engineering plans to a public authority for approval. Engineers holding a PE license typically earn 

higher wages than their unlicensed counterparts. From a legal standpoint, any engineer entering the 

consulting field is required to obtain a PE license. This holds true for engineers seeking to start a private 

practice as well. More flexibility becomes available in one's career, able to specialize in one particular 

field or maintain a broad career in engineering. The PE title also gives clients a sense of trust and security 

when they hire you for a job, offering a “stamp of approval” showing your hard work and effort towards 

the engineering community. Not only does the PE license provide professional benefits, there are many 

personal benefits offered by this title. 

 Obtaining the title of PE is held in high esteem within the engineering community. It carries 

respect and increased responsibility throughout an engineer’s career. This title shows the diligence and 

passion of an individual, and how they were driven to take the extra step to achieve this license. Some 

engineers believe they do not need a PE in their career; however, the future is unpredictable and it is 
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unknown whether or not it will be needed in the future. For example, many states require individuals 

teaching engineering to have a PE license. 

 The PE license is the ultimate achievement for an engineer. This title grants an individual with 

many professional and personal benefits that are lasting throughout their lifetime. Obtaining a PE license 

is an objective that should be sought out by any young engineer, as it shows the dedication and 

excitement one holds for their profession. 

 

 

 

 

 

 

 


	Acknowledgements
	Abstract
	Table of Tables
	Table of Figures
	Introduction
	Background
	Rare Earth Elements
	Rhine-Moselle Watershed
	Water Production
	Wastewater Treatment Plant
	Primary Treatment
	Secondary Treatment
	Tertiary Treatment


	Methodology
	Chemicals and Reagents
	Lab Safety
	Preparation of Biological Activated Carbon and Biochar
	Water Production Experiments
	Characterization of Activated Carbon and Biochar
	Wastewater Treatment Experiments

	Results and Discussion
	REE Concentration versus Time
	Water Production Optimal Dose
	Effects of Activated Carbon on REEs
	Adsorption Selectivity of REEs
	Effects of Banana Peel Biochar on REEs
	Characterization of Activated Carbon and Biochar
	Wastewater Treatment Results

	Conclusion
	Recommendations
	List of Acronyms and Abbreviations
	References
	Appendix A: Experimental Data Tables
	Appendix B: Raw Data Tables
	Appendix C: Supplementary Tables
	Appendix D: Sample Calculations
	Concentration Calculations
	Adsorption Calculations
	Activated Carbon Adsorption Capacity Calculations

	Appendix E: Design Analysis
	Appendix F: Motive for Obtaining a Professional Engineer License

