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ABSTRACT

Human Context Recognition (HCR) is an important task in Context-Aware (CA), ubiquitous

computing systems that often utilize Machine Learning. HCR involves recognizing the user’s con-

text to adapt a context-aware application’s behavior. HCR on smartphones faces an main challenge

when data is collected in-the-wild: Imbalanced data as subjects do not visit all contexts equally.

This problem cause significant reductions in the performance of HCR machine learning classi-

fiers. To solve this problem, various methods of data augmentation and synthetic data generation

have been proposed in prior work. Image-to-image translation Generative Adversarial Networks

(GANs) convert images from one domain to another, and prior work has found them effective for

augmenting smartphone human activity data, but they have not been explored for HCR data. In this

thesis, we systematically studied, rigorously evaluated and compared three state-of-the-art Image-

to-Image translation GANs for the task of generating synthetic smartphone HCR data to augment

real HCR data to improve HCR performance. Specific state-of-the-art image-to-image translation

GANs we explored include StarGAN V2, Gaussian Mixture Model Unsupervised Image-to-Image

Translation (GMM-UNIT) and Domain Specific GAN (DOS-GAN). Various quantitative evalua-

tion metrics were employed, including FID score and KL Divergence to evaluate the quality of the

data generated. Along with the quantitative measures, the performance of a deep learning classifier

trained on synthetic data generated by different GAN models were compared. All three models

have been able to create quality and diverse data. The HCR dataset generated using GMM-Unit has

achieved the lowest KL Divergence and FID Score of 4.11 and 21.91 respectively. An HCR classi-

fier trained on the synthetic data generated by the GMM-Unit slightly outperformed one trained on

real HCR data with minor improvements of 0.72% and 0.3 in accuracy and F1 score respectively.
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1. INTRODUCTION

1.1 Context Aware Applications in Ubiquitous Computing

Context Aware (CA) applications have been proposed for addressing important problems in

various diverse fields, including for understanding the user’s health condition and daily fitness

levels in the medical field. By monitoring patients’ Activities of Daily Living (ADLs) and context

visit patterns, doctors can also monitor the recovery of patients from various ailments.

1.2 Human Context Recognition

Human Context Recognition (HCR), which involves recognizing the current context or situa-

tion of a user, is an important task for Context Aware (CA) applications. The recognition of the

user’s context (or current situation), which frequently integrates additional information such as

phone placement, user’s location and social situation, provides richer information but is also more

challenging than Human Activity Recognition (HAR). Specifically, the smartphone sensor signa-

ture corresponding to running with the phone placed in the coat pocket differs significantly from

the sensor signature for running with the phone held in the user’s hand. Modern HCR approaches

often utilize machine or deep learning models for optimal performance. To gather realistic datasets,

emerging data gathering studies often gather HCR datasets in the real world with the user providing

labels periodically to annotate the contexts they visit.

1.3 Importance of HCR

Due to the near pervasive ownership and usage of smartphones and smartwatches, a wide vari-

ety of diverse Human Context Recognition applications have been explored in recent years. Such

mobile devices come equipped with a broad range of sensors from which data can be collected,

including an accelerometer, and gyroscope that can all be utilized to enhance HCR. Applications

have been explored in broad domains including personal fitness and medical monitoring. Different

machine learning models that have been trained on pre-recorded datasets are executed in the watch

and smart phone to detect the activity. For personal fitness, users’ body stats will be calculated by

1



identifying the activity the user performs and helps the user maintain their fitness with little exter-

nal resources. The advancement of smart watches has created multiple new monitoring systems for

patients for doctors to monitor the user’s activities in patients’ day to day life and suggest a treat-

ment that is effective for the patient. The models must predict the highest performance, since any

mislabeling can lead to inadequate or harmful treatment for the patients, which can be dangerous.

1.4 Challenges in HCR

HCR data is very personal information about a user and thus collected only through volunteer

work such as extrasensory or mhealth. There are multiple privacy concerns about collecting the

data from the users directly and thus, it creates a scarcity of data for HCR. The dataset that has been

collected consists of volunteer data collection from a group of people who label different activities

every day, ranging from sleeping, walking etc. Among the collected data from volunteers, HCR

on smartphones faces two main challenges when data is collected in-the-wild, which ultimately

reduces model performance if not addressed: 1) missing or wrong data labels and 2) Imbalanced

data as subjects do not visit all contexts equally. Data imbalance is a widely studied problem

in supervised machine learning, which reduces the performance of supervised machine learning

models and is encountered in almost all types of data, from text-based data to tabular format. One

common example in which data imbalance can be dangerous is the medical field in which the

occurrence of the positive class (ill people) is often low. Specifically for HCR, ill people may

perform certain activities or visit certain contexts at a lower frequency, leading to severe data

imbalance. For instance, a sick person may have lots of occurrences in the “lying down” context

with very few examples of the “running” context. Models trained on such imbalanced data would

tend to predict that the subject is lying down even when they do run. This in turn would lead to

incorrect diagnoses and recommended treatments that could be dangerous to the patient. In most

HCR datasets, while activities such as walking, standing, sleeping occur frequently, only very few

users contribute examples of more intense activities such as rowing.

2



1.5 Prior work on mitigating data imbalance in HCR datasets

Initial techniques employed to overcome the data imbalance issue was performing minor trans-

formations in the existing data to create new data. A few common techniques used are jitter-

ing, time wrapping etc. Classical machine learning models use oversampling techniques such as

SMOTE [1] but the model assumes that there is no overlapping of data between classes and per-

forms poorly in high dimensional data. SenseGen [2], SensoryGAN [3] use separate GAN models

to generate data for each activity. But the resource requirement to implement multiple models for

a single task is expensive and leads to a common problem of mode collapse. Different models

have been implemented [4] by replacing the BCE loss function with Wasserstien loss function,

which improves the stability of the model and correlates with the quality of generated data. But the

time complexity of calculating Wasserstien loss function is high and leads to more consumption of

resources.

1.6 Proposed methodology

Generative Adversarial Network [5], an advanced deep learning architecture, has proved effec-

tive for the task of Data Augmentation in Images. Primarily implemented for Images, different

GAN models have been modified to accept sensor-based data and have proven effective in im-

proving the performance of deep learning models for HAR and HCE. SensoryGAN [3], SenseGen

[2], Activity GAN [6] are examples of GAN models implemented for sensor based data and have

improved performance of deep learning classifier by at least 10%. Image-to-Image translation ar-

chitecture aims at converting images of one domain to another by using the joint distribution of

images in different domains based on the shared latent space distribution assumption and over-

comes the issue of Mode collapse. Image-to-Image architecture has created quality and diverse

images for translating synthetic images from SYNTHIA [7] to real images from Cityscape dataset

[8] and vice-versa. But Image-to-Image architecture has hardly been used for Data Augmentation

of Sensor data or time-series data. In the proposed architecture, the Image-to-Image architecture

has been implemented and tested for the Data augmentation of the Sensor-based data.
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Challenges:

1. Image-to-Image GAN architectures have primarily been developed for Image translation.

Hence, there is limited prior knowledge of approaches for repurposing them for sensor-to-

sensor translation that was necessary for HCR data augmentation.

2. A typical HCR dataset has many contexts visited, which presents a challenge to the image-

to-image translation GAN. For instance, the ExtraSensory HCR dataset had 51 context labels

present.

1.7 Thesis overview

In this master’s thesis, a systematic evaluation and comparative study of utilizing various state-

of-the-art Image-to-Image translation GANs for HCR data augmentation was done. Specifically,

the GANs were used to generate synthetic HCR data corresponding to the minority class by trans-

lating real HCR data instances represented as an image from the majority class. This study explored

various sub-types of Image-to-Image translation techniques including Directional Translation, Bi-

Directional Translation, Autoencoder- based models, as well as Disentangler Representations. A

representative set of image-to-image techniques were implemented and their effectiveness in bal-

ancing the dataset and hence improving HCR performance were evaluated. In our experimental

pipeline, specific state-of-the-art image-to-image translation GANs that we explored included Star-

GAN V2, Gaussian Mixture Model Unsupervised Image-to-Image Translation (GMM-UNIT) and

Domain Specific GAN (DOS-GAN). Evaluation metrics included Kullback–Leibler (KL) diver-

gence and the Fréchet Inception Distance (FID) for evaluating the quality and diversity of the data.

An external deep learning HCR classifier was trained on real and multiple synthetic data created

by the Image-to-Image networks. The performance metrics including precision, recall, accuracy

and F1 score of the classifier on unseen data were recorded and compared for each model as a

evaluation metrics.

1.8 Thesis research questions

To define the scope of our research, we formulate primary research questions as follows.
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1. What is the performance of Image-to-Image models for Sensor based time series data on the

task of data augmentation??

2. Which of the labels, the models can create quality data for and the reason behind it??

3. How well the performance of the classifier model has improved when trained on synthetic

data??

1.9 Novelty of this thesis in relation to prior work

The techniques that have been primarily used for augmentation of HCR data are somewhat

dated and inefficient compared to state-of-the-art deep learning approaches. The research area in

the field has come till usage of GANs and Conditional GAN for augmentation on HCR. Usage of

highly advanced deep learning architecture such as Image-to-Image architecture for the process of

data augmentation on HCR data or similar time series data is a research area that has been less

explored. The thesis work focuses on understanding the impact of three different highly advanced

architecture and the difficulty that arise due to it

1.10 Thesis contributions

The contribution of this work is as follows.

1. Generation of quality and diverse data for improving the performance of HCR models

2. Understanding the impact of Image-to-Image on HCR data also the difficulty

3. Opening of various research opportunities for exploration beyond this comparison study.
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2. BACKGROUND AND RELATED WORK

2.1 Data Issues

Multiple recorded datasets of HCR have a basic issue of data imbalance due to the imbalance

of performance or participation in activity and other context labels by the users. The Extrasensory

dataset [9] is a common dataset that has been used for multiple HCR models. The Extrasensory

dataset faces a major issue of data imbalance with, few labels such as sitting representing 40%

of the entire dataset, while context labels such as running only represent 0.3% of the dataset.

The difference between the highest occurring label and the lowest occurring label is 180,000 data

points. The LIG Smart Phone Human Activity Dataset (LIG SPHAD) [10] is another common

HCR dataset that faces the same issue of data imbalance, with the most common activity label

Sitting represents 26.4% of the corpus, whereas the least common activity is Jumping represents

merely 1.9% of the corpus.

2.2 Data Augmentation

Data Augmentation is the process of synthesizing multiple data points from the existing data

available to overcome data issues mentioned above. Earlier models used methods of making minor

changes to the original data in creating new data. For a spatial dataset such as images, minor trans-

formation like shift, flip, rotation brightness and zoom can be performed to create more data for

the same domain. Data Augmentation improves the machine learning model process by providing

enough data and the diversity required for the model.

2.2.1 Sampling methodology for Data Augmentation

Synthetic Minority Over Sampling Technique (SMOTE) [1] is a machine learning technique

that focuses on oversampling of tabular data. It selects k nearest data points to each minority class

data point and oversamples data between them and assigns them as the minority data label. The

basic idea behind is that closer objects to a data point should belong to the same class and data

between them should also be of the same class. First put by Nitest et el and later boarderline
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SMOTE [11]has been proposed by Hui which focus on the data points that are present on the

boarders of the minority class distribution rather than picking each data from the minority class.

Adaptive Synthetic (ADASYN) [12] implements a methodology that detects those samples of the

minority class found in spaces dominated by the majority class to generate more data with less

density. This is to create more samples of the data that are difficult to classify. The oversampling

techniques assume that there is no overlapping between data of different classes, which is highly

impossible in real world applications and performs relatively poorly on high dimensional data.

Nyugen et el has proposed an extension of SMOTE for oversampling of data called Border Limited

Link SMOTE (BLL SMOTE) [13] which is specifically designed for oversampling Human Activity

Recognition and tackling the issue of non-convex space. The BLL SMOTE samples data closest

to higher density of data points rather than random sampling, this eliminates the probability of the

data being generated near the border of clusters or overlap of data distribution. BLL SMOTE has

improved the MLP performance metric F1 score from 68% to 80%.

2.2.2 Deep Learning methodology for Data Augmentation

Recent developments in Deep Learning have opened new methodologies for synthesizing data

of different data types with better quality and diversity. The Variational Auto-Encoders (VAE) [14]

s a generative model that uses an encoder-decoder duo, in which the encoder works on convert-

ing an image to a feature space and the decoder works on converting any random vector on that

feature space into an image. Generative Adversarial Networks (GAN) [5] is another deep learning

architecture that uses generator and discriminator. The Generator converts a random vector into an

image and the discriminator acts as a classifier identifying the real image from fake.

2.3 Generative Adversarial Networks

This thesis explores Generative Adversarial Networks (GANs) as a method for synthetic data

augmentation. Generative Adversarial Network [5] uses a Generator-Discriminator architecture

which focuses on Min-Max loss value optimization for training. The generator creates images

from a random vector of a feature space and then feeds them to the discriminator which tries to
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identify the real and fake images. The discriminator tries to minimize the loss value by identifying

all the fake images, whereas the generator updates the weights to maximize the loss by creating

more realistic images. Although GAN models create quality images, a major limitation of GAN

is the lack of diversity among different domains and GAN models cannot generate the images of

a specific domain needed. Thus, for multi domain image augmentation, multiple models must

be trained to generate data of different image domain. Conditional GAN [15] is an extension of

GAN that solves the problem of the need for multi model training by taking the domain infor-

mation along with the random vector as the input and generating images belonging to a specific

domain. After the generator creates synthetic data based on the domain information provided, the

discriminator uses the images and the domain information as input and performs two classifica-

tion tasks. First, a binary classification of whether the given image is real or fake and second, a

multi-class classification to identify the domain the image belongs to. The loss value calculated is

used to train both the generator and the discriminator. This overcomes the need for multi-model

training but leads to a common issue called mode-collapse in which the model generates similar

data for two or more domains, which decreases the diversity of the data among different domain

generators. Wassertein GAN [16] implements CGAN but replacing BCE loss function of the dis-

criminator with Wassertein loss function to ensure better stability of the model. But Wassertein

loss function has a huge resource requirement and is not commonly used.

2.4 GANs for Generating Sensor Time Series Data

The HCR datasets that the GANs we explored used as input contained smartphone sensor data

(e.g., accelerometer values), which were essentially time-series data. Wang, Jiwei et al proposes

SensoryGAN, a GAN that consists of an LSTM and convolutional layers [3].SensoryGAN creates

different GAN models to generate sensor time series data for 3 different activities using LSTM 1D

convolutional layers, Bidirectional LSTM, and fully connected layers. The resource requirement to

create and generate different GANs for each different context is computationally expensive. The

model implemented used a single GAN architecture but multiple instances of the model which

is more expensive. Their implemented model achieved improved performance (accuracy) with
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the hybrid data model that combines real and synthetic data outperforms the model that utilized

only real or synthetic data by almost 10% in classification experiments using 6 different classifi-

cation algorithms. A similar GAN based model has been proposed by Alzantoto named SenseGen

(Alzantot et al. 2017 [2]) which uses LSTM layers and Mixed Density Network in the generator

and LSTM layers in the discriminator. One significant difference in SenseGen is the method of

training Generator and Discriminator separately. All models utilized in our study differ from these

models by training a single model to transform a single data instance into another.

Norgaard et al proposed a supervised GAN model for generating HAR synthetic sensor data

(Norgaard et al. 2018 [4] ). Synthetic sensor data implements a WGAN [16] which is a normal

GAN but using a Wasserstien loss function rather than the usual BCE which could potentially lead

to mode collapse. The research implements two different types of GAN for static and dynamic ac-

tivities implemented using LSTM, CNN, and Dense layers. The synthetic data has been evaluated

using two different classifiers consisting of 1D CNN and LSTM and how they are performed when

trained on real, hybrid and synthetic data. The F1 score on the test data of the classifier models

of 1D CNN and LSTM model is used as an evaluation metrics which achieves a significant im-

provement of 7%. While the model has better performance, the Wasserstien loss function utilized

is expensive in terms of computational resources. Consequently, the proposed models explore sev-

eral loss functions such as self-reconstruction, content reconstruction, attribute reconstruction etc.

for training purposes.

2.5 Image to Image Translation GANs

This thesis explored repurposing image-to-image translation GANs, which were initially pro-

posed for translating images, for the task of HCR sensor-to-sensor data translation. The GAN

models [5][15][16] have previously seen different issues, such as multi-model training, mode-

collapse, high resource requirement. These issues have reduced the performance of the model and

data augmentation process by creating poor quality or less diverse images. Image-to-Image trans-

lation architecture using GANs which was first introduced by Isola, Philip et al [17] overcomes

these issues by using a CGAN which takes the image of one domain as an input along with a sam-
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ple image from the target domain as another input. The initial experimentation was performed on

different paired datasets such as edges to shoes [18], edges to handbag [19]. Later advancements

in architecture have led to data augmentation on unpaired datasets as well such as person to person

translation [20], translation between facial features [21], season-to-season translation [22]. Aziz et

al[23] did a comparison study of different Image-to-Image Translation techniques and categorizes

them according to their training methodology. The paper divides proposed models into super-

vised translation and unsupervised translation along with the subdivisions under both. The survey

outlines the techniques of each model with Input, Output, Training method, loss functions used.

The study helps in understanding the difference between different sub sections and similarity of

the models within the same sub section. The survey also gives examples of different applications

of image-to-image translation with real world examples. Yongxin [24] also published a survey

presenting different Image-to-Image translation models and their training methodologies.
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3. METHODOLOGY

3.1 HCR Dataset

In our experiments, we utilized the ExtraSensory HCR dataset [9], which is a state-of-the-art

smartphone HCR dataset gathered at the University of California at San Diego (UCSD). Data was

gathered in the wild as subjects lived their lives. Subjects were prompted periodically to provide

labels of the contexts they visited. The Dataset contains 51 distinct HCR labels representing dif-

ferent activities and phone placements collected from 60 different users. Data was collected from

various smartphones and smartwatch sensors. The data was collected from a diverse set of indi-

viduals. Each sensor collects data at a different sampling rate and each minute is recorded and

labeled in the dataset. Our work will only utilize data from the accelorometer, gyroscrope and

audio. Accelerometer data collects the Tri-axial magnitude and direction of acceleration of the de-

vice and Gyroscope records the rate of rotation around the device 3 axes for a time window of 20

secs. Audio data represents the 13 Mel-Frequency Cepstrum Coefficients values that collectively

represent the Mel-Frequency Cepstrum of the audio data collected from the device during the 20

secs time window. Both Accelerometer and Gyroscope have recorded the data at the rate of 40Hz

for 20 secs whereas Audio data has been collected at the rate of 22Hz for 20 secs.

Range Average (Standard Deviation)

Age (years) 18-42 24.7 (5.6)

Height (cm) 145-188 171 (9)

Weight (kg) 50-93 66 (11)

Body mass index (kg/m2) 18-32 23 (3)

Days of participation 2.9-28.1 7.6 (3.2)

Table 3.1: Demographic of UCSD Extrasensory data collection participants
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Figure 3.1 displays randomly sampled accelerometer data from all three axis X, Y and Z axes

from the Extrasensory dataset along for 800 time steps.

Figure 3.1: Accelerometer sample from ExtraSensory Dataset

Figure 3.2 displays the Gyroscrope data from a random sample data from the Extrasensory

dataset along all three axis X, Y and Z for 800 time steps.
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Figure 3.2: Gyroscope sample from ExtraSensory Dataset

3.2 Data Imbalance in HCR

Since the data is collected from multiple users voluntarily as they lived their lives, all par-

ticipants did not visit all contexts equally. Consequently, there exists a huge difference between

number of data points available for various labels and other. Figure 3.3 represents the data imbal-

ance across 10 labels that had the highest number of data points, compared to 10 labels with the

lowest number of data points. The Highest number of data points consists over 150,000 data points

in each label whereas the lowest data points consist of less than 1000 data points.
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Figure 3.3: Imbalance in the number of data points gathered for various contexts in the Extrasen-
sory HCR dataset
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Figure 3.4: Data Imbalance

Figure 3.4 represents the number of data points collected for the least frequently visited con-

texts and Figure 3.5 illustrates imbalance in the number of users visiting various contexts. The

most frequently visited contexts were visited by over 50 of the 60 participants, while the least

frequently visited contexts were visited by less than 10 of the 60 participants.
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Figure 3.5: Showing imbalance in the activity labels provided by various users

3.3 Deep Learning Pipeline

Figure 3.6 represents the basic training pipeline steps performed for each generative model and

its different hyper parameter sets. First the Accelerometer, Gyroscope and audio data are extracted,

combined, and preprocessed into a single datapoint before being split into training and validation

data. The training data is given as input for training the generative model from which each data will

be used as source and target data for the generative model to translate between each other. After the

model has been trained according to the training methodology of each model, the validation data

is used as input from which each data point is used as source data and randomly chosen datapoint

is used as target data from the same set. This validation data is used for synthetic data generation

to create perfectly balanced data.
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Figure 3.6: GAN-based Data Augmentation Training Pipeline architecture

Figure 3.7 represents the evaluation pipeline for the Data Augmentation process. After the

synthetic data generation, the validation data is used as Real data reference for the evaluation

process. the first evaluation methodology is Quantitative evaluation in which random samples

from Real and Synthetic data are taken for calculating evaluation metrics between them to evaluate

how realistic the synthetic data is. After quantitative evaluation, both synthetic and real data is

passed as training data for an HCR classifier model training. After training of the models, a subset

of the real data is used as testing data to evaluate the performance metrics of the classification task

for the models trained. The recorded metrics will evaluate the impact of the synthetic data in the

performance of the model.
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Figure 3.7: GAN-based Data Augmentation Testing Pipeline architecture

3.4 Data Extraction and Preprocessing

The data collected from Accelerometer, Gyroscope and Audio MFCC values which are stored

in different files are extracted and combined to represent the same timestep as a single data point.

The data is resampled to the same frequency, standardized, and sliding window methodology has

been performed to create time series data of specified window size and step value. The file structure

of the extracted dataset follows a hierarchical storage structure with each label represented as a sub

folder under which all the data points for the label are stored. Each subfolder represents a context

domain with multiple data under it.

3.5 Data Augmentation models

As training HCR were unpaired, unsupervised GAN models were utilized for image-to-image

translation. From the taxonomy of GANs presented in Figure 1, recent GAN models in the Cyclic

Constituency, Disentangle representation and auto encoder-based categories were select for eval-

uation. These selected GAN models have outperformed prior models by overcoming their other

shortcomings in various ways.
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3.5.1 DOS-GAN Sensor

The first model for the comparison study is Domain Specific GAN (DOS-GAN) [25], which

uses a pre-train classifier neural network model as domain specific-feature extractor α(.), an en-

coder for domain-independent feature extractor β(.), a generator g and a discriminator d. The do-

main specific feature extractor α(.) is achieved by training a neural network model on the complete

training data in a supervised fashion. After the training is complete, the output of the second to last

layer is able to extract all the domain specific information needed to distinguish the data between

various domains. The pre-trained classifier training is stopped after the pre-training stage and no

update takes place for the training of the GAN. A discriminator is used to classify the synthetic

data as either real or fake and which domain the data belongs to. In training, the domain-specific

features of the target domain are extracted using a pre-trained classifier α(xtarget) and the domain-

independent features of the source domain are extracted using an encoder β(xsource). Both sets of

features are appended (⊕) and input to the generator which produces the data for translating from

source to domain. The newly augmented data is input to the discriminator along with the original

data to classify the domains and to identify the real and fake data. The complete architecture of the

DOSGAN is outlined in Figure 3.8.

SB = α(xB)

SA = β(xA)

xAB = SA ⊕ SB

(3.1)

Various loss values are calculated to update the weights of multiple versions of the DOS-GAN

model as follows

Classification loss: The multi-class cross entropy loss was used for training the domain-

specific extractor α(.). The loss function calculates the number of labels the classifier has predicted
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Figure 3.8: DOSGAN [25] Image-to-image translation architecture

correctly and updates the weights of the classifier.

ℓce = −
∑

p(x).log(1− p(x)) (3.2)

Adversarial loss: The adversarial loss function is based on a GAN in which the discriminator

takes the input of real and fake data and outputs a probability of how likely the data belongs to a

real domain. A log loss of binary classification is used to represent the Adversarial loss, which the

discriminator tries to maximize it and the generator tries to minimize.

ℓGAN =
1

|DA|
∑

log(dadv(XA)) + log(1− dadv(XAB)) (3.3)

Domain-specific reconstruction loss: This loss uses the features extracted from the domain

using α(.) and discriminator to compare the features. This loss value is used to ensure the con-

sistency of the augmentation. ℓα,r compares the features extracted from the source image by the

discriminator and the domain-specific feature extractor to train the discriminator and ℓα,f compares

the features extracted from the translated image and target image to maintain the consistency of
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the translation and used to train the generator.

ℓα,r =
1

|DA|
∑

[||dfeat(xA)− xs
A||1]

ℓα,f =
1

|DA|
∑

[||dfeat(xAB)− SB||1]
(3.4)

Image reconstruction loss:

(1) self-reconstruction loss evaluates the L1 norm between xA and xAA in which xAA = g(xi
a, x

s
a)

is a image translated to its own domain. (2) cross-domain loss is the L1 norm between xA and

xABA.

ℓim =
1

|DA|
∑

[||xA − xAA||+ ||xA − xABA||1] (3.5)

Overall training loss:

The Generator and domain-independent feature extractor is trained by minimizing the loss

function as follows:

ℓtotalnet = ℓGAN + λfℓα,f + λimℓim (3.6)

The Discriminator is trained by minimizing the loss function as follows :

ℓtotald = −ℓGAN + λfℓα,r (3.7)

3.5.2 GMM-UNIT

The next model that will be evaluated for image-to-image translation of HCR data is the Gaus-

sian Mixture Model - Unsupervised Image-to-Image Translation (GMM-UNIT) [26] . GMM UNIT

is based on content attribute disentangled representation where the attribute space is fitted with a

GMM. The model disentangles the data into domain invariant content space and domain specific

attribute space, assumes the domain specific attributes follow a Gaussian data distribution in fea-
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ture space. The probability density of the latent space z is defined as

p(z) =
K∑
k=1

ϕKN(z;µk; Σk) (3.8)

The model also does not use labels encoded as values but uses two encoders, which learn

to convert the data into content and attribute features that are fed into a generator model. This

assumption helps the GMM-UNIT to overcome the issue of mode collapse. The assumptions allow

three key properties of mode diversity, multi-domain translation and few/zero-shot generations. By

using GMM on the sensor data we will be able to evaluate how much data disentanglement is able

to improve the performance of the Image-to-Image Translation on sensor data. The model uses

two encoders to learn the content and attribute of the source data, these attributes are combined

and provided as input to the Generator model to synthesize a target domain data which is given

to a discriminator along with real data to identify real or fake as well as which domain the data

belongs to.

Figure 3.9: Training process based on Image-based implementation of GMM-UNIT [26]
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Figure 3.10: Training process based on Image-based implementation of GMM-UNIT [26]

the Losses calculated for the training of all the models are as follows

Self-reconstruction loss: The L1 norm between the original data and the reconstructed data with

its own content and attributes

ℓs/rec =
K∑

n=1

Ex[||G(Ec(x), Ez(x))− x||1] (3.9)

Content reconstruction loss: The L1 norm between the content features of original data

and translated data. The loss is calculated to ensure all the contents of source domain has been

maintained after the translation

ℓc/rec =
K∑

n,m=1

Ex[||Ec(G(Ec(xA), Ez(xB)))− Ec(x)||1] (3.10)

Attribute reconstruction loss: The L1 norm between the attributes of the target domain and

the translated data. The loss is calculated to ensure the attributes are translated and maintained

during the translation

ℓa/rec =
K∑

n=1

Ex[||Ez(G(Ec(xA), Ez(xB)))− Ez(xB)||1] (3.11)
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Cycle consistency loss: The L1 norm loss function to check whether the translated domain

can be translated back to the original domain.

ℓcyc =
K∑

n=1

Ex[||G(Ec(xAB), Ez(xA))− xA||1] (3.12)

Domain Classification loss: The entropy loss function using the discriminator domain clas-

sification on the original data and the translated data. dAX and dBX represents the labels of domain

A and B. ℓDdom calculates the domain classification loss between the original domain data and the

label and ℓGdom calculates the domain classification loss between the generated data and the target

label. The generator is trained only by ℓGdom but the discriminator uses both for training.

ℓDdom =
K∑

n=1

E[−logDdom(d
A
X |xA)]

ℓGdom =
K∑

n=1

E[−logDdom(d
B
X |G(Ec(xA), Ez(xB)]

(3.13)

Adversarial loss: The entropy loss function using the discriminator real/fake classification on

the real and translated data. The loss function is used by both Generator and Discriminator.

ℓGAN =
K∑

n=1

E[−logDr/f (x)] + E[−log(1−Dr/f (G(Ec(xA), Ez(xB)))]

(3.14)

Total loss: ℓD is used to train the discriminator D(.) architecture alone. ℓG is used to train the

generator G(.), content encoder Ec(.) and attributed encoder Ez(.)
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ℓD = ℓGAN + ℓDdom + ℓGdom

ℓG = ℓGAN + λs/rec.ℓs/rec + ℓc/rec + ℓa/rec + λcyc.ℓcyc + λKL.ℓKL + λiso.ℓiso + ℓGdom

(3.15)

3.5.3 STARGAN-V2

StarGAN V2 [27] is an Image-to-Image generative model that consist of Generator G, Mapping

Network Fy(.), Style Encoder Ex(.) and Discriminator D. The Mapping networkFy(.) takes a

latent code z and a domain y as input to generate style code for the domain y. The Fy(.) has

multiple output branches to generate diverse style code for all the domains present. The Style

Encoder Ex(.) takes an image x and its respective domain y as input to generate the style code for

domain and the image. Like Fy, Ex also has multiple output branches to create diverse style code

for all the domains present. Generator G takes an input image and a style code generated either

by Fy or Ez and translate the input image to the label mentioned. The D takes the original and

the fake data to classify real/fake. Rather than using domain classification, D has multiple output

branch each resulting in a binary classification of real/fake for each domain.

Multiple loss values are calculated to update and optimize all the neural network architecture

mentioned above.

Adversarial loss: A random latent code z and domain label y are used to generate target style

code
∼
s= F∼

y
(z) which is used to transform the input image x into the target domain.

ℓadv = E[logDy(x)] + E[log(1−Dỹ(G(x, s̃)] (3.16)

Style reconstruction: The L1 norm is calculated between the target style code and the style

code of the newly generated image using the style encoder Ey

ℓsty = E[||s̃− Eỹ(G(x, s̃)||] (3.17)
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Style diversification: to further enable the generator G to produce diverse data, STARGAN

V2 regularize the generator. It generates two style code on the same domain y and try to maximize

the difference between them to produce diverse quality of images.

s̃1 = Fy(z1)

s̃2 = Fy(z2)

ℓds = E[||G(x, s̃1)−G(x, s̃2)||]

(3.18)

Preserving source characteristics: To maintain the consistency of the original data from the

input image. the Style code of the input image is extracted using the style encoder and used to

recreate the original image from the augmented image. The L1 norm is calculated between the

original image and reconstructed image.

ŝ = Ey(x)

ℓcyc = E[||x−G(G(x, s̃), ŝ)||]
(3.19)

Total loss: All the loss values are added together along with the learning rate λsty, λds and λcyc

which are hyper parameters. Generator, Mapping network and style encoder optimize the weights

by minimizing the total loss and the Discriminator optimize by maximizing the weights.

min
G,F,E

max
D

(ℓadv + λstyℓsty − λds.ℓds + λcyc.ℓcyc) (3.20)

3.6 HCR Classifier

A simple HCR classifier has been modelled using convolution 1D layers and Linear layers for

the purpose of evaluation of the synthetic data generated from the models mentioned in section 3.5.

The HCR classifier takes the time series data, down samples the data to extract the necessary

features and processes them through a linear layer to predict the context label the data belongs to.
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The classifier takes the generated time series data as input and uses the convolution layer to down

sample the data to extract necessary features of the data. After a series of down sampling using

convolution layers with different filter sizes and strides, the data is flattened to give input for the

Linear layers. The final layer of the liner layers represents the same number of units as the number

of context labels used. Equation 3.21 represents the cross entropy loss function used in which yo,c

represents the binary indicator whether class c has been predicted correctly or not for observation

o and po,c represents the predicted probability for observation o in class c.

−
M∑
c=1

yo,clog(po,c) (3.21)

3.7 Evaluation Metrics

3.7.1 Shannon Entropy

Shannon Entropy is used as a data balance measure to quantitatively evaluate. The Shannon

entropy takes the number of instances under each label as input to computer a value that ranges

from 0 to log(k) where k represents the number of classes. The higher the value represents more

balanced the dataset is. Equation 3.22 represents the Shannon entropy formula where p represents

the probability of the class and k represents each class in the dataset.

entropy = −
N∑
k=1

P (k) ∗ log(P (k)) (3.22)

3.7.2 KL Divergence

The Kullback–Leibler (KL) divergence is calculated by taking each data point in real data and

calculates the smallest KL divergence with each data point in the Synthetic data. the KL divergence

of each data point in real data is calculated with the respective data point along the same axis.

Resulting in KL divergence value along all the features. the total KL divergence is calculated by

averaging all the values along all axes.
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DKL(P (z)||Q(z)) =

∫
z

P (z)log
P (z)

Q(z)
dz (3.23)

3.7.3 Frechet Inception Distance (FID) score

The FID calculates the difference between two Gaussians (Real and Synthetic data). The algo-

rithm uses the Inception V3 model prior to the last pooling layer preceding the classification layer

to get the distribution of the real and Synthetic data. The difference of the distribution is calculated

to measure how realistic the synthetic data is compared to the real data

FID = ||µ− µw||22 + tr(Σ + Σw − 2(Σ1/2ΣwΣ
1/2)1/2) (3.24)

3.7.4 Classifier Metrics

Various instances of the same classifier architecture were trained on real data and synthetic

data from each translation model. All the classification models will be trained on the training data

and the validation set used to check its intermediate performance. After training, the performance

metrics of F1 score, recall, precision and accuracy of each model have been recorded and compared

to evaluate the impact of synthetic data on the classifier’s performance. Table 3.2 represents the

confusion matrix for a binary classification, which is a tabular representation of how many values

the model has predicted are correct and false compared against the real data. For a multiclass

classification problem, for each label the table and classification metrics are calculated with the

label as True and all the other label values as False. Accuracy is the metric that estimates the pro-

portion of the correctly predicted values in both True and False scenario among the total number of

cases. Precision represents the proportion of True positive values among all the predicted values.

Recall is the proportion of True positive values among all the actual Positive values. F1 score is

a harmonic mean of precision and recall. The formulas of each classification metric are given in

Equation 3.25.
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Predicted Yes Predicted No

True Yes True Positive False Negative

True No False Positive True Negative

Table 3.2: Confusion Matrix

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1score = 2.
P recision ∗Recall

Precision+Recall

(3.25)
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4. IMPLEMENTATION OF GAN MODELS

Each translation model has multiple hyperparameters that can be modified to alter the training

of the model and optimize its performance. For each model 3 rounds of hyperparameter tuning

have been performed to identify the best performing model.

4.1 DOS-GAN

DOSGAN consists of 4 deep learning models: Domain-specific encoder, Domain-independent

encoder, Generator and Discriminator. First a classifier model was trained on the training and

validation set for 200,000 iterations with the loss values being logged every 10,000 iterations and

the model weights saved for 10,000 iterations. After training the classifier, the output of the second

to the last layer is used as the domain-specific features for any sensor data and the classifier is

turned into a Domain-Specific encoder. The training of GAN is performed for 200,000 iterations

and all the model stored for every 10,000 iterations.

Table 4.1 describes the hyper parameter for the Generative model of DOSGAN along with the

default values used for first training. These hyper parameters are common for the training of all

the models for DOS-GAN as the pre-train classifier, encoder, generator, and discriminator. The

default values were used as the first set of hyperparameters for the training.
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Hyper Parameter Description Default Values

conv_filters Number of convolution filters in first later 64

n_blocks Number of Res. blocks 1

Batch size Batch size for training 32

λrec learning rate for Reconstruction (XAA) 10

λrec2 learning rate for Reconstruction (XABA) 10

λgp Learning rate for Gradient Penalty 10

λfs Learning rate for Domain specific reconstruction 5

feature-size The encoded feature space size 1024

λg Learning rate for Generator (Adversarial) 0.0001

λd Learning Rate for Discriminator (Adversarial) 0.0001

n-critic Frequency of training for Generator 5

Table 4.1: Hyper parameters for DOS-GAN

Table 4.2 summarizes the results of the different sets of hyperparameter tuning performed on

the DOSGAN model. Three different models were trained with these sets of hyperparameters, and

the validation data was used to generate synthetic data for each model.

Hyper parameter

Default values Default values

HP 1 Batch size = 256

HP 2 λg = 0.01, λd = 0.01, λrec = 3, λrec2 = 3, λgp = 3, λfs = 0.5

Table 4.2: Hyper parameters for DOS-GAN
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4.2 GMM-UNIT

GMM-UNIT is like DOS-GAN and consists of same models. But unlike DOS-GAN, GMM-

UNIT uses a normal encoder for domain-Specific encoder and trains it along with other models. All

the models are trained in sync for 200,000 iterations and all the model weights are stored for every

10,000 iterations. Based on the loss functions using the sensor data from Generator and the results

from discriminator, all the models train and update. Table 4.3 describes various hyperparameters

of the model that are common to all the models.

Hyper Parameter Description Default Values

n_down and n_up Number of Down sample and Up sample layer 2

Batch size Batch size for training 32

λrec learning rate for Reconstruction (XAA) 1

λrecx learning rate for Reconstruction (XABA) 10

λadv Learning rate for Adversarial 1

λcyc Learning rate for Cyclic Consistency 10

λkl Learning rate for KL Divergence loss 0.1

feature-size The encoded feature space size 64

lr Learning rate 0.0001

Scheduler type Scheduler Type for Training Cosine

n-critic Frequency of training for Generator 5

Table 4.3: Hyper parameters for GMM-UNIT

Table 4.4 summarizes results of the hyperparameter tuning performed to create three different

models with different training weights. Each model is used to generate synthetic data using the

validation set.
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Hyper parameter

Default values Default values

HP 1 lr = 0.01, batch size 16,

HP 2 feature size = 128, λadv = 0.01

Table 4.4: Hyper parameters Tuning for GMM

4.3 STARGAN-V2

The STARGAN V2 architecture consists of a style encoder, Generator, and discriminator. the

style encoder is used to generate the features of the target sensor data which is appended with the

raw sensor source data and given as input to the generator. All the models are trained together

for 200,000 iterations on the training data and all the models are saved for every 10,000 iterations.

Table 4.5 lists all the hyper parameter of the model that can be changed to alter the training process.

Hyper Parameter Description Default Values

Batch size Batch size for training 32

λcls learning rate for Reconstruction (XAA) 1.8

λid learning rate for Reconstruction (XABA) 1

λcyc Learning rate for Cyclic Consistency 1.2

feature-size The encoded feature space size 64

lr Learning rate 0.0001

n-critic Frequency of training for Generator 5

Table 4.5: Hyper parameters for GMM-UNIT
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the sets of hyperparameters in Table 4.6 were used to train three different models of STARGAN-

V2. After training, synthetic data was generated by all three models and saved for evaluation

purposes.

Hyper parameter

Default values Default values

HP 1 feature size = 128, n-critic = 3

Table 4.6: Hyper parameters Tuning for STARGAN
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5. EVALUATION AND RESULTS

This section presents and compares results achieved using three different GANs for generating

synthetic data augmenting an HCR dataset.

5.1 Shannon Entropy

Two methodologies were explored for the purpose of synthetic data generation to evaluate

which methodology produces a balanced dataset. The first methodology randomly samples the

data labels while taking the random target data. The data loader randomly picks a label from the

available labels and then takes a random data instance with that label as target data to translate

the given source data. The next methodology is to directly randomly sample the data, taking

the entire dataset and randomly select a data as target data for the given source data. Table 5.1

describes the entropy of the original dataset and the synthetic dataset using different methods.

The Shannon entropy of the original dataset and synthetic data from random sampling of data

are similar, since the data for target data is randomly sampled from an imbalanced data, the data

generated is equally imbalanced as the original data. The synthetic data from random sampling

of the labels has produced a balanced dataset since the labels are sampled randomly with the

assumption that all the labels are equal with no imbalance, and after the labels have been chosen,

the data is randomly sampled from that data. This methodology has been able to mitigate the data

imbalance issue that exists in the original dataset and has been employed for data generation of all

the generative models.
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Datasets Shannon Entropy

Real Dataset 2.911

Synthetic Dataset using Random sampling of label 3.93

Synthetic Dataset using Random sampling of Data 2.911

Table 5.1: Shannon Entropy of Real and Synthetic dataset

5.2 Domain Specific GAN (DOS-GAN)

The results for the data augmentation are calculated based on the quality of the data gener-

ated from the test data both on quantitative measures and practical measures. Evaluation metrics

included GAN-specific metrics such as KL Divergence and FID score, as well as a measure of

how well the synthetic data generated improved HCR results. Although DOS-GAN was primarily

utilized for image-to-image translation in prior work, in this work it was repurposed for use with

HCR sensor data.

For each hyper parameter setting in Table 4.2, the classifier, Generator, Encoder and Discrimi-

nator were trained and saved for every 10,000 iterations. With the trained model, the testing of the

model is performed from the validation set of the Extrasensory Data. For each sensor data in val-

idation set, a random target sensor has been used from the same dataset to translate and augment

the data. After completion of testing, random samples of data from each context from real and

synthetic data was taken and quantitative measures were calculated for each label. KL divergence

had varying values across the labels with few labels recording very little KL divergence and few

labels having high values. The average of each metric has been calculated in which the Hyper pa-

rameter set 2 has the least KL divergence and FID score of 6.37 and 30.34 indicating the synthetic

data from the model with the Hyper parameter has produced quality data which is close to the real

world data. From the default hyperparameter set, the KL divergence is least for context labels such

as TALKING, OUTSIDE, PHONE in hand and highest for context labels DRIVING, SITTING.
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But the FID score is quite consistent across all the labels. Table 5.2 describes the KL divergence

and FID score for a few labels and the average of all labels.

Table 5.2: FID and KL score for DOSGAN

Model Labels KL FID score

Default IN CLASS 0.45 23.28

FIX RUNNING 2.24 24.00

PHONE IN HAND 5.28 22.38

SITTING 10.82 21.63

SLEEPING 27.77 22.83

ELEVATOR 494.98 22.85

Mean 851.28 22.92

Hyper Parameter 1 IN CLASS 2.56 22.87

FIX RUNNING 29.54 23.20

PHONE IN HAND 0.58 21.83

SITTING 2.47 22.20

SLEEPING 57.98 23.79

ELEVATOR 16.89 21.58

Mean 98.08 22.51

Hyper Parameter 2 IN CLASS 4.25 30.42

FIX RUNNING 24.65 30.01

PHONE IN HAND 0.61 29.92

SITTING 1.50 30.58

SLEEPING 7.65 31.62

ELEVATOR 1.82 28.33

Mean 6.37 30.34
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5.3 GMM-UNIT

From the synthetic data generated from each model of GMM-UNIT, random samples of each

label are taken from real and synthetic data. Quantitative measure algorithms are performed on

the random samples to evaluate the quality of the data generated. Table 5.3 describes the KL

Divergence and FID score calculated for few labels and an average KL divergence and FID score

is also calculated across all labels. The average of each metric has been calculated in which the

Hyper parameter set 2 has the least KL divergence and FID score of 4.11 and 21.91 indicating

the synthetic data from the model with the Hyper parameter has produced quality data which is

close to the real world data. From the optimized hyperparameter set, the KL divergence is least for

context labels such as ALCOHOL, HOME, BEACH in hand and highest for context labels Lying

Down, Phone in bag.
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Table 5.3: FID and KL score for GMM-UNIT

Model Labels KL F1 score

Default IN CLASS 4.40 22.30

FIX RUNNING 1.19 21.98

PHONE IN HAND 3.74 22.20

SITTING 2.14 21.83

SLEEPING 16.31 22.63

ELEVATOR 0.438 21.89

Mean 6.24 22.04

Hyper Parameter 1 IN CLASS 0.57 25.32

FIX RUNNING 31.06 25.39

PHONE IN HAND 0.44 25.32

SITTING 1.05 25.53

SLEEPING 0.35 25.60

ELEVATOR 0.67 24.42

Mean 6.36 25.37

Hyper Parameter 2 IN CLASS 2.81 21.82

FIX RUNNING 1.45 22.47

PHONE IN HAND 0.62 21.17

SITTING 3.33 22.17

SLEEPING 21.59 21.67

ELEVATOR 0.64 21.84

Mean 4.11 21.91

5.4 STARGAN-V2

.
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From the synthetic data generated from each model of STARGAN-V2, random samples of

each label are taken from real and synthetic data. Quantitative measure algorithms are performed

on the random samples to evaluate the quality of the data generated. Table 5.4 describes the KL

Divergence and FID score calculated for few labels and a, average KL divergence and FID score

is also calculated across all labels. The average of each metric has been calculated in which the

Hyper parameter set 1 has the least KL divergence and FID score of 5.24 and 114.35 indicating the

synthetic data from the model with the Hyper parameter has produced quality data which is close to

the real world data. From the optimized hyperparameter set, the KL divergence is least for context

labels such as Outside, exercise, cleaning and highest for context labels Indoor, cooking., Strolling.

Unlike all the other generative model, the FID score for the synthetic data from STARGAN is the

most varying with high different between different labels. The total average as well as individual

labels are also high. For the optimized Hyper parameter, the FID score is highest for the context

labels Computer work, workplace and lowest for Singing, Sleeping.
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Table 5.4: FID and KL score for STARGAN-V2

Model Labels KL F1 score

Default IN CLASS 1.56 220.19

FIX RUNNING 20.46 233.43

PHONE IN HAND 3.04 390.96

SITTING 23.57 388.24

SLEEPING 41.76 408.89

ELEVATOR 0.92 455.75

Average 16.07 610.69

Hyper Parameter 1 IN CLASS 2.39 126.72

FIX RUNNING 0.64 21.098

PHONE IN HAND 0.50 175.38

SITTING 2.58 354.79

SLEEPING 1.063 2.26

ELEVATOR 0.55 24.62

Average 5.24 114.35

5.5 Quantitative comparison

The average of all quantitative measures was calculated across all labels for all synthetic data

generated. Table 5.5 compares the quality of data between each synthetic data from different

models.
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Table 5.5: FID and KL score comparison

Model Hyper parameter KL F1 score

DOSGAN Default 851.28 22.92

HP 01 98.08 22.51

HP 02 6.37 30.34

GMM-UNIT Default 6.24 22.04

HP 01 6.36 25.37

HP 02 4.11 21.91

STARGAN Default 16.07 610.69

HP 01 5.24 114.35

5.6 Classifier performance

The next set of evaluations focused on evaluating how much HCR performance improved when

synthetic data was used to augment the HCR dataset. The test dataset was split into training and

validation sets for the purpose of classifier training. Multiple classifier models were initialized

with the same architecture and hyper parameters and trained on real and synthetic data of each

GAN model. The model training loss has been recorded. After the model being trained on real

and synthetic data, the model classification performance metrics Accuracy, Precision, Recall and

F1 scores have been calculated on the validation set. From Table 5.6, the model trained on GMM-

Unit on hyper parameter set 1 can produce similar results with a minor improvement compared

to the model trained on the original dataset. The classifier performance trained on synthetic data

from DOSGAN with default hyper parameters is the least, which coincides with the quantitative

evaluation results with the data having the highest KL Divergence. An oversampling and under

sampling dataset has been created in which the data from all the labels has been over sampled

and under sampled to an equal amount of data. All the data from the labels with less data points

has been over sampled and the data from the labels with a higher number of data points is under
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sampled. The model trained on this over sampled and under sampled data is used as a baseline for

data augmentation without deep learning architecture.

Model Hyper parameter Accuracy(%) F1 score Precision Recall

Real Original 53.71 9.65 53.71 16.31

Over sampling and Under sampling 48.52 7.61 48.52 13.15

DOS-GAN Default 0.71 0.02 0.71 0.04

HP1 9.8 0.5 9.8 1.06

HP2 1.03 0.03 1.03 0.07

GMM-GAN Default 53.71 9.57 53.71 16.02

HP1 53.71 9.79 53.71 16.31

HP2 38.71 5.40 38.71 9.33

STARGAN-V2 Default 7.61 2.71 7.61 3.99

HP1 14.5 3.12 14.5 5.13

Table 5.6: Performance metrics of different classifier trained on synthetic data from generative
models
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6. DISCUSSION

This chapter gives answers to our research questions proposed in chapter 1 and concludes some

experimental remarks.

Performance of Image-to-Image models for Sensor based time series data on the task of

data augmentation: : In this thesis, the proposed GAN models have been trained by employ-

ing Conv1D networks for down sampling and up sampling of the sensor data in the Generator and

Discrimina- tor. The implemented models have generated synthetic and balanced data. The Shan-

non entropy of the dataset has increased, showing that the imbalance in the dataset has decreased.

All the context labels have a similar number of data points available. From Table 5.2, Table 5.3

and Table 5.4,different labels have high and low KL Divergence and FID scores with no context

label always having low or high KL Divergence. The FID score of STARGAN-V2 is higher and

more variable than other generative models.

Context labels that GAN models generated best and effects of hyperparameters: Based on the

KL Divergence values calculated from the synthetic data created from the models implemented,

various GAN models achieved varying performance for generating different context labels. Ta-

ble 5.2 shows that the most KL Divergence consistent hyper parameter set for DOS-GAN is Set

2. The data generated from DOSGAN with default values had the lowest data quality and highest

KL Divergence. With the increase in learning rate and feature space size, the performance of the

generative model improved to create quality data with less KL Divergence from Hyper param- eter

set 2. From Table 5.3representing Quantitative evaluation of data from GMM-UNIT, shows that

all the GAN models with different hyperparameters were able to generate quality data that had

both KL divergence and FID scores consistent. With higher learning rates, the model was able

to further optimize performance. The data from the model with Hyperparameter set 2 achieved

the lowest KL Divergence and FID scores. From Table 5.4 epresenting quantitative evaluation for

STARGAN-V2, the initial model had a very high KL Divergence and FID score. The FID score for

the data from STARGAN-V2 is unexpectedly high and varying. For all the other models, the FID
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score remained consistent with very few variations, but the STARGAN-V2 GAN model generated

data with higher variations. With hyperparameter tuning, the KL Divergence and FID scores are

both reduced, but the FID score is high compared to other models. From the quantitative evaluation

of all generative models, no context label had consistently high or low KL Divergence or FID score

From Table 5.5, the data from GMM-UNIT achieved the lowest KL Divergence and FID scores

compared to other generative models.

How much did the performance of the HCR classifier model improve when trained on syn-

thetic data: from Table 5.6, the classifier performance trained on data from GMM-unit is com-

paratively higher than results achieved by training on synthetic data generated by the other GAN

models. However, even this synthetic data was only able to achieve similar performance compared

to the classifier trained on the original (real data) dataset. The GMM-unit with hyperparameter set

1 had the highest performance metrics even though Hyper parameter set 2 achieved the lowest KL

Divergence and FID score. The generative model GMM-UNIT has consistently proven to have

generated quality synthetic data both in quantitative evaluation and performance evaluation.

6.1 Limitations:

One of the major limitations of the comparison models developed is to augment data belonging

to different context label such as SITTING and LOC_HOME representing a person is sitting at

home. To augment such data from any source label, a data must already exist with the same com-

bination of the context labels. Another major limitation of the models developed is the translation

of data from one user to another, the models developed have a context label centric and not user

centric. The data and model must modify and re-trained to accommodate such tasks to augment

data for a user that has lesser data from data from other users.

6.2 Future work

The study has developed and compared models that are based on context labels. The models

can be explored to accommodate user information so that in future context data for any user can

be augmented using data from other users. The data rather than being collected for the new users
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for a elongated period of time, the generative model can be used to generate sufficient data for all

the context labels and the classifier model can be trained on the newly synthesized data to produce

similar performance results as the classifier for existing user. The model can also be explored

to take context labels as input along with the feature values generated by the encoder in order to

augment data for a combination of context labels. This could help to augment data for context label

combinations that are not available in the dataset. The evaluation of these generative models has

been done only on the Extrasensory dataset. In future, the proposed GAN models can be evaluated

on other HCR dataset which has collected in-wild data from smart phones or smart watches such

as Warfighter Analytics for Smartphone Healthcare (WASH). Apart from HCR data, the models

can also be implemented to evaluate the synthetic data for other time series data.
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7. CONCLUSION

Implementing HCR is a crucial and difficult task due to the data privacy and data scarcity is-

sues that arise. Collection of this data is typically from volunteers and is expensive. Moreover,

various people visit different contexts and unequal frequencies, causing imbalanced in HCR labels

col- lected. Such an imbalance reduces the performance of HCR machine learning classification

models. The proposed thesis tackles the issue of Data Augmentation of the data to create a more

balanced dataset that can be used by other deep learning models to improve performance. GANs

for image-to-image translation were repurposed and used for HCR sensor data augmentation. All

three models have performed well by creating quality and diverse data in quantitative measures.

Each model has an optimal hyper parameter set that has produced optimal results. The data gen-

erated from the models has produced quality data that has been used to improve a classifier in

different metrics. The GMM-UNIT has been able to generate quality data with the consistency of

KL Divergence 4.11 and FID Score of 21.91. The data generated from the same model has been

able to get similar classifier performance as the model trained on real data with a improvement of

0.72% in accuracy and 0.30 in F1 score.
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