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ABSTRACT 
 

Computational machines have become an inseparable part of human lives during the last 

three decades. One of the crucial enabling technologies of this technological boom is Artificial 

Intelligence (AI), the field dedicated to simulating human-like behavior in machines. It takes 

many shapes and forms; however, a particular direction – Machine Learning (ML) – was 

incredibly impactful in the era of constant data aggregation. The goal of ML is an automated 

pattern inference and reasoning based solely on the input data. Becoming a household name, 

machine learning completely revolutionized natural sciences, providing aid to the physicists 

working on quantum mechanics, helping astronomers filter noisy data, as well as accelerating 

molecular and cellular discoveries made by chemists and biologists. One of the crucial aspects of 

everyone’s lives affected by ML technology is the medical care. Perhaps most notable in this 

area, precision medicine provides the direct opportunity to improve patients’ quality of life 

directly. 

The field of precision medicine is dedicated to identifying reasons for different treatment 

responses from patients and designing the best-suited diagnostics and intervention strategy for 

each individual. In recent years, the available data pool was expanded by the emergence of high-

throughput ‘omics’ experimental technics, making it intractable for conventional manual analysis 

by a clinician or a biomedical researcher. The omics field emerged in earlier 2000s when next-

generation sequencing (NGS) methods that made studying individual genomes possible first 

emerged. The next big breakthrough happened in 2008, when the second generation of NGS 

came into play, drastically decreasing the costs of conducting experiments. However, genomics 

is not the only field that experienced the revolutionary leap. Other quantitative methods that 
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describe molecular processes taking place in the organism advanced rapidly: epigenomics, 

transcriptomics, proteomics, and metabolomics. Transcriptomics and proteomics are particularly 

interesting when studying diseases as they are providing a snapshot of the organism’s current 

state, allowing us to search for the root cause of a particular ailment. Furthermore, 

transcriptomics provides information on an important regulatory process--alternative splicing 

(AS). AS increases the versatility of the organism’s molecular arsenal and allows to build more 

complex systems using the same number of genes. This feat is achieved via combinatorically 

shuffling selected protein coding parts – exons – from the mRNA molecule prior its 

transformation into a protein. Thus, AS is a crucial intermediate stage between the gene 

expression and protein translation. 

My work focuses on the computational analysis of biological data and encompasses 

structural genomics, transcriptomics, and proteomics. Individual projects range from elucidating 

disease etiology and uncovering molecular mechanisms of actions of the alternative splicing to 

searching for the protein expression-based treatment response biomarkers and studying the 

potential drug targets on the SARS-CoV-2 viral particle surface. Over the course of these studies 

I designed a machine learning model that estimates the AS effect on protein-protein interactions; 

developed a novel quantitative measure that gauges an impact that the alternatively spliced 

isoforms introduce to the biological system; predicted isoform stability using proteogenomic data 

and transfer learning; identified response biomarkers for the Gulf War veterans affected by one 

of the most complex known acquired syndromes for the acupuncture treatment; modeled protein 

complexes of SARS-CoV-2 virus and simulated its entire envelope in solvent using molecular 

dynamics methods.  
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This work brings together two important aspects of modern omics studies – 

transcriptomics and proteomics. It highlights an importance of computational methods 

development for the modern field of precision medicine.  
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Chapter 1. Data-Driven Precision Medicine as a New Paradigm in 
the Healthcare 

1.1 The Emergence of Precision Medicine: History and Basic Challenges 

Computational machines found their way into our daily lives during the last three decades 

and have become ubiquitous. Starting from a Personal Computer (PC) and going into the era of 

wearable devices and mobile gadgets, the role of automatization became more and more 

prominent in daily routines. People constantly use it to engage in remote communications, 

translate foreign language on the fly, get relevant recommendations, and rapidly obtain relevant 

information on any conceivable subject – something that recently you could encounter only in 

science fiction.  

One of the most famous empirical observations in the field of Computer Science is 

Moore's Law. According to it, the number of semiconductors on silicon die doubles every year 

(Fig.1) (1). This simple projection introduced by Gordon Moore (co-founder and chairman of 

Intel Corporation) in 1965 still drives the chip manufacturing industry growth. It is closely tied to 

the exponential increase in clock speed, memory capacity, and related characteristics (2). These 

measures are directly reflected in the computational power available to the scientific community 

and act as hard constraints for the multitude of applications in data science, machine learning, 

and physical simulations. 

However, in recent years certain GPU advances broke away from this projection, 

increasing the rate of operation by the rate of 25 in 5 years. For some special applications, such 

as training deep neural networks, speed up was by a factor of 500 (3). And GPUs are not a 
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unique case of diverging from Moore's Law. There was another monumental advancement in the 

genomics area.  

 

Figure 1.1 Moore's law and historical transistor count in microprocessors. Empirical 
observation from 1965 still holds relevance in modern Computer Science and the microprocessor 
manufacturing industry. 

At the dawn of the 21st century, a novel, highly parallel approach for genome sequencing, 

Next Generation Sequencing (NGS), was introduced. It opened new horizons in studying the 

genetic roots of disease (4). For many years, the cost of genome sequencing steadily followed 

Moore's Law. The exponential decrease in expenses was promising; however, this projection 

predicted prohibitively high prices for obtaining complete genetic information from a given 

individual. Still, it inspired optimism and talks about personalized medicine, which envisioned 

prescribing therapeutic treatments best suited for a specific individual (5-7). Still, the individual 

cost was exceedingly high, and the amount of available data was insufficient to develop detailed 

clinical action items for specific patients. 
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The first decade of the 21st century brought forward astonishing advances in genome 

sequencing technology. In the year 2008, the second generation of NGS technology completely 

brokeMoore'ss Law (4). The expenses were drastically reduced, and the costs of obtaining a 

genome from a specific individual drastically dropped. For example, sequencing the entire 

genome had a cost of $100,000,000 in 2001 and was reduced to roughly $10,000,000 

duringMoore'ss Law-like change in costs. But after the same span of six years, in 2013, the price 

of obtaining a complete genome was around just $8,000 — such a sharp decline in the costs 

allowed to conduct extensive population-wide genomic studies. 

 

 
Figure 1.2 Sequencing cost per raw megabase of DNA. The sharp decline in required resources 

was achieved in 2008, breaking Moore's Law and further accelerating the exponential growth of 
sequencing capabilities. Adapted from (8).  

After a few years of gathering information, a new paradigm emerged – precision 

medicine. In 2011 the National Research Council introduced this term to expand the definition of 
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personalized medicine to subpopulations based on susceptibility to specific diseases or treatment 

responses (9, 10). It was also tightly knitted with a novel view on the taxonomy of human 

disease rooted in a knowledge network and tightly linked to the molecular biology origin and 

detailed mechanism of action (9). 

Precision medicine got the attention on the highest level in 2015 when Barack Obama, in 

the State of the Union speech, outlined a new national initiative with the focus on developing 

genomics methods in diagnostic and incorporating them in a health care setting (11). 

The precision medicine spotlight brought forth a significant amount of institutional 

support. The National Institute of Health (NIH) launched the "All of Us Research Program" 

initiative in 2015 with the goal of sequencing genomes of 1,000,000 individuals and studying 

corresponding health conditions. The emphasis of this program is on advancing treatment, 

prevention, and diagnostics methods for oncology. On top of collecting top-notch scientific 

datasets, this initiative's participatory model focuses on providing access to cancer treatment in 

world-class institutions to all patients. Another oncology-centered initiative – Cancer Moonshot 

– was launched by Joe Biden with the aim to end cancer as we know it and began in 2016 (12). It 

is a data-intensive undertaking with the initial goals of accelerating scientific discovery in 

cancer, fostering collaboration among researchers and institutions, and improving data sharing 

(13).  

Efforts dedicated to enriching genomics databases and understanding the disease basis 

directly from the blueprint of life were central to the progress of precision medicine. However, 

the gap between genotype and phenotype is still considerable; it may not even account for all 

necessary building blocks as environmental factors come into play. Because of this scientific 

community realized the importance of incorporating auxiliary data that either provide insight into 
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the current snapshot of organism functioning or elucidates molecular mechanisms of action. It 

led to the "'omic" boom and multimodal analysis in healthcare – so-called multi-omics. The 

information can come from various sources.  

Among the omics technics, transcriptomics highlights the actual expression pattern of the 

genes and elucidates RNA regulatory processes (14-16). Proteomics is even more direct; it 

provides data on macromolecules that play the role of conduits for the majority of molecular 

functions. However, the range of the products it can detect is limited compared to 

transcriptomics (17-19). Interactomics studies seek to organize information on individual 

proteins into a network with the goal to advance understanding of the molecular mechanisms of 

action (20-22); it produced edgetics (23, 24), a research direction with the goal of bridging the 

gap between genotype and phenotype. Metabolomics keeps track of the products of life activity 

(25-27). Epigenomics elucidates the influence of DNA methylation due to the environmental 

factors on gene expression (28-30). Microbiomics adds data on microorganisms co-inhabiting 

host, their concentration, location, and influence on health conditions (31-33). Functional 

imaging (34-36) elucidates processes happening in the brain, which is immensely helpful for 

studying complex neurodegenerative disorders. Radiology (37-39) explains processes that occur 

on the scale of the entire organ. 

Data gathering is only one of the facets of precision medicine. After obtaining large 

arrays of data, there is a need to conduct a comprehensive analysis. Perhaps, the most widespread 

tool for screening sequencing data is the Genome-Wide Association Studies (GWAS) (40). The 

goal of this population-wide analysis method is to identify genetic risk factors that make 

individuals susceptible to the specific disease and the underlying biological basis for the disease 

development. The omics data have similar analytical approaches, e.g., Epigenome Wide 
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Association Studies that focus on DNA methylation patterns (41). However, they are not a 

carbon copy of GWAS, as each type of omics data requires careful considerations for tissue 

specificity and appropriate cohort selection (42). 

The major paradigm shift happened when high-throughput experimental technologies 

became not just a supplement to the classical hypothesis-driven research but transformed into a 

hypothesis-generating tool (43). With the amount of data constantly snowballing, it was evident 

that precision medicine entered an era of big data. The central concepts of big data are described 

by the fiveV'ss: Value, Volume, Variety, Velocity, and Veracity (44). Value is the most crucial 

concept; it corresponds to the significance of the insights that could be obtained from the data – 

namely, patterns, action items, and potential optimizations. Volume corresponds to the amount of 

available data that may be too huge to store and analyze with traditional database solutions 

efficiently. The Variety describes types of heterogeneous data – structured, semi-structured, and 

unstructured data. Velocity is the speed with which new data are gathered and processed. 

Veracity is the accuracy of the data and corresponding confidence. All these factors – Value, 

Volume, Variety, Velocity, Veracity – call for improved data analysis, visualization, and storage 

approaches.  

The advances in data analysis for precision medicine would be slowed down without 

equally monumental efforts in data analysis. The modern communication mediums allowed for 

creating and coordinating humongous international research groups across multiple continents, 

e.g., a Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium (45). It presented one of 

the most comprehensive and detailed analyses on cancer genomes, which allowed experts on the 

specific biological questions that composed it, to bring out insights in multiple areas – cancer 
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evolution (46), driving non-coding mutations (47), cancer signatures (48), somatic structural 

variations (49), and genomic basis of RNA alterations that take place in affected patients (50). 

Conducting a high-quality data analysis and subsequently integrating massive amounts of 

the molecular data into the clinical decision-making process and informatics application, e.g., 

electronic health records, poses a significant challenge to the pathology laboratories attempting 

to bring precision medicine onboard (51, 52).  

In the last years, the precision medicine field produced impressive results. It encompasses 

multiple technical and regulatory aspects, and the application areas differ drastically. 

Pharmacogenomics data was used to guide blood-thinning drug selection (warfarin or oral 

anticoagulants) and automatic dosage estimation (53, 54). Targeted therapies for cancer 

treatment to modulate aberrant pathways or protein activity to disrupt the sustenance of cancer 

cells emerged. One of the prominent examples is the precise disruption of the oncogenic kinases 

(55). Either with the usage of small molecule drugs, such as imatinib that brought to the table 

complete response for more than 90% of chronic myelogenous leukemia (56) or with 

monoclonal antibodies, as was the case with targeting tyrosine-protein kinase erB-2 (HER2) 

(57). 

One of the advances on the technological frontier of personalized medicine is the 

adoption of lightweight wearable devices for constant monitoring, with is crucial for 

personalizing drug selection and dose parameters for patients undergoing treatment (58). It 

includes using non-intrusive sensors for analyzing tears, sweat, and saliva (59-61); battery-free 

devices that measure the oxygen level in blood and heart rate (62, 63).  
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1.2 Alternative Splicing – Zeroing in on Variations in Building Blocks of Life 

According to the classical postulates of the Central Dogma of molecular biology, the 

molecular components of the living organisms proliferate in the following way: DNA is 

transcribed into an RNA molecule, which is further translated into the amino acid sequence, 

which forms a protein. However, according to the modern understanding, the complete picture of 

the transformations between these molecules includes additional transformations: DNA 

replication (DNA obtained from DNA), RNA replication (RNA obtained from RNA), and 

reverse transcription (DNA obtained from RNA). 

 

Figure 1.3. The central dogma of molecular biology. Main route of expression consists of 
transcription (DNA to RNA) and translation (RNA to amino acid sequence). Additional transformations 
include DNA replication, RNA replication, and reverse transcription. 

 

Among these three types he molecules, proteins carry most of the functional burden. 

These macromolecules serve various purposes: structural support of the cell by forming 

cytoskeleton, passive and active transport of the molecules, conducting signals across CNS, 

replicating DNA, and regulating gene expression. Proteins play a crucial part in digestion, 

hormone production, immune resistance, and tissue growth. They vary in different organisms, 

Central Dogma
DNA

RNA

Protein
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cells, tissue, or time points. These molecules' chemical reactions and movement underlie 

dynamic processes in living organisms. 

However, it is impossible to carry out this wide array of functions based on the individual 

proteins. Interactions between biomolecules are a necessary component to exert their function. 

Among them, protein-protein interactions (PPIs) mediate most cellular processes, resulting in 

distinct phenotypes. The crucial role that PPIs play in human health and disease motivated 

multiple experimental and computational research projects dedicated to the annotation of the 

human interactome. Getting comprehensive information about possible interactions can help us 

elucidate disease etiology by understanding underlying cellular mechanics. However, factoring 

in protein-protein interactions significantly increase the complexity of the studied phenomenon. 

 

Figure 1.4. Examples of protein functions. Gene expression regulation (transcription factor 
attached to the DNA), passive transport (GLUT4 transporter), active transport (kinesin cargo transporter), 
neurotransmitter signaling (dopamine), structural support (microtubules). 

 

Protein Functions
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Whenever we discuss precision medicine, it is difficult to underestimate transcriptomics 

role in elucidating molecular processes. It takes a unique place at the intersection between 

genomics and proteomics. Transcriptomics focuses on studies of mRNA, which is an 

intermediate state between DNA blueprints and functional macromolecules. Besides providing a 

glimpse into the protein landscape present in the organism, RNA molecules also may have a 

significant regulatory role, though this topic is outside of the scope of this work.  

Unlike the studies focused solely on DNA sequences, transcriptomics provides a much 

more dynamic picture, highlighting tissue-specific processes and taking a snapshot of the actual 

state of the organism. It also allows us to get insights into proteome, a collective name for all 

proteins expressed under given conditions. And there is a large discrepancy in the size of the 

proteome and genome. 

With the advancement of modern transcriptomics, scientists have realized that most genes 

in higher eukaryotes can produce more than one product per gene. It makes it possible for the 

organism to increase complexity without significant changes in the size of the genetic code. For 

example, humans and fruit flies have a comparable number of protein-coding genes, but humans 

have more specialized cells that constitute different tissues and form our organs (64). Even 

though the human genome has only about 20,000 distinct protein-coding genes, our organism 

developed some uncanny methods that can drastically increase variation across basic functional 

units that manage to support the growing complexity of the biological system. Over 90% of 

human multi-exon protein-coding genes can transcribe alternatively spliced mRNAs regulatory 

processes such as alternative splicing and post-translational modification, by some estimates, 

create over one million distinct proteoforms. The focus of transcriptomics is on the RNA 
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molecules that open up the ability to study alternative splicing events, which modulates more 

than one hundred thousand distinct transcripts. 

 

Figure 1.5. Alternative splicing regulatory process and its functional impact. Splicing takes 
place after the initial pre-mRNA molecule is transcribed from the DNA. The Spliceosome RNA-protein 
complex is then responsible for the removal of the intronic regions. This process may produce either a 
reference isoform or an alternative one; then, we discuss alternative splicing events occurring. Biological 
factors can regulate this process, e.g., Serine And Arginine Rich Splicing Factor 1 and heterogeneous 
nuclear ribonucleoproteins, an environmental influence that causes DNA methylation, and small 
molecules – alternative splicing modulators. AS events significantly diversify the protein interaction 
network and lead to the combinatorial increase in the number of potential protein-protein interactions. 
They have the potential to dramatically impact protein structure, cutting out parts of the functional 
domains and affecting the folding process. The expression level of the gene products can also be altered 
due to the AS. The cumulative effect of these changes leads to the diversification of protein specialization 
that we observe in different tissues and modifying protein-protein interactions. 

 

Splicing is one of the biological regulatory processes that transform pre-messenger RNA 

molecules obtained via reverse complimenting the original DNA sequence into mature 

messenger RNA, which can then be translated into protein. It removes non-coding non-coding 

subsequences (introns) and joins coding regions (exons).  
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This variation in cell functions is made possible because of proteome diversification. The 

main regulatory mechanisms that allow us to achieve such an increase in complexity are pre-

mRNA alternative splicing and post-translational modification. In this work, we will focus on the 

first one. 

 
Figure 1.6. Growth of gene product diversity due to alternative splicing regulatory process and 
post-translational modifications. Estimated 20,000 protein-coding genes produce more than 100,000 
distinct transcripts via alternative splicing, which are further differentiated by the post-translational 
modification mechanisms, resulting in more than 1,000,000 proteoforms. 
 

Pre-mRNA splicing is a crucial step in mRNA maturation, and alternative splicing due to 

either natural or disease-causing variation in transcriptome is a process by which the same gene 

can result in different gene products through selective inclusions and exclusions of the gene's 

exons and introns (65). It creates different combinations of splice sites, allowing for the 

production of distinct proteins from a single gene. It can be induced by biological regulators, 

such as SRSF1 and heterogeneous nuclear ribonucleoproteins, or environmental factors, such as 

DNA methylation. Alternative splicing gives rise to the combinatorial increase in complexity of 

the gene products and leads to the significant expansion of the PPI network. 
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The primary source of experimental data for high-throughput alternative splicing studies 

is an RNA-Seq, next-generation sequencing technology that quantifies the amount of mRNA 

material present in a biological sample. It fragments input RNA material and converts it to the 

cDNA fragments (reads), which are aligned to the reference genome or assembled into a new one 

using de Bruijn graphs. Increasing the number of reads and reads length helps to make precise 

estimates. Gene expression profiling experiments may require 5-25 million reads. The ability to 

describe alternative splicing events requires much higher depth and, depending on the 

application, may take up to 200 million. Original RNA-Seq technology required a significant 

amount of biological material. In most experiments, all sample material belongs to the specific 

tissue and contains a mixture of cells that constitute this tissue. Recent advances in technology 

led to the increase in resolution level – an ability to quantify expression levels of the individual 

cells. It brings a clear advantage - the ability to study separate cell types. But it comes with 

considerable drawbacks – scarcity of biological material in each experiment increases the noise 

level in data and restricts sequencing depth. The latter comes in the way of conducting 

alternative splicing studies. 

Analysis of mammalian tissues in a study (66) shows high conservation of tissue-specific 

gene expression patterns among mammals evolutionally diverged from <30 million years to 

>300 million years. Alternative splicing patterns are conserved in brain, muscle, heart, and testis 

tissue and vary in other parts of the organisms in different species, as shown in (66). This finding 

suggests that alternative splicing is more frequently affected by changes in species biology. 

Understanding splicing patterns can help pinpoint the differences between lineages and bridge 

the gap between model organisms and humans. 
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While many alternative splicing events naturally occur in different tissues, cells, and 

under different cellular conditions, a growing number of alternatively spliced genes have been 

associated with genetic disorders, including cancer, neurodevelopmental and heart diseases, and 

others (67-69). Alternative splicing has been shown to alter the protein function (70). The range 

of functional variation between the alternatively spliced isoforms may vary drastically: from a 

complete loss of original function due to misfolding and removal by the cell degradation 

mechanism of the corresponding alternatively spliced isoform to a subtle difference in the 

protein functioning, or perhaps the gain of a new function, due to acquiring by the isoform of a 

new exon that encodes a new functional protein domain.  

These findings highlight that though genetic information serves as a blueprint for our 

organism, knowing the sequence information alone is not enough to assess underlying cellular 

processes crucial for its normal functioning accurately. Alternative splicing events can 

significantly influence the resulting phenotype, leading to an increase in drug resistivity or a 

disease occurrence. Acknowledging this fact, multiple companies and institutions develop splice 

modulator drugs for cancer treatment (71-73). 

Ideally, tools available for studying alternative splicing would directly identify the entire 

molecules present in the cells. This approach is called long-read sequencing. Unfortunately, the 

current state of technology has significant limitations, described in the scRNA-seq section, that 

significantly restrict the range of biological questions it can help answer. It impaired widespread 

adoption, and the short-read sequencing approaches that heavily rely on reference sequences 

remain prevalent. Short-read data constitute most RNA-Seq samples in the major databanks, 

such as TCGA (74), GTEx (75), and ICGC (76).  
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Neither reference genetic sequence data nor short reads obtained during experiments 

directly include comprehensive information on the isoform configuration. This makes 

computational prediction of the alternative splicing isoforms the most efficient and widespread 

class of methods that allow researchers to tap into vast biological databanks that house short- and 

medium-length reads RNA-Seq samples. 

1.3 The Role of Machine Learning in Precision Medicine 

As the amount of publicly available biological datasets keeps rapidly increasing with the 

advances in sequencing technologies, medical imaging, and screening assays, structural 

information remains the most comprehensive description of proteins and other biological 

elements, as it exposes interaction interfaces, molecule shape, and surface area.  

The need to analyze the vast arrays of sequenced genomics data that constantly keeps 

growing leads to the tighter coupling between healthcare and such computational fields as big 

data and Artificial Intelligence (AI) (77). 

The AI field combines various computational methods that have partial attributes of 

human reasoning or the ability to mimic human behavior – like solving problems on incomplete 

data, automating the inference process, and optimizing giving functions. Its history comes back 

to the middle of 20th century, along with the emergence of the first computers. The hallmarks of 

that period are the formulation of the Turing Test in 1950 (78), the very first checkers program in 

1952 (79) and the perceptron model in 1957, which laid the foundation for a large number of 

modern machine learning algorithms (80). In 60s, AI applications found their way to the 

assembly lines of General Motors in the form of robotic arms (81). At the time, there were two 

main contesting points of view – a top-down and bottom-up approach (82). The former was 
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dedicated to taking high-level functions and adopting them to the problem; the latter attempted to 

reconstruct intellectual faculties by imitating neural activity. 70s brought forward the initial 

architectures of multilayer neural networks and the development of backpropagation for weight 

updates (83), along with the development of the connectionism theory.  

After initial expectations for the AI capabilities were dampened due to the complexity of 

the undertaking, the field entered a "Winter of A" state for a prolonged time, with limited 

advances (84). In 90s and earlier 2000s we see the development of statistical learning theory (85-

88) and feature-based machine learning algorithms (89-91). These methods generally require an 

additional step – feature engineering – which requires researchers to come up with the 

information encoding strategies for the complex input data, e.g., histograms of oriented gradients 

for images and video classification, Fourier spectrum for audio recognition, and a bag of words 

for the Natural Language Processing (NLP) applications. Neural networks were developing in 

parallel and were dealing with unique computational challenges, e.g., vanishing gradient (92). 

This problem was especially noticeable with the increase of hidden layers in the architecture. 

After subsequent backpropagation steps, weight changes are reduced, and the time necessary for 

the training phase becomes prohibitively long. However, in 2012 a spectacular breakthrough 

happened with the creation of the AlexNet model with the ingenious usage of GPU hardware 

(93). 

In recent years the term AI became almost synonymous with Machine Learning, a 

subclass of AI algorithms with the goal of the automatic inference of patterns and correlations 

from data arrays. 

Big data availability and AI's ability to analyze patterns open doors to the incorporation 

of essential healthcare information that exists outside of the healthcare system (94). Lifestyle, 
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nutrition, exercise, and social activity can be integrated along with the high-dimensional 

molecular data and clinical information. There are multiple modalities that could be efficiently 

exploited with the usage of AI. 

Current advanced methods, such as ChIP-seq (95, 96), ATAC-seq (97), and Hi-C (98), 

capture chromatin conformation, providing insights on 3D positioning and interactions, which is 

indispensable for epigenetics studies. However, it is not precise enough to obtain a 

comprehensive molecular structure. Therefore, proteins remain the primary targets in the 

structural biology field, as they are the most stable class of gene products, and in this work, I 

would focus my attention precisely on them.  

Structural information can be used to infer the functional role and significance of the 

protein products, assess them as a drug target via small molecule docking and investigate their 

behavior in physically plausible settings using molecular dynamics simulation. 

One of the most challenging problems of structural bioinformatics is 3D structure 

prediction from the sequence information. Here, the difficulty lies primarily in the complexity of 

interactions between amino acids residues and in the non-trivial way in which molecule is 

assembled. Besides physical forces that originate from the molecule itself, molecular scaffolds 

(99) introduce further changes, and the environment plays a certain role. In order to facilitate 

progress in this area, an annual competition – a critical assessment of methods of protein 

structure prediction (CASP) (100-102) – is held; and recent deep-learning based models 

demonstrated one of the best results ever in recent years. 

However, informative, structural information characterizes distinct molecules and does 

not provide ready-made recipes for studying complex processes. Molecular dynamics simulation 

is an incredibly computationally expensive endeavor, and the current capacities of 
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supercomputers are not even close to enabling whole-cell simulations, not to mention that even 

microsecond-long runs of such systems may not reveal helpful information pertaining to the 

disease phenotype. 

To bridge this gap, the biological field embraces a system approach that aims to uncover 

underlying regulatory mechanisms of the cells (in particular) and the entire organism (in 

general). We are gaining more evidence indicating that even though certain phenotypical 

outcomes (e.g., mendelian disorders) are governed by a singular gene, in the general case, this 

process is far more complex. It brings together distinct effectors that exhibit influence on 

multiple other elements: genes, RNA products, proteins, metabolic compounds, and microbiome. 

Operating across even a single modality and inferring mutual influence is a challenging task due 

to the number of regulatory elements. 

To get traction from complex interdependent data, scientists developed multiple network-

based models. This approach demonstrated viability across multiple applications such as disease 

module identification, gene regulatory network (GRN) inference, comorbidities detection (103), 

and drug repurposing (104). It allowed researchers to establish causal links between multiple 

regulatory elements.  

However, due to the highly heterogeneous nature and high dimensionality of biological 

data, it is challenging to incorporate relevant information into knowledge-based models, so 

researchers resort to either the statistical approaches (105, 106) to drastically reduce number of 

variables of interest or more complex manifold learning methods that allows combining of 

individual values into meaningful joint representation which enhances machine learning 

methods’ capability to detect relevant patterns. 
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1.4 Conclusions 

Precision medicine aims to identify factors that contribute to different treatments 

outcomes and design an intervention strategy best suited for each population group. To achieve 

this goal, it leverages a wide array of techniques that are collectively known as "omic." While 

genomics describes a "blueprint of life" information encoded in DNA, the rest of the omics 

methods (transcriptomics, metabolomics, proteomics, epigenetics) provide information on the 

dynamic landscape of molecular activity taking place in the organism at the given moment. It 

allows to get insights into the fundamental molecular basis of the disease and not merely 

correlate ailments with the mutation presence. 

An important role in data analysis play machine learning methods. Whether we are 

talking about clustering cell types, identifying relationships between expressed genes and 

phenotypical characteristics, or assessing pharmacological properties of novel drugs, data 

dimensionality is a major factor. No amount of manual analysis by biologists and technicians can 

reliably extract vital information from the biological samples. In this setting, the ability of 

machine learning methods to extract patterns automatically is a boon. However, outsourcing the 

most complex part of the analysis to the machines comes with caveats. Biological data are 

exceedingly complex and often intractable from the human perspective. This creates additional 

difficulty in the model validation step. Another drawback from the ML point of view is the small 

number of training samples that come from the costly experiments, along with the high degree of 

technical variation. 

Fortunately, most of the difficulties can be addressed either by advancing computational 

methods or leveraging biological expertise. This makes precision medicine an extensively 
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interdisciplinary field that provides fertile ground for the collaboration of scientists with diverse 

backgrounds. 
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Chapter 2. Deep Learning Methods as the Most Recent 
Advancements of Data-Driven Approaches  
 

2.1 Deep Learning Methods: History and Development  

Deep learning (DL) is the recent rebranding of multi-layer perceptrons that exhibit 

powerful learning capacities after advances in hardware and the machine learning field managed 

to resolve the vanishing gradient problem (92) and enabled construction of the large-scale 

models, such as AlexNet (107), BERT (108), GPT3 (109). The main advantage of the deep 

learning methods is their ability to learn compact representation relevant to the problem from the 

raw data (110). This puts DL methods into the category of representation learning algorithms, 

with the data point representation being derived in several hierarchical levels (111).  

As the construction of a compact representation of the raw data is the key feature, 

advanced unsupervised or semi-supervised learning strategies such as self-supervised learning 

(112) hold great potential for distilling relevant physical and spatial properties of the structural 

data or underlying relationships of reconstructed networks into reusable and shareable libraries. 

This would address the problem of technical base accumulation, as the current situation in the 

computational biology field mandates researchers to re-implement the training stage for the 

majority of applications. There are already steps, like an autoencoder(113, 114)-based 

TorchDrug (115). 

Another significant deep learning advancement is transformer-based network architecture 

(116). Originally incepted for machine translation tasks, this type of neural networks excels in 

sensing even minute changes in sequence information by focusing on the context. The model 

trained via this approach has a high potential for being reused via transfer learning, serving as a 
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base for multiple specialized tools, similar to the BERT model that gave rise to Alberto (117),  

ALBERT (118), BERTAC (119), and BioBERT (120). The latter one is used for biomedical text 

mining. Derived sequence representation can be used as the auxiliary information for both 

structural and network biological applications. 

Deep graph neural networks (121) are able to learn from the global graph topology, 

which makes them extremely suitable for developing gene regulatory networks and similar 

models across multiple omics modalities. Such models can be applied to disease diagnostics or 

drug development problems (122).  

2.2 The Architecture of the Deep Learning Networks  

2.2.1 Convolutional Neural Networks (CNN) 

Convolutional neural networks are inspired by the neuron composition in the human 

visual cortex (123) and use consecutive filtering to uncover local correlations. When applied to 

the image recognition problem, this class of neural networks indeed learns representations that 

closely correspond to the image primitives, such as corners, straight lines, and circles (124). 

CNN architecture consists of subsequent convolutional and subsampling (pooling) layers. 

Unlike in traditional neural network architecture, neurons in convolutional nets are connected 

only to the small number of neurons in the next layer and do not form fully connected structures. 

In image-based problems it corresponds to the local receptive field and is defined by convolution 

size. This feature reduces the chances of overfitting and training time. 

Sub-sampling (pooling) layers further reduce the size of the network by applying local 

averaging or maximum filters across neighboring neurons. 

The cost function for CNNs can be defined as the following:     
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𝐽(𝑊, 𝑏; 𝑥, 𝑦) =
1
2
||ℎ!(𝑥) − 𝑦	||",	 

Figure 2.1. Convolutional Neural Network architecture. It consists of the interchanging convolutional 
and subsampling layers. Convolutional layers serve the purpose of combining input information with the 
goal of extracting features. In the general case, it has trainable parameters. The subsampling layer serves a 
single purpose – reducing the dimensionality of the previous layer outputs. Based on (125). 

 

where 𝑥 is the data point, 𝑦 is the corresponding label, 𝑊 is the network's weight matrix, 𝑏 is the 

intercept term, and ℎ! is the transformation applied by the neural network. The error term 𝛿# of 

the layer 𝑙 is denoted as 

𝛿# = ((𝑊#)$𝛿#%&)𝑓'(𝑧#), 

where 𝑓' is the derivative of the activation function. Gradients can be computed using the 

following formula: 

∇!!𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿#%&(𝑎#%&)$ 

∇(!𝐽(𝑊, 𝑏; 𝑥, 𝑦) = 𝛿#%& 

with the term 𝑎# corresponding to the input of the 𝑙-th layer.  

Error of sub-sampling layer is defined as 

𝛿)# = 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒<(𝑊)
#)$𝛿)#%&	=𝑓'(𝑧#)), 
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where 𝑘 corresponds to the layer-specific filter number. Convolution between input of the 𝑖-th 

layer with the respect to the 𝑘-th filter,  𝑎#* ∗ 𝛿#%&), contributes to the calculations of the pooling 

layer's gradient in the following way: 

∇!!𝐽(𝑊, 𝑏; 𝑥, 𝑦) =A𝑎#* ∗ 𝑟𝑜𝑡90(𝛿#%&) , 2)
+

*,&

 

∇(!𝐽(𝑊, 𝑏; 𝑥, 𝑦) =A(𝛿#%&))-,(
-,(

 

The training phase constitutes a standard backpropagation algorithm: after obtaining 

predictions 𝑦G from the forward run, find the error term for the output layer and consequently 

update previous layer's weights by applying a gradient descent algorithm based on previously 

calculated gradients. 

Residual Neural Networks (ResNet) 

ResNets are a special case of DNNs that introduces a weight aggregation strategy that 

combines the output of the current layer with the output generated by one of the previous layers, 

or with the original data. The updated inputs are calculated as 

ℎ(𝑥) = 𝐹(𝑥) + 𝑥 

The training phase remains primarily unchanged; gradients for backpropagation are 

calculated solely based on the latest layer error terms, while the layer inputs for the forward run 

are calculated as ℎ(𝑥). 

By propagating residual values from the previous layer, ResNets mitigate a vanishing 

gradient problem, allowing for the construction of multilayer system and making a design of 

extremely deep networks possible (126). 
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Figure 2.2. Residual neural network architecture. Skipping subsequent layers is a strategy that 
aids in countering the vanishing gradient problem. Backpropagation in such a network allows giving 
feedback to the previous part of the neural network without diminishing gradient values. Based on (127). 

 

2.2.2 Long-Short Term Memory (LSTM) 

LSTM is the subtype of neural network that is useful for processing sequential data. 

Unlike regular feed-forward network types, LSTM can retain knowledge distilled from the 

previous runs (128). Instead of discarding this information or using a fixed storage size, it learns 

for how long it should retain context depending on the previous inputs.  

The key parts of the LSTM cell are memory cell 𝐶, forget gate, and output gate. A signal 

from the input cell is being controlled by these three components. Let 𝑥 be an input vector, ℎ - an 

output value, and 𝑡 – the time stamp.   

Gate values from Fig.3.3 are denoted as 𝑓/, 𝑖/, 𝑜/ and correspond to the forget gate, input 

gate, and output gate. They can be obtained by following the next equations: 
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𝑓/ = 𝜎<𝑊0𝑥/ +𝑤0ℎ/1& + 𝑏0= 

𝑖/ = 𝜎(𝑊*𝑥/ +𝑤*ℎ/1& + 𝑏*) 

𝑜/ = 𝜎(𝑊2𝑥/ +𝑤2ℎ/1& + 𝑏2) 

𝑐/ = 𝑓/⨂𝑐/1& + 𝑖/⨂𝜎(𝑊3𝑥/ +𝑤3ℎ/1& + 𝑏3) 

ℎ/ = 𝑜/⨂𝜎4(𝑐/) 

where   𝑊,𝑤, 𝑏 correspond to the weights of the input, recurrent output, and intercept. ⨂	 is the 

elementwise multiplication. 

 

Figure 2.3. Long-short term memory (LSTM) block with memory gates. 𝜎 corresponds to the 
sigmoid function, 𝑡𝑎𝑛ℎ - to the hyperbolic tangent, operator + depicts summation, operator × represents 
multiplication. Based on (128). 

 



 27 

2.2.3 Generative Adversarial Networks (GAN) 

GANs adversarial modeling works by learning underlying data distribution from data 

samples. This method conducts minimax game 𝑽(𝑫, 𝑮) between two players with the competing 

objectives – a discriminator 𝑫(𝒙; 𝜽𝒅) that classifies samples 𝒙 into either ground truth or 

synthetic category and a generator 𝑮(𝒙; 𝜽𝒅) with the objective of decreasing discriminator's 

performance: 

𝐦𝐢𝐧
𝑮

𝐦𝐚𝐱
𝑫

𝑽(𝑫, 𝑮) = 𝔼𝒙~𝒑𝒅𝒂𝒕𝒂(𝒙)[𝐥𝐨𝐠𝑫(𝒙)] + 𝔼𝒛~𝒑𝒛(𝒛) _𝐥𝐨𝐠 `𝟏 − 𝑫<𝑮(𝒛)=cd 

Discriminator 𝑫 is trained to maximize the probability of assigning a correct label to the 

data point, while generator 𝑮 is trained to minimize it.  

 

 

Figure 2.4. Generative adversarial network (GAN) architecture. Two major components of 
GANs are a discriminator network 𝑫(x) and a generator network 𝑮(𝒛). The discriminator learns to 
distinguish real data from the generator network outputs and optimizes this task. The generator network 
estimates a prior distribution of the real data and is capable of sampling surrogate data from it. Its goal in 
the adversarial setting is to counter the discriminator network by making sampled data points 
indistinguishable from those in a real training set. Based on (129). 
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One discriminator training epoch is conducted by feeding all ground truth samples and 

generated samples in 𝒎  mini-batches, 𝒙𝒊 and 𝒛𝒊 correspondingly. During each run subsequent 

discriminator is updated by ascending its stochastic gradient: 

𝛁𝜽𝒅
𝟏
𝒎A_𝐥𝐨𝐠𝑫(𝒙𝒊) + 𝐥𝐨𝐠 g𝟏 − 𝑫`𝑮(𝒛𝒊)chd

𝒎

𝒊,𝟏

 

After each 𝒌 epochs of the discriminator training generator is updated by descending its 

stochastic gradient: 

𝛁𝜽𝒈
𝟏
𝒎A_𝐥𝐨𝐠 g𝟏 − 𝑫`𝑮(𝒛𝒊)chd

𝒎

𝒊,𝟏

 

Successfully trained GANs are able to generate life-like data examples, though this 

family of algorithms suffers from non-convergence and vanishing gradient problem in a case 

when discriminator 𝑫 becomes too successful (130). 

2.2.4 Autoencoders 

Autoencoders belong to the unsupervised learning class of the algorithms (113, 131-133). 

They leverage neural networks' ability to work as the universal approximator (134). Their 

training phase does not differ from feed-forward neural networks, but their unique point lies in 

the layers' architecture. 

The simplest autoencoder consists of three layers: input layer, hidden layer, and output 

layer. What differentiates it from the conventional neural network is the hidden layer size, which 

is much smaller in comparison to the other layers. Its ground truth values are the same as the 
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input values, and the loss function ℒ is defined as the discrepancy between predicted values 𝑥G 

and the original data points 𝑥:  

ℒ(𝑥, 𝑥G) = ||𝑥 − 𝑥G	||" 

The small size of the hidden layer eliminates the possibility of learning a trivial mapping 

𝑥G → 𝑥. This forces the neural network to learn a compact encoding for the input samples based 

on patterns present in the data. 

One of the popular modifications to the base algorithm, stacked autoencoders, introduce 

additional hidden layers that increase the number of transformations performed for the encoding 

and decoding representation from the smallest hidden layer ℎ. 
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Figure 2.5. The architecture of the autoencoder with a single hidden layer. The crucial point 
of this neural network is that hidden layer has a smaller dimensionality than an input layer, making trivial 
one-to-one mapping between inputs and outputs impossible. It forces the network to compress 
information and learn patterns present in the studied dataset. Based on (128). 
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2.2.5 Transformers 

The seminal paper named 'Attention is all you need' introduced a novel approach to 

sequence-to-sequence learning (135). It relies on the parallel run on the input and output, also 

known as sequence to sequence (Seq2Seq) learning. The output sequence is shifted to the right 

by one timestamp in order to avoid learning of the trivial mapping. 

The core part of this algorithm is the attention mechanism that maps key-value input to 

the output sequence according to the following equation: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmaxx
𝑄𝐾$

√𝑑
{𝑉, 

where Q is the set of queries, 𝐾 correspond to keys and  𝑉 to values. 𝑑 is the number of 

dimensions. 

 

Figure 2.6. Transformer architecture. In a key part of "encoder-decoder attention" layers, the 
queries originate from the previous decoder, and the encoder outputs memorized 𝐾, 𝑉. The queries, keys, 
and values concepts are inspired by the information retrieval problem; in the transformers architecture, 
𝐾,𝑄, and 𝑉 are incorporated into the scaled dot product, which is the basic building block of this type of 
neural network. In the context of global attention, keys serve as a static knowledge field when queries 
help to determine the most relevant items from it. Then corresponding values associated with keys are 
scaled in proportion to the estimated relevance. Adapted from (116). 
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The key feature of this architecture allows DNN to learn the relevant context for each 

input position. Such an approach reduces the complexity of the learning problem and caters to 

the individual needs of the corresponding language pairs.  

2.2.6 Deep Graph Neural Networks (DGNN) 

Deep graph neural networks are usually implemented as CNNs that consist of two parts: 

graph convolution layers and 1-D convolution layers. This family of algorithms propagates 

information on network nodes based (121) 

The most crucial part of the algorithm is the implementation of the graph convolutional 

layer. Depending on the input data format, convolutions can be described via various means. In 

(121) proposed approach is the usage of the Weisfeiler-Lehman subtree kernel (136), which is 

widely used for graph isomorphism checking: 

𝑘(𝐺, 𝐺') =AA A 𝛿
B'∈D'

(𝑐B/ , 𝑐B'/ )
B∈D

4

/,E

 

where 𝑐B/  is the color of vertex 𝑣 during 𝑡-th iteration, ℎ is the number of iterations, and 𝛿 is the 

delta function. 

Alternative approaches use a physics-based Message Passing algorithm that estimates the 

minimal energy of the system (137). 
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Figure 2.7. The architecture of deep Graph Neural Networks (GNN). Graph convolutional 
layer takes a central part in architecture and often makes use of graph kernels to extract features. Sort 
pooling layer combines information on values associated with each node from distinct convolution layers. 
1D-convolution kernel slides along sorted vertices of the graph. The dense layer is a final step used for 
classification. Based on (121). 

The advantage of deep GNNs is the ability to incorporate topological information into the 

learning model. However, the selection of a convolutional filter is a non-trivial question and 

largely depends on the available input data and specific task. 

2.2.7 Self-supervised learning 

Self-supervised learning approaches gained traction with the increase of available 

unlabeled data. In addition to extracting information directly from data points distribution, this 

family of algorithms is capable of leveraging advantages provided by the contrastive 

(supervised) learning approaches via adopting self-defined pseudolabels and even performing 

multitask learning. 

The first step in a self-supervised pipeline is related to data augmentation (138-140). The 

common approaches used in deep learning include dropout regularization (107), batch 

normalization (141), transfer learning (142, 143), one-shot and zero-shot learning (144). 

Second step involves an encoder used to obtain a compact representation of the input 

data. The choice of architecture is mostly depending on input data structure. For the image 

classification problem CNNs are traditionally used. 
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Pretext task generation is an important step that assigns pseudolabels to data according to 

the predefined tasks. For the image classification, pretext tasks often involve color 

transformation, geometric transformation, scrambling, or future prediction (in the case of 

sequential information such as video, audio, or text) (130). 

 

 

Figure 2.8. Contrastive learning pipeline for the self-supervised algorithm. It involves the 
creation of additional training samples based on the known but unlabeled data points. The encoder creates 
compact embeddings for each of the images. The pretext task is used to assign pseudolabels for each of 
the feature vectors, and then the contrastive learning step is responsible for the pattern detection. Adapted 
from (130). 

Contrastive learning, a common subroutine in modern self-supervised algorithms, acts 

upon pseudolabels defined during the pretext task step. The goal of this step is to transform 

feature representation in such a way that similar samples stay close to each other in the data 

space while the distance between distinct samples increases (145, 146).  
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Figure 2.9. Unsupervised contrastive learning. This metric learning approach changes 
distances between data points in a way that images with the same pseudolabel based on the pretext task 
are minimized and distance between images with different pseudolabels is maximized. In addition to the 
described features of unsupervised contrastive learning, supervised variation makes it possible to combine 
multiple original images into a single category, e.g., cats, dogs, etc. Adapted from (130). 

2.2.8 Deep learning in structural and network biology 

Deep learning methods demonstrated a remarkable ability to derive spatial invariants, 

such as SO(3) rotation group (147) from the image and video data. Therefore, a natural area of 

application of the neural network methods in the area is related to the special information. 

Indeed, the recently published AlphaFold model (148, 149) for the sequence-based protein 

structure prediction took the lead at CASP13 competition. Such results signified an astonishing 

leap in an ab-initio protein modeling problem (150); however, researchers caution from 

declaring the problem of protein folding solved(151).  
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TorchDrug (152) is a powerful framework for drug discovery that includes molecular 

datasets, knowledge graphs and integrates them with a plethora of deep graph learning networks 

such as GraphAF (153), ChebNet (154), InfoGraph (155).  

A pre-trained model for the regulatory genomic data, GeneBERT (156), incorporates 

omics data across multiple modalities – sequence information, regulatory region information, 

and ATAC-seq datasets. This model is based on transformers deep learning architecture and 

solves a wide range of problems, including those relevant to structural biology – transcription 

factor binding sites classification, disease risk estimation, and RNA splicing site prediction. 

2.3 Methods to mitigate inherent biological bias 

Machine Learning (ML) methods strive to extract information and complex relationships 

from the datasets to solve a multitude of real-world problems: disease diagnostics, fraud 

detection, machine translation, and image recognition. During the last decade, they produced 

with the improvement in hardware technology and increase in computational power, we 

witnessed an advent of ML models in various scientific fields such as physics (157, 158), 

chemistry (159), biology (160), and finances (161). Models obtained via data-driven approaches 

are becoming ubiquitous commodities accessible with a touch on your smartphone.  

Such success is attributed to the various aspects of ML models: the ability to quickly 

identify patterns, even in high-dimensional datasets, little need for human intervention (162), 

capacity to approximate solutions to NP-complete problems (163). However, many models are 

unable to achieve a stellar performance reported by the creators after the transfer from the testing 

environment into the real world (164, 165). The main reason behind this is twofold. The first 

reason, ML models are based on the assumptions about data (166) that shape the algorithm and 
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influence outcomes. This fact does not pose a problem on its own, as they remain constant during 

the training and exploitation stage, and the assumptions are necessary to make predictions. The 

second reason, the structure of the real-world data is often different from that of one of the 

training sets. Because of this ML model may learn biases along with the relevant patterns and 

miss relationships it did not observe during the training stage. Recent results also suggest that 

ML models trained on high-dimensional datasets (more than 100 features) work almost 

exclusively in extrapolation mode, i.e., most of the real-world data points lie outside of the 

convex hull defined by the training set (167). This fact highlights the importance of learning 

underlying rules that govern relationships between samples. 

Semi-Supervised Learning (SSL) methods attempt to mitigate this issue by extending the 

model to the unlabeled samples (168-170). However, traditional SSL approaches rely on the 

assumption that both labeled and unlabeled samples are drawn from the same distribution, which 

is not always the case.  

As the machine learning methods strive is to increase generalization, accounting for 

distribution mismatch in data it would be applied to is another challenge we have to address. In 

machine learning, this problem is known as domain adaptation (115, 171-173).  

2.3.1 Transfer learning for biological applications 

Transfer learning methods are extremely useful in settings with limited information when 

new labeled data to obtain, as they address generalization improvement based on underlying data 

structure or previously trained models.  

One of the rapidly developing biological fields – RNA-Seq analysis – is heavily 

dependent on data modeling stages. These algorithms operate in extremely high dimensions and 
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have to make a distinction between technical noise and biological variability. Transfer learning 

algorithms applied to this problem ensure higher cell type sensitivity for the clustering (174, 175) 

and classification (176) applications, data imputation (177), denoising (178), and batch effect 

correction (179).   

Transfer learning could be used to guide the ML algorithm to learn joint tasks across 

different modalities, such as electroencephalographic (EEG) and electromyographic (EMG) data 

(180), scRNA-Seq, and scATAC-Seq (181). 

Disease diagnosis is a classical ML application in the biological domain. Recently a 

number of algorithms have been introduced that benefit from a large amount of available medical 

images for diagnostic applications, including cancer, cardiovascular diseases, and neurological 

disorders (143, 182-186). Other clinical advances include survival prediction (187) and drug 

sensitivity estimation (188). 

There were attempts to estimate RNA expression levels directly from the biological 

material slice images (189), potentially curtailing the run of the expensive and time-consuming 

experiments. Translational studies can significantly benefit from the transfer learning by using 

identifying relevant regulatory mechanisms between model organisms and humans (190). 

Transfer learning approach for alternative splicing functional effects prediction 

Alternative splicing is an RNA regulatory process that is responsible for the emergence 

of multiple distinct gene products from the same gene. It can introduce significant structural 

modifications due to the inclusion or exclusion of exonic and intronic regions (191), induce 

functional changes by perturbing protein-protein interaction networks (192) and diversification 

of gene interaction capabilities (64). 
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Currently, the amount of experimentally validated information on alternatively spliced 

isoforms interaction is exceptionally scarce, numbering in under 2,500 interactions (64). Human 

Genome Project (193) estimates the number of unique genes encoded in human DNA as 

~20,000-25,000. Even if we exclude non-coding genes, the number of potential interactions will 

reach hundreds of millions. On average, each gene has seven distinct isoforms, bringing the total 

number of transcripts up to 150,000 (194), further increasing potential interactions number by 

two orders of magnitude. For instance, one of the latest comprehensive PPI databases, Human 

Reference Interactome Map, which combines experimentally validated interactions with 

literature curated references, has information on ~64,000 interactions from ~9,000 proteins. 

(195). Based on these estimates, comprehensive experimental coverage for isoforms interaction 

would not be feasible for an extended time period. Coupled with the fact that PPIs are highly 

relevant for the studies of cancer (196, 197), neurological disorders (198-200) and cellular 

regulation mechanisms (198, 201), it emphasizes the importance of having a reliable 

computational method for estimating the functional impact of alternatively spliced isoforms on 

PPI network. 

2.3.2 Domain Adaptation Problem 

Domain Adaptation is a subtype of transfer learning method used when classification or 

regression problem remains unchanged, but data come from multiple generative models (Fig. 5). 

This situation often arises in a real-world problem. For example, image recognition tasks can be 

affected by the hardware used to take photos, and this approach can be used to fine-tune the ML 

model for a specific smartphone model. 
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Data granularity classification 

Depending on the hypothesis about the underlying structure of data, we can classify 

domain adaptation methods into four categories, sorted in the order of complexity increase: 1) 

Single source, 2) Multiple sources, 3) Multiple sources multiple targets, 4) Unsupervised 

adaptation. Splitting data into a larger number of domains increases the model's ability to adapt; 

however, it also increases the required amount of data, as from each domain should be obtained a 

number of samples sufficient to meaningfully describe it. 

In this work, the problem of the single source domain adaptation (DA) is defined as a 

construction of a machine learning model based on data coming from source domain 𝑆 that is 

intended for making predictions on target domain 𝑇, and their distributions are related but not 

identical (202): 𝑃F(𝑋, 𝑌) ≠ 𝑃$(𝑋, 𝑌).  

The problem of the multiple source domain adaptation consists of building a single 

machine learning model based on training data coming from 𝑀 source domains 𝑆&, 𝑆", … , 𝑆G that 

is intended to make predictions on target domain 𝑇, and their distributions are related but not 

identical: 𝑃F((𝑋, 𝑌) ≠ 𝑃F)(𝑋, 𝑌) ≠ ⋯ ≠ 𝑃F*(𝑋, 𝑌) ≠ 𝑃$(𝑋, 𝑌). (203) 

The problem of the multiple sources multiple target domain adaptations consists of 

building a single machine learning model based on training data coming from 𝑴 source domains 

𝑺𝟏, 𝑺𝟐, … , 𝑺𝑴 that is intended to make predictions on 𝑲 target domains 𝑻𝟏, 𝑻𝟐, … , 𝑻𝑲 and their 

distributions are related but not identical: 𝑷𝑺𝟏(𝑿, 𝒀) ≠ 𝑷𝑺𝟐(𝑿, 𝒀) ≠ ⋯ ≠ 𝑷𝑺𝑻(𝑿, 𝒀) ≠

𝑷𝑻𝟏(𝑿, 𝒀) ≠ 𝑷𝑻𝟐(𝑿, 𝒀) ≠ ⋯	≠ 𝑷𝑻𝑲(𝑿, 𝒀). 
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Figure 2.10. Transfer learning methods classification. Domain Adaptation is a subtype of 
transductive transfer learning that aims to generalize learned task to the data from different domains. 
Adapted from (204). 

The common assumption in the domain adaptation problem is the covariance shift which 

stipulates that only distributions of the input features differ in the two domains: 𝑃F(𝑋, 𝑌) =

𝑃$(𝑌|𝑋) but 𝑃F(𝑋) = 𝑃$(𝑋)(202). Violating it results in the particularly challenging variant of 

the DA problem, unsupervised domain adaptation, which arises when there are no available 

labeled data points from the target domain (205). 

Learning approach classification 

Domain adaptation methods can be further systemized based on the learning approach 

(Fig.6). The traditional approach to this problem can be separated into data-centric, model-

centric, and hybrid methods. Data-centric methods aim to determine the most critical data points 

for different domains and weigh them accordingly (206, 207), rely on features pseudo-labeling 

(208, 209), or pre-training methods (210).  
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Figure 2.11. Domain adaptation methods categorization based to the learning approach. 
Two main categories differ based on whether they are focused on amending the model or on adopting the 
data. Hybrid methods include various combinations of approaches from the aforementioned categories. 
Adapted from (211). 

Model-centric methods either assume the existence of the underlying feature manifold 

shared across domains and focus on feature transformation (212-214), or incorporate knowledge 

about domains into inference procedure, e.g., by applying regularization terms in order to select 

feature subsets that are robust across different domains (215).  

Strong sides of the data-centric approaches 1) are relative independence from the 

underlying ML algorithm, which allows reusing preprocessed data, 2) and predictable training 

time, as once data was preprocessed, no additional modifications are made to the base algorithm, 

3) feature and model consistency, learned relationships do not have to be further modified, which 

can improve model interpretability. These advantages made data-centric approaches de-facto 

standard in the computational linguistics field (108, 216). However, data-centric methods require 

a significant amount of labeled training samples, which restricts their area of applicability. 

Feature-centric methods depend on finding common descriptions for the samples from 

different domains, which is also referred to as feature alignment. The straightforward approach 

to this problem would dictate that we can find a subset of representative features that behave 
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similarly across domains, but such an approach results in tremendous information loss. Due to 

this limitation, feature alignment algorithms were developed. 

Feature alignment 

Feature alignment class of methods rely solely on the features data structure to define a 

transformation that keeps  

Structural correspondence learning (217) defines feature alignment as an algorithm that 

determines pivot features – a robust subset of features relevant to ML problems that behave 

similarly across different domains. For each feature in a source space, a one-class anomaly 

detection model is created and then features are filtered based on classification results. Those 

results were improved by the Spectral Feature Alignment algorithm (218). This approach first 

defines the distance between features as mutual information  

𝑰(𝑿𝒊; 𝑫) = A A 𝒑(𝒙, 𝒅) 𝐥𝐨𝐠𝟐 g
𝒑(𝒙, 𝒅)
𝒑(𝒙)𝒑(𝒅)h

𝒙∈𝑿𝒊,𝒙N𝟎𝒅∈𝑫

, 

where 𝑫 is domain variable, 𝑿𝒊 is a single feature. The higher the mutual information between 

the feature and domain label, the more domain-specific it is. Based on the mutual information 

score, domain-independent features are identified. After this, a bipartite graph is constructed 

between the two obtained feature subsets where domain-specific and domain-independent 

features always share an edge. Then spectral clustering algorithm is applied to this graph. This 

subroutine constructs the Laplacian matrix: 

𝑳 = 𝑫1𝟏/𝟐𝑨𝑫𝟏/𝟐, 

where 𝑨 is the weighted adjacency matrix of the bipartite graph, 𝑫 is the diagonal matrix with 

𝑫𝒊𝒊 = ∑ 𝑨𝒋𝒋𝒋 . First 𝒌 largest eigenvectors of 𝑳 form the matrix 𝑼, which defines transformation 
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over the features that adjusts domain-specific predictors based on the domain-independent ones 

that are present in the same cluster.  

 

Figure 2.12. Spectral clustering-based feature transformation. (A). The bipartite graph 
describes the correspondence between domain-specific and domain-independent features. (B). Example of 
seven identified clusters in a graph based on spectral clustering. Based on (218)  

 

Another notable subclass of feature alignment methods is subspace alignment. Sampling 

geodesic flow algorithm (219) and its improved version that uses kernel for improving 

computational efficiency (220) infer high-dimensional manifold based on the geodesical path 

between source and target domains. These algorithms map domains into lower-dimensional 

Grassmann manifold (221) as two distinct points (one per domain) using PCA (222). Then it 

calculates the geodesical path between them and samples a set of points along with it that 

correspond to the subspaces. Original features from the source domain are subsequently 

projected into selected subspaces, and the results are concatenated into a single high-dimensional 

vector. The advantage of this algorithm lies in the ability to construct a comprehensive feature 

space manifold that bridges the gap between two domains while retaining most of the 

information. The drawback comes with the extreme increase of dimensionality. 
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This class of methods is useful for the unsupervised domain adaptation problem as it does 

not depend on labeled examples (223). The same reason becomes a disadvantage when applied 

to the supervised or semi-supervised setting, as the obtained transformation does not account for 

the feature informativeness in regard to the supervised part of the problem. 

Loss-centric methods. This category of methods modifies the loss function of the learning 

algorithm. The earliest iterations do this implicitly by the means of reweighting training samples. 

Another prominent class of the loss-centric methods that gained traction with the advent of deep 

learning methods is Adversarial Learning. 

Reweighting 

The representative algorithm for reweighting methods is Kernel Mean Matching (KMM) 

(224) which is based on the Maximum Mean Discrepancy (MMD)(225) measure. MMD is 

defined as the following: 

𝑴𝑴𝑫[𝑭, 𝒑, 𝒒] = 𝐬𝐮𝐩
𝒇∈𝑭

(𝑬𝒙~𝒑[𝒇(𝒙)] − 𝑬𝒚~𝒒[𝒇(𝒚)]), 

where 𝑭 is a class of functions 𝒇: 𝑿 → ℝ and 𝒑, 𝒒 are probability distributions that correspond to 

different domains. The algorithm uses an unbiased empirical estimate of this measure 

𝑴𝑴𝑫𝒖
𝟐[𝑭, 𝒑, 𝒒] =

𝟏
𝒎(𝒎− 𝟏)A𝒉(𝒛𝒊, 𝒛𝒋)

𝒎

𝒊N𝒋

, 

where 𝒁 = (𝒛𝟏, 𝒛𝟐, … , 𝒛𝒎) is 𝒎 independent identically distributed (i.i.d.) random variables, 

𝒛𝒊 = (𝒙𝒊, 𝒚𝒊). With 𝒉<𝒛𝒊, 𝒛𝒋= = 𝒌<𝒙𝒊, 𝒙𝒋= + 𝒌<𝒚𝒊, 𝒚𝒋= − 𝒌<𝒙𝒊, 𝒚𝒋= − 𝒌<𝒙𝒋, 𝒚𝒊= this expression 

becomes a one-sample U-statistic (226). 
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Adversarial methods 

Theoretical results on domain adaptation suggest existence of feature representation that 

makes samples indistinguishable based on the domain of origin (227). Adversarial approach for 

the domain adaptation attempt to achieve this goal by introducing a modified loss function (228) 

inspired by the Generative Adversarial Networks (GANs) (229) that iteratively minimize the 

discrepancy between original and synthesized data distributions. Though domain adaptation 

methods are not limited to the classification problem, we would present an overview specifically 

for the classification. Proposed approaches could be easily adapted to the regression by 

modifying loss function, and general ideas remain the same. 

The goal of the classical adversarial modeling approaches is to create a generative model 

that produces non-trivial samples indistinguishable from the ground truth examples. To achieve 

this goal adversarial approach employ minimax game 𝑽(𝑫, 𝑮) between two players with the 

competing objectives – a discriminator 𝑫(𝒙; 𝜽𝒅) that classifies samples 𝒙 into either ground 

truth or synthetic category and a generator 𝑮(𝒙; 𝜽𝒅) with the objective of decreasing 

discriminator's performance: 

𝐦𝐢𝐧
𝑮

𝐦𝐚𝐱
𝑫

𝑽(𝑫, 𝑮) = 𝔼𝒙~𝒑𝒅𝒂𝒕𝒂(𝒙)[𝐥𝐨𝐠𝑫(𝒙)] + 𝔼𝒛~𝒑𝒛(𝒛) _𝐥𝐨𝐠 `𝟏 − 𝑫<𝑮(𝒛)=cd 

Discriminator 𝑫 is trained to maximize the probability of assigning a correct label to the 

data point, while generator 𝑮 is trained to minimize it. The stopping criteria that signify a 

successful approximation of sample distribution 𝒑(𝒙) are the 'loss' of the discriminator 𝑫 – its 

inability to differentiate generated samples. 

In the domain adaptation context, the goal of the adversarial method is to make sample 

distributions 𝑺𝒊(𝒇) = [𝑮𝒇(𝒙; 𝜽𝒇)|𝒙~𝑶𝒋(𝒙)] comparable. Deep adversarial neural network 
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(DANN) algorithm approaches this problem by learning transformation for features 𝒇 that 

minimizes discrepancies between distributions 𝑺𝒊 with respect to the original classification 

objective (228). Under covariance shift assumption (230) solution for the problem of interest 

would have the same performance on the source and the target domains. In order to identify 

transformation, DANN introduces a feature regressor 𝑮𝒇(𝒙; 𝜽0) that simultaneously maximizes 

the original classification problem learning objective 𝑳𝒚 and minimizes learning objective 𝑳𝒅 

that distinguishes samples based on the domain of origin 𝑶𝒋. It results in the following loss 

function: 

𝑬<𝜽𝒇, 𝜽𝒚, 𝜽𝒅= = A 𝑳𝒚 `𝑫𝒚<𝑮𝒇<𝒙𝒊; 𝜽𝒇=; 𝜽𝒚=c
𝒊,𝟏..𝑵

− 𝝀 A 𝑳𝒅 `𝑫𝒅<𝑮𝒇<𝒙𝒊; 𝜽𝒇=; 𝜽𝒅=c
𝒊,𝟏..𝑵

, 

where 𝑫𝒚 is discriminator for the original classification problem, 𝑫𝒅 is a discriminator for the 

domain classification, 𝝀 is the regularization parameter, 𝜽𝒇, 𝜽𝒚, 𝜽𝒅 are model parameters for the 

𝑮𝒇, 𝑫𝒚, and 𝑫𝒅 classifiers correspondingly. 

The strength of this approach is the extreme generality. In fact most of the neural 

unlabeled domain adaptation methods are based on domain adversaries (228, 231). DANN-based 

approaches are also highly scalable. However, they model solely feature representation that is 

shared across the domains. In the case when samples can be accurately classified across the 

domains, this class of algorithms suffers from the vanishing gradient (232). 

Pseudo-labeling involves leveraging a large pool of unlabeled samples and iteratively 

predicting their labels, subsequently feeding them back into model. This can be achieved via 

bootstrapping methods: self-training (233, 234), and co-training (235). Self-training was applied 
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with limited success in the ALT-IN  algorithm(236) for predicting alternative splicing-induced 

changes in protein-protein interactions.  

Data selection  

Pre-training approaches can take multiple shapes. The most straightforward case is the 

usage of a single base model trained on a large amount of data, e.g., GoogleAI or BERT (237-

239), and fine-tuning it for the specific task. This approach encourages model sharing among the 

researchers and saves time and energy required for getting baseline results. This framework can 

be further modified by stacking pre-training runs together, subsequently increasing domain 

specialization. Multitask learning (240, 241) can be employed as the strategy to force the 

algorithm to learn additional objectives, presumably, related to the main problem, forcing the 

algorithm to account for it.  

2.4 Conclusions 

Deep learning methods are able to distill compact representation from the raw data, either 

with respect to the specific task or in an unsupervised manner. This is especially valuable for the 

biological setting because data in a vast number of applications have extremely high 

dimensionality that cannot be cracked by the traditional statistical approaches without discarding 

a large portion of information. On top of that, the relationship between variables remains highly 

confounded, which reduces the applicability of the linear methods and increases feature 

engineering difficulty. So, traditional ML methods make way for the DL application that a 

poised to solve these issues. They offer a promising approach to integrating multiple modalities, 

which is incredibly important for structural and network biological applications.  
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Domain adaptation is the widely used subclass of the transfer learning algorithms that 

aim for achieving the stable performance of the machine learning algorithms across statistically 

non-identical samples. There exist a vast number of methods to achieve this goal, and quite a lot 

of them are applicable to the DL setting. 

Currently, a plethora of methods dedicated to the maximization of publicly available data 

usage is being proposed. Omics databanks get new information in large quantities, and our goal 

should be to transform it into valuable pieces of information. And we have to move quickly, as 

the latest experimental technologies emerge and start to push the older counterparts into oblivion, 

so it is essential to make the best use of freshly derived information to keep high-profile attention 

on precision medicine. 
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Chapter 3. Alternative Splicing and the Prediction of its Properties  

3.1 Background 

3.1.1 Introduction 

Proteins are the large molecules formed by the amino acids sequence and encoded by 

genes. These molecules’ chemical reactions and movement underlie dynamic processes in living 

organisms play a crucial part in digestion, hormone production, immune resistance, and tissue 

growth. They vary in different organisms, cells, tissue, or time points. The collective name for all 

proteins expressed under given conditions is called proteome. There is a large discrepancy in the 

size of the proteome and genome. 

3.1.2 Alternative splicing and Protein-Protein Interactions 

Protein-protein interaction network, or interactome, is a Facebook of proteins, the basic 

building blocks that underlie the cell’s basic functioning. Whether we study complex genetic 

disorders, stem cell specialization, or epigenetic effects on an organism, those blocks form a 

basis for the higher abstraction levels. Protein-protein interactions (PPIs) are a glue that 

mechanistically ties those blocks together. 

Protein-protein interactions (PPIs) underlie many key mechanisms of cellular functioning 

(242). With thousands of PPIs simultaneously occurring in every cell of an organism, an average 

protein is expected to interact with two or more other proteins forming large molecular 

assemblies, transporting proteins, facilitating a chemical reaction, protecting the organism from 

pathogens, and carrying out other basic functions (68, 243, 244). Increasing understanding of 

PPIs gives us an insight into molecular mechanisms of cellular pathways and regulatory 
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mechanisms which form the basis for the description of complex genetic disorders such as 

cancer, diabetes, autism, and schizophrenia (245). This knowledge is crucial for the target 

discovery in drug design. 

 

Figure 3.1. Human interactome snapshot from the [Rual, 2005]. Graph nodes (yellow) 
correspond to the distinct proteins, edges (blue and red) denote existing interactions. This snapshot 
presents a combination of literature-curated interactions (blue) and high-throughput experiment results 
(red). Adopted from (246) 

 

Throughout the past two decades, there have been efforts in characterizing the 

experimentally confirmed PPIs by describing the structure of molecular complexes and 

interaction interfaces formed through the PPI (247, 248), determining a protein function that is 

controlled by the interaction (249), and understanding the evolutionary principles shared between 

the homologous interactions (250, 251). Large-scale characterization of protein-protein 

interactions (Fig. 3.1) using high-throughput interactomics approaches, such as yeast-two-hybrid 

and tandem-affinity purification/mass spectrometry methods (245, 252), has provided the 

scientists with new insights into the cell functioning at the systems level and allowed to better 

understand the molecular machinery underlying complex genetic disorders (67, 253, 254). 
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Although a comprehensive understanding of PPIs in an organism has important practical 

applications, our current collection of PPIs is still far from being complete. A combination of 

high-throughput experiments results and small-scale interactomics studies, like co-

immunoprecipitation and surface plasmon resonance, reported in the literature, yields a 

collection of ~25,000 high-quality interactions (255). According to some estimates, the number 

of PPIs in a human cell is over 600,000 (255, 256). Currently, the level of diversity provided by 

alternative splicing is mostly overlooked in PPI interactomes that stick to the formula “one gene 

– one protein”. More recently, several studies have been published that focus on studying the 

interaction-rewiring, edgetic, effects of genetic variations caused by genetic diseases (257, 258). 

The edgetic effects on the whole protein interactome of other types of variation, such as copy-

number variation, epigenetic variation, and transcriptional variation, or alternative splicing, are 

far less studied (64, 68).  

Considerable effort efforts were dedicated to filling the gaps in PPI datasets. They 

collectively called PPI prediction methods. These applications often define PPI prediction 

problem as a classification task and leverage supervised learning approaches, including deep 

learning, where the training set includes labeled variants for which the function is known and is 

experimentally validated. The supervised learning approach is designed to benefit from the 

labeled training set in order to provide an accurate prediction, however, the labeling (i.e., 

functional annotation) may not be feasible for large datasets required by many supervised 

methods. 

Recently, a high-throughput interactomics study has demonstrated a widespread 

interaction rewiring by the alternatively spliced gene products (64). In some cases, new 

interactions were shown to be formed. The experimental approach covered ~10% of human 
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protein-coding genes and provided data on 2,503 interactions including alternative isoforms from 

five healthy human tissues: brain, heart, liver, placenta, and testis. In spite of being very 

accurate, these large-scale experiments are time-consuming and expensive. When we include 

alternatively spliced variants as an additional variable into the search space for potential 

interactions, this results in up to ~200 million potential PPIs that need to be assayed (255). Up to 

date, no reliable computational approaches that predict the edgetic effects of alternatively spliced 

variants have been introduced. We found that existing sequence-based PPI prediction methods 

have difficulties providing viable characterizations of rewiring events. Thus, there is a need for a 

cheaper and faster, in-silico, approach that is AS-specific. 

As of today, our understanding of the functional implications that alternative splicing 

may have on molecular regulatory processes is quite limited. It has been observed that AS often 

has a direct influence on protein machinery: the isoforms frequently behave like separate 

proteins rather than follow the functional designation of the main splice variant (64,) but large-

scale effects it has on organism remain unseen. Cell specialization is largely dependent on 

alternative splicing, but we are not able to give a clear picture of it because even cutting-edge 

scRNA-Seq currently unable to provide the sequencing depth and coverage adequate for the 

whole-transcriptome analysis of AS events. Alternative splicing is a dynamic process influenced 

by a variety of factors. In order to pinpoint disease-related events one needs to be able to dissect 

it in different patterns related to the cell cycle, circadian clock, tissue genesis, or other biological 

distinct groups that may influence the alternative splicing. 
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3.1.3 Experimental methods of studying alternative splicing 

RNA-Seq 

The primary source of experimental data for high-throughput alternative splicing studies 

is an RNA-Seq, next-generation sequencing technology that quantifies the amount of mRNA 

material present in a biological sample. It fragments input RNA material and converts to the 

cDNA fragments (reads), which are aligned to the reference genome or assembled into a new one 

using de Bruijn graphs. Increasing the number of reads and reads length helps to make precise 

estimates. Gene expression profiling experiments may require 5-25 million reads.  

The ability to describe alternative splicing events requires much higher depth and, 

depending on the application, may take up to 200 million. Original RNA-Seq technology 

required a significant amount of biological material. In most experiments, all sample material 

belongs to the specific tissue and contains a mixture of cells that constitute this tissue. Recent 

advances in technology led to the increase in resolution level – an ability to quantify expression 

levels of the individual cells. It brings a clear advantage - the ability to study distinct cell types. 

But it comes with considerable drawbacks – scarcity of biological material in each experiment 

increases the noise level in data and restricts sequencing depth. The latter comes in the way of 

conducting alternative splicing studies. 

Single-cell RNA-Seq 

Single-cell RNA-Seq (scRNA-Seq) methods are the cutting-edge techniques for 

transcription level quantification that provide valuable insight into molecular processes occurring 

in individual cells.  
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However, scarcity of biological material limits transcriptome coverage and restricts 

sequencing depth. For example, full-length scRNA-Seq protocols that use a switching 

mechanism at 5’End of RNA template (SMART) can reach ~40% coverage, when high-

throughput 3’-end approaches provide roughly 10% and are not feasible for the alternative 

splicing events detection (259, 260). These are intrinsic technological limitations as an 

abundance of PCR duplicates make it unfeasible for standard protocols to increase the depth to 

more than 1,000,000 reads (260, 261). 

There are three main categories of scRNA-Seq protocols: long-read technologies, Smart-

based and Unique Molecular Identifier (UMI)-based. Long-read approaches such as PacBio and 

Nanopore allow capturing an entire transcript molecule that is exceptionally suitable for isoform 

detection tasks as we would not miss any types of alternative splicing events. This family of 

methods, though, has significant downsides – low sequencing depth, the limited number of cells 

(four to six) (262, 263) and a high rate of sequencing errors. UMI-based methods, such as inDrop 

(264), Drop-seq (265) and MARS-seq, provide results based on short reads and unique molecular 

identifiers (UMIs) attached to them for mitigating amplification bias. These protocols can 

process a high number of cells, accurately quantify expression level but have medium 

sequencing depth, and are difficult to use for isoform quantification purposes due to the technical 

noise (266). Smart-based protocols (SMART-seq, SMART-Seq2) provide a convenient middle 

ground performance between long-read and UMI-based approaches in expression quantification 

and sequenced number of cells with the exceptional sequencing depth and low error rate.  

3.2 Alternative splicing prediction – literature overview 

Due to the alternative splicing regulatory mechanisms, different exons may be either 

included or excluded from the final mRNA product. The quantification of reads helps determine 
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the percentage of splicing inclusion (PSI, Ψ) for each alternative exon. As separate reads are 

obtained from the experiment, they are aligned across the reference genome in order to get a 

cumulative signal. Then this signal has to be deconvoluted into separate transcripts. Such 

quantification relies on splice junctions – reads that simultaneously belong to the two distinct 

exons. Alternative splicing events such as intron retention, alternative 5’ donor site, and 

alternative 3’ acceptor site introduce significant changes to the known gene structure (Fig.3.2). 

Delineating gene structures and, subsequently, alternative splicing isoforms is dependent 

on precise detection of the splice junctions. After this stage is complete and initial alignment is 

obtained, we have to deconvolute cumulative signal into multiple channels, namely, alternative 

splicing variants. At this stage, as it is impossible to differentiate between molecules each read 

originated from, the typical strategy is to employ statistical and machine learning-based methods. 

Predicting alternative isoforms is a multi-stage process that has to overcome multiple 

technical challenges, including incorrectly detected splice junctions, technical noise, and data 

scarcity, in the case of scRNA-Seq samples. 

3.2.1 Refining splice junctions 

Sequence alignment is one of the standard steps in RNA-Seq pipelines. While modern 

alignment algorithms (267-269) do not require explicit annotation of exon coordinates and can 

perform ab initio alignment, thus, being able to detect novel splice junctions based on the 

evidence. Despite employing sophisticated strategies, such as de Bruin graphs (270), hierarchical 

indexing (267), or Maximal Mappable Prefix (269), aligners struggle to avoid false positives. It 

is well within expectations, as the probability of mapping a random short read to the large 

reference genome is high. Technical noise, such as intergenic and intronic unspliced RNA, 
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spurious RNA fragments from the library preparation further contribute to the challenges in 

splicing junction identification. 

Traditional strategies for dealing with false positives are based on two measurements: the 

number of samples in which a given splice junction was detected, and the number of reads 

aligned to the specific splice junction. A drawback of such an approach lies in the difficulty of 

determining the cutoff threshold (271). 

 

 

Figure 3.2. Example of splice junction detection for the model read coverage of AT5G22640 
gene. Top. AT5G22640 gene model with experimentally validated splice junctions. Mid. Grey splice 
junctions correspond to the known gene structure; novel splice junctions are denoted green. Bottom. Short 
RNA-Seq reads mapped to the reference model. Based on (272). 
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ASPIC (273) is the heuristic approach based on the progressive alignment of the 

transcriptional data to the genomic sequence that solves multiple EST factorization compatibility 

problems. This algorithm performs a multiple sequence alignment of available transcript data 

(including EST and full-length cDNA) to the relevant genome sequence. Its advantage is the 

ability to incorporate multiple sources of genomic information. The main limitation is the 

relatively rigid model, as ASPIC detects the set of introns that minimizes the number of splicing 

sites (274). Such an approach does not account for the subtle changes in splicing regulatory 

factors in individual samples. 

SpliceGrapher (272) is graph assembly-based method for splice junction prediction. 

Acceptor site from each newly predicted exon becomes the next primer that is compared with all 

other exons. The advantage of this algorithm lies in the ability to incorporate expression 

sequence tag (EST) data along with RNA-Seq information. As a major drawback, it has 

exceedingly high missing scores (275). 

Multiple feature-based methods that use SVM (SpliceMachine (276), DM-SVM (277)), 

semi-supervised ensemble methods (STED (278)), dbSNFP (279)), and Hidden Markov Models 

(AUGUSTUS (280)) were introduced. Overall, validation studies on experimental data (275, 

281) conclude the combination of multiple tools can filter out low-probability splice junctions 

without losing true spliceosomes.  The common drawback of this category of methods is the loss 

of information from the training data, as the feature extraction process is prone to missing 

complex dependencies. 

Current state-of-the-art methods for the splice junction detection, such as SpliceAI (282), 

DeepSplice (271) and SpliceVec (283), take advantage of the deep learning methods’ ability to 

find complex dependencies from the input data. It allows them to simplify input data. For 



 59 

example, SpliceAI can predict splice junctions based solely on the sequence information. Feature 

learning step in the deep neural networks helps capture even minute changes like single 

nucleotide variants (SNVs) and adjust splice junctions accordingly. The downside of such 

methods is training data bias. Thus, benchmarking studies (165) found a significant discrepancy 

between performance on the general populations’ datasets they were trained on, such as GTEx 

(75), and on smaller clinical datasets. They suggest that these tools facilitate detection of the 

non-pathogenic neutral splicing variants but exhibit limited applicability in the clinical setting. 

Because genetic sequence information is sufficient for the current state-of-the-art splice 

junction prediction algorithms, there is not a lot of need to specifically adjust them to the 

scRNA-Seq data. 

3.2.2 Alternative isoforms prediction 

The alternative isoform prediction problem bears a resemblance to the demultiplexing 

problem, as we have entire read counts corresponding to the gene level assembled (Fig. 2), which 

is also known as a gene expression value.  
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Figure 3.3. Two different approaches for sequence mapping – count-based model and 
isoform resolution model. Count-based approaches keep track only on the number of spliced exons 
while isoform resolution model attempts to assign expression levels for each individual transcript. 
Adapted from (284). 

 

In order to get transcript-level information, we would have to determine the number of 

reads that come from each particular isoform. But unlike with signal demultiplexing, we cannot 

make a distinction between signal sources, and instead, we have to use computational models. 

Two large classes of computational models are count-based models and isoform resolution 

models (Fig. 3.3). 

Count based models 

This class of models relies on the approaches used to quantify transcripts with a single 

isoform. They are commonly used in differential gene expression studies. To accommodate the 

inclusion of the transcript-level information, those methods use smaller counting units, like 

exons. Those units can be exonic regions (possibly, truncated), like in the case of DEXSeq (285), 

or splice junctions, in the case of MATS (286). This family of methods does not provide a direct 

estimation of each transcript abundance, but obtained results can be used for the differential 

studies. It was shown that exon count units accurately reflect information on the alternative 

splicing as long as no isoform can be constructed from other isoforms (287).  

Estimating differential alternative splicing between samples remains an essential problem 

for comparative studies. One of the recent models, DARTS (288), infers differential alternative 

splicing based on the deep neural network model.  
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Isoform resolution models 

Isoform resolution models predict optimal isoform composition and directly provide 

abundance for each separate alternatively spliced variant. One of the pioneering tools from this 

category, Cufflinks, maximizes the likelihood of the isoform proportion vector q in respect to the 

observed set of aligned reads (289). 

RSEM (290), Kallisto (291) and Salmon (292) are lightweight quantification models that 

are able to function with or without prior alignment. Salmon makes additional corrections for the 

biological GC bias in their generative model, achieving even more precise results.  

Single cell-specific methods 

Despite high technical noise and lack of coverage in scRNA-Seq data, a number of 

methods for alternative splicing events detection were developed: SingleSplice, BRIE (Fig.3.4), 

Expedition, (293-295), SatuRn (296), SCATS (297). They use different approaches to overcome 

scRNA-Seq limitations, which result in distinct isoform expression metrics. The major drawback 

of those methods is the inability to provide one expression value per isoform (266), which is only 

useful for differential studies.  

Previous studies of alternative splicing detection in scRNA-Seq predominantly cover 

SMART-based protocols, though some techniques attempt AS events detection in UMI-based 

data (297). A simulation-based study (298) on isoform quantification of SMART-based protocols 

concludes that AS events detection does not exhibit a significant drop in performance in 

comparison to the bulk RNA-Seq methods. Still, in more recent work, authors accounted for 

dropout rates and technical noise and concluded that current methods produce highly confounded 

results (299). Another study (300) suggests that single-cell RNA-Seq methods capture of 
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alternative splicing are prone to labeling the appearance of two separate isoforms as mutually 

exclusive due to the low level of coverage, which suggests that previous observations of bimodal 

pattern splicing patterns among supposedly homogeneous cells (294, 298, 301) is a technical 

artifact and not a true biological observation. UMI-based protocols (e.g., inDrop (264), DropSeq 

(265)) provide even shallower sequencing depth, so these results also carry similar implications 

for datasets obtained via those methods. 

Challenges 

Biological variability in study subjects further increases data analysis difficulty. Cells 

used for library construction are destroyed at random time points so that they may be at the 

different phases of the cell cycle, carry distinct molecular signatures of the circadian clock or 

simply vary in size (295, 302). In order to mitigate those effects, statistical models have been 

developed (302) along with the concept of pseudotemporal ordering (303). There are also 

methods for batch-effect correction that remove technical artifacts (304).  
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Figure 3.4. Workflow of BRIE, isoform resolution model for scRNA-Seq. Prior distribution of 
the percentage spliced in (PSI) exons for each individual exon is via Bayesian regression based on such 
features as K-mers, sequence length, conservation, and splice site motifs. It is then adjusted according to 
mixture modeling likelihood based on the RNA-Seq reads in order to obtain posterior distribution of PSIs. 
Adapted from (295).  

Data scarcity currently remains the most significant challenge for scRNA-Seq isoform 

quantification. It leads to amplification of such effects as the read quality, unwanted biological 

noise, PCR amplification bias, and dropouts. Those effects become so profound that some 

studies are unable to differentiate between biological signal and technical noise (305).  The most 

significant challenge data scarcity introduces is the quantification of the expression level for each 

separate isoform. Currently, this problem remains unsolved. Nearly all genes in a human cell 

undergo alternative splicing, a process that can obtain a diverse pool of isoforms from the same 
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gene through selective inclusions and exclusions of the gene’s exons and introns (65). Single-cell 

and bulk RNA-sequencing data allow scientists to unveil a genome-wide gamut of post-

transcriptional variation caused by alternatively spliced isoforms that could be specific to tissue 

and cell type, developmental stage, disease phenotype, and many other factors and conditions 

(306-308). Alternative splicing has also been shown to alter a plethora of protein functions (70). 

The range of functional variation between the alternatively spliced isoforms may vary 

drastically: from a complete loss of original function, due to misfolding of the alternatively 

spliced isoform and its removal by the cell degradation mechanisms to a subtle difference in the 

protein function and to even gain of a new function, due to the alternative isoform’s new exon 

encoding a new functional protein domain (64, 309-312). Unfortunately, large-scale functional 

regulation by alternatively spliced isoforms remains poorly understood because of the lack of 

system-wide experimental studies. Recently, a high-throughput interactomics study demonstrated 

a widespread interaction perturbation caused by alternative splicing (64). In some cases, new 

interactions emerge driven by new exons in the alternatively spliced isoforms. Despite being 

very accurate, these large-scale experiments are time-consuming and expensive, which affects 

their coverage. Thus, there is a need for a cheaper and faster in silico approach. 
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3.3 Predicting protein-protein interaction rewiring 

3.3.1 Introduction 

Nearly all genes in a human cell undergo alternative splicing, a process that can obtain a 

diverse pool of isoforms from the same gene through selective inclusions and exclusions of the 

gene’s exons and introns (65). Single-cell and bulk RNA-sequencing data allow scientists to 

unveil a genome-wide gamut of post-transcriptional variation caused by alternatively spliced 

isoforms that could be specific to tissue and cell type, developmental stage, disease phenotype, 

and many other factors and conditions (306-308). Alternative splicing has also been shown to 

alter a plethora of protein functions (70). The range of functional variation between the 

alternatively spliced isoforms may vary drastically: from a complete loss of original function, 

due to misfolding of the alternatively spliced isoform and its removal by the cell degradation 

mechanisms to a subtle difference in the protein function and to even gain of a new function, due 

to the alternative isoform’s new exon encoding a new functional protein domain (64, 309-312). 

Unfortunately, large-scale functional regulation by alternatively spliced isoforms remains poorly 

understood because of the lack of system-wide experimental studies. Recently, a high-throughput 

interactomics study demonstrated a widespread interaction perturbation caused by alternative 

splicing (64). In some cases, new interactions emerge driven by new exons in the alternatively 

spliced isoforms. Despite being very accurate, these large-scale experiments are time-consuming 

and expensive, which affects their coverage. Thus, there is a need for a cheaper and faster in 

silico approach. 

I introduce a supervised and semi-supervised machine learning approaches that predict if 

an alternatively spliced isoform will disrupt a protein-protein interaction originally formed 
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between a reference isoform and another protein (Fig. 3.5). Machine learning has previously 

been used in bioinformatics applications for the characterization of functional effects caused by 

genetic and post-transcriptional variations (64, 257, 313-315).  

 

Figure 3.5. High-level overview of the protein rewiring task. Left panel describes potential 
rewiring event that may take place due to the alternative splicing. Right panel depicts out approach to the 
problem that combines information from the reference isoform, interactor partner, and alternative isoform 
by extracting three main groups of features: biochemical fingerprints, statistical potentials for domain 
interaction, and delta features that represent difference between reference and alternative transcripts. Then 
semi-supervised model is trained on the extracted features, that later can be used to assess changes in PPI 
networks. 
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Figure 3.6. Overall ALT-IN approach. A. Characterization of edgetic effects of AS on PPI 

formulated as a binary classification problem, where 𝐴 is a reference isoform, 𝐴! is an alternative 
isoform, and 𝐵 is an interaction partner of the reference isoform. B. Four basic steps of computational 
study. 

 

The characterization of functional effects can often be defined as a classification task 

(e.g., if a mutation alters a protein function or not), and thus be tackled by supervised learning 

approaches, including deep learning. By design, the supervised learning approach benefits from a 

labeled training set (e.g., experimental functional annotation of genetic variants) to provide an 
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accurate prediction; however labeling may not be feasible for large datasets, which hinders the 

ability of many supervised methods to generalize well. As an alternative, semi-supervised 

learning can be introduced, where, in addition to a small labeled training set, the classifier can 

benefit from the knowledge of a large unlabeled dataset, i.e., a dataset consisting of alternatively 

spliced isoforms with unknown functional effects (Fig. 3.6) (316).  

Predicting the functional impact caused by alternative splicing has only recently been 

approached by machine learning, with protein-protein interactions being the main focus due to 

their functional importance and abundance in the cell (317, 318). One of the two currently 

existing methods is limited to proteins with annotated protein domains (317), while the second 

method leverages a deep learning approach trained on data produced by a generic PPI prediction 

method (319). Most importantly, the performance of each of the two methods leaves substantial 

room for improvement in terms of methods' accuracy and coverage.  

3.3.2 Datasets and feature statistics 

The first dataset (D1) used to generate the training set for the supervised learning 

classifiers included 1,837 protein-protein interactions (PPIs) from 638 genes with 881 

alternatively spliced isoforms. The number of isoform products for each gene ranged from 2 to 7, 

with an average of 2.3 isoforms per gene. Overall, the dataset contained 1,379 positive and 452 

negative samples. The second dataset (D2) was composed of known human PPIs (64, 246, 252, 

320-322) and included 5,460 unique known interactions mediated by a total of 1,203 unique 

proteins (reference isoforms), 1,082 of which had at least one alternative isoform in addition to 

the reference isoform. In total, 4,884 unique alternative isoforms were identified, and 42,652 

new, unlabeled, triplets (A1, A2, B) were formed, where isoform A1 interacts with its partner B, 

but it was unknown whether another isoform A2 interacted with the same partner B. For dataset 
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D2, the number of isoforms for each gene ranged from 1 to 92, with an average of 8.7 isoforms 

per gene. The number of interactions per gene ranged from 1 to 800, with a similar average of 

35.4 interactions per protein. We investigated possible bias for rewiring interactions based on the 

number of isoforms using the Mann-Kendall trend test (323-325) and found no statistically 

significant trends in D1 and T2D case study dataset (Fig. 3.7).  

 
Figure 3.7. Percentage of interaction rewiring depending on isoform number.  (A) – statistics 

on interactions rewiring in experimental dataset D1. (B) – statistics on predicted interactions rewiring for 
the type 2 diabetes case study. We investigated trends for the rewired and conserved interactions using 
Mann-Kendall trend test and found no statistically significant trends.  

(B) 

(A) 
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Of the three groups of features generated for each data point, the features corresponding 

to the occurrence frequency of the SCOP domains were substantially sparse. This phenomenon 

was the result of some proteins lacking any SCOP domains predicted by SUPERFAMILY. On 

the other hand, not all SCOP families were equally represented across the proteins from either 

D1 or D2 datasets. Of the 356 proteins in D1, 260 had between 1 and 8 SCOP domains predicted 

by SUPERFAMILY, with a mean of 1.4. Similarly, of the 4,028 proteins in D2, 2,917 proteins 

had between 1 and 25 SCOP domains annotated by SUPERFAMILY with a mean of 2.5.  

Another interesting question was whether any of the delta features (the third group of 

features—see Methods for more details) could be used to provide an accurate separating 

boundary for the classifier. For instance, if an alternatively spliced isoform altered more than k 

residues of the reference isoform, then the alternative isoform would be predicted to eliminate 

the original interaction. There was a wide range of changes for each feature type, with the values 

seemingly independent of whether or not the alternative isoform disrupted the original 

interaction (Fig. 11A, B, C). The changes in SCOP domain architecture in the alternative isoform 

juxtaposed with the reference isoform can be grouped into three categories: no change, deleted 

domain, or modified domain. For D1, there were 874 (90%) reference isoforms with no change, 

99 (10%) isoforms with at least one SCOP domain deleted, and 374 (38 %) with at least one 

modified SCOP domain. For D2, there were 11,456 (33%) reference isoforms with no change, 

23,120 (67%) with at least one domain deleted, or 16,390 (47%) with at least one domain 

modified. 

We next used unsupervised learning followed by low-dimensional embedding with t-SNE 

(326) to analyze the internal data structure of the two modeled classes, the conserved and 

perturbed PPIs. By doing so, one would expect to see two clusters of data that are also separated 
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in a low-dimensional space; the lack of grouping in a low-dimensional space often reflects the 

absence of intrinsic structure in the dataset or an inability of the method to detect one. However, 

unlike the case of two well-defined and often well-separated classes, we found that the class of 

conserved interactions was represented by a union of several sub-clusters corresponding to 

different types of physical interactions (Fig. 3.11D), which were characterized by a wide range 

of biochemical, structural (Fig. 3.12), and statistical factors. The perturbed interaction class was 

defined even more loosely, as a set of conditions sufficient for disrupting each particular 

interaction type. Specifically, we observed three clusters formed predominantly by the conserved 

interactions; the rest of the data is grouped into mixed clusters each including both the disrupted 

and conserved interactions, with no obvious hyperplane separating conserved and perturbed 

interactions. These results may be explained by the high level of noise in the t-SNE input and 

data scarcity: because t-SNE attempted to conserve overall distance between samples in data 

space, the method was unable to capture important dependencies that helped separate the data 

into classes. Indeed, after weighting the input data from the original dataset by the Random 

Forest model feature importance, we observed a higher number of well-defined sub-clusters and 

increased separability among the sets of conserved and perturbed interactions (Fig. 11E). 

3.3.3 Methods 

Our approach, ALTernatively spliced INteraction prediction (ALT-IN) Tool, is designed 

to determine the rewiring, or edgetic, effects of alternative splicing. This can be formulated as 

the following binary classification problem (Fig. 3.6A): Given a known reference isoform A1 

that is involved in a protein-pr0otein interaction A1−B with another protein B, will an 

alternatively spliced isoform A2 preserve the interaction with B or disrupt it? Triplets (A1, A2, 

B) where A2 preserves the interaction with B, given A1 and B interact, are labeled as members 
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of the negative class. Alternatively, triplets (A1, A2, B) where the alternatively spliced isoform 

A2 disrupts the interaction with B are labeled as members of the positive class. Each of the 

developed methods presented in this work is a feature-based approach (Fig. 3.6B). Specifically, 

the features encode information concerning the known interaction A1−B and information about 

the differences between isoforms A2 and A1 of the same gene that may contribute to the 

disruption of the interaction.  

Data retrieval and processing 

For training and evaluation of the supervised machine learning classifiers in this work, 

we use an experimentally obtained human interactomics dataset (D1) developed for the high-

throughput analysis of alternative splicing (AS) effects (64). The second dataset (D2) of 

unknown interaction-rewiring effects by alternative isoforms is a source of the unlabeled data in 

the training of the semi-supervised classifier. The unlabeled dataset D2 is constructed using a set 

of protein-protein interactions (PPIs) retrieved from five high-throughput human interactomes 

(64, 246, 252, 320, 321) and a list of AS isoforms for all proteins that are involved in the above 

PPIs (327). 

Experimental data availability is among the key challenges for the development of 

supervised learning methods studying alternative splicing effects on PPIs. To the best of our 

knowledge, there has only been one large-scale experimental study (64). A naïve approach to 

increasing the experimental dataset would be to merge all existing interactomics datasets and 

describe different protein products associated with the same gene as isoforms (318). However, 

this approach is inherently biased toward existing PPIs and cannot differentiate between the 

absence of interaction and missing interaction information. On the contrary, high-throughput 

interactomics experiments performed at the AS isoform level (64) account for both the presence 
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and absence of a PPI mediated by the isoforms of the same gene. Data limitation also influences 

the selection of machine learning algorithms because some supervised models (e.g., neural 

networks) require a substantial amount of training data (328). Some approaches try to minimize 

this effect by leveraging data augmentation, i.e., by applying transformations to the training set 

(329, 330). However, applying biologically meaningful transformations is only possible when 

one understands the resulting effects. Protein-protein interaction is a complex molecular 

mechanism that can be altered by even a single residue change in one of the interacting proteins 

(257, 331) and is not suitable for this type of data augmentation.  Another challenge that the 

small dataset size brings is the model evaluation. Data scarcity makes the traditional split into 

training and testing subsets impractical because the training set may not be representative, thus 

such evaluations may not provide enough information on the model’s generalization power. 

Another traditional approach, 10-fold cross-validation, is prone to fail in isolating highly 

correlated information in the training dataset. In addition, one has to ensure that both, our model 

and the data transformations applied to the test set, are completely oblivious of the incoming 

data. Therefore, we propose a validation protocol that prevents the information leakage from the 

testing set to the trained model at every step of the training process (for more details, see 

subsection Quantification and Statistical Analysis and Fig. 3.8). 

To obtain dataset D1, we remove reference isoforms and the corresponding alternative 

splicing variants that satisfy one of the following two criteria: 1) There is no interaction between 

any isoform of a particular gene and a specific protein; or 2) There is no alternatively spliced 

isoform for a particular reference isoform, i.e. the corresponding gene has one isoform in total. 

Then the remaining dataset is organized as a set of triplets (A1, A2, B), where A1 is a reference 

isoform, A2 is an alternatively spliced isoform, and B is the interaction partner of A1. After 
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applying this procedure to 2,501 interactions from (332), we obtain the final dataset, D1, which 

consists of 973 triplets. This dataset is randomly split into 10 subsets for a 10-fold cross-

validation protocol. The folds are then modified to ensure that all isoforms related to a gene are 

either in the testing or training split, as described in the group cross-validation protocol below. 

To obtain dataset D2, we first remove RNA-protein interactions as well as interactions 

from the homo-oligomeric complexes in the original set of human macromolecular interactions 

(64, 246, 252, 320, 321), leaving only PPIs between two different proteins. Then, to compile a 

list of AS isoforms for all proteins that are involved in the above PPIs, we download the protein, 

gene, and isoform mappings from Ensembl (GRCh38 version 91) (327). Lastly, all protein-

coding isoforms associated with each reference protein that participates in the PPIs are selected 

as the final set of AS isoforms. 

Statistical Potentials 

Large-scale characterization of protein–protein interactions (PPIs) using high-throughput 

interactomics approaches, such as yeast-two-hybrid and tandem-affinity purification/mass 

spectrometry methods, have provided the scientists with the new insights of the cell functioning 

at the systems level and allowed to better understand the molecular machinery underlying 

complex genetic disorders. Structural studies of PPIs have revealed that a PPI is often carried out 

by smaller structural protein subunits, the protein domains. Roughly two-thirds of eukaryotic and 

more than one-third of prokaryotic proteins are estimated to be multi-domain proteins, and thus it 

is not surprising that ≈ 46% of structurally resolved interactions are domain–domain interactions. 

A high-throughput breakdown of the interactome at this, domain-level, resolution is a much 

more experimentally challenging task, currently unfeasible at the whole-system level and 

requiring computational methods to step in. 
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Here, we present a simple knowledge-based domain interaction statistical potential 

(DISPOT), a tool that leverages the statistical information on interactions shared between the 

homologous domains from structurally defined domain families. The knowledge-based potentials 

are extracted from our comprehensive database of structurally resolved macromolecular 

interactions, DOMMINO. Our statistical potential can be integrated into PPI prediction methods 

that deal with multi-domain proteins by ranking all possible pairwise combinations of domain 

interactions between two or more proteins. We want to stress that although DISPOT potentials 

provide some insight into PPI, it is not a classification method, and data provided by it should be 

used in conjunction with additional information, e.g. a specific pathway. 

The development of DISPOT is driven by several observations. First, an average 

interaction between a pair of proteins is not carried out by all domains constituting each protein, 

but only by a select subset. Indeed, each domain has its unique structure and biological function 

and may not be designed to interact with a particular domain from another protein. Second, the 

domain–domain interactions often share homology: when two homologous domains interact with 

their partners, these partners frequently also share the homology with each other. Thus, one can 

introduce the domain–domain interaction propensity in terms of the frequency of domain–

domain interactions between the two domain families. Lastly, the propensity of domains to 

interact is expected to vary across different families, thus allowing to provide the finer resolution 

of the PPI network. 

The quantification of the odds for a domain from one domain family to interact with a 

domain from another family is defined in this work as a knowledge-based statistical potential. 

Statistical potentials are widely used in biophysical applications, often for characterizing the 

residue contacts between the protein chains. One of the main applications of the residue-level 
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statistical potentials is in protein docking. Our domain–domain statistical potential complements 

the residue-level potentials by considering structural units from the higher-level of protein 

structure hierarchy and requiring no structural information about the protein domains. 

Specifically, the input for DISPOT includes the protein sequences of the two proteins interacting 

with each other. 

First, the domain architecture of each protein is obtained. To do so, a region of the 

protein sequence is annotated to a family of homologous domains. For the definition of domain 

families, we leverage the structural classification of proteins (SCOP) family-level classification. 

SCOP represents a structure-based hierarchical classification of relationships between protein 

domains or single-domain proteins with ‘family’ being the first level of SCOP classification and 

‘superfamily’ being the second level. Protein domains from the same SCOP family are 

evolutionary closely related and often share the same function. Since a protein with no structural 

information cannot be directly annotated by SCOP, we use SUPERFAMILY, a Hidden Markov 

Model (HMM)-based approach that maps regions of a protein sequence to one or several SCOP 

families or superfamilies. SUPERFAMILY allows us to cover a substantial subset of known 

proteins: the HMM coverage at the protein sequence and overall amino acid levels for the 

UniProt database were reported at 64.73% and 58.78%, respectively, in 2014. 

Second, for each pair of SCOP families we count a number of non-redundant PPIs 

between the members of these families that have been experimentally determined. Our source of 

data is DOMMINO a comprehensive database of structurally resolved macromolecular 

interactions. It contains information about interactions between the protein domains, interdomain 

linkers, terminal sequences, and protein peptides. In this work, we use exclusively domain–

domain interactions because the data about this type of interactions is the most abundant. To 
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remove redundancy in the data, we use ASTRAL compendium, which is integrated into the 

SCOPe database (333). From ASTRAL, we obtain a set of domains, where each domain shares 

<95% sequence identity to any other domain in the set. This set is then used to determine pairs of 

redundant domain–domain interactions in the original DOMMINO dataset. Two domain–domain 

interactions are determined as redundant if both corresponding pairs of domains share 95% or 

more sequence identity. For each pair of redundant domain–domain interactions, one interaction 

is randomly removed. The process continues until no pair of redundant interactions can be 

detected. 

Third, for each domain family from each protein, a statistical potential is calculated   

(Fig. 3.8). There are two types of statistical potentials introduced in this work: (i) calculated for a 

domain from a specific domain family and (ii) calculated for a pair of domains, one domain from 

each of the two interacting proteins. The statistical potential Pi for a single domain Di is 

calculated based on the total number of interactions NDiNDi extracted from the non-redundant 

DOMMINO dataset for the specific SCOP family this domain belongs to. The statistical 

potential Pij for a pair of domains, Di and Dj, is calculated based on the total number of 

occurrences Nij of the interactions between all domains from the same two SCOP families 

as Di and Dj. Those numbers are then transformed into probabilities as follows: 

𝑃* =
1
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where 𝑁+Z-[ is the average number of interactions for one domain and 𝑀+Z-[ is the average 

number of interactions for a pair of domains present in the database. 
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DISPOT potentials are derived following a standard strategy for calculating a statistical 

potential. The statistical potentials for the atomic contact pairs are traditionally derived based on 

Boltzmann relation: 

𝑃*\ = −𝑘_𝑇 ln
𝑝*\(𝑟)
𝑝*\∗

 

where k is the Boltzmann constant, T is the system’s temperature, pij is an experimentally 

observed density of atom pairs from different partners in a complex at distance and 𝑝*\∗  is 

corresponding density in the reference state. Since we do not work with the atomic-level physical 

interactions, we replace the Boltzmann constant from DISPOT equations and substitute 

temperature with the inverse of normalization constant Z. In addition, pij and 𝑝*\∗  are substituted 

with the number of interactions between domains in DOMMINO database. 

DISPOT can also provide integrated protein-level statistics. There are multiple ways to 

combine the domain-level statistics into a protein-level statistics. Two simple approaches to 

integrate domain–domain interactions for a given PPI in terms of a standalone (single protein) 

and interaction (protein pair) potentials are: 

𝑃G8 = max
*
𝑃* and 𝑃G89 = max

*,\
𝑃*\ 

respectively, where i and j correspond to the domains from protein u and v. The rationale behind 

these definitions lies in the assumption that a single strongest domain–domain interaction is the 

one of the most important defining factorsfor the PPI. These definitions of cumulative potentials 

were tested in terms of their ability to predict a PPI using several experimental sources. First, we 

obtained the coverage landscape by the cumulative potentials on the experimental protein–

protein interactomes one obtained using high-throughput yeast-two-hybrid screening (HI-I-05) 
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and another one obtained using curated literature-based search (LitBM-

17, http://interactome.baderlab.org/data/LitBM-17.psi). As expected, while this naïve method 

was able to recover 2944 PPIs in HI-I-05, it missed 1188 PPIs even using a lenient threshold of 

−20 (Fig. 3.8). Similarly, the cumulative potential was able to recover only 1718 PPIs while 

1453 PPIs were not recovered. We then apply the same pairwise cumulative potential to the 

large-scale mass spectrometry study. Specifically, we study the correlation between the hu.MAP 

probability score and cumulative pairwise score among KEGG (334) pathways and GO clusters 

produced by GeneSCF (335) on 13 855 genes with SUPERFAMILY annotation. While the 

number of highly correlated pairs was substantial, the number of pairs with very little correlation 

still prevailed. Finally, the analysis of the cumulative single potential for a protein showed that it 

can obtain a diverse range of values and this property seems to be independent of how many 

domains this protein has. Similar behavior was observed when looking at the other basic 

cumulative measures. 

Overall, we have analyzed and summarized interactions from 3619 SCOP family pairs 

that were extracted from 352 199 PPIs. In total, domains from 1384 SCOP families were 

characterized that form domain–domain interactions in 1384 ‘homo-SCOP’ interaction pairs 

(i.e., both domains are annotated with the same SCOP family) and 2235 ‘hetero-SCOP’ pairs. 

The analysis of the calculated statistical potentials showed a wide diversity across different 

families. 
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Figure 3.8. DISPOT statistical potential and its application. (A) A crystal structure (left) of 
the protein complex between CNTO607 Fab human monoclonal antibody (yellow and red colors denote 
two different chains) and interleukin-13 (IL-13, shown in blue), and the corresponding domain–domain 
interaction network (right). Shown in italics are SCOP family IDs, and in bold are DISPOT values for the 
corresponding interactions. Nodes colored with the same color belong to the same chain. Solid lines 
connecting nodes correspond to the physical interactions, while dashed lines connect nodes corresponding 
to the protein domains that do not physically interact. (B) A heatmap showing DISPOT values calculated 
for each pair of SCOP families, where only potentials for pairs of SCOP families with five and more non-
redundant interactions are plotted. The families are grouped based on the SCOP class (a–g) and are 
ordered within each fold based on their IDs. (C) A contact map showing the correlation between 
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experimentally obtained human interactome HI-I-05 and DISPOT-based PPI prediction. A prediction that 
calls a PPI correctly is shown in magenta, while PPIs that were missed are shown in cyan. (D) Correlation 
calculated using R2 correlation coefficient between the hu.MAP interaction probability score and DISPOT 
statistical potential for KEGG pathways (bottom) and GO clusters (top). (E) Distribution of the protein-
level DISPOT statistical potentials grouped by the number of SCOP domains in a protein defined using 
SUPERFAMILY. 

Finally, we would like to make a cautionary note of using the developed tool. DISPOT 

was designed not as a PPI prediction tool, but rather a tool that provides additional information 

on the likelihood of specific domain–domain interactions in a given physical PPI. The main 

reason is the fact that structural coverage of the PPI space is still far from being full, which leads 

to the presence of a high number of false negatives if one was to use DISPOT as a standalone 

predictor. This intuition has been supported by our evaluation of DISPOT against the two 

interactomics golden standards. Thus, if a researcher wants to employ DISPOT in a PPI 

prediction method, we recommend adding the DISPOT potentials as features to the overall 

feature vector, that will include other parameters, such as secondary structure, evolutionary 

conservation of the sequence, predicted residue hydrophobicity, etc. 

 

Feature engineering 

The question we are answering in this work, if the alternatively spliced isoform A2 will 

retain an interaction originally established between the reference isoform A1 and its interaction 

partner, is somewhat similar to a PPI prediction task. However, here we can leverage additional 

information on alternative splicing and knowledge regarding the original interaction. This 

naturally imposes structure on the features we generate. So far, we are using three groups of 

features: (1) biochemical features of the reference isoform and its interaction partner, (2) domain 

interaction knowledge-based statistical potentials, and (3) so-called “delta” features. The first 

group of features is inspired by PPI prediction methods (319, 336). The second group represents 
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set of features derived from our DOMMINO database of macromolecular interactions (337) The 

rationale behind using this group of features is the following: given that an average protein 

includes multiple protein domains (242), it is important to know which domains are directly 

involved in a particular PPI. The third group, the “delta” features, includes selected 

characteristics of alternative splicing events. Specifically, the features are designed to capture 

those differences between the reference isoform and its alternatively spliced variant that may 

result in a loss of interaction.  

The biochemical features provide a general outline of the different properties of the 

known interaction. These features include molecular weight, number of residues, average residue 

weight, charge, isoelectric point, A280 molecular extinction coefficient for both reduced and 

cysteine bridges, and several other characteristics (Table A1, Appendix).  

There are four subgroups of the delta features. The first subgroup includes features that 

describe the difference of the biochemical characteristics between the reference isoform A1 and 

alternatively spliced isoform A2. The second subgroup includes the difference between the 

statistical potentials of A1 and A2. The third subgroup is a set of simple sequence features that 

can be computed with a basic sequence alignment, but nevertheless may provide important 

knowledge. For instance, an exon skipping event that results in a large portion of protein missing 

is usually more detrimental to the protein-protein interaction than several exon skipping events, 

each missing only a small portion of the protein. Similarly, the modifications in N- or C-terminus 

are less likely to result in interaction perturbation compared to an equally sized modification 

occurring in one of the protein’s domains. The last subgroup of features is concerned with the 

SCOP family domain information defined by the SUPERFAMILY tool (338) to determine if the 

alternative splicing affects specific protein domains.  
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Learning Under Privileged Information (LUPI) 

Learning under privileged information (LUPI) is a machine learning paradigm that 

accounts for valuable features which are either impossible or too expensive to obtain when using 

the trained model for predictions (privileged information). The LUPI paradigm accounts for this 

privileged information by adjusting the decision boundaries inferred by the algorithm over the 

regular features (339-341). Although LUPI is a generic machine learning paradigm and is not 

specific to selected classifiers, current general-purpose implementations are limited to the SVM 

variations (339, 340, 342, 343). The only available alternative - neural networks implementations 

– are primarily focused on computer vision tasks (344-346). In the current work, we are using 

SVM+ LUPI classifier and AdaBoost built on top of this classifier. Our list of privileged features 

consists of the FoldX interaction energy and supplementary terms (e.g., electrostatics) (347, 

348), OPUS-PSP score (349), GOAP potential (350), NACCESS2 accessible surface area (351), 

Geometric score (352) and Dfire2 score (353), as well as statistics on the binding sites (354) 

(Table S4, Supplementary Data). Many of these features are based on the structural information 

of the proteins and therefore were calculated only for the labeled training set. 

Machine learning approaches 

Six machine learning classifiers were trained, and their performance compared, including 

four supervised learning methods: support vector machines (SVM) with two kernels, random 

forest, and AdaBoost, as well as a LUPI approach using SVM+ and a semi-supervised learning 

method using an iterative self-learning random forest approach.  

Support vector machines (SVM) belong to a family of widely used kernel methods (19). 

It is also among the most well-established and popular machine learning approaches in 

bioinformatics (20, 21). In our experiments, two kernel functions were explored: linear kernel 
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and radial basis function (RBF) implemented in libsvm library (355) For the SVM models, the 

parameter optimization was performed using grid search. Optimal values gamma = 0.005 and C 

= 9 were obtained after the search in the range from gamma = 0.001 to gamma = 1 with a step 

0.002, and from C = 1 to C = 100 with a step 1. 

Random forest (91) is an ensemble classifier, which combines multiple supervised 

learning classifiers to get a prediction. It uses the ideas of bagging and random split decisions to 

predict a class of untrained vectors. In bagging, a random selection of the examples in the 

training set is used to build each decision. Because of the data heterogeneity in our problem and 

the necessity of addressing missing values for the domain-based information the RF classifier is 

a good fit. In this work, the random forest models were trained using the scikit-learn 0.19.1 

package (356). Parameters obtained by nested cross-validation include Gini criterion, a minimum 

number of samples required to split node = 2, and an unbound maximum depth. 

AdaBoost (Adaptive Boosting) is an ensemble classifier that produces accurate prediction 

rules via combining several weak learners into a weighted majority hypothesis, adaptively 

changing weights based on the accuracies of individual components (357, 358). This model is 

widely used in bioinformatics applications (359-364). The algorithm has an iterative nature, 

updating weight vector 𝑊 = 〈𝑤&, … , 𝑤^〉 that corresponds to the 𝑁 labeled examples 

(𝑥&, 𝑦&), … , (𝑥^ , 𝑦^) for each iteration 𝑡 based on weak learner’s weighted error 𝜀/ =

∑ 𝑝*/|ℎ/(𝑥*) − 𝑦*|^
*,& . Here, ℎ/(𝑥*) is a weak learner’s hypothesis, given distribution 𝑝/ = !:

∑ !0
:;

0<(
. 

In modern implementations weights are updated according to the formula 𝑤*/%& =

𝑤*/𝑒1b:|4:(d0)1e0|, where 𝛼/ =
&
"
ln `&1f:

f:
c (365). 



 85 

SVM+ is one of the standard LUPI algorithms based on the SVM classifier (366). The 

key advantage achieved by this algorithm is the much faster convergence of the learning process, 

as a function of the number of training examples, n. LUPI with its fast training convergence is 

well-suited for our problem, since the number of labeled isoform pairs is limited for a traditional 

supervised learning approach. Formally, the learning problem using privileged information is 

defined as follows: given a set of training triplets , where xi is a normal 

feature vector and xi* is a vector with privileged information, map each vector  to a vector 

of another space, , each privileged vector  into another space, , and find in Z 

a separating hyperplane that minimizes the cost: 

 

The minimization problem then is solved using one of the current efficient SMO 

optimizers(367). 

We also explored a straightforward modification of AdaBoost with SVM+ as a base 

learner, using the same training algorithms as in the study (365).  

Finally, another machine learning concept was explored, semi-supervised learning (257, 

316, 368). One of the main bottlenecks of supervised learning is the cost of labeling data. The 

idea behind semi-supervised learning is to utilize a large amount of unlabeled data to improve 

the results of the corresponding supervised learning algorithm. There are a number of existing 

approaches to combining labeled and unlabeled information that try to exploit the underlying 

structure of the unlabeled data. In most cases, the learning algorithm attempts to find clusters to 

modify the decision boundaries. Here, we implement a simple semi-supervised learning 
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approach, iterative self-learning random forest, that has previously shown to outperform more 

advanced semi-supervised learning methods on protein-protein interaction data represented by 

heterogeneous features (257). The algorithm starts with a labeled training dataset and a pool of 

unlabeled feature vectors (Fig. A1, Appendix). At each step, the algorithm initially trains a 

supervised learning classifier on the labeled training set. Then, it evaluates the model using a 

grouped 10-fold cross-validation over the training set. Next, the algorithm applies the obtained 

classifier to the remaining unlabeled dataset, predicting their labels, selecting several examples, 

and adding them back to the training set, and retraining the supervised classifier. Selection of the 

newly labeled examples is based on the confidence score provided by the random forest 

algorithm. After multiple iterations, the model with the best evaluation score is selected when the 

current iteration’s F1-score decreases by more than 0.03; at this point, the model for the step 

before the subsequent decline in performance is returned. 

Feature selection protocols 

To improve the performance of the classifiers, three feature selection methods are 

explored including LASSO, recursive feature elimination (RFE), and principal component 

analysis (PCA) (369). We also analyze the importance of individual features. To calculate the 

feature importance, we use the mean decrease of impurity in the random forest model, our top-

performing supervised classifier. This is a tree-specific metric and is directly related to the Gini 

impurity, calculated at each tree node (91). The same feature is present in multiple trees in a 

random forest model, thus the average decrease in impurity integrates the feedback from all trees 

that contain this feature. 

LASSO is a regression model with l1 regularization. Because of the l1 penalty, a solution 

for the regression naturally contains zero coefficients for many features, thus discarding them 
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from the model. RFE is another widely used feature selection algorithm that consecutively 

removes one feature from the model and evaluates the results using cross-validation. The optimal 

number of features in RFE is also determined by cross-validation. The last method is a feature 

generation method, PCA. It is a technique that performs orthogonal transformation of the feature 

set to obtain linearly uncorrelated components.  

The number of selected principal components is determined by the 98% explained 

variance cutoff threshold. Feature selection methods produce varying results for SVM and fail to 

improve the performance of the random forest classifier, which, in turn, shows the most accurate 

performance among all supervised methods in our study. This result is expected, since the total 

number of features is significantly smaller than the number of samples, so the random forest 

model does not overfit, and the influence of less informative features’ is limited due to the 

random subspace selection. 

Quantification and Statistical Analysis 

Data scarcity makes efficient training of machine learning models and their subsequent 

evaluation difficult. Obtaining a fully independent evaluation dataset is equally critical because 

failure to isolate training and testing data may result in overly optimistic scores, even if the 

obtained model does not generalize well (164, 370-373). Therefore, we propose two ways of 

assessing our approach. The first is a validation protocol that takes into account the nature of the 

AS data, while preventing information leakage from the testing set into the model through the 

entire training process. The protocol includes four steps: (i) split on test/train for cross-validation 

(CV) iteration; (ii) feature selection; (iii) hyperparameter tuning; and (iv) evaluation of each CV 

iteration. Our evaluation protocol is based on the concurrent usage of leave-group-out cross-

validation (LGOCV) (374) and nested CV (375) protocols (Fig. 3.9). For the cross-validation 
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protocol, we employ one of the most widely used 10-fold cross-validation. Secondly, we 

compare the performance of our methods with the state-of-the-art ab initio PPI prediction tools, 

including TRI_Tool (M1) (336), LR_PPI (319) with negative set 1 (M2), and LR_PPI with 

negative set 2 (M3). One can apply each of the ab initio tools to predict if a PPI between A2 and 

B exists, independent of knowing whether or not A1 and B interact, while similar to our case, the 

existing AS-based method requires a PPI to exist between A1 and B. Lastly, we compare our 

methods with the only two methods that leverage AS information, albeit for slightly different 

problems (317, 318). 

Nested cross-validation protocol (375) is used to avoid overfitting during hyperparameter 

tuning (Figs. 3.9, 3.10). It is a crucial step for the learning methods whose performance is 

heavily dependent on their hyperparameters. Each iteration of the nested cross-validation 

protocol includes two loops, the outer loop, and the inner loop. For each outer loop, the dataset is 

divided into the training and testing sets, as in regular cross-validation, and this loop is used to 

generate performance assessment measures for a classification algorithm. The inner loop is 

executed within each iteration of the outer loop. Specifically, the training dataset from the outer 

loop is further split into the initial training and parameter tuning subsets followed by another 

cross-validation step to find the optimal hyperparameters. This procedure allows for the 

evaluation step to be explicitly detached from the hyperparameter tuning step.  

Regular cross-validation performs well if each data point is completely independent of 

others. Unfortunately, this may not always be the case for our dataset, as multiple isoforms are 

the products of the same gene. If one subset of related isoforms is present in the training set and 

another subset is present in the testing set, then the model is provided with an unfair advantage 

during evaluation. We expect our model to generalize well and handle novel isoforms with no 
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prior information about them. Therefore, the original 10-fold cross-validation is modified into a 

leave-group-out cross-validation (LGOCV) (374). Specifically, we group all isoforms that are 

products of the same gene, and each group is then allocated exclusively either to the training set 

or to the testing set. This LGOCV protocol is more stringent than the regular CV protocol, thus it 

is expected to reduce the reported accuracy of the method. 

The performances of the supervised and semi-supervised learning methods are assessed 

using three evaluation protocols: (1) the nested leave-group-out cross-validation; (2) comparison 

with the state-of-the-art ab-initio PPI prediction methods; and (3) comparison with the domain-

based prediction (317). For each method, standard assessment criteria are computed, including 

accuracy (Acc), recall (also called sensitivity, Rec), precision (Pre), f-measure (F1-score), 

Matthews correlation coefficient (MCC), and area under the curve (AUC). The area under the 

curve can be computed with the help of the Gini coefficient (𝐺&): 

𝐴𝑈𝐶 = &%g(
"
𝐺& = 1 − ∑(𝑋) − 𝑋)1&) (𝑌) + 𝑌)1&), 

where 𝑋*is a true positive rate (TPR), and 𝑌* is a false positive rate (FPR) for the threshold i. A 

pair (𝑋*,𝑌*) defines a point on the receiver operating characteristic (ROC) curve. The statistical 

significance of the results for the top-performing classifier is calculated using Welch's non-

parametric t-test with the significance level at 0.1, which is appropriate because it does not 

assume equal variance of the samples (376) over metrics obtained on each step of two 10-fold 

cross-validation. 
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Figure 3.9. Nested 5-fold cross-validation and Leave group out cross-validation (LGOCV) 
examples. A. Outer loop is a 5-fold cross-validation which splits data into 5 batches. On each step one 
batch is withheld for testing classifier performance. The other 4 batches are used for another 5-fold cross-
validation. This inner cross-validation is used for hyperparameter tuning. LGOCV is a leave-group-out 
cross validation step. B. This type of cross-validation is used when samples are not independent of each 
other. All samples that share a common origin (produced by the same gene) are put either in train set or in 
test set. In this way the model generalize substantially better due to no information leakage. 
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Figure 3.10. Validation protocol. Nested cross validation (see Fig. 3.9) is used for the 
hyperparameter tuning. For each iteration, inner cross-validation is conducted exclusively on the training 
data from the outer loop, thus the hyperparameters and normalization procedure derived from this stage 
are completely agnostic of the outer loop’s testing data. This approach prevents information leakage 
between training and testing phase at each step of cross-validation. In order to account for the information 
leakage stemming from the sequence similarity among the isoforms, both inner and outer cross-
validations are LGOCV (Fig. 3.9) considering isoforms derived from the same gene as a single group. 

 

3.3.4 Results 

 
Method evaluation 

First, using D1, we evaluated the prediction accuracy of the three supervised machine 

learning classifiers: SVM with linear and radial basis function kernels and random forest (Fig. 

12F, Tables 1, 2). The results of 10-fold nested cross-validation showed that random forest 

clearly outperformed the two regular SVM models and SVM+ model that made use of the 

privileged information, reaching an accuracy of 0.85, F1-score of 0.90, MCC of 0.62, and AUC 
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of 0.80. Next, to evaluate the importance of protein domain feature information, we assessed the 

same methods, but with two different feature vector definitions, one that included the protein 

domain features and another that excluded them. Without protein domains, the performance 

slightly dropped, with the accuracy values ranging from 0.82 to 0.84, precision from 0.84 to 

0.87, recall from 0.90 to 0.93, F1-score from 0.87 to 0.88, MCC from 0.48 to 0.57, and AUC 

from 0.71 to 0.77. Similarly, to evaluate the importance of using the delta feature information, 

we assessed the same supervised classifiers with or without these features. For vector 

representation lacking delta features the performance dropped substantially, with the accuracy 

values ranging between 0.72 and 0.73, precision ranging between 0.72 and 0.74, and with MCC 

dropping the most, ranging between 0 and 0.08. Recall was the only metric that improved, 

ranging from 0.96 to 1.0.  

Our second machine learning approach, a semi-supervised learning classifier, 

incorporated a large number of unknown label data to train the model. As a result, during the 

cross-validation, the semi-supervised classifier provided the most accurate performance of all 

other methods. The assessment values included accuracy of 0.87 (improvement of 0.01 over the 

top supervised learning classifier, p = 0.65), precision of 0.93 (improvement of 0.03, p = 0.09), 

recall of 0.89 (lower than the boosting models by 0.09, p = 0.04), F1-score of 0.91 (improvement 

of 0.01, p = 0.94), MCC of 0.68 (improvement of 0.06, p = 0.08), and AUC of 0.84 

(improvement of 0.04, p = 0.07).  
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Figure 3.11. Feature analysis and comparison of our machine learning models with general 

PPI prediction methods across four different metrics (accuracy, F1-score, MCC and AUC). A. A 
correlation plot between features used for training machine learning models showing three distinct blocks 
which are associated with biochemical features of reference isoform, biochemical features of interacting 
protein and delta biochemical features. None of the blocks show high correlations with other blocks. B. A 
scatterplot based on delta frequency of leucine and another delta of 280MERC coefficient is a typical 
example of how the feature values are distributed between the representatives of two classes, suggesting 
that the pairwise comparisons cannot separate two classes well. C. Isomap visualization of all features 
through a low-dimensional embedding. In spite of using manifold learning, we are unable to obtain 
separable classes in 2D space. D. t-SNE plot of the entire dataset indicating three large clusters 
corresponding mainly to the conserved interactions (blue) and small fine-grained clusters of both 
conserved and perturbed (red) interactions that are linearly separable. E. t-SNE plot of the same dataset 
with columns weighted by feature importance obtained from the random forest model, indicating clearer 
separation of perturbed and conserved interactions clusters with inner area dominated by the conserved 
interactions. F. Performance of our supervised (blue) and semi-supervised (purple) methods representing 
mean value of cross-validation runs compared against three current ab-initio PPI prediction methods 
(orange) across four metrics.  
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The question posed in this work could also be addressed by 1) assuming that the 

alternative isoform is a new protein, and 2) predicting whether the isoform interacts with the 

corresponding interaction partner using an existing ab initio PPI prediction method, i.e., without 

prior knowledge about the interaction between the reference isoform and its interaction partner. 

Our evaluation of the three state-of-the-art ab initio PPI prediction methods showed that neither 

of the methods could be reliably used for our task: the values for accuracy ranged between 0.46 

and 0.58, recall between 0.29 and 0.5, precision between 0.5 and 0.52, F1-score between 0.36 

and 0.4, and MCC between 0 and 0.05 (Fig. 12F). 

 
 

Algorithm Feature 
Selection Accuracy Precision Recall F1-score MCC AUC 

Semi-Supervised RF RFE 0.87 0.93 0.89 0.91 0.68 0.84 

Random Forest RFE 0.85 0.90 0.89 0.90 0.62 0.80 
SVM-RBF RFE 0.84 0.87 0.93 0.89 0.55 0.75 

SVM-Linear Lasso 0.82 0.86 0.92 0.88 0.44 0.70 
LUPI SVM+ None 0.86 0.88 0.93 0.90 0.53 0.78 

LUPI SVM+ 
Boosting 

RFE 0.85 0.83 0.98 0.90 0.53 0.70 

AdaBoost RFE 0.86 0.87 0.95 0.91 0.61 0.78 

PPI Prediction Methods 

M1 0.58 0.29 0.50 0.36 0 0.51 

M2 0.58 0.29 0.50 0.36 0 0.59 

M3 0.46 0.50 0.52 0.40 0.05 0.58 
Isoform prediction method 

M4 0.65 0.28 0.74 0.40 0.28 0.73 
 

Table 1. Comparison of AS-specific machine learning models and general ab initio PPI 
prediction methods. Our top performing machine learning model is the semi-supervised random forest. 
It has the best scores for each metric except recall. PPI prediction methods fairs poorly for our problem.  
As both F1-score and MCC are also low our conclusion is that M1, M2 and M3 in its current states are 
unfit for our problem. Low AUC also suggests that we cannot raise other metrics much by simply varying 
the probability cutoff threshold. The highest scores for each measure are shown in bold. 
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Unsatisfactory performance of generic PPI prediction methods with comparable results 

was also previously observed (164). Specifically, the work highlighted a common flaw in the 

pair input schemes—leaking information on specific protein pairs from a test set to the model. 

Information leakage effects have been a well-known problem in supervised learning (370-373). 

In PPI studies, the leakage effects happened because the same interacting partners were present 

in train and test sets, while the interactions were different because the second interaction partner 

was different.  

Algorithm Semi-Supervised RF 
Feature Selection RFE 

Algorithm Feature 
Selection Accuracy Precision Recall F1-score MCC AUC 

Random Forest RFE 0.31 6.6*10-2 0.53 0.54 8.3*10-2 7*10-2 
SVM-RBF RFE 0.51 9*10-3 5.4*10-2 0.22 5.5*10-3 1.7*10-3  
SVM-Linear Lasso 2.1*10-2 2.2*10-4 4.0*10-2 0.15 3.3*10-4 1.9*10-4 
LUPI SVM+ None 0.65 9.5*10-2 0.55 0.12 4.9*10-2 6.8*10-2 

LUPI SVM+ 
Boosting 

RFE 0.34 2.5*10-4 3.6*10-2 0.94 9*10-2 4.8*10-3 

AdaBoost RFE 0.25 1.6*10-2 3.3*10-2 0.62 2.9*10-2 7.3*10-3 

 

Table 2. Statistical significance of differences in performance measures between the top-
performing machine learning model (semi-supervised random forest with RFE feature selection) 
and other alternative splicing-specific models. Welch’s test on two 10-fold cross-validation runs is 
used to determine statistical significance of the results from Table S2. Statistically significant differences 
are presented in bold. Semi-supervised random forest (SSRF) completely outperforms SVM-Linear with 
statistically significant gains for all measures but F1-score. In comparison to SVM-RBF, it loses in Recall 
but gains in precision, MCC, and AUC. Compared with supervised random forest, SSRF has a 
statistically significant gain in precision, MCC, and AUC. Factoring in those differences, one can 
conclude that SSRF with RFE model is able to generalize better than other models, though boosting-
based models can be used as an alternative in specific applications as they are able to achieve the highest 
recall. 

 

To eliminate the aforementioned effects, we used leave-group-out cross-validation 

(LGOCV) for our method assessment (Fig. S3). After the transition from 10-fold CV to LGOCV, 

the best performance of our initially evaluated models dropped sharply from 0.86 accuracy and 
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0.88 F1-score to 0.67 accuracy and 0.59 F1-score, respectively. Eventually, enhancing the 

classifier using feature generation as well as the introduction of knowledge-based statistical 

potentials and additional alternative splicing-specific features, enabled the improvement of the 

accuracy and F1-score to 0.87 and 0.91, respectively (Fig. 3.11). 

Lastly, when comparing the performance of our semi-supervised classifier with the two 

previously published AS-based methods, we found that ALT-IN Tool substantially outperformed 

both of them. In particular, a previously published AS-based PPI prediction method (317) 

reported TPR of 0.33 and FPR of 0.2 for the data with full domain-domain interaction annotation 

and even worse TPR of 0.31 and FPR 0.1 for the data with partial annotation. In comparison, our 

method had TPR of 0.93 and FPR of 0.20 based on the 10-fold nested cross-validation for the 

SSRF classification algorithm. Reported results on the experimentally validated dataset for the 

second AS-based method (318) included accuracy of 0.65, AUC of 0.73, and MCC of 0.28 

(Table S2 in Suppl. data) and were also significantly lower than the measures for both supervised 

and semi-supervised versions of ALT-IN Tool.  

Case study 

To demonstrate the utility of ALT-IN Tool and the extent to which AS variation can 

perturb a disease-centered PPI network, we used our method to predict the edgetic effects due to 

the disease-specific AS occurring in the brain and liver tissues of Western Diet (WD) fed mouse 

that developed type 2 diabetes (T2D). Because of the similarities between pathological processes 

in humans and mice bear enough similarities for the latter to be used as model organism, we 

expect to find biologically relevant highlights of the alternative splicing influence on mouse with 

environmentally induced T2D based on ALT-IN results.  
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Figure 3.12. A case studies of a gene associated with T2D, which alternatively spliced 

isoforms were predicted by AS-IN Tool to rewire some of the currently known PPIs and AS-
centered protein–protein interaction network perturbation. A. The gene architecture, protein domain 
architecture, and structure-based characterization of the alternatively spliced isoform of ywhab gene. The 
red part of the protein corresponds to the seventh exon and is spliced out in the alternative isoform A2. B. 
As a result, two interactions were predicted to be disrupted by the alternatively spliced isoform A2 that 
had been determined to be significantly overexpressed in the tissue samples of WD-fed mouse with T2D 
disease phenotype. C. Network centered around alternatively spliced isoforms expressed in the liver and 
brain tissues, which were found drastically different (at least 5 fold of log2 expression values) between 
the control and T2D mice induced through Western Diet. The effect of the alternative isoforms was 
predicted as either disrupting the original PPI (red edges) or preserving it (light blue edges).  Genes that 
are associated with T2D are represented as dark red nodes, while their interaction partners are colored 
gray. Hub nodes (30 interactions or more) associated with T2D are represented as diamond shapes, while 
the rest of T2D-associated genes are represented as triangles. A few well-studied genes linked to T2D are 
highlighted: map3k7, yes1, spry1, dlg1, and ywhaz.   
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As information on molecular mechanism of action is not directly transferable between 

species, however similar, we emphasize that the purpose of this case study is solely to investigate 

biological relevance of the ALT-IN findings and not to provide new insights into the T2D, and 

ask readers to use method cautiously for cross-species applications. Our deep RNA-sequencing 

data extracted from the tissue samples of the healthy mouse and Western Diet (WD) fed mouse 

resulted in 1,899 AS isoforms from 1,608 genes for the brain samples and 5,951 AS isoforms 

from 3,942 genes for the liver samples that had drastically different expression levels (>5 fold) 

between diabetic and normal mice samples. In total, 6,745 unique isoforms that were 

substantially differentially expressed between the normal and diabetic samples were collected for 

both tissue types.  

Only this subset of the differentially expressed isoforms was considered for further 

analysis. Extracting meaningful information from the direct comparison with the two 

aforementioned alternative splicing PPI prediction methods turned out to be problematic. The 

first method based on the domain interactions approach (317) covered only 34% of the proteins 

which corresponded to >5-fold RNA-Seq change. The second method (318) was not publicly 

available, however, we conducted a comparison with the LR_PPI (319) predictions which (318) 

treated as a golden standard for the training purposes. 

In the following analysis, we refer to a PPI as “T2D-associated” if at least one interaction 

partner comes from this subset of 183 genes, otherwise, we call the interaction “normal”. After 

applying our method, ALT-IN Tool predicted 29 interactions as disrupted (4.5% of total 

interactions), including 23 T2D-associated interactions (79.3% of rewired interactions) (Fig. 

3.13). We then cross-tabulated information on the rewiring events among the normal and T2D-

associated interactions (Table A3 in Appendix) and applied Fisher’s exact test (377, 378). As a 
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result, we obtained that there was a statistically significant difference between the rewiring 

frequencies in T2D-associated interactions and normal ones, with 𝑝 = 0.012.  

 

Figure 3.13 Diabetes-centered AS-induced network perturbation. A subnetwork 
centered around perturbed protein interactions caused by isoforms of genes with five fold of log 
2 changes in isoform expression. We highlight three diabetes-related pathways that had 
significant presence: PI3K-Akt, ER stress, and WNT. Edge width and opacity corresponds to the 
betweenness centrality, a measure that identifies bottlenecks in graphs, computed for 
comprehensive PPI network. Hubs were determined as nodes with at least 20 connections in 
underlying PPI network. It worth noting that there is no clear link between the number of 
isoforms corresponding to distinct gene and interaction rewiring frequency. 
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Figure 3.14 The role of alternatively spliced genes perturbing PPIs in signaling 
PI3K-Akt pathway. Parts of PI3K-Akt pathway with significant rewiring are highlighted red 
and corresponding genes are listed.  HSP90 is a highly conserved protein which take in refolding 
denatured proteins under stress condition (379). Previous studies linked heightened HSP90 
concentration with the high sugar high fat diet (380), and HSP90 inhibitors were demonstrated to 
reverse hyperglycemia in diabetic mice (332, 381). VEGF is a mitogen protein that takes part in 
angiogenesis. Increased levels of VEGF-A can improve insulin sensitivity in obese patients (382-
384). 14-3-3 is a family of conserved proteins that regulate multitude of phosphoproteins, 
including those that are deregulated in diabetes, neurological disorders and cancer (385). Created 
with BioRender.com. 

 

This T2D-associated network was then further curated down to 178 unique genes, which 

were involved in 244 PPIs, with the focus on rewired interactions for visualization purposes (Fig. 

4). We highlighted the network hubs, important interactions based on betweenness centrality 
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measure (it reflects the number of paths in the underlying human interactome network that come 

through this edge), and the relevant biological pathways.  

Perhaps the most interesting contributor to the AS-induced network perturbation was 

YWHAZ, a network hub protein implicated in the regulation of several signaling pathways that 

had recently been linked to a diverse number of diseases including T2D (386-388). Furthermore, 

three pathways previously implicated in T2D, PI3K-Akt, ER stress, and WNT (389-391), had a 

significant presence in the alternative splicing network (Figs. 3.13, 3.14). 

3.4 Alternative splicing impact factor 

3.4.1 Introduction 

Alternative splicing is regarded as one of the major regulatory processes responsible for 

the production of multiple distinct RNA molecules from a single precursor. Even though this 

phenomenon has been known for 45 years and most of the mammalian genes undergo alternative 

splicing, there are conflicting opinions on the effects it has on functional diversity in complex 

organisms, with one camp arguing for it being a major player (392-394) and another pointing out 

a lack of empiric evidence of its large scale impact (395, 396). These issues impede research on 

alternative splicing role in diseases and other regulatory mechanisms, and even in many 

experimental studies, functional changes remain elusive. E.g., the authors of the extensive 

literature review (395) found conclusive evidence of functional distinctness (either presence or 

absence) for isoforms in <10% of considered studies. These issues call forth for finding 

additional insights from large-scale isoform analyses. 

There is an argument that for a lot of isoforms abundance of alternatively spliced RNA 

material is relatively low, and such low-expressed molecules do not have the capacity to 
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influence cellular mechanisms. This is a very keen insight, as current methods in molecular 

biology cannot reliably detect the effects of such small-scale actors unless their role is crucial. 

Another point raised by the community is the observation that a high expression level does not 

guarantee a similar abundance of corresponding proteins. Though, recent studies point out 

limitations of applying current protein detection techniques to the alternative isoform studies due 

to technical reasons (e.g., trypsin cleavage specificity) (397). Considering the aforementioned 

points, we conclude that the RNA expression level of isoform is one of the viable proxies for its 

functional impact. 

A common criterion for the functional necessity of the molecule is the effects observed in 

its absence (398, 399), which can be detected in an experimental setting using isoform-specific 

knockout. Unfortunately, this approach is time- and cost-demanding and currently is not viable 

on a large scale. Though we can detect one of the critical components for providing function – 

binding sites – using computational means and derive insights from the structural impact of the 

alternative splicing. 

In spite of the growing number of links between the abnormal alternative splicing and 

many complex diseases [ref], our mechanistic understanding of this links is still limited because 

of the following reason. On one hand, scientists have been mounting evidence that many AS 

variants are functionally modulated through altered macromolecular interactions, including 

protein-protein interactions (64, 400-404), suggesting that AS variants could operate as 

phenotypic drivers in physiological and pathological pathways associated with the disease or 

medical condition. On the other hand, large scale studies of the expression of tissue-specific, cell 

development-specific, and disease-specific AS isoforms have revealed a wide expression range 

of alternatively spliced isoforms [refs]. Thus, an alternatively spliced isoform that has the 
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capacity of changing a protein function, compared to its reference isoform, might have a minimal 

physiological impact because it is not expressed in the tissue or cell of interest. Similarly, a 

predominantly expressed alternative isoform might have no physiological impact because it does 

not alter the original function carried by the reference isoform. 

In this study, we propose a novel way of screening the functional impact of alternative 

isoforms – Alternative Splicing Impact Factor (AS-IF). It is a quantification measure that 

combines RNA expression level with the modification extent of binding sites. AS-IF provides a 

high-level overview of the alternative isoforms that are likely to be functionally distinct from the 

reference isoforms, narrowing the focus. 

3.4.2 Impact Factor Concept 

The joint impact of these two factors, the functional modulation and expression, has 

never been addressed due to the lack of a formal mathematical framework that could quantify 

their contribution. Here, we define a concept of Alternative Splicing Impact Factor (ASIF), a 

novel quantitative measure of the functional impact calculated at the transcription level.  

Conceptually, the ASIF measure is first defined for a specific isoform 𝐼h of a gene 𝑋 expressed 

at one tissue type, cell type, or condition 𝑇 (Fig. 3.16). We will refer to it as 𝐴𝑆𝐼𝐹(𝐼h , 𝑇). 

Second, it is generalized to all isoforms for the same gene 𝑋 at the same tissue type, cell type, or 

condition 𝑇. We will refer to this measure as 𝐴𝑆𝐼𝐹(𝐼h , 𝑇). Lastly, it is generalized to all isoforms 

of a gene across all tissue types, cell types or conditions. We will refer to it as 𝐴𝑆𝐼𝐹(𝑋). 

The cornerstone of the impact factor measure is 𝐴𝑆𝐼𝐹(𝐼h , 𝑇). To formally introduce it, for 

each gene 𝑋, we first define an artificial construct, which we call a canonical isoform, and which 

is defined as a concatenation of all different exons discovered in all isoforms for that gene. 

Second, we define 𝑁 as a number of all protein binding sites mapped onto the canonical isoform. 
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Third, we determine how an alternately spliced isoform 𝐼h of 𝑋 affects each of the molecular 

binding sites of the canonical isoform. 

 
Figure 3.15. Impact factor landscape. The impact factor encompasses RNA-Seq expression and 

binding sites change of the alternatively spliced transcript in order to quantify the importance of the 
functional role it plays in the organism. Low scores in either characteristic (functional changes or 
mRNA expression level) result in small values for the impact factor. The figure demonstrates the 
hypothetical landscape of the values AS-IF takes for the transcript with four binding sites. It is based 
on the variability across the two coordinates: binding sites modification and mRNA expression. The 
expression level changes linearly and translates into the skewed slope from the figure. The 
conservation rate of the binding sites subsequently changes, meaning the conservation rate of the 
current binding site is gradually reduced until it hits zero. Only after that next binding site is getting 
modified. These changes translate into the 'ladder' pattern from the figure. 

 

If 𝑐*(𝐼h) represents the preserved fraction of the i-th binding site (i.e., 𝑐*(𝐼h) = 0.0 when 

the binding site is fully removed and 𝑐*(𝐼h)=1.0 when it is fully preserved), then the measure is 

defined as: 

𝐴𝑆𝐼𝐹(𝐼h , 𝑇) = 𝐸(𝐼h , 𝑇) ±1 −
1
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𝑆(𝑥) =
1

1 + 𝑒1d 

where 𝐸(𝐼h , 𝑇) is the expression value of IX in T, 𝑆(𝑥) is the sigmoid function, 𝛼 is the scaling 

ratio of the sigmoid function input, and 𝛽 is the offset of the sigmoid function input. Both 𝛼 and 

𝛽 are the parameters that ensure mapping of the binding site preserved fraction into a steep 

sigmoid curve and are determined empirically. Conceptually, the sigmoid function is selected to 

model a “step-wise” behavior of the isoform’s impact w.r.t protein binding in a general case of N 

binding sites. Specifically, this function, on one hand, is dependent on the damage to the binding 

site(s) and deteriorates very quickly after a certain portion of the binding site is spliced out, but 

on the other hand, it is linearly dependent on the transcription level of that isoform for a specific 

tissue/cell/condition type T. 

Each sigmoid estimates binding site function preservation, with value of 1 corresponding 

to fully functioning binding site and with value of 0 corresponding to the total functional loss. 

The average value of sigmoids represent cumulative function conservation of the isoform. 

Consequently, we have to invert this estimate in order to obtain functional change quantification 

for the transcript tr. Higher functional change directly proportional to the increase of impact 

factor measure. The values of 𝛼 and 𝛽 were set at 63 and 0.3 respectively in order to 

accommodate the following behavior: the first 10% modifications to the binding site leave it 

intact, however if the are additional 10% changes then binding site is not considered functional. 

Using the above measure, we next define a tissue-type, cell-type, or condition specific 

ASIF measure for a gene X: 

𝐴𝑆𝐼𝐹(𝑋, 𝑇) = max
i=
[𝐴𝑆𝐼𝐹(𝐼h , 𝑇)]. 
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Once defined, for each gene one can calculate its functional impact profile across all 

types T: if for each T, 𝐴𝑆𝐼𝐹(𝑋, 𝑇) is 0, then the gene is fully functional, and its functionality 

does not depend on tissue- or cell-type or on specific condition. Another extreme case is a gene 

with 𝐴𝑆𝐼𝐹(𝑋, 𝑇) value of 1 for each 𝑇, which means that the gene lost its protein binding 

function due to predominantly expressed non-functional alternative isoform (Fig. 3.15).  

Lastly, the overall functional impact factor of gene X across all types  has a purpose of 

highlighting potential effect that alternative splicing can exhibit via the protein products of the 

gene: 

𝐴𝑆𝐼𝐹j_F(𝑋) = max
$
<𝐴𝑆𝐼𝐹(𝑋, 𝑇)= 

 

We provide separate scores for the pathway analysis.  

1. Cumulative 

Highlights absolute impact value for a given gene set 𝑆. Corresponds to the total value of 

IF for all genes. Larger gene sets may be favoured. 

𝑆3k =A𝐴𝑆𝐼𝐹j_F(𝑔)
l∈F

, 

where 𝑆 is a set of genes belonging to the pathway and 𝐴𝑆𝐼𝐹j_F(𝑔) is a system-level impact 

factor of the gene 𝑔. 

2. Maximum 

Indicates whether gene set 𝑆 contains individual genes with high IF: 

𝑆+-d = max
l∈F

<𝐴𝑆𝐼𝐹j_F(𝑔)=, 
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where 𝑆 is a set of genes belonging to the pathway and 𝐴𝑆𝐼𝐹j_F(𝑔) is a system-level impact 

factor of the gene 𝑔. 

3. Average 

Estimates AS impact in proportion to the gene set size:  

𝑆-Bl =
1
|𝑆|A𝐴𝑆𝐼𝐹j_F(𝑔)

l∈F

, 

where 𝑆 is a set of genes belonging to the pathway and 𝐴𝑆𝐼𝐹j_F(𝑔) is a system-level impact 

factor of the gene 𝑔. 

4. Tissue contrast 

Identifies gene sets for which AS regulation significantly differs in small number of 

tissues. It helps to highlight tissue-specific processes among multiple gene sets.  

𝑆32[/m = max
/0∈$

⎝

⎜
⎛ 1
|𝑆|¸

A 𝐴𝑆𝐼𝐹(𝑔, 𝑡*) − 𝐴𝑆𝐼𝐹<𝑔, 𝑡\=
l∈F	

/2∈$,/0N/2 ⎠

⎟
⎞
, 

where 𝑆 is a set of genes belonging to the pathway, 𝐴𝑆𝐼𝐹(𝑔, 𝑡*) is a transcript-level impact factor 

for the gene 𝑔 and tissue 𝑡*. Bone marrow is excluded from the list of tissues 𝑇 because of its 

low variability. 

3.4.3 Data 

This study focuses on the transcripts that were detected with high level of confidence. In 

order to achieve this goal we integrate data from six transcript databases – AS-Alps (405), 

VEGA (406), ASPicDB (274), ASTD (407), and Gencode (408). Because these databases 
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contain entries that were computationally predicted or manually curated, we select only those 

entries that have presence in at least four different sources. The result is a compendium of 

alternatively spliced isoforms (COMP-AS) that we are using further in study. 

 

 
Figure 3.16. Impact factor computational pipeline. Data. Transcripts information is collected 

from six sources – Gencode, ASTD, Vega, ASPicDB, AS-Alps, ASAPII. Then, based on the consensus 
from at least four databases, high-confidence transcripts are selected into COMP-AS DB. Isoform 
annotation. At this step, each transcript is matched with the averaged mRNA expression level from the 
GTEx for the healthy individual for each tissue separately (75). Structural components such as N- and C- 
termini, linkers, and domains are annotated based on the Dommino V2 (247) and SUPERFAMILY (338) 
databases. Binding sites are predicted using a supervised machine learning algorithm. Impact Factor. The 
mathematical formulation of the impact factor on the tissue/transcript and tissue/gene levels along with 
the critical points depicted on the landscape figure of the transcript with two binding sites.  
 

Binding sites were detected based on two competing approaches. The first one employs 

template-based search. It provides high-confidence predictions but may have limited coverage. 

To mitigate this issue a second approach leverages SCOP protein domain annotation and use 
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PSI-BLAST to map results to the sequences. It is a secondary source that is used when there are 

no available templates for the first method. 

RNA-Seq data is obtained from the GTEx (75) public repository and contain 1,170 

samples based on the material from the healthy humans. 

Proteins were annotated based on DOMMINO V2 database (247). The boundaries of 

structural units such as N- and C-termini, linker regions were mapped onto each protein 

sequence. Functional domains were annotated via SUPERFAMILY (338) Hidden Markov 

Model. 

3.4.4 Results 

Alternative splicing is a complex tissue-specific process that exhibits profound changes 

in the organism during the developmental stage. Because of this, we provide several location-

specific levels of quantification measure, though it should be noted that RNA expression levels 

in this study correspond to the adult human population, and variations occurring during 

developmental stages are not addressed in this work.  

This work systematically studied alternative splicing and its effect on basic functional 

units of the proteins – binding sites, C- and N-termini, linker region, and domains. All reported 

results are based on compendium of alternatively spliced isoforms (COMP-AS), derived from six 

publicly available transcriptomics databases. The total number of transcripts in the compendium 

is 218,222 and they cover 16,682 distinct genes. Alternative splicing did not display high level of 

selectivity – most events partially modified structural units; the large number of clean deletions 

was observed only for linkers. Overall, 83% of binding sites were affected by alternative 
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splicing. This regulatory mechanism drastically alters structural composition of the protein, 

affecting more than 50% of important components. 

 
Figure 3.17. Structural units’ modifications by the alternative splicing. Incidence of the four possible 
modification outcomes (modified, deleted, unchanged, non-synonymous single nucleotide polymorphism) 
across different structural units in transcripts: N- and C-termini, functional domains, linkers, and 
unidentified regions. It highlights non-specificity of the alternative splicing modifications in regards to 
those regions. Major part of studied transcripts contain both deletion and modification of nsSNP events. 
The linkers pose a notable exception, as a significant number of the stand-alone deletion events take place 
there. 
 

The base variation of alternative splicing impact factor 𝐴𝑆𝐼𝐹(𝐼h , 𝑇) was calculated each 

transcript across 31 tissues. The average score for the transcripts in reach tissues is demonstrated 

in Fig. 3.18B. The most drastic changes are observed across testis, neural system, and fallopian 

tube. The most conservative tissue is bone marrow. 
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Figure 3.18. Structural units modifications by the alternative splicing. A. Ordered AS-IF 
values across different transcripts. Except for the small number of gene products (~5,000), for which we 
see exponential growth, impact factor measure increases linearly. B. Boxplot of the AS-IF scores of the 
isoform from different tissues. The sex-related tissues belong to the top-3 the most impacted, along with 
the neural system. Bone marrow was virtually uninfluenced by the alternative splicing. 

 

Another important application of impact factor is the pathway profiling, it is 

demonstrated via the Fig. 3.19. This approach combines hierarchical clustering with data 

visualization to help researchers identify potential hotspots of alternative splicing activity and 

focus on the corresponding gene set.  

Impact Factor (IF) Profiles summarize information Gene/Tissue level information for a 

given gene set S. This concept is similar to gene expression profiles. The same way clustering 

can be applied to the IF profiles to identify regulatory hotspots. In this work we use unweighted 

pair group method with arithmetic mean (UPGMA) (409) – a distance-based bottom-up 

clustering algorithm from scipy package. Due to the extremely high IF scores for a small subset 
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of genes we used percentile cutoffs (5%, 15%, 25%, 50%, 75%) to compare genes instead of 

absolute value. Visualizations were produced via bokehheat package. 

 

 
Figure 3.19. AS-IF pathway profile. Visualization of gene/tissue level alternative splicing 

impact in a set of gene provides opportunity for the comprehensive examination of the effector groups of 
genes. Hierarchical clustering can assist in identification of such groups. Potential alternative splicing 
impact can be studied for each tissue separately. Coloring scheme is based on the gene impact factor 
ranking amid all available data points. Genes from top 5% are depicted via dark red, 5-15% are wine-red, 
15-20% are salmon, 25-50% are dark blue, 50-75% are blue, and 75-100% are light blue. 
 

An IF profile collapsed to the Gene/System detalization level. Allows to quickly compare 

maximum potential impact of AS across multiple gene sets. 

Existing methods for differential expression analysis can be adopted for the usage with IF 

measure, e.g., GSEA (410). In this work we compare control group with a group of breast cancer 

patients.  
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3.5 Isoform stability prediction 

3.5.1 Introduction 

 

Alternative splicing immensely contributes to the regulatory processes and allows an 

organism with roughly the same number of genes as its distant relatives from the evolutionary 

path to achieve new levels of complexity. The potential for the proteome enrichment it offers is 

immense. Applications previously described in this chapter assume that each alternatively 

spliced transcript is represented by a corresponding protein. However, there is a certain criticism 

directed at this point of view. Some researchers go as far as claiming that only ~5% of 

alternatively spliced isoforms result in functional proteins (396). These estimates are based on 

the comparison of transcript sequence databases (e.g., Ensembl (327), Gencode (408)) with the 

available mass-spectrometry (MS) data (Proteomics DB (411)). 

MS methods make possible the analysis of the mass-to-charge ratio of ions derived from 

the peptides (412). This experimental technic evaporates the biological sample and sorts obtained 

ions according to the aforementioned ratio. Then relative abundance is quantified, producing an 

isotopic distribution spectrum. This information can be used to identify known peptides by 

matching them against the library. Deciphering a signal from novel peptides is also possible; 

however, it requires an additional manual or software-assisted intervention. The main challenge 

of applying this method to the alternative splicing proteome studies is that the entire protein 

macromolecule is too large for the analysis in one go, so it has to be broken down into a series of 

short peptides. This process is called digestion and has a significant chemical bias that produces 

peptides that are not evenly, or even regularly, distributed across the protein sequence. 
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Studying highly tuned proteins, proteoforms (413, 414), that have slight variation either 

due to the alternative splicing or posttranslational modifications is an important task as it allows 

to directly obtain actionable insights into the diseases and elucidates molecular processes taking 

place in the organism. It means for the AS research, it is insufficient to either limit the scope to 

the mRNA resolution or naively translate every sequence into the protein. Isoform stability 

concerns are completely valid. There is evidence that some isoforms result in ‘junk’ proteins that 

are not sustainable (395, 415, 416). However, our ability to precisely detect specific splicing 

variants is also highly limited by the current MS methods and particular protein digestion 

strategies (397). This situation necessitates a closer interplay between computational and 

experimental tools. 

3.5.2 Dataset construction 

Constructing a negative dataset is a highly non-trivial task, as the current scientific 

community does not possess protein detection methods with accuracy close to 100%. Current 

MS methods rely on protein digestion to produce short peptides that can be detected by the 

spectrometry. The problem lies with the fact that not every peptide can provide relevant 

information on the alternative splicing event and help us to confirm that we are indeed dealing 

with the isoform. So, the scope of the peptides that are relevant to our study is greatly reduced. 

To mitigate this disadvantage, a DL-based model is used to identify peptides that are 

theoretically detectable by MS methods under a trypsin-based protein digestion strategy. Proteins 

without theoretically detectable peptides that contain information on alternative splicing events 

(e.g., splice junction, a peptide from a switched exon) are discarded. This is the main criteria on 

which candidates for the dataset are pre-screened. In order to confirm that a sufficient amount of 

biological material for the selected candidate is present in a sample tissue, an additional long-
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read RNA-Seq experiment is conducted. It is necessary to further narrow down the scope of the 

search to only highly-expressed isoforms; otherwise, the probability of missing translated amino 

acid sequences would significantly increase. The last step is the confirmation of the isoform 

presence using MS methods. If necessary alternative splicing-enriched peptides are detected, the 

isoform is classified as stable. Otherwise, it is considered unstable. 

 

Figure 3.20. Construction of the negative dataset for protein isoform stability. The candidate 
alternatively spliced proteins should contain theoretically detectable peptides for the MS methods related 
to the AS events and be highly expressed on the mRNA level. 
 

Overall, experimental confirmation of existence obtained 257 isoforms (stable) and 500 

more were considered unstable. 

3.5.3 Fine tuning of the DL model 

Machine learning methods demonstrate their best performance when extensive amount of 

training data is available. However, expanding isoform stability dataset is an expensive task that 
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require usage of two distinct experimental techniques – mass-spectrometry and long-read RNA-

Seq. Due to this restriction, we have to look for the other ways to improve model performance. 

As we are dealing with the protein sequences, one of the viable ways to achieve this issue is to 

adapt transfer learning.  

 

Figure 3.21. Fine tuning ProtTrans model on the exon segmentation task for the protein 
sequence.  Auxiliary task for the fine tuning is to segment original protein sequence into distinct exons. 
Each exon is encoded by alternating numeric label of ‘1’ or ‘2’. 

 

One of the most comprehensive recent models that extract features based solely on the 

protein sequences is ProtTrans (417, 418). This approach employ a transformer-based self-

attention model to learn how to predict masked elements during sequence-to-sequence training 

(419). It allows model to create context for each individual amino acid. ProtTrans model is able 

to distill a lot of relevant information about protein properties, e.g., biophysical characteristics of 

the amino acids, secondary structure, conserved motifs, and domain of origin (archaea, bacteria, 

eukarya, and viruses) (417). This results in a highly informative embedding that compressed 

protein profile. However, it is increasingly unlikely that this model learned relevant information 

about splicing without explicitly training on AS-centered task as this is a very complex problem. 
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Figure 3.22. ProtTrans embedding of the protein isoforms. UMAP visualization of isoform 
stability dataset that depicts partial separation of stable (blue) isoforms from unstable (red). Embeddings 
are derived from reference isoform (top left), alternative isoform (top right). A pairwise concatenation of 
both embeddings is visualized at the bottom mid. 
 

The problem of insufficient specialization of the machine learning model can be solved 

using fine-tuning on the auxiliary task. For the alternative splicing exon segmentation problem 

was selected. In essence, it is similar to the secondary structure prediction problem that assigns 

each amino acid its label – alpha helix, beta sheet, linker. When applied to the AS, the task 

becomes a task of identifying exon switching event. In order to accommodate complex proteins 

that cover a large number of exons we use only two labels that correspond to ‘starting exon’ and 

‘different exon’. Each protein can be described using this set of alternating labels. 
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Training dataset for the auxiliary task was obtained from the Gencode database. Based on 

chromosomal coordinates of protein-coding regions and exons from annotated GFF3 files with 

we extracted corresponding DNA sequences from GRCh38 reference human genome (420). The 

length of translated into amino acid sequence was estimated for each derived exon and the 

obtained boundaries were mapped onto protein-coding sequences from the Gencode. 

3.5.4 Results 

Current results cover four distinct input data – main isoform embedding, alternative 

isoform embedding, selected top-300 features from both embeddings, selected top-300 features 

from concatenated embedding and ALT-IN Tool features. Performance of the auxiliary learning 

task has cross-entropy loss equal to 0.61, accuracy is 0.38, precision is 0.47, recall is 0.18, F1 

score is 0.26. This indicates insufficient training depth of the machine learning model. One of the 

ways to mitigate it is to provide an additional biologically relevant information, another is to 

perform further model tuning using different class weights or an alternative loss function. 

Instead of creating an additional dense layer in neural network we perform classification 

using extreme gradient boosting algorithm (XGBoost) (421) that took protein sequence 

embeddings as an input features. For the model assessment we used a stratified 10-fold cross-

validation. The results are summarized on Fig. 3.23.  
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Figure 3.23. Isoform stability prediction results. Bars denote an average score and whiskers 
indicate standard deviation of each cross-validation run. A. Performance of the XGBoost model on the 
reference isoform embeddings. B. Performance of the XGBoost model on the alternative isoform 
embeddings. C. Performance of the XGBoost model on the 300 selected features from both reference and 
alternative isoform embedding. D. Performance of the XGBoost model on the 300 selected features from 
alternative isoform embeddings and ALT-IN features. 

 

The current best performing model was a combination of deep learning and manually 

engineered featured (Fig. 3.23 D) based on five distinct metrics – accuracy, precision, recall, F1-

score, and AUC. It indicates that fine-tuning procedure does not exhaustively extract information 

related to the alternative splicing and have to be further improved. 
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3.6 Proteomics-based pain studies 

3.6.1 Introduction 

Gulf War Syndrom, also known as Gulf War Illness (GWI), is a condition that affects 

around 30% of veterans of the Operation Desert Storm/Desert Shield – the Gulf War (1990-

1991) and encompasses several varying and seemingly unrelated symptoms (422). The adverse 

effects that occur in the affected population include musculoskeletal pain (especially in the lower 

back region), fatigue, cognitive problems, skin rashes, respiratory complaints, brain imaging 

abnormalities, and diarrhea. 

The etiology of GWI is not entirely understood, as multiple factors could contribute to 

the disease. They encompass multiple categories: environmental factors (oil-well fires' smoke, 

dust storms, insects, heat), physiological conditions (epigenetic causes, psychological stress due 

to the deployment and combat activities), chemical pollutants (organophosphates, carbamates, 

pyrethroids, insect repellents, organochlorine), and chemical warfare related substances (sarin, 

cyclosarin, mustard gas, pyridostigmine bromide tablets for prophylaxis against nerve gas 

agents) (423). Multiple studies investigated the potential contribution of each of those factors. 

However, due to the heterogeneous nature of symptoms, no single pre-clinical model was able to 

comprehensively cover all adverse conditions experienced by the veterans (423-426). Though, 

these models still played a significant role in devising intervention strategies.  

The interplay between a large number of chemicals, environmental factors, and age-

related ailments produces one of the most complex acquired syndromes. It significantly increases 

the difficulty of finding an efficient treatment strategy for the patients. The therapeutical 

interventions for the GWI include nutrition supplements, medication, exercise regimen, 
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mindfulness-based stress reduction, continuous positive airway pressure (CPAP), and 

acupuncture (427-432).  

Pain is one of the most prevalent GWI symptoms that significantly reduces patients' 

quality of life and creates a burden on personal and social levels. It interferes with daily activities 

and creates constant distractions, reducing the individual's ability to stay engaged, interfering 

with sleep patterns. Among previously discussed intervention strategies, detox regimen, 

mindfulness, CPAP, and acupuncture demonstrated an ability to successfully reduce the pain 

level experienced by the patient (423). However, among presented treatment methods, 

acupuncture, though effective (431, 432), presents a certain level of risk of exposing the 

individual to adverse effects, a small number of which leads to major complications (433, 434). 

Due to these issues, medical providers, in order to make the best possible decision for a given 

patient, would need a pre-screen test that is able to estimate a response degree. 

One of the viable approaches to this problem is an identification of the response 

biomarkers – a set of characteristics that can predict the outcome of a particular therapeutical 

approach (435-437). They may include various characteristics – genetic testing, brain imaging, 

metabolic products. One of the most convenient and ubiquitous tests in medical practice is the 

protein level measurement in blood. It requires only a liquid biopsy; it is a low-intrusion 

technique that does not significantly inconvenience patients. This study identified response 

biomarkers based on protein expression levels obtained via the SomaScan assay. 
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3.6.2 Methods 

Clinical trial design 

Clinical trials included thirty veterans that underwent acupuncture therapy for six 

months; 27 completed all questionaries necessary for the studies. To estimate a highly subjective 

characteristic, such as pain, two types of commonly used pain scales were utilized – SF36 and 

McGill (438, 439). For each scale, a delta pain measure was calculated – a percentage of change 

in questionary score from the base measurement that took place before the start of the 

acupuncture treatment. A liquid biopsy sample was collected from each patient no later than two 

months into therapy and then processed via SomaScan manual assay, providing an expression 

level of 1317 distinct proteins. 

Pain measurement 

The Medical Outcomes Study short-form general health survey (SF36) is a short 

questionary consisting of 36 distinct queries. It is ubiquitously used in health-related quality of 

life studies and is able to reliably demonstrate differences between a healthy population and a 

cohort affected by chronic diseases (440). SF-36 provides scores for the eight distinct profiles 

that form the physical and mental composite scales. The physical composite scale includes 

vitality, physical functioning, physical problems, and pain. The composite mental scale covers 

the following profiles: general health perception, role limitation due to the emotional problem, 

social functioning, and mental health. In this study, we focus on the pain scale.  

McGill pain questionary is designed to quantify different aspects of the subjective pain 

experience (441). The participant has to assign a number to the 5-point intensity scale that 

reflects his experience with 78 distinct words describing affective, evaluative, and sensory 

aspects. This questionary is widely used in clinical pain studies. 
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Measuring protein levels can provide a snapshot of the current processes taking place in 

the organism and can be indicative of various health issues: blood pressure, inflammation, 

coronary artery disease  (442, 443). Among the various tools in the precision medicine arsenal, 

proteomics is one of the most practical instruments as it opens doors to the design of inexpensive 

liquid biopsy-based tests (444). Recently, many efforts have been dedicated to the development 

and improvement of high-throughput proteomics assays from the companies such as Olink and 

SomaLogic. SOMAscan is one of the high-throughput assays provided by SomaLogic that is 

based on short oligonucleotides with highly selective binding affinity – aptamers.  

High-throughput proteomics 

The aptamer-based technology has the following workflow. Slow Offrate Modified 

aptamers (SOMAmers) reagents are synthesized along with supporting entities – fluorophore, 

photocleavable linker, and biotin, which is used to place the entire complex on streptavidin bead. 

Fixed in place reagents capture proteins with the corresponding binding affinity from biological 

material. Excess proteins that were not captured are washed away, and molecules on top of the 

bead are labeled with biotin. Then UV light is used to remove the photocleavable linker and 

allows formed protein complexes to drift freely in the solution. When non-specific complexes are 

subjected to the motion, they dissociate, and polyanionic competitors are added to prevent 

rebinding. In the next step, biotin labels are used to reattach protein-aptamer complexes back to 

the streptavidin bead, which is afterward isolated and added to the fluorescent array. The final 

optical intensity is measured by a fluorescent microscope, similar to the gene expression arrays. 

Intensity is quantified in relative fluorescence units (RFU). To keep RFU measurements roughly 

on the same scale, specific protein groups undergo a different degree of dilution. It is necessary 

to avoid a scenario of being unable to measure differential expression for the ubiquitous protein 
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because, during each experiment, it saturated streptavidin bead. Each biological sample is 

processed on a specific plate, where it is placed in one of the subarrays that hold a total of eight 

portions of biological material, including technical entries such as calibrator and buffer. 

The presence of technical variations introduces noise into laboratory measurements. It 

makes necessary the data normalization procedures. In this work, I explore the effect of adopting 

various normalization strategies at the intraplate and interpolate step. 

Normalization methods 

Normalization methods holds a purpose of reducing technical variability of the data 

samples obtained via particular experimental technology, in this case – SOMAScan proteomic 

assay. SomaLogic normalization procedure is split into two parts: intraplate and interplate. 

Intraplate procedures include following steps: hybridization normalization and median 

normalization. In this study I explore additional alternatives that include computational methods 

based on the background correction (EK), quantile normalization, and elastic net linear 

regression. Intraplate methods that were studied include calibrator normalization procedure 

(standart SomaLogic approach) and ComBat, a wide-spread statistical approach for batch effect 

correction for the genomics data. 

Hybridization normalization 

A part of the standard SomaLogic workflow, hybridization normalization is making use 

of 12 artificial proteins that are added to each sample – hybridization probes. These probes 

highlight the differences between the proteins that fall on different parts of the RFU scale among 

samples from the same plate. It helps to reduce technical bias, as the amount of each 

hybridization probe in every sample is the same. 
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Step 1. For each hybridization probe 𝑖 identify median among calibrators 𝑀*. 

Step 2. Calculate scaling factor 𝑆𝐹* =
&
G

 for each hybridization probe 𝑖. 

Step 3. For each sample, multiply each protein's expression by the 𝑆𝐹* corresponding to 

the closest probe 𝑖. 

Hybridization normalization step uses specific technical information added to 

SOMAScan assays explicitly for this purpose and is indispensable. This normalization step is 

always applied before any of the subsequent intraplate methods. 

Median normalization 

This normalization step is a part of the SomaLogic workflow. It is centered around 

factoring technical aspect of the assay – the usage of varying dilution groups and distinct sample 

categories. It is necessary to account for both technical and biological variations.  

The normalization steps are the following. For a given sample type category (e.g., 

calibrator, technical replicate, biological sample) and a protein group with the same dilution 

(e.g., 40, 0.05, etc.): 

Step 1. For each protein and each sample, calculate ratio 𝑟: 

𝑟 =
𝑅𝐹𝑈

𝑅𝐹𝑈+Zo*-[
 

Step 2. Calculate scaling factor 𝑆𝐹 for the sample as  

𝑆𝐹 =
1

𝑟+Zo*-[
 

Step 3. Median 𝑆𝐹′ is calculated across all proteins in the dilution group. 
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Step 4. Multiply all proteins in the same dilution group by 𝑆𝐹′ 

Median norm for calibrators 

The same as the Median normalization but is applied only to the calibrator samples (445). 

It was hypothesized that removing sample-to-sample differences from the inherently 

heterogeneous biological samples increases plate bias and have adverse effects during interpolate 

normalization step. 

ElasticNet normalization 

This normalization is closely related to the median normalization procedure, however, 

instead of the directly scaling by the 𝑅𝐹𝑈+Zo*-[ we solve a problem based on the elastic net – 

regularized linear regression (446): 

𝑦 = 𝛽E + 𝛽&𝑥& + 𝛽"𝑥" +⋯+ 𝛽)𝑥) + 𝜀, 

𝜷¿ = argmin
p
[𝐿(𝜆&, 𝜆", 𝛽)] 

𝐿(𝜆&, 𝜆", 𝛽) = |𝑦 − 𝑋𝛽|" + 𝜆"‖𝛽‖" + 𝜆&‖𝛽‖& 

Step 1. For each SOMAmer find median value for calibrators samples. 

Step 2. For each SOMAmer calculate scaling factor from calibrators RFUs based on the 

elastic net without intercept that fits median for this SOMAmer from Step 1. 

Step 3. Apply corresponding scaling factor to each SOMAmer. 

Quantile normalization 

Quantile normalization is a popular normalization method in the genomics area that map 

samples into same distribution (447). It was developed for the gene expression microarrays but 
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was later adopted for the use with other high-dimensional omics data types, e.g., RNA-

sequencing. 

Steps of the quantile regression: 

1. Order values within each sample (column) 

2. Average across rows and substitute values with the average 

3. Reorder averaged values in the original order 

EK Normalization 

Inspired by the similarities between gene expression array technology and SomaScan 

fluorescent microarrays, EK normalization incorporates plate-level background correction for the 

total fluorescence. Because specific positions of the probes are not disclosed, we normalize 

expression values based on the total signal intensity of the plate. This method assumes 

proportional distribution of the biological samples across different plates and designed to 

mitigate systematic effects introduced during each experimental batch. 

Relative intensity can be calculated using the following steps: 

1. Calculate total plate fluorescence level 𝑅𝐹𝑈"#$ by summing all expression values. 

2. Divide RFUs corresponding to each individual aptamer by 𝑅𝐹𝑈"#$. 

EK-based methods 

Previous normalization strategies can also be applied on top of total fluorescence 

normalization such as EK method. ElasticNet EK normalization is an application of 𝑅𝐹𝑈𝑠𝑢𝑚 

adjustment on top of ElasticNet adjusted data. Median EK normalization is constructed in the same way 

for the Median-normalized input. 
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ComBat 

ComBat normalization methods amends insufficient strength of linear and qspline 

normalization methods by leveraging Bayesian framework to adjust correction for both scale and 

probe location (448). Comparative study demonstrated that ComBat performance is more precise 

than selection of five other popular batch effect correction algorithms (449).  

ComBat has two distinct steps – data normalization and batch effect adjustment. 

Normalization step is based on the ordinary least squares (OLS) estimates for the expression 

level mean and standard deviation of 𝑘 − 𝑡ℎ probe: 

𝑍*\) =
𝑌*\ −𝑚Æ) − 𝑋𝛽Ç)

𝜎G)
, 

where 𝑚Æ) is the mean, 𝜎G) is the standard deviation, 𝑌*\ is the unadjusted expression level, 𝑋𝛽Ç) 

are the biological covariates, 𝑍*\) is the normalized expression that follow normal distribution 

𝑍*\)~𝑁(𝑚[2m+-# , 𝜎[2m+-# 	). Final expression level is computed using the following formula: 

𝑌*\)∗ =
𝜎G)

𝜎[2m+-#
<𝑍*\) −𝑚[2m+-#= + 𝑚Æ) + 𝑋𝛽Ç) 

Linear regression 

Linear regression describes a linear relationship between the response variable and 

explanatory variables (factors)(450). It can be mathematically formulated in the following way: 

𝑦 = 𝛽E + 𝛽&𝑥& + 𝛽"𝑥" +⋯+ 𝛽)𝑥) + 𝜀, 

where 𝑦 is the response variable, 𝑘 is the number of factors, 𝑥) is the explanatory variable, and is 

the residual noise. One of the most widely used implementations of linear regression is the 
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ordinary least squares (OLS) model. It works by minimizing the squared distance from training 

samples to the predicted values. 

Multicollinearity in the data 

There are two main conclusions. First, the variability in the model that was considered 

high by the statistical library we used was mostly a numerical issue; a simple Z-normalization 

completely removed those artifacts. This type of normalization performs linear transformation 

over the data, which should not affect linear regression. To emphasize this point, we made sure 

that the regression results stayed the same event if we computed mean and standard deviation 

over as low as three random samples. Still, to make sure that each biomarker contributes 

significant information, we performed the following procedure. We added new features to the 

regression model one by one, starting from the most significant (according to the feature 

selection method) while calculating the variance inflation factor (VIF) of each new candidate 

feature (451). If VIF was larger than a cutoff (set to 5 based on the general standards), then we 

did not include the corresponding feature in the final model.  

Adjusted 𝑅" 

Similar to the regular coefficient of determination 𝑅", adjusted 𝑅" characterizes data 

goodness of fit but takes into account a number of factors in the model. It penalizes the addition 

of variables that do not substantially improve the model. Adjusted 𝑅" can be calculated using the 

following formula: 

 

𝑅-o\" = 1 −
(1 − 𝑅")(𝑛 − 1)

𝑛 − 𝑘 − 1 , 
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where 𝑅" is the coefficient of determination, 𝑛 is the number of samples, and 𝑘 is the number of 

factors. 

Spectral co-clustering 

Detecting general groups of highly correlated protein expressions proved to be a more 

challenging task. We used spectral co-clustering (452, 453) to construct block matrices from the 

correlation matrix of the 20 most significant features. The downside of this algorithm is the 

inability to determine the true number of clusters; it needs to be specified manually. Because of 

this, we include several values in the analysis. There are images of reordered correlation matrix 

where each gene is assigned to the cluster. We found that clustering for 7-8 groups looks the 

most reasonable for detecting highly correlated groups of features. 

Coefficient of variation 

Coefficient of variation (CV) is a statistical measure that assesses variability of series 

independently from the units of measurement (454, 455). It has an advantage of creating a 

unified score for the series belonging to different scales, which is impossible to achieve with 

standard deviation. CV can be calculated directly by dividing standard deviation by mean: 

𝐶𝑉 =
𝜎
𝑀 

gPCA 

Guided principal component analysis (gPCA) is a statistic designed to quantify batch 

effect presence in the genomic data (456). It is based on incorporating information about batches 

into standard principal component analysis (PCA) algorithm. In the core of PCA algorithm lies 

singular value decomposition (SVD). 
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SVD is rooted in the mathematical fact that you can present a matrix of real numbers as a 

product of three distinct matrices. For a 𝑛 by 𝑝 matrix 𝑋 the following entities exist: 𝑛	 × 𝑛 

orthogonal matrix 𝑈, 𝑛 × 𝑝 diagonal matrix 𝐷 that contains singular values, and 𝑝 × 𝑝 

orthogonal matrix 𝑉, such as 

𝑋 = 𝑈𝐷𝑉$ 

Based on the matrix of right singular vectors 𝑉 we then can calculate principal 

components from the product 

𝑃 = 𝑋𝑉 

and are encoded by the column vectors (𝑃&, 𝑃", … , 𝑃t).  

In contrast to the regular PCA, gPCA incorporates an additional information on batches 

with the help of 𝑛 × 𝑏 indicator matrix 𝑌, where 𝑏 is the number of samples. An entry 𝑦*\ is 1 if 

sample 𝑖 belong to the batch 𝑗 and is 0 for all other positions. In gPCA, an SVD decomposition is 

performed on the product 𝑌$𝑋. In such a setup orthogonal matrix 𝑈 contains information on 

batch loadings, while matrix 𝑉 continue to hold data on feature loadings. 

The final statistic is calculated according to the following formula: 

𝑔𝑃𝐶𝐴 =
𝑣𝑎𝑟(𝑋𝑉l&)

∑ 𝑣𝑎𝑟(𝑋𝑉l))(
),&

 

The larger gPCA value, the more prominent is the batch effect presence. 

3.6.3 Data 

27 sample liquid biopsy samples from the veterans affected by GWI were collected prior 

or at the beginning (no later than two months) of six-months long acupuncture therapy course. 
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Each sample was processed on the 1.3k SOMAScan manual assay in plasma matrix. The samples 

were located on three distinct plates, containing two paired bridge samples. 

 The dataset for normalization methods assessment was produced by the Trans-NIH 

Center for Human Immunology, Autoimmunity, and Inflammation (CHI), National Institute of 

Health (445). The samples were processed via two distinct assays – one portion of dataset is run 

manually on 1.1k Assay with 32-well plates, and another were processed on semi-automated 96-

well plates 1.3k Assay. For this study we focused on the plasma matrix and leaving out serum-

based samples. The 1.3k Assay data contains artificial bridge samples QC_CHI that were 

constructed from pooled plasma from 21 individuals (10 male, 11 female) with the median age of 

57. 

3.6.4 Results 

We conducted a comprehensive comparison of the normalization methods for both 

intraplate and interplate stages with the goal of mitigating batch effect observed in the clinical 

samples. This part of the study is based on comprehensive dataset for plasma collected by CHI.  

Initial assessment of intraplate normalization step was conducted based on variability 

across technical calibrator samples. As you can see in Fig.3.24, results for different strategies are 

comparable, except for Median EK Normalization, which drastically increases variability.  

The primary goal of normalization methods analysis is the identification of optimal 

strategy to reduce batch effect for biological samples. The best way to identify such a strategy is 

the study of technical replicates – biological samples that contain near identical material. 

However, this type of data is present only for automated 1.3k assay (Fig.3.26 B). Because of this, 

we are using calibrator values across different plates that contain artificial and biologically 
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irrelevant information but is still possible to use as a proxy to distinguish relative changes in 

median CV value for the entire set of aptamer RFU values, like we did for 1.1k manual assay 

(Fig.3.25 A). A correlation between calibrators’ and technical replicates median CV values can 

be observed on Fig.3.26 A,B.  

Intraplate calibrator strategy demonstrates slight reduction for the CV in comparison to 

the raw interpolate data. No adverse effects on CV are observed across all base methods, with 

most of them experiencing a significant decrease, except for median normalization. ComBat 

method also demonstrates its ability to reduce median CV across multiple batches. 

 

 

Figure 3.24. Intraplate normalization. CV estimates for the calibrator probes for 1.1k and 1.3k 
assays after applying various normalization strategies. “Raw” category corresponds to not applying an 
interpolate normalization methods. Most of normalization methods provide comparable results, except for 
the Median EK Normalization, which drastically increased CV values. 

 

We also note that methods based on adjustment for total fluorescence demonstrate a 

significant decrease CV values for 1.1k manual assay (Fig 3.25 A), but effect of this correction 
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strategy is limited for automated 1.3k assay (3.26 A,B). It allows us to draw a conclusion that 

application of EK-based methods should be limited to the scenarios where technical variability 

for the individual plate is prominent, i.e., a manual work was conducted.  

 

 
Figure 3.25 Interplate normalization of the 1.1k manual assay. A. Median CV expression 

across calibrator probes for three interplate normalization strategies: no normalization, calibrator 
normalization, ComBat. These expressions applied to nine intraplate normalization strategies. B. gPCA 
values across calibrators for interplate normalization strategies. ComBat demonstrates  

 

Another potential contributing factor to the observed differences is more than 200 

additional probes present in 1.3k assay. Higher CV values for the raw data may indicate. 

However, interplate calibrator normalization displays consistently lower median CV scores for 

the 1.3k array. It means that the most of variability due to the difference in probes was mitigated 

by this procedure. 

The batch effect measure used in this study is gPCA. The results for the 1.1k manual and 

for the 1.3k automatic assays are listed in Fig. 3.25 B and Fig. 3.26 C correspondingly. Interplate 

calibration consistently showed better results than ComBat normalization procedure. It may be 

due to the usage of technical information from the SOMAScan platform. As ComBat 
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demonstrates higher gPCA values along with consistently lower median CV, it is likely that 

reduction in variability is due to the loss of biologically relevant information.  

 
Figure 3.26 Interplate normalization of the 1.3k automated assay. A. Median CV expression 

across calibrator probes for three interplate normalization strategies: no normalization, calibrator 
normalization, ComBat. These expressions applied to nine intraplate normalization strategies. B. Median 
CV across technical replicates (pooled plasma samples1). C. gPCA values across calibrators for interplate 
normalization strategies.  

 

Overall, we based the final selection of the normalization strategy on the 1.1k manual 

assay result because manual component exhibited much more prominent effect on the results 
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normalization, as it displays a significant reduction of the median CV values across calibrators, 

along with slight reduction of gPCA (Fig. 3.25). 

Based on normalized data, we built a linear regression model for SF-36 and McGill delta 

pain response based on the individual proteomic makeup of the veterans that was assessed before 

the acupuncture therapy started (Fig. 3.27, Fig 3.28).  

 
Figure 3.27. SF scale delta pain response prediction. Top. Spectral co-clustering results for the 

top-21 features from the largest linear regression model into two (left) and eight (right) distinct groups. 
Bottom. Trimmed model based on the four factors. Concordance plot is on the left side, statistics on the 
OLS model performance is on the right. 

 

We applied univariate feature selection approach – F-test for regression (457) from scikit-

learn package (356). At this step we selected top-50 features. We selected an optimal model by 

subsequently adding new factor variables into the model and measuring adjusted 𝑅" score for 10-

Top SF Features Clustering
n=2 n=8

Linear regression over SF pain measurement
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fold cross-validation. New variables that had VIF larger than 3 when compared to the current 

model were skipped. The best-performing models were then trimmed based on the p-value 

significance. In the final models only protein product based of the IDUA gene displayed 𝑝 =

0.057, while all other features are classified as significant with 𝑝 < 0.05. 

Performance of the response level prediction models have high correlation with true 

values. For the SF-36 model the 𝑅-o\" = 0.8 and for the McGill pain response it is 𝑅-o\" = 0.79. 

Both models contain four variable that do not overlap. In order to provide an overview of the 

most significant parts we map protein product detected by SOMAScan protein assay back to the 

gene of origin. 

SF-36 delta pain model is based on proteins derived from four distinct genes: ADCYAP1, 

LTA4H, IL2RA, and MED1. Downregulated ADCYAP1 is one of the indicators that patients 

may benefit from acupuncture therapy. This gene regulates neuropeptide hormone activity (458) 

and is known to affect hypersensitivity and related to pain sensations (459, 460). LTA4H takes 

part in the synthesis of the proinflammatory mediator (461, 462) and its upregulation seems to be 

a good indicator of the therapy response. Though IL2RA also has proinflammatory properties 

(463), it seems mostly unaffected by acupuncture therapy, and patients that suffer chronic pain 

due to this reason may not be the best candidates for this treatment. MED1 contributes to pain 

and depression (464), and upregulated expression of this gene product indicates a more favorable 

therapeutic outcome. 

McGill delta pain model works with four features based on gene products of PCNA, 

TNSF9, IFNG, and IDUA. PCNA is the cell proliferation and repair marker that can contribute 

to neuropathic pain resistance (465). TNSF9 encodes a ligand from the tumor necrosis factor 

family that can bind to the TNFRSF9, a receptor molecule in T lymphocytes (466). IFNg is an 



 138 

inflammatory cytokine (467) and its production may be related to the increased stress level 

(468). IDUA is responsible for breaking down glycosaminoglycans – large sugar molecules, and 

its misexpression may affect metabolic functions (469). 

 
Figure 3.28. McGill scale delta pain response prediction. Top. Spectral co-clustering results 

for the top-21 features from the largest linear regression model into two (left) and eight (right) distinct 
groups. Bottom. Trimmed model based on the four factors. Concordance plot is on the left side, statistics 
on the OLS model performance is on the right. 

 

3.7 Conclusions 

Our computational approach, the ALT-IN Tool, aims to characterize functional effects of 

alternatively spliced isoforms by determining if they perturb a protein-protein interaction. In 

addition to those naturally occurring in different tissues, cells, and under different cellular 

conditions, a growing number of alternative splicing events have been associated with genetic 

Linear regression over McPain measurement

Top McGill Pain Features Clustering
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disorders, including cancer, neurodevelopmental, and heart diseases (67-69). Thus, 

understanding how differentially expressed alternative isoforms perturb PPIs may provide new 

molecular insights into the functioning of healthy as well as disease cells and tissues.  

Given the data scarcity for the problem of AS-induced perturbation of PPIs, there are a 

number of advantages that random forest-driven supervised and semi-supervised learning 

methods provide. The important questions that can be affected by the data scarcity include 

efficient training of the machine learning model and its subsequent evaluation. Random forest 

algorithms have previously been successful in providing a rapid learning rate and robustness 

while being among the most accurate algorithms, especially on small data sets (133, 213, 470). 

In addition, previous work has argued that deep learning models may not be the best choice for 

small datasets (471, 472). Another viable option for the overcoming limitations imposed by the 

small sample size is the usage of transfer learning, especially when the learning task can be 

linked to the high-level entity that remains invariant, e.g., gene and protein sequences, images, 

texts. Our transfer learning approach for the isoform prediction problem shows promise but has 

to be further refined. 

Developing a robust evaluation protocol for a small dataset is critical because of a risk of 

information leakage between the training and testing set, resulting in overoptimistic scores, even 

though obtained model lacks generalization capacity (164, 370-373). We can see very similar 

situation with the 

When comparing our classifiers with the start-of-the-art sequence-based PPI prediction 

tools and currently available AS-based prediction methods, the accuracy of both supervised and 

semi-supervised ALT-IN Tool classifiers dominated all current methods, with the semi-

supervised classifier being the best method overall. Several reasons may account for such 
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performance. First, the task considered in this work is different from a standard ab initio PPI 

prediction task. We formulate our problem by taking advantage of a known PPI and then 

characterizing the difference between the reference and alternative isoforms. Thus, if this 

information is properly used, the new AS-based problem could be easier to solve. Second, the 

inclusion of the knowledge-based statistical potential also improves the prediction accuracy 

because this potential is based on the previously obtained functional knowledge shared between 

the evolutionary and structurally related proteins and protein domains. Lastly, the usage of a 

large unlabeled dataset engineered through the integration of human interactome and spliceome 

data for the semi-supervised learning task also improves the prediction accuracy, albeit not 

substantially, which can be explained by the already high accuracy of the supervised approach.  

While the alternative splicing events in the unsupervised dataset D2 do not constitute an 

exhaustive list of currently known AS events because it is currently limited to the Ensemble 

database (327), D2 provides sufficient variety in the data for the semi-supervised algorithm, as 

was demonstrated by our results. It is possible to improve the semi-supervised learning method 

further either by adding more AS events from other recent databases, such as VastDB (473) and 

including the information on the novel exons, or by improving the approach itself. Based on our 

analysis, we expect a moderate extension of the unlabeled dataset (a fraction of the current 

dataset) to provide minimal, if any, improvement in the accuracy. Improving the semi-supervised 

learning approach seems to be a more promising direction and will be one of the immediate 

future steps for this work. 

Overall, with the accuracy, precision, and recall surpassing 90% when tested on the most 

stringent evaluation protocol, ALT-IN Tool becomes a great alternative to the experimental 

approaches and the only accurate computational approach for this task available to date. In 
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particular, ALT-IN Tool can be used for understanding system-wide alternative splicing-driven 

variation in molecular mechanisms implicated in complex diseases, which is highlighted in this 

work by applying the tool to Western Diet fed mouse transcriptomics data. Our analysis has 

revealed widespread PPI network perturbation in both liver and brain tissues that affect T2D-

associated pathways and is centered around genes previously associated with the disease. We 

hope that our method could streamline the expensive and time-consuming high-throughput 

interactomics approach by first identifying a pool of candidate genes for the primer libraries and 

then pinpointing the isoforms of the utmost interest. 

Alternative splicing impact factor provides a context frame for the ALT-IN Tool, 

allowing researchers to focus on particular genes and transcripts of interest instead of conducting 

an exhaustive search across the entire network. Further narrowing down scope of the search by 

selecting only stable isoforms allows us to increase confidence of findings and come up with 

more specific drug targets. Finally, merging this information with the high-throughput 

proteomics studies allows to closely follow molecular processes currently taking a place in the 

organism and hypothesize on the molecular basis of the disease, which would allow us to come 

up with actionable insights. 
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Chapter 4. Structural Modeling, Molecular Dynamics, and High-

Performance Computing 

4.1 Background 

It has been two years since the release of the first SARS-CoV-2 genome (474), which 

provided scientists with critical knowledge about its proteins. Thanks to the unprecedented 

experimental efforts by scientists worldwide, we have now obtained structural knowledge about 

most SARS-CoV-2 proteins, determining their three-dimensional (3D) shapes. Perhaps even 

more critical is the structural knowledge of the protein complexes that underlie the basics of viral 

functioning. Months before the experimental protein structures were solved, computational 

efforts by several groups provided researchers with accurate 3D models of the viral proteins and 

their physical interactions with each other and with host proteins.  

3D molecular information is instrumental in basic research, to understand mechanisms 

behind viral entry and replication, as well as in structure-based drug design, to determine new 

antiviral targets, or in vaccine development, to study the effects of novel mutations on antigen-

antibody binding. Given that it is not ‘if’ but ‘when’ a new viral pandemic will emerge (475), it 

is crucial to know whether computational modeling methods can facilitate the structural 

characterization of viral proteins and their essential complexes. After one year of intensive 

research by the structural biology community, we have accumulated enough data to evaluate the 

impact of computational modeling efforts toward understanding the structural nature of the virus. 

 



 143 

4.2 Structural Modeling of the SARS-CoV-2 Proteins  

4.2.1 Introduction 

The novel coronavirus, SARS-CoV-2, recently emerged in 2019 and has brought 

devastating effects to the global worldwide community, infecting more than 480 million people 

and has taken more than six million lives. However, the swiftly spreading virus also caused an 

unprecedentedly rapid response from the research community facing the unknown health 

challenge of potentially enormous proportions. Unfortunately, the experimental research to 

understand the molecular mechanisms behind the viral infection and to design a vaccine or 

antivirals is costly and takes months to develop. To expedite the advancement of our knowledge, 

we leveraged data about the related coronaviruses that is readily available in public databases 

and integrated these data into a single computational pipeline. 

Within two and a half months since its initial discovery, the novel deadly coronavirus 

SARS-CoV-2 had infected more than 100,000 people, with the death toll already surpassing that 

of the 2003 severe acute respiratory syndrome coronavirus (SARS-CoV) and 2012 Middle East 

respiratory syndrome coronavirus (MERS-CoV) outbreaks combined (476-478). In spite of the 

instantaneous reaction by the scientific community and extensive worldwide efforts to address 

this health crisis, it took significant time for vaccines to finish the clinical trial and obtain 

emergency authorization (479, 480). If not for urgency, a regular timeline may take years. For 

instance, the Phase I trial for a vaccine that treats SARS was announced in December 2004, two 

years after the disease outbreak (481). Additionally, a vaccine against MERS, another infectious 

outbreak of the related coronavirus that emerged in 2012, was patented in 2019, with Phase I 

trials introduced in the same year (482, 483). Nevertheless, in the past two decades, a massive 

amount of work has been done to understand the molecular basis of the coronavirus evolution 
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and infection, develop an effective treatment in the forms of both vaccines and antiviral drugs, 

and propose efficient measures for viral detection and prevention (484-488). Structures of many 

individual proteins of SARS-CoV, MERS-CoV, and related coronaviruses, as well as their 

biological interactions with other viral and host proteins, have been explored along with the 

experimental testing of the antiviral properties of small-molecule inhibitors (489-494). This rich 

bank of knowledge allows us to rapidly unravel key point differences of the newly encountered 

virus via in silico modeling. 

4.2.2 Protein Sequence Data Collection 

Available sequences for protein candidates wS, wORF3a, wE, wM, wORF6, wORF7a, 

wORF7b, wORF8, wN, and wORF10 were extracted from the NCBI Virus repository (495) 

(collected on 29 January 2019) and then used in the sequence analysis and structural modeling. 

The Uniprot BLAST-based search was performed for each of the proteins using default 

parameters. From the results of each search, the final selection was made based on the pairwise 

sequence identity (>60%) as well as the evolutionary relationship (Coronaviridae family). Each 

of SARS-CoV-2 proteins was then aligned with the corresponding coronavirus proteins using a 

multiple sequence alignment method Clustal Omega (EMBL-EBI, Cambridge, UK) (496). 

4.2.3 Template-Based Structural Characterization of Protein and Protein 

Complexes 

The structure of each protein was determined using single-template comparative 

modeling protocols with the MODELLER software (UCSF, CA, USA) (497). First, the template 

for each protein sequence was identified using a PSI-BLAST search in the Protein Data Bank 

(PDB) (Research Collaboratory for Structural Bioinformatics) (498). In general, a structural 

template with the highest sequence identity was selected out of those that covered at least 50 
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residues of the target sequence with at least 30% sequence identity. The polyprotein wORF1ab 

was first split into 16 putative proteins based on its alignment with the human SARS-CoV 

polyprotein, with each protein then independently searched against PDB. In total, structural 

templates for 17 proteins were chosen (Fig. 4.1). In some cases, several independent templates, 

each covering an individual protein domain of a target SARS-CoV-2 protein, were selected. The 

obtained template was used in the comparative modeling protocol, generating five models. Each 

model was assessed using the DOPE statistical potential (499); the best-scoring model was 

selected as a final prediction. 

 
Figure 4.1. Structurally characterized intra-viral and host–viral protein–protein interaction 

complexes of SARS-CoV-2. Human proteins (colored in orange) are identified through their gene names. 
For each intra-viral structure, the number of subunits involved in the interaction is specified. 
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Using comparative modeling, we structurally characterized protein interaction complexes 

for both intra-viral interactions (homo- and hetero-oligomers) and host–viral interactions, where 

the host proteins were exclusively human. In total, we obtained structural models for 16 homo-

oligomeric complexes, three hetero-oligomeric complexes, and eight human–virus interaction 

complexes including multiple conformations (Fig. 4.1). The intra-viral hetero-oligomeric 

complexes included exclusively the interactions between the non-structural proteins (wNsp7, 

wNsp8, wNsp10, wNsp12, wNsp14, and wNsp16). The modeled host–viral interaction 

complexes included three types of interactions: non-structural protein wNsp3 (papain-like 

protease, PLpro, domain) interacting with human ubiquitin-aldehyde, surface protein wS (in its 

trimeric form) interacting with human receptor angiotensin-converting enzyme 2 (ACE2) in 

different conformations, as well as the same protein wS interacting with several neutralizing 

antibodies. Based on the obtained models, the protein interaction binding sites were extracted 

and analyzed with respect to their evolutionary conservation. 

4.2.4 De-novo modeling – (M)embrane protein 

Unlike for proteins S and E, no experimental structures have been solved for SARS-CoV-

2 M protein or any of its homologs, neither as a monomer nor as a dimer, which is its 

physiological conformation in the envelope. Thus, a comparative modeling approach cannot be 

applied, and a novel integrative approach was introduced that utilized geometric constraints of 

the M dimer in the envelope derived from the low-resolution CryoEM images of the envelopes 

of the closely related coronaviruses, SARS-CoV and MHV, as well as a high-resolution CryoEM 

structure of a dimer for another SARS-CoV-2 protein sharing substantial structural similarity 

(see Figs. B1, B2).  
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The approach included six steps. First, an ensemble of models of M monomer was 

obtained using de novo modeling methods AlphaFold and I-TASSER (500-502). The top 5 

models from each method were then selected, and 200 models of M homodimers overall were 

obtained using two symmetric docking approaches, SymDock and Galaxy (503-505) (10 docking 

models for each of the 10 monomers for each docking approach). Next, a set of geometric 

constraints was applied to an ensemble of the 100 top-scoring homodimer models (50 for each 

symmetric docking). The geometric constrains include (1) the dimer axial dimensions and the 

shape of the part of the packaged dimer located on the envelope surface, (2) the orientation of the 

monomers in the membrane, and (3) the approximate dimensions of the transmembrane domain 

(TMD) of a single packaged M dimer defined by the envelope membrane’s thickness. 

Specifically, from the previous analysis of SARS-CoV envelope (506, 507), it follows that TM 

domains of an average M dimer form a parallelogram, with rough dimensions between the two 

centers of adjacent dimer parallelograms measured to be 6.0 nm and 7.5 nm (Fig. 1). As a result, 

we filtered out those M dimer models whose TM domains would not fit into a parallelogram-

shaped grid of these dimensions. We note that we did not require the TM domains to form a 

parallelogram-like shape, rather these constraints primarily affected the length of the modeled 

helices, filtering out models with significantly elongated one or two helices. Furthermore, the 

dimers were required to have N-termini of both monomers located on the exterior surface of the 

virion’s envelope, and the thickness of the envelope’s membrane was set to be equal to 4 nm 

(508, 509).  

The analysis of the three best-scoring M dimers that satisfy all above geometric 

constraints provided us with an interesting finding: all three dimer models share striking 

structural similarity with the ORF3 protein of SARS-CoV-2 (Figs. 4.2, B1, B2), whose CryoEM 
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structure was recently solved (510). In particular, we found that the de novo modeled structure of 

the endodomain of M and the experimentally obtained structure of C-terminal domain of ORF3 

were structurally similar, while the transmembrane domain structure of M and N-terminal 

domain of ORF3 shared the same secondary structure elements (four helices) of the same lengths 

while the mutual arrangement of the helices was somewhat different. Therefore, we hypothesized 

that M dimers and ORF3a were structural homologs, and the model of the M dimer could be 

further refined using the structural information from ORF3a dimeric structure (Fig. 4.2). 

 

Figure 4.2. Basic stages of structural characterization of M protein’s dimeric complex using 
integrative modeling. 



 149 

 

To use the structural information from ORF3a, we first created a “fragmented’ structural 

template by individually structurally aligning the four helices and endodomain of M dimer with 

the corresponding helices and endodomain in the ORF3a template structure (PDB ID: 6XDC). 

Then, we obtained a preliminary comparative model using the newly created fragmented 

structural template of M dimer. The obtained M dimer model was refined using a protocol 

similar to the one used to obtain a full-length model S trimer (Fig. B2) (511). First, the linker 

regions of the two TMDs in the obtained comparative model of M dimer were refined by energy 

minimization, followed by refinement of the whole TMDs using Molecular Modeling Toolkit 

(512). Next, the overall M dimer structure was minimized using the CHARMM36 force field in 

GROMACS (513). We then placed the M dimer model into the experimental EM density map of 

the ORF3a dimer (EMD-22139 (510)) using Phenix (514) and relied on the EM map to further 

refine the structure in ISOLDE (515), a package for UCSF Chimera X molecular visualization 

program (516). ISOLDE uses OpenMM-based interactive molecular dynamics flexible fitting 

(517) using AMBER force field (518) and allows for the real-time assessment and validation of 

the geometric clashing problems. Each residue of the M dimer model (1-946) was then inspected 

and remodeled to maximize its fit into the density map. We considered both a deposited electron-

microscopy map and a smoothed version with a B-factor of 100 Å2 as proposed in (511), but in 

our case there was no significant difference between these two versions of the refinement 

protocol. 

4.2.5 Computational Protein Modeling – Race Against Time 

Structural genomics efforts to characterize the protein repertoire of a virus are usually 

carried out by comparative—or template-based—modeling (519). A newer technique described 
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in the previous section, de novo protein modeling (520), does not require a template structure 

and may complement existing methods. However, it takes significant efforts to validated 

proposed finding. Template-based models are often more accurate than de novo ones; however, 

the former technique is dependent on previously solved structures of homologous proteins or 

protein complexes while the latter can be applied to novel proteins. The latest success in protein 

modeling has been primarily due to recent technological innovations in the developme nt of 

novel protein structure prediction algorithms, which use deep learning and are empowered by 

advances in graphical processing unit (GPU)-accelerated computing.  

We surveyed accurate template-based and de novo models of SARS-COV-2 proteins and 

protein complexes that were also experimentally solved to determine (i) model accuracy when 

compared with the experimental structure and (ii) how far ahead of the experimental structures 

they were obtained (Fig. 4.3). We considered comparative models generated by our group 

(521) and de novo models reported by AlphaFold (149) and C-I-TASSER (522), which have also 

contributed to structural characterization of SARS-COV-2 proteins (Fig. 4.3 and Table B1). Of 

the 29 putative proteins, 17 were at least partially experimentally and computationally resolved, 

while 5, including key structural protein M, were characterized only computationally. Six 

putative proteins have not been structurally characterized at all. The computational methods were 

fairly accurate, producing an average root mean squared deviation (r.m.s.d.) error of 4.1 Å for all 

17 proteins (Table B1). On average, computational models covered roughly 80% of the viral 

protein sequence, while experimental structures covered 82%. Most importantly, 3D models of 

viral proteins were released on average 86 days earlier than the corresponding experimental 

structures. 
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Even if we had structural knowledge of all SARS-COV-2 proteins, our understanding of 

the virus’s functional units would be far from complete: most, if not all, viral proteins carry out 

their functions by forming macromolecular complexes. Recent efforts to map all protein 

complexes formed by SARS-CoV-2 proteins have identified hundreds of putative interactions8. 

Unfortunately, only a small fraction of these complexes have been structurally characterized 

(Fig. 4.3B and Table B2 in Appendix): 18 protein complexes have been characterized 

experimentally and 16 computationally. Overall, for 13 protein complexes, the structure was 

both modeled and resolved experimentally. For 5 of these, an incorrect oligomer conformation 

was derived from homologous complexes; for the remaining 8, the computational models yielded 

accurate protein complexes in correct conformations, with an average r.m.s.d. of 2.6 Å over the 

entire multimeric structure (Table B1). The models were available on average 53 days earlier 

than experimental structures, covering on average 77% of all protein sequences involved in the 

complex. Lastly, for 4 modeled complexes, no experimental structures have yet been obtained. 

Comparison between experimental and computational structures 

The experimental structures were obtained from RCSB data bank using BLAST search of 

each SARS-CoV-2 protein. Overall, 19 PDB structures of the individual proteins and 116 PDB 

structure of the protein complexes were retrieved and analyzed. Some of the structures were 

independently solved by multiple groups and in the presence of different mutations or substrates. 

In such case, only the structure with the earliest release was kept. 

Three measures were computed when comparing the computational model of a SARS-

CoV-2 protein and its experimentally resolved structure: sequence coverage (of the model and 

the experimental structure), model accuracy, and the difference between the release dates. 

Sequence coverage was computed as a fraction C/S, where C is the number of amino acid 
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residues covered by either a model or experimental structure, and S is the total length of residues 

sequenced for the corresponding SARS-CoV-2 protein. The model’s accuracy is calculated as 

all-pair root-mean-square deviation (RMSD) defined as: 

𝑅𝑀𝑆𝐷(𝑀,𝑀') = 	Ï&
[
∑ ((𝑥* − 𝑥*')" + (𝑦* − 𝑦*')" + (𝑧* − 𝑧*')")[
*,& , 

where (𝑥* , 𝑦* , 𝑧*) are coordinates of the i-th atom of the model 𝑀 and (𝑥′* , 𝑦′* , 𝑧′*) are the 

coordinates of the corresponding atom from the experimental structure 𝑀'; the one-to-one atomic 

correspondence was obtained through structural superposition of the computational model and 

experimental structure using least-squares fitting. The difference, ΔTRelease, is defined between 

the dates of the public release of the corresponding experimental and computational structures. 

 
Figure 4.3. Accuracy vs timeline of appearance of protein structures. a. Analysis of 

17 individual proteins that were both experimentally characterized and computationally modeled, 
using comparative (circles) and de novo (squares) methods. b.  Analysis of 8 protein complexes; 
each complex consists of two (circle), three (triangle) or four (square) protein subunits. For each 
modeled protein or protein complex, its r.m.s.d. error between the model and experimental 
structure, the number of days between the releases of experimental and computational structures, 
and the model’s coverage of the protein sequence (color) are calculated. 
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Protein complex models.  

Similar measures were calculated for the protein complexes. Sequence coverage of a 

protein complex was computed as a fraction ∑ u0
6
0<(

∑ F26
2<(

 where 𝐶* is a number of amino acid residues 

covered by the model of each protein i that is a part of the protein complex and 𝑆* is a total 

length of residues sequence for corresponding 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 structure in protein complex. To 

calculate the modeling error of a protein complex, each model was superposed against the 

corresponding experimental structure using the least-squares fitting, and all-pair root-mean-

square deviation (RMSD) was calculated using all atoms in the model. Correspondence between 

the individual protein chains from the experimental and computational structures was manually 

curated to ensure a superposition between 3D structures that produces the lowest RMSD score. 

The difference, ΔTRelease, was defined in the same way as for the individual protein models. 

Structural characterization of individual SARS-CoV-2 proteins 

Five experimentally uncharacterized proteins include one of the main structural proteins, 

M, and four non-structural proteins, Nsp2, Nsp4, Nsp6, and Nsp14. Furthermore, one protein, 

ORF9b, was characterized only experimentally, and 6 putative proteins, Nsp11, ORF3b, ORF6, 

ORF7b, ORF9c, and ORF10, have not been structurally characterized at all, either 

computationally or experimentally. For the 15 models that were obtained exclusively with 

comparative modeling the RMSD was substantially smaller, 3.1 Å. 

We considered protein complexes of two types: either homo-oligomers (e.g. a functional 

form of a key protein spike, S, is a homo-trimer) or hetero-oligomers (e.g. a virus-host protein 

interaction complex between S and human ACE2 receptor). Overall, 18 protein complexes were 

computationally characterized, including oligomeric structures of 4 individual domains of 
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nucleocapsid (N) protein and multiple interactions between S and the host antibodies. The 

modeled complexes included 11 homooligomer and 7 heterooligomer structures. The number of 

computationally resolved protein complexes was smaller due to the lack of homologous 

complexes previously solved for the related viruses. The incorrect oligomer confirmation, or 

binding mode, for 7 protein complexes, (Nsp3, Nsp10, Nsp13, N-Nterminal, E and antibodies), 

was predicted because of the difference between the native conformations of the homologous 

complexes that served as templates and the corresponding complexes involving SARS-CoV-2 

proteins. It is worth noting that experimental structure that can be considered Nsp10 dimerization 

is a part of Nsp10-Nsp16 complex and is not a dedicated Nsp10 complex study, which was not 

conducted up to date. 

4.3 Molecular Dynamics of the SARS-CoV-2 Envelope and High-Performance 

Computing 

4.3.1 Introduction 

The year 2020 brought forth the largest pandemic of the past century, caused by the 

SARS-CoV-2 virus. Scientific community responded with unprecedented collaborative efforts, 

unraveling genomic, structural and interactome information about this virus with the goal of 

finding a cure. 

Currently, even though we have a range of highly efficient vaccines that successfully 

combat the spread of the virus, it is unlikely that COVID would follow footsteps of smallpox - 

the only eradicated infectious disease. This means that our fight is not over, we already see a 

wide range of variants arising in different locations on Earth; we have to find means to curb the 

disease in people who already got sick, akin to therapeutic drugs for the influenza. 
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For this purpose, besides well-studied (S)pike protein, main building block of the viral 

shell - (M)embrane protein – is another lucrative target, though working with it presents unique 

challenges.  Even though a large part of its structural proteins was experimentally resolved, we 

have a limited understanding on protein complexes (up to date there is no experimental M dimer 

structure), and even less is known about membrane surface, which consists from lipids, several 

(~20) spikes, a few (2-3) (E)nvelope proteins and a large amount (~1000) of M proteins that 

constantly interact with each other. 

Because of this targeting M protein without knowledge of dynamic processes 

surrounding it is an error-prone approach, and designing efficient antiviral drugs require better 

understanding of the SARS-CoV-2 surface.  

We present a physically tractable mesoscale system of viral envelope that amalgamates 

the most recent information on viral envelope (protein structures, stoichiometry, and geometry) 

and corresponding molecular dynamics simulations of its behavior in solvent.  

4.3.2 Molecular Dynamics of the M-dimer 

To enable coarse-grained (CG) simulations of the entire virion envelope, high resolution 

structures of the constituting S, E, and M proteins are required. The CG representations of the 

homooligomers of the structural proteins were obtained from available atomic models (S and E) 

and from de novo modeling (M), which were coarse-grained and then refined in the presence of a 

lipid bilayer using the Martini 3 force field (Methods). The initial model of the full-length S 

trimer was obtained previously using an integrative modeling approach, and a model of the E 

pentamer was obtained previously using homology modeling. In contrast to the S and E proteins, 

a structure of M or its homodimer supported by experimental observations or evolutionary 

inference did not exist. Therefore, we first modeled the structure of M dimer using an integrative 
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approach (Supp. Figs. S3-S6). The procedure started with the de novo modeling of the 

monomeric structure of M, followed by constraint symmetric docking to create a homodimer that 

satisfies the geometric constraints obtained based on 1) the envelope’s membrane thickness, 2) 

mutual orientation of the monomers, and 3) the approximate local geometric boundaries of a 

single M dimer complex, previously obtained from microscopy data of the SARS-CoV envelope. 

However, preliminary CG MD simulation of the envelope using the obtained top-scoring de novo 

model of the M dimer revealed the structural instability of the dimeric complex prompting us to 

the further refinement of the model. 

We found that the de novo homodimer models of M that satisfy all the above constraints 

appeared to share striking structural similarity with another recently resolved homodimer of 

SARS-CoV-2, the ORF3a protein. The similarity included 1) the same two-domain fold 

composition and 2) the same combination of secondary structure elements as in our de novo 

model, but with a slightly different arrangement of the secondary structure elements in the 

transmembrane domain (Supp. Figs. S4, S5). We thus further refined the M dimer model by 

constructing a new structural template as a scaffold of the same secondary structure elements as 

in the original de novo model, each of which was structurally superposed against the ORF3a 

dimer. We then applied a novel integrative template-modeling protocol using the newly designed 

template and followed by a refinement protocol guided by the electron density of ORF3a 

(Methods, Supp. Fig. S6). The rationale for this approach was that the newly designed template, 

based on the ORF3A secondary structure topology and including the original secondary structure 

fragments of M dimer extracted from the top-scoring de novo model, would improve the 

arrangement of the secondary structure elements, making the model more stable, while 

maintaining the structural similarity with the original de novo model. The resulting model not 
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only provided a tighter, more stable packing of M monomers in the dimer; but the shape 

complementarity of M dimers with each other allowed for a natural tiling of multiple dimers into 

the “filament” structures, supporting the previously proposed model of M dimer lattices based on 

the microscopy study of SARS-CoV envelope (507, 523). Importantly, the de novo M dimer 

model proved stable in subsequent simulations of the full envelope. Furthermore, a 200 ns all-

atom simulation of the two TM domains embedded in a lipid bilayer also resulted in a stable 

complex, while a 200ns simulation of the TM dimer of the top-scoring de novo model appeared 

to be unstable. 

In the 4μs simulations, we consistently observed changes in the viral shape (Fig. 2D, 

Supp. Figs. S9, S10), with the initial diameters of the ellipsoid of a model in composition C1 

changing from d1 ≈ 109.9nm, d2 ≈ 97.8nm, and d3 ≈ 76.2 at t = 0μs to d1 ≈ 103.1 nm, d2 ≈ 97.8 

nm, and d3 ≈81.3 nm at the end of the simulation, t = 4μs. The obtained diameters were close to 

the range observed for the particles from the Cryo-ET images of SARS-CoV-2 (509). We also 

note, that while the experimentally observed structures of the virions had variable shapes, from a 

nearly spherical shape to a significantly elongated ellipsoid, the average shape of SARS-CoV-2 

according to the Cryo-ET study is an elongated ellipsoid, not a sphere, hence the rationale for our 

initial model dimensions. The elongated shape of a virion particle was also reported in previous 

studies of SARS-CoV and the related betacoronaviruses (507). The calculated dMAX/dMIN ratio of 

1.27 for our final model falls within the range of average ratios observed in CryoET of the 

SARS-CoV-2 virion (509). Interestingly, the changes in the shape did not have significant effects 

on the surface area of the envelope (1.3% reduction) or its volume (0.6%) (Supp. Figs. S9, S10). 

Along with the diameters of the envelope shape, the principal radii of gyration were also 

converging, reflecting shape stabilization (Fig. 2D). Furthermore, analysis of the temporal 
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changes of the viral dimensions together with the connectivity patterns of the envelope proteins 

suggested the presence of two distinct concurrent relaxation processes, separately affecting the 

two smallest and the two largest diameters. Specifically, we observed a faster process (0−1μs), 

followed by a slower process (0.5−4μs). During the faster process, the minor circumference 

(principal radii r2 and r3 corresponding to diameters d2 and d3) became more circular while 

during the slower process, the major circumference (principal radii r1 and r2 corresponding to 

diameters d1 and d2) also became more circular, thus making the minor circumference to become 

more elliptical again (Fig. 2D).  

4.3.3 SARS-CoV-2 Envelope Construction 

The modeling of the entire envelope started with the generation of a mesoscale model 

using dynamic triangulated surface (DTS) simulation (524, 525) on a triangulated mesh, 

matching the dimensions of the virion envelope. The mesh included a set of vectors each 

representing one protein and its orientation in the envelope surface. To set up the initial positions 

of the structural proteins in the envelope structures, available EM data was used only to obtain 

information on local geometry (Methods, Supp. Fig. S1). The global geometric patterns observed 

in the EM studies were not used during modeling, but only to evaluate our model (vide infra). 

The DTS simulation provided us with an initial guess of the protein organization and 

orientation on the fixed geometry of the envelope. This model was subsequently backmapped 

using TS2CG to near-atomic resolution (526), based on the CG Martini 3 models of the proteins 

and lipids (527) with specified stoichiometries. This resulted in an initial arrangement of the 

oligomeric protein structures embedded in a lipid bilayer comprising up to six types of lipid 

molecules (palmitoyl-oleoyl-phosphatidylcholine, POPC; PO-phosphatidylethanloamine POPE; 

PO-phosphatidylserine, POPS; PO-phosphoinositol, POPI; cardiolipin, CDL2; and cholesterol, 
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CHL), with a composition reflecting that of the endoplasmic reticulum (ER), but also 

considering enrichment of specific lipids due to interactions with the proteins. Overall, lipid-to-

protein ratio was a crucial factor in constructing a stable model. When number of lipids was 

insufficient, proteins tended to agglomerate together, leaving no space for lipid molecules in 

between. After pressure was applied to such model it tended to loose stability and get punctured. 

 
Figure 4.4. Structural characterization of SARS-CoV-2 viral envelope and its components. 

A. An envelope model (M2) obtained from molecular composition C1 (2 E pentamers, 25 S trimers, 1003 
M dimers) and including full-length structures of S trimers after 1µs simulation run. Lipid molecules are 
depicted in sapphire blue, E pentamers in ruby red, M dimers in silver, and S trimers in gold. Principal 
diameters have values of 81.3 nm, 97.8 nm, and 103.1 nm. Height of the outer part of S protein is 25 nm. 
Surface of the envelope displays “filament” patterns formed by transmembrane domains of M dimers, 
while the internal part of the envelope shows tight packing of M dimers’ endodomains assemblies; B. 
Envelope model M1 from molecular composition C1 using truncated S trimer structures at the start of the 
simulations (top) and after 4µs (bottom); C. Structural proteins S, M, and E representing the main 
structural building blocks of SARS-CoV-2 envelop in their physiological oligomeric states, in side and 
top views: S trimer, M dimer, and E pentamer. The grey dashed lines correspond to the membrane 
boundaries. The structures are shown in different scales. D. Change of the viral shape during the 
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simulation defined through the principal gyration radii. The two largest principal radii converge to the 
value ~28 nm while the third one converges to ~24 nm. The actual diameters of the model after 4µs 
simulation were 103.1 nm, 97.8 nm, and 81.3 nm, respectively. 
 

Several envelope models were thus built and subjected to MD simulations to test the 

stability of the envelope structure. The overall models prepared for the simulation consisted of 

20-30 million CG particles, representing about 100 million heavy atoms. The models varied in 

several key parameters: (i) different protein-to-lipid ratios, (ii) different stoichiometries of the 

structural proteins, (iii) full or partial ectodomains of the spike trimer included in the envelope 

structure, and (iv) different lipid compositions. In total, three independent simulations turned out 

to be stable. For the unstable models, the integrity of the envelope surface became compromised 

(an example of unstable structure simulation is shown in Suppl. Movie S2). The selected stable 

models (M1-3), simulated for 1-4μs, included ~1.0-1.2M protein particles, ~0.5-0.8M lipid 

particles, and ~13M-35M solvent particles (Fig. 4.4A,B, Table 3,B3 in Appendix). A 4μs 

simulation took ~1,560,000 CPU hours to compute on the TACC Frontera supercomputer.  

We found that each of the key parameters played a role in the simulation. First, when 

selecting between two different protein-to-lipid particle ratios, the higher ratio value of 2.36 

resulted in unstable structures, while the ratio of 1.44 resulted in a structural model that remained 

stable (models M1, M2). Given that the molecular composition was the same in both models 

(1,003 M dimers, 25 S trimers, and 2 E pentamers; we refer to this molecular composition as 

C1), the different ratios were due to the different lipid numbers (36,645 and 60,141 molecules, 

respectively), suggesting that the lipid concentration plays a role in the envelope stability, a 

finding supported by recent CG simulations of cell-scale envelopes (528). Another factor that 

affected the model stability was a higher number of solvent particles, compared to the stable 

models, leading to pore formation and subsequent membrane rupture.  
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Second, we found that varying the stoichiometries of E pentamer, S trimer, and M dimer 

under the same conditions does not affect the envelope stability. For instance, when we 

significantly increased the proportion of S trimers (truncated form) creating a model in an 

oligomeric composition C2 that included 3E pentamers, 71 S trimer, and 1080 M dimers (Supp. 

Table S3), while maintaining the same protein-to-lipid ratio and the number of solvent particles 

as in models M1 and M2, we found that the new model, M3, was also stable after 4μs simulation 

(Supp. Fig. S8). The stability of viral envelope with different stoichiometries is in line with the 

experimental evidence suggesting a range of different stoichiometries to be found in vivo. The 

behavior of the envelope model M2 that included the full-length S trimers and composition C1 

was similar to the ones of the truncated model M1 (Fig. 4.4A,B): a 1μs trajectory of the former 

was comparable to the first 1μs of the 4μs trajectory for the latter. Finally, variations in lipid 

composition did not appear to impact the stability of the envelope. 

4.3.4 Molecular Dynamics Simulation of the Envelope 

Our envelope models and the time scales of the simulations allowed a detailed 

assessment of the interactions between the different constituents, in particular those involving M 

dimers. To characterize these interactions, we focused on the preferential relative orientations of 

protein neighbors and second neighbors (Fig. 4.5A-C), which were determined using a method 

for orientation analysis (529). The results showed that the M dimer transmembrane domains 

(TMDs) preferentially formed filament-like assemblies, without contacts between adjacent 

filaments (Figs. 4.5A,B). In contrast, the endodomains (EDs) appear tightly packed, binding 

neighbors in two directions (Figs. 4.5A,B), thus showing a tendency for the formation of a well-

ordered lattice. Intriguingly, the lattice vectors of the TMD domains extracted from M dimers in 

our model were identical to the ones extracted from the previously reported EM data (507). 
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Combining the (averaged) relative orientations of the TMDs and the EDs with the projected 

densities of the proteins revealed the characteristic patterns of densities. Specifically, the 

averaged orientations of TMDs fit almost exactly with the ‘lattice’ patterns previously observed 

from the averaged Cryo-EM virion structures of SARS-CoV and related betacoronaviruses (Fig. 

3A,B) (507), despite the fact that this information was not used during construction of the 

models. Even the characteristic lack of density in the unit cells’ corners previously observed in 

MHV and SARS-CoV was clearly noticeable in our data (Fig. 4.5B). These patterns were 

consistent in the models with both compositions, C1 and C2. The orientations of EDs revealed a 

different kind of pattern, compared to the one of TMs. Specifically, our model showed that the 

ED dimers formed triangulated structures, a pattern common in engineering rigid frame 

structures (530). Unlike TMs, the formation of EDs have not been experimentally characterized 

by microscopy before, because it can only be observed from the virion’s interior. To ensure that 

the observed property of M dimers forming the filament-like assemblies was not a consequence 

of the initial setup, we have performed additional simulations of a subset of randomly placed and 

oriented 41 M dimers in a flat bilayer system with the same lipid composition as the full 

envelope simulations (Methods). After a 13μs simulation, we observed that the M dimers formed 

filaments that were reminiscent of the ones we observed in the full envelope simulations (Fig. 

4.5A). In contrast to the strong preferential orientation of M dimers, the orientation of M dimers 

around S trimers did not show clear preference in attachment (Fig. 4.5C), which could be due to 

the stronger orienting effects of M dimer interactions as well as to the worse statistics for the 

interactions between S and M. 

To further characterize formation of the higher-order assemblies in the envelope through 

interactions between M dimers, a temporal analysis was performed of the domain-level physical 
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interaction networks between the TMDs and EDs of M dimers and the transmembrane domains 

of S trimers. This analysis further illustrated the strikingly different nature of the M dimer’s key 

domains (Fig. 4.5D-G), supporting our previous findings. Throughout the simulations, the 

domain interaction networks appeared to undergo drastic rearrangement via two distinct phases, 

with the number of connected components of three and more dimers first rapidly rising during 0-

200ns up to ~160 components and then slowly saturating to ~30 components (Fig. 4.5D). The 

total number of connected components closely follows a bi-exponential law, suggesting two 

processes running concurrently: a faster local rearrangement and a slower filament assembly. 

The two-process formation of the connected components was also evident from the clustering 

analysis (Fig. 4.5F), indicating the initial formation of many small clusters, followed by the 

preferential growth of the largest connected components. It was also interesting to see that the 

second, slower process of growing connected components started before the first, faster stage of 

forming initial small assemblies of M dimers was over. The analysis of the interaction network 

of TMDs also supported the formation of filaments observed on the surface of the envelope (Fig. 

4.5E); the network revealed that these filaments were occasionally connected even further into 

larger assemblies. In contrast to the filament-like network topology, the EDs network consisted 

of connected triangulated components, which may contribute to the structural rigidity of the 

envelope. The difference between the TMD and ED network topologies also followed from the 

temporal node degree distributions for each network: the average node degrees converge to ~2 in 

TMD network and ~3 in ED network (Fig. 4.5G). Lastly, all other major network parameters 

appeared to converge to the stable values, thus further drastic changes in network topologies 

were not observed. 
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4.3.5 Network Analysis of Macromolecular Spatial Organization 

To get further insights into the dynamic reordering of structural proteins that took place 

in the envelope, we conducted the connectivity analysis, constructing domain-level protein-

protein interaction networks. This approach was a scaled-up version of the protein structure 

network (PSN) analysis, which was previously employed in the structural characterization of 

individual proteins. Here, we defined a network node not as an individual amino acid residue, but 

as an entire protein domain. In this analysis, we differentiated only between the proteins’ 

transmembrane domains (TMD) and endodomains (ED), which resulted in two separate physical 

contact networks: one within the lipid membrane and one on the inside of the virion.  

We processed the reduced trajectory files (see Section 6 in Materials and Methods) that 

preserve the center of mass and orientation for each protein, substituting each entry with the 

canonical pdb model used in this study and conducting contact analysis with a cutoff distance of 

0.6nm, a frequently used threshold for the coarse-grained structures (531-533). This procedure is 

performed separately on TMDs and EDs of the structural proteins. As a result, two sets of 

temporal dynamic networks for each of the truncated spike models, M1 and M3, were obtained. 

Each temporal dynamic network was a series of domain-domain interaction network snapshots, 

taken every 1ns, from 0µs to 4µs. Several key network properties were calculated for each 

network snapshot: average degree, number of connected components, average diameter, 

transitivity, and average degree connectivity for nodes with degrees 1, 2, and 3.  

The degree di of a node i is the number of edges incident to it. The average degree in a 

network of 𝑁 nodes is calculated according to the following formula: 𝑑j =
&
^
∑ 𝑑*^
*,& . The 

number of connected components is the minimal number of subgraphs that have a path for any 

pair of vertices. The diameter of a graph 𝐺 is the maximum length of the shortest paths for each 
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pair of vertices (534): max
*,\∈g

𝛿(𝑖, 𝑗), where 𝛿(𝑖, 𝑗) is a shortest path between vertices 𝑖 and 𝑗. 

Because our network was composed of multiple connected components, we calculated the 

diameter for each connected subgraph, and defined an average of the diameters: 𝐷j =

&
[
∑ max

*,\∈v
𝛿(𝑖, 𝑗)v∈F , where 𝑆 is a set of connected components and 𝑛 is its cardinality. The 

transitivity (also called the clustering coefficient) is the relative number of triangles 

(#𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠) present in a given network compared to the number of all possible triangles 

(#𝑡𝑟𝑖𝑎𝑑𝑠): 𝑇 = 3		(#𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)/(#𝑡𝑟𝑖𝑎𝑑𝑠) (535). Finally, the average 𝑘-degree connectivity is 

the average degree of the nearest neighbors for the nodes with the degree 𝑘. In this study, we 

computed the average degree connectivity for 𝑘=1, 2, and 3. 

The number of connected components over time was fit with exponential and 

biexponential models:  

𝐸𝑥𝑝(𝑥) = 𝑐"𝑒3(d + 𝑐E 

𝐵𝑖𝐸𝑥𝑝(𝑥) = 𝑐w𝑒3>d + 𝑐"𝑒3(d + 𝑐E 

The resulting models were compared using Akaike’s information criterion (AIC) and 

Bayesian information criterion (BIC). Results were plotted using Python 3.9 and Bokeh library. 

A Sankey diagram of connected components was plotted in MATLAB using visualization 

module of PisCES algorithm.  
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Figure 4.5 Structural and network analysis of the envelope assembly. A. Orientation 

preference of the transmembrane domains (TMD) and endodomains (ED), two main components of the M 
proteins in their dimeric state. TMD components display two preferred locations at 135° and 315°, ED 
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components display four preferable locations at 135°, 315°, 225° and 75°; B. Super position of averaged 
Cryo-EM images previously obtained from SARS-CoV envelope with M dimer models obtained 
separately for TMDs and EDs and arranged according to the preferred interaction positions from panel A, 
demonstrating a near-perfect correspondence between our model and the Cryo-EM images. C. Orientation 
analysis of the contacts between S trimers and M dimers. Shown are positions of the S trimer (pink), the 
density of positions of M dimers (left panel) and the same density together with two M dimers (white) 
positioned around two distinct high-density locations at 60° and 260° (right panel). D. The number of 
connected components that have at least three nodes dynamically change during the simulation; included 
into the same plot are envelope models at t=0µs, 1.5µs, 2.5µs, and 4µs in molecular composition C1. E. 
Mercator projection of physical domain-domain interaction network established for molecular interactions 
of M dimers (blue ellipses) with each other and with S trimer (red ellipses) for the models in molecular 
composition C1. M dimer’s TMDs and EDs are arranged into separate domain-domain interaction 
networks. The orientation of ellipses corresponds to the orientation of the corresponding oligomers. An 
ellipse with the major axis positioned horizontally corresponding to the canonical orientations of the 
oligomers, as defined in panels A and C, for M dimer and S trimer, respectively. Connectivity increases 
after 4µs of simulations for both TMD and ED components; F. Sankey diagram showing clustering 
dynamics of the TMD components over the time for the model in molecular composition C1. Each of the 
displayed “flows” contains at least 25 network nodes. One can see a drastic increase in the cluster size for 
a small number of connected components as the simulation progresses; G. Average node degree dynamics 
during the simulation for TMDs (top) and EDs (bottom). Yellow bands indicate values for the 2nd and 3rd 
quantiles, black lines denote the minimum and maximum values. There is a clear trend for the increase of 
the node degree value for TMD components; the value plateaus during the last microsecond (3-4µs) 
around the value of 2.3. EDs’ node degrees have a much smaller spread and tend to converge to the value 
of 3.2. 

Solvent molecules were excluded from the visualization. To capture the whole dynamic 

simulation process, one frame per one nanosecond was extracted from the original trajectory 

using gmx trjconv (536); the extracted XTC file containing the frames was then loaded into 

VMD. Lastly, a tcl script was used to visualize each frame, followed by rendering the frames 

into TGA images using tachyon. 

Visualization of the simulation trajectory of M1 was made by rendering each frame in the 

4μs trajectory of the envelope model M1 and rotating 2,000 steps around y-axis clockwise and 

2,000 steps counterclockwise; each step was 0.9 degrees. Another visualization of the simulation 

trajectory of M1 (Suppl. Movie S4 was made with imagemagick montage by showing two 

identical 4μs trajectories, first one revealing the outside and the second one revealing the inside 

of the envelope’s structural model M1. For Visualization of 1μs trajectory of model M2 (Suppl. 

Movie S5), we used FFmpeg to convert images into a MP4 movie with 60 fps. Rendering a 
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movie with 4,000 frames corresponding to 4μs of simulation took ~670 CPU-hours on TACC 

Frontera supercomputer.  

To visualize the protein network (Suppl. Movies S7 and S8), we first convert each node’s 

3D position into its 2D projection. We used the Mercator projection, which is a cylindrical 

projection that preserves local directions and shapes. Specifically, for each node, its 2D 

projection (a,b) is calculated by: 

𝑟 = Ô𝑥" + 𝑦" + 𝑧" 

𝑏 = 𝑦/𝑟 

a = 	tan1& 𝑥/𝑧 

where (x,y,z) is its normalized 3D position. The orientation of each protein domain is also 

converted in a similar manner. Then, we plot each node as a ellipse, where the its long axis 

follows the orientation and an orange tip suggests the direction, and colored spike proteins as red 

nodes and membrane proteins as blue nodes. The edges are represented as black lines where the 

new edges from the previous frame are highlighted as orange. We generated 1 frame per 10 ns, 

which resulted in 400 frames corresponding to 4μs of simulation.  

4.3.6 High-Performance Computing for Molecular Dynamics Simulations  

Production runs for the systems were performed on the TACC Frontera supercomputer on 

nodes equipped with Intel Xeon Platinum 8280 with 56 AVX_512 logical cores per node. For the 

full-spike model, the 1µs simulation took ~208,000 CPU hours; the truncated spike systems, 

running for 4µs, took ~925,000 CPU hours on average. 
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Composition  C1, model M1 

truncated S, 4μs 
C1, model M2, 

full S, 1μs 

Proteins 

S 25 25 

E 2 2 

M 1,003 1,003 
Total 

particles 968,373 1,237,398 

Lipids 

POPC 34,923 34,923 
POPE 11,837 11,837 
POPI 5,918 5,918 
POPS 1,183 1,183 
CHOL 2,663 2,663 
CDL2 2,663 2,663 
Total 

particles 751,373 751,373 

Solvent 

Na 175,565 409,000 

Cl 184,999 517,855 

Water 13,045,399 34,236,835 
Total 

particles 13,220,964 35,163,690 

Table 3. Overview of system compositions. Shown are the compositional details of the two 
stable envelope models in molecular composition C1 (2 E pentamers, 25 S trimers, 1003 M dimers) with 
truncated (model M1) and full (model M2) S trimers. A CG water particle corresponds to 4 real water 
molecules. 

 

4.4 Conclusions 

This work provides an initial large-scale structural genomics and interactomics effort 

towards understanding the structure, function, and molecular dynamics of the SARS-CoV-2 

virus with the aim to facilitate the process of structure-guided research where accurate structural 

models of proteins and their interaction complexes already exist. It also analyzes current 

capacities for the computational modeling of 3D structure of viral proteins. The importance of 

rapidly uncovering functional complexes and coming up with therapeutic targets is highlighted 

by the ongoing COVID-19 pandemic that demonstrated how vulnerable modern globalized 
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society is to the emergence of novel highly transmissible disease. It means we have to advance 

computational modeling tools and streamline pipelines in order to be ready to fight next 

biological threat to the human lives. One of such initiatives is the development of mesoscale 

modeling approach for the SARS-CoV-2 viral envelope. 

Despite remarkable similarity of the virion structures shared between betacoronaviruses, 

such as SARS-CoV, MHV, and SARS-CoV-2, and the efforts to elucidate the structure of these 

viruses using imaging and computational methods (509, 523, 537-540), no high-resolution 

structure of the envelope currently exists. Our integrative approach allows combining 

experimental information at different resolutions into a consistent model, providing structural 

and functional insights beyond what can be obtained by a single experimental method. The 

obtained model is an important step towards our understanding of the underlying molecular 

architecture of the entire virus and successfully bridges the gap between molecular simulations 

and electron microscopy of virions, reproducing the experimentally observed density profiles of 

the local envelope structure. Furthermore, the developed computational protocol can be applied 

to study the envelopes of other coronaviruses, once the models or experimental structures and 

stoichiometries of the structural proteins comprising the envelope are obtained. The model will 

join in other efforts to structurally characterize virion particles with molecular dynamics such as 

influenza A, human immunodeficiency virus (HIV), and hepatitis B virus (HBV) (541-545). 

The model can serve as a structural scaffold for understanding the interplay between 

mutual orientations of neighbor spike trimers and the role of this orientation in the viral 

interaction with the host receptors, as well as for studying the interactions between the proposed 

elongated form of M dimers and N-proteins(507) to discern the mechanistic determinants of the 

virion’s stability. The structures of M dimers and the complex inter-dimeric assemblies they 
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form can provide the structural basis for understanding the molecular mechanisms behind the 

viral assembly. The structural knowledge of complexes formed by M proteins can also be helpful 

when designing new antiviral compounds targeting the interaction interface of the M protein and 

thus preventing formation of the envelope, an approach recently suggested for other viruses (546, 

547). Targeting of the viral envelope with antiviral drugs is directly accessible within the Martini 

model framework (548). Finally, the structural model of the viral envelope will facilitate the 

development of viral-like nanoparticles for novel vaccines (549).  
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Chapter 5. Discussion and Future Directions 
 

5.1 Discussion 

The field of precision medicine currently experience unprecedented advancement. Fueled 

by the decrease in experimental cost, rapid improvement of the machine learning algorithms, and 

high-profile initiatives, it fosters collaborative environment for the scientists with various 

backgrounds – physics, biology, chemistry, and computer science. The latter can discover a 

fertile field of opportunities in advancing computational methods that directly affect an 

experimental outcomes and findings or adopting existing or devising novel cutting-edge 

algorithms for secondary analysis. Biological data is not easy to work with – the noise and 

technical variation are inevitable, confounding variables are plenty, its description is often much 

less structured than that of counterparts from business and tech worlds. However, these exact 

difficulties can stimulate advances in AI, pushing boundaries in the domains of knowledge 

discovery and advocating for the increase in reproducibility and more robust model evaluation 

and validation strategies. 

The most common challenges in working with biological data are non-interpretability of 

the data from the human perspective, limited sample size, and technical variations. The first 

problem is the most global one, as it circumvents our ability to access analysis results and 

machine learning models. The ML applications are among the approached that experience the 

most scrutiny from the clinical community, and this attention in not an unwarranted one. It is 

often quite easy to obtain high scores for common machine learning metrics, however, the 

performance can be artificially boosted because of the information leakage problems, or it may 
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be not generalizable outside of the limited dataset it was trained on. Due to this, for biological 

and medical applications it is not sufficient just to assess performance on validation set, it is also 

important to peer into results obtained with its help and check their soundness from multiple 

points of view. E.g., in this work I dive deep into the biological validation by conducting case 

studies and assessing relevance of the created models. The second challenge, small datasets, can 

be potentially overcome with the usage of transfer learning by the reusing high-level general-

purpose information extracted from gene or protein sequences. As an alternative, domain 

adaptation methods could be used in tandem with the batch effect removal approaches to expand 

scarce data by integrating them with the information available in public domain. Ubiquitously 

present technical noise calls for more sophisticated normalization approaches, however, blindly 

using statistical methods to correct for this variation may have adverse effects, e.g., reducing 

level of the true biological signal, changing a measurement scale and making adjusted samples 

non-comparable with other samples obtained via the same technology. 

Computational methods keep increasing their impact on another crucial aspect of 

biological research – structural modeling. Novel de novo algorithms produce very promising 

results by demonstrating significant advances in international competitions. Though, more 

traditional homology-based approaches still demonstrate their usefulness by allowing scientist to 

pour in their biological expertise and integrate information from multiple sources into feasible 

constraints. Produced models with the resolved 3D structure are further studied using molecular 

dynamics approaches. These family of methods is especially demanding on computational 

resources and international teams of scientists constantly study ways to accelerate physics-based 

simulations. Besides adding raw computational power, some groups develop ML-aided force 
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fields that describe the nature of interaction between individual atoms and allows to approximate 

simulation results when large number of steps is skipped. 

5.2 Schematics of algorithms improvement 

5.2.1 Predicting alternative splicing isoforms from scRNA-Seq short-read data 

Previous cell-pool studies on scRNA-Seq (301) demonstrated that small groups of cells 

increase data analysis robustness and experiment reproducibility. Inspired by those successes, I 

propose to transfer cell-pool analysis to the in-silico stage. The utility of a similar pseudo-bulk 

approach, MetaCell (550), was previously demonstrated by the wide range of applications to cell 

profiling (551-554). The idea is to use a combination of data cleaning methods (302, 304) and 

high accuracy clustering like recent deep-learning-based DUSC (555) to identify subpopulations 

in scRNA-Seq data and combine them into “metacell.” This algorithm previously demonstrated 

separating scRNA-Seq data from the mouse cortex into well-defined clusters (Fig.12).  

The “metacell” data would allow us to extend read depth and, with high probability, 

coverage. It would enable estimating splicing events in specialized cells and potentially use bulk 

RNA-Seq quantification methods. Another possible study direction is the detection of 

subpopulation snapshots that correspond to distinct cell cycle phases. 

The study on the subpopulation-based methods for alternative splicing detection can be 

conducted according to the following methodology. First, a golden-standard dataset for 

alternative splicing detection can be constructed from publicly available single-cell and bulk 

paired samples, e.g in (556), (303), (557). This would allow us to compare several isoforms 

detected via high coverage bulk RNA-Seq data and a total number of isoforms across individual 

cells identified based on single-cell data. Second, I would construct a simulated dataset 
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according to the protocol from (299) to provide a controlled environment for accessing technical 

noise and study the effect of ‘metacell’ size on AS events detection to get insights into the nature 

of a trade-off between the size of sub-population and the data coverage. 

The final algorithm follows the next steps: 

1. Refining splicing boundaries annotation using SpliceAI in tandem with 

DeepSplice, keep only novel isoform identified by both algorithms 

2. Aggregate cells with specified granularity via DUSC algorithm into meta-

cells 

3. Merge sequence reads into pseudo-bulks in order to increase read depth 

4. Quantify isoforms abundance according to the Salmon statistical model 

based on the alignment to the references that were updated at the Step 1. 

5. Incorporate machine learning model estimating sufficient sequencing 

depth based on the meta-cell granularity and alternative splicing patterns across different 

cell types. 

Benchmarking 

The hypothesis is that combining cells from the same subpopulation would essentially 

increase the alternative splicing signal. In order to test this hypothesis, I will leverage three types 

of AS prediction methods. First are the traditional quantification methods used in bulk RNA-Seq 

setting – DEXSeq and Census. I expect that cell subpopulation would behave akin to the tissue 

type, just more homogeneous. Second is the single cell-specific methods because the collection 

could be considered as enriched single-cell data. The third is our targeted middle ground – 

subpopulation-based methods which compensate for low coverage of Smart-based and, 
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especially, UMI-based methods while maintaining enough specificity for each cell type aligned 

across pseudotime. 

Approaches such as RSEM and Splatter heavily rely on provided examples of scRNA-

Seq experiments for simulations. A strong point of such an approach is that synthetic dataset 

closely resembles real-world biological experiments. Still, the downside is our “ground truth” 

isoform quantification data is biased and does not represent an accurate biological picture. 

Nevertheless, this is a widely used approach for benchmarking. It would be interesting if serious 

discrepancies would arise between evaluations on the simulated dataset and paired single-cell 

and bulked datasets. 

For evaluation of isoform expression on synthetic single-cell ground truth data 𝑶 I would 

use normalized root mean square error (NRMSE): 

𝑵𝑹𝑴𝑺𝑬 = 𝟏𝟎𝟎
Ï𝟏𝑵∑ (𝑺𝒊 − 𝑶𝒊)𝟐𝑵

𝒊,𝟏

𝝈(𝑶) , 

where 𝑺 is an estimation of the isoform expression, 𝑵 is the total number of isoforms, and 

𝝈(𝑶) is the standard deviation of the estimated expressions on the ground truth. 

For the comparison with paired samples, I employ a formula for the RMSE: 

𝑹𝑴𝑺𝑬 = 𝟏𝟎𝟎¸
𝟏
𝑵AÙA𝑺𝒊𝒋

𝑴

𝒋

− 𝑶𝒊Ú

𝟐𝑵

𝒊,𝟏

, 

where ground truth data 𝑶 comes from the bulk RNA-Seq experiment, hence, it has only 

a single value,  𝑺 is an estimation of the isoform expression, 𝑵 is the total number of isoforms, 

and 𝑴 is the number of cells. 
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5.2.2 Domain Adaptation for ALT-IN Tool 

 

Recently published method, ALT-IN (236), leverages traditional semi-supervised 

approach in order to improve generalization ability of the machine learning model.  However, 

this approach demonstrated its limitation in improving generalization capability of the model. 

Clustering of the original features reveal protein family-dependent groupings of interactions. 

Large amount of heterogeneity between features derived from distinct protein families makes it 

difficult to achieve generalization across all data space. 

To account for this problem, I introduce transfer learning-based approach for predicting 

alternative splicing functional effects on protein-protein interaction networks that improves 

generalization by accounting for different distinct domain arising in data space. The information 

on PPIs can be bolstered by the large number of available transcript sequences (327) and 

interactomics data (195).  

The initial domain identification would be conducted via SCOP protein annotation (333). 

SCOP is predominantly manual structural classification of the proteins. It four hierarchical 

levels: class, fold, superfamily and family. We have to experiment with granularity of the 

selected domain and carefully balance it based on validation results, as each distinct domain 

would decrease amount labeled samples available for each adaptation subtask. 

In order to refine decision boundaries inside the domains I propose to add structural 

features during to the training phase, following Learning Under Privileged Information paradigm 

(366). I describe my approach for incorporating LUPI into Random Forest algorithm 
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In addition to introducing a transfer learning method for predicting functional effects of 

alternative splicing, we are aiming for improving model explainability and bolstering its 

potential for knowledge discovery applications. Therefore, we would like to preserve as much 

interpretability for our feature set as possible, opting for the set of biochemistry- and alternative 

splicing-based features introduced in (236). For the aforementioned purposes, inference-based 

methods are our best choice. In particular, the work (215) discusses the usage of Bayesian 

inference for weighing features for age prediction from DNA methylation. Due to the diverse 

nature of our data, in order to use this approach, we have to extend it for a multisource domain 

setting. The theoretical results (227, 558) indicate that such a problem is tractable, and (559, 560) 

demonstrate that a weighted ensemble of classifiers over source domains is a reasonable and 

widely adopted approach. This methodology is highly suitable for the proposed semi-supervised 

approach because it strives to create a hierarchical Gaussian mixture model over available data 

and individual trees can be used to derive underlying source domains. 

Feature Confidence Scores in WENDA Method 

The WENDA method (215) for multiple target domains adaptation that we are taking for a basis 

has the following assumptions and definitions: 

1. 𝒏 labeled examples (𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), … , (𝒙𝒏, 𝒚𝒏) for the source domain, where 𝒙𝒊 is the 

𝒑-dimensional vector and 𝒚𝒊 is a scalar. 

2. 𝒎 labeled examples for the target domain (𝒙Ü𝟏, 𝒚Ü𝟏), (𝒙Ü𝟐, 𝒚Ü𝟐), … , (𝒙Ü𝒎, 𝒚Ü𝒎), where 𝒙Ü𝒊 is the 

𝒑-dimensional vector and 𝒚Ü𝒊 is a scalar. 

3. The data comes from the two different distributions: 𝑷𝑺(𝑿, 𝒀) = 𝑷𝑺(𝒀|𝑿) ∙ 𝑷𝑺(𝑿) and 

𝑷𝑻(𝑿, 𝒀) = 𝑷𝑻(𝒀|𝑿) ∙ 𝑷𝑻(𝑿) for the (S)ource and (T)arget domains correspondingly. 

4. Weakened covariance shift assumption: 𝑷𝑺(𝑿) ≠ 𝑷𝑻(𝑿), ∃𝑴 ⊆ à𝒇𝟏, … , 𝒇𝒑á: 
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	𝑷𝑺<𝑿𝒇â𝑿¬𝒇= ≈ 	𝑷𝑻<𝑿𝒇â𝑿¬𝒇= 	⟹ 𝑷𝑺(𝒀|𝑿𝑴) ≈ 	𝑷𝑻(𝒀|𝑿𝑴), ∀𝒇 ∈ 𝑴	 

It means that for our data there exists a feature subset 𝑴 of that has the same influence on 

source and target domain and features outside this subset are allowed to influence domain 

distributions differently, unlike for the strict covariance shift assumption. 

These assumptions are used as a basis for a Gaussian process model that takes for the inputs a 𝒑-

dimensional vector 𝒙∙,𝒇 = <𝒙𝟏,𝒇, 𝒙𝟐,𝒇, … , 𝒙𝒏,𝒇= that contains all values for the feature 𝒇 and 

𝒏 × (𝒑 − 𝟏) matrix 𝑿∙,¬𝒇 = <𝒙𝟏,¬𝒇, 𝒙𝟐,¬𝒇, … , 𝒙𝒏,¬𝒇= that contains the rest of the features and 

maximizes log-likelihood 

𝐥𝐨𝐠𝒑<𝒙∙,𝒇â𝑿∙,¬𝒇= = −
𝟏
𝟐𝒙∙,𝒇

𝑻 (𝑲 + 𝝈𝒏𝟐𝑰𝒏)1𝟏𝒙∙,𝒇 −
𝟏
𝟐 𝐥𝐨𝐠â𝑲 + 𝝈𝒏𝟐𝑰𝒏â −

𝒏
𝟐 𝐥𝐨𝐠𝟐𝝅 

where linear kernel matrix 𝑲 = 𝝈𝒑𝟐𝑿∙,¬𝒇𝑿∙,¬𝒇𝑻 , 𝝈𝒑𝟐 is the variance of the prior on coefficients, 𝝈𝒏𝟐  

is the variance of the noise and 𝑰𝒏is the identity matrix of the dimensionality 𝒏. The posterior 

distribution of the coefficients 𝝎 has the following closed-form solution, according to (215): 

𝒑<𝝎â𝒙∙,𝒇, 𝑿∙,¬𝒇=~𝓝(𝝈𝒏1𝟐𝑨1𝟏𝑿∙,¬𝒇𝑻 ; 𝒙∙,𝒇𝑻 , 𝒙∙,𝒇𝑨1𝟏	), 

where 𝑨 = 𝝈𝒏1𝟐; 𝑿∙,¬𝒇𝑻 ; 𝒙∙,𝒇𝑻 + 𝝈𝒑1𝟐𝑰𝒑1𝟏. According to these probabilities, the goodness of fit for 

the observable value 𝒙Ü𝒊,𝒇 into the feature model 𝒈𝒇 is calculated. Based on the Gaussian process 

𝒈𝒇 the posterior distribution for the 𝒙Ü𝒊,𝒇 value based on 𝒙Ü𝒊,¬𝒇 is defined as 

𝓝(𝝁𝒈𝒇<𝒙Ü𝒊,¬𝒇=, 𝝈𝒈𝒇(𝒙Ü𝒊,¬𝒇)). The goodness of fit for the 𝒙Ü𝒊,𝒇 is quantified in confidence scores 

proposed in the (561): 

𝒄𝒇(𝒙Ü𝒊) = 𝟐𝚽ï− ð
𝒙Ü𝒊,𝒇 − 𝝁𝒈𝒇<𝒙Ü𝒊,¬𝒇=

𝝈𝒈𝒇<𝒙Ü𝒊,¬𝒇=
ðñ, 

where 𝚽 corresponds to the CDF of standard normal distribution, and (215) define an overall 

confidence score of the feature 𝒇 as 
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𝒄𝒇 =
𝟏
𝒎A𝒄𝒇(𝒙Ü𝒊)

𝒎

𝒊,𝟏

 

Protein-protein interaction prediction as a domain adaptation problem 

Large amounts of data can be derived from protein sequences. Still, the resulting datasets 

are not homogeneous and additional steps are needed in order to ensure adequate generalization 

ability of the ML models trained on them (562, 563). For example, (562) uses protein 

superfamily split in protein homology detection application. Here, we are expanding upon our 

previous work on the alternatively spliced isoforms’ effects on PPIs, ALT-IN (564). 

My idea is to treat each protein family or superfamily (the most appropriate way to 

designate split for our application is also a subject for the research, as currently there is no 

community standard) as separate domains. PPI prediction generally falls under a pair-input 

machine learning scheme (164), which means that features for each labeled data point come from 

two different sources, in our case, proteins. In the general case this adds an extra layer of 

complexity because we would not have a single source domain of the classical DA problem, but 

a composite one 𝑷𝑺<𝑿𝒊, 𝑿𝒋, 𝒀=, where 𝑿𝒊 and 𝑿𝒋 correspond to the proteins belonging to families 

𝒊 and 𝒋 correspondingly. Our ALT-IN method deals only with isoforms derived from the same 

gene that belongs to a single protein family, but the interactor partner does not have such 

restrictions, thus bears a similarity to the generic PPI prediction methods in this regard. We are 

taking a straightforward approach to this problem by performing domain adaptation for the 𝑿𝒊 

and 𝑿𝒋 independently. 

Among the available DA methodologies, we chose to follow inference-based one which 

strives to find a robust subset of features. Thus, our problem can be formulated as 
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𝐦𝐢𝐧
𝒄𝒇,𝑭

𝓛 <𝒄𝒇, 𝑭=, 

where 𝒄𝒇 is the vector of feature weights and 𝑭 is a classifier. 

LUPI in Random Forest 

One of the crucial steps in Random Forest is node split. Here, we would consider 𝑲 -best 

split approach, where on each step of tree building we select the best performing split on one of 

the 𝑲 selected features. One of the most ubiquitous criteria for selecting this split is Gini 

impurity (565): 

𝑮(𝒎) = 𝟏 −A<𝒑(𝒄𝒋)=
𝟐

𝒎

𝒋,𝟏

, 

where 𝒎 is the number of elements in node, 𝒑(𝒄𝒋) is the probability of assigning class 𝒄𝒋 

to the element if it would be done on the random. Effectively, 𝒑(𝒄𝒋) equals a fraction of elements 

belonging to the class 𝒄𝒋 in the node. Another widely used approach is an Information Gain 

criteria (91, 565). For the sake of generality, let us denote the impurity index employed by 

Random Forest as 𝑰(𝒎), where 𝒎 is a number of classes. 

We are proposing to improve the node splitting procedure by incorporating the LUPI 

paradigm into this step. Though LUPI is a generic paradigm and is not specific to selected 

classifiers, current general-purpose implementations are limited to the SVM+ implementations 

(339, 340, 343, 566) and neural networks (344, 345).  

Under the LUPI paradigm let us consider 𝑿 to be an entire set of features, vector 𝒙 of size 

𝑴, where 𝑴 is a number of samples on each split feature and complimentary privileged feature 

matrices 𝑿𝟏∗ , 𝑿𝟐∗ , … , 𝑿𝑳∗  with the dimensions 𝒎𝒊 × 𝒏𝒊, 2 < 𝒎𝒊 < 𝑴 and 𝒏𝒊 > 𝟎. Each matrix 𝑿𝒊∗ 
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corresponds to a separate privileged feature set which may include different data samples from 

𝑿. 

Our idea is to add a regularization term for the split reflecting the ability to separate data 

in supplementary privileged data space 𝑿𝒊∗ to the impurity index 𝑰(𝒎). One of the most natural 

ways to achieve this is to construct a split using linear SVM+ and calculate corresponding 

margin size 𝑺 = 𝟐
|𝒘|
, where 𝒘 are the feature weights of linear SVM. The resulting expression 

would be: 

𝑰∗(𝒎) = 𝑰(𝒎) +A𝝀𝒊
𝟏
𝑺𝒊

𝑳

𝒊,𝟏

, 

where 𝑳 is the number of privileged datasets, 𝝀𝒊 is the regularization parameter and 𝑺𝒊 is 

the margin size of the linear SVM+ trained on 𝒊-th privileged dataset. 

Semi-supervised learning and low-density separation 

Node split procedure also became a focus in Sherwood (567) modification of random 

forest for semi-supervised learning. There an additional information gain regularization term is 

based not on the class impurity in the node, but on the purity of data distribution in child nodes 𝑳 

and 𝑹: 

𝑰𝑮 = 𝑯(𝑺) − A
â𝑺𝒊â
|𝑺| 𝑯

(𝑺𝒊)
𝒊∈{𝑳,𝑹}

, 

where 𝑯(𝑺) is the Shannon entropy and 𝑺 is a data subset. For the continuous 

distribution, entropy is defined as 

𝑯(𝑺) = −ø𝒑(𝒚)𝐥𝐨𝐠	(𝒑(𝒚))𝒅𝒚 
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Sherwood operates takes Gaussian distribution as a basis for the low-density separation 

because of the computational efficiency, as for the 𝒅-variate Gaussian entropy can be written in a 

closed form: 

𝑯(𝑺) =
𝟏
𝟐 𝐥𝐨𝐠((𝟐𝝅𝒆)

𝒅|𝚲(𝑺)|) 

Then it is used as a normalization term in the final impurity criteria analogous to the 

previous section: 

𝑰∗(𝒎) = 𝑰(𝒎) + 𝝀 ∙ 𝑰𝑮(𝑼), 

where 𝑼 corresponds to the unlabeled data and 𝝀 is a regularization term. 

Domain Adaptation in ALT-IN 

ALT-IN method requires the input dataset to be a structured input of triplets 𝐗ü =

(𝑿,𝑫, 𝑹) with dimensionality 𝑵 ×𝑴, where 𝑿 is the main isoform features, 𝑫 correspond to 

delta features (difference between main isoform feature vector 𝑿 and the feature vector derived 

from the alternative isoform), and 𝑹 corresponds to interaction partner’s features and 𝐗ü is the 

entire dataset. 𝑿 and 𝑰 can belong to the different protein families, and delta features may form 

their own alternative splicing-related dependencies, i.e., all three feature groups can be 

considered as coming from the different statistical distributions. Ideally, we would like to capture 

nuanced interplays arising from conditional probabilities for the distributions of those domains. 

Still, our limited dataset does not provide enough information to make such a study viable. 

Because of this, we are making several simplifications.  

We would study the effects of 𝑿,𝑫 and 𝑹 coming from different protein families 

separately. Thus, for each protein family 𝓕𝒊 we are calculating confidence scores 𝒄𝒇 in a disjoint 
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manner. Let’s denote the confidence score calculation procedure from the previous section that 

produces confidence 𝒄𝒇 for every feature from the matrix 𝑿 as 𝑪(𝑿). Then we will generalize 

this expression for subsets of 𝑿: 𝑪𝑺(𝑿𝑺, 𝑿𝑨) such that concatenation (𝒙𝑺, 𝒙𝑨) ∈ 𝑿, ∀𝒙𝑺 ∈

𝑿𝑺, 𝒙𝑨 ∈ 𝑿𝑨 belongs to the original set 𝑿, where 𝑺 is a fixed subset and 𝑨 corresponds to the 

lack of any restrictions. 

This results in the following scheme: to perform domain adaptation we have to consider 

two potentially different protein families 𝓕𝒊, 𝓕𝒋 and corresponding datasets `𝑿𝓕𝒊 , 𝑫𝓕𝒊 , 𝑹𝓕𝒋c, 

calculate an 𝑴-dimensional vector of confidence scores  

𝑪 = g𝑪𝓕𝒊<𝑿𝓕𝒊 , 𝑫𝑨, 𝑹𝑨=, 𝑪𝓕𝒊<𝑿𝑨, 𝑫𝓕𝒊 , 𝑹𝑨=, 𝑪𝓕𝒋 `𝑿𝑨, 𝑫𝑨, 𝑹𝓕𝒋ch 

Then we modify the procedure of the random subspace selection and corresponding 

vector 𝚯𝒌 for the Random Forest algorithm. We apply stratified sampling to the feature selection 

procedure. It was previously shown that stratified sampling of the features plays a positive role in 

the classifier’s performance (568-570). More specifically, while selecting feature subspace of 

size 𝒌 during node split we are visiting individual features in random order and sample with 

replacement feature 𝒊 with probability 𝒑𝒊 =
𝒄𝒇𝒊

∑ 𝒄𝒇𝒋
𝑴
𝒋<𝟏

.  

By adopting this approach, we ensure that the main information flow is confined to the 

subset of features, robust for the specific protein family while not losing flexibility provided by 

the entire set. 
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Appendix A 

Supplementary Figures 

    
Figure A1. A pseudocode of iterative self-learning random forest algorithm used in AS-IN 
Tool.  
 
 
 
 
  

1: 𝑋/m-*[ = train set data samples 
2: 𝑌/m-*[ = train set labels 
3: 𝑈 = unlabeled data samples 
4: 𝑁 = number of elements to add to train set 
5: 𝑇 = False 
6: 𝜀 = threshold value 
7: 𝑋(Zv/ = 𝑋/m-*[ 
8: 𝑅𝐹+2oZ# ←run Random Forest classifier on train set (𝑋/m-*[, 𝑌/m-*[) 
9: 𝐹𝑠𝑐𝑜𝑟𝑒(Zv/ ← F-score of 𝑅𝐹+2oZ# based on 10-fold CV on (𝑋/m-*[, 𝑌/m-*[) 
10: 𝑅𝐹(Zv/+2oZ# ← 𝑅𝐹+2oZ# 
11: while not 𝑇 do: 
12:  𝑌� ← Classification result of  𝑅𝐹+2oZ#on 𝑈 
13: <𝑈2moZmZo , 𝑌�BCD4C4D= ←order 𝑈 along with corresponding 𝑌� according to the 
probability of 𝑌�0  to be correct label for sample 𝑈*  in descending order 
14:  (𝐾, 𝑌�) ← first 𝑁 elements from set <𝑈2moZmZo , 𝑌�BCD4C4D= 
15:    (𝑋[Z!, 𝑌[Z!) ← merge (𝑋/m-*[, 𝑌/m-*[) and (𝐾, 𝑌�) 
16:    𝑅𝐹[Z!+2oZ# ← run Random Forest classifier on train set (𝑋[Z!, 𝑌[Z!) 
17:    𝐹𝑠𝑐𝑜𝑟𝑒[Z! ← F-score of 𝑅𝐹[Z!+2oZ#  based on 10-fold CV on (𝑋/m-*[, 𝑌/m-*[) 
18:    if 𝐹𝑠𝑐𝑜𝑟𝑒[Z! > 𝐹𝑠𝑐𝑜𝑟𝑒(Zv/: 
19:  𝐹𝑠𝑐𝑜𝑟𝑒(Zv/ ← 𝐹𝑠𝑐𝑜𝑟𝑒[Z!  
20:                   𝑅𝐹(Zv/+2oZ# ← 𝑅𝐹[Z!+2oZ#  
21:  (𝑋/m-*[, 𝑌/m-*[ ← (𝑋[Z! , 𝑌[Z!) 
22:    remove 𝐾 from 𝑈 
23:    if |𝐹𝑠𝑐𝑜𝑟𝑒2#o − 𝐹𝑠𝑐𝑜𝑟𝑒[Z!| < 𝜀: 
24:  𝑇 ←True 
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Supplementary Tables 

 Normal T2D Total 
Conserved 279 332 611 
Rewired 6 23 29 
Total 285 355 640 

 
Table A1. Contingency table for the rewiring for normal and T2D-related interactions. This 
table cross tabulate information on rewiring of normal and T2D-related interactions.    
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Feature Group Related 
Proteins Feature List 

Biochemical 

A1 

 
B 
  
 

 

Molecular weight  
Number of residues 
Average residue weight 
Charge 
Isoelectric point 
A280 molecular extinction coefficient for 
reduced and cystine bridges 
Frequency, Molarity, DayhoffStat for each 
residue and residue property (Tiny, Small, 
Aliphatic, Aromatic, Non-polar, Polar, 
Charged, Basic, and Acidic) 

 
Statistical Potentials 

(A1,B) 
3 largest statistical potentials among all  
combinations of domain from protein and 
protein 

A1 2 largest statistical potentials for individual 
domains of protein 

Delta Features  

Biochemical A1-A2 See feature list for Biochemical 

Statistical potentials 
(A1,B)-(A2,B) 

See feature list for Statistical Potentials 
A1-A2 

Sequence 
Alignment Based (A1,A2) 

Length change (ratio) 
Length change (absolute) 
N-termini 
C-termini 
Maximum alignment gap size 
Mean alignment gap size 
Number of alignment gaps 
Number of large gaps (>=10 bases) 
Number of small gaps (<10 bases) 

Domain Based (A1,A2) 
Domains lost 
Domains changed 
Domain or linker 

Table A2. List of features used for machine learning classifiers. The list includes 
three main groups – biochemical features, statistical potentials, and AS-related “delta” features. 
Related Proteins column indicates which proteins among the reference isoform A1, its interacting 
partner B, and alternatively spliced isoform A2 are used as the feature source. Two stand-alone 
proteins indicate that features described in the corresponding group were obtained for each 
protein independently. (X,Y) grouping of proteins indicate that both proteins, X and Y, are 
required to obtain the corresponding features. X-Y indicates that the corresponding features 
reflect the difference between the individual features of proteins X and Y. 
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Tool Structural features list 

FoldX 

Total interaction energy 
Backbone Hbond 
Sidechain Hbond 
Van der Waals 
Electrostatics 
Solvation Polar 
Solvation Hydrophobic 
Van der Waals clashes 
Entropy sidechain 
Entropy mainchain 
sloop_entropy 
mloop_entropy 
cis_bond 
Torsional clash 
Backbone clash 
Helix dipole 
Water bridge 
Disulfide 
Electrostatic contribution 
Partial covalent bonds 
Energy Ionisation 
Entropy Complex 

OPUS-PSP Energy score 
GOAP Energy potential 

Naccess2 Accessible surface area 
Geometric Energy potential 

Dfire2 Energy score 

InterproScan 

Removed binding sites number 
Changed binding sites number 
Affected binding sites number 
Removed binding sites percentage 
Changed binding sites percentage 
Affected binding sites percentage 
Total binding sites number 

 
Table A3. List of the privileged features for the SVM+ and SVM+ Boosting algorithms. 
This list includes structure-based characterization of the individual proteins and protein 
interactions. 
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Critical commercial assays 
Qiagen’s 
RNeasy Mini 
Kit 

N/A https://www.qiagen.com/us/products/discovery-and-
translational-research/dna-rna-purification/rna-
purification/total-rna/rneasy-mini-kit/ 

TruSeq RNA v2 (571) https://www.illumina.com/products/by-type/sequencing-
kits/library-prep-kits/truseq-rna-v2.html 

Agilent 2500 
BioAnalyzer 

N/A  

Illumina HiSeq 
2000 

N/A  

Deposited Data 
Experimentally 
validated 
isoform 
interaction 
dataset 

(64) http://www.interactome-atlas.org/data/Yang-16.tsv 

Interactome data (64, 246, 
252, 320, 
321 ) 

http://www.interactome-atlas.org/download 

Processed 
mRNA 

This 
paper 
(572) 

http://dx.doi.org/10.17632/wc32wwvdwk.1 
Link to preview:  
https://data.mendeley.com/v1/datasets/wc32wwvdwk/draft?pre
view=1  

Type 2 Diabetes 
Knowledge 
Portal 

(573) http://www.type2diabetesgenetics.org/ 

STRING 
database 

(574) https://string-db.org/ 

ENSEMBL (327) https://useast.ensembl.org/ 
GRCm38.p5 (575) https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.25/  
Type 2 Diabetes 
GWAS studies 

(576) 
(577) 
(578) 

 
http://diagram-consortium.org/downloads.html 
https://www.ebi.ac.uk/ega/studies/EGAS00001001459 
https://www.ebi.ac.uk/ega/studies/EGAS00001001460 
 

DOMMINO (247) http://korkinlab.org/dommino 
 

Software and algorithms 

ALT-IN Tool  This 
paper 
(579) 

https://doi.org/10.5281/zenodo.5234256  
 
https://github.com/KorkinLab/alt-in-tool 
https://hub.docker.com/r/narykov/alt-in 

Trimmomatic (580) http://www.usadellab.org/cms/?page=trimmomatic  
Tophat v2 (581) https://ccb.jhu.edu/software/tophat/index.shtml  
Cufflinks v2 (582) http://cole-trapnell-lab.github.io/cufflinks/  
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SUPERFAMIL
Y 

(338) https://supfam.org/  

SVM+ (340) Requested from authors 
FoldX (347) http://foldxsuite.crg.eu/ 
OPUS-PSP (349) http://ma-lab.rice.edu/MaLab/soft.php 

 
GOAP (350) https://sites.gatech.edu/cssb/goap/ 

 
NACCESS2 (351) http://www.bioinf.manchester.ac.uk/naccess/ 

 
Geometric (352) Requested from authors 
DFire2 (353) https://sparks-lab.org/downloads/ 

 
InterProScan (583) https://www.ebi.ac.uk/interpro/  
EMBOSS (584, 585) https://www.ebi.ac.uk/Tools/emboss/  
LR_PPI (319) http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/ 
TRI_Tool (336) http://www.vin.bg.ac.rs/180/tools/tfpred.php 

 
DIIP 
 

(317) https://github.com/MohamedGhadie/isoform_interactome_pre
diction  

scikit-learn (356) https://scikit-learn.org/  
pyMannKendall (323) https://pypi.org/project/pymannkendall/ 
Cytoscape (586) https://cytoscape.org/  
Adobe 
Illustrator 

 https://www.adobe.com/products/illustrator.html  

BioRender  https://biorender.com/ 
 
Table A4. List of key resources used during creation or evaluation of the ALT-IN machine 
learning model.  
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Appendix B 

Supplementary Figures 

A 
ORF3A        1 MDLFMRIFTIGTVTLKQGEIKDATPSDFVRATATIPIQASLPFGWLIVGVALLAVFQSAS 
M_Protein    1 MAD-----SNGTITV--------------EELKKLLEQWNLVIGFLFLTWICLLQFAYAN 
consensus    1 *  ...... **.*...............     .  *  *  *.* .    *  *  *  
 
ORF3A       61 --KIITLKKRWQLALSKGVHFVCNLLLLFVTVYSHLLLVAAGLEAPFLYLYALVYFLQSI 
M_Protein   42 RNRFLYIIKLIFLWLLWPVTLACFVL---AAVY-RINWITGGIAIAMACLVGLMWLSYFI 
consensus   61 ... . . *   * *   *   * .*...  **...  . .*.      * .*..    * 
 
ORF3A      119 NFVRIIMRLWLCWKCRSKNPLLYDANYFLCWHTNCYDYCIPYNSVTSSIVITSGDGTTSP 
M_Protein   98 ASFRLFARTRSMWSFNPETNILLN-------------------------VPLHGTILTRP 
consensus  121    *.  *    *       .*  .........................*   *   * * 
 
ORF3A      179 ISEHDYQIGGYTEKWESGV----------KDC---VVLHSYFTSDYYQLYSTQ-LSTDTG 
M_Protein  133 LLESELVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSRTLSYYKLGASQRVAGDSG 
consensus  181 . * .  **.   .    ...........** .... . .  *  ** *  .*..  *.* 
 
ORF3A      225 VEHVTFFIYNKIVDEPEEHVQIHTIDGSSGVVNPVMEPIYDEPTTTTSVPLSNSLEVLFQ 
M_Protein  193 ------------------------------FAAYSRYRIGNYKLNTDHSSSSDNIALLVQ 
consensus  241 ..............................        *      *     *  . .* * 

 
 
Figure B1. In spite of substantial difference in protein sequences M model resembles closely 

a structurally resolved ORF3a dimer. A. Protein sequence alignment between M and ORF3A proteins 
of SARS-CoV-2 using TCoffee. Sequence identity is 16%. B. Structural alignment of M dimer model and 
ORF3A structure (PDB ID: 6XDC) using TM-align. All-residue RMSD is 1.64A. 
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Figure. B2. Structural refinement of M dimer. Top left: de novo model of the M dimer without 

endodomain exhibit similarity to the ORF-3a protein from SARS-CoV-2. Top right: M dimer model with 
endodomain in Cryo-EM density map of ORF-3a in lipid nanodisc (EMD-22139). Bottom left: M dimer 
model during ISOLDE simulation run in ChimeraX molecular visualization suite; blue mesh corresponds 
to the CryoEM map with Gaussian smoothing with B-factor equal to 100, green lines correspond to the 
local restraints at the distances of 1.5Å or more, and the colors of residue’s atoms correspond to atoms’ 
goodness of fit. Bottom middle: an example of fitting a specific residue 99 in chain A; in the original 
model this residue sticks out of the density map (blue surface), and during the process of refinement it 
acquires a better fit. Bottom right: Ramachandran plots of the original and refined models; one can see 
that the original model. 
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Figure B3. Change in the number of connected components in the TM domain-domain 

interaction networks throughout the simulation for models M2 (conformation C2) and M1 
(conformation C1). Between two possible fitted lines, exponential model (first row) and biexponential 
model (second row), one can see that the biexponential model provides better RMSE score along with 
smaller values for Akaike’s Information Criterion (AIK) and Bayesian Information Criterion (BIC), 
suggesting that the biexponential model better represents the underlying process and supporting our 
hypothesis about two separate processes happening during the simulation. Specifically, for both M1 and 
M2 models, there are two distinct exponential processes, fast and slow, differing in speed ~10x times. 
Shown in the third row is the number of components with at least 3 proteins. Again, there is an increase in 
the number of components at the beginning of simulation, but later the components tend to merge, 
bringing a total number of components under 40 for both M1 and M2. The last row represents Sankey 
diagram of connected components, demonstrating the tendency of the envelope structure to form larger 
clusters of TMDs for M dimers. Each flow depicts rearrangement of 25 or more proteins. 



 194 

 
 

 
Figure B4. Change in the number of connected components in the ED domain-domain 

interaction networks throughout the simulation for models M2 (conformation C2) and M1 
(conformation C1). Similar to Suppl. Fig. S8, one can see that ED rearrangement can be described as a 
biexponential process, although for M1 the difference between biexponential and exponential models is 
minimal because of extremely tight packing. Also, for M2 its EDs tend to conglomerate to such an extent 
that they have only one, giant, connected component of the size of three or more; for M1 this number 
varies over time but stays under five connected components. 
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Figure B5. Dynamics of the basic network parameters for TMD domain-domain interaction 

networks during the simulation of models M2 (conformation C2) and M1 (conformation C1). 
Yellow bands indicate values for the 2nd and 3rd quantiles, black lines denote the minimum and maximum 
values. There is a clear trend for the increase in node degrees for TMD components, plateauing during 3-4 
µs around the value of 2.3. The diameter sizes tend to grow over time. The vast difference between the 
maximum and average or median values suggests that small number of connected components cover most 
of the network. The transitivity measure depicts a ratio of fully connected components in the network 
with respect to the maximum number of possible components for the given network. The measure 
stabilizes over time around the value 0.35 with very limited spread for the 2nd and 3rd quantiles, 
suggesting that this characteristic is similar for the most connected components. Average degree 
connectivity characterizes the nearest neighbors of the nodes of degree 𝑘. The values for the nodes of 
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degrees 1, 2, and 3 all converge to comparable average degree connectivities (around 2.5), suggesting that 
those nodes are evenly distributed in the protein connectivity network. 

 

 
Figure B6. Dynamics of the basic network parameters for ED domain-domain interaction 

networks during the simulation of models M2 (conformation C2) and M1 (conformation C1). 
Yellow bands indicate values for the 2nd and 3rd quantiles, black lines denote the minimum and maximum 
values. ED domain-domain network is almost fully connected, and therefore has a much smaller number 
of connected components. The node degrees converge to the values of 2.5 for M2 and slightly above 3 for 
M1. Diameters for the connected components of M2 stays around 50, while for M2 it fluctuates around 
the value of 30. Transitivity value approaches 0.4, which seems to be a limit for the triangulated mesh. 
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Average degree connectivity suggests a much tighter coupling between ED domain-domain network 
compared with that one of TMD network. 
 
 

Supplementary Tables 

 
 

  Experimental Computational Comparison 
Proteins PDB 

ID Method Release 
Date 

Coverage Type Release 
Date 

Coverage All-Pair 
RMSD, Å 

ΔTRelease , 
days    (%) (%) 

Nsp1 7K3N EM 9/30/20 100 Comparative 2/5/20 63 2.79 238 
Nsp2 —  —  — — De novo 3/4/20 85  — — 
Nsp3 6WUU X-Ray 5/20/20 16 Comparative 2/5/20 16 1.71 105 
Nsp4 —  —  — — De novo 3/4/20 97  — — 
Nsp5 6LU7 X-Ray 2/5/20 100 Comparative 2/5/20 100 2.91 0 
Nsp6 —  —  — — De novo 3/4/20 95  — — 
Nsp7 6M71 EM 4/1/20 100 Comparative 2/5/20 100 8.57 56 
Nsp8 6M71 EM 4/1/20 100 Comparative 2/5/20 57 2.28 56 
Nsp9 6W4B X-Ray 3/18/20 100 Comparative 2/5/20 97 2.10 42 
Nsp10 6W61 X-Ray 3/25/20 100 Comparative 2/5/20 87 2.46 49 
Nsp12 6M71 EM 4/1/20 100 Comparative 2/5/20 82 1.55 56 
Nsp13 6XEZ EM 7/29/20 100 Comparative 2/5/20 99 5.39 175 
Nsp14 —  —  — — Comparative 2/5/20 99  — — 
Nsp15 6VWW X-Ray 3/4/20 100 Comparative 2/5/20 99 0.52 28 
Nsp16 6W61 X-Ray 3/25/20 100 Comparative 2/5/20 96 1.37 49 

E 7K3G Solid 
NMR 9/30/20 41 Comparative 2/5/20 77 3.51 238 

M —  —  — — De novo 3/4/20 86 — — 
N-NTD 6VYO X-Ray 3/11/20 30 Comparative 2/5/20 37 3.34 35 
N-CTD 6YUN X-Ray 5/20/20 28 Comparative 2/5/20 28 3.58 105 
S 6VSB EM 2/26/20 95 Comparative 2/5/20 87 6.81 21 
Orf3a 6XDC EM 6/17/20 100 De novo 3/4/20 71 7.89 105 
Orf3b —  —  — — —  — — — — 
Orf6 —  —  — — — —  — — — 
Orf7a 6W37 X-Ray 4/29/20 55 Comparative 2/5/20 78 0.97 84 
Orf7b —  —  — — — —  — — — 
Orf8 7JTL X-Ray 8/26/20 85 De novo 1/31/20 100 16.92 113 
Orf9b 7KDT EM 10/21/20 100 — — — — — 

Average 
      

81.57 

 
  

79.82 4.15 86.39 

Table B1. Comparison between experimental and computational structures of 
individual SARS-CoV-2 proteins. 
 

Protein complex 

Experimental Computational Comparison 
PDB 
ID 

# of 
units 

Metho
d 

Release 
Date 

Coverage 
(%)  

# of 
units 

Type Release 
Date 

Coverage 
(%) 

All-Pair 
RMSD, 

Å   

ΔTRelease, 
days 
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Table B2. Comparison between experimental and computational structures of 
protein complexes that involve SARS CoV 2 proteins. 
  

S trimer 6VSB 3 EM 02/26/20 95 3 Comparative 2/14/20 87.11 6.01 12 
S-ACE2 tetramer 6VW1 4 X-Ray 03/04/20 18.35 4 Comparative 2/14/20 88.79 5.06 18 
S-IGHG1/IGLL5 
tetramer*** 7BZ5 3 X-Ray 05/13/20 39.31 3 Comparative 2/14/20 34.29 — — 

S-IGHV3-30-3 
dimer*** 6YZ5 2 X-Ray 06/03/20 37.24 4 Comparative 2/14/20 28.41 — — 

Nsp3  domain2* 
dimer 6VXS 2 X-Ray 03/04/20 8.74 4 Comparative 2/14/20 8.63 15.22 18 

Nnsp3 domain3 
tetramer — — — — —  Comparative 2/14/20 13.62 — — 

Nsp3-UBC dimer 6XAA 2 X-Ray 06/17/20 19.49 2 Comparative 2/14/20 19.29 0.98 111 
Nsp4 dimer — — — — —  Comparative 2/14/20 18.23 — — 
Nsp5 dimer 6Y2G 2 X-Ray 03/04/20 100 2 Comparative 2/14/20 100 1.19 18 
Nsp7-Nsp8-Nsp12  
tetramer 6M71 4 EM 04/01/20 100 4 Comparative 2/14/20 77.53 1.46 46 

Nsp9 dimer 6W4B 2 X-ray 03/18/20 100 4 Comparative 2/14/20 97 2.11 32 
Nsp10 dodecamer* 6W75 4 X-ray 03/25/20 100 12 Comparative 2/14/20 95.71 — — 
Nsp10-Nsp14 
dimer — — — — — 2 Comparative 2/14/20 99.09 — — 

Nsp10-Nsp16 
dimer 6W61 2 X-ray 03/25/20 100 2 Comparative 2/14/20 94.05 1.69 39 

Nsp13 dimer* 5RM6 2 X-ray 07/29/20 100 2 Comparative 2/14/20 99.16 40.20 165 
N-Nterminal 
pentamer* 6VYO 4 X-Ray 03/11/20 100 5 Comparative 2/14/20 100 — — 

N-Cterminal dimer 6WJI 5 X-Ray 04/22/20 100 2 Comparative 2/14/20 100 2.42 67 

E pentamer* 7K3G 5 Solid 
NMR 09/11/20 40 5 Comparative 2/14/20 77.31 — — 

Average 70.54 (74.16)  68.79 (72.24) 7.63 52.6 

Average** 80.36 75.87 2.61 42.9 

*  -  Protein complexes in different conformations or with the different number of base monomers 
** - Statistics computed without complexes in different conformations and missing experimental structures 
*** - Complexes of S protein with antibodies. Corresponding experimental structures were looked up based on 
antibody protein sequence from the computational model. As matches were not exact they are excluded from the 
analysis 
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Element N of 
Martini3 
particles 

Protein homo-oligomers 
S-TM trimer 459 
S-truncated trimer 711 
S-full trimer 3,822 
E pentamer 880 
M dimer 946 
Lipids 
POPC 12 
POPE 12 
POPI 14 
POPS 12 
CHOL 8 
CDL2 27 

Table B3. Number of Martini3 particles per element. Lipid molecules include 1-palmitoyl-2-
oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine (POPE), 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPI), 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-L-serine (POPS), cholesterol (CHOL), and cardiolipin (CDL2). S-TM corresponds to the 
transmembrane domains of S trimer, S-truncated corresponds to the truncated model of S timer without 
its endodomains, S-full corresponds to a model of entire S trimer. 
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