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ABSTRACT 

This paper explores the fit of a stochastic volatility model, in which the Box-Cox transformation 

of the squared volatility follows an autoregressive Gaussian distribution, to the continuously 

compounded daily returns of the Australian stock index. Estimation was difficult, and over-fitting 

likely, because more variables are present than data. We developed a revised model that held a 

couple of these variables fixed and then, further, a model which reduced the number of variables 

significantly by grouping trading days. A Metropolis-Hastings algorithm was used to simulate the 

joint density and derive estimated volatilities. Though autocorrelations were higher with a smaller 

Box-Cox transformation parameter, the fit of the distribution was much better. 

  



3 
 

1 INTRODUCTION 

1.1 Background 
The use of options dates back to the issuance of insurance on the delivery of colonial cargo 

ships, however, as MacKenzie (2003) argues, “until the 1970s age had not brought them 

respectability”. As the most basic form of risk transfer, the option remains a building block of 

modern financial instruments. The purchase of an option is effectively a gamble with a varying 

payoff. To the purchaser of a European Call, the payoff occurs at an agreed upon date in the future 

known as maturity and is dependent upon the final value of some asset and the strike price. If the 

final asset’s price is below the strike, no payoff is made. However, if the asset’s price is above the 

strike, the difference in price is paid to the purchaser of the option. This particular “gamble” on the 

price of an asset is called an option because it describes a contract where the purchaser of the 

option has the option of purchasing the agreed upon asset, at maturity, for the strike price K. Of 

course, such an option would not be exercised in the event that the price of the asset was below the 

strike. In either case, the payoff, as a function of the stock price, can be visualized as follows: 
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FIGURE 1. THE PAYOFF OF A CALL OPTION WITH STRIKE PRICE OF 30. 

While both the asset and the strike price are agreed upon at the time of issue, the strike is a 

fixed value (typically denoted as K) while the asset’s price is variable. Therein lies the obstacle of 

option pricing; the asset’s final price is unknown at the time of issue. Furthermore, option traders 

may want to exchange options after issue, but before maturity, necessitating an intermediate price. 

Since the trajectory, or path, of the asset’s price is not known in advance, models of the price give 

traders a framework in which to understand the option prices as well as transact with them. 

Apparently, it was Louis Bachelier who first applied probability (and what would later be 

known as stochastic analysis) to the description of stock price evolution. His description was based 

on the implicit assumptions that “small fluctuations in price seen over a short time interval should 

be independent of the current value of the price” and these fluctuations are independent and 

normally distributed. This leads to a trajectory known as Brownian motion and a rigorous 

mathematical basis would later be supplied by Wiener based on French physicist, Jean Perrin’s 

experimental work. (Davis 2006) 
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Brownian motion describes the path of a large particle floating in a fluid. Since the fluid consists 

of many relatively small particles moving rather quickly in all directions, the large particle is 

variously impacted and receives a random, non-negligible force at every instant. For a stock price, 

this can be imagined as a limiting case of a random walk. Imagine a person in possession of a coin 

and an urge for a workout. Each minute, this person flips the coin and takes a step: stepping to left if 

the coin lands one way and to the right if it lands the other. In order to make this process more 

continuous, the person changes his strategy and flips the coin twice per minute while taking steps 

only one half the size of the previous steps. Next, he flips the coin four times per minute while 

taking steps only one forth the size. Continuing until the coin is flipped every instant and the steps 

are infinitesimally small, we arrive at Brownian motion, a continuous-time random walk. 

At least one property of Brownian motion makes it entire unsuitable for describing long-term 

stock prices or the price of any asset for the matter: Brownian trajectories can go negative and the 

probability of this increases over time. Brownian motion remains widely used, however, as a 

description of a stock’s returns. In such a model, the stock price itself follows Geometric Brownian 

motion, described by the stochastic differential equation below: 

𝑑𝑆

𝑆
= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊. 

In this equation, S is the price of the stock, μ is the systemic drift, σ is the volatility and W is a 

Brownian motion (also known as a Wiener process). The left half represents the stock price return 

and the right consists of a drift term which is constant plus some multiple of the Brownian motion 

for randomness. This description of stock prices was “in the air” by the late 1950’s when Sprenkle 

as well as Samuelson and Osborne researched. (MacKenzie) 

Eventually making use of Sprenkle’s work, Black and Scholes were able to develop a pricing 

formula for options based on the assumption, among others, that stock prices follow Geometric 
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Brownian motion trajectories. Merton, unhappy with Black and Scholes’ assumption of “quadratic 

utility” as part of the Capital Asset Pricing Model, later, provided an alternative derivation of the 

same formula under the assumption that continuous trading was possible.  Interestingly enough, at 

the time Black and Scholes went to publish their work, many of their assumptions did not apply: 

transaction costs were nowhere near negligible, assets could be borrowed in any fraction and loans 

could  not be taken out at the risk free rate. “Wildly unrealistic” is the phrase MacKenzie uses to 

describe the relevance of Black, Scholes and Merton’s assumptions in 1973. MacKenzie argues that 

it was the very work of Black-Scholes-Merton that led to these assumptions “[becoming], while still 

not completely realistic, a great deal more so.” 

The Black-Scholes framework for option pricing relies on the assumption of constant volatility 

in the log-normal distribution of asset returns. However, since the crash of 1987, many assets have 

not demonstrated log-normal returns (Rubinstein 1994). 

Even before then, however, modelers have found volatility to change over time. Two main 

approaches have been used to extend the Black-Scholes framework, the autoregressive conditional 

heteroskedasticity (ARCH) model and the stochastic volatility (SV) model. 

1.1.1 Autoregressive Conditional Heteroskedasticity (ARCH) 
Articulated by Engle in his 1982 paper, "Autoregressive conditional heteroskedasticity with 

estimates of the variance of United Kingdom", the ARCH model has been fertile ground for 

extension. Engle focused on a model which assumes that the processes' volatility on a given day is 

equal to a weighted average of some number of previous days' returns. Higgins and Bera (1992), 

writing about their generalization to the ARCH model one decade later, contend "that ARCH models 

capture some important features of time series data, such as nonlinear dependence, nonnormality 

and over-dispersion." 
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Extensions of the ARCH model assume that a particular day's volatility is a function of previous 

days' returns and volatilities. Additionally, names of these extensions generally end with "ARCH". 

The generalized autoregressive conditional heteroskedasticity (GARCH, Bollerslev (1986)) model 

assumes that the processes' volatility is a weighted average of some number of previous days' 

volatilities as well as some, possibly different, number of previous days’ returns. Meanwhile, the 

Nonlinear ARCH (NARCH) model proposed by Higgins and Bera (1992) introduces a Box-Cox power 

transformation to the previous days' returns. Between NGARCH, IGARCH, EGARCH, GARCH-M, 

QGARCH, GJR-GARCH and TGARCH, a medley of constraints, nonlinear terms as well the ability to 

model asymmetry have resulted in a rich research space. So rich, in fact, that in an effort to capture 

all of these bountiful features, Hentschel (1995) integrated them into a generalized family of GARCH 

models (fGARCH) by introducing a few characteristic parameters. 

1.1.2 Stochastic Volatility 
Where the original Black-Scholes-Merton model assumes constant volatility in the stochastic 

differential equation describing the trajectory of a stock price, stochastic volatility (SV) models, 

assume that the volatility itself follows some stochastic process (possibly Brownian Motion). Thus, 

the model might be parameterized as: 

𝑑𝑆

𝑆
= 𝜇 𝑑𝑡 +  𝑣 𝑑𝑊, 

𝑑𝑣 =  𝛼 𝑑𝑡 +  𝛽 𝑑𝐵. 

Here, α and β may be a functions of the current stock price and the time, while B and W are 

Brownian motions with correlation ρ (possibly zero). Extensions do not stray too far from this 

framework in order to capture interesting features. The Heston, GARCH(1, 1) and 3/2 models all 

replace α with 𝜃(𝜔 − 𝑣), where ω is the value to which the volatility tends to revert and θ 

represents the rate at which this reversion occurs. This feature is very desirable because volatility 



8 
 

does not tend to wander to arbitrarily large values for very long (nor negative values for that 

matter). Tangentially, the difference between these three models is in their replacement of β with 

휁𝑣𝛿 , where ζ is the volatility of the volatility and δ takes on the values: ½; 1; and 3/2 respectively. 

1.2 Basic Volatility Model 
Carlos Blanco and David Soronow (2001) argue that mean reversion for energy prices supports 

intuition because price shocks (positive and negative) often dissipate and the price goes back to 

average levels. This paper will explore the basic Box-Cox transformed SV model used by Zhang and 

King (2008). The use of the Box-Cox transformation is to “allow for skewness in the marginal 

distribution of the squared volatility” (Zhang). In basic version of the discrete-time model is: 

𝑦𝑡 =  𝑔 𝛼𝑡 , 𝛿 휀𝑡 , 𝑡 = 1 …𝑛 

𝛼𝑡 = 𝜇 + 𝜙 𝛼𝑡−1 − 𝜇 + 𝜎𝑢𝑡 , 

where 𝜖𝑡~𝑁 0,1 , 𝑢𝑡~𝑁 0,1  and 

𝑔 𝛼𝑡 , 𝛿 =   1 + 𝛿𝛼𝑡 
1
𝛿   , 𝑖𝑓 𝛿 ≠ 0

𝑒𝛼𝑡                   , 𝑖𝑓 𝛿 = 0.
  

In this model, 𝛼𝑡  represents the Box-Cox transformed squared volatility with parameter δ; 𝑦𝑡  

represents the continuously compounded return; μ is the value to which the transformed volatility 

reverts and 𝜙 is the reversion rate. At each time step, randomness comes into the model via 𝜖𝑡  in a 

straight-forward way and  𝑢𝑡 , which impacts 𝛼𝑡  in addition to the mean reversion.  

Zhang and King (2008) compare the fit of a variety of their own Box-Cox extension of a log-

transformed SV model to: a similar model without the Box-Cox extension; a similar model without 

the heavy-tailed error assumption; a similar model without the return-volatility correlation; and 

finally, a t-GARCH(1,1) model. Since the Box-Cox transformation is equivalent to a log 

transformation when δ=0, they hoped that their Box-Cox transformation model would fit the data 
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significantly better than the other models and that the δ parameter be significantly far from zero. 

While they found strong evidence for the latter, two of their three criteria consequentially favored 

the t-GARCH(1,1) model. The Box-Cox transformation extension with heavy tails and correlation is 

the best, Zhang and King (2008) argue, because it is favored when comparing the distributions of 

the fitted residuals.  

Since only the 𝑦𝑡  variables are observable, the remaining parameters must be estimated to 

initialize the Metropolis-Hastings algorithm. There is difficultly in estimating 𝜇 and 𝛿, however. 

Consider that: 

𝑦𝑡 |𝛼𝑡 , 𝛿~𝑁  0,  1 + 𝛿𝛼𝑡 
1
𝛿  ; 

While the variance of this distribution,  1 + 𝛿𝛼𝑡 
1

𝛿 , can be estimated from the data, identifying the 

combination of 𝛼𝑡  and 𝛿 that led to this variance is an underspecified problem. Similarly, consider 

the conditional density for 𝛼𝑡  can be rewritten from: 

𝛼𝑡 |𝜇, 𝜙, 𝛼𝑡−1~𝑁(𝜇 + 𝜙 𝛼𝑡−1 − 𝜇 , 𝜎2) 

to: 

𝛼𝑡 − 𝜇 𝜙, 𝛼𝑡−1 − 𝜇~𝑁 𝜙 𝛼𝑡−1 − 𝜇 , 𝜎2 → 𝛼𝑡
∗ 𝜙, 𝛼𝑡−1

∗ ~𝑁 𝜙𝛼𝑡−1
∗ , 𝜎2 , 

then, in the log-case (𝛿 = 0): 

𝑦𝑡 |𝛼𝑡
∗, 𝛿~𝑁 0, 𝑒𝛼𝑡

∗+𝜇  . 

Thus, while it may be possible to estimate 𝛼𝑡
∗, it will not really be possible to discern the 

contribution from 𝜇. 

In this paper, the fit of the basic model (above) as well as a modification of the basic model 

(below) to the Australian All Ordinaries stock index was explored with the purpose of determining 



10 
 

the optimal 𝛿 parameter for the Box-Cox transformation as this is critical to the model and not 

easily observable. 

2 MODEL 

The basic model above, assigns one Box-Cox transformation of squared volatility to each time 𝑡, 

known as 𝛼𝑡 . The following extension groups these transformed volatilities, assigning one volatility 

to 𝑚 trading days. Of course, each trading day retains its individual return, known as 𝑦𝑡 . Thus, the 

model is redefined as: 

𝑦𝑡 =  𝑔 𝛼𝑠 , 𝛿 휀𝑡 , 𝑡 = 1 …𝑛 

𝛼𝑠 = 𝜇 + 𝜙 𝛼𝑠−1 − 𝜇 + 𝜎𝑢𝑠 , 𝑤𝑖𝑡 𝑠 = 1 …
𝑛

𝑚
 𝑎𝑛𝑑 𝑚|𝑛 

where 𝑚 is the number of daily returns per change in volatility, 𝑛 is the total number of trading 

days, 𝑠 =  
𝑡

𝑚
 , and the remaining parameters are as above. 

In order to determine values for the parameters of the model, a random walk Metropolis-

Hastings sampler was used with blocking. This algorithm works by sampling each parameter from 

its conditional posterior distribution iteratively. Proposal densities were used to sample 𝜙 and 𝛼𝑠 .  

Letting 𝛼 = (𝛼1 , 𝛼2 , … , 𝛼𝑛/𝑚 ), 𝑦 =  𝑦1 , 𝑦2 , … , 𝑦𝑛 , and 𝜃 = (𝜙, 𝜇, 𝜎), the posterior density of 

(𝜃, 𝛼) is: 

𝜋 𝜃, 𝛼 𝑦 =
𝑝 𝜃, 𝛼, 𝑦 

𝑝 𝑦 
=

𝑝 𝑦 𝜃, 𝛼 ∗ 𝑝 𝛼 𝜃 ∗ 𝑝 𝜃 

𝑝 𝑦 
∝ 𝑝 𝑦 𝜃, 𝛼 ∗ 𝑝 𝛼 𝜃 ∗ 𝑝 𝜃 . 

Following directly from Bayes’ Theorem, with 𝑝(𝜃) representing the prior distribution on 𝜃. 

Following fairly directly from the previous definition of the model and variables, we have: 
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𝑦𝑡~𝑁  0,  1 + 𝛿𝛼𝑠 
1
𝛿  

𝛼1~𝑁  𝜇,
𝜎2

1 − 𝜙2
  

𝛼𝑠~𝑁 𝜇 + 𝜙 𝛼𝑠−1 − 𝜇 , 𝜎2 . 

Meanwhile, priors were assumed for the variables of 𝜃: 

𝜙~𝑈 −1,1  

𝜇~𝑁 𝜇0 , 𝑞0  

𝑝 𝜎2 ~  
1

𝜎2
 

휁
2

+1

𝑒
−

𝑆𝑡
2𝜎2 . 

As in Zhang and King (2008), 𝜇0 , 𝑞0 , 𝑆𝑡 , and 휁 are hyperparameters. While 𝜇0 was estimated 

from the data, the remaining hyperparameters were set to 0.01, 0.001, and 0.001. The original 

formulation by Zhang and King (2008) contained an underlying Beta distribution for 𝜙 which was 

discarded because it necessitated two additional hyperparameters. The original formulation also 

convolved the distribution for 𝜇 with 𝜎. To avoid this dependence and simultaneously simplify the 

posterior distribution for 𝜎, the variance of the prior for 𝜇 simply contains 𝑞0 . 

The posterior, distributions for 𝛼𝑠  were thus found to be: 

𝑝 𝜙|α, μ, σ2 ∝  1 − 𝜙2𝑝(𝜓) 

𝑝(𝛼𝑛/𝑚 |zn/m
2 , αn

m
−1

, μ, ϕ, σ2) ∝ 𝑒
−

𝑧𝑛/𝑚
2

2𝑔𝑛/𝑚
 1

𝑔𝑛/𝑚
m ∗

1

𝜎
𝑒

 𝛼 𝑛
𝑚

−𝜇−𝜙 𝛼 𝑛
𝑚

−1
−𝜇  

2

/2𝜎2

 

𝑝(𝛼𝑠|zs
2 , αs−1 , αs+1 , μ, ϕ, σ2) ∝ 𝑒

−
𝑧𝑠

2

2𝑔𝑠
 1

𝑔𝑠
m ∗

1

𝜎2
𝑒

 𝛼𝑠−𝜇−𝜙 𝛼𝑠−1−𝜇  
2

+ 𝛼𝑠+1−𝜇−𝜙 𝛼𝑠−𝜇  
2

2𝜎2  
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𝑝(𝛼1|z1
2 , α2 , μ, ϕ, σ2) ∝ 𝑒

−
𝑧1

2

2𝑔1
 1

𝑔1
m ∗

1

𝜎
𝑒

 𝛼1−𝜇−𝜙 𝛼2−𝜇  
2

2𝜎2  

where 

𝑝(𝜓|α, μ, σ2)~𝑁  
  𝛼𝑠 − 𝜇  𝛼𝑠−1 − 𝜇 𝑛

𝑠=2

  𝛼𝑠 − 𝜇 𝑛−1
𝑠=2

,
𝜎2

  𝛼𝑠 − 𝜇 𝑛−1
𝑠=2

  

𝑧𝑖
2 =  𝑦𝑡

2

𝑖𝑚

𝑡= 𝑖−1 𝑚+1

. 

Obtaining the conditional posterior (not simply the posterior) allows the algorithm proceeds 

faster and more efficiently. For 𝛼𝑠  and 𝜙, this was not possible, however for 𝜇 and 𝜎 it was: 

𝜎2|α, μ, ϕ~𝐼𝐺  
𝑛 + 휁 + 2

2
,
𝑘

2
  

𝜇|α, ϕ, σ2~𝑁  
𝐴

𝐵
,
𝜎2

𝐵
 , 

where 

𝑘 =  1 − 𝜙2  𝛼1 − 𝜇2 +   𝛼𝑠+1 − 𝜇 − 𝜙 𝛼𝑠 − 𝜇  
2

𝑛
𝑚

−1

𝑠=1

+ 𝑆𝑡  

𝐴 =  𝑛 − 1  1 − 𝜙 2 +  1 − 𝜙2 +
𝜎2

𝑞0
 

𝐵 =  1 − 𝜙2 𝛼1 +  1 − 𝜙   𝛼𝑠 − 𝜙𝛼𝑠−1 

𝑛
𝑚

𝑠=2

+ 𝜇0

𝜎2

𝑞0
. 

The sampling of (𝜃, 𝛼) was done in this order:  

1) Sample 𝜙 from its posterior via random walk Metropolis step 

2) Sample 𝜎2  and 𝜇 directly based on their conditional posteriors 
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3) Sample 𝛼 using the random walk Metropolis step with Gaussian proposal densities 

3 METHODOLOGY 

Using the distributions from above, we have a mixture model with parameters α, 𝑦, and 

θ=(𝜙, 𝛿, 𝜇, 𝜎). Conditional distributions for each parameter facilitated the Bayesian, empirical 

Bayesian, analysis. Starting with the index prices, the follow transformation resulted in a dataset of 

mean-corrected and variance scaled continuously compounded returns: 

𝑟𝑡 = ln  
𝑝𝑡

𝑝𝑡−1
 ; 𝑦𝑡 =

𝑟𝑡 − 𝑟 ̅

𝑠
, 𝑓𝑜𝑟 𝑡 = 1 …𝑛 

where 𝑝𝑡  is the price process, 𝑟𝑡  is the return, 𝑟 ̅ is the mean return, and 𝑠 is the standard deviation 

of the returns.  

Starting with {𝑦𝑡}, the Markov Chain Monte Carlo (MCMC) method was used to simulate the 

joint distribution of the parameters. Because of the difficulty of sampling δ, it was fixed. Thus, δ was 

fixed at various values to see which one works the best. 

In order to kick-off the algorithm, parameter estimates were derived from the dataset. Since the 

returns were mean-corrected, the squared returns are representative of that day’s volatility. Thus, 

the Box-Cox transformation of the squared returns was used as the initial 𝛼𝑡  values. Because the 𝛼𝑡  

variables effectively form a series of equations with 𝜎𝑢𝑡  taking the role of a Gaussian error term, a 

simple linear regression was used to derive values for 𝜙 and 𝜇. The residuals of the regression were 

then used to generate an initial value for 𝜎. 

The following are plots of the closing price path of the index from January 2nd, 2000 through 

December 30th, 2005 as well as the mean-corrected and variance scaled returns for the same time 

period: 
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FIGURE 2. 

 

FIGURE 3.  

3.1 Fixing 𝜇 and 𝛿 
 The MCMC method seeks to create a joint distribution for the variables of the model. Since 

Metropolis-Hastings steps are used, the possibility of autocorrelation is high yet undesirable. The 

first 500 iterations were used as a burn-in period to ensure convergence, and 50% thinning was 

used to minimize the autocorrelations. To determine how much thinning is best, the 

autocorrelations for 𝜙 and σ are shown below in a run of 20,000 iterates holding μ constant (at an 

estimated value) and δ=-0.4 : 
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FIGURE 4. THE AUTOCORRELATIONS FOR PHI ARE ABOUT 1.0 EVEN OUT TO LAG 300 

 

FIGURE 5. THE AUTOCORRELATIONS FOR SIGMA DROP TO 0.9 QUICKLY 
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FIGURE 6. AUTOCORRELATION FOR SIGMA DROPS TO 0.93 AT LAG OF 5 

The high autocorrelations of 𝜙 and σ are disconcerting. With 50% thinning, the trajectories look 

reasonable since 𝜙 and σ are not expected to move too much. The trajectories show movement, but 

not wide swings. 
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FIGURE 7. 
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FIGURE 8. 

In order to get a sense of the autocorrelations for 𝛼𝑡  the smallest autocorrelation (considering 

all lags up to 300) was taken and plotted in the following histogram: 
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FIGURE 9. 

The tallest bar on the left represents about 25% of the 𝛼𝑡 ’s which is desirable. However, the 

remaining 𝛼𝑡 ’s are distributed all the way out to 0.5 and 0.8 autocorrelations. This is fairly 

surprising because a look at a histogram of the jumping frequencies for the 𝛼𝑡 ’s is quite promising: 
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FIGURE 10. 

Frequencies of 25% to 50% are to be expected with the Metropolis-Hastings algorithm, and in 

this run, almost all 𝛼𝑡 ’s are within or above that range. 

The trajectories of the 𝛼𝑡’s themselves also look very stable: 
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FIGURE 11. ALPHA TRAJECTORIES 

To get a better sense of the estimates for each 𝛼𝑡, the mean, along with a 90% band is 

plotted below. 
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FIGURE 12. FINAL ALPHA ESTIMATES (BLUE) ALONG WITH 90% BANDS (RED AND GREEN) 

The variability of the 𝛼𝑡’s (above) is not too great, suggesting that it is reasonable to 

derive estimated volatilities from them. Thus, this simulation yields estimated volatilities 

of: 
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FIGURE 13. ESTIMATED VOLATILITIES FOR FIXED MU AND DELTA=-0.4 

3.2 Grouping 
One of the pitfalls of the model as presented above is that there are more variables than data. 

For each stock price, there is one variable representing volatility, 𝛼𝑡 , in addition to a handful of 

other variables. Furthermore, μ and δ are not derivable from the data. These issues may be the 

underlying reason for the autocorrelations noted earlier because the presence of too many free 

variables might result in an over-fit model and, thus, Metropolis-Hastings steps that leave all of the 

variables very close to their previous values. 

Thus, the model was redefined so that each 𝛼𝑡  is not only the transformed volatility for 𝑦𝑡 , but is 

the transformed volatility for a consecutive group of m such 𝑦𝑡 ’s. On this basis, runs were made for 

a variety of δ values between negative two and positive two in order to determine which provides 

the optimal fit. 



24 
 

The autocorrelations look similar across different values of δ, but some differences are 

apparent. The general pattern is demonstrated with δ = -0.54: 

 

FIGURE 14. 

The following table summarizes the distributions of the autocorrelations of the 𝛼𝑡  parameters 

for each δ. 

Percentage of Autocorrelation Distribution 

Delta Below 0.1 Above 0.3 Above 0.8 

-2         13.16          76.64            3.29  

-1.6364         13.49          77.96            4.61  

-1.2727         14.47          76.32            9.54  

-0.9091         14.80          75.33          11.18  

-0.5455         15.46          72.37          10.53  

-0.1818         16.12          72.37          10.20  

0.1818         17.76          72.37          11.51  

0.5455         19.41          70.72          10.20  

0.9091         20.72          66.45            8.88  

1.2727         22.70          62.83            8.22  

1.6364         23.03          59.87            7.57  

2         29.93          48.68            5.26  
TABLE 1. SUMMARY OF THE DISTRIBUTION OF THE AUTOCORRELATIONS OF THE TRANSFORMED 

VARIANCE PARAMETERS 

On the basis of these autocorrelations, it seems that larger (more positive) δ yields lower 

autocorrelations. When considering the autocorrelations of 𝜎, however, a slightly different picture 
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emerges. For 𝛿 between -1.25 and +1.25, the autocorrelation is very high. The farther away 𝛿 goes 

from this range, however, the lower the autocorrelations. For  𝛿 = −2 , for example, the 

autocorrelations drop to 0.1 around a lag of 5. 

To determine which delta fits the data best, it may be worthwhile to look at the variability 

present in the trajectories of the distributions of the volatility of each grouping of days. Smaller 

coefficients of variance suggest that the trajectories vary little compared to their average values, 

while a larger value suggests more variance. The distribution of the coefficient of variation 

(standard deviation divided by mean) of the variance trajectories is plotted below for all 𝛼𝑠  

trajectories for each δ. 
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FIGURE 15. 

  

FIGURE 16. 

  

FIGURE 17. 

  

FIGURE 18. 
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FIGURE 21. 

  

FIGURE 22. 

  

FIGURE 23. 

  

FIGURE 24. 
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FIGURE 25. 

  

FIGURE 26. 

 

Overall the majority of coefficients of variance are rather small. The spread of these variances, 

however, is quite different. For larger (and more positive) δ, the distribution of these variances 

tends to have very little variation and simultaneously, tends to have very small values. On this basis, 

δ above 0.90 seems to be the optimal range where the coefficient of variation of trajectories is 

minimized. Negative values of 𝛿 have the opposite effect with a few trajectories displaying very 

large variance. Most likely, these outliers are the result of a small estimated volatility. 

Finally, comparing the empirical variance with the volatility estimates derived via Metropolis-

Hastings can be used to determine how well the estimates fit. By totaling the squares of these 

differences, the following table was generated: 

Delta Volatility Error 

-2 38.19 

-1.6364 37.56 

-1.2727 37.58 

-0.9091 37.64 

-0.5455 39.75 

-0.1818 41.70 

0.1818 44.29 
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Delta Volatility Error 

0.5455 46.49 

0.9091 48.25 

1.2727 49.86 

1.6364 51.26 

2 52.01 
TABLE 2. MEAN SQUARE VOLATILITY ERROR FOR EACH FITTED MODEL 

Clearly, more negative values of δ result in estimated volatilities that fit the empirical 

distribution better. The causal relationship here is questionable, however. The empirical 

distribution of volatility is skewed far-right and extends into the teens, as seen below: 

 

FIGURE 27. 

  

Looking at a few representative iterative distributions with various values for δ, it’s clear that 

there is a large difference: 
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FIGURE 28. 

  

FIGURE 29. 

  

FIGURE 30. 

 

FIGURE 31. 

 

The following chart quantifies the differences between these distributions and the empirical 

one: 

 Mean Standard Deviation Skewness Kurtosis 
Empirical 1.00 1.59 7.05 68.26 
Delta         

-2 0.87 0.39 3.39 21.00 
-1.6364 0.88 0.40 3.49 22.33 
-1.2727 0.89 0.41 3.27 20.24 
-0.9091 0.90 0.41 3.17 19.44 
-0.5455 0.91 0.39 2.58 14.21 
-0.1818 0.92 0.37 2.11 10.59 
0.1818 0.92 0.34 1.64 7.49 



31 
 

0.5455 0.92 0.31 1.26 5.55 
0.9091 0.92 0.29 0.97 4.46 
1.2727 0.93 0.27 0.70 3.75 
1.6364 0.93 0.25 0.50 3.29 
2 0.94 0.23 0.43 3.24 

TABLE 3. A COMPARISON OF KEY QUANTITIES FOR THE EMPIRICAL AND FITTED VOLATILITY 

DISTRIBUTIONS 

The difference in skewness and kurtosis is especially wide. Because these values really address 

the underlying purpose of the modeling, which is to fit the empirical distribution, there is strong 

evidence to support the selection of a large negative value for δ, possibly more negative than -2. 

4 CONCLUSION 

An attempt was made to fit a stochastic volatility model with a Box-Cox transformation applied 

to the squared volatilities. First the one day grouping model and then the five day grouping model 

was used to explore the applicability of the model. The Metropolis-Hastings algorithm enabled 

sampling from joint posterior distribution successfully and with large jumping frequencies. In the 

final assessment, the distribution of the estimated volatilities supplied by the model was compared 

to the empirical volatilities leading to a recommendation of a large, negative value for δ.  

The inconsistency between the shapes of the empirical distribution and the estimated 

volatilities suggests a systemic issue in the model. Despite seemingly immediate stabilization of the 

𝛼 trajectories, it is possible that more iteration would have significantly altered the sampled 

distributions and autocorrelations. Extending the model to include the correlation and heavy-tailed 

features of Zhang and King (2008) as well could also be fruitful. 
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