

AUTOMATED DISCOVERY OF NUMERICAL APPROXIMATION FORMULAE
VIA GENETIC PROGRAMMING

by

Matthew J. Streeter

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

May 2001

APPROVED:

Dr. Lee A. Becker, Major Advisor

Dr. Micha Hofri, Head of Department

 i

Abstract

This thesis describes the use of genetic programming to automate the discovery of numerical approximation formulae.

Results are presented involving rediscovery of known approximations for Harmonic numbers and discovery of rational

polynomial approximations for functions of one or more variables, the latter of which are compared to Padé

approximations obtained through a symbolic mathematics package. For functions of a single variable, it is shown that

evolved solutions can be considered superior to Padé approximations, which represent a powerful technique from

numerical analysis, given certain tradeoffs between approximation cost and accuracy, while for functions of more than

one variable, we are able to evolve rational polynomial approximations where no Padé approximation can be computed.

Furthermore, it is shown that evolved approximations can be iteratively improved through the evolution of

approximations to their error function. Based on these results, we consider genetic programming to be a powerful and

effective technique for the automated discovery of numerical approximation formulae.

 ii

ACKNOWLEDGEMENTS

The author wishes to thank Prof. Lee Becker and Prof. Micha Hofri of Worcester Polytechnic Institute for valuable

advice and feedback received during the course of this project.

 iii

CONTENTS

1. INTRODUCTION

1.1. Introduction to Genetic Algorithms .. 1

1.2. Introduction to Genetic Programming ... 3

1.3. Using Genetic Programming to Discover Numerical Approximation Formulae 5

1.4. Evaluating Approximations ... 6

1.5. Related Work .. 6

1.6. Summary of Report .. 6

2. OUR GENETIC PROGRAMMING SYSTEM

2.1. GA Framework ... 8

2.2. GP Representation .. 8

2.3. Primitive Function Costs... 9

2.4. Program Output .. 12

2.5. Consistency with Other Genetic Programming Systems .. 17

3. OPTIMIZING GP PARAMETERS

3.1. Experiments with Initial Test Suite ... 19

3.2. Experiments with Revised Test Suite .. 21

3.3. Impracticality of Optimizing GP Parameters in this Manner .. 23

4. REDISCOVERY OF HARMONIC NUMBER APPROXIMATIONS .. 24

5. DISCOVERY OF RATIONAL POLYNOMIAL APPROXIMATIONS FOR KNOWN FUNCTIONS

5.1. Introduction ... 27

5.2. Comparison with Padé Approximations ... 27

5.3. Avoiding Division by Zero ..28

5.4. Results .. 28

6. APPROXIMATING FUNCTIONS OF MORE THAN ONE VARIABLE .. 34

7. REFINING APPROXIMATIONS

7.1. Approximating Error Function of Evolved Approximations ... 36

7.2. Other Possible Approaches to Refinement of Approximations .. 40

8. ATTEMPTED REDISCOVERY OF NEURAL NETWORK ACTIVATION FUNCTIONS 41

 iv

9. ATTEMPTED PIECEWISE APPROXIMATION OF FUNCTIONS

9.1. Introduction and Preliminary Work ... 46

9.2. Piecewise Rational Polynomial Approximations of Functions of a Single Variable 47

9.3. Piecewise Rational Polynomial Surface Approximations ... 56

9.4. 3-D Surface Generation .. 57

10. FUTURE WORK ... 58

11. SUMMARY AND CONCLUSIONS

 11.1 Summary .. 59

 11.2 Conclusions ... 59

APPENDIX A: EXTENDED RESULTS FOR RATIONAL POLYNOMIAL APPROXIMATION 60

OF FUNCTIONS

APPENDIX B: CODE DOCUMENTATION .. 88

REFERENCES ... 92

 v

LIST OF TABLES AND FIGURES

Table 1.1: GP Parameters ... 5

Table 2.1: Primitive Functions ... 8

Table 2.2: Pentium II-233 Timing Data ... 10

Table 2.3: Pentium-60 Timing Data .. 10

Table 2.4: Final Assigned Costs of Primitive Functions ... 11

Table 2.5: Parameter Settings for Reproduction of Symbolic Regression Experiment ... 18

Table 2.6: Results for Reproduction of Symbolic Regression Experiment ... 18

Table 3.1: Experiments with Initial Test Suite .. 20

Table 3.2: Experiments with Revised Test Suite Using Population Size = 250 .. 22

Table 3.3: Experiments with Revised Test Suite Using Population Size = 500 .. 22

Table 3.4: Number of Runs Required to Produce Definitive Results for Experiments with Revised Test Suite 23

Table 4.1: Evolved Harmonic Number Approximations .. 24

Table 4.2: Accuracy of Asymptotic Expansion ... 26

Table 5.1: Evolved Approximations for ln(x) .. 29

Table 5.2: Maple Evaluation of Approximations for ln(x) .. 30

Table 5.3: Final Evolved Approximations for ln(x) .. 30

Table 5.4: Final Evolved Approximations for sqrt(x) .. 31

Table 5.5: Final Evolved Approximations for arcsinh(x) .. 31

Table 5.6: Final Evolved Approximations for exp(-x) .. 32

Table 5.7: Final Evolved Approximations for tanh(x) ... 33

Table 6.1: Final Evolved Approximations for xy ... 35

Table 7.1: Maple Evaluation of Approximations for sin(x) ... 36

Table 7.2: Final Evolved Approximations for sin(x) ... 37

Table 7.3: Final Evolved Approximations for Refinement of Candidate Approximation 3 for sin(x) 38

Table 7.4: Final Evolved Approximations for Refinement of Candidate Approximation 7 for sin(x) 39

Table 7.5: Final Evolved Approximations for Refinement of Candidate Approximation 8 for sin(x) 39

Table 7.6: Final Refined Approximations for sin(x) .. 40

Table 8.1. Rational Polynomial Approximations for Perceptron Switching Function ... 41

Table 8.2. Approximations for Perceptron Switching Function Using Function Set {*,+,/,-,EXP} 43

Table 9.1: Error of Best Evolved Piecewise Approximation to ln(x) Using Various Function Sets 47

Table 9.2: Evolved Piecewise Rational Polynomial Approximations for Three-Peaks Function 48

Table 9.3: Evolved Rational Polynomial Approximations for Three-Peaks Function ... 50

Table 9.4: Evolved Piecewise Rational Polynomial Approximations for Two-Peaks Function 52

Table 9.5: Evolved Rational Polynomial Approximations for Two-Peaks Function ... 55

Table 9.6: Evolved Rational Polynomial Approximations for Hemispherical Surface .. 56

Table A.1: Evolved Approximations for sqrt(x) .. 60

 vi

Table A.2: Maple Evaluation of Approximations for sqrt(x) .. 62

Table A.3: Final Evolved Approximations for sqrt(x) ... 63

Table A.4: Evolved Approximations for arcsinh(x) .. 64

Table A.5: Maple Evaluation of Approximations for arcsinh(x) ... 66

Table A.6: Final Evolved Approximations for arcsinh(x) ... 67

Table A.7: Evolved Approximations for exp(-x) ... 68

Table A.8: Maple Evaluation of Approximations for exp(-x) ... 69

Table A.9: Final Evolved Approximations for exp(-x) .. 70

Table A.10: Evolved Approximations for tanh(x) ... 70

Table A.11: Maple Evaluation of Approximations for tanh(x) ..71

Table A.12: Final Evolved Approximations for tanh(x) .. 72

Table A.13: Padé Approximations for ln(x) .. 72

Table A.14: Padé Approximations for sqrt(x) ... 74

Table A.15: Padé Approximations for arcsinh(x) .. 76

Table A.16: Padé Approximations for exp(-x) .. 77

Table A.17: Padé Approximations for tanh(x) ... 79

Table A.18: Evolved Approximations for xy ... 80

Table A.19: Maple Evaluation of Approximations for xy .. 81

Table A.20: Final Evolved Approximations for xy .. 81

Table A.21: Evolved Approximations for sin(x) ... 82

Table A.22: Evolved Approximations for Refinement of Candidate Approximation 3 for sin(x) 83

Table A.23: Maple Evaluation of Approximations for Refinement of Candidate Approximation 3 for sin(x) 84

Table A.24: Final Evolved Approximations for Refinement of Candidate Approximation 3 for sin(x) 84

Table A.25: Evolved Approximations for Refinement of Candidate Approximation 7 for sin(x) 85

Table A.26: Maple Evaluation of Approximations for Refinement of Candidate Approximation 7 for sin(x) 85

Table A.27: Final Evolved Approximations for Refinement of Candidate Approximation 7 for sin(x) 86

Table A.28: Evolved Approximations for Refinement of Candidate Approximation 8 for sin(x) 86

Table A.29: Maple Evaluation of Approximations for Refinement of Candidate Approximation 8 for sin(x) 87

Table A.30: Final Evolved Approximations for Refinement of Candidate Approximation 8 for sin(x) 87

Figure 1.1: Parental LISP Expressions .. 3

Figure 1.2: Child LISP Expression .. 4

Figure 2.1: Example HTML Summary .. 12

Figure 2.2: Fitness Curve ... 14

Figure 2.3: Error Curve .. 14

Figure 2.4: Cost Curve ... 14

Figure 2.5: Adjusted Error Curve .. 14

Figure 2.6: Adjusted Cost Curve .. 15

 vii

Figure 2.7: Candidate Solutions Imported into Maple ... 15

Figure 2.8: Convergence Probability Curve .. 16

Figure 2.9: Individual Effort Curve ... 17

Figure 2.10: Expected Number of Individuals to be Processed.. 17

Figure 5.1: Pareto Fronts for Approximations of ln(x) .. 31

Figure 5.2: Pareto Fronts for Approximations of sqrt(x) ... 31

Figure 5.3: Pareto Fronts for Approximations of arcsinh(x) ... 32

Figure 5.4: Pareto Fronts for Approximations of exp(-x) .. 32

Figure 5.5: Pareto Fronts for Approximations of tanh(x) .. 33

Figure 6.1: f(x)=xy .. 35

Figure 6.2: x/(y2+x-xy3) ... 35

Figure 7.1: Error Function for Candidate Approximation (3) ... 37

Figure 7.2: Error Function for Candidate Approximation (7) ... 38

Figure 7.3: Error Function for Candidate Approximation (8) ... 38

Figure 8.1: Plot of Rational Polynomial Approximations for Perceptron Switching Function 42

Figure 8.2: Plot of Approximations for Perceptron Switching Function Evolved Using Function Set {*,+,/,-,EXP} 44

Figure 9.1: Graph of Three-Peaks Function ... 48

Figure 9.2: Graph of Two-Peaks Function ... 52

 1

1 INTRODUCTION
Numerical approximation formulae are useful in two primary areas: firstly, approximation formulae are used in industrial

applications in a wide variety of domains to reduce the amount of time required to compute a function to a certain degree

of accuracy (Burden and Faires 1997), and secondly, approximations are used to facilitate the simplification and

transformation of expressions in formal mathematics. The discovery of approximations used for the latter purpose

typically requires human intuition and insight, while approximations used for the former purpose tend to be polynomials

or rational polynomials obtained by a technique from numerical analysis such as Padé approximants (Baker 1975;

Bender and Orszag 1978) or Taylor series. Genetic programming (Koza 1989, Koza 1990a, Koza 1992) provides a

unified approach to the discovery of approximation formulae which, in addition to having the obvious benefit of

automation, provides a power and flexibility that potentially allows for the evolution of approximations superior to those

obtained using existing techniques from numerical analysis. In this thesis, we discuss a number of experiments and

techniques which demonstrate the ability of genetic programming to successfully discover numerical approximation

formulae, and provide a thorough comparison of these techniques with traditional methods.

1.1 INTRODUCTION TO GENETIC ALGORITHMS

Genetic algorithms represent a search technique in which simulated evolution is performed on a population of entities or

objects, with the goal of ultimately producing an individual or instance which satisfies some specified criterion.

Specifically, genetic algorithms operate on a population of individuals, usually represented as bit strings, and apply

selection, recombination, and mutation operators to evolve an individual with maximal fitness, where "fitness" is

measured in some domain-dependent fashion as the extent to which a given individual represents a solution to the

problem at hand. Genetic algorithms are a powerful and practical method of search, supported both by successful real-

world applications and a solid theoretical foundation. Genetic algorithms have been applied to a wide variety of

problems in many domains, including problems involving robotic motion planning (Eldershaw and Cameron 1999),

modelling of spatial interactions (Diplock 1996), optimization of database queries (Gregory 1998), and optimization of

control systems (Desjarlais 1999).

As an example application for genetic algorithms, suppose we wished to find a real value x which satisfies the quadratic

equation x2 + 2x + 1 = 0, and did not have access to the quadratic formula or any applicable technique from numerical

analysis. We might choose to represent possible solutions to this equation as a set or population (initially generated at

random) of single-precision IEEE floating point numbers, each of which requires 32 bits of storage. The fitness measure

for an individual with x-value xI could be defined as the squared difference between xI
2 + 2xI + 1 and the target value of

0. As in nature, the more fit individuals of the population will be more likely to reproduce and will tend to have a larger

number of children. A "child" can be produced from two IEEE floating point numbers by generating a random bit

position n (0<=n<=31), copying the leftmost n bits from one parent, and taking the remaining 32-n bits from the other, a

process referred to as single-point crossover. As the process continues over many generations, it is likely that an

individual will eventaully be evolved which satisfies the equation exactly (in this case, an individual with x-value xI=-1).

 2

This search method turns out to be highly flexible and efficient. In general, any search problem for which an appropriate

representation and fitness measure can be defined may be attempted by a genetic algorithm.

In Adaptation in Natural and Artificial Systems, John Holland laid the foundation for genetic algorithms. The "Holland

GA" employs fitness-proportionate reproduction, crossover, and (possibly) mutation. Pseudo code for this algorithm is

given below:

 1. Initialize a population of randomly created individuals

2. Until an individual is evolved whose fitness meets some pre-established criterion:

2.1. Assign each individual in the population a fitness, based on some domain-specific fitness function.

2.2. Set the "child population" to the empty set.

2.3. Until the size of the child population equals that of the parent population:

2.3.1. Select two members of the parent population, with the probability of a member being

selected being proportionate to its fitness (the same member may be selected twice).

2.3.2. Breed these two members using a crossover operation to produce a child.

2.3.3. (Possibly) mutate the child, according to some pre-specified probability.

2.3.4. Add the new child to the child population.

 2.4. Replace the parent population with the child population.

The theoretical underpinnings of this algorithm are given in the Schema theorem (Holland 1975), which establishes the

near mathematical optimality of this algorithm under certain circumstances.

A schema is a set of bit-strings defined by a string of characters, with one character corresponding to each bit. The

characters may be '1', indicating that a 1 must appear in the corresponding bit-position, '0', indicating that a 0 must

appear in the corresponding bit position, or '*', indicating that either value may appear.

For example, the an individual encoded by the bit string:

10101101000010011110101100011111

would be an instance of the schemata 1*******************************,

*01*****************************, and ***0***********************11111, but not of the

schema 0*******************************. Since we can create a schema of which an individual is an

instance using two possible characters for each bit position ('*' and the character which actually occurs in that bit

position), each individual will be a member of 232 different schemata. Following the definition of the fitness of an

individual, the fitness of a schema can be defined as the average fitness of all individuals which are instances of that

schema. For example, the schema 1*. . .* (1 followed by 31 *'s), which in our representation denotes the set of all

negative IEEE floating-point numbers, might be expected to have a different fitness than the schema 0*. . .*, which

denotes the set of all positive numbers.

 3

The Schema theorem establishes that the straightforward operation of fitness-proportionate reproduction, as employed in

the genetic algorithm given above, causes the number of instances of a particular schema that are present in a population

to grow (and shrink) at a rate proportional to the schema's fitness, which is "mathematically near-optimal when the

process is viewed as a set of multi-armed slot machine problems requiring an optimal allocation of trials" (Koza 1989).

Thus, despite their superficial appearance as simply a heuristically guided multiple hill-climbing or "beam search",

genetic algorithms implicitly process a great deal of information concerning similar individuals not actually present in

the evolving population, a phenomenon referred to as the implicit parallelism of genetic algorithms.

1.2 INTRODUCTION TO GENETIC PROGRAMMING

John Koza, in his seminal paper "Hierarchical Genetic Algorithms Operating on Populations of Computer Programs"

(Koza 1989), made note of the fact that in Holland's work and in many of his students', chromosomes are defined as

fixed-length bit-strings. While bit strings are an adequate representation for many applications, they are not particularly

suited to representing computer programs in a manner that is robust and amenable to the crossover operation. In his

1989 paper, Koza presented the possibility of representing programs evolved under a GA as parse trees, or more

specifically as symbolic expressions in the LISP programming language ("LISP S-expressions"), and performing

crossover by exchanging subtrees.

Figure 1.1: Parental LISP Expressions.

Figure 1.1 illustrates two parent LISP expression trees, corresponding to the LISP expressions (+ X (- 2 Y)) and

(* (+ 1 X) (/ Y 3)), respectively, which correspond to the mathematical expressions x+2-y and x+y/3,

respectively. Crossover has been performed at the highlighted points with the left expression tree taken as the "base"

parent and the right tree as the "contributing" parent to produce the child LISP expression (+ X (/ Y 3)) (which

corresponds to the mathematical expression x+y/3), as illustrated in Figure 1.2.

 4

Figure 1.2: Child LISP Expression.

Associated with these trees is a function set which specifies the primitive operators from which the trees may be

composed (in this case, {*,+,/,-}) and a terminal set which specifies the elements that may appear as leaf nodes in the

tree (in this case the variables X and Y, and some number of available integers). The programs evolved in the course of

a run of genetic programming can be simply arithmetic expressions, as in the example here, Turing-complete programs

(evolved by including appropriate looping, conditional, and memory I/O operators in the function set), or programs of an

entirely different nature (such as instructions to grow an electrical circuit from a given circuit embryo). The fitness

function employed in genetic programming is some measure of the extent to which a given program successfully solves

the problem at hand.

As an example genetic programming application, consider the problem of symbolic regression or function identification,

where, given a set of data points, one wishes to find a function in symbolic form which most accurately models the data.

As an example, given a set of pairs (x,y) taken from the function curve f(x) = x^4 + x^3 + x^2 + x, we might attempt to

rediscover, via genetic programming, the function (in symbolic form) which generated the points. An appropriate

function set for this problem might consist of the arithmetic operators {*,+,/,-}, while an appropriate terminal set could

consist simply of the single independent variable {X}. Fitness could be defined as the squared difference between the

output of an individual expression for a given x-value and the desired y-value given on the curve, averaged over the

points in the available training data. To discover a more complex function with real-valued coefficients, for example f(x)

= 3.14159*x^4 + x^3 + x^2 + x, we could make use of the terminal set {X, R}, where R is the so-called "random

numeric terminal" which takes on a specific random value in a pre-specified range when first inserted into an individual

expression in the initial population. Specifically, a set of "ephemeral random constants" are created through

instantiations of R in the initial population, which can be then combined in arithmetic-performing subtrees to generate

constants of (practically) arbitrary value.

Two major parameters: the population size and number of generations to run, and five minor parameters are involved in

initiating a run of genetic programming. These parameters and their meanings are given in Table 1.1.

 5

Table 1.1: GP Parameters.

PARAMETER MEANING

Population size Number of individuals in each generation

Num. generations Number of generations to run (including initial random generation)

Crossover fraction Fraction of population which is reproduced using crossover (with

parents selected in proportion to fitness)

Fitness proportionate reproduction fraction Fraction of population which is reproduced using fitness-

proportionate reproduction (cloning individuals selected in

proportion to fitness)

Probability of internal crossover point selection Probability that subtree swap points will be selected as internal

(rather than leaf) nodes

Max. depth of individuals created by crossover Maximum depth of trees created by crossover operation

Max. depth of randomly generated individuals Maximum depth of randomly generated trees (in generation 0)

Genetic programming has been successfully applied to problems in such diverse areas as the design of minimal sorting

networks (Koza 1999), automatic parallelization of programs (Walsh and Ryan 1996), image analysis (Howard and

Roberts 1999), and design of complex structures such as Lindenmayer systems (Jacob 1996), cellular automata (Andre,

Bennett, and Koza 1996), industrial controllers (Koza, Keane, Bennett, Yu, Mydlowec, and Stiffelman 1999), wire

antannae (Comisky, Yu, and Koza 2000), and electrical circuits (Koza 1999). The Schema Theorem can be generalized

to apply to GP trees as well as GA bit-strings, as has been done by (O'Reilly and Oppacher 1994).

1.3 EVALUATING APPROXIMATIONS
In formal mathematics, the utility or value of a particular approximation formula is difficult to analytically define, and

depends perhaps on its syntactic simplicity, as well as the commonality or importance of the function it approximates. In

industrial applications, in contrast, the value of an approximation is uniquely a function of the computational cost

involved in calculating the approximation and the approximation's associated error. In the context of a specific domain,

one can imagine a utility function which assigns value to an approximation based on its error and cost. We define a

reasonable utility function to be one which always assigns lower (better) scores to an approximation a1 which is

unequivocally superior to an approximation a2, where a1 is defined to be unequivocally superior to a2 iff. neither its cost

nor error is greater than that of a2, and at least one of these two quantities is lower than the corresponding quantity of a2.

Given a set of approximations for a given function (obtained through any number of approximation techniques), one is

potentially interested in any approximation which is not unequivocally inferior (defined in the natural way) to any other

approximation in the set. In the terminology of multi-objective optimization, this subset is referred to as a Pareto front

(Goldberg 1989). As an example, if we were given the following set of points in the (error,cost) plane:

{(0.1,10), (0.3,7), (0.6,8), (1.5,1), (2.0,2)}

the Pareto front would be:

{(0.1,10), (0.3,7), (1.5,1)}

 6

since the point (0.6,8) is dominated by (or is unequivocally inferior to) the point (0.3,7), and the point (2.0,2)

is dominated by the point (1.5,1), while the remaining points (0.1,10), (0.3,7) and (1.5,1) are not

dominated by any other points in the set.

Thus, the Pareto front contains the set of approximations which could be considered to be the most valuable under some

reasonable utility function.

1.4 USING GENETIC PROGRAMMING TO DISCOVER NUMERICAL APPROXIMATION FORMULAE
The problem of functional approximation using genetic programming differs from the problem of symbolic regression in

only two respects. First, it is desirable in evolving an approximation to not only obtain a function which models a set of

data points accurately, but which also does so cheaply, i.e. a function which can be computed in a relatively small

amount of time. Such a solution could be obtained either by limiting the available function set in such a way that the

search space contains only approximations to the target function (f.e. evolving an approximation to the function ln(x)

using the function set {*,+,/,-}), or by somehow incorporating the cost of an expression into the fitness function, so that

the evolutionary process is guided toward simpler expressions which presumably will only be able to approximate the

data; the latter approach would be similar to work involving the "minimum description length principle" (Lam 1998),

"parsimony pressure" (Soule 1998), and "Occam's Razor" (Zhang 1995). Secondly, it is desirable in evolving

approximations for the system to return not simply a single most-accurate approximation, but a set of approximations

exhibiting various trade-offs between error and cost. This is simply a matter of bookkeeping, and can be accomplished

in a natural way by returning the Pareto front of the entire population history, maintained and updated iteratively as the

population evolves.

1.5 RELATED WORK
The problem of function approximation is closely related to the problem of function identification or symbolic

regression, which has been extensively studied by numerous sources including (Koza 1992; Andre and Koza 1996;

Chellapilla 1997; Luke and Spector 1997; Nordin 1997; Ryan, Collins, and O'Neill 1998). Notably, the economics

exchange equation (M=PQ/V) (Koza 1990b) and Kepler's third law (Koza 1990a) have been rediscovered from empirical

data through GP symbolic regression. Approximation of specific functions has been performed by (Keane, Koza, and

Rice 1993), who use genetic programming to find an approximation to the impulse response function for a linear time-

invariant system, and by (Blickle and Thiele 1995), who derive three analytic approximation formulae for functions

concerning performance of various selection schemes in genetic programming. Regarding general techniques for the

approximation of arbitrary functions, (Moustafa, De Jong, and Wegman 1999) use a genetic algorithm to evolve

locations of mesh points for Lagrange interpolating polynomials.

1.6 SUMMARY OF REPORT
This report consists of a description of the GP system used in the experiments presented in this report (Section 2), a

description of an unsuccessful attempt to optimize the parameters used for these experiments (Section 3), a description of

a number experiments involving automated discovery or attempted discovery of numerical approximation formulae

 7

through genetic programming (Sections 4 - 9), an outline of possible future work and extensions to this thesis (Section

10), and a final summary and conclusions (Section 11). The experimental section consists of three successful

experiments and two unsuccessful or only partially successful experiments. Section 4 presents an experiment involving

rediscovery of the first three terms, or variations thereupon, of the asymptotic expansion for the Harmonic number series.

Section 5 presents experiments involving the evolution of rational polynomial approximations to the common functions

ln(x), sqrt(x), arcsinh(x), exp(-x), and tanh(x) which, given certain trade-offs between cost and error, are superior to Padé

approximations. Section 6 presents an experiment involving the successful evolution of accurate rational polynomial

approximations to a two-dimensional surface defined by a function of more than one variable to which the Padé

approximation technique cannot be applied. Section 7 presents successful experiments involving refinement of evolved

approximations through approximation of their error function, then discusses other ways in which approximations could

be refined using the genetic programming technique. Section 8 presents a partially successful experiment involving

rediscovery of neural network activation functions. Section 9 describes an attempt at piecewise approximation of

functions of one or two variables, which meets with only limited success.

 8

2 OUR GENETIC PROGRAMMING SYSTEM
The genetic programming system used for all experiments described in this thesis was written by the author in C++, and,

excluding module tests and utilities, comprises approximately 11,000 lines of code. The code is made up of essentially

two subsystems: a general "GA framework" suitable for evolving any entity under a genetic algorithm, and a set of

classes representing the specific individuals being evolved: namely, mathematical expressions represented as program

trees. A brief discussion of system architecture, a discussion of the assignment of costs to primitive functions,

illustration of the system's output, and a discussion of the consistency of this system with other GP systems are given in

this section. Full specification of available command-line options and parameter settings is given in Appendix B.

2.1 GA FRAMEWORK
The code used in this system is designed around a general GA framework. In an approach somewhat similar to that of

GAlib (Wall 2000), abstract classes are provided for individuals and populations, and problem-specific subclasses of

these are created for specific applications. The nature of the actual entity being evolved is transparent to both the genetic

algorithm and to any higher-level operators which regulate the course of a run. The framework is designed to be highly

flexible and extensible for use in a variety of applications. In addition to the genetic programming experiments

described in this thesis, this GA framework has been used to evolve linear equations (in a module test) and rules for rule-

based learning (in a machine learning course).

2.2 GP REPRESENTATION
Individual programs in this system are represented as a tree of dynamically allocated nodes, with each node either an

input, a primitive function, or a real-valued constant. Facilities are provided to generate, breed, and evaluate these trees.

Fitness is determined by comparing the output of an individual program with the correct output, as specified in an

external file containing a number of training samples, or sets of inputs along with their associated outputs. This system

makes use of 23 primitive functions explicitly coded into the program; these functions and their meanings are given in

Table 2.1. For somewhat historical reasons (see Appendix B), each function was coded to be capable of receiving any

number of parameters as input, though this ability is not exploited in the experiments described here.

Table 2.1: Primitive Functions.

PRIMITIVE FUNCTION MEANING
Sigmoid Sigmoid (1/(1+exp(-x))) of sum of inputs (standard neural network activation function)

Product (*) Product of inputs

ReciprocalProduct Reciprocal of product of inputs, or 106 if product of inputs is 0

ReciprocalSum Reciprocal of sum of inputs, or 106 if sum of inputs is 0

Cos Cosine of sum of inputs

Ln Natural logarithm of sum of inputs, or 0 if sum of inputs is non-positive

Sqrt Square root of sum of inputs, or 0 if sum of inputs is negative

 9

Sum (+) Sum of inputs

TanH Hyperbolic tangent of sum of inputs

Max Maximum input

Min Minimum input

Sign Sign of sum of inputs (-1 for negative, 1 for non-negative)

Abs Absolute value of sum of inputs

Sin Sine of sum of inputs

Exp Exponential (ex) of sum of inputs

Div (/) 1st input divided by 2nd input . . . divided by last input, or 106 if any input other than
the 1st is 0

Subtract (-) 1st input minus 2nd input . . . minus last input

GreaterThan 1 if 1st input is > 2nd input, 0 otherwise

GreaterThanOrEqual 1 if 1st input is >= 2nd input, 0 otherwise

LessThan 1 if 1st input is < 2nd input, 0 otherwise

LessThanOrEqual 1 if 1st input is <= 2nd input, 0 otherwise

IfThenElse If 1st input is non-zero, returns 2nd input; returns 3rd input otherwise

Split If 1st input is non-negative, returns 2nd input; returns 3rd input otherwise

2.3 PRIMITIVE FUNCTION COSTS
In order to compute the Pareto front for the entire population history of a run or set of runs (as described in section 1.4),

it is necessary to assign each primitive function a cost, so that the total cost of an expression can be computed based

upon the primitive functions it employs. We will take the total cost of an expression to be the sum of the costs of all

primitive functions used within its nodes, excluding nodes subtrees which involve only constant expressions, which we

consider to have zero cost. As examples, the cost of the expression (+ 3 5) under this procedure would be 0, the cost

of the expression (* (+ 3 5) X) would be equal to the cost of the '*' operator, and the cost of the expression (* (+

3 X) X) would be equal to the cost of the '*' operator plus the cost of the '+' operator.

Initially, an attempt was made to assign costs to primitive functions based on hardware timing data, i.e. for the cost of a

primitive function to be proportional to the CPU time needed to compute that function, on the average case. Toward this

end, a timing procedure was written which sat in a tight loop repeatedly polling the clock, and counted the number of

times a given function could be executed during a single clock tick (equal to 1/1000 of a second on the system on which

the test was run). This was repeated for every primitive function, and the results averaged over many clock ticks to give

an indication of the relative time requirements of each primitive function. This procedure was repeated for various

numbers of input arguments to the functions (various arities), so that a series of points were generated for each function

in the (arity, time) plane, where time is represented in clock ticks. A linear least-squares fit was calculated for each of

these sets of points, generating coefficients M and B for each function such that:

[function's execution time] ≈ M*[number of input arguments] + B

 10

This timing test was run on a single-user personal computer running Microsoft Windows 95, with no other programs

running concurrently. Nevertheless, the timing data produced by this test was highly erratic. It was not uncommon for

the number of times which a function could be executed during a single clock tick to vary by several orders of magnitude

from one clock tick to another. Even when the results were averaged over tens of thousands of clock ticks, there was still

a great deal of variability in the relative times assigned to the various functions. In an attempt to remedy this problem,

the amount of time required to compute a function was taken as the inverse of the maximum, rather than average, number

of times the function was executed during a single clock tick. In a multitasking operating system, the amount of

computation that can be performed in a clock tick is limited by the amount of processor time that happens to be devoted

to the relevant task (in this case, the timing test) during that tick, but presumably can never exceed a certain maximum

(i.e. when 100% of the processor time is devoted to the task). This approach made the output of the timing test much

more stable. Using this approach, the timing test was run for one hour (which comprises 3.6 million clock ticks) on a

Pentium II-233 MHz system, and on an older Pentium 60 MHz system for reference. The results of these experiments

are given in Table 2.2 (for the Pentium II-233 processor) and Table 2.3 (for the Pentium-60 processor). To facilitate

meaningful cross-processor comparison, the coefficients M and B in each of these tables have been normalized so that

the M value for the Sum function is equal to 1.0. At the time these experiments were run, only 13 of the eventual 23

primitive functions were coded in the system.

Table 2.2: Pentium II-233 Timing Data.

PRIMITIVE FUNCTION M B
Sigmoid 0.607312 9.118956

Product (*) 1.350015 4.132117

ReciprocalProduct 1.336272 5.798273

ReciprocalSum 1.904643 2.245144

Cos 0.798725 8.971738

Ln 1.179137 3.906359

Sqrt 0.776423 3.942328

Sum (+) 1.000000 2.076896

TanH 1.020568 5.199593

Max 1.114182 2.035016

Min 1.174219 1.540112

Sign 0.945316 1.003580

Abs 1.132322 0.225641

Table 2.3: Pentium-60 Timing Data.

PRIMITIVE FUNCTION M B
Sigmoid 0.905280 8.787455

Product (*) 2.238005 4.475859

ReciprocalProduct 2.106955 5.681528

 11

ReciprocalSum 1.927736 3.895167

Cos 1.036731 9.678981

Ln 1.326693 3.191963

Sqrt 0.942754 4.568197

Sum (+) 1.000000 3.836034

TanH 0.868542 7.711673

Max 1.396215 0.625175

Min 1.162758 2.451946

Sign 1.077272 2.789748

Abs 1.042189 1.577727

The coefficients given in these two tables for the various primitive functions exhibit considerable variation. Between the

two values of M listed for the Sigmoid function, for example, there is approximately a 50% difference, as is roughly the

case for the Product and ReciprocalProduct functions. Also, the relative ranking of the functions is not consistent; in

Table 2.3, the TanH function with 1 argument is more expensive to compute than the ReciprocalProduct function, while

in Table 2.2, the reverse is true. Finally, the coefficients given in these tables do not significantly distinguish between

simple functions such as Sum and Sign, intermediate functions such as Product and Division, and more complex

functions such as Sqrt, Ln, and Sin. For these reasons, the hardware timing approach to cost assignment was abandoned,

and a simpler hand-coded set of costs used in its place. The values of B were (somewhat arbitrarily) set to 1 for the

arithmetic functions involving division and/or multiplication, 0.1 for the functions sum and subtraction function, and 10

for any more complex function such as Exp, Cos, or Ln. The values of M were uniformly set to 0 since the variable arity

feature of the system was not used, the leaving the B coefficient as the single determinant of cost for a function. The

final costs, as defined by this coefficient, are given in Table 2.4 for the 23 functions finally used in this system.

Table 2.4: Final Assigned Costs of Primitive Functions.

PRIMITIVE FUNCTION COST
Sigmoid 10

Product 1

ReciprocalProduct 1

ReciprocalSum 1

Cos 10

Ln 10

Sqrt 10

Sum .1

TanH 10

Max .1

Min .1

Sign .1

Abs .1

 12

Sin 10

Exp 10

Div 1

Subtract .1

GreaterThan .1

GreaterThanOrEqual .1

LessThan .1

LessThanOrEqual .1

IfThenElse .1

Split .1

2.4 PROGRAM OUTPUT
The output produced by this genetic programming system is designed to be highly informative and extensive. At the

conclusion of each run or set of runs executed by the system, an HTML summary is generated which can be viewed

using a web browser, and which gives the full parameter settings used for the run(s), the best-of-run individual for each

run, and the set of individuals Pareto front for the union of the entire population histories of each run (we refer to these

individuals as "candidate solutions"). Additionally, links are provided in this HTML summary to plot data representing

either (a) the fitness, error, cost, adjusted cost, and adjusted error curves for the best-of-generation individual in each

generation, for experiments involving a single run or (b) plots representing convergence probability curves, expected

individuals-to-be-processed curves, and individual effort curves (to be defined later) for experiments involving multiple

runs. The plot data is output to a text file which can be read by the Gnuplot plotting program (Williams and Kelley

1998). Also provided is a link to the set of candidate solutions, represented in a textual form which can be pasted into a

worksheet using the Maple symbolic mathematics package (Heal, Hansen, and Rickard 1998).

Figures 2.1 through 2.7 illustrate the output of the system for a simple problem involving symbolic regression of the

quadratic polynomial f(x) = x^2 + x. Figure 2.1 gives the HTML summary for a single-run experiment with this

problem; Figures 2.2 through 2.6 give the associated fitness, error, cost, adjusted error, and adjusted cost curves,

respectively. Figure 2.7 is a screen shot of the candidate solutions generated as a result of this experiment pasted into the

Maple symbolic mathematics package, where they can be further analyzed. For a full explanation of the parameters

given at the top of the HTML summary in Figure 2.1, see Appendix B.

FGP run started Thursday, Feb 22 2001, 03:59:49 PM; ended Thursday, Feb 22 2001, 03:59:55 PM

 13

Parameters
Problem name: f(x) = x^2 + x (50s,1i,1o)
Training set file: FGPExample_50.ts
Generation limit: 50
Fitness limit: 0.999
Hit ratio limit: None
Hit range: 0.01
Initial rand. seed: 0
GA: Standard
Population size: 500
Fitness-proportionate reproduction fraction: 0.1
Error metric: Absolute, total sum
Error multiplier: 1
Adjusted error power: 1
Function set: {Product, Ln, Sum, Exp, Div, Subtract}
Random numeric terminal: On
Occam's razor: Off
Rand. tree uniform depth: Off
Rand. tree default arity: On
Random weight initialization:Off
Weight combination: Averaged
Gaussian weight mutation: 0
Pr[Function mutation]: 0
Pr[Subtree mutation]: 0
Crossover: SingleSubtreeSwap
Biased choice of crossover point: On
Pr[Internal crossover point]: 0.9
Max. nodes per output: [No Limit]
Max. rand. tree depth: 5
Max. tree depth: 16

Results
Best-of-run individual (generation 3):
O1 = Sum(i0, Product(i0, i0))
Raw error: 2.51227e-10
Adj. error: 1
Raw cost: 2.2
Adj. cost: 0.3125
Fitness: 1
Total nodes: 5
Hits: 50 of 50

GA was run for 3 generations.
90% of best fitness was achieved after 3 generations.

Candidate solutions: (ordered by 1*error + 0*cost)

1. Raw error = 2.51227e-10; raw cost = 2.2 (run 0, generation 2)
O1 = Sum(i0, Product(i0, i0))

2. Raw error = 17.9351; raw cost = 2 (run 0, generation 2)
O1 = Product(Exp(Product(0.322123, Exp(Ln(2.63634)))), i0)

3. Raw error = 21.138; raw cost = 0.4 (run 0, generation 0)
O1 = Sum(i0, Subtract(i0, Div(Exp(Product(2.53258, -2.7337)), Exp(Ln(1.82638)))))

 14

4. Raw error = 45.1888; raw cost = 0.2 (run 0, generation 0)
O1 = Sum(0.404523, i0)

5. Raw error = 53.1089; raw cost = 0 (run 0, generation 0)
O1 = i0

Cost/error/fitness data is available here.

Figure 2.1: Example HTML Summary.

 Figure 2.2: Fitness Curve. Figure 2.3: Error Curve.

 Figure 2.4: Cost Curve. Figure 2.5: Adjusted Error Curve.

 15

Figure 2.6: Adjusted Cost Curve.

Figure 2.7: Candidate Solutions Imported into Maple.

For experiments involving multiple runs, a different set of plot curves are generated. The convergence probability curve

gives the fraction of runs P(g) such that the run converged, or reached a pre-specified level of fitness or error, at or

before generation g. The individual effort curve (Koza 1992) gives the number of individuals I(g) which must be

processed when executing multiple independent runs, each lasting up to g+1 generations (the initial random generation

plus g subsequent generations), for a 99% probability of converging in at least one of the runs. The formula for I(g) is

given by:

I(g) = log(0.01)/log(1.0-P(g)+0.5) *(g+1)*([population size])

 16

Finally, we introduce a function s(g) to denote the expected number of individuals to be processed before finding a

solution (i.e. converging) when executing multiple independent runs, each lasting up to g generations. This is given by

the formula:

s(g) = (1/P(g))*(1+g)*([population size])

This formula is justified by the fact that a run involving g generations (after the initial random generation) will involve

the processing of (1+g)*([population size]) individuals, combined with the observation that given a fixed convergence

probability P(g), the number of indepdendent runs required to find a solution follows a geometric distribution, so that its

expected value is (1/P(g)). The formula is actually a slight overestimate, since it assumes (1+g)*([population size])

individuals will be processed in each independent run, whereas if converge occurs earlier than generation g in a

particular run, fewer than this number of individuals will need to be processed. This caveat is present in Koza's formula

for I(g) as well (as he acknowledges), and will be ignored for the purposes of our analyses.

Figures 2.8 through 2.10 represent the output of the system for an experiment involving 10 runs against the same

symbolic regression problem discussed in regard to figures 2.1 through 2.7. The figures give the convergence

probability (P(g)), individual effort (I(g)), and expected number of individuals-to-be-processed (s(g)) curves,

respectively.

Figure 2.8: Convergence Probability Curve.

 17

Figure 2.9: Individual Effort Curve.

Figure 2.10: Expected Number of Individuals to be Processed.

2.5 CONSISTENCY WITH OTHER GENETIC PROGRAMMING SYSTEMS
The system used for the experiments described in this paper was designed to be configurable to be functionally

equivalent to the GP described in (Koza 1992). To verify this equivalence, an experiment described in Genetic

Programming: On the Programming of Computers by Means of Natural Selection (Koza 1992), performed using Koza's

LISP genetic programming kernel, was replicated using the author's GP system. The experiment involved symbolic

regression of the quartic polynomial f(x) = x^4 + x^3 + x^2 + x. The parameter settings used for this experiment are

given in Table 2.5. The function set was the arithmetic function set {*,+,/,-}. An individual's error was calculated as the

sum of its absolute error for all training points. Training data was taken 20 points with x-values drawn at random from

the interval [-1,1]. Adjusted fitness (based upon which fitness-proportionate selection is conducted) was calculated

according to the formula 1/(1+[error]).

 18

Table 2.5: Parameter Settings for Reproduction of Symbolic Regression Experiment.

PARAMETER VALUE

Population size 500

Num. generations 51

Crossover fraction 90%

Fitness proportionate reproduction fraction 10%

Probability of internal crossover point selection 90%

Max. depth of individuals created by crossover 5

Max. depth of randomly generated individuals 16

Table 2.6: Results for Reproduction of Symbolic Regression Experiment.

SEED # GENS. SEED # GENS. SEED # GENS. SEED # GENS. SEED # GENS.
0 - 10 - 20 4 30 - 40 -

1 - 11 - 21 - 31 - 41 -

2 - 12 - 22 - 32 - 42 18

3 - 13 - 23 19 33 - 43 -

4 - 14 32 24 - 34 - 44 27

5 - 15 - 25 - 35 - 45 -

6 23 16 - 26 9 36 - 46 -

7 - 17 - 27 - 37 - 47 -

8 - 18 - 28 - 38 24 48 -

9 16 19 - 29 - 39 24 49 40

On 11 of the 50 independent runs executed as part of this experiment, a perfect solution is found within 50 generations,

for a 22% probability of convergence. Based on 295 independent runs, Koza reports a 23% probability of convergence.

The two figures are sufficiently close to lead us to believe that the systems are consistent.

 19

3 OPTIMIZING GP PARAMETERS
There are many parameters involved in executing a run of genetic programming, each of which can have a potentially

important effect on the efficacy of the system at finding a solution. It would be desirable, in evolving approximations

through genetic programming, to come up with a consistent set of parameter settings which could be expected to perform

well over this general domain. No standard set of benchmark problems for genetic programming in general or symbolic

regression in particular (Feldt, O'Neill, Ryan, Nordin, and Langdon 2000), so the choice of problems used in experiments

to obtain such a set of parameters must inherently be somewhat ad hoc. This section presents an attempt to optimize GP

parameters for the problem of finding approximations to functions.

3.1 EXPERIMENTS WITH INITIAL TEST SUITE

This section describes experiments run against a suite of 28 functions designed to test various aspects of GP

performance. The complete set of functions is given in the leftmost column of Table 3.1.

Function 1 was intended as a trivial test of the ability of GP to discover the identity function. Functions 2-6 attempted to

test the ability of GP to discover constants, both as coefficients of a simple polynomial (or alone) and nested inside the

argument a non-linear function. Functions 7-14 attempted to determine ability of GP to find polynomials of various

degree, including polynomials which can be easily factored and those that cannot. Functions 15-17 were designed to

given an indication as to the effect of noise on GP performance. Functions 18-26 attempted to determine the ability of

GP to exploit building blocks. Function 27 was designed to provide the opportunity to rediscover a known

approximation formula for Harmonic numbers, namely that Hn ≈ ln(n) + γ (see section 4). Finally, function 28 was

designed to provide an opportunity to rediscover Newton's telescopic factoring method, namely that a polynomial such

as x^4 + x^3 + x^2 + x + 1 can be calculated using a smaller number of multiplications by nesting the multiplications

telescopically, i.e. x(x(x(x +1) + 1) + 1) + 1.

Two experiments, each involving 3 independent runs on each of these 28 problems, were run using the author's GP

system: an initial experiment conducted using the "factory" settings of the library, including the use of weights, variable-

arity functions, and other non-standard features (see Appendix B), and a second experiment using the standard GP

settings (section 2.5). First experiment was conducted using the function set {Sigmoid, Product, ReciprocalProduct,

ReciprocalSum, Cos, Ln, Sqrt, Sum, TanH, Max, Min, Sign, Abs}, which was the set of all functions coded into the

library at the time. The second experiment (in an attempt to ease problem difficulty) used the reduced function set

{Product, ReciprocalSum, Cos, Ln, Sqrt, Sum}. The first experiment used 101 generations (the initial random generation

plus 100 subsequent generations) for each run, while the second experiment used 51 generations for each run. The

results of these two experiments are presented in Table 3.1. For each of the 28 functions, the number of generations

needed to discover the function (including the initial random generation) in each of the three independent runs for the

two sets of parameter settings is given under the appropriate column, and a dash (-) character is used to denote that the

function was not ever discovered in the corresponding run (after 51 or 101 generations). In the case of functions such as

 20

f(x) = 3.14159, a run was often terminated when a solution was found that was sufficiently close (though not exactly

equal) to the target function. An asterisk (*) symbol is used to denote such inexact convergence.

Table 3.1: Experiments with Initial Test Suite.

FUNCTION INITIAL
EXPERIMENT

STANDARD GP

1. f(x) = x 11, 82, 28 1, 1, 1

2. f(x) = 3.14159 32, 32, 88* -, 24*, -

3. f(x) = 0.5667*x + 3.14159 -, -, - -, -, -

4. f(x) = 0.8x^2 + 0.5667*x + 3.14159 -, -, - -, -, -

5. f(x) = sin(0.8x^2 + 0.5667*x + 3.14159) -, -, - -, -, -

6. f(x) = sqrt(0.8x^2 + 0.5667*x + 3.14159) -, -, - -, -, -

7. f(x) = (x+1)^2 -, -, - 31, -, -

8. f(x) = (x+1)^3 -, -, - -, -, -

9. f(x) = (x+1)^4 -, -, - -, -, -

10. f(x) = (x+1)^5 -, -, - -, -, -

11. f(x) = (x+1)(x+2) -, -, - -, -, -

12. f(x) = (x+1)(x+2)(x+3) -, -, - -, -, -

13. f(x) = (x+1)(x+2)(x+3)(x+4) -, -, - -, -, -

14. f(x) = (x+1)(x+2)(x+3)(x+4)(x+5) -, -, - -, -, -

15. f(x) = (x+1)^3 + GaussRand(StdDev=0.1) -, -, - -, -, -

16. f(x) = (x+1)^3 + GaussRand(StdDev=1.0) -, -, - -, -, -

17. f(x) = (x+1)^3 + GaussRand(StdDev=10.0) -, -, - -, -, -

18. f(x) = sin(x^2+x+1) -, -, - -, -, -

19. f(x,y) = sin(x^2+x+1) + sin(y^2+y+1) -, -, - -, -, -

20. f(x,y,z) = sin(x^2+x+1) + sin(y^2+y+1) + sin(z^2+z+1) -, -, - -, -, -

21. f(x) = ln(x) -, -, - 1, 1, 1

22. f(x) = (x-7)/(x+3) -, -, - -, -, -

23. f(x) = ln(x) + sin(x^2+x+1) -, -, - -, -, -

24. f(x) = ln(x) + (x-7)/(x+3) -, -, - -, -, -

25. f(x) = sin(x^2+x+1) + (x-7)/(x+3) -, -, - -, -, -

26. f(x) = ln(x) + sin(x^2+x+1) + (x-7)/(x+3) -, -, - -, -, -

27. f(x) = Hx -, -, - 38*, -, -

28. f(x) = x^4 + x^3 + x^2 + x + 1 -, -, - -, -, -

* denotes inexact convergence

It should be apparent from examination of table 3.1 that the selected test suite is too hard. Only the simplest of the 28

functions are consistently discovered, and the vast majority of functions are not discovered at all. Though it might be

possible to discover any one of these functions using a higher number of independent runs, it is likely that the number of

runs required, the number of problems in the test suite, and the resulting computation time required would make the test

 21

suite unusable. Here we have 23 problems, representing 138 independent runs, which were never solved under either set

of parameter settings. Since the experiments reported here took 6 and 8 hours to complete, respectively, and since many

such experiments would have to be performed to arrive at an optimum set of parameter settings, this test suite is largely

impractical for our purposes.

3.2 EXPERIMENTS WITH REVISED TEST SUITE
My next set of experiments were conducted against a revised test suite consisting of the functions:

1. f(x) = ln(x) + cos(x)

2. f(x) = ln(x) + cos(x) + sqrt(x)

3. f(x) = ln(x) + cos(x) + sqrt(x) + x^2

4. f(x) = ln(x)*cos(x)

5. f(x) = ln(x)*cos(x)*sqrt(x)

6. f(x) = ln(x)*cos(x)*sqrt(x)*(x^2)

Each of these six functions involves additive or multiplicative combinations of the simple building block functions ln(x),

cos(x), sqrt(x), and x^2. This was intended to provide a smooth gradation from simple to difficult problems, and to

provide problems which were simple enough that they could be solved on consistent basis using my system.

This section presents the results of two experiments run against this smaller test suite using the standard GP parameters,

using population sizes of 250 and 500, and given in tables 3.2 and 3.3, respectively. For all functions, 25 points were

taken as training data, each of whose x-values were the absolute value of a real number drawn at random from a

Gaussian distribution with mean 0 and standard deviation 10. 100 independent runs were executed in each experiment

for each function. As described in section 2.4, our GP system generated curves for the probability of convergence,

individual effort, and expected number of individuals-to-be-processed as a function of the generation limit g. In this

analysis, we let G denote the value of g which minimizes the individual effort I(g), and let p denote the probability of

convergence at or before generation G (i.e. p ≡ P(G)). We calculate 99% confidence intervals for p according to the

formula:

[N% confidence interval for p] = p ± ZN*sqrt([p*(1-p)]/n)

which is statistically valid when n*p*(1-p) >= 5 (Mitchell 1997). Here n denotes the number of indepdent runs (100 in

our case), and ZN denotes the appropriate confidence interval coefficient, which for an N=99% confidence interval is

equal to 2.58.

We let s denote the expected number of individuals to be processed before finding a solution when executing multiple

independent runs with a generation limit of G (i.e. s ≡ s(G)), and let I denote the corresponding individual effort (i.e. I ≡

I(G)). We take s to be the more natural measure of problem difficulty than I, since it indicates the average-case

workload imposed on GP for a particular problem. Note, however, that while I is the minimum value of I(g), s is not

necessarily the minimum value of s(g), a slight caveat which will be ignored for the purposes of this analysis.

 22

Confidence intervals have been calculated for s as well, and are given in brackets to the right of the calculated value in

table 3.2 and 3.3. In cases where the convergence probabilities were such that the confidence interval formula was not

statistically valid (see above), question marks (??) appear in the corresponding places.

In summary,

G = Optimal generation limit (for minimal value of I(g))

p = Probability of convergence at generation G.

s = Expected number of individuals to process before finding a solution = (1/p)*(1+G)*([population size])

I = Number of individuals which must be processed for 99% probability of finding a solution

= I(G) = �log(0.01)/log(1.0-p+0.5) *(G+1)*([population size])

Table 3.2: Experiments with Revised Test Suite Using Population Size = 250.

PROBLEM G p s I
1. f(x) = ln(x) + cos(x) 5 0.28 ± 0.116 5357 [3788,9146] 21000

2. f(x) = ln(x) + cos(x) + sqrt(x) 20 0.13 ± 0.087 40385 [24194,122093] 173250

3. f(x) = ln(x) + cos(x) + sqrt(x) + x^2 14 0.02 ± ?? 187500 [??,??] 855000

4. f(x) = ln(x)*cos(x) 5 0.65 ± 0.123 2308 [1940,2846] 6000

5. f(x) = ln(x)*cos(x)*sqrt(x) 8 0.12 ± 0.084 18750 [11029,62500] 81000

6. f(x) = ln(x)*cos(x)*sqrt(x)*(x^2) 48 0.11 ± 0.081 111364 [64136,422414] 490000

Table 3.3: Experiments with Revised Test Suite Using Population Size = 500.

PROBLEM G p s I
1. f(x) = ln(x) + cos(x) 7 0.66 ± 0.122 6061 [5115,7434] 16000

2. f(x) = ln(x) + cos(x) + sqrt(x) 10 0.15 ± 0.092 36667 [22727,94828] 154000

3. f(x) = ln(x) + cos(x) + sqrt(x) + x^2 18 0.06 ± 0.061 158333 [78512,+∞] 703000

4. f(x) = ln(x)*cos(x) 6 0.86 ± .090 4070 [3684,4545] 7000

5. f(x) = ln(x)*cos(x)*sqrt(x) 9 0.14 ± 0.090 35714 [21739,100000] 155000

6. f(x) = ln(x)*cos(x)*sqrt(x)*(x^2) 1 0.01 ± ?? 100000 [??,??] 458000

In general, the corresponding confidence intervals for s in tables 3.2 and 3.3 overlap. The only meaningful conclusions

that can be drawn from these tables is that, with 99% confidence, the function f(x)=ln(x)*cos(x) is between 1.29 and 2.34

times easier to find with a population size of 250 than with one of 500 (see table entries for function 4), when these

population sizes are combined with all other parameter settings used in these experiments.

 23

3.3 IMPRACTICALITY OF OPTIMIZING GP PARAMETERS IN THIS MANNER
As stated in the previous paragraph, tables 3.2 and 3.3 provide a meaningful conclusion regarding only one of the six

functions on which the experiments were conducted. Using the formula for confidence intervals, we can calculate the

number of additional runs which would have be required to prevent each set of corresponding confidence intervals from

overlapping, assuming that the same convergence probabilities continued to be observed. Using this information, we can

estimate the amount of time that would be required to draw meaningful conclusions concerning all six functions in this

test suite. Table 3.4 gives the minimum number of runs for each function which would be required to produce definitive

results for this experiment.

Table 3.4: Number of Runs Required to Produce Definitive Results for Experiments with Revised Test Suite.

PROBLEM MINIMUM RUNS REQUIRED
1. f(x) = ln(x) + cos(x) 2475

2. f(x) = ln(x) + cos(x) + sqrt(x) 17566

3. f(x) = ln(x) + cos(x) + sqrt(x) + x^2 26794

4. f(x) = ln(x)*cos(x) 33

5. f(x) = ln(x)*cos(x)*sqrt(x) 475

6. f(x) = ln(x)*cos(x)*sqrt(x)*(x^2) 99953

As illustrated in this table, only function 4 provided a meaningful result within the 100 independent runs allowed for

each function in this experiment. The number of runs required for every other function are substantially larger. Since

executing 100 independent runs took an average of about 2 hours per problem, determining a "winner" for problem 1

would take just under 50 hours, while determining a winner for problem 2 would take over 2 weeks. Even if all this

computation time were expended, it would only give information concerning one parameter change applied to a small set

of problems, and would only be a valid indicator of the significance of that parameter change when it occurs in

conjunction with all other parameter settings used for these experiments. Thus, it does not seem to be practical to try to

find an exact optimal set of parameters for a general test suite of symbolic regression problems.

 24

4 REDISCOVERY OF HARMONIC NUMBER APPROXIMATIONS
One commonly used quantity in mathematics is the Harmonic number, defined as:

Hn ≡ �
i=1

n
1/i

This series can be approximated using the asymptotic expansion (Gonnet 1984):

Hn = γ + ln(n) + 1/(2n) - 1/(12n2) + 1/(120n4) - . . .

where γ is Euler's constant (γ ≈ 0.57722).

Using the system described in section 2, and the function set {+, *, ReciprocalSum, Ln, Sqrt, Cos}, the authors attempted

to rediscover some of the terms of this asymptotic expansion, where the ReciprocalSum function is simply a reciprocal

function (since we are not using the variable-arity feature of the system), and Sqrt and Cos are included as extraneous

functions.

All parameter settings used in this experiment are the same as those given for the symbolic regression experiment in

Section 2.5, including a population size of 500 and generation limit of 50. The first 50 Harmonic numbers (i.e. Hn for

1<=n<=50) were used as training data. 50 independent runs were executed, producing a single set of candidate

approximations. Error was calculated as the sum of absolute error for each training instance. The set of evolved

approximations returned by the genetic programming system (which represent the Pareto front for the population

histories of all independent runs) is given in Table 4.1. For the purpose of analysis, each approximation was simplified

using the Maple symbolic mathematics package. This simplified form, as well as the cost and error associated with each

approximation and the run and generation in which it originated, are given in the table. For the evolved approximations,

a LISP-like notation is used, with the functions ReciprocalSum, Ln, Sqrt, and Cos denoted by RCP, RLOG, SQRT, and

COS, respectively.

Table 4.1: Evolved Harmonic Number Approximations.

EVOLVED LISP EXPRESSION
SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN.

1. (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))))) (RCP (+ (+
(SQRT (+ (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146)))))))
(RCP (+ (+ (+ (RCP X) X) (RLOG 1.90146)) X))) (* X (+ X (SQRT (RLOG -
0.455794)))))) (RLOG -0.455794)) X)))

ln(x)+.5766598187+1/(sqrt(ln(x)+.5766598187+1/(1/x+2*x+.6426220121)+x^
2)+x)

0.0215204 39.1 22 32

2. (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))))) (RCP (+

(+ X (RCP (+ (+ (RLOG 1.90146) (RLOG (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (

RLOG 1.90146)))))))) (+ (RCP (SQRT (* 4.67956 (RLOG 1.90146)))) X)))) X)))

ln(x)+.5766598187+1/(2*x+1/(1.219281831 + ln(1/(ln(x)+.5766598187))+x)) 0.0229032 35.8 22 35

 25

3. (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))))) (RCP (+ (+
X (RCP (+ (+ (RLOG 1.90146) (RLOG (RCP (RCP (+ (+ (+ (SQRT (* 4.67956 (RLOG
1.90146))) X) (RLOG -0.455794)) X))))) (RLOG 1.90146)))) X)))

ln(x)+.5766598187+1/(2*x+1/(1.285244024 + ln(1.734124639+2*x))) 0.0264468 26.9 22 37

4. (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))))) (RCP (+

(+ X (RCP (+ (RCP (+ (RCP (RLOG 1.90146)) (RCP (SQRT (* 4.67956 (RLOG 1.9014

6)))))) (+ (+ (+ (RCP 4.67956) (RLOG X)) (RCP (+ (* 4.67956 (RLOG 1.90146)) X)

)) 1.90146)))) X)))

ln(x)+.5766598187+1/(2*x+1/(2.584025920 + ln(x)+1/(3.007188263+x))) 0.0278816 25.9 22 49

5. (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))))) (RCP (+

(+ X (RCP (+ (+ (SQRT (RLOG (RLOG 1.90146))) (+ (RCP (SQRT (* 4.67956 (RLOG 1.

90146)))) (RCP X))) X))) X)))

ln(x)+.5766598187+1/(2*x+1/(.5766598187 + 1/x+x)) 0.0286254 15.7 22 36

6. (+ (RCP (RCP (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))))) (RCP (+ (+
X (RCP (+ (SQRT (* 4.67956 (RLOG 1.90146))) (SQRT (RLOG (* 4.67956 (RLOG
1.90146))))))) X)))

ln(x)+.5766598187+1/(2*x+.3592711879) 0.0293595 13.4 22 37

7. (+ (+ (RLOG X) (RCP (SQRT (* 4.67956 (RLOG 1.90146))))) (RCP (+ (+ X (RCP (+ (+
(RLOG 1.90146) (RLOG (+ (RCP (RCP (SQRT (* 4.67956 (RLOG 1.90146))))) (RCP (SQRT
(* 4.67956 (RLOG 1.90146))))))) (SQRT 1.90146)))) X)))

ln(x)+.5766598187+1/(2*x+.3497550998) 0.0297425 11.4 22 42

8. (+ (RLOG (+ (+ X (RLOG (RLOG (+ 2.04489 (COS (RLOG (+ (RCP -2.35221) (COS (RCP
2.04489))))))))) (RCP 2.04489))) (COS (RLOG 2.59758)))

ln(x+.5022291180)+.5779513609 0.0546846 10.3 40 28

9. (+ (RLOG (+ X (RCP 2.04489))) (COS (RLOG 2.59758)))

ln(x+.4890238595)+.5779513609 0.0653603 10.2 40 21

10. (+ (SQRT (COS (+ (* (COS (* (RCP (RLOG 3.90774)) (RLOG (+ (COS (RLOG (RLOG -
2.11142))) (RLOG 3.90774))))) (RLOG (+ 0.777459 (COS (RLOG 3.52657))))) (RCP -
0.786615)))) (RLOG X))

0.5965804779+ln(x) 1.44089 10.1 49 49

11. (+ (* (RCP (RCP -4.34843)) (+ (RCP -1.02527) (RCP X))) (RLOG (SQRT (SQRT
0.316019))))

3.953265289-4.348430001/x 20.2786 2.2 3 1

12. (+ (RLOG 3.97427) 2.43614)

3.815981083 31.0297 0 10 4

An analysis of this set of candidate solutions follows. For comparison, Table 4.2 presents the error values associated

with the asymptotic expansion when carried to between 1 and 4 terms.

 26

Table 4.2: Accuracy of Asymptotic Expansion.

TERMS EXPRESSION ERROR
1 0.57722 150.559

2 0.57722 + ln(n) 2.12094

3 0.57722 + ln(n) + 1/(2n) 0.128663

4 0.57722 + ln(n) + 1/(2n) -
1/(12n^2)

0.00683926

Candidate approximation 12, the cheapest approximation in the set, is simply a constant, while candidate approximation

11 is a simple rational polynomial. Candidate approximation 10 represents a variation on the first two terms of the

asymptotic expansion, with a slightly perturbed version of Euler's constant which gives greater accuracy on the 50

supplied training instances. Candidate solutions 8 and 9 represent slightly more costly variations on the first two terms

of the asymptotic expansion which provide increased accuracy over the training data. Similarly, candidate solutions 6

and 7 are slight variations on the first three terms of the asymptotic expansion, tweaked as it were to give greater

accuracy on the 50 training points. Candidate solutions 2-5 can be regarded as more complicated variations on the first

three terms of the asymptotic expansion, each giving a slight increase in accuracy at the cost of a slightly more complex

computation. Candidate solution 1 represents a unique and unexpected approximation which has the greatest accuracy

of all evolved approximations, though it is unequivocally inferior to the first four terms of the asymptotic expansion has

presented in Table 2.

Candidate approximations 1-7 all make use of the constant 0.5766598187 as an approximation to Euler's constant, which

was evolved using the LISP expression:

(RCP(SQRT(* 4.67956 RLOG(1.90146))))

This approximation is accurate to two decimal places. Candidate approximations 8 and 9 make use of the slightly less

accurate approximation of 0.5779513609, evolved using the LISP expression:

(COS(LN 2.59758))

Note that in this experiment, pure error-driven evolution has produced a rich set of candidate approximations exhibiting

various trade-offs between accuracy and cost. Also note that with the exception of the first candidate approximation,

which uses the SQRT function, the SQRT and COS functions were used only in the creation of constants, so that these

extraneous functions did not provide a significant obstacle to the evolution of the desired approximations. Thus, this

experiment represents a partial rediscovery of the first three terms of the asymptotic expansion for Hn.

 27

5 DISCOVERY OF RATIONAL POLYNOMIAL APPROXIMATIONS FOR KNOWN
FUNCTIONS

5.1 INTRODUCTION

By limiting the set of available functions to the arithmetic function set {*,+,/,-}, it is possible to evolve rational

polynomial approximations to functions, where a rational polynomial is defined as the ratio of two polynomial

expressions. Since approximations evolved with the specified function set use only arithmetic operators, they can easily

be converted to rational polynomial form by hand, or by using a symbolic mathematics package such as Maple.

Approximations evolved in this manner can be compared to approximations obtained through other techniques such as

Padé approximations by comparing their Pareto fronts. In the section, we present the results of such a comparison for

five common mathematical functions: the natural logarithm ln(x), the square root sqrt(x), the hyperbolic arcsine

arcsinh(x), the negative exponential exp(-x), and the hyperbolic tangent tanh(x). The functions are approximated over

the interval [0,100], with the exception of ln(x), which (since ln(0) is not defined) is approximated over the interval

[1,100]. The functions were selected to be common, aperiodic functions whose calculation was sufficiently complex to

warrant the use of approximation. The intervals were chosen to be relatively large due to the fact that Padé

approximations are weaker over larger intervals, and we wished to construct examples for which the genetic technique

might be most applicable.

5.2 COMPARISON WITH PADÉ APPROXIMATIONS
The Padé approximation technique is parameterized by the value about which the approximation is centered, the degree

of the numerator in the rational polynomial approximation, and the degree of the denominator. Using the Maple

symbolic mathematics package, we calculated all Padé approximations whose numerator and denominator had a degree

of 20 or less, determined their associated error and cost, and calculated their (collective) Pareto front for each of the three

functions being approximated. The center of approximation was taken as the leftmost point on the interval for all

functions except the square root, whose center was taken as x=1 since the necessary derivatives of sqrt(x) are not defined

for x=0. Error was calculated using a Riemann integral with 1000 points. For simplicity, the cost of Padé

approximations was taken only as the minimum number of multiplications/divisions required to compute the rational

polynomial, as calculated by a separate Maple procedure.

The Maple procedure written to compute the cost of an approximation operated by first putting the approximation in

continued-fraction form (known to minimize the number of necessary multiplications/divisions), counting the number of

multiplications/divisions required to compute the approximation in this form, and then subtracting for redundant

multiplications. As an example of a redundant multiplication, the function f(x)=x2+x3 when computed literally requires 3

multiplications (1 for x2, 2 for x3), but need be computed using only 2, since in the course of computing x3 one naturally

computes x2.

For consistency, the candidate approximations evolved through the genetic programming technique were also evaluated

(subsequent to evolution) using the Riemann integral and Maple cost procedure, and the Pareto front for this set of

approximations was recomputed using the new cost and error values. Finally, it should be noted that a Padé

 28

approximation with denominator of degree zero is identical to the Taylor series whose degree is that of the numerator, so

that the Pareto fronts reported here effectively represent the potentially best (under some reasonable utility function)

members of a set of 20 Taylor series and 380 uniquely Padé approximations.

5.3 AVOIDING DIVISION BY ZERO
In evolving approximations to functions, it is desirable to avoid evolving expressions which divide by zero when

evaluated at some point in the target interval. Toward this end, a number of informal experiments (not reported here)

were conducted to determine the way in which division by zero could best be discouraged. Initially, the division

operators was defined to simply return 1 when division by zero was attempted, so that the expression (/ X X) would

always evaluate to 1. This tended to produce many expressions which divided by zero, which of course, when evaluated

through Maple, were assigned infinite error. We attempted to remedy this by assigning a high fitness penalty (106) to

any approximation which attempted to divide by zero on any of the training examples. This approach, however, tended

to stifle evolutionary progress, so that the resulting expressions were not as accurate. As a final solution, we defined the

division operator to simply return the high value 106 if division by zero was attempted, which seemed to provide a good

compromise between the loss of accuracy introduced by the fitness-penalty approach and the loss of valid

approximations imposed by the original definition of our division operator.

5.4 RESULTS
All experiments involving rational polynomial approximations were performed using same settings as described for the

symbolic regression experiment in section 2.5, but with a generation limit of 101 (informal experiments indicate that

accurate rational polynomial approximations take a while to evolve). Note that the / function listed in the function set

was defined to be a protected division operator which returns the value 106 if division by zero is attempted. In analyzing

evolved approximations via Maple, any approximation which performed division by zero was discarded. To reduce the

execution time of these experiments, we employed the technique suggested as a possible optimization in (Koza 1990a) of

using only a subset of the available training instances to evaluate individuals at each generation. In our experiments, the

subset is chosen at random for the initial generation, and selected as the subset of examples on which the previous best-

of-generation individual performed the worst for all subsequent generations. The subset is assigned a fixed size for all

generations; for all experiments reported in this section, the subset size was 25. Training data consisted of 100 points,

uniformly spaced over the interval of approximation. Each of the three experiments reported was completed in

approximately 4-5 hours on a 600 MHz Pentium III system.

The complete process through which candidate approximations were obtained and evaluated is illustrated in tables 5.1

through 5.3 below for approximations to the function ln(x). Table 5.1 presents the evolved candidate approximations

calculated (as usual) as the Pareto front of the entire population history for all 50 independent runs. Table 5.2 presents

the evaluation through Maple of each of these approximations. The cost and error values given in this table are those

obtained through a Maple cost procedure and a Riemann integral, respectively. Table 5.3 presents the Pareto front, with

respect to the new cost and error values, for the approximations in table 5.2.

 29

Table 5.1: Evolved Approximations for ln(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (% (- (- 0.0682089 (+ X X)) (% X (+ 2.68242 (- (- X X) (- (% X (+ (- (% 1.17237
(+ X X)) (% -3.40938 -1.76199)) (* X 0.221107))) (- 4.6585 (+ (* X 0.221107) (*
-1.43422 (- (% 1.17237 3.42463) (% 3.72341 X)))))))))) (- (* (% X -1.43422)
1.9866) (- 4.6585 X)))

4.248 11.5 7 20

2. (% (- (- 0.0682089 (+ X X)) (% X (+ (% X 3.79818) (- (- (* (% X -1.43422)
1.9866) (- (+ (- 4.6585 X) X) X)) (% 2.91803 -3.57418))))) (- (* (% X -1.43422)
1.9866) (- (+ (- 4.6585 X) X) X)))

7.02533 8.3 7 10

3. (% -1.32282 (* (% -0.927 X) (- (- (- -0.498825 3.39076) (% X -3.6227)) (- (- -
0.498825 3.39076) 4.13266))))

7.68202 4.2 21 60

4. (+ (% (+ (+ (* X 2.32688) (* X 0.879086)) (- (+ -3.79666 X) (+ 0.417035
2.38792))) (+ X (- (+ (* (+ 3.55251 (- (* 0.68041 -2.30094) (* 0.68041 -
2.30094))) 3.06574) -1.6747) -3.63491))) 0.694754)

9.01302 3.6 14 9

5. (+ (% (+ (+ (* X 2.32688) (* X 0.879086)) (+ -3.79666 X)) (+ X (- (+ (* (+
3.55251 (- (* 0.68041 -2.30094) (* 0.68041 -2.30094))) 3.06574) -1.6747) -
3.63491))) 0.694754)

11.0388 3.5 14 43

6. (% (- (- 0.0682089 (+ X X)) -3.40938) (- (* (% X -1.43422) 1.9866) (- 4.6585
X)))

12.5878 3.5 7 51

7. (% (- (- 4.6585 X) X) (- (* (% X -1.43422) 1.9866) (- 4.6585 X)))

13.5293 3.4 7 52

8. (% (+ X -0.306864) (* (- (% (+ X (- 3.99442 -0.306864)) (* (- 3.99442 -
0.306864) (- 3.99442 -0.306864))) -0.306864) 3.99442))

14.7673 3.3 32 43

9. (- 3.70144 (% (- (- (* -4.36491 (+ -4.11252 -3.17591)) -3.66451) (+ X 3.70144))
(+ X (- 3.33522 -3.66451))))

15.6657 1.4 37 12

10. (+ 4.70397 (% (* (+ (+ 4.70397 (* -1.64571 -3.62819)) 4.8471) -1.87643) (+ X
2.82952)))

28.5238 1.2 5 61

11. (- 4.15036 (% (- (- (- -0.888241 -3.75332) -1.65822) (- (- -0.888241 (- -
0.888241 -3.75332)) (- -0.888241 -3.75332))) X))

43.7394 1.1 9 9

12. (- X (+ X -3.91812))

66.7454 0.2 36 0

13. (- 3.89462 (* (- -2.99371 4.85595) 0.00228889))

66.7454 0 19 5

 30

Table 5.2: Maple Evaluation of Approximations for ln(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. (.0682089-2*x-x/(7.831903406-.221107*x-x/(.586185/x-1.934959903+.221107*x)-
5.34018909/x))/(-.385143144*x-4.6585)

11 3.994089354

2. (.0682089-2*x-x/(-.1218591501*x-3.842080570))/(-.385143144*x-4.6585) 6 6.798897089

3. 1.426990291*x/(4.132660+.2760372098*x) 3 7.436110884

4. (4.205966*x-6.601615)/(x+12.85128201)+.694754 2 8.743267301

5. (4.205966*x-3.79666)/(x+12.85128201)+.694754 2 10.64746639

6. (3.4775889-2*x)/(-.385143144*x-4.6585) 3 12.39955600

7. (4.6585-2*x)/(-.385143144*x-4.6585) 3 13.24060063

8. (x-.306864)/(.2159024101*x+2.154401281) 2 14.61975837

9. 3.70144-(31.77641099-x)/(x+6.99973) 3 15.58935522

10. 4.70397-29.12598131/(x+2.82952) 1 26.93968611

11. 4.15036-11.141698/x 1 39.72303025

12. 3.91812 0 64.55919780

13. 3.912587008 0 64.56236430

Table 5.3: Final Evolved Approximations for ln(x).

EVOLVED APPROXIMATION COST ERROR
(2) (.0682089-2*x-x/(-.1218591501*x-3.842080570))/(-.385143144*x-4.6585) 6 6.798897089

(3) 1.426990291*x/(4.132660+.2760372098*x) 3 7.436110884

(4) (4.205966*x-6.601615)/(x+12.85128201)+.694754 2 8.743267301

(10) 4.70397-29.12598131/(x+2.82952) 1 26.93968611

(12) 3.91812 0 64.55919780

Figure 5.1 (below) presents the Pareto fronts for Padé approximations and for genetically evolved approximations of the

function ln(x), evaluated over the intervals [1,100]. In this figure, the dashed line connects points corresponding to Padé

approximations, while the solid line connects points corresponding to genetically evolved approximations. All Padé

approximations not accounted for in computing the Pareto front represented by the dashed line (i.e. all Padé

approximation whose numerator or denominator has a degree larger than 20) must involve at least 20

multiplications/divisions, if only to compute the various powers of x: x, x2, x3, . . . x21. For this reason, a dashed

horizontal line at cost=20 is drawn in the figure, so that the horizontal line, combined with the dashed lines representing

the Pareto front for Padé approximations with numerator and denominator of degree at most 20, represents the best case

Pareto front for all Padé approximations of any degree. This same convention is followed in Figures 5.2 through 5.5,

which represent the Pareto fronts for approximations to sqrt(x), arcsinh(x), exp(-x), and tanh(x), respectively, all

evaluated over the interval [0,100]. The final evolved approximations (obtained after processing through Maple) for

each of these functions are presented in Tables 5.4 through 5.7. For brevity, only the final evolved approximations, and

not the original candidate approximations or the cost and error data obtained by evaluating them through Maple, are

 31

given for these functions. For a full set of tables (such as that given for ln(x)) for each of these functions, see Appendix

A.

Figure 5.1: Pareto Fronts for Approximations of ln(x).

Table 5.4: Final Evolved Approximations for sqrt(x).

EVOLVED APPROXIMATION COST ERROR
1. x/(x/(4.78576+x/(9.17981+x/(15.39292+.04005697704*x)))+1.48335) 5 2.591348148

2. (x+.06288503787)/((x-9.04049)/(.05822627334*x+8.30072)+4.32524)+.795465 3 3.123452980

3. x/(5.5426193+.06559635887*x)+1.48335 2 8.935605674

4. .07262106112*x+3.172308452 1 32.95322345

5. 7.011926 0 195.5193204

Figure 5.2: Pareto Fronts for Approximations of sqrt(x).

Table 5.5: Final Evolved Approximations for arcsinh(x).

EVOLVED APPROXIMATION COST ERROR
1. 1.86636*(1.277853316*x/((.3868816181*(-2.90216-x)/(-4.88586-x)+1.02145)*(-
1.122792357-.3868816181*x))-.03522759767*(-1.122792357-.3868816181*x)*(x+
4.86602)*(x-.269326)/(.0840785+x)+4.83551*x)/(9.684284+2.08151*x)

17 3.361399200

2. 1.86636*(.07017092454*x^2/((2*x+4.86602)*(3.111694208+4.83551*x))-
.03539134480*(.2502505059-.3868816181*x)*(x+4.86602)*(x-.269326)/(.0840785+x)+

15 3.533969225

 32

4.83551*x)/(9.684284+2.08151*x)

3. 1.86636*(.0840785-.03522759767*(-1.122792357-.3868816181*x)*(x-.269326)+
4.83551*x)/(9.684284+2.08151*x)

7 3.804858563

4. 2.46147/(.4180284579-4.28068*1/(-2.299172064-.7261005920*x)) 3 6.596080331

5. 4.466119361*x/(18.01575130+x)+1.32282 2 7.581253733

6. 3.30409+.02369172723*x 1 25.83927515

7. 4.600931145 0 68.51916981

Figure 5.3: Pareto Fronts for Approximations of arcsinh(x).

Table 5.6: Final Evolved Approximations for exp(-x).

EVOLVED APPROXIMATION COST ERROR
1. -3.00226/(-3.00226-x^2*(x+3.70418)) 4 .1651951367

2. -3.00226/(-3.00226-4.66735*x^2) 3 .2530555679

3. .950804/(x+.9878317412+x^2) 2 .2992106079

4. 0 0 1.050833194

Figure 5.4: Pareto Fronts for Approximations of exp(-x).

 33

Table 5.7: Final Evolved Approximations for tanh(x).

EVOLVED APPROXIMATION COST ERROR
1. x/(x+.3867602520/(x+.247353)) 2 .2020989978

2. x/(.00961333+x) 1 .6362665411

3. 1.000000000 0 .7439807922

Figure 5.5: Pareto Fronts for Approximations of tanh(x).

For each of these experiments, we are interested in the genetically evolved approximations which lie to the interior of the

Pareto fronts for Padé approximations, and thus are superior to Padé approximations given certain trade-offs between

error and cost. As can be seen through examination of tables 5.3 through 5.7, we are able to evolve such approximations

for all five functions examined in these experiments. For ln(x), we are able to obtain 5 approximations which lie to the

interior of the Pareto front for Padé approximations, for sqrt(x) we are able to obtain 5 such approximations, for

arcsinh(x), 7 such approximations, for exp(-x), 4 such approximations, and for tanh(x), we are able to obtain 3 such

approximations, all exhibiting various trade-offs between error and cost. As can be seen from Figure 5.3, arcsinh(x)

proved to be a particularly difficult function for Padé approximations to model over the given interval.

 34

6 APPROXIMATING FUNCTIONS OF MORE THAN ONE VARIABLE
For some functions of more than one variable, it is possible to obtain a polynomial or rational polynomial

approximations using techniques designed to approximate functions of a single variable; this can be done by nesting and

combining approximations. For example, to obtain a rational polynomial approximation for the function

f(x,y)=ln(x)*sin(y), one could compute a Padé approximation for ln(x) and a Padé approximation for cos(x) and multiply

the two together. To compute a rational polynomial approximation for a more complex function such as

f(x,y)=cos(ln(x)*sin(y)), one could again compute two Padé approximations and multiply them together, assign the result

to an intermediate variable z, and compute a Padé approximation for cos(z). However, for functions which meet certain

conditions, there is no way to compute a polynomial or rational polynomial approximation using techniques designed to

compute approximations for functions of a single variable. Specifically, there is no way to use Padé approximations or

Taylor series (or any similar technique) to obtain an approximation to a function which:

 • Employs a non-unary operator which is not in the set {*,+,/,-}

 -and-

 • at least two of the arguments to the operator are variables.

 -or-

• Contains a function of more than one variable, with at least two of its arguments being variables, which cannot
be reduced to an expression which fails to meet the two criteria above.

For the function f(x)=xy, for example, there is no way to use Padé approximations or Taylor series to obtain an

approximation, since the variables x and y are inextricably entwined by the exponentiation operator.

In contrast, the genetic programming approach can be used on any function for which data points can be generated. To

test the ability of genetic programming to evolve rational polynomial approximations for the type of function just

described, an experiment was conducted to evolve approximations of the function f(x)=xy over the area 0<=x<=1,

0<=y<=1. Parameter settings were the same as described in the section on Harmonic numbers, including the generation

limit of 51. Training data consisted of 100 (three dimensional) points chosen at random from the given rectangle. As in

the previous section, a subset of 25 examples was used to evaluate the individuals of each generation.

The approximations returned by the genetic programming system were further evaluated through Maple. As in the

previous section, a Maple procedure was used to calculate the minimum number of multiplications/divisions necessary to

compute the approximation, while the error was evaluated using a double Riemann integral with 10000 points. The

Pareto front for this set of approximations was then recomputed using the new cost and error values. The results of this

evaluation are presented in Table 6.1.

 35

Table 6.1: Final Evolved Approximations for xy.

EXPRESSION COST ERROR
1. x/(y^2+x-x*y^3) 4 .03643611691

2. x/(y^2+x-x*y^2) 3 .04650160477

3. x/(y+x-x*y) 2 .04745973920

4. x*y-y+.989868 1 .05509570980

5. x+.13336555 0 .1401316648

The most accurate approximation evolved as a result of this experiment was x/(y2+x-xy3). Figures 4 and 5 present
graphs for the target surface f(x)=xy and for this approximation, respectively. Visually, the evolved surface is quite
similar to the target function.

 Figure 6.1: f(x)=xy

. Figure 6.2: x/(y2+x-xy3).

 36

7 REFINING APPROXIMATIONS
In this section, experiments are presented involving the refinement of evolved approximations through approximation of

their error function. We then discuss alternative ways in which genetic programming could be used for the refinement of

approximations.

7.1 APPROXIMATING ERROR FUNCTION OF EVOLVED APPROXIMATIONS
Table 7.1 represents the result of evaluation through Maple of a set of candidate approximations to the function sin(x)

over the interval [0,π/2]. The experiment was performed using the same GP parameters as for the symbolic regression

experiment of section 2.5, and with 50 uniformly spaced points taken as training data. We can attempt to refine some of

the approximations evolved in this experiment by approximating their error function, i.e. evolving approximations to the

function sin(x)-a(x), where a(x) is an existing approximation to sin(x). An approximation a'(x) evolved in this way can

be used to create a "refined" approximation a(x)+a'(x) which presumably will be able to more accurately model the target

function sin(x).

For reference, the Pareto front for the approximations in Table 7.1 is given in Table 7.2, as calculated from the Maple

cost and error data in the manner of section 5.

Table 7.1: Maple Evaluation of Approximations for sin(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. x-x^2*(x+.2210019201*x/(-.883747041-3.021766978*x+2.16636/ (4.91791+x)))
/(4.91791+x)

8 .3419994310e-3

2. x-x^2*(x+.2210019201*x/(-3.021766978*x-.6682312438))/(4.91791+x) 7 .4174535818e-3

3. x-x^2*(x-.06687879829)/(4.91791+x) 4 .001030416793

4. x^2/(-1.61855*(x+3.93155)/(x^2/(-10.50606654+x)+x)+2.562407433)+x 5 INF

5. x-x^2*(x+.3275553404*x/(x-x*(4.91791+x)))/(4.91791+x) 8 INF

6. x-x^2*(x-.06858002070)/(4.91791+x) 4 .001337163993

7. x-.137486*x^2*(.137486+x) 3 .002441754164

8. -.155492*x^3+x 3 .006453608840

9. -.3508427242*(-3.37336+x)*x 2 .02458904516

10. 2*x/(1.44734+x) 2 .03794022488

11. .0840785+.739616*x 1 .08566001170

12. .810419*x 1 .1118010031

13. x-.0758385 0 .2023284751

14. x 0 .2332524535

 37

Table 7.2: Final Evolved Approximations for sin(x).

EVOLVED APPROXIMATION COST ERROR
(1) x-x^2*(x+.2210019201*x/(-.883747041-3.021766978*x+2.16636/ (4.91791+x)))
/(4.91791+x)

8 .3419994310e-3

(2) x-x^2*(x+.2210019201*x/(-3.021766978*x-.6682312438))/(4.91791+x) 7 .4174535818e-3

(3) x-x^2*(x-.06687879829)/(4.91791+x) 4 .001030416793

(7) x-.137486*x^2*(.137486+x) 3 .002441754164

(9) -.3508427242*(-3.37336+x)*x 2 .02458904516

(11) .0840785+.739616*x 1 .08566001170

(13) x-.0758385 0 .2023284751

The graphs for each of the candidate approximations in Table 7.1 were examined manually. Candidate approximations

(3), (7), and (8) were chosen for refinement due to the simple shapes of their error functions, and the simplicity of the

formulae they represent. Figures 7.1, 7.2, and 7.3 graph the error functions for candidate approximations (3), (7), and

(8), respectively.

Figure 7.1: Error Function for Candidate Approximation (3).

 38

 Figure 7.2: Error Function for Candidate Figure 7.3: Error Function for Candidate
 Approximation (7). Approximation (8).

Each of these approximations was refined using the parameter settings of section 2.5, again with 50 uniformly spaced

points taken as training data. Additionally, for these experiments we use a slightly modified version of the standard

adjusted fitness formula 1/(1+[error]) designed to maintain selection pressure when error values are small. We note that

although an approximation which attains an error of 0.1 is twice as accurate as one with an error of 0.2, the standard

formula will assign it an adjusted fitness which is just over 9% greater. Since we are intend to approximate functions

which have very small values, it is likely that the use of this standard formula would tend to hinder evolutionary

progress. To avoid this problem, we introduce an error multiplier, so that the adjusted fitness formula becomes

1/(1+[error multiplier][error]). In the previous example, this causes the approximation with an accuracy of 0.1 to have a

fitness which is nearly twice (~1.99 times) that of the approximation whose accuracy is 0.2, which is more appropriate.

For the three refinement experiments reported in this paper, the error multiplier was set to 1000.

Tables 7.3, 7.4, and 7.5 present the final evolved approximations for the error functions of candidate solutions (3), (7),

and (8), respectively. Note that in these tables, both the cost of the evolved approximation and the implicit cost of the

approximation being refined are indicated; an entry "3 (+4)" in the cost column indicates an approximation of cost 3

which is being used to refine an approximation of cost 4.

Table 7.3: Final Evolved Approximations for Refinement of Candidate Approximation 3 for sin(x).

EVOLVED APPROXIMATION COST ERROR
1. -.2932035419*x/(151.1461467*x+191.8603473) 3 (+4) .3095090765e-3

2. -.8756705834e-3*x 1 (+4) .3462600904e-3

3. -.5786124498e-3 0 (+4) .4676456530e-3

 39

Table 7.4: Final Evolved Approximations for Refinement of Candidate Approximation 7 for sin(x).

EVOLVED APPROXIMATION COST ERROR
1. (-1.4624515+x)*x*(-.6015476503e-2+.005000840892*x)/(2*x+1.249727) 5 (+3) .002153461540

2. -.001581017185*x+.001566928741 1 (+3) .002333705786

3. .3290962388e-3 0 (+3) .002416170399

Table 7.5: Final Evolved Approximations for Refinement of Candidate Approximation 8 for sin(x).

EVOLVED APPROXIMATION COST ERROR
1. .001955402411*(x-1.1681)*x^4*(x+4.198426) 6 (+3) .001728764493

2. .01587790457*(x^2-x)*x 4 (+3) .002729466161

3. .00686666*x^2-.00686666*x 3 (+3) .004986344588

4. -.5786124498e-3 0 (+3) .006343650815

The experiment involving refinement of candidate approximation 3 (Table 7.3) produced three useful new

approximations as a result. Approximation (1) in table 7.3, with an estimated integral error of .3095090765e-3 and cost

of 7 multiplications/divisions, is unequivocally superior to approximations (1) (error .3419994310e-3, cost 8) and (2)

(error .4174535818e-3, cost 7) from table 7.2, and thus expands the Pareto front created in our original experiment.

Approximation (2) from table 7.3, with error .3462600904e-3 and cost 5, is also unequivocally superior to approximation

(2) from table 7.2. Approximation (3) (error .4676456530e-3, cost 4) is unequivocally superior to approximation (6)

from table 7.2, which has an error of .001030416793 and a cost of 4. Thus, all three approximations evolved as the final

result of this experiment expand upon the Pareto front for the original set of evolved approximations represented in table

7.2.

The experiment involving refinement of candidate approximation 7 (Table 7.4) produced one new useful approximation:

refined approximation (3) from this table (error .002416170399, cost 3) is unequivocally superior to candidate

approrixmation 7 (error .002441754164, cost 3) from the original experiment, representing a slight improvement in

accuracy.

No improvement on the Pareto front from table 7.2 was produced in the experiment involving refinement of candidate

approximation 8 (Table 7.5).

In Table 7.6, we present the Pareto front for all the approximations given in tables 7.2-7.5 together, which, due to the

selective nature of the Pareto front operator, is equal to the Pareto front for the union of the entire population histories of

these four experiments, each of which involves 50 independent runs on a population of 500 individuals for 50

generations, for a total of 5 million individuals being processed. For clarity, approximations involving refinement have

been written in brackets in the form [a(x)]+[a'(x)], where a(x) is the original approximation and a'(x) is the

approximation to its error function. Four of the seven approximations in this Table 7.6 are the results of refinement of

candidate approximations from the experiment reported in Table 7.1. Final refined approximations 1-3 were created

through refinement of the original candidate approximation 3 (x-x^2*(x-.06687879829)/(4.91791+x)); final

 40

approximation 4 is a refinement of original candidate approximation 7 (x-.137486*x^2*(.137486+x)), and final

approximations 5-7 are from the original experiment. Had more candidate approximations been refined in this manner,

or had refinement been applied multiple times (i.e. refinements of refinements), we might expect to see additional

improvement on the original Pareto front. It is not clear from the results of these experiments what the limits to such

potential improvements might be.

Table 7.6: Final Refined Approximations for sin(x).

EVOLVED APPROXIMATION COST ERROR
1. [x-x^2*(x-.06687879829)/(4.91791+x)] + [-.2932035419*x/(151.1461467*x+
191.8603473)]

7 .3095090765e-3

2. [x-x^2*(x-.06687879829)/(4.91791+x)] + [-.8756705834e-3*x] 5 .3462600904e-3

3. [x-x^2*(x-.06687879829)/(4.91791+x)] + [-.5786124498e-3] 4 .4676456530e-3

4. [x-.137486*x^2*(.137486+x)] + [.3290962388e-3] 3 .002416170399

5. -.3508427242*(-3.37336+x)*x 2 .02458904516

6. .0840785+.739616*x 1 .08566001170

7. x-.0758385 0 .2023284751

7.2 OTHER POSSIBLE APPROACHES TO REFINEMENT OF APPROXIMATIONS
The idea of creating and refining approximations using genetic programming could be applied in three possible ways:

refining evolved approximations via genetic programming, refining evolved approximations using a technique from

numerical analysis such as Padé approximations or Taylor series, or refining approximations obtained through a

numerical analysis technique using genetic programming. Only the first of these approaches has been considered in this

section. The second of these approaches, if effective, could be of particular use if incorporated on-the-fly in the

evaluation of individuals. One can imagine a rather different approach to the problem in which all evolving

approximations are refined to a certain specified degree of accuracy by adding terms based on the Padé approximations

or Taylor series for their error function, and fitness is taken simply as the cost of the refined expression. This would

allow for the evolution of a hybrid GP/Padé or GP/Taylor approximation which attempted to minimize approximation

cost given a certain desired minimum level of accuracy.

 41

8 ATTEMPTED REDISCOVERY OF NEURAL NETWORK ACTIVATION FUNCTIONS
Neural networks (Bishop 1995) are a powerful and popular model of computation used in numerous applications in the

field of maching learning (Cottrell 1990; Pomerleau 1993, Müller, Hemberger, and Baier 1997), whose creation, like that

of genetic algorithms, was originally inspired by the study of biological structures in nature. Specifically, artificial

neural networks attempt to model the network of neurons and synapses that exists in the human brain, using a directed

acyclic graph where nodes correspond to neurons, and weighted edges correspond to synapses of various strengths. Of

key importance to the operation of a neural network is the activation function which maps neuron input to output, which

in early neural networks, called perceptrons, was simply defined as:

p(x) = 0 if x ≤ 0

1 if x > 0

This function, combined with a shifted split point made possible by the use of special "bias" nodes, allows a neuron to

"fire" (emit a 1) if its input reaches a certain threshold level, and to remain silent otherwise. The function works well for

this purpose, though it is not differentiable. When the powerful error backpropagation algorithm (Bryson and Ho 1969)

was introduced as an efficient and effective method of finding a set of weights or synapse strengths for a neural network,

a differentiable function was required due to the nature of the weight updates performed during the training process. For

this reason the "sigmoid" function was introduced, defined as:

sigmoid(x) = 1/(1+e-x)

This function accurately models the perceptron switching function, but is somewhat computationally expensive to

calculate. If a rational polynomial approximation could be evolved which approximated the perceptron switching

function with similar accuracy, it would presumably be of value to the neural network community. Toward this end, an

experiment was conducted using the arithmetic function set {*,+,/,-} to evolve rational polynomial approximations to the

perceptron switching function p(x). Parameter settings are the same as in other experiments involving rational

polynomial approximations to functions of a single variable reported in section 5. The results of this experiment are

given in table 8.1.

Table 8.1. Rational Polynomial Approximations for Perceptron Switching Function.

EVOLVED LISP EXPRESSION

SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN. LIM x→→→→-∞∞∞∞ LIM x→→→→+∞∞∞∞

 42

1. (% (- (% (- 1.64235 (% -0.0636311 (% (+ -3.97977 4.4467) (+ -4.41404 X)))) (+
(% (* 1.63259 (* X (% X X))) -4.29563) (% -1.03717 0.680105))) (+ -4.33287 (% (+
X -1.16535) (+ -2.91406 2.18955)))) (- (% X -3.38984) (- (+ (% -2.40043 X) (% X
X)) (% X (* -0.218665 -1.57796)))))

((1.040824674+.1362754588*x)/(-.3800583384
*x-1.52501452)+2.724403588 +1.380243199
*x)/(2.603176691*x+2.40043/x-1)

46.8089 13.9 7 3 .53021495 .53021495

2. (% (+ X (% X X)) (- (- (+ 1.87551 (* X X)) (+ X (* 1.29322 -0.223548))) X))

(x+1)/(2.164606745+x^2-2*x) 46.9252 3.5 40 4 0 0

3. (% X (+ -4.09024 (+ X (+ (% 4.62065 X) X))))

x/(-4.09024+2*x+4.62065/x) 47.9418 2.3 28 0 .5 .5

4. (% (% X (+ (+ -4.5996 X) X)) 4.96521)

.2014013506*x/(-4.5996+2*x) 49.1347 2.2 36 1 .1007006753 .1007006753

5. (% -0.12711 (+ X (- 2.97693 4.36766)))

-.12711/(x-1.39073) 49.248 1.1 44 5 0 0

6. (% (% 0.206153 (* 2.94641 (- (* 2.07724 (+ -0.130467 2.61345)) -4.19858))) X)

.007478093203/x 50 (≈) 1 23 8 0 0

7. (+ -1.73421 (% -3.37397 -1.56758))

.418133102 50 0 0 0 .418133102 .418133102

The approximations evolved as a result of this experiment are not very accurate. An approximation which always

outputs 0 (or for that matter any constant value between 0 and 1) would have an error of 50 over the given training set,

while the best approximation given in table 8.1 has an error of just under 47. As can be seen from the graphs in Figure

8.1 below, the evolved approximations model the target function extremely poorly. This figure shows the perceptron

switching function (red dotted line), the sigmoid function (green line), and four evolved approximations (using blue lines

of various styles). From the solid line to the most sparsely dotted, the blue lines correspond to candidate solutions 1, 2,

3, and 4, respectively.

Figure 8.1: Plot of Rational Polynomial Approximations for Perceptron Switching Function

 43

After observing the poor results of this initial experiment, the experiment was repeated using the function set {*,+,/,-

,EXP} in the hopes of rediscovering the sigmoid function or perhaps a slightly more accurate variation upon it. The

results of this experiment are presented in table 8.2.

Table 8.2. Approximations for Perceptron Switching Function Using Function Set {*,+,/,-,EXP}.

EVOLVED LISP EXPRESSION

SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN. LIM x→→→→-∞∞∞∞ LIM x→→→→+∞∞∞∞
1. (% (% X X) (EXP (EXP (- (* 1.54927 4.28159) (EXP (- X (% -1.67409 X)))))))

1/exp(exp(6.633338939-exp(x+1.67409/x))) 33.0013 33.2 27 7 .850013e-330 1

2. (EXP (* -4.69207 (EXP (- (% -0.365154 X) (- (- X -1.59932) -0.0349437)))))

exp(-4.69207*exp(-.365154/x-x-1.6342637)) 33.8325 22.3 49 0 0 1

3. (EXP (* -4.69207 (EXP (- (% -0.365154 X) (- X -0.0349437)))))

exp(-4.69207*exp(-.365154/x-x-.0349437)) 35.6592 22.2 49 0 0 1

4. (EXP (- (- X X) (EXP (* -1.07685 X))))

exp(-exp(-1.07685*x)) 39.3448 21.2 3 1 0 1

5. (EXP (- X (+ (EXP (- -0.0965911 X)) X)))

exp(-exp(-.0965911-x)) 39.4363 20.3 46 0 0 1

6. (% X (+ X (% (* (EXP (- -2.23502 X)) (EXP 3.96146)) (- (% X X) (- -4.83398 -
1.19465)))))

x/(x+11.32361129*exp(-2.23502-x)) 40.7289 14.3 42 0 0 1

7. (% X (- X (* (+ -4.10886 X) (% (EXP (- (- X X) X)) (+ X -0.860775)))))

x/(x-(-4.10886+x)*exp(-x)/(x-.860775)) 41.2916 13.5 0 12 0 1

8. (% X (- X (% (EXP (* -3.78872 X)) (- X (- X X)))))

x/(x-exp(-3.78872*x)/x) 41.9689 13.3 21 24 0 1

9. (% X (- (* (% -4.1818 (* -1.2804 3.06116)) (+ X 2.08762)) (% X (EXP (- X
1.40645)))))

x/(1.06691928*x+2.227322027-x/exp(x-
1.40645))

43.3873 13.3 27 0 0 .9372780291

10. (% X (- X (EXP (* -4.89288 X))))

x/(x-exp(-4.89288*x)) 43.9838 12.1 35 38 0 1

11. (% X (- X (EXP (- (- X X) X))))

x/(x-exp(-x)) 46.33 11.3 41 27 0 1

12. (% (EXP -1.21876) (+ (EXP (- (* 3.2873 -3.61293) X)) (EXP (% (+ 4.494 -
4.93683) 2.5573))))

.2955964794*1/(exp(-11.87678479-x)+

.8410004351)
47.8246 11.2 44 0 0 .3514819578

13. (% (% X X) (+ (+ -1.83004 X) (% 1.74093 X)))

1/(-1.83004+x+1.74093/x) 48.1367 3.2 27 4 0 0

14. (% (- X -1.13086) (+ (* X X) 2.8576))

(x+1.13086)/(x^2+2.8576) 48.3269 2.2 2 0 0 0

 44

15. (% X (- X (- (EXP -4.85809) X)))

x/(2*x-.007765301462) 49.1459 1.2 34 14 .5 .5

16. (% -4.47325 (- X (EXP 3.88363)))

-4.47325/(x-48.6003144) 49.5743 1.1 17 41 0 0

17. (EXP -3.31538)

.03632024426 50 0 7 0 .0363202443 .0363202443

The results of this second experiment are substantially more accurate than those of the first, as is especially apparent

when examining the approximations' graphs, as presented in Figure 8.2 below. The same conventions have been used in

this figure as were used in figure 8.1, namely a dotted red line for the perceptron switching function being modeled, a

green line for the sigmoid function, and four blue lines (of various styles) for four of the evolved approximations. The

blue lines correspond to candidate approximations 1, 2, 4, and 5, respectively. These approximations were chosen

because, among the most accurate approximations, they had the most interesting graphs, and the graphs from which it

was most visually apparent that the approximation was more accurate than the sigmoid function in modeling the

perceptron switching function. The solid blue line, which corresponds to candidate 1, may be difficult to see because it

is actually coincident with the heavier dotted red line. Likewise, the graph for candidate approximation 2 is clearly

closer to the perceptron switching function than is the sigmoid function for all values of x. The graphs of candidate

approximations 4 and 5, while further from the red line than the graph of the sigmoid function for some values of x, are

clearly more accurate overall. Furthermore, as indicated in Table 8.2, each of these candidate approximations has the

desired limits as x tends to positive and negative infinity.

Figure 8.2: Plot of Approximations for Perceptron Switching Function Evolved Using Function Set {*,+,/,-,EXP}.

Though this experiment illustrates the power of genetic programming to evolve a variety of accurate an interesting

approximations to the target function exhibits various trade-offs between cost and error, the evolved approximations are

unfortunately not of great practical use. The sigmoid function, like the four evolved approximations we have been

 45

discussing, can be made to arbitrarily accurately model the perceptron switching function simply by multiplying its

argument by a large value (and thus horizontally squashing the graph). For example, were we to graph

sigmoid(1000000*x) = 1/(1+e-1000000*x), we would see that the result is virtually indistinguishable from the target

function. In a purely academic sense, candidate approximation 4 may be the most interesting because it is a slight

variation on exp(-exp(-x)), which is a simple and somewhat elegant expression.

 46

9 ATTEMPTED PIECEWISE APPROXIMATION OF FUNCTIONS

9.1 INTRODUCTION AND PRELIMINARY WORK
It is possible to evolve piecewise rational polynomial approximations to functions in a manner similar to that described

in Section 5 by adding appropriate operators to the function set to allow for the insertion of split points or conditions.

One such way of doing this would be to add the functions IfThenElse, GreaterThan, and GreaterThanOrEqual to the

arithmetic function set {*,+,/,-}, where the three functions are defined as:

IfThenElse(i1, i2, i3, . . .) = i2 if i1 ≠ 0

 i3 otherwise

GreaterThan(i1, i2, . . .) = 1 if i1 > i2

 0 otherwise

GreaterThanOrEqual(i1, i2, . . .) = 1 if i1 >= i2

 0 otherwise

Alternatively, since all approximations will be evaluated using a fixed set of training examples (and thus there is a finite

set of x-values which any splitting condition can attempt to separate) either the GreaterThan or GreaterThanOrEqual

function may be omitted, without any loss (as far as evaluation against the training data is concerned) in expressive

power. Preliminary experiments were performed involving piecewise rational approximation of the function ln(x) over

the interval [1,100] with all three of the above functions added to the arithmetic function set, and with only IfThenElse

and GreaterThan added to the arithmetic function set. An even more compact function set for evolving piecewise

rational polynomial approximations can be obtained using the Split function, defined as:

Split(i1, i2, i3, . . .) = i2 if i1 >= 0

 i3 otherwise

If this function is used in evolving approximations to a function of a single variable x, and if the argument i1 is a linear

expression involving x, the function introduces a single split point, so that, for example, Split(x,x,-x) is equal to |x|, while

Split(x-4,x-4,4-x) is equal to |x-4|. Table 9.1 presents the results of experiments with piecewise rational polynomial

approximation of ln(x) over the interval [0,100] using each of the function sets discussed, as well as a control experiment

(from Section 5) involving non-piecewise rational polynomial approximation to this same function. For each function

set, the error of the best approximation evolved over the course of 50 runs is given. Excluding the function set, the

parameters for all experiments are the same, and are the same as those given in section 5.

 47

No claim is made as to the statistical validity of these experiments in establishing the relative value of different possible

function sets in evolving piecewise rational polynomial approximations; they are merely intended to help gain an

intuitive idea of the relative effectiveness of different possible function sets, which is at least slightly better than the

understanding that one could obtain having performed no experiments at all.

Table 9.1: Error of Best Evolved Piecewise Approximation to ln(x) Using Various Function Sets.

FUNCTION SET ERROR OF BEST EVOLVED
APPROXIMATION

{*, +, /, -, IfThenElse, GreaterThan, GreaterThanOrEqual} 9.39709

{*, +, /, -, IfThenElse, GreaterThan} 9.8963

{*, +, /, -, Split} 7.32875

{*, +, /, -} 3.994089354

The function set in which only the Split function is added to the set of arithmetic operators seems the most natural choice

for experiments involving piecewise approximation of functions, both intuitively and based on the very little empircal

evidence we have presented. Sections 9.2 and 9.3 present the results of such experiments for functions of a single

variable and for functions of more than one variable, respectively.

9.2 PIECEWISE RATIONAL POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF A SINGLE
VARIABLE

Our first experiment involving piecewise rational polynomial approximation of functions was performed against the

function:

f(x) = exp(-x^2) + exp(-(50-x)^2) + exp(-(100-x)^2)

which is designed to be especially amenable to piecewise approximation. The function is designed to have three distinct

peaks, as illustrated in Figure 9.1 below.

 48

Figure 9.1: Graph of Three-Peaks Function.

Presumably, genetic programming would be employ the Split function to create two or three split points: one for each

peak at the left and right ends of the interval, and (possibly) one in the center to approximate the middle peak using two

separate functions. To test this hypothesis, an experiment was conducted involving 50 indepedent runs in the manner of

Section 5, with parameter settings the same as in that section. The results of this experiment are presented in Table 9.2.

For comparison, the same experiment was also run using only the arithmetic function set (i.e. with the Split function

removed) to evolve non-piecewise rational polynomial approximations. The results of this experiment are presented in

Table 9.3.

Table 9.2: Evolved Piecewise Rational Polynomial Approximations for Three-Peaks Function.

EVOLVED LISP EXPRESSION
SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN.

1. (% (SPLIT (- (+ (+ 0.457015 (+ X (% (* (- 4.33287 X) (+ 4.04538 3.27998)) (- X
3.23603)))) (SPLIT X (% (- X (- 0.529038 X)) (SPLIT 2.10837 (SPLIT (% -4.97436
4.64202) X (* X 1.75619)) (- X X))) (% -0.629749 3.77529))) (* (% (- (- (% -
2.44621 X) (+ X X)) (* -4.45311 (* -2.73309 -0.610828))) (% -0.122837 (+ (% X X)
(- 1.65029 -0.797296)))) (* 0.865963 1.15467))) (% X (* -1.26576 (* X X))) (% (-
X X) (SPLIT X (- (- 1.1623 3.43745) (* X -2.48009)) (- X X)))) (+ (% X X) (- (*
X (+ (% X X) (- (* X (* -1.26576 (* X 1.75619))) (- X (+ X -1.91794))))) (SPLIT
X (- X X) X))))

piecewise([-.7900391859/x, 0 <= 209.0882933-55.12716696*x+7.32536
(4.33287-x)/(x-3.23603)+piecewise([.5694144711(2*x-.529038)/x, 0 <= x],
[-.1668081128, otherwise])-68.64941854/x],[0, otherwise])/(1+x*(-.91794-
2.222915054*x^2)-piecewise([0, 0 <= x],[x, otherwise]))

2.16313 23.9 35 21

 49

2. (% (SPLIT (- (+ (+ 0.457015 (+ X (% (* (- 4.33287 X) (+ 4.04538 3.27998)) (- X
3.23603)))) (SPLIT X (% (- X (- (% -1.6744 0.87878) X)) (* (SPLIT X X 3.05933)
(- (- X (+ X -0.0929289)) (- X (SPLIT (- (- X X) -2.58934) X (- (% -2.44621 X)
(+ X X))))))) (% -0.629749 3.77529))) (- X X)) (% X (* -1.26576 (* X X))) (% (-
X X) (SPLIT X (- (- 1.1623 3.43745) (* X -2.48009)) (- X X)))) (+ (% X X) (- (*
X (+ (% X X) (- (* X (* -1.26576 (* X 1.75619))) (- X (+ X -1.91794))))) (SPLIT
X (- X X) X))))

piecewise([-.7900391859/x, 0 <= .457015+x+7.32536*(4.33287-x)/(x-3.23603
)+piecewise([10.76091507*(2*x+1.905368807)/piecewise([x, 0 <= x], [
3.05933, otherwise]), 0 <= x],[-.1668081128, otherwise])],[0, otherwise])/
(1+x*(-.91794-2.222915054*x^2)-piecewise([0, 0 <= x],[x, otherwise]))

2.16575 20.3 35 26

3. (% (% 1.26728 X) (+ (* (+ X (* X (SPLIT X X -3.83145))) (* X 3.21009)) (% X (%
X -2.97967))))

1.26728/(x*(3.21009*(x+x*piecewise([x, 0 <= x],[-3.83145, otherwise]))*x-
2.97967))

2.166 7.3 12 65

4. (% (% -1.51509 (* (* X (- -0.299539 (SPLIT X X 2.84051))) (* 3.50093 X))) (+ (%
-0.305643 (SPLIT (% -1.10858 -3.75942) (+ X X) 4.11466)) X))

-.4327678645/(x^2*(-.299539-piecewise([x, 0 <= x],[2.84051, otherwise]))* (-
.1528215/x+x))

2.19819 6.5 3 21

5. (% (% 1.26728 X) (+ (* (+ X (SPLIT X 3.60683 -3.211)) (* X X)) (+ (SPLIT X
3.12342 X) (% -4.45433 X))))

1.26728/(x*((x+piecewise([3.60683, 0 <= x],[-3.211, otherwise]))*x^2+
piecewise([3.12342, 0 <= x],[x, otherwise])-4.45433/x))

2.19898 5.5 12 33

6. (% (% 1.26728 X) (+ (* (SPLIT X X -3.83145) (* X 3.21009)) (% (- X X) X)))

.3947802087/(x^2*piecewise([x, 0 <= x],[-3.83145, otherwise])) 2.24712 5.3 12 64

7. (% (% 1.26728 X) (+ (* (+ X (SPLIT X 3.60683 -3.211)) (+ X 0.112461)) (+ (SPLIT
X 3.12342 X) (% -4.45433 X))))

1.26728/(x*((x+piecewise([3.60683, 0 <= x],[-3.211, otherwise]))*(x+.112461
)+piecewise([3.12342, 0 <= x],[x, otherwise])-4.45433/x))

2.27206 4.7 12 34

8. (% (% (- 2.03024 1.13544) (* X X)) (+ (% -3.93216 (+ (+ X X) X)) (SPLIT X
3.81191 4.9234)))

.8948/(x^2*(-1.31072/x+piecewise([3.81191, 0 <= x],[4.9234, otherwise]))) 2.31721 4.4 16 98

9. (% (% (- 2.03024 1.13544) (* X X)) (+ (% (% 4.30723 1.71773) (+ X X)) X))

.8948/(x^2*(1.253756411/x+x)) 2.31792 4.2 16 98

10. (% (% (% (* 2.03269 (% -0.220191 -1.38447)) X) X) (% X (SPLIT -3.27937 4.96887
X)))

.3232861989/(x^2) 2.38838 4.1 31 76

11. (% (% (% 1.89657 4.83367) (* X X)) (% X X))

.3923664627/(x^2) 2.4118 4 31 30

12. (% (% 2.03024 (+ X X)) (+ (% X X) (+ X X)))

1.015120000/(x*(1+2*x)) 2.44672 3.3 16 24

13. (% (+ -4.34812 4.73968) (- (- (+ (* X X) (SPLIT (SPLIT X X 1.27186) (+ 1.25111
-2.25089) -4.79247)) (SPLIT X (- -1.38874 X) (+ X -2.21244))) X))

.39156/(x^2-.99978-piecewise([-1.38874-x, 0 <= x],[x-2.21244, otherwise])-x) 2.46785 2.8 4 94

14. (% 0.587939 (- (- (+ (* X X) X) -0.578478) (- X X)))

.587939/(x^2+x+.578478) 2.56907 2.4 12 30

 50

15. (% (- (SPLIT (- 0.688955 X) -2.23533 X) X) (SPLIT (SPLIT X -4.59014 X) X -
2.3986))

-.4169098641*piecewise([-2.23533, 0 <= .688955-x],[x, otherwise])+
.4169098641*x

2.61334 1.5 45 1

16. (- (SPLIT (% X -0.0553911) (+ (- X X) 0.864132) (SPLIT X X X)) X)

piecewise([.864132, 0 <= -18.0534418*x],[piecewise([x, 0 <= x],[x,
otherwise]), otherwise])-x

2.68114 1.5 15 69

17. (SPLIT (+ 1.28986 X) (- (SPLIT (% X -0.0553911) (+ -0.0553911 0.864132) X) X)
X)

piecewise([piecewise([.8087409, 0 <= -18.0534418*x],[x, otherwise])-x, 0 <=
1.28986+x],[x, otherwise])

2.73653 1.4 15 86

18. (- X (SPLIT (* X -1.31916) (+ (% -2.76605 2.20664) X) X))

x-piecewise([-1.253512127+x, 0 <= -1.31916*x],[x, otherwise]) 2.79878 1.3 8 4

19. (- X (SPLIT (+ X -1.56301) X (+ (- (SPLIT X X 3.03339) 2.19413) 1.54775)))

x-piecewise([x, 0 <= x-1.56301],[piecewise([x, 0 <= x],[3.03339, otherwise])-
.64638, otherwise])

2.80952 0.6 17 11

20. (SPLIT (+ (+ -0.934324 X) (+ (+ X (% -1.76778 -2.99677)) X)) (- X X) 1.4153)

piecewise([0, 0 <= -.3444288796+3*x],[1.4153, otherwise]) 2.96057 0.6 22 57

21. (SPLIT (+ (- X 1.7687) (SPLIT 4.02097 X -2.12455)) (- X X) (* -0.124973 -
2.74895))

piecewise([0, 0 <= 2*x-1.7687],[.3435445284, otherwise]) 3.20173 0.5 45 79

22. (SPLIT (+ -0.578478 X) (- X X) (% 0.694754 2.33543))

piecewise([0, 0 <= -.578478+x],[.2974844033, otherwise]) 3.24779 0.3 12 6

23. (- -2.15964 -2.15964)

0 3.54527 0 17 58

Table 9.3: Evolved Rational Polynomial Approximations for Three-Peaks Function.

EVOLVED LISP EXPRESSION
SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN.

1. (% (% (- 1.133 -0.999634) (+ (* (* X X) (* 1.72414 -3.65444)) X)) (% (* (%
0.489669 (% 4.28159 X)) (- X -2.6223)) (% (* X (% (% 4.65361 (% X 0.084994)) (+
(* (* X X) 0.084994) X))) -0.963927)))

-7.651611353/((-6.300766182*x^2+x)*x*(x+2.6223)*(.084994*x^2+x)) 2.16563 15.3 47 38

2. (% (% X (* (+ (% X -0.434431) (* -1.53798 X)) (+ (+ X X) (* (* -3.96634 X)
X)))) (% (- (* X X) (% X 1.56423)) X))

-.2604274151*x/((2*x-3.96634*x^2)*(x^2-.6392921757*x)) 2.16873 10.4 33 6

3. (% (% (% (* 2.33695 -1.60756) X) (* X X)) (- X (+ (- X (% -2.52007 X)) (* (-
(- 3.85037 -2.4218) -1.70888) X))))

-3.756787342/(x^3*(-7.98105*x-2.52007/x)) 2.18699 6.3 18 71

4. (% (% (% 0.385601 (+ (* X -3.63643) X)) X) (- (% (* 1.08692 3.04956) X) (* X
3.67092)))

-.1462587666/(x^2*(3.314627755/x-3.67092*x)) 2.21662 6.2 35 86

5. (% (% (- X -4.59197) (* X (* X (- X -4.09421)))) (+ X (+ X (% X X))))

 51

(x+4.59197)/(x^2*(x+4.09421)*(2*x+1)) 2.23272 5.4 27 34

6. (% (% (% (% 0.771661 -0.686514) (* X X)) X) (- (% (+ X -0.807978) X) 3.44417))

-1.124028061/(x^3*((x-.807978)/x-3.44417)) 2.24471 5.2 28 82

7. (% (% (% 0.441145 X) X) (+ X (% (- X X) X)))

.441145/(x^3) 2.30284 4.2 31 77

8. (% (% (% 0.441145 X) X) (+ X (% X X)))

.441145/(x^2*(x+1)) 2.35169 4.1 31 36

9. (% (% 0.682546 X) (+ (+ X X) (% (- X X) X)))

.341273/(x^2) 2.38172 3.3 41 66

10. (% (% 0.441145 X) (+ X (% (% 0.441145 2.01376) X)))

.441145/(x*(x+.2190653305/x)) 2.41646 3.1 31 45

11. (% 0.124973 (+ (- -4.60906 X) (+ (- 4.57976 -0.145116) (* X (+ X X)))))

.124973/(.115816-x+2*x^2) 2.52221 2.4 10 12

12. (* (% 0.0392163 (- (- -0.0227363 X) X)) (+ -3.9993 3.39534))

-.02368507655/(-.0227363-2*x) 2.60907 2.2 45 16

13. (% -4.35698 (+ -3.71548 (* (% (- 3.97794 -4.26359) (* -0.105136 0.0492874))
X)))

-4.35698/(-3.71548-1590.451702*x) 2.72272 2.1 4 3

14. (% (% 4.80377 (* (+ 3.25709 (+ 1.82516 3.97305)) 4.6823)) (+ 0.103916 X))

.1132974478/(.103916+x) 2.93413 1.1 23 11

15. (- -3.92605 -3.92605)

0 3.54527 0 5 16

The best approximation in Table 9.2 achieves ever-so-slightly higher accuracy than that of Table 9.3, indicating that the

inclusion of the Split function has at least in some way helped improve performance on this problem. However, none of

the approximations in Table 9.2 do exactly what was intended of them. When graphed, it is clear that none of the

approximations even attempt to account for all three peaks. Moreover, of the 22 evolved candidate approximations, only

approximations 17, 20, 21, and 22 employ the Split function as the root node of their LISP expression, which is the only

way in which meaningful "split points" can be introduced. Candidate approximation 17 uses the expression (+

1.28986 X), which introduces a split point at x=-1.28986, which is outside the interval over the which the target

function is being approximated. Candidate approximations 20, 21, and 22 model the first peak by using a high constant

value for one part of the function, and a low constant value for the rest, introducing split points at x=.3444288796,

x=1.7687, and x=.578478, respectively. Though this behavior is on the right track, it is not exactly what we had hoped

for. For this reason, a second set of experiments was conducted using a modified "two peaks" function. It was hoped

that this simpler nature of this function would provide a smoother learning surface for the GP algorithm. Also, this

function was defined in a way that did not require squaring the x-values (as was done with the three peaks function), so

that the peaks are broader and therefore a more significant source of error, thereby giving a greater fitness advantage to

functions which attempted to approximate them. The two-peaks function is defined as:

 52

f(x) = exp(-x) + exp(-(100-x))

A graph of this function is given in Figure 9.2.

Figure 9.2: Graph of Two-Peaks Function.

Tables 9.4 and 9.5 present the results of the experiments conducted with the two-peaks target function, using the

arithmetic function set with the Split function added, and using the arithmetic function set alone, respectively.

Table 9.4: Evolved Piecewise Rational Polynomial Approximations for Two-Peaks Function.

EVOLVED LISP EXPRESSION
SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN.

1. (% (- (SPLIT (% (- (SPLIT (- (SPLIT (+ -1.38874 X) (* (- (+ -2.16361 0.870846)
(+ X (+ (- X X) X))) (- X (+ -1.40309 X))) (SPLIT (% (% X X) (- 3.16309 -
2.9574)) (SPLIT X -2.57225 X) (% X -2.63237))) (- X X)) X X) (- X X)) (+ (* (- X
X) -3.38618) (% X (* (+ X -4.39787) X)))) (- (% (- (+ X 1.51387) (- 2.71203 (+ X
1.51387))) X) -1.18305) (% X X)) (- 0.945921 (SPLIT (% (- X X) (- 3.16309 -
2.9574)) (SPLIT X -2.57225 X) (* (- (- (% (% (- X (% (% X -2.63237) (- X (* -
1.9805 X)))) (- (% 2.39982 2.92718) -4.40153)) -0.314188) -1.18305) (- 2.71203
(+ X X))) (SPLIT (* (* (- (* X 0.0511185) (- 2.71203 (+ X X))) (+ (+ X -2.87652)
(% X -0.093234))) X) X (* (- X (- (SPLIT (* X X) (SPLIT (% (- X X) (- 3.16309 -
2.9574)) (SPLIT X -2.57225 X) (SPLIT (* (- 3.48628 -3.75149) X) (+ (- 3.16309 -
0.662709) (SPLIT X -0.0630207 X)) (SPLIT X 4.10611 (% (+ 1.44215 (% X X)) (- X
X))))) (% X X)) (- X (% X -2.63237)))) X)))))) (+ (* (+ (+ X 1.51387) (* (- (*
(SPLIT (SPLIT -1.18305 2.30125 X) (- X X) X) 0.0511185) (- 2.71203 (+ X
1.51387))) (SPLIT (* (- 3.48628 -3.75149) X) (* (- X (% (% X -2.63237) (+
0.963317 -1.9805))) X) (- -0.233924 X)))) -3.38618) (% X (* X X))))

[Division by zero] 0.611535 45.6 32 93

 53

2. (% (- (SPLIT (* (SPLIT (SPLIT -1.18305 2.30125 X) (- X X) X) 0.0511185) (% X X)
(% X X)) (- 0.945921 (SPLIT (% (- X X) (- 3.16309 -2.9574)) (SPLIT X -2.57225 X)
(- X X)))) (+ (* (+ (+ X 1.51387) (* (- (* (SPLIT (SPLIT -1.18305 2.30125 X) (*
(- (* (SPLIT (SPLIT -1.18305 2.30125 X) (- X X) X) 0.0511185) (- 2.71203 (+
(SPLIT -0.580004 -2.15323 X) X))) (SPLIT (SPLIT (- X X) X (SPLIT X -2.57225 X))
X (+ (* (+ (+ X 1.51387) (* X X)) -3.38618) (+ (- 3.48628 (% X (* X X))) (-
3.16309 -2.9574))))) X) 0.0511185) (- 2.71203 (+ X 1.51387))) (SPLIT (* (-
3.48628 -3.75149) X) (* (- X (% (% X -2.63237) (+ 0.963317 -1.9805))) X) (%
1.57064 -0.093234)))) -3.38618) (% X (* X X))))

(piecewise([1, 0 <= .0511185*piecewise([0, 0 <= x],[x, otherwise])],[1,
otherwise])-.945921+piecewise([-2.57225, 0 <= x],[x, otherwise]))/(-
3.38618*x-5.126236317-3.38618*(.0511185*piecewise([(.0511185*piecewise
([0, 0 <= x],[x, otherwise])-2.71203+2*x)*piecewise([x, 0 <= x],[-3.38618
*x+4.480533683-3.38618*x^2-1/x, otherwise]), 0 <= x],[x, otherwise]) -
1.19816+x)*piecewise([.6265315029*x^2, 0 <= 7.23777*x],[-16.84621490,
otherwise])+1/x)

0.613495 23.6 32 98

3. (% (- (SPLIT X (% X X) (% X X)) (- 0.945921 (SPLIT (% (- X X) (- 3.16309 -
2.9574)) (SPLIT X -2.57225 X) (* (- (- (* (+ X 3.14234) X) -1.18305) (- 2.71203
(+ X X))) (- 3.16309 -0.662709))))) (+ (* (+ (+ X 1.51387) (* (- (* (SPLIT
(SPLIT -1.18305 2.30125 X) (- X X) X) 0.0511185) (- 2.71203 (+ X 1.51387)))
(SPLIT (* (- 3.48628 -3.75149) X) (* (- X (% (% X -2.63237) (+ 0.963317 -
1.9805))) X) (- -0.233924 X)))) -3.38618) (% X (* X X))))

(piecewise([1, 0 <= x],[1, otherwise])-.945921+piecewise([-2.57225, 0 <=
x],[x, otherwise]))/(-3.38618*x-5.126236317-3.38618*(.0511185*piecewise
([0, 0 <= x],[x, otherwise])-1.19816+x)*piecewise([.6265315029*x^2, 0 <=
7.23777*x],[-.233924-x, otherwise])+1/x)

0.625353 17.3 32 92

4. (% (- (SPLIT (- X (* (+ (+ X 1.51387) (* (- (SPLIT 1.81967 3.43959 X) (-
2.71203 (+ X X))) (SPLIT (* (- 3.48628 -3.75149) X) X (- -0.233924 X)))) -
3.38618)) (% X X) (% X X)) (- 0.945921 (SPLIT 3.49727 (SPLIT X -2.57225 X) (+ -
2.31895 X)))) (+ (* (+ (+ X 1.51387) (* (- (* (+ 0.963317 -1.9805) 0.0511185) (-
2.71203 (+ X 1.51387))) (* X X))) -3.38618) (% X (* X X))))

(piecewise([1, 0 <= 4.38618*x+5.126236317+3.38618*(.72756+2*x)*
piecewise([x, 0 <= 7.23777*x],[-.233924-x, otherwise])],[1, otherwise])-
.945921+piecewise([-2.57225, 0 <= x],[x, otherwise]))/(-3.38618*x-
5.126236317-3.38618*(-1.250156869+x)*x^2+1/x)

0.637342 13.2 32 84

5. (% (% (% (- (% -4.75036 (SPLIT X 1.88131 1.51784)) (% (- X (% X X)) (+ (SPLIT
2.82617 X X) (% X X)))) (* 2.4868 X)) X) (- (% (+ -2.6455 X) X) X))

.4021232106*(-4.75036/piecewise([1.88131, 0 <= x],[1.51784, otherwise])-(x-
1)/(x+1))/(x^2*((-2.6455+x)/x-x))

0.63978 9.7 2 22

6. (% (SPLIT -4.41527 (* -0.992004 0.566576) (SPLIT (% X X) (% (% -3.23359
1.57704) X) (* -3.64986 X))) (+ (* X (+ (% (% -3.23359 1.57704) X) (* X -
1.40706))) (% -1.96829 X)))

-2.050417237/(x*(x*(-2.050417237/x-1.40706*x)-1.96829/x)) 0.63984 8.4 28 46

7. (% (% (SPLIT -4.46471 -0.345317 4.12626) (+ X X)) (+ (+ (* (SPLIT 1.4388 X X)
X) X) (% (SPLIT 1.61702 (+ 2.35191 X) (SPLIT -3.47682 X 2.21397)) X)))

2.063130000/(x*(x^2+x+(2.35191+x)/x)) 0.646409 4.7 1 39

8. (% (% -0.337077 X) (- (SPLIT X (% (% (+ 1.43941 -1.91916) (SPLIT X -2.85119 -
1.80105)) (+ X X)) X) X))

-.337077/(x*(piecewise([-.239875/(piecewise([-2.85119, 0 <= x],[-1.80105,
otherwise])*x), 0 <= x],[x, otherwise])-x))

0.706085 4.4 12 78

9. (% (% -0.337077 X) (- (% (% 0.179296 X) (+ X X)) X))

-.337077/(x*(.089648/(x^2)-x)) 0.709234 4.2 12 57

 54

10. (% (% -0.337077 X) (- (% 0.1854 (+ X X)) X))

-.337077/(x*(.0927/x-x)) 0.709357 3.2 12 85

11. (% (% -0.337077 X) (- (% -0.337077 X) X))

-.337077/(x*(-.337077/x-x)) 0.830719 3.1 12 18

12. (% (- (% 3.69564 2.38304) -0.599536) (- -0.438093 (- (- (- (+ (SPLIT 4.67009
2.62566 1.4156) (* -2.21183 2.36198)) X) (SPLIT X (* (SPLIT 0.708792 X X) (+ X
X)) (SPLIT 4.67009 2.62566 1.4156))) X)))

2.150345051/(2.160545223+2*x+piecewise([2*x^2, 0 <= x],[2.62566,
otherwise]))

0.875509 2.7 22 12

13. (% (% 3.70724 2.9986) (- (* X X) (- (SPLIT 2.97632 -1.1272 X) (SPLIT (%
3.70724 2.9986) X X))))

1.236323618/(x^2+1.1272+x) 1.04709 2.4 33 23

14. (% (+ (- X X) (+ (SPLIT (- 0.86993 X) (+ X 0.81164) (- X X)) (SPLIT X (- X X)
(- X X)))) (+ X (- 0.86993 X)))

1.149517777*piecewise([x+.81164, 0 <= .86993-x],[0, otherwise])+
1.149517777*piecewise([0, 0 <= x],[0, otherwise])

1.23096 2.2 19 46

15. (% (- (SPLIT (- 0.688955 X) -2.23533 X) X) (SPLIT (SPLIT X -4.59014 X) X -
2.3986))

-.4169098641*piecewise([-2.23533, 0 <= .688955-x],[x, otherwise])+
.4169098641*x

1.23202 1.5 45 1

16. (% (+ 0.63921 -0.657826) (SPLIT (- (% 1.90847 2.17307) X) (+ 0.63921 -
0.657826) X))

-.018616/piecewise([-.018616, 0 <= .8782367802-x],[x, otherwise]) 1.26034 1.2 5 57

17. (SPLIT (SPLIT -3.11914 X 4.67284) (SPLIT (- 0.86993 X) (- 0.86993 X) (- X X))
(% 2.07846 2.52098))

piecewise([.86993-x, 0 <= .86993-x],[0, otherwise]) 1.29402 0.6 19 96

18. (SPLIT (- 0.86993 X) (+ X 0.81164) (- X X))

piecewise([x+.81164, 0 <= .86993-x],[0, otherwise]) 1.35231 0.4 19 46

19. (SPLIT (+ X -1.64998) (- X X) 0.637684)

piecewise([0, 0 <= x-1.64998],[.637684, otherwise]) 1.42819 0.3 29 0

20. (- (SPLIT (+ -0.191504 X) X 0.693228) X)

piecewise([x, 0 <= -.191504+x],[.693228, otherwise])-x 1.47073 0.3 2 1

21. (- (* -1.87399 1.96921) (* -1.87399 1.96921))

0 2.16395 0 31 68

 55

Table 9.5: Evolved Rational Polynomial Approximations for Two-Peaks Function.

EVOLVED LISP EXPRESSION
SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN.

1. (% (* 0.695669 -1.64602) (+ (* (+ (+ X X) (- (+ (+ X X) (- 0.774102 X)) (% (%
(- X (% X X)) (* X -1.64602)) (- (% (* (% (* (- X X) X) (- (+ (+ X X) (+ X X))
X)) -4.80651) (* (- -3.93582 1.68722) (* 2.84936 X))) (- -3.93582 (- X X))))))
(* (* 2.84936 X) (% (- (* (% (* 0.695669 X) (- (% (- -3.93582 (- -3.93582 (% X
4.42778))) (% (% (% 4.49705 (- X X)) (+ 2.40349 X)) (- (* (- X (* (- X X) X)) X)
(* 0.695669 -1.64602)))) (- -3.93582 (% (% (% -3.93582 (* 0.695669 -1.64602)) (-
2.84936 X)) (% (* 0.695669 -1.64602) (- (% 4.49705 (% X 2.98334)) (* 0.695669 -
1.64602))))))) -4.80651) 1.68722) (- (% -3.93582 (* 0.695669 -1.64602)) (- -
3.93582 (- 1.68722 X)))))) (* 0.695669 -1.64602)))

[Division by zero] 0.614663 33.1 25 96

2. (% (% (- X -3.81893) X) (+ (+ -3.76308 (+ (- (% (% 1.96249 -3.13532) (- X -
3.81893)) (* X (- (* (+ X -2.02139) (% (* (* X X) -3.13532) X)) (* X X)))) (- (%
4.30509 X) (+ -3.76308 (+ -3.76308 (- 3.53114 (+ X 4.97314))))))) 4.93927))

(x+3.81893)/(x*(10.14435-.6259297297/(x+3.81893)-x*(-3.13532*(x-2.02139
)*x-x^2)+4.30509/x+x))

0.614685 11.3 24 60

3. (% (% 3.93002 X) (+ (% (- X (+ (% 2.56737 (% -1.32649 2.35435)) (+ (- X
1.69881) X))) X) (+ (% -2.32597 (- (% -2.622 (% 2.59026 0.887936)) X)) (- (+
2.59026 X) (* -2.91101 (% (* (+ (- (% 2.56737 (% -1.32649 2.35435)) (* 0.0117496
X)) (+ X 3.93002)) (+ (+ X X) (% -1.32649 2.35435))) 2.21335))))))

3.93002/(x*((-x+6.255563206)/x-2.32597/(-.8988164091-x)+2.59026+x+
1.315205458*(-.626733206+.9882504*x)*(2*x-.5634209017)))

0.632158 9.4 37 59

4. (% (% 4.80377 (* (% (+ (* 4.89746 4.21323) X) (* -2.16086 (* 2.07724 (+ -
0.130467 2.61345)))) X)) (- (% (- -1.18122 -2.16086) (* X (+ X (- X 3.05658))))
(+ 4.81017 (* X X))))

-53.53887720/((20.63412540+x)*x*(.97964/(x*(2*x-3.05658))-4.81017-x^2)) 0.633389 7.5 23 95

5. (% 2.39189 (+ (+ (+ (% (% 0.451827 3.1933) -4.30113) (* (+ (* X X) (* X X)) X))
(+ X 3.38496)) (+ -0.956603 X)))

2.39189/(2.395460485+2*x^3+2*x) 0.648203 4.7 28 71

6. (% -3.00226 (- -3.00226 (* (* (+ (% X (- (+ X X) (% -4.30296 -3.85739))) (+ X
2.61834)) X) X)))

-3.00226/(-3.00226-(x/(2*x-1.115510747)+x+2.61834)*x^2) 0.660497 4.5 30 53

7. (% (+ (- -1.37379 -3.94192) (+ 0.651112 -1.53127)) (+ (+ (- X (- X X)) -
2.32139) (+ (- X -3.95962) (* X (* X X)))))

1.687972/(2*x+1.63823+x^3) 0.661793 3.6 34 6

8. (% -3.00226 (- -3.00226 (* (* (+ X 3.70418) X) X)))

-3.00226/(-3.00226-(x+3.70418)*x^2) 0.667633 3.2 30 12

9. (% (% (* 0.603198 0.487533) X) (+ X (% (% -1.29353 4.86206) X)))

.2940789305/(x*(x-.2660456679/x)) 0.738883 3.1 22 20

10. (% -0.275124 (- (- X (* X X)) (- X -0.271767)))

-.275124/(-x^2-.271767) 0.884859 2.3 42 38

11. (% 0.357524 (- (* X X) (% -1.66433 4.13755)))

.357524/(x^2+.4022501239) 0.938956 2.1 35 5

12. (% -0.275124 (- (- X X) (- X -0.271767)))

 56

-.275124/(-x-.271767) 1.62963 1.3 42 13

13. (% -0.275124 (- -0.0401318 (- X -0.271767)))

-.275124/(-.3118988-x) 1.74011 1.2 42 31

14. (% (% 4.80377 (* (+ 3.25709 (+ 1.82516 3.97305)) (* 2.07724 (+ -0.130467
2.61345)))) (+ (+ -0.0151067 0.218665) X))

.102853468/(.2035583+x) 1.75921 1.1 23 1

15. (- (+ (* -1.28956 0.906858) -1.31764) (+ (* -1.28956 0.906858) -1.31764))

0 2.16395 0 3 77

As in the previous set of experiments, the most accurate approximation evolved using the function set with the Split

function included is ever-so-slightly more accurate than that evolved using only the arithmetic function set, as indicated

in tables 9.4 and 9.5, respectively. Of the 21 candidate approximations given in Table 9.4, only approximations 17, 18,

and 19 use the Split function as the root node of their LISP expression tree, and thus are the only functions that truly

make use of split points in approximating the target function. Approximations 17 and 18 use a combination of a linear

and constant curve, split at the point x=.86993. Approximation 19 uses a combination of two constant curves, split at the

point x=1.64998. As before, all of the evolved approximations attempt to model only the first peak.

9.3 PIECEWISE RATIONAL POLYNOMIAL SURFACE APPROXIMATIONS
The piecewise approximation technique described in the previous subsection can also be applied to functions of more

than one variable. To test the feasability of piecewise rational polynomial surface approximation in this manner, an

experiment was conducted involving the evolution of approximations to a hemispherical surface defined over the

rectangular interval 0<= x<= 1, 0<=y<=1, centered at the point (0.5, 0.5), and with a radius of 0.5. Training data was

taken as 100 points selected at random from within this interval. Any point whose coordinates were outside the

hemisphere was considered to have a zero function value. Parameter settings were the same as those described in section

5, including the use of a randomly chosen training subset of size 25. The candidate approximations evolved as a result of

this experiment are presented in Table 9.6.

Table 9.6: Evolved Rational Polynomial Approximations for Hemispherical Surface.

EVOLVED LISP EXPRESSION
SIMPLIFIED MAPLE EXPRESSION ERROR COST RUN GEN.

1. (* Y (+ (* -2.17917 (- (* X X) X)) (- 0.897397 Y)))

y*(-2.17917*x^2+2.17917*x+.897397-y) 9.62479 3.3 10 14

2. (% X (+ (* X (% X Y)) Y))

x/(x^2/y+y) 10.404 3.1 4 18

3. (- Y (SPLIT Y (* (SPLIT -4.31455 (- X Y) Y) (* Y Y)) (- X Y)))

y-piecewise([y^3, 0 <= y],[x-y, otherwise]) 10.7249 2.5 15 99

4. (% (- (SPLIT X Y -4.32585) (* Y Y)) (% -1.82363 -3.71456))

2.036904416*piecewise([y, 0 <= x],[-4.32585, otherwise])-2.036904416*y^2 11.2113 2.2 22 71

5. (* Y (- 1.15711 Y))

 57

y*(1.15711-y) 12.2005 1.1 46 1

6. (SPLIT (+ (SPLIT Y X 0.825678) (- (SPLIT Y (SPLIT (+ Y Y) X Y) 1.13819) (+
1.74856 -1.34632))) (+ 1.74856 -1.34632) X)

piecewise([.40224, 0 <= piecewise([x, 0 <= y],[.825678, otherwise])+
piecewise([piecewise([x, 0 <= 2*y],[y, otherwise]), 0 <= y],[1.13819,
otherwise])-.40224],[x, otherwise])

13.8525 0.7 5 88

7. (SPLIT (- 0.406964 X) (+ 0.0483718 X) 0.406964)

piecewise([.483718e-1+x, 0 <= .406964-x],[.406964, otherwise]) 13.9652 0.3 25 64

8. (SPLIT (- X (% 1.52852 3.35658)) (% 1.52852 3.35658) X)

piecewise([.4553801786, 0 <= x-.4553801786],[x, otherwise]) 15.2826 0.2 11 10

9. (* -2.17917 (% 0.0831629 -0.635853))

.2850125687 15.6818 0 20 37

These approximations are not very accurate. The best evolved approximation has an average difference of

approximately 0.096 from the target surface, where the hemisphere itself is only of radius 0.5. When graphed, the best

evolved surfaces does not particularly resemble a hemisphere. Of the 9 evolved candidate approximations, only

approximations (6), (7), and (8) employ split points, or rather split lines, in the manner we desire. Candidate

approximation (6) uses a nested split condition which, for all points in the given interval, has only one outcome.

Candidate approximations (7) and (8) create split lines at x=.406964 and x=.4553801786, which represents a somewhat

reasonable attempt to cut the hemisphere in half. In both cases, however, the approximations do not take advantage of

these split lines in the manner we would expect.

9.4 3-D SURFACE GENERATION
Were the experiments in section 9.3 to prove were successful, the technique would have possible applications for 3-D

graphics rendering, in which it is important to represent complex surfaces in a compact and easily computable form.

Many existing rendering applications make use of a polygon mesh for this purpose; the evolution of piecewise rational

polynomial approximations represents a possibility for a degree of smoothness and accuracy not possible using any

reasonable number of polygons.

One way to improve upon the results presented in this section might be to employ a constrained syntax (and

corresponding constrained crossover operator) wherein the Split function can only appear (a) at the root or (b) as the

second or third argument to another Split function. This would force split points to be employed in evolving individuals

in the manner that is desired for the final evolved piecewise approximations.

 58

10 FUTURE WORK
The work presented in this thesis suggests a number of possible extensions. First, as stated in the section on refinement

of evolved approximations through approximation of their error function (Section 7.1), refinement in this way could be

applied iteratively to produce refinements of refined approximations, and the limits to which this iteration is effective

could be examined. As discussed in section 7.2, refinement of approximations could also be applied in at least two ways

not considered in this report: refining evolved approximations using a technique from numerical analysis such as Padé

approximations or Taylor series, and refining approximations obtained through a numerical analysis technique using

genetic programming. Were the former approach to prove effective, it could be incorporated on-the-fly in the evaluation

of individuals. One can imagine a rather different approach to the problem in which all evolving approximations are

refined to a certain specified degree of accuracy by adding terms based on the Padé approximations or Taylor series for

their error function, and fitness is taken simply as the cost of the refined expression. This provides a second possible

extension. Third, although our experiments involving GP parameter optimization proved ineffective, there is no reason

to think that the default set of parameters we adapted from (Koza 1992) are optimal for this class of problems, so that

alteration of parameter settings (whether based on more suggestive empirical evidence or intuitive judgment) represents

one possible potential for improvement on the results presented in this paper. These results could also presumably be

improved by using additional computational power and memory, and by employing a genetic programming system

which allows for automatically defined functions (Koza 1994) and architecture-altering operations (Koza, Andre,

Bennett, and Keane 1999).

Perhaps the ideal application of this technique would be to perform the equivalent of conducting the Harmonic number

experiment prior to 1734, the year that Leonhard Euler established the limiting relation

lim x→∞ Hn-ln(n) ≡ γ

which defines Euler's constant (Eulero 1734). Such a result would represent "discovery" of an approximation formula in

the truest sense, and would be a striking and exciting application of genetic programming.

 59

11 SUMMARY AND CONCLUSIONS

11.1 SUMMARY
This report has described the author's original genetic programming system and a number of experiments that were

carried out using it. We have discussed an unsuccessful attempt to optimize GP parameters for the problem of

discovering approximations to functions, and have presented several successful or partially successful experiments

involving the application of genetic programming to the automated discovery of numerical approximation formulae. In

particular, we have presented an experiment involving rediscovery of the first three terms of the asymptotic expansion

for Hn. We have also presented positive results in applying genetic programming to the discovery of rational polynomial

approximations to common functions, and have shown that evolved approximations can compare favorably with Padé

under certain trade-offs between cost and error. We have demonstrated the application of this technique to the discovery

of a rational polynomial surface approximation for a function to which the Padé approximation technique cannot be

applied. We have also shown that evolved approximations can be refined through genetic programming via

approximation of their error functions, and have suggested other ways in which refinement of approximations through

genetic programming might be attempted. We have had partial success in an experiment involving attempted discovery

or rediscovery of neural network activation functions, and have likewise met with partial success in attempting to evolve

piecewise approximations to functions through this technique.

11.2 CONCLUSIONS
This thesis has shown that genetic programming is capable of rediscovering approximation formulae for Harmonic

numbers, and of evolving rational polynomial approximations to functions which, under some reasonable utility

functions, are superior to Padé approximations. For common mathematical functions of a single variable approximated

over a relatively large interval, it has been shown that genetic programming can provide a set of rational polynomial

approximations whose Pareto front lies in part to the interior of the Pareto front for Padé approximations to the same

function. Moreover, we have shown that the Pareto front for evolved approximations can be improved by evolving

approximations to the error function of existing approximations on the Pareto front. Though it has not been

demonstrated explicitly in this paper, one would expect that genetic programming would also be able to expand upon the

Pareto front for approximations to functions of more than one variable obtained by combining and nesting Padé

approximations. Furthermore, for at least one function of more than one variable, genetic programming has been shown

to provide a way to evolve rational polynomial approximations where the Padé approximation technique cannot be

applied. Based upon these results, the author regards the genetic programming approach described in this thesis as a

powerful, flexible, and effective technique for the automated discovery of approximations to functions.

 60

APPENDIX A: EXTENDED RESULTS FOR RATIONAL POLYNOMIAL
APPROXIMATION OF FUNCTIONS

This appendix presents tables showing the results of experiments which, for the sake of brevity, were omitted from the

sections describing the experiments themselves. Tables A.1 through A.12 present the evolved approximations, the

Maple evaluation of these approximations, and the approximations on the Pareto front with respect to the new cost and

error values, in that order, for the functions sqrt(x), arcsinh(x), exp(-x), and tanh(x). Each group of three tables (f.e. table

A.1 though A.3, tables A.4 through A.6) contains data precisely analogous to that presented for the function ln(x) in

tables 5.1 through 5.3 of section 5. Tables A.13 through A.17 present the Padé approximations (on the Pareto front) for

each of the five functions ln(x), sqrt(x), arcsinh(x), exp(-x), and tanh(x), respectively. Tables A.18 through A.20 present

the evolved approximations, Maple evaluation, and revised Pareto front for approximations to the multi-variable function

f(x,y) = xy, expanding on the results presented in section 6. Tables A.21 through A.30 expand upon the results presented

in section 7 for refinement of evolved approximations. Table A.21 presents the full set of approximations evolved for

the function sin(x). Tables A.22 through A.30 present the evolved approximations, Maple evaluation, and revised Pareto

fronts, in that order, for approximations to the error functions of candidate solutions (3), (7), and (8), respectively, from

Table A.21.

Table A.1: Evolved Approximations for sqrt(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (% (+ (+
2.45445-3.86196) (- X (+ X -4.13358))) -4.13358) (- (+ X X) (% (* 1.61611 (*
1.61611 X)) (- (- (+ X X) -2.73919) (* 4.4055 (% X (* 1.61611 X))))))) (+
2.45445 -3.86196)) (+ (% (- (+ X X) -2.73919) X) (% X -4.7351))) 4.96521) (% X
(+ (- -4.67254 1.53035) (% X -4.7351)))) (% (+ X X) (+ (+ (% (- (- X (+ X (+ (%
(% X -4.7351) -4.13358) (+ (% X X) -3.86196)))) (* (% X X) (- X -0.917234))) -
4.7351) (+ (- -4.67254 -2.73919) -0.399945)) -4.13358)))) (% X (+ (% (* 1.61611
(* 1.61611 X)) (+ -1.98202 0.83636)) -0.399945)))

1.54819 29.7 30 83

2. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (% (% -2.90277
(* 1.61611 X)) -4.13358) (- (+ X X) (% (* 1.61611 (* 1.61611 X)) (% X X)))) (+
2.45445 -3.86196)) (+ (% (- (+ X X) -2.73919) X) (% X -4.7351))) 4.96521) (% X
(+ (- -4.67254 1.53035) (% X -4.7351)))) (% (+ X X) (+ (+ (% (- (- X (+ X (+ (%
(% X -4.7351) -4.13358) (+ (% X X) -3.86196)))) (* (% X X) (- X -0.917234))) -
4.7351) (+ (- -4.67254 -2.73919) -0.399945)) -4.13358)))) (% X (+ (% (* 1.61611
(* 1.61611 X)) (+ -1.98202 0.83636)) -0.399945)))

1.57657 29.1 30 99

3. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (% (% (- (+ X X)
-2.73919) X) -4.13358) (- (+ X X) (% (* 1.61611 (* 1.61611 X)) (- (- -4.67254
1.53035) (+ X X))))) (+ 2.45445 -3.86196)) (+ (% (- (+ X X) -2.73919) X) (% X -
4.7351))) 4.96521) (% X (+ (- -4.67254 1.53035) (% X -4.7351)))) (% (+ X X) (+
(+ (% (- (- X (+ X (+ (% (% X -4.7351) -4.13358) (+ (% X X) -3.86196)))) (* (% X
X) (- X -0.917234))) -4.7351) (+ (- -4.67254 -2.73919) -0.399945)) -4.13358))))
(% X (+ (% (* 1.61611 (* 1.61611 X)) (+ -1.98202 0.83636)) -0.399945)))

1.60098 27.5 30 96

 61

4. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (+ (% (% X -
4.7351) -4.13358) (+ 2.45445 -3.86196)) (- (+ X X) (% X -4.7351))) (+ 2.45445 -
3.86196)) (+ (% (- (+ X X) -2.73919) X) (% X -4.7351))) 4.96521) (% X (+ (- -
4.67254 1.53035) (% X -4.7351)))) (% (+ X X) (+ (+ (% (- (- X (+ X (+ (% (% X -
4.7351) -4.13358) (+ (% X X) -3.86196)))) (* (% X X) (- X -0.917234))) -4.7351)
(+ (- -4.67254 -2.73919) -0.399945)) -4.13358)))) (% X (+ (% (* 1.61611 (*
1.61611 X)) (+ -1.98202 0.83636)) -0.399945)))

1.6085 25.2 30 91

5. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (% (- -4.67254 -
2.73919) -4.13358) (- (+ X X) (% (* 1.61611 (* 1.61611 X)) (+ -1.98202
0.83636)))) (+ 2.45445 -3.86196)) (+ (% (- (+ X X) -2.73919) X) (% X -4.7351)))
4.96521) (% X (+ (- -4.67254 1.53035) (% X -4.7351)))) (% (+ X X) (+ (+ (% (- (-
X (+ X (+ (% (% X -4.7351) -4.13358) (+ (% X X) -3.86196)))) (* (% X X) (- X -
0.917234))) -4.7351) (+ (- -4.67254 -2.73919) -0.399945)) -4.13358)))) (% X (+
(% (* 1.61611 (* 1.61611 X)) (+ -1.98202 0.83636)) -0.399945)))

1.76722 25.1 30 65

6. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (% (% (- (+ X X)
-2.73919) X) -4.13358) (% (- -4.67254 1.53035) -4.13358)) (+ 2.45445 -3.86196))
(+ (% (- (* 1.61611 (* 1.61611 X)) -2.73919) X) (% X -4.7351))) 4.96521) (% X (+
(- -4.67254 1.53035) (% X -4.7351)))) (% (+ X X) (+ (+ (% (- (- X (+ X (+ (% (%
X -4.7351) -4.13358) (+ 2.45445 -3.86196)))) (* (% X X) (- X -0.917234))) -
4.7351) (+ (- -4.67254 -2.73919) -0.399945)) -4.13358)))) (% X (+ (% (* 1.61611
(* 1.61611 X)) (+ -1.98202 0.83636)) -0.399945)))

1.7839 24.9 30 73

7. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ (% (% (* 1.61611 X)
-4.13358) (- (+ X X) (- -4.67254 1.53035))) (+ 2.45445 -3.86196)) (+ (% (- (+ X
X) -2.73919) X) (% X -4.7351))) 4.96521) (% X (+ (- -4.67254 1.53035) (% X -
4.7351)))) (% (+ X X) (+ (+ (% (- (- X (+ X (+ (% (% X -4.7351) -4.13358) (+ (%
X X) -3.86196)))) (* (% X X) (- X -0.917234))) -4.7351) (+ (- -4.67254 -2.73919)
-0.399945)) -4.13358)))) (% X (+ (% (* 1.61611 (* 1.61611 X)) (+ -1.98202
0.83636)) -0.399945)))

1.79371 24.1 30 77

8. (* (+ (+ (- -4.67254 1.53035) (% X -4.7351)) (% (* (+ (+ (+ -1.98202 0.83636)
(+ (% (- (+ X X) -2.73919) X) (% X -4.7351))) 4.96521) (% X (+ (- -4.7351
1.53035) (% X -4.7351)))) (% (+ X X) (+ (+ (% (- (- X (+ X (+ (% (% X -4.7351) -
4.13358) (+ 2.45445 -3.86196)))) (* (% X X) (- X -0.917234))) -4.7351) (+ (- -
4.67254 -2.73919) -0.399945)) -4.13358)))) (% X (+ (% (* 1.61611 (* 1.61611 X))
(+ -1.98202 0.83636)) -0.399945)))

1.79654 19.7 30 87

9. (% X (+ (% X (+ 4.78576 (% X (+ (+ (+ 4.78576 2.9107) (% X (+ (+ (+ 4.78576
2.9107) (+ 4.78576 2.9107)) (% X (+ (+ (+ 4.78576 (+ 4.78576 2.9107)) (+ 4.78576
2.9107)) 4.78576))))) 1.48335)))) 1.48335))

2.43853 5.5 21 73

10. (- (% (- X (% -0.577258 (+ (- 4.89013 (% -0.577258 4.15036)) 4.15036))) (- (%
(- X (+ 4.89013 4.15036)) (+ (+ (% (% X (+ 4.7766 -0.795465)) 4.31394) 4.15036)
4.15036)) -4.32524)) -0.795465)

3.63081 4.7 10 61

11. (- (% X (- (% (- X (+ 4.89013 4.15036)) (+ (+ (% (% X (+ 4.7766 -0.795465))
4.31394) 4.15036) 4.15036)) -4.32524)) -0.795465)

3.84913 4.5 10 63

12. (% X (+ (% X (+ 4.78576 (% X (+ (+ (+ 4.78576 2.9107) (% X (+ (+ (+ 4.78576
2.9107) (+ 4.78576 2.9107)) 2.9107))) 1.48335)))) 1.48335))

 62

4.10542 4.4 21 87

13. (- (% X (- (- (% X (+ (+ (+ (- (+ (* -1.38783 (- 2.91162 3.84304)) 1.7861) -
0.222938) (- 2.91162 -4.27366)) (% X (+ (+ (+ (+ 0.587939 3.55647) (- (+ 3.8345
(+ 0.587939 3.55647)) -1.89444)) (- 2.91162 -4.27366)) (+ 0.587939 3.55647))))
1.7861)) -1.89444) -4.27366)) -1.89444)

7.76912 3.5 17 59

14. (% X (+ (% X (+ (+ (+ -0.0300607 (% X (+ (+ (+ 4.64171 (+ (+ 4.78576 2.9107)
1.48335)) (+ -0.0300607 -0.0300607)) 1.48335))) 4.08933) 1.48335)) 1.48335))

7.82567 3.4 21 16

15. (+ (% X (+ (+ (+ -0.0300607 (% X (+ (+ (+ 4.64171 (+ (+ 4.78576 2.9107)
1.48335)) (+ -0.0300607 -0.0300607)) 1.48335))) 4.08933) 1.48335)) 1.48335)

9.67331 2.4 21 14

16. (% (+ (+ 4.82238 (* -2.11447 -1.0741)) X) (+ 4.82238 (* (+ (* 0.0779748 (*
0.0779748 (* 3.05109 0.0621052))) X) 0.0621052)))

11.4792 2.3 45 90

17. (- (% X (+ (- 2.91162 -4.27366) (% X (+ (- 2.91162 -4.27366) (- (+ (- 2.91162
-4.27366) (- 0.587939 -1.89444)) -1.89444))))) -1.89444)

14.7712 2.2 17 44

18. (% X (+ (% X (+ (+ (+ 3.8345 0.821711) (* -1.38783 -4.61577)) (+ 3.8345
0.821711))) 3.84304))

26.1004 2.1 17 7

19. (- (% (+ X (+ (* 2.73003 -0.974914) (* 2.05283 (* 2.05283 (+ 3.50856
2.80145))))) (+ 4.26939 (+ 4.68993 4.81079))) -1.43452)

34.3854 1.2 31 27

20. (+ (% X (* -4.81658 -2.70287)) (- 1.08234 -1.84835))

34.9276 1.1 25 9

21. (% X (- (+ 3.8345 (+ 0.587939 3.55647)) -0.395367))

124.992 1 17 27

22. (+ (- (- 4.89013 -0.467086) -4.32524) (- 4.89013 (- 3.23542 -4.32524)))

197.533 0 10 12

Table A.2: Maple Evaluation of Approximations for sqrt(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. (-6.20289-.2111887817*x+1/2*(-.6594937076/(2*x-2.611811532*x/(2*x+.013199814))+
3.5577+(2*x+2.73919)/x-.2111887817*x)*(.2219786301*x-6.877579315)/(-6.20289-
.2111887817*x))*x/(-2.279744018*x-.399945)

17 INF

2. (-6.20289-.2111887817*x+1/2*(-.7102278571/(x^2)+3.5577+(2*x+2.73919)/x-
.2111887817*x)*(.2219786301*x-6.877579315)/(-6.20289-.2111887817*x))*x/(-
2.279744018*x-.399945)

13 INF

3. (-6.20289-.2111887817*x+1/2*(-.2419210466*(2*x+2.73919)/(x*(2*x-2.611811532*x/(-
6.20289-2*x)))+3.5577+(2*x+2.73919)/x-.2111887817*x)*(.2219786301*x-6.877579315)/(-
6.20289-.2111887817*x))*x/(-2.279744018*x-.399945)

20 INF

4. (-6.20289-.2111887817*x+1/2*(.4522454203*(.05109101111*x-1.40751)/x+3.55770+
(2*x+2.73919)/x-.2111887817*x)*(.2219786301*x-6.877579315)/(-6.20289-.2111887817*x))
*x/(-2.279744018*x-.399945)

15 INF

 63

5. (-6.20289-.2111887817*x+1/2*(.1092864558/x+3.55770+(2*x+2.73919)/x-.2111887817*
x)*(.2219786301*x-6.877579315)/(-6.20289-.2111887817*x))*x/(-2.279744018*x-.399945)

13 INF

6. (-6.20289-.2111887817*x+1/2*(-.1612151755*(2*x+2.73919)/x+3.55770+(2.611811532*
x+2.73919)/x-.2111887817*x)*(.2219786301*x-6.570415791)/(-6.20289-.2111887817*x))*x
/(-2.279744018*x-.399945)

15 INF

7. (-6.20289-.2111887817*x+1/2*(-.3909710227*x/(2*x+6.20289)+3.55770+(2*x+2.73919)
/x-.2111887817*x)*(.2219786301*x-6.877579315)/(-6.20289-.2111887817*x))*x/(-
2.279744018*x-.399945)

15 INF

8. (-6.20289-.2111887817*x+1/2*(3.81955+(2*x+2.73919)/x-.2111887817*x)*(.2219786301
*x-6.570415791)/(-6.26545-.2111887817*x))*x/(-2.279744018*x-.399945)

12 INF

9. x/(x/(4.78576+x/(9.17981+x/(15.39292+.04005697704*x)))+1.48335) 5 2.591348148

10. (x+.06288503787)/((x-9.04049)/(.05822627334*x+8.30072)+4.32524)+.795465 3 3.123452980

11. x/((x-9.04049)/(.05822627334*x+8.30072)+4.32524)+.795465 3 3.343211605

12. x/(x/(4.78576+x/(9.17981+.05463400136*x))+1.48335) 4 4.291955444

13. x/(x/(12.27307062+.03945170494*x)+6.16810)+1.89444 3 6.729391394

14. x/(x/(5.5426193+.06559635887*x)+1.48335) 3 8.090631361

15. x/(5.5426193+.06559635887*x)+1.48335 2 8.935605674

16. (7.093532227+x)/(4.822451552+.0621052*x) 2 10.76103179

17. x/(7.18528+.05334078966*x)+1.89444 2 13.78128841

18. x/(.06362000603*x+3.84304) 2 26.36889260

19. .07262106112*x+3.172308452 1 32.95322345

20. .07681323648*x+2.93069 1 33.68753043

21. .1194133081*x 1 126.0548802

22. 7.011926 0 195.5193204

Table A.3: Final Evolved Approximations for sqrt(x).

EVOLVED APPROXIMATION COST ERROR
(9) x/(x/(4.78576+x/(9.17981+x/(15.39292+.04005697704*x)))+1.48335) 5 2.591348148

(10) (x+.06288503787)/((x-9.04049)/(.05822627334*x+8.30072)+4.32524)+.795465 3 3.123452980

(15) x/(5.5426193+.06559635887*x)+1.48335 2 8.935605674

(19) .07262106112*x+3.172308452 1 32.95322345

(22) 7.011926 0 195.5193204

 64

Table A.4: Evolved Approximations for arcsinh(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (* (% (+ (* (% X 4.67803) (% (% (% X (+ (% (+ 4.45067 -1.31733) X) X)) (+ (% (%
(% X (+ 0.0840785 X)) X) (% (% (+ (+ (- (% X X) 3.61873) (+ 4.82299 -1.77664))
(+ -4.75433 -2.74957)) (% (- -2.90216 X) 2.58477)) (% (+ 0.0840785 X) (* (+ -
3.84457 4.86602) (+ X X))))) (% (% (% X (+ 0.0840785 X)) X) (% (% X (% (- -
2.90216 X) 2.58477)) (% (* (+ (* (+ -3.84457 4.86602) (+ 0.711234 4.15006))
4.86602) (+ 1.61763 3.61873)) (* (+ -3.84457 4.86602) (+ 4.82299 -1.77664)))))))
(% (% (% X (+ 0.0840785 X)) X) (% (% (+ (+ (- (% X X) 3.61873) (% (+ 0.0840785
X) (+ 0.0840785 X))) (+ -4.75433 -2.74957)) (% (- -2.90216 X) 2.58477)) (% (* (+
X 4.86602) (+ X -0.269326)) (* (+ -3.84457 4.86602) (+ 4.82299 -1.77664)))))))
(+ (% (% (% X (+ 0.0840785 X)) X) (% (% (+ (+ (- (% X X) 3.61873) (% (+
0.0840785 X) (+ 0.0840785 X))) (+ -4.75433 -2.74957)) (% (- -2.90216 X)
2.58477)) (% (* (+ X 4.86602) (+ X -0.269326)) (* (+ -3.84457 (+ 0.711234
4.15006)) (+ 4.82299 -1.77664))))) (* 4.83551 X))) (+ (- (+ 0.711234 4.15006) (*
-2.08151 X)) 4.82299)) 1.86636)

3.12475 48.3 40 52

2. (* (% (+ (* (% X 4.67803) (% (% (% X (+ (% (+ 4.45067 -1.31733) (* (% X
4.67803) (+ (% (* X -2.85394) (* (+ -3.84457 4.86602) (+ 4.82299 -1.77664))) (-
(- -0.678274 -0.843684) (+ (- 1.86636 2.55089) 1.33137))))) X)) (+ -4.75433 -
2.74957)) (% (% (+ (% (+ 4.45067 -1.31733) (- -4.88586 X)) (- (% (- (+ 1.61763
3.61873) X) -3.5345) (+ X X))) (% (+ 0.711234 4.15006) 2.58477)) (% (* (- X
0.271157) (% (+ (+ (- (% X X) 3.61873) (% (% X (+ 0.0840785 X)) (+ 0.0840785
X))) (+ -4.75433 -2.74957)) (% (- -2.90216 X) 2.58477))) (- (- -0.678274 -
0.843684) (+ (- 1.86636 2.55089) 1.33137)))))) (+ (% (% (% X (+ 0.0840785 X)) X)
(% (% (+ (+ (- (% X X) 3.61873) (% (+ 0.0840785 X) (+ 0.0840785 X))) (+ -4.75433
-2.74957)) (% (- -2.90216 X) 2.58477)) (% (* (+ X 4.86602) (+ X -0.269326)) (*
(+ -3.84457 4.86602) (+ 4.82299 -1.77664))))) (* 4.83551 X))) (+ (- (+ 0.711234
4.15006) (* -2.08151 X)) 4.82299)) 1.86636)

3.15516 37.7 40 41

3. (* (% (+ (* (% X 4.67803) (% (+ -3.84457 4.86602) (% (% (+ (% (% (- -2.90216 X)
2.58477) (- -4.88586 X)) (+ -3.84457 4.86602)) (% (+ 0.711234 4.15006) 2.58477))
(% (* (+ 4.82299 -1.77664) (+ -3.84457 4.86602)) (% (- -2.90216 X) 2.58477)))))
(+ (% (% (% X (+ 0.0840785 X)) X) (% (% (+ (+ (- (% X X) 3.61873) (% (+
0.0840785 X) (+ 0.0840785 X))) (+ -4.75433 -2.74957)) (% (- -2.90216 X)
2.58477)) (% (* (+ X 4.86602) (+ X -0.269326)) (* (+ -3.84457 4.86602) (+
4.82299 -1.77664))))) (* 4.83551 X))) (+ (- (+ 0.711234 4.15006) (* -2.08151 X))
4.82299)) 1.86636)

3.37734 24.7 40 76

4. (* (% (+ (* (% X 4.67803) (% (% (% X (+ (+ X 4.86602) X)) (+ (* (+ -3.84457
4.86602) (+ 4.82299 -1.77664)) (* 4.83551 X))) (+ 4.82299 -1.77664))) (+ (% (%
(% X(+ 0.0840785 X)) X) (% (% (+ (+ (- (% X X) 3.61873) (% (+ 0.0840785 X) (+
0.0840785 X))) (+ -4.75433 -2.74957)) (% (- (+ (- 1.86636 2.55089) 1.33137) X)
2.58477)) (% (* (+ X 4.86602) (+ X -0.269326)) (* (+ -3.84457 (+ 0.711234
4.15006)) (+ 4.82299 -1.77664))))) (* 4.83551 X))) (+ (- (+ 0.711234 4.15006) (*
-2.08151 X)) 4.82299)) 1.86636)

3.51899 21.6 40 84

 65

5. (* (% (+ (* (% X 4.67803) (% (% (+ (% (- -2.90216 X) 2.58477) (+ -3.84457
4.86602)) (% (+ 0.711234 4.15006) 2.58477)) X)) (+ (% (% (% X X) X) (% (% (+ (+
(- (% X X) 3.61873) (% (+ 0.0840785 X) (+ 0.0840785 X))) (+ -4.75433 -2.74957))
(% (- -2.90216 X) 2.58477)) (% (* (+ X 4.86602) (+ X -0.269326)) (* (+ -3.84457
4.86602) (+ 4.82299 -1.77664))))) (* 4.83551 X))) (+ (- (+ 0.711234 4.15006) (*
-2.08151 X)) 4.82299)) 1.86636)

3.64576 20.4 40 78

6. (* (% (+ (% X (- -2.90216 X)) (+ (% (% (% X X) X) (% (% (+ (+ (- (% X X)
3.61873) (% (+ 0.0840785 X) (+ 0.0840785 X))) (+ -4.75433 -2.74957)) (% (- -
2.90216 X) 2.58477)) (% (* (+ X 4.86602) (+ X -0.269326)) (* (+ -3.84457
4.86602) (+ 4.82299 -1.77664))))) (* 4.83551 X))) (+ (- (+ 0.711234 4.15006) (*
-2.08151 X)) 4.82299)) 1.86636)

3.68765 16.3 40 66

7. (* (% (+ 0.0840785 (+ (% (% (% X (+ 0.0840785 X)) X) (% (% (+ (+ (- (% X X)
3.61873) (% X X)) (+ -4.75433 -2.74957)) (% (- -2.90216 X) 2.58477)) (% (* (+
0.0840785 X) (+ X -0.269326)) (* (+ -3.84457 4.86602) (+ 4.82299 -1.77664)))))
(* 4.83551 X))) (+ (- (+ 0.711234 4.15006) (* -2.08151 X)) 4.82299)) 1.86636)

3.8012 15.1 40 88

8. (% 4.97223 (% (- (% (- -3.74569 X) (- (% (% (* -0.818354 -4.4705) (* X (% (+ -
0.52385 0.528428) (- (% (* X (+ (- -3.74569 X) (+ 4.90081 1.16779))) (- (- (% X
(- (- 0.528428 -0.231788) 3.59493)) (- (+ (- -3.74569 X) X) X)) (* -0.818354 -
4.4705))) 3.59493)))) (- (- -3.74569 X) (+ (* -0.818354 -4.4705) (+ 4.90081
1.16779)))) 3.59493)) (- (+ (- (- (+ -0.52385 0.528428) (+ (- X -4.40397) (% (-
(+ (- (+ -0.52385 0.528428) 2.97479) X) X) (* X (+ -4.4705 (+ (- (- -3.74569 X)
2.97479) 1.16779)))))) 2.97479) X) X)) X))

4.55309 14.5 25 99

9. (% 4.97223 (% (- (% (- -3.74569 X) (- (% (% (* -0.818354 -4.4705) (* X (% (+ -
0.52385 0.528428) (- (% (* X (+ (- -3.74569 X) -2.99371)) (- (- (% X (- 4.90081
3.59493)) (- (- -3.74569 X) 2.97479)) (+ X (+ 4.90081 1.16779)))) 3.59493)))) (-
(* 1.16779 -1.42933) (+ (- X -4.40397) -2.99371))) 3.59493)) (- (+ (- (- -
3.74569 X) 2.97479) X) X)) X))

4.67254 11.8 25 60

10. (% 2.46147 (- (% -1.91549 -4.5822) (% 4.28068 (- (% -1.0744 (% (* (+ -4.38017
(* X -1.84927)) (* (- (% 4.28068 X) (% 4.28068 (- (+ (- X X) (- (% -1.91549 (% -
1.0744 -2.10685)) (% 4.28068 (% -1.91549 -4.5822)))) X))) 0.243995)) (+ -4.38017
(- -1.0744 (- (- (- (% -1.91549 -4.5822) (% -1.0744 -2.10685)) -4.74944) X)))))
X))))

4.69637 10 24 73

11. (% 4.97223 (% (- (% (- -3.74569 X) (- (% (% (* -0.818354 -4.4705) (* X (-
0.528428 -0.231788))) (+ -0.52385 0.528428)) 3.59493)) (- (+ (- (- -3.74569 X)
2.97479) X) X)) X))

6.187 6.7 25 80

12. (% 2.46147 (- (% -1.91549 -4.5822) (% 4.28068 (- (% -1.0744 (% (% -4.21445 (-
(% 4.28068 (% -1.0744 -2.10685)) X)) -1.0744)) X))))

7.0933 5.3 24 20

13. (% 2.46147 (- (% -1.91549 -4.5822) (% 4.28068 (- (% -1.0744 (% -4.12046 (- -
4.12046 (- (% 2.46147 (% -1.0744 -2.10685)) X)))) X))))

7.19888 4.4 24 48

14. (% 2.46147 (- (% -1.91549 -4.5822) (% 4.28068 (- (% -1.0744 (% 4.28068 (- (%
4.28068 (% -1.0744 -2.10685)) X))) X))))

 66

7.44273 4.3 24 30

15. (- (% (+ 4.78576 (% -1.32282 4.13846)) (% (+ 4.00327 (+ (+ 4.78576 (+ 4.78576
-0.498825)) (+ 4.64171 (+ (+ X (% (- 4.16868 -1.845) -4.68993)) (% -1.32282 (% -
4.17173 4.98383)))))) X)) -1.32282)

8.15916 2.6 21 21

16. (- (+ -3.45485 (% 3.07154 (- (% (+ (+ (+ 4.75799 (+ (+ 4.75799 (- -3.64345 -
4.6292)) 0.849788)) 0.849788) 0.849788) X) -0.718253))) -4.95209)

9.28266 2.3 8 79

17. (% X (- (% (- X (* -0.0599689 (- (- 4.13846 0.320597) -1.79861))) (+ 1.83035
(- 4.13846 0.320597))) -1.79861))

11.0621 2.2 43 67

18. (% X (- (% X (- (- 4.13846 0.320597) -1.79861)) -1.79861))

11.2001 2.1 43 56

19. (- 4.16318 (% (- (- (+ (+ (- 4.65697 1.66738) (- 4.16318 (% -0.418256 (* -
1.19282 -3.41975)))) (+ (+ (+ (- (+ 3.76675 (- 3.76675 1.66738)) (- 0.937071
0.376751)) (* -1.19282 -3.41975)) (- 4.16318 (% -0.418256 (- (- 0.937071
0.376751) (- 4.65697 1.66738))))) (- 4.65697 1.66738))) (+ -3.13746 -1.29597))
X) (+ (+ (* -1.19282 -3.41975) (- 4.65697 1.66738)) X)))

18.4133 1.3 42 92

20. (+ 4.98077 (% (+ (% (% 4.98077 3.68709) 3.68709) (% (% (- (+ 4.98077 3.68709)
1.18305) (% 0.31663 3.68709)) 3.68709)) (- (- -2.22068 (% (- (+ 4.98077 3.68709)
2.26096) 3.68709)) X)))

26.3929 1.2 22 90

21. (+ 3.30409 (% X (% (+ -0.0279244 (* 2.25852 -0.509507)) -0.0279244)))

27.2391 1.1 14 70

22. (- (- 3.03095 (+ (+ (- -2.40593 X) X) 1.64968)) (% 3.51802 (- (+ -3.52412
3.55678) (+ (- 1.64968 -1.94357) (% -2.91498 -3.78842)))))

70.3609 0.5 9 11

23. (* -3.88546 (* -0.38316 3.09046))

70.3609 0 5 78

Table A.5: Maple Evaluation of Approximations for arcsinh(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. 1.86636*(-6.068117333*x^2*(.0840785+x)/((3.13334/x+x)*(-.06917479528*(-
1.122792357-.3868816181*x)/x+16.54460068*(-1.122792357-.3868816181*x)/(x*(
.0840785+x)))*(-1.122792357-.3868816181*x)*(x+4.86602)*(x-.269326))-.0353913448*(-
1.122792357-.3868816181*x)*(x+4.86602)*(x-.269326)/(.0840785+x)+ 4.83551*x)/
(9.684284+2.08151*x)

26 INF

2. 1.86636*(.1112876041*x^2*(x-.271157)*(-10.12263+x/((.0840785+x)^2))/((14.65785852
/(x*(-.9171659582*x-.481430))+x)*(3.13334/(-4.88586-x)-1.481499505-1.717074551*x)*(-
1.122792357-.3868816181*x))-.03522759767*(-1.122792357-.3868816181*x)*(x+4.86602)*
(x-.269326)/(.0840785+x)+4.83551*x)/(9.684284+2.08151*x)

24 INF

3. 1.86636*(1.277853316*x/((.3868816181*(-2.90216-x)/(-4.88586-x)+1.02145)*(-
1.122792357-.3868816181*x))-.03522759767*(-1.122792357-.3868816181*x)*(x+4.86602)
*(x-.269326)/(.0840785+x)+4.83551*x)/(9.684284+2.08151*x)

17 3.361399200

4. 1.86636*(.07017092454*x^2/((2*x+4.86602)*(3.111694208+4.83551*x))-.03539134480*
(2502505059 3868816181*x)*(x+4 86602)*(x 269326)/(0840785+x)+4 83551*x)/

15 3.533969225

 67

(.2502505059-.3868816181*x)*(x+4.86602)*(x-.269326)/(.0840785+x)+4.83551*x)/
(9.684284 +2.08151*x)

5. 1.86636*(-.0115185554+4.7915371*x-.03522759767*(-1.122792357-.3868816181*x)*(x
+4.86602)*(x-.269326)/x)/(9.684284+2.08151*x)

9 INF

6. 1.86636*(x/(-2.90216-x)-.03522759767*(-1.122792357-.3868816181*x)*(x+4.86602)*(x-
.269326)/x+4.83551*x)/(9.684284+2.08151*x)

11 INF

7. 1.86636*(.0840785-.03522759767*(-1.122792357-.3868816181*x)*(x-.269326)+4.83551*
x)/(9.684284+2.08151*x)

7 3.804858563

8. 4.97223*x/((-3.74569-x)/(799.1375179*(x*(2.32291-x)/(.6472307259*x+.087238443)-
3.59493)/(x*(-13.47274156-x))-3.59493)+7.374182+x-2.970212/(x*(-10.02319-x)))

15 INF

9. 4.97223*x/((-3.74569-x)/(799.1375179*(x*(-6.73940-x)/(.7657671455*x+.65188)-3.59493
)/(x*(-3.079417281-x))-3.59493)+6.72048+x)

12 INF

10. 2.46147/(.4180284579-4.28068/(-1.0744*(-10.11208284+x)/((-4.38017-1.84927*x)*
(1.044464517/x-1.044464517/(-x-13.99635368)))-x))

10 INF

11. 4.97223*x/((-3.74569-x)/(1051.197972/x-3.59493)+6.72048+x) 5 INF

12. 2.46147/(.4180284579-4.28068/(-2.299172064-.7261005920*x)) 3 6.596080331

13. 2.46147/(.4180284579-4.28068/(-2.332984737-.7392524136*x)) 3 6.705450066

14. 2.46147/(.4180284579-4.28068/(-2.106850000-.7490118392*x)) 3 6.963261097

15. 4.466119361*x/(18.01575130+x)+1.32282 2 7.581253733

16. 1.49724+3.07154/(13.051094/x+.718253) 2 INF

17. x/(.1770471475*x+1.858241906) 2 11.18858617

18. x/(.1780476822*x+1.79861) 2 11.32660567

19. 4.16318-(28.05427784-x)/(7.068736195+x) 3 18.48691726

20. 4.98077+24.00535693/(-3.958337611-x) 2 26.11701008

21. 3.30409+.02369172723*x 1 25.83927515

22. 4.599669224 0 68.51967458

23. 4.600931145 0 68.51916981

Table A.6: Final Evolved Approximations for arcsinh(x).

EVOLVED APPROXIMATION COST ERROR
(3) 1.86636*(1.277853316*x/((.3868816181*(-2.90216-x)/(-4.88586-x)+1.02145)*(-
1.122792357-.3868816181*x))-.03522759767*(-1.122792357-.3868816181*x)*(x+
4.86602)*(x-.269326)/(.0840785+x)+4.83551*x)/(9.684284+2.08151*x)

17 3.361399200

(4) 1.86636*(.07017092454*x^2/((2*x+4.86602)*(3.111694208+4.83551*x))-
.03539134480*(.2502505059-.3868816181*x)*(x+4.86602)*(x-.269326)/(.0840785+x)+
4.83551*x)/(9.684284+2.08151*x)

15 3.533969225

(7) 1.86636*(.0840785-.03522759767*(-1.122792357-.3868816181*x)*(x-.269326)+
4.83551*x)/(9.684284+2.08151*x)

7 3.804858563

(12) 2.46147/(.4180284579-4.28068*1/(-2.299172064-.7261005920*x)) 3 6.596080331

(15) 4.466119361*x/(18.01575130+x)+1.32282 2 7.581253733

(21) 3.30409+.02369172723*x 1 25.83927515

(23) 4.600931145 0 68.51916981

 68

Table A.7: Evolved Approximations for exp(-x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (% (% 2.40715 X) (- (* (- (% (* (* (% (% 2.40715 X) (+ (% (- (+ (- X (% 2.40715
X)) -4.14823) X) (* (* -3.43654 (- X 4.21812)) (- X X))) (+ X X))) (+ -4.8178
2.60949)) (- (* (- X (% 2.40715 (% 2.40715 X))) (- (% (+ -3.64345 (- X 1.16077))
(% 2.73614 1.98782)) (% 3.77285 X))) X)) (- X (% (* -3.1402 (+ (% 2.40715 X) (%
4.82208 0.155187))) (- X (% 2.40715 X))))) (* X X)) (- -0.558031 (% X 2.39586)))
(+ (- X (% 2.40715 X)) -4.14823)))

0.0151717 26 9 92

2. (% (% 2.40715 X) (- (* (- (% (* (* (% (% 2.40715 X) (+ (% (- (% 2.40715 X) X)
(* (* -3.43654 (- X 4.21812)) (- X X))) (+ X X))) (+ -4.8178 2.60949)) (- (* (-
X (% 2.40715 (% 2.40715 X))) (- (% (+ -3.64345 X) (% 2.73614 1.98782)) (%
3.77285 X))) X)) (- X (% (* -3.1402 (+ (% 2.40715 X) (% 4.82208 0.155187))) (- X
(% 2.40715 X))))) (* X X)) (- -0.558031 (% X 2.39586))) (+ (- X (% 2.40715 X)) -
4.14823)))

0.0151717 25.7 9 94

3. (% (% 2.40715 X) (- (* (- (% (* (* (% (% 2.40715 X) (+ (% (- (+ X -4.14823) X)
(* (* -3.43654 (- X 4.21812)) (- X X))) (+ X X))) (+ -4.8178 2.60949)) (- -
0.558031 (% X 2.39586))) (- X (% (* -3.1402 (+ (% 2.40715 X) (% 4.82208
0.155187))) (- X (% 2.40715 X))))) (* X X)) (- -0.558031 (% X 2.39586))) (+ (- X
(% 2.40715 X)) -4.14823)))

0.0151729 20.5 9 95

4. (% (% 2.40715 X) (- (* (- (% (- (- X -2.36961) (% X (% 2.73614 1.98782))) (- X
(- (- X (- -2.1569 (* X X))) (* X X)))) (* X X)) (- (% (- (- X X) X) (* 3.02149
(+ 1.48305 4.21812))) (% X 2.39586))) (+ (- X (% 2.40715 X)) -4.14823)))

0.0208874 12.3 9 87

5. (% (% 2.40715 X) (- (* (- (- (- X X) X) (* X X)) (- (% (- X X) (+ (- X -
0.23484) (% (- X (- X (% (% -1.36494 (+ X X)) X))) (+ -3.64345 X)))) (% X
2.39586))) (+ (- X (% 2.40715 X)) -4.14823)))

0.0278936 11.4 9 34

6. (% (% (* 3.49696 (+ (+ 2.89727 4.49675) -1.63442)) (* X 3.86624)) (+ (+ (+
2.89727 4.49675) -1.63442) (% (* X (+ (+ (+ (- X -4.4058) -1.63442) (* X (* X
X))) (+ (- (% (+ (+ 2.89727 4.49675) -1.63442) 4.49675) X) (% X (% X
3.49696))))) X)))

0.0318482 9.7 33 77

7. (% (% 1.53188 X) (+ (% (- (% 2.56737 (- (+ X -3.27265) X)) (% (- X 0.848262) (+
(- X X) (% -0.619373 -2.65526)))) X) (+ (* X X) (- 3.45882 -1.10736))))

0.0343202 6.8 37 61

8. (% (% 1.53188 X) (+ (% (+ 4.96979 (- (% (- X X) 2.21335) X)) X) (+ (* X X) (- X
1.73177))))

0.0372532 5.6 37 81

9. (% (% 4.61425 (+ X X)) (- (+ (% (+ X X) (* X X)) (+ X (* X X))) -2.37358))

0.0623418 5.5 3 5

10. (% (% 1.53188 X) (+ (% (+ 4.96979 -2.65526) X) (+ (* X X) (% X 1.39454))))

0.0623977 5.2 37 84

11. (% (% 1.53188 X) (+ (% 2.21335 X) (+ (* X X) X)))

 69

0.0635599 4.2 37 86

12. (% (% 1.53188 X) (+ (% (+ 4.96979 (% -4.0286 2.93756)) X) (* X X)))

0.0687091 4.1 37 74

13. (% -3.00226 (- -3.00226 (* (* X (+ X 3.70418)) X)))

0.0857489 3.2 30 53

14. (% -3.00226 (- -3.00226 (* (* X 4.66735) X)))

0.187809 3.1 30 7

15. (% (+ (- (- X -0.950804) X) (- X X)) (+ (- X (- (% -3.54274 3.58638) (* X X)))
(- X X)))

0.30584 2.8 43 99

16. (% (- (- X -0.950804) X) (+ (- X (- (- X X) (* X X))) (- X -0.950804)))

0.338316 2.7 43 77

17. (% 2.70226 (+ (+ (- -1.37379 -3.94192) (* X (+ (+ X X) X))) X))

0.358178 2.4 34 66

18. (% -3.00226 (- -2.90277 (* (+ X (+ X 3.70418)) X)))

0.41648 2.3 30 70

19. (% 2.39189 (+ (% X (% (- -3.16797 -3.21253) 3.1933)) (- 2.34153 X)))

0.617717 2.2 28 14

20. (% -4.35698 (+ -3.71548 (* (% (- 3.97794 -4.26359) (* -0.105136 0.0492874))
X)))

0.753557 2.1 4 2

21. (% -0.275124 (- (- -0.16831 (+ (* -0.0126652 -4.77813) (- X X))) (+ (+ (+ X X)
(- X (- X X))) X)))

0.837032 1.9 42 6

22. (% (+ -0.442976 0.119175) (+ (+ -0.442976 0.119175) (- (- -4.83276 X) (+ (*
1.17573 -4.04508) X))))

0.991187 1.4 11 12

23. (% -0.0892666 (+ -0.0889615 X))

1.06148 1.1 32 45

24. (- X X)
1.58198 0.1 0 0

25. (% (* (% (% -1.61824 -1.65487) -4.85687) (% 0.00167852 -2.90094)) (* 4.99176 -
4.14487))
1.58254 0 13 9

Table A.8: Maple Evaluation of Approximations for exp(-x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. [division by zero] NA NA

2. [division by zero] NA NA

3. [division by zero] NA NA

4. 2.40715/(x*(-.4754383461*(-.1267999337*x-1.098618387-x^2)*x-x+2.40715/x+4.14823)) 9 INF

 70

5. 2.40715/(x*(-.4173866587*(-x-x^2)*x-x+2.40715/x+4.14823)) 9 INF

6. 5.209477637/(x*(13.30877616+x^3)) 4 INF

7. 1.53188/(x*((2.852017392-4.287012834*x)/x+x^2+4.56618)) 5 INF

8. 1.53188/(x*((4.96979-x)/x+x^2+x-1.73177)) 5 INF

9. 2.307125/(x*(2/x+x+x^2+2.37358)) 4 INF

10. 1.53188/(x*(2.31453/x+x^2+.7170823354*x)) 5 INF

11. 1.53188/(x*(2.21335/x+x+x^2)) 4 INF

12. 1.53188/(x*(3.598379714/x+x^2)) 4 INF

13. -3.00226/(-3.00226-x^2*(x+3.70418)) 4 .1651951367

14. -3.00226/(-3.00226-4.66735*x^2) 3 .2530555679

15. .950804/(x+.9878317412+x^2) 2 .2992106079

16. .950804/(2*x+x^2+.950804) 3 .4031475900

17. 2.70226/(2.56813+3*x^2+x) 3 .3685369319

18. -3.00226/(-2.90277-(2*x+3.70418)*x) 4 .3928167835

19. 2.39189/(70.66292640*x+2.34153) 2 .9034893384

20. -4.35698/(-3.71548-1590.451702*x) 2 .9608621607

21. -.275124/(-.2288259721-4*x) 2 .9072783614

22. -.323801/(-.400639092-2*x) 2 1.016436073

23. -.0892666/(-.0889615+x) 1 2.412875333

24. 0 0 1.050833194

25. -.5630484060e-5 0 1.051396243

Table A.9: Final Evolved Approximations for exp(-x).

EVOLVED APPROXIMATION COST ERROR
(13) -3.00226/(-3.00226-x^2*(x+3.70418)) 4 .1651951367

(14) -3.00226/(-3.00226-4.66735*x^2) 3 .2530555679

(15) .950804/(x+.9878317412+x^2) 2 .2992106079

(24) 0 0 1.050833194

Table A.10: Evolved Approximations for tanh(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (% X (- X (% -1.12415 (* (- X (% -1.12415 (+ 2.30583 (% -1.12415 (* (% (* -
1.33717 4.95727) (+ (+ (% X X) (* X X)) (+ (+ X 4.43846) X))) (* (- X 2.36839)
(% X (- X (% -1.12415 (* (+ -0.588549 3.49513) -1.12415)))))))))) (% X (% -
1.12415 (- (* (% -1.12415 (- X 4.43846)) (% -1.12415 X)) (* (+ (* X X) X) (% X
X)))))))))

0.00867654 20.2 7 40

2. (% X (- X (% -1.12415 (* (* X (+ X (% X (- X (% -1.12415 (% X (* (% X (% X X))
(% X X)))))))) (- (- X -1.12415) (% X (* X -3.47255)))))))

 71

0.0153367 13.5 7 36

3. (% X (- X (% -1.12415 (* (% (* X -3.47255) (% X (- X (% (- (+ -0.588549
3.49513) 0.0422681) (- X (- (* -1.12415 (* (+ (% -1.12415 1.02802) 4.43846) (+ X
4.43846))) 1.02802)))))) (% (* X -3.47255) (+ -0.588549 3.49513))))))

0.0183741 11.5 7 48

4. (% X (- X (% -1.12415 (* (* X X) (+ (% -1.12415 (- X (* -0.410321 X)))
4.43846)))))

0.0194832 6.3 7 26

5. (% X (- X (% -1.12415 (% (% X (% -1.12415 X)) -0.247353))))

0.0200782 5.1 7 14

6. (% X (- X (% -1.12415 (* (* X X) (+ (% -1.12415 (* -1.12415 -1.12415))
4.43846)))))

0.0227701 4.1 7 25

7. (% X (- X (% -1.12415 (* (+ X 3.02667) X))))

0.0807519 3.2 7 1

8. (% X (- X (% -1.12415 (* X (+ (% -1.12415 (+ -0.588549 3.49513)) 4.43846)))))

0.149682 3.1 7 41

9. (% X (- X (% (% -1.12415 (+ -0.588549 3.49513)) (- X -0.247353))))

0.178682 2.2 7 94

10. (% X (- X (% (% -1.12415 (+ -0.588549 3.49513)) X)))

0.232949 2.1 7 98

11. (% (% -2.81732 -2.81732) (% X X))

0.2801 2 42 20

12. (% X (+ 0.00961333 X))

0.293169 1.1 14 0

13. (% -1.12415 -1.12415)

1.2801 0 7 8

Table A.11: Maple Evaluation of Approximations for tanh(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. x/(x-1.263713223/((x+1.12415/(2.30583+.1695879798*(5.43846+x^2+2*x)*(x-
.3440468372)/((x-2.36839)*x)))*x*(1.263713223/((x-4.43846)*x)-x^2-x)))

15 INF

2. x/(x+1.12415/(x*(x+x/(x+1.12415))*(x+1.412122815))) 5 INF

3. x/(x+.2709628052/(x*(x-2.8643129/(4.760225707*x+17.71763140)))) 5 INF

4. x/(x+1.12415/(x^2*(-.7970880388/x+4.43846))) 4 INF

5. x/(x+.3125832568/(x^2)) 2 INF

6. x/(x+.3167602122/(x^2)) 2 INF

7. x/(x+1.12415/((x+3.02667)*x)) 3 INF

8. x/(x+.2774514574/x) 2 INF

9. x/(x+.3867602520/(x+.247353)) 2 .2020989978

10. x/(x+.3867602520/x) 2 INF

 72

11. 1.000000000 0 .7439807922

12. x/(.00961333+x) 1 .6362665411

13. 1.000000000 0 .7439807922

Table A.12: Final Evolved Approximations for tanh(x).

EVOLVED APPROXIMATION COST ERROR
(9) x/(x+.3867602520/(x+.247353)) 2 .2020989978

(12) x/(.00961333+x) 1 .6362665411

(11) 1.000000000 0 .7439807922

Table A.13: Padé Approximations for ln(x).

PADÉ APPROXIMATION

NUM. DEGREE DENOM. DEGREE COST ERROR
1. 7.195479314-840/(x+262.25-6187.270833/(x+65.82178044-464.6336465/(x+26.86478638-98.63535114/
(x+14.31857879-31.86167580/(x+8.765143228-12.91833467/(x+5.833382508-6.027585821/(x+4.100445023-
3.086957251/(x+2.992082715-1.685328467/(x+2.240710135-.9615615789/(x+1.708037584-.5649290196/
(x+1.316769388-.3376800239/(x+1.020961319-.2031352219/(x+.7919155112-.1216292021/(x+.6109585685-
.07157321772/(x+.4655160166-.04071151301/(x+.3468695802-.02183686918/(x+.2488207316-.01058314632/
(x+.1668650236-.004238105654/(x+.09766592337-.001080858601/(x+.03871113631))))))))))))))))))))

20 20 20 .02853873033

2. 7.095479314-760/(x+237.25-5061.4375/(x+59.51030772-379.412099/(x+24.26070364-80.31337637/
(x+12.90842827-25.83853792/(x+7.883468062-10.42028827/(x+5.230698048-4.828767506/(x+3.662669133-
2.451726674/(x+2.659779930-1.324160627/(x+1.979908898-.7453928174/(x+1.497926205-.4305892287/
(x+1.143891751-.2519191513/(x+.8762334325-.1474051333/(x+.6689843365-.08508106294/(x+.5052480909-
.04760744756/(x+.3736468966-.02517899989/(x+.2662922546-.01205529562/(x+.1775757736-.004776701678/
(x+.1034223341-.00120693593/(x+.04081521903)))))))))))))))))))

19 19 19 .04415040140

3. 6.990216156-684/(x+213.5-4096.527778/(x+53.51440922-306.4420261/(x+21.78682566-64.64962313/
(x+11.56878593-20.70049939/(x+7.045877335-8.295503452/(x+4.658148527-3.812873532/(x+3.246782796-
1.915954692/(x+2.344093098-1.021337292/(x+1.732148606-.5654858853/(x+1.298321366-.3198297183/
(x+.9796590809-.1820574485/(x+.7387431821-.1027156593/(x+.5522011787-.05638788011/(x+.4048249104-
.02934375737/(x+.2863734948-.01385572791/(x+.1897468912-.005424657303/(x+.1098978142-.001356425099/
(x+.04316090146))))))))))))))))))

18 18 18 .06838417802

4. 6.879105045-612/(x+191.-3276.444444/(x+47.83408505-244.4941360/(x+19.44315256-51.37607256/
(x+10.29965189-16.35772290/(x+6.252371179-6.505771106/(x+4.115734088-2.960983383/(x+2.852786172-
1.469226382/(x+2.045022396-.7706606099/(x+1.497429462-.4179248891/(x+1.109223310-.2300561503/
(x+.8240716778-.1263086050/(x+.6084909494-.06779695611/(x+.4415665507-.03462236193/(x+.3096897660-
.01608928630/(x+.2036969864-.006213643587/(x+.1172356751-.001535501025/(x+.04579228207)))))))))))))))))

17 17 17 .1060544270

5. 6.761457986-544/(x+169.75-2585.9375/(x+42.46933535-192.4038364/(x+17.22968448-40.23881201/
(x+9.101026317-12.72509946/(x+5.50294977-5.014893134/(x+3.603454925-2.25517236/(x+2.480679476-
1.101674979/(x+1.762568074-.5662589344/(x+1.275751761-.2990000385/(x+.9306323925-.1588107352/
(x+.6771299935-.08298033185/(x+.4854773379-.04144602127/(x+.3370813173-.01890603201/(x+.2198440262-
.007187656418/(x+.1256199049-.001752516492/(x+.04876487426))))))))))))))))

16 16 16 .1646975729

 73

6. 6.636457986-480/(x+149.75-2010.604167/(x+37.4201603-149.0712345/(x+15.14642164-30.99803512/
(x+7.972909422-9.722248325/(x+4.797613348-3.788682442/(x+3.121311304-1.678511585/(x+2.130463012-
.8039818724/(x+1.496730486-.4025868266/(x+1.06711593-.2052076481/(x+.7625491552-.103772234/
(x+.5388347455-.05047436551/(x+.36970337-.0225266987/(x+.2387470882-.008409238668/(x+.1352906562-
.002018993011/(x+.05214955084)))))))))))))))

15 15 15 .2561330921

7. 6.503124653-420/(x+131-1536.888889/(x+32.68656015-113.4611372/(x+13.19336430-23.4280418/(x+6.91530151-
7.273517056/(x+4.136362246-2.794962951/(x+2.669303602-1.215068002/(x+1.802137217-.5673766142/
(x+1.247510155-.2744250566/(x+.8715226266-.1332501403/(x+.6049744625-.06275596268/(x+.4091871578-
.02728647405/(x+.2611709609-.009969690564/(x+.1465673704-.002351180223/(x+.05603824353))))))))))))))

14 14 14 .3989340828

8. 6.360267510-364/(x+113.5-1152.083333/(x+28.26853526-84.60305096/(x+11.37051285-17.31723818/
(x+5.928203007-5.307981487/(x+3.519196941-2.003569588/(x+2.247432367-.8499043759/(x+1.495702743-
.3836369166/(x+1.014907892-.1768806074/(x+.688972907-.08003605055/(x+.4579097995-.03371380078/
(x+.2881895378-.01200647251/(x+.1598843084-.002772589493/(x+.06055238008)))))))))))))

13 13 13 .6223473410

9. 6.206421356-312/(x+97.25-844.3263889/(x+24.16608613-61.59118167/(x+9.677867863-12.46813670/
(x+5.011614532-3.759445739/(x+2.946118136-1.386348300/(x+1.855698427-.5690793019/(x+1.211160605-
.2450886595/(x+.7989250102-.1053866826/(x+.5194686031-.04268003932/(x+.3213579887-.01473421108/
(x+.1758469811-.003318264412/(x+.06585572416))))))))))))

12 12 12 .9725312518

10. 6.039754690-264/(x+82.25-602.6041667/(x+20.37921348-43.58443496/(x+8.115430139-8.697356044/
(x+4.165537006-2.566442227/(x+2.417126906-.9171560499/(x+1.494103085-.3596472083/(x+.9485124742-
.1446059/(x+.5995638136-.05570272146/(x+.3630132285-.01850291786/(x+.195325316-.00404229436/
(x+.07217454891)))))))))))

11 11 11 1.522516178

11. 5.857936508-220/(x+68.5-416.75/(x+16.90791842-29.806416/(x+6.68320093-5.835621167/(x+3.389971865-
1.672231661/(x+1.932224971-.5718608334/(x+1.162648517-.2096583726/(x+.7077613116-.07561089364/
(x+.4168287673-.0239144348/(x+.2196146873-.005031722076/(x+.07983053395))))))))))

10 10 10 2.388179787

12. 5.657936508-180/(x+56.-277.4444444/(x+13.75220264-19.54542956/(x+5.381182217-3.727763318/
(x+2.684921452-1.024803066/(x+1.49141525-.3283416962/(x+.8613386367-.1081589513/(x+.4889129373-
.03207414498/(x+.2507300412-.006433906953/(x+.08929682283)))))))))

9 9 9 3.754030750

13. 5.435714286-144/(x+44.75-176.2152778/(x+10.91206897-12.15448001/(x+4.209377312-2.232720056/
(x+2.050389827-.576873813/(x+1.094703092-.1664887800/(x+.5901812671-.04519105296/(x+.2919808073-
.008514552903/(x+.1012987298))))))))

8 8 8 5.915219562

14. 5.185714286-112/(x+34.75-105.4375/(x+8.387522229-7.051271395/(x+3.167792123-1.223535292/
(x+1.486384618-.2858896840/(x+.7420994263-.06820343293/(x+.3491948425-.01179295492/(x+.1170067613)))))))

7 7 7 9.347034102

15. 4.9-84/(x+26.-58.33333333/(x+6.178571429-3.718207483/(x+2.256438126-.5873594093/(x+.9929218647-
.1140250534/(x+.4336306516-.01739854729/(x+.1384379289))))))

6 6 6 14.82276169

16. 4.566666667-60/(x+18.5-28.97222222/(x+4.285234899-1.702391984/(x+1.475340423-.2254495628/
(x+.5700416197-.02818344391/(x+.1693830584)))))

5 5 5 23.62201190

17. 4.166666667-40/(x+12.25-12.27083333/(x+2.707555178-.6156291106/(x+.8245647361-.05317066656/
(x+.2178800857))))

 74

4 4 4 37.92481404

18. 3.666666667-24/(x+7.25-3.993055556/(x+1.445652174-.1344255409/(x+.3043478261)))

3 3 3 61.64347749

19. 3-12/(x+3.5-.75/(x+.5))

2 2 2 102.5125906

20. 0

0 0 0 361.2882544

Table A.14: Padé Approximations for sqrt(x).

PADÉ APPROXIMATION

NUM. DEGREE DENOM. DEGREE COST ERROR
1. 41-22960/(x+671.8-5340.845714/(x+74.2-442.0779221/(x+28.23076923-96.27541689/(x+14.71040724-31.41140047
/(x+8.915966387-12.79783309/(x+5.902857143-5.987617391/(x+4.136551724-3.071612136/(x+3.012539185-
1.678790418/(x+2.253071253-.958556418/(x+1.715886618-.5634690144/(x+1.32195122-.3369421079/
(x+1.024489796-.2027523993/(x+.7943781286-.1214278779/(x+.6127110228-.0714672904/(x+.4667817084-
.04065662268/(x+.3477931904-.02180946493/(x+.2494983278-.01057043386/(x+.1673615247-.004233016791
/(x+.09802526241-.00107944004/(x+.03896103896))))))))))))))))))))

20 20 20 .09118538392

2. 39.-1976/(x+607.8-4368.96/(x+67.08888889-360.9876543/(x+25.4957265-78.39053254/(x+13.26244344-
25.47295575/(x+8.019607843-10.32290872/(x+5.293333333-4.796660870/(x+3.695172414-2.439492156/
(x+2.67816092-1.318996416/(x+1.990990991-.7430465809/(x+1.504943968-.4294658069/(x+1.148509485-
.2513616899/(x+.8793650794-.1471226789/(x+.6711590296-.08493707202/(x+.5067858325-.04753483471/
(x+.3747483463-.02514359635/(x+.2670870113-.01203921222/(x+.1781493868-.004770382934/(x+.1038316458-
.001205204581/(x+.04109589041)))))))))))))))))))

19 19 19 .1398690501

3. 37-16872/(x+547-3536/(x+60.33333333-291.5555556/(x+22.8974359-63.10059172/(x+11.88687783-20.4072118/
(x+7.168067227-8.21781161/(x+4.714285714-3.787439614/(x+3.275862069-1.906349754/(x+2.360501567-
1.017328712/(x+1.742014742-.5636905096/(x+1.304548451-.3189855259/(x+.9837398374-.1816482489/
(x+.7414965986-.1025146489/(x+.5541008856-.05628965719/(x+.4061569017-.0292971501/(x+.2873166523-
.01383505133/(x+.1904161412-.005416703465/(x+.110367893-.001354287165/(x+.04347826087))))))))))))))))))

18 18 18 .2154105542

4. 35-14280/(x+489.4-2828.068571/(x+53.93333333-232.6118326/(x+20.43589744-50.14394836/(x+10.58371041-
16.12558732/(x+6.361344538-6.444683136/(x+4.165714286-2.941155556/(x+2.87862069-1.461820073/
(x+2.059561129-.7676124462/(x+1.506142506-.4165838544/(x+1.114700066-.2294400535/(x+.8276422764-
.1260190225/(x+.6108843537-.06766058573/(x+.4432036966-.03455965641/(x+.3108242304-.01606221376/
(x+.2044866264-.006203475291/(x+.1177805801-.001532826148/(x+.04615384615)))))))))))))))))

17 17 17 .3328325129

5. 33-11968/(x+435.-2232/(x+47.88888889-183.0482604/(x+18.11111111-39.27272727/(x+9.352941176-12.54416318/
(x+5.599439776-4.967657238/(x+3.647619048-2.24/(x+2.503448276-1.096083771/(x+1.775339603-.5639977487/
(x+1.283374283-.2980277575/(x+.9353988134-.1583774885/(x+.6802168022-.08278507767/(x+.4875283447-
.04135948778/(x+.3384674625-.01886982826/(x+.2207878186-.007174425128/(x+.1262582686-.001749119746/
(x+.04918032787))))))))))))))))

16 16 16 .5156804731

6. 31-9920/(x+383.8-1735.36/(x+42.2-141.8181818/(x+15.92307692-30.2528241/(x+8.194570136-9.583682389/
(x+4.882352941-3.752860412/(x+3.16-1.667153623/(x+2.150344828-.7998670298/(x+1.507836991-.4009597441/
(x+1.073710074-.2045288532/(x+.7666446935-.1034821466/(x+.5414634146-.05035131123/(x+.3714285714-
.02247707594/(x+.2398921833-.008391666968/(x+.1360476663-.002014605893/(x+.05263157895)))))))))))))))

 75

15 15 15 .8009340032

7. 29-8120/(x+335.8-1326.445714/(x+36.86666667-107.9365079/(x+13.87179487-22.86390533/(x+7.108597285-
7.169550173/(x+4.210084034-2.768411713/(x+2.702857143-1.206786473/(x+1.819310345-.5644415464/
(x+1.257053292-.273298549/(x+.8771498771-.1327992679/(x+.608437706-.06257456004/(x+.4113821138-
.02721644950/(x+.262585034-.009945793341/(x+.1474778591-.002345402383/(x+.05660377358))))))))))))))

14 14 14 1.246791792

8. 27-6552/(x+291.-994.2857143/(x+31.88888889-80.47971781/(x+11.95726496-16.89940828/(x+6.095022624-
5.23183391/(x+3.582633053-1.984422755/(x+2.276190476-.844057971/(x+1.510344828-.3816245381/
(x+1.022988506-.1761392729/(x+.6936936937-.07975662030/(x+.460777851-.03361147796/(x+.2899728997-
.01197304842/(x+.1609977324-.002764805445/(x+.0612244898)))))))))))))

13 13 13 1.945031218

9. 25-5200/(x+249.4-728.64/(x+27.26666667-58.58585859/(x+10.17948718-12.16654115/(x+5.153846154-
3.705263158/(x+3.-1.372997712/(x+1.88-.5651169082/(x+1.223448276-.243778741/(x+.8056426332-.1049320181
/(x+.5233415233-.04252402090/(x+.3236651285-.01468586613/(x+.1772357724-.003307493540 /(x+.06666666667)
)))))))))))

12 12 12 3.040643795

10. 23-4048/(x+211-520/(x+23-41.45454545/(x+8.538461538-8.486282948/(x+4.285067873-2.529229649/
(x+2.462184874-.9082333162/(x+1.514285714-.3571014493/(x+.9586206897-.1438124097/(x+.605015674-
.05545187950/(x+.3660933661-.01843007248/(x+.1970995386-.004026907061/(x+.07317073171)))))))))))

11 11 11 4.763007369

11. 21-3080/(x+175.8-359.5885714/(x+19.08888889-28.34696168/(x+7.034188034-5.69338354/(x+3.488687783-
1.647787288/(x+1.969187675-.5662188598/(x+1.179047619-.2081391304/(x+.715862069-.07517931802/
(x+.421107628-.02379894462/(x+.2219492219-.005008869874/(x+.08108108108))))))))))

10 10 10 7.475223130

12. 19-2280/(x+143.8-239.36/(x+15.53333333-18.58585859/(x+5.666666667-3.636363636/(x+2.764705882-
1.009652158/(x+1.521008403-.325036193/(x+.8742857143-.1073468599/(x+.4951724138-.03187875843/
(x+.2539184953-.006398293788/(x+.09090909091)))))))))

9 9 9 11.75167010

13. 17-1632/(x+115-152/(x+12.33333333-11.55555556/(x+4.435897436-2.177514793/(x+2.113122172-.5682025132/
(x+1.117647059-.1647597254/(x+.6-.04483091787/(x+.2965517241-.008455542344/(x+.1034482759))))))))

8 8 8 18.49833684

14. 15-1120/(x+89.4-90.92571429/(x+9.488888889-6.701940035/(x+3.341880342-1.192899408/(x+1.533936652-
.2814787835/(x+.7591036415-.06745642574/(x+.3561904762-.01168695652/(x+.12)))))))

7 7 7 29.13522737

15. 13-728/(x+67-50.28571429/(x+7-3.532467532/(x+2.384615385-.5723507262/(x+1.027149321-.1121835731/
(x+.4453781513-.01718582170/(x+.1428571429))))))

6 6 6 45.86177149

16. 11-440/(x+47.8-24.96/(x+4.866666667-1.616161616/(x+1.564102564-.2194728349/(x+.592760181-.0276816609
/(x+.1764705882)))))

5 5 5 72.01547528

17. 9-240/(x+31.8-10.56/(x+3.088888889-.5836139169/(x+.8803418803-.05164066703/(x+.2307692308))))

4 4 4 112.4900312

18. 7-112/(x+19-3.428571429/(x+1.666666667-.1269841270/(x+.3333333333)))

3 3 3 174.0621286

19. 5-40/(x+9.4-.64/(x+.6))

2 2 2 265.2268546

 76

20. 3-8/(x+3)

1 1 1 394.6880113

Table A.15: Padé Approximations for arcsinh(x).

PADÉ APPROXIMATION

NUM. DEGREE DENOM. DEGREE COST ERROR
1. 89.05078273/(x+235.6852216/(x+16.81451427/(x+18.41805995/(x+3.826223223/(x+6.905604077/(x+1.407336121/
(x+3.925515866/(x+.6050173677/(x+2.699119231/(x+.2751416523/(x+2.054260408/(x+.1251850398/(x+1.662231028/
(x+.05363735774/(x+1.401551874/(x+.01954987495/(x+1.217313711/(x+.004633124087/(x+1.081080442/x)))))))))))))
))))))

20 20 20 256.2274138

2. 78.645922/(x+194.938632/(x+13.33875825/(x+15.33368144/(x+2.96708953/(x+5.830156259/(x+1.050592423/
(x+3.365351488/(x+.4276918656/(x+2.343586126/(x+.1802203341/(x+1.801404587/(x+.07303251146/(x+1.46962513
4/(x+.02554178286/(x+1.248049596/(x+.005864955859/(x+1.090908074/x)))))))))))))))))

18 18 18 269.5718297

3. 68.44032165/(x+157.9099196/(x+10.27195781/(x+12.52808551/(x+2.216169965/(x+4.847984955/(x+.744827727/
(x+2.85012065/(x+.280613585/(x+2.013778709/(x+.1051849876/(x+1.565256791/(x+.03477941921/(x+1.288882969/(
x+.007662541124/(x+1.103446567/x)))))))))))))))

15 17 16 283.6586549

4. 58.45716257/(x+124.6252734/(x+7.611707503/(x+10.00268142/(x+1.57340465/(x+3.959228601/(x+.4904189929/
(x+2.379549468/(x+.1640427822/(x+1.709477624/(x+.05010600850/(x+1.345754519/(x+.01043406307/(x+1.1199969
65/x)))))))))))))

14 15 14 298.5407985

5. 48.72581666/(x+95.11569074/(x+5.35525492/(x+7.759119351/(x+1.038859802/(x+3.16396096/(x+.2878960606/
(x+1.953240309/(x+.07825337505/(x+1.430449952/(x+.01503467969/(x+1.142852073/x)))))))))))

12 12 12 314.2775354

6. 39.28473977/(x+69.41876945/(x+3.499411962/(x+5.799369798/(x+.612845477/(x+2.462114544/(x+.1379878827/(x
+1.570630820/(x+.02350508316/(x+1.176473049/x)))))))))

9 10 10 330.9355171

7. 30.18652253/(x+47.58163373/(x+2.040443387/(x+4.125843526/(x+.2961561984/(x+1.853315118/(x+.04165063345
*1/(x+1.230965452/x)))))))

8 8 8 348.5894762

8. 21.50760255/(x+29.66614223/(x+.9739583066/(x+2.741577146/(x+.09058445769/(x+1.336508727/x)))))

5 6 6 367.3213224

9. 13.36976321/(x+15.75941395/(x+.2950030564/(x+1.650501031/x)))

4 4 4 387.2126918

10. 6/(x+6/x)

0 3 2 408.3097844

11. 0

0 0 0 430.5634944

 77

Table A.16: Padé Approximations for exp(-x).

PADÉ APPROXIMATION

NUM. DEGREE DENOM. DEGREE COST ERROR
1. .3379030567e16/(x^14+266*x^13+37226*x^12+3634176*x^11+277053756*x^10+.1751545270e11*x^9+
.9526926876e12*x^8+.4568500161e14*x^7+.1964805622e16*x^6+.7673271864e17*x^5+.2746275673e19*x^4+.9069
534716e20*x^3+.2777884108e22*x^2+.7920385906e23*x+.2107767957e25+.5244598280e26/(x-23.29162812+
34.27332657/(x-18.72162239+55.41237735/(x-15.17375246+96.73438973/(x-17.04913701+129.1906262/(x-
25.15164139+53.75436362/(x-26.61221863)))))))

6 20 33 .3155118435e-8

2. -.4827186524e15/(x^13+307*x^12+49107*x^11+5432925*x^10+465826791*x^9+.3289683918e11*x^8
+.1986453634e13*x^7+.1051597219e15*x^6+.4967151662e16*x^5+.2120430535e18*x^4+.8259515526e19*x^3+.295
6892079e21*x^2+.9782283846e22*x+.3002981787e24+.8580082290e25/(x-26.65116526+46.726719/(x-21.14886938+
68.61628909/(x-17.30688964+88.4428926/(x-15.38043474+122.0928983/(x-18.62224461+112.8159629/(x-
23.29241839+52.82061669/(x-24.59797798))))))))

7 20 32 .3967064108e-8

3. .6033983155e14/(x^12+348*x^11+62628*x^10+7743432*x^9+737527176*x^8+.5754178310e11*x^7+
.3819540247e13*x^6+.2212540017e15*x^5+.1138726840e17*x^4+.5276039859e18*x^3+.2222498603e20*x^2+.8575
906631e21*x+.3048729591e23+.1002914835e25/(x-30.54170496+64.62167350/(x-23.70280148+89.35647487/(x-
19.15586981+102.4180937/(x-16.20482134+118.583517/(x-15.63293313+133.9463347/(x-18.58068135+106.9238447/
(x-21.4951373+53.39519202/(x-22.68605063)))))))))

8 20 31 .6181992607e-8

4. -.6704425728e13/(x^11+389*x^10+77789*x^9+10629657*x^8+1113440877*x^7+.9510934753e11*x^6+
.6883428860e13*x^5+.4330899545e15*x^4+.2412461203e17*x^3+.1205793924e19*x^2+.5462646740e20*x+.226051
5291e22+.8595582280e23/(x-35.10184308+90.69461009/(x-26.52686704+119.1126424/(x-21.00854263+128.1254093
/(x-17.3482099+133.8854021/(x-15.27416469+142.4529034/(x-15.44706934+140.5733955/(x-17.7426086+
105.9001079 /(x-19.74367372+54.55068219/(x-20.80702101))))))))))

9 20 30 .1177683005e-7

5. .3016991578e13/(x^11+331*x^10+56590*x^9+6638590*x^8+599119120*x^7+.4422853720e11*x^6+
.2773777521e13*x^5+.1515692532e15*x^4+.7346360241e16*x^3+.3199739805e18*x^2+.1264628846e20*x+.456886
5507e21+.1517283631e23/(x-30.65413562+69.60606105/(x-23.27529068+92.93341247/(x-18.55076220+103.0944879
/(x-15.60134586+113.7145435/(x-14.81707454+121.9195831/(x-16.91353238+99.03430732/(x-19.46230071+
51.14317306/(x-20.72555800)))))))))

8 19 29 .2300520244e-7

6. -.1270312243e13/(x^11+277*x^10+39877.*x^9+3960001*x^8+303918373*x^7+.1915502573e11*x^6+
.1029096048e13*x^5+.4831082243e14*x^4+.2016458354e16*x^3+.7577818566e17*x^2+.2587764657e19*x+.808542
7106e20+.2323066651e22/(x-26.51598705+52.5930233/(x-20.25118227+72.12961641/(x-16.30540342 +84.78058093
/(x-14.41485477+99.49805581/(x-15.84693435+91.40769125/(x-19.03085938+48.06863374/(x-20.63477876))))))))

7 18 28 .4727853791e-7

7. .1587890304e12/(x^10+314*x^9+50858*x^8+5644176*x^7+481169552*x^6+.3350171670e11*x^5+
.1978309108e13*x^4+.1016069220e15*x^3+.4620098654e16*x^2+.1883971269e18*x+.6955736685e19+.2341872470
e21/(x-30.86668459+75.83577523/(x-22.83621850+97.21934197/(x-17.89246763+104.0459647/(x-14.89758665+
109.6770707/(x-13.90870331+112.2940580/(x-15.33271816+91.79514603/(x-17.49501305+48.77217498/(x-
18.77060810)))))))))

8 18 27 .8992298410e-7

8. -.7057290240e11/(x^10+262*x^9+35622*x^8+3335688*x^7+241004484*x^6+.1427485097e11*x^5+
.7193834651e12*x^4+.3161575170e14*x^3+.1232748876e16*x^2+.4317645726e17*x+.1370691416e19+.3970181245
e20/(x-26.55209451+56.61000809/(x-19.77683617+74.38012731/(x-15.69474910+83.39143794/(x-13.71718720+
91.82061775/(x-14.52718799+83.03097931/(x-17.06766840+45.42836132/(x-18.66427663))))))))

7 17 26 .1746363296e-6

 78

9. .2905943040e11/(x^10+214*x^9+23958*x^8+1859976*x^7+112062852*x^6+5562511704*x^5+.2359073836e12*
x^4+.8755582135e13*x^3+.2891256063e15*x^2+.8594588766e16*x+.2319014091e18+.5712497706e19/(x-
22.57446878+41.54237987/(x-16.97213841+57.07810151/(x-13.85849667+69.13921334/(x-13.64543594+72.32550196
/(x-16.41896237+42.35362834/(x-18.53049784)))))))

6 16 25 .3597665847e-6

10. -4151347200/(x^9+247*x^8+31607*x^7+2780701*x^6+188403467*x^5+.1044410998e11*x^4+.4915631124e12*
x^3+.2013050700e14*x^2+.7296048172e15*x+.2368916950e17+.6950843831e18/(x-26.68240338+61.71921888/(x-
19.27772822+77.16663776/(x-15.00940005+82.40608786/(x-12.91114952+85.69993953/(x-13.22102651+75.89417429
/(x-15.19073716+42.74282374/(x-16.70755516))))))))

7 16 24 .6816921402e-6

11. 1816214400/(x^9+201*x^8+21096*x^7+1532376*x^6+86202576*x^5+3986255376*x^4+.1571221446e12*x^3+
.5405837041e13*x^2+.1650131690e15*x+.4520077303e16+.1119887134e18/(x-22.52788158+44.56059684/(x-
16.45541136+57.87537982/(x-13.21025600+65.42760281/(x-12.62381743+65.00497464/(x-14.62720292+39.22894232
/(x-16.55543071)))))))

6 15 23 .1315990430e-5

12. -726485760/(x^9+159*x^8+13347*x^7+782529*x^6+35803899*x^5+1355331465*x^4+.4396744724e11*x^3+
.1250540773e13*x^2+.3166675751e14*x+.7213168449e15+.1487784575e17/(x-18.74579328+31.64308337/(x-
13.95566393+44.18248883/(x-12.13820226+51.73022467/(x-13.82080925+35.69236626/(x-16.33953128))))))

5 14 22 .2722076548e-5

13. 121080960/(x^8+188*x^7+18416*x^6+1245696*x^5+65099280*x^4+2789437440*x^3+.1015975843e12*x^2
+.3220267617e13*x+.9025634355e14+.2261519858e16/(x-22.56617616+48.49259977/(x-15.8956353+59.09771966
/(x-12.4653612+62.5196819/(x-11.54910738+59.08736459/(x-12.91573187+36.24267655/(x-14.60798809)))))))

6 14 21 .5125322882e-5

14. -51891840/(x^8+148*x^7+11536*x^6+626416*x^5+26472880*x^4+922915840*x^3+.2748693472e11*x^2+
.7152571014e12*x+.1650559256e14+.3410656023e15/(x-18.61002568+33.62472046/(x-13.39225409+43.34817153
/(x-11.32262219+46.72731334/(x-12.29170854+32.22744018/(x-14.38338950))))))

5 13 20 .9828439143e-5

15. 19958400/(x^8+112*x^7+6712*x^6+283840*x^5+9441136*x^4+261363712*x^3+6227253952*x^2+
.1304243603e12*x+.2433487744e13+.4076028844e14/(x-15.07922806+23.06364739/(x-11.39813757+32.39064328
/(x-11.4849561+27.67635272/(x-14.03767827)))))

4 12 19 .2045873862e-4

16. -3991680/(x^7+137*x^6+9857*x^5+492585*x^4+19096865*x^3+608659465*x^2+.1651046271e11*x+
.3896645245e12+.8116260427e13/(x-18.54453712+36.32632200/(x-12.76171007+42.97562258/(x-10.41769993
+42.82383590/(x-10.80409343+29.15810958/(x-12.47195945))))))

5 12 18 .3814642508e-4

17. 1663200/(x^7+103*x^6+5658*x^5+218562*x^4+6616536*x^3+166059144*x^2+3571617168*x+.6719708866e11
+.1119654685e13/(x-14.84633646+23.95694966/(x-10.74048048+30.04403425/(x-10.26121929+24.36625208/(x-
12.15196376)))))

4 11 17 .7256117626e-4

18. -604800/(x^7+73*x^6+2913*x^5+83337*x^4+1898241*x^3+36332649*x^2+602981073*x+8840603961+
.1156056275e12/(x-11.67434860+15.80182740/(x-9.686751938+18.49195211/(x-11.63889946))))

3 10 16 .1525600013e-3

19. 151200/(x^6+94*x^5+4694*x^4+164152*x^3+4479032*x^2+100840624*x+1935316784+.3228823629e11/(x-
14.66092498+25.39230136/(x-9.995163108+28.35016956/(x-9.020467172+21.65170216/(x-10.32344473)))))

4 10 15 .2801684915e-3

20. -60480/(x^6+66*x^5+2370*x^4+60720*x^3+1232460*x^2+20911320*x+305858520.+3923640000/(x-
11.32588770+15.58112710/(x-8.767089391+16.06221865/(x-9.907022912))))

3 9 14 .5273112295e-3

 79

21. 20160/(x^6+42*x^5+1002*x^4+17616*x^3+252108*x^2+3093624*x+33559992.+327105216*1/(x-8.77182285
+9.052064812/(x-9.22817715)))

2 8 13 .001127671514

22. -6720/(x^5+59*x^4+1883*x^3+42621*x^2+759567*x+11241129+142315623/(x-10.99125091+15.79963295/(x-
7.780805673+14.22416024/(x-8.227943415))))

3 8 12 .002019591062

23. 2520/(x^5+37*x^4+772*x^3+11788*x^2+145624*x+1534168+14202880/(x-8.235472242+8.055447177/(x-
7.764527758)))

2 7 11 .003744171624

24. -720/(x^5+19*x^4+223*x^3+2041*x^2+16087*x+116929+823543*1/(x-7))

1 6 10 .008278633905

25. 360/(x^4+32*x^3+572*x^2+7416*x+77192.+680512/(x-7.677419355+7.458896982/(x-6.322580645)))

2 6 9 .01414324321

26. -120/(x^4+16*x^3+156*x^2+1176*x+7656+46656/(x-6.))

1 5 8 .02560401406

27. 24/(x^4+4*x^3+12*x^2+24*x+24)

0 4 7 .06181188285

28. -24/(x^3+13*x^2+101*x+601+3125/(x-5))

1 4 6 .09403937231

29. 6/(x^3+3*x^2+6*x+6.)

0 3 5 .1631035181

30. -6/(x^2+10*x+58+256/(x-4))

1 3 4 .4735915028

31. 2/(x^2+2*x+2)

0 2 3 .5509853262

32. 1/(x+1)

0 1 1 3.614624695

Table A.17: Padé Approximations for tanh(x).

PADÉ APPROXIMATION

NUM. DEGREE DENOM. DEGREE COST ERROR
1. 210/(x+14734.5/(x+2967.734043/(x+1286.960862/(x+726.9322691/(x+472.6286465/(x+335.9707735/(x+
254.2655889/(x+201.6932413/(x+166.0076055/(x+140.7574087/(x+122.2209024/(x+108.0254996/(x+96.45065982/(x+
86.06565456/(x+75.60664115/(x+64.05685729/(x+50.80117549/(x+35.64978680/(x+18.67238462/x)))))))))))))))))))

20 20 20 .5121115434

2. .005263157895*x+63.49736842/(x+2431.732376/(x+1055.813704/(x+597.4003635/(x+389.2818623/(x+
277.4877829/(x+210.6923566/(x+167.7513297/(x+138.6227721/(x+117.9891245/(x+102.7318404/(x+90.78276254/(x+
80.54957489/(x+70.66306440/(x+59.97950613/(x+47.73386987/(x+33.62136374/(x+17.66634661/x)))))))))))))))))

20 18 19 .8371640142

3. 171/(x+9775/(x+1971.930435/(x+857.3943584/(x+486.1049699/(x+317.5835556/(x+227.1038940/(x+173.0846554/
(x+138.3861453/(x+114.8471005/(x+98.10393592/(x+85.52488613/(x+75.26502146/(x+65.82368834/(x+55.93116109/
(x+44.66690997/(x+31.58987447/(x+16.65940867/x)))))))))))))))))

 80

18 18 18 1.273144625

4. .006535947712*x+51.16339869/(x+1580.728155/(x+688.4454927/(x+391.2361174/(x+256.3812231/(x+
184.0197159/(x+140.8529431/(x+113.1394686/(x+94.30287423/(x+80.76426990/(x+70.26690475/(x+61.12268764/(x+
51.92823873/(x+41.60487/(x+29.55560114/(x+15.6514374/x)))))))))))))))

18 16 17 2.062490667

5. 136/(x+6187.5/(x+1250.925455/(x+545.8811374/(x+311.0789036/(x+204.5825408/(x+147.4767507/(x+113.4358191
/(x+91.57036282/(x+76.61727612/(x+65.62197097/(x+56.60134189/(x+47.99212049/(x+38.55467577/(x+27.51933395
/(x+14.64231188/x)))))))))))))))

16 16 16 2.923681344

6. .008333333333*x+40.1625/(x+975.7222222/(x+426.7866601/(x+244.0134118/(x+161.1551314/(x+116.756761/
(x+90.29839218/(x+73.25138368/(x+61.41521914/(x+52.30974437/(x+44.15008789/(x+35.52636445/(x+25.48266648/
(x+13.63195531/x)))))))))))))

16 14 15 4.805264414

7. 105/(x+3692/(x+748.7183099/(x+328.4187224/(x+188.5145796/(x+125.1261795/(x+91.18069965/(x+70.92954787/
(x+57.76263119/(x+48.31004474/(x+40.43649524/(x+32.53398878/(x+23.44841038/(x+12.62039080/x)))))))))))))

14 14 14 6.173809808
8. .01098901099*x+30.49450549/(x+563.9135135/(x+248.2052128/(x+143.1519803/(x+95.58177545/(x+70.10687288
/(x+54.83741010/(x+44.68302301/(x+36.89452526/(x+29.59669047/(x+21.42116147/(x+11.60783479/x)))))))))))

14 12 13 10.68949113

9. 78/(x+2040.5/(x+415.7075472/(x+183.7451364/(x+106.5894536/(x+71.66577154/(x+52.92775529/(x+41.54204953
/(x+33.57935691/(x+26.74002784/(x+19.40805323/(x+10.59484852/x)))))))))))

12 12 12 11.93716932

10. 55/(x+1017/(x+208.6902655/(x+93.33564411/(x+54.98688548/(x+37.56927881/(x+27.95791615/(x+21.4151885/(x
+15.47171167/(x+8.573109797/x)))))))))

10 10 10 21.08701846

11. 36/(x+437.5/(x+90.86/(x+41.39302663/(x+24.86059394/(x+17.01277348/(x+11.79432026/(x+6.579285692/x)))))))

8 8 8 34.06781061

12. 21/(x+150/(x+31.8/(x+14.81320755/(x+8.708534906/(x+4.678257547/x)))))

6 6 6 50.52902829

13. 10/(x+34.5/(x+7.456521739/(x+3.043478261/x)))

4 4 4 69.09094069

14. 3/(x+3/x)

2 2 2 87.09031056

15. 0

0 0 0 99.25601921

Table A.18: Evolved Approximations for xy.

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (% X (+ (* Y Y) (- X (* (* (* Y Y) X) Y))))

3.36649 5.2 37 33

2. (% X (+ (* Y Y) (- X (* X (* Y Y)))))

 81

4.32633 4.2 37 15

3. (% X (+ Y (- X (* Y (% X 0.98529)))))

4.93578 3.2 4 11

4. (% X (+ Y (- X (* Y X))))

4.99067 2.2 4 4

5. (- (- (* X Y) Y) -0.989868)

6.42354 1.2 12 5

6. (* (* -0.228126 -3.54549) (+ 0.286111 X))

12.5833 1.1 32 9

7. (+ (- X -0.00503555) 0.12833)

13.2616 0.2 7 33

8. (+ 0.13657 X)

13.2626 0.1 42 3

9. X

18.7783 0 0 0

Table A.19: Maple Evaluation of Approximations for xy.

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. x/(y^2+x-x*y^3) 4 .03643611691

2. x/(y^2+x-x*y^2) 3 .04650160477

3. x/(y+x-1.014929615*x*y) 3 .04676595598

4. x/(y+x-x*y) 2 .04745973920

5. x*y-y+.989868 1 .05509570980

6. .2314118560+.8088184517*x 1 .1275586202

7. x+.13336555 0 .1401316648

8. .13657+x 0 .1401367539

9. x 0 .1948507892

Table A.20: Final Evolved Approximations for xy.

EXPRESSION COST ERROR
(1) x/(y^2+x-x*y^3) 4 .03643611691

(2) x/(y^2+x-x*y^2) 3 .04650160477

(4) x/(y+x-x*y) 2 .04745973920

(5) x*y-y+.989868 1 .05509570980

(7) x+.13336555 0 .1401316648

 82

Table A.21: Evolved Approximations for sin(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (- X (* (% (* X (+ X (* (% -2.36473 (* (* 4.36827 0.735038) -3.33247)) (% X (+
(% (* -4.60814 -0.66393) (% X X)) (+ -4.96673 (+ (+ (* X -2.81365) (% (+ (- X (+
4.91791 X)) X) -4.80499)) (% (* (% X (+ 4.91791 X)) 2.16636) X)))))))) (+
4.91791 X)) X))

0.0101724 13.1 10 24

2. (- X (* (% (* X (+ X (* (% -2.36473 (* (* 4.36827 0.735038) -3.33247)) (% X (+
(* X -2.81365) (% (+ (* 4.36827 0.735038) X) -4.80499)))))) (+ 4.91791 X)) X))

0.0123257 7.5 10 13

3. (- X (* (% (* X (+ X (* (% -2.36473 (* (* 4.36827 0.735038) -3.33247)) (% X (*
4.36827 (% X -1.32191)))))) (+ 4.91791 X)) X))

0.0322861 7.2 10 9

4. (- (* X (% X (+ (* (% (- X -3.93155) (- (* X (% X (+ (* 2.72729 -3.8522) X)))
(- (- X X) X))) -1.61855) (* -1.58315 -1.61855)))) (- (- X X) X))

0.0328475 6.9 41 39

5. (- X (* (% (* X (+ X (* (% -2.36473 (* 2.16636 -3.33247)) (% X (- X (* X (+
4.91791 X))))))) (+ 4.91791 X)) X))

0.0377116 6.5 10 23

6. (- X (* (% (* X (+ X (% -2.36473 (* (* 4.36827 -2.36869) -3.33247)))) (+
4.91791 X)) X))

0.0424079 3.3 10 42

7. (- X (* X (* 0.137486 (* X (+ 0.137486 X)))))

0.0737534 3.2 39 12

8. (+ (* (* (* -0.155492 X) X) X) X)

0.190762 3.1 9 6

9. (* (% (+ -3.37336 X) -2.85028) X)

0.779006 2.1 17 4

10. (% (+ X X) (+ 1.44734 X))

1.18729 1.2 42 3

11. (+ 0.0840785 (* X 0.739616))

2.65241 1.1 40 6

12. (* X 0.810419)

3.42891 1 5 1

13. (- X 0.0758385)

6.2441 0.1 3 3

14. X

7.15614 0 0 0

 83

Table A.22: Evolved Approximations for Refinement of Candidate Approximation 3 for sin(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (% (* (% X 4.43754) 0.0270089) (- (+ (% (* (% (% X 4.43754) (* (% X 4.43754)
0.0270089)) 0.0270089) (- (* (% X (+ X 0.709708)) (+ X -1.13941)) (* (+ (% -
3.34071 (+ (* (- X 2.86187) (* 1.02924 1.02405)) (+ (- X X) -1.13941))) (+ X
4.79949)) (- (+ (- (- X X) 2.86187) (% (* X 0.0270089) (% (* (* (% X 4.43754)
0.0270089) 0.0270089) 0.0270089))) X)))) (- -3.74172 1.82455)) (* 3.01508 (% X
(+ X 0.709708)))))

0.00799294 23.6 8 41

2. (% (* (% X 4.43754) 0.0270089) (- (+ (% X (- -0.598621 X)) (- -3.74172
1.82455)) (* (+ (* (* (- X (+ (- X 2.86187) (% X (- -2.3867 X)))) (% X (% X (* X
(* (+ -4.55351 (* (- X X) -2.9519)) (% X 3.01508)))))) -1.92953) (+ (% X
4.43754) 4.79949)) (% X (* (- X (% 2.80328 X)) (* (- -2.3867 X) 4.13633))))))

0.00824729 20.3 8 13

3. (% (* (% X 4.43754) 0.0270089) (- (+ (% X (- -0.598621 X)) (- -3.74172
1.82455)) (* (+ (* (* (- X (+ (- X X) (% X (- -2.3867 X)))) (+ X -4.55351)) -
1.92953) (+ (% X 4.43754) 4.79949)) (% X (* (- X (% 2.80328 X)) (* (- -2.3867 X)
4.13633))))))

0.00841626 14.2 8 11

4. (% (% (% -0.12711 (- (+ X -4.05148) (% (% (% 2.77215 (- (+ (% (- -2.40776 (- (+
X -2.40776) -1.59749)) X) (- (- X -0.463118) -1.59749)) X)) 4.72747) (% (- (- X
-0.463118) -1.59749) (% (* (+ X -4.05148) (- X -0.463118)) 4.72747))))) 4.72747)
(% (- -2.40776 (* (- (- X -0.463118) -1.59749) 2.77215)) X))

0.00876727 13.7 44 49

5. (% (% X -3.4106) (* (* (- (* (* (- X (% X X)) 1.5389) 2.51305) (* (+ X 2.83135)
(+ -3.62423 -1.99454))) -3.99167) -3.99167))

0.00888704 8.3 19 20

6. (% (% X -3.4106) (* (* (- (- X X) (* (+ X 2.83135) (+ -3.62423 (* X (+ -3.44874
X))))) -3.99167) -3.99167))

0.0089408 6.5 19 36

7. (% (% (% -0.12711 (- (+ X -4.05148) X)) 4.72747) (% (- -2.40776 (+ -3.30348 (*
(- (- X -0.463118) -1.59749) 2.77215))) X))

0.00895232 5.6 44 15

8. (% (% (% -0.12711 (- (+ X -4.05148) (- X X))) 4.72747) (% (- -2.40776 (* (+ (+
X X) X) 2.77215)) X))

0.00897132 5.6 44 0

9. (% (% X -3.4106) (* (* (- (* (+ X 2.83135) (+ X 2.83135)) (+ -3.62423 -
1.99454)) -3.99167) -3.99167))

0.00903882 5.3 19 28

10. (% (% X -3.4106) (* (* (- (% 3.31751 -4.20133) (* (+ X 2.83135) (+ -3.62423 -
1.99454))) -3.99167) -3.99167))

0.00915817 5.2 19 13

11. (% (* X 0.0270089) (- (+ (- X X) (+ X 0.709708)) (* (+ (+ X 0.709708) (+ X
4.79949)) 4.43754)))

0.0091977 3.7 8 34

 84

12. (% (% (% -0.12711 -2.57591) 4.72747) (% (- -2.40776 (* (- (- X -0.463118) -
1.59749) 2.77215)) X))

0.0094937 3.3 44 14

13. (* (* 4.05911 X) (% (% -4.10947 (% (+ 3.27723 1.21174) (% 0.00167852 -
2.90094))) -2.45537))

0.00989481 2 13 12

14. (% 0.00167852 -2.90094)

0.0144338 0 13 2

Table A.23: Maple Evaluation of Approximations for Refinement of Candidate Approximation 3 for sin(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. .006086457814*x/(.9999999999/(x*(x-1.13941)/(x+.709708)-(-3.34071/(1.053993222
x-4.155801582)+x+4.79949)(-x+1.575669997))-5.56627-3.01508*x/(x+.709708))

12 (+4) .4332379048e-3

2. .006086457814*x/(x/(-.598621-x)-5.56627-(2.914063359*(2.86187-x/(-2.3867-x))*x^2
+.2253500814*x+4.79949)*x/((x-2.80328/x)*(-9.872178811-4.13633*x)))

17 (+4) INF

3. .006086457814*x/(x/(-.598621-x)-5.56627-(-1.92953*(x-x/(-2.3867-x))*(x-4.55351)
+.2253500814*x+4.79949)*x/((x-2.80328/x)*(-9.872178811-4.13633*x)))

16 (+4) INF

4. -.02688753181*x/((x-4.05148-.1240392589*(x-4.05148)*(x+.463118)/(((-1.59749-x)/x
+2.060608)*(x+2.060608)))*(-8.120074467-2.77215*x))

10 (+4) INF

5. -.2932035419*x/(151.1461467*x+191.8603473) 3 (+4) .3095090765e-3

6. .01840178500*x/((x+2.83135)*(-3.62423+x*(-3.44874+x))) 4 (+4) .3104470014e-3

7. .006636471563*x/(-4.816594467-2.77215*x) 3 (+4) .3133582952e-3

8. -.02688753181*x/((x-4.05148)*(-2.40776-8.31645*x)) 4 (+4) .3124598540e-3

9. -.2932035419*x/(15.93342939*(x+2.83135)^2+89.52627505) 4 (+4) .3162295205e-3

10. -.2932035419*x/(240.8986528+89.52627505*x) 3 (+4) .3200857218e-3

11. .0270089*x/(-7.87508*x-23.73757849) 3 (+4) .3215765352e-3

12. .01043807113*x/(-8.120074467-2.77215*x) 3 (+4) .3329046160e-3

13. -.8756705834e-3*x 1 (+4) .3462600904e-3

14. -.5786124498e-3 0 (+4) .4676456530e-3

Table A.24: Final Evolved Approximations for Refinement of Candidate Approximation 3 for sin(x).

EVOLVED APPROXIMATION COST ERROR
(5) -.2932035419*x/(151.1461467*x+191.8603473) 3 (+4) .3095090765e-3

(13) -.8756705834e-3*x 1 (+4) .3462600904e-3

(14) -.5786124498e-3 0 (+4) .4676456530e-3

 85

Table A.25: Evolved Approximations for Refinement of Candidate Approximation 7 for sin(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (% (* (+ -1.00848 X) (* (- (* X 3.71792) (- (* (+ 1.66616 -3.72433) (* (* (* (%
(* (+ (+ X -1.34144) (+ 1.66616 -3.72433)) (- X (* (- -3.37184 2.99127)
4.06827))) (- (* X X) 4.335)) (* (+ (- (% (* -3.24366 -0.254067) (- X 3.65749))
X) (* X (* (- -4.22849 -0.734123) X))) 4.06827)) (- -4.22849 -0.734123))
4.06827)) X)) (+ X -1.34144))) (+ (+ (+ (- (- 0.534227 -4.4058) X) (* X (* X
X))) (+ (+ (% (* 1.66616 (- (* X X) (* (% (+ (* X X) X) X) X))) (* (% (* -
0.653554 X) (* (* 1.66616 X) X)) X)) (- -4.22849 -0.734123)) (+ (- (- -3.37184
2.99127) (- (* X X) (+ X -0.652638))) (% (- X X) (- X X))))) (+ (% 3.47682 X) (*
(* (+ X (+ 1.66616 -3.72433)) (% X 1.66616)) (* (+ (* -0.653554 X) (+ 1.66616 -
3.72433)) (- X X))))))

0.0598397 38.9 33 47

2. (% (* (+ -1.00848 X) (* (- (* X 3.71792) (- (* (+ 1.66616 -3.72433) (* (* (* (%
(* (+ (+ X -1.34144) (+ 1.66616 -3.72433)) (- X (* (- -3.37184 2.99127)
4.06827))) (- (* X X) 4.335)) (* (+ (- (% (* -3.24366 -0.254067) (- X 3.65749))
X) (* X (* (- -4.22849 -0.734123) X))) 4.06827)) (- -4.22849 -0.734123))
4.06827)) X)) (+ X -1.34144))) (+ (+ (+ (- (- 0.534227 -4.4058) X) (* X (* X
X))) (+ (+ (+ X (- X X)) (- -4.22849 -0.734123)) (+ (- (- -3.37184 2.99127) (-
(* X X) (+ X -0.652638))) (% (- X X) (- X X))))) (+ (% 3.47682 X) (* (* (+ X (+
1.66616 -3.72433)) (% X 1.66616)) (* (+ (* -0.653554 X) (+ 1.66616 -3.72433)) (-
X X))))))

0.0599625 27.9 33 48

3. (% (* (* (+ (+ -1.37349 -0.0889615) X) X) (* (+ (+ 3.02423 X) (- -3.37764
0.849483)) (% (* 0.017243 2.94671) (* 2.10318 4.83093)))) (- X (- -2.45262 (+ (+
3.02423 X) (- -3.37764 0.849483)))))

0.064597 4.7 10 2

4. (% (* (% (% (+ 3.57631 0.320292) -1.65487) -4.85687) (% 0.00167852 -2.90094))
(- 3.54793 (% (- 1.91092 -3.61141) X)))

0.0673435 2.1 13 2

5. (% (+ X -0.991089) (% (% 3.76949 1.15009) (* -0.105136 0.0492874)))

0.0706563 1.1 4 15

6. (* X (% 0.00167852 -2.90094))

0.0721997 1 13 13

7. (* (* -0.105136 0.0492874) (% 0.136265 -2.1456))

0.0732281 0 4 2

Table A.26: Maple Evaluation of Approximations for Refinement of Candidate Approximation 7 for sin(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. [division by zero] - -

2. [division by zero] - -

3. (-1.4624515+x)*x*(-.6015476503e-2+.005000840892*x)/(2*x+1.249727) 5 (+3) .002153461540

4. -.2805133023e-3/(3.54793-5.52233/x) 2 (+3) INF

5. -.001581017185*x+.001566928741 1 (+3) .002333705786

 86

6. -.5786124498e-3*x 1 (+3) .002408273886

7. .3290962388e-3 0 (+3) .002416170399

Table A.27: Final Evolved Approximations for Refinement of Candidate Approximation 7 for sin(x).

EVOLVED APPROXIMATION COST ERROR
(3) (-1.4624515+x)*x*(-.6015476503e-2+.005000840892*x)/(2*x+1.249727) 5 (+3) .002153461540

(5) -.001581017185*x+.001566928741 1 (+3) .002333705786

(7) .3290962388e-3 0 (+3) .002416170399

Table A.28: Evolved Approximations for Refinement of Candidate Approximation 8 for sin(x).

EVOLVED LISP EXPRESSION
ERROR COST RUN GENERATION

1. (* (+ (- X X) (* (* 0.709708 (% (* (* (+ X -1.1681) -1.2566) X) (% -0.641957
X))) -1.92953)) (* (* (* (* (- (* (- X X) 0.0270089) X) X) 0.0270089) 0.0270089)
(- X (+ -4.39817 0.199744))))

0.0530266 12.6 8 33

2. (% (* (% (- X (* X X)) (+ (* -4.32371 3.2934) (% X (- X (* X X))))) X) (%
4.12778 (- (% X (+ X X)) (% (+ X (* X X)) (* (* 1.23981 -2.11264) (* 0.814997
2.9162))))))

0.0634081 10.6 2 42

3. (% (* (% (- X (* X X)) (+ (* -4.32371 3.2934) (- X X))) X) (% (* (- X (+ X (%
2.82861 X))) (% 2.82861 X)) (- (% X (+ X X)) X)))

0.0658891 9.7 2 49

4. (% (* (% (- X (* X X)) (+ (* -4.32371 3.2934) (* (% 1.66402 -3.22352) -
0.876644))) X) (% 4.12778 (- (% X (+ X X)) (% (* (+ X -0.00808741) (* X (+ X -
0.00808741))) (* (* 1.23981 -2.11264) (* 0.814997 2.9162))))))

0.0672362 9.5 2 36

5. (% (* (% (- X (* X X)) (+ (* -4.32371 3.2934) (% 1.66402 -3.22352))) X) (%
4.12778 (- (% X (+ X X)) (% (+ X (* X X)) (* (* 1.23981 -2.11264) (* 0.814997
2.9162))))))

0.0709168 8.4 2 32

6. (% (* (% (- X (* X X)) (+ (* -4.32371 3.2934) (- -2.43797 (+ X (- X X))))) X)
(+ X (% 2.82861 X)))

0.0746054 5.6 2 12

7. (% (* (% (- X (* X X)) (+ (* -4.32371 3.2934) (- -2.43797 (+ X X)))) X) (+ X (%
2.82861 X)))

0.0772754 5.5 2 11

8. (% (% (% (- (* X X) X) (% (* -4.84191 -0.625477) (- (- X X) X))) (* 2.87072
1.65181)) (* -2.09281 2.09555))

0.0825382 5.3 18 3

9. (* (% (* -1.27766 X) (+ (+ 1.32771 X) (% (+ -2.85607 -4.13785) 2.40959))) (* (+
(+ 3.02423 X) (- -3.37764 0.849483)) (% (* 0.017243 2.94671) (* 2.10318 (% -
4.05393 -0.376446)))))

 87

0.10046 4.4 10 6

10. (% -0.00747703 (% (+ -4.34385 (- -4.31425 (* X (* X -3.53755)))) X))

0.141391 4.2 20 13

11. (* (- (* X X) X) 0.00686666)

0.146896 2.1 18 3

12. (% 0.00167852 -2.90094)

0.187177 0 13 2

Table A.29: Maple Evaluation of Approximations for Refinement of Candidate Approximation 8 for sin(x).

SIMPLIFIED MAPLE EXPRESSION COST ERROR
1. .001955402411*(x-1.1681)*x^4*(x+4.198426) 6 (+3) .001728764493

2. .2422609732*(x-x^2)*x*(1/2+.1606371725*x^2+.1606371725*x)/(-14.23970651+x
/(x-x^2))

10 (+3) INF

3. .008777135782*(x-x^2)*x^3*(1/2-x) 7 (+3) .002080725728

4. -.01757147646*(x-x^2)*x*(1/2+.1606371725*(x-.00808741)^2*x) 7 (+3) .002171372526

5. -.01641788490*(x-x^2)*x*(1/2+.1606371725*x^2+.1606371725*x) 7 (+3) .02306290529

6. (x-x^2)*x/((-16.67767651-x)*(x+2.82861/x)) 7 (+3) INF

7. (x-x^2)*x/((-16.67767651-2*x)*(x+2.82861/x)) 7 (+3) INF

8. .01587790457*(x^2-x)*x 4 (+3) .002729466161

9. -1.27766*x*(-.002698529816+.002243366464*x)/(-1.574825286+x) 4 (+3) .005078799840

10. -.00747703*x/(-8.65810+3.53755*x^2) 4 (+3) .03303209138

11. .00686666*x^2-.00686666*x 3 (+3) .004986344588

12. -.5786124498e-3 0 (+3) .006343650815

Table A.30: Final Evolved Approximations for Refinement of Candidate Approximation 8 for sin(x).

EVOLVED APPROXIMATION COST ERROR
(1) .001955402411*(x-1.1681)*x^4*(x+4.198426) 6 (+3) .001728764493

(8) .01587790457*(x^2-x)*x 4 (+3) .002729466161

(11) .00686666*x^2-.00686666*x 3 (+3) .004986344588

(12) -.5786124498e-3 0 (+3) .006343650815

 88

APPENDIX B: CODE DOCUMENTATION

The genetic programming system used for the experiments described in this thesis was originally conceived, prior to the

initiation of work on this thesis, as a library for "generalized neural networks", intended as a new approach to function

approximation and classification wherein the topology of a neural network could be modified by a genetic algorithm, and

the neural network would be allowed to use a variety of mathematical operators as the activation functions for its

neurons. For this reason, some relics of neural network terminology and orientation remain in the code and parameters

for this system, now seen as a "functional genetic programming" system. This appendix gives the full set of command-

line options available for the system along with an explanation of each of the corresponding parameters, as well as a

brief description of each of the modules in the code.

FGP COMMAND-LINE OPTIONS

This section gives the command-line options available for the FGP executable. Each of the options can be used directly

on the command line or as a line in a configuration file (specified using the -File option), with the exception of the

-ReportName and -NoReport options, which can only be used from the command line.

AdjustedErrorPower [R] - Raise 1/(1+[error]) to the power of [R] when computing adjusted error.

AverageSampleError [On|Off] - Divide by number of samples when computing error (On) or do not perform this

division (Off).

BiasedChoiceOfCrossoverPoint [On|Off] - Use fixed probability of choosing internal (vs. leaf) crossover point (On) or

uniform probability for all points (Off). (The -PrInternalCrossover option is used to specify the probability of choosing

an internal point).

CandidateSolutionErrorWeight [R] - Order candidate solutions according to weighted sum of error and cost with [R] as

the error weight and 1-[R] as the weight for cost.

Crossover [Scramble|SingleSubtreeSwap|Meta] - Set crossover type.

ErrorMetric [RMS|Absolute|Max] - Set formula for error calculations.

ErrorMultiplier [R] - Multiply error by [R] before computing adjusted error.

ExcludeFN [Primitive function name] - Exclude specified function from function set.

File | -f [filename] - Use configuration file [filename].

FitnessLimit [R] - Run until best fitness is >= [R] (where [R] >= 0).

FitnessProportionateReproductionFraction [R] - Set fraction of population which will undergo fitness-proportionate

reproduction each generation (for standard GA only).

FunctionSet "{"[Primitive function name]","[Primitive function name]. . ."}" - Specify set of available primitive

functions, f.e. -FunctionSet {Product,Sum,Subtract,Div}.

 89

GA ES([mu][,|+][lambda]) | Standard - Set genetic algorithm to Evolution Strategy with [mu] parents, [lambda] children,

and "+" or "," recombination strategy, or to standard (Holland-style) GA.

GaussianWeightMutation [R] - Set Gaussian weight mutation rate (standard deviation) to [R].

GenerationLimit | -g [N] - Run up to [N] generations.

HitRange [R] - FGP output will be considered a "hit" if difference from correct value is < [R].

HitRatioLimit [R] - Run until hit ratio for best FGP is >= [R]. Note that [R]>1 can be used for no limit.

HTMLSummaryHeaderFooter [On|Off] - Turn HTML summary header/footer generation on or off ('Off' causes only

<TABLE> to be generated).

IncludeFN [Primitive function name] - Include specified function in function set.

MaxNodesPerOutput [N] - Set maximum number of nodes per output.

MaxRandTreeDepth [N] - Set maximum (zero-based) depth of randomly generated trees.

MaxTreeDepth [N] - Set maximum (zero-based) depth for all trees.

NoRandomize - Do not seed random number generator using clock value.

NoReport - Turn off report generation.

NumRuns [N] - Execute [N] runs.

OccamsRazor [On|Off] - Turn "Occam's Razor" (incorporation of expression cost into fitness function) on or off.

PopulationSize [N] - Set population size (for standard GA only).

PrFunctionMutation [R] - Set probability of primitive function mutation to [R].

PrInternalCrossoverPoint [R] - Set probability of choosing internal (vs. leaf) crossover point to [R].

PrSubtreeRecursion [R] - Set subtree recursion probability to [R] (for breeding trees via "scramble" crossover operator).

PrSubtreeMutation [R] - Set probability of subtree mutation to [R].

Randomize - Seed random number generator using clock value.

RandomNumericTerminal [On|Off] - Turn use of random numeric terminal on or off.

RandSeed [N] - Set random number generator seed value to [N].

RandTreeDefaultArity [On|Off] - Generate random initial trees using default arity for each function (On) or random arity

(Off).

RandTreeUniformDepth [On|Off] - Create initial random trees with each branch reaching same depth (On) or with

branches of varying depth within each tree (Off).

RandWeightInit [On|Off] - Turn random weight initialization on or off.

ReportName [filename without extension] - Set report filename prefix ([report name].html, [report name].gnuplot and

[report name]_MapleCandidateSolutions.txt will be generated).

 90

SurvivorSelection [BestN|Roulette] - Set survivor selection scheme (applicable to Evolution Strategy GA only).

TrainingSet | -t [filename] - Use [filename] as training set.

VirtualTrainingSetSize [N] - Use virtual training set of size [N]

WeightCombination [Averaged|Discrete] - Set weight combination type.

MODULE DESCRIPTIONS

The following are descriptions of each module of the author's GP system. The modules are divided into core library

files, module tests, the main driver program, and utilities.

Core Library Files

CConvexFitnessHull.cpp - Class which keeps track of which points in the (error,cost) plane are on the convex hull for

the population history.

CFunctionalGP.cpp - Class implementing functional genetic programs (functions of one or more variables which can be

randomly generated, bred, etc.).

CFunctionalGP_Environment.cpp - Class implementing functional genetic program "environment", which is basically a

repository of global variables shared by all FGPs in an evolving population.

CFunctionalGP_Node.cpp - Class for an individual node in an FGP tree.

CFunctionalGP_Population.cpp - Class derived from CPopulation (in GA.cpp) with special overloaded function to

maintain convex fitness hull.

CFunctionSet.cpp - Class implementing set of primitive functions from which FGPs are constructed.

CLinkedList.hpp / CLinkedListT.hpp - Linked list template class.

CSampleSet.cpp - Class for loading and using training sets.

GA.cpp - Contains "GA framework" within which FGPs are evolved, with base classes for individuals (CIndividual),

populations (CPopulation), environments (CEnvironment), and genetic algorithms (CGeneticAlgorithm).

Rand.cpp - Routines for generating random numbers.

SelectionSchemes.cpp - Functions to select individuals according to various selection schemes.

Util.cpp - Various utility functions.

Module Tests

CConvexFitnessHullTest.cpp - test for CConvexFitnessHull.cpp.

CFunctionalGP_EnvironmentTest.cpp - test for CFunctionalGP_Environment.cpp.

 91

CFunctionalGP_NodeTest.cpp - test for CFunctionalGP_Node.cpp.

CFunctionalGPTest.cpp - test for CFunctionalGP.cpp.

CFunctionSetTest.cpp - test for CFunctionSet.cpp.

CLinkedListTest.cpp - test for CLinkedList template class.

CSampleSetTest.cpp - test for CSampleSet.cpp.

GATest.cpp - test for GA.cpp.

RandTest.cpp - test for Rand.cpp.

SelectionSchemesTest.cpp - test for SelectionSchemes.cpp.

UtilTest.cpp - test for Util.cpp.

TestUtils.cpp - Common utility functions shared by various module tests.

Main driver program

CFGP_CommandLine.cpp - Class to process command-line options.

Main.cpp - Main driver program which accepts command-line options, configures FGP appropriately, executes runs, and

generates HTML and Gnuplot-compatible summary data.

Utilities

ClosedFormFinder.cpp - Obsolete program which attempts to co-evolve a series to be approximated and the

approximating function itself.

FnTimer.cpp - Program to time various primitive functions and assign costs accordingly.

PrintAsLISPExpression.cpp - Takes an FGP expression as input and outputs a LISP expression.

PrintAsMaple.cpp - Takes an FGP expression as input and outputs a Maple expression.

RandExpression.cpp - Generates a random FGP expression.

Simplify.cpp - Takes an FGP expression as input and outputs it in simplified form (currently just evaluates constant

expressions).

TGen.cpp - Generates various training sets.

 92

REFERENCES

D. Andre, F. H. Bennett III, and J. R. Koza (1996). Discovery by genetic programming of a cellular automata rule that is
better than any known rule for the majority classification problem. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference. Cambridge, MA: The MIT Press.
D. Andre and J. R. Koza (1996). Parallel genetic programming: A scalable implementation using the transputer network
architecture. In P. J. Angeline and K. E. Kinnear, Jr. (eds.), Advances in Genetic Programming 2, 317-338. Cambridge,
MA: MIT Press.
G. A Baker (1975). Essentials of Padé Approximants. New York: Academic Press.
C. M. Bender and S. A. Orszag (1978). Advanced Mathematical Methods for Scientists and Engineers. New York:
McGraw-Hill.
C. M. Bishop (1995). Neural Networks for Pattern Recognition. Oxford University Press.
T. Blickle and L. Thiele (1995). A comparison of selection schemes used in genetic algorithms. TIK-Report 11, TIK
Institut fur Technische Informatik und Kommunikationsnetze, Computer Engineering and Networks Laboratory, ETH,
Swiss Federal Institute of Technology.
A. E. Bryson and Y.-C. Ho (1969). Applied Optimal Control and Estimation. Blaisdell.
R. L. Burden and J. D. Faires (1997). Numerical Analysis. Pacific Grove, CA: Brooks/Cole Publishing Company.
K. Chellapilla (1997). Evolving computer programs without subtree crossover. IEEE Transactions on Evolutionary
Computation 1(3):209-216.
W. Comisky, J. Yu, and J. R. Koza (2000). Automatic synthesis of a wire antenna using genetic programming. In Late
Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, 179-186.
G. W. Cottrell (1990). Extracting features from faces using compression networks: Face, identity, emotion and gender
recognition using holons. In Connection Models: Proceedings of the 1990 Summer School. San Mateo, CA: Morgan
Kaufmann.
L. M. Desjarlais, M. Akbarzadeh-T and C. W. Wright (1999). Control system optimization using genetic algorithms
within the SoftLab tooklit. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E.
Smith, (eds.), Proceedings of the Genetic and Evolutionary Computation Conference, 2:1774. San Mateo, CA: Morgan
Kaufmann.
G. Diplock (1996). The application of evolutionary computing techniques to spatial interaction modelling. PhD thesis,
Leeds University, UK
C. Eldershaw and S. Cameron (1999). Real-world applications: Motion planning using GAs. In W. Banzhaf, J. Daida, A.
E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, (eds.), Proceedings of the Genetic and Evolutionary
Computation Conference, 2:1776. San Mateo, CA: Morgan Kaufmann.
L. Eulero (1734). De progressionibus harmonicus observationes. In Comentarii academiæ scientarum imperialis
Petropolitanæ 7(1734):150-161.
R. Feldt, M. O'Neill, C. Ryan, P. Nordin, and W. Langdon. (2000). GP-Beagle: A benchmarking problem repository for
the genetic programming community. In Late Breaking Papers at the GECCO'2000 Conference. San Mateo, CA:
Morgan Kaufmann.
D. E. Goldberg (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison-
Wesley.
G. H. Gonnet (1984). Handbook of Algorithms and Data Structures. London: Addison-Wesley.
M. Gregory. (1998). Genetic algorithm optimisation of distributed database queries. In Proceedings of the 1998 IEEE
World Congress on Computational Intelligence, 271-276. IEEE Press.
K. M. Heal, M. L. Hansen, and K. M. Rickard (1998). Maple V Learning Guide. New York: Springer-Verlag.
J. H. Holland (1975). Adaptation in Natural and Artificial Systems. Cambridge, MA: The MIT Press
D. Howard and S. C. Roberts (1999). A staged genetic programming strategy for image analysis. In W. Banzhaf, J.
Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, (eds.), Proceedings of the Genetic and
Evolutionary Computation Conference, 2:1047-1052. San Mateo, CA: Morgan Kaufmann.

 93

C. Jacob (1996). Evolving evolution programs: Genetic programming and L-systems. In J. R. Koza, D. E. Goldberg, D.
B.Fogel, and R. L. Riolo (eds.), Genetic Programming 1996: Proceedings of the First Annual Conference, 107-115.
Cambridge, MA: The MIT Press.
M. A. Keane, J. R. Koza, and J. P. Rice (1993). Finding an impulse response function using genetic programming. In
Proceedings of the 1993 American Control Conference, 3:2345-2350.
J. R. Koza (1989). Hierarchical genetic algorithms operating on populations of computer programs. In Proceedings of the
11th International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. 1:768-774.
J. R. Koza (1990a). Genetic programming: A paradigm for genetically breeding populations of computer programs to
solve problems. Stanford University Computer Science Department technical report STAN-CS-90-1314.
J. R. Koza (1990b). A genetic approach to econometric modeling. Presented at Sixth World Congress of the Econometric
Society, Barcelona, Spain.
J. R. Koza (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection.
Cambridge, MA: MIT Press.
J. R. Koza (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. Cambridge, MA: MIT Press.
J. R. Koza, D. Andre, F. H Bennett III, and M. Keane. (1999). Genetic Programming 3: Darwinian Invention and
Problem Solving. San Mateo, CA: Morgan Kaufman.
J. R. Koza, M. A. Keane, F. H. Bennett III, J. Yu, W. Mydlowec, and O. Stiffelman (1999). Automatic creation of both
the topology and parameters for a robust controller by means of genetic programming. In Proceedings of the 1999 IEEE
International Symposium on Intelligent Control, Intelligent Systems, and Semiotics, 344-352. Piscataway, NJ: IEEE
Press.
W. Lam, M. L. Wong, K. S. Leung, and P. S. Ngan. (1998). Discovering probabilistic knowledge from databases using
evolutionary computation and minimum description length principle. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb,
M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, (eds.), Genetic Programming 1998:
Proceedings of the Third Annual Conference, 786-794. San Mateo, CA: Morgan Kaufmann.
S. Luke and L. Spector (1997). A comparison of crossover and mutation in genetic programming. In J. R. Koza, K. Deb,
M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo (eds.), Genetic Programming 1997: Proceedings of the
Second Annual Conference, 240-248. San Mateo, CA: Morgan Kaufmann.
T. M. Mitchell. (1997). Machine Learning. New York: McGraw-Hill.
R. E. Moustafa, K. A. De Jong, and E. J. Wegman (1999). Using genetic algorithms for adaptive function approximation
and mesh generation. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith
(eds.), Proceedings of the Genetic and Evolutionary Computation Conference, 1:798. San Mateo, CA: Morgan
Kaufmann.
R. Müller, H.-H. Hemberger, and K. Baier (1997). Engine control using neural networks: A new method in engine
management systems. In MECCANICA, 32(5): 423-430.
P. Nordin (1994). A compiling genetic programming system that directly manipulates the machine code. In Advances in
Genetic Programming, 311-331. Cambridge, MA: The MIT Press
P. Nordin (1997). Evolutionary Program Induction of Binary Machine Code and its Applications. PhD thesis, der
Universitat Dortmund am Fachereich Informatik.
U. M. O'Reilly and F. Oppacher (1994). The troubling aspects of a building block hypothesis for genetic programming.
Santa Fe Institute Working Paper 94-02-001.
D. A. Pomerleau (1993). Knowledge-based training of artificial neural networks for autonomous robot driving. In Robot
Learning, 19-43. Boston: Kluwer Academic Publishers.
C. Ryan, J. J. Collins, and M. O'Neill (1998). Grammatical evolution: Evolving programs for an arbitrary language. In
W. Banzhaf, R. Poli, M. Schoenauer, and T. C. Fogarty (eds.), Proceedings of the First European Workshop on Genetic
Programming, 1391:83-95. New York: Springer-Verlag.
T. Soule and J. A. Foster. (1998). Effects of code growth and parsimony pressure on populations in genetic
programming. In Evolutionary Computation, 6(4):293-309.
M. Wall (2000). GAlib: Matthew's Genetic Algorithms Library. http://lancet.mit.edu/ga/
P. Walsh and C. Ryan (1996). Paragen: A novel technique for the autoparallelisation of sequential programs using
genetic programming. In J.R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (eds.) Genetic Programming 1996:
Proceedings of the First Annual Conference. Cambridge, MA: The MIT Press.

 94

T. Williams, C. Kelley (1999). Gnuplot: An Interactive Plotting Program.
http://theochem.ki.ku.dk/on_line_docs/gnuplot/gnuplot_1.html
B. Zhang and H. Mühlenbein. (1995). Balancing accuracy and parsimony in genetic programming. In Evolutionary
Computation, 3(1):17-38.

	FRONT MATTER
	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES AND FIGURES

	1 INTRODUCTION
	1.1 INTRODUCTION TO GENETIC ALGORITHMS
	1.2 INTRODUCTION TO GENETIC PROGRAMMING
	1.3 EVALUATING APPROXIMATIONS
	1.4 USING GENETIC PROGRAMMING TO DISCOVER NUMERICAL APPROXIMATION FORMULAE
	1.5 RELATED WORK
	1.6 SUMMARY OF REPORT

	2 OUR GENETIC PROGRAMMING SYSTEM
	2.1 GA FRAMEWORK
	2.2 GP REPRESENTATION
	2.3 PRIMITIVE FUNCTION COSTS
	2.4 PROGRAM OUTPUT
	2.5 CONSISTENCY WITH OTHER GENETIC PROGRAMMING SYSTEMS

	3 OPTIMIZING GP PARAMETERS
	3.1 EXPERIMENTS WITH INITIAL TEST SUITE
	3.2 EXPERIMENTS WITH REVISED TEST SUITE
	3.3 IMPRACTICALITY OF OPTIMIZING GP PARAMETERS IN THIS MANNER

	4 REDISCOVERY OF HARMONIC NUMBER APPROXIMATIONS
	5 DISCOVERY OF RATIONAL POLYNOMIAL APPROXIMATIONS FOR KNOWN FUNCTIONS
	5.1 INTRODUCTION
	5.2 COMPARISON WITH PADÉ APPROXIMATIONS
	5.3 AVOIDING DIVISION BY ZERO
	5.4 RESULTS

	6 APPROXIMATING FUNCTIONS OF MORE THAN ONE VARIABLE
	7 REFINING APPROXIMATIONS
	7.1 APPROXIMATING ERROR FUNCTION OF EVOLVED APPROXIMATIONS
	7.2 OTHER POSSIBLE APPROACHES TO REFINEMENT OF APPROXIMATIONS

	8 ATTEMPTED REDISCOVERY OF NEURAL NETWORK ACTIVATION FUNCTIONS
	9 ATTEMPTED PIECEWISE APPROXIMATION OF FUNCTIONS
	9.1 INTRODUCTION AND PRELIMINARY WORK
	9.2 PIECEWISE RATIONAL POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF A SINGLE VARIABLE
	9.3 PIECEWISE RATIONAL POLYNOMIAL SURFACE APPROXIMATIONS
	9.4 3-D SURFACE GENERATION

	10 FUTURE WORK
	11 SUMMARY AND CONCLUSIONS
	11.1 SUMMARY
	11.2 CONCLUSIONS

	APPENDIX A: EXTENDED RESULTS FOR RATIONAL POLYNOMIAL APPROXIMATION OF FUNCTIONS
	APPENDIX B: CODE DOCUMENTATION
	REFERENCES

