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The automated and rapid inspection of high-volume metallic components has been 

a key area of industrial research for many years. A main challenge is to nondestruc-

tively detect faulty components on a consistent basis without human intervention. 

Although a host of nondestructive evaluation (NDE) methods exhibit high resolu-

tion, they are difficult to implement on the factory floor; the approaches encompass 

acoustic resonance, magnetic particle, laser scanning, eddy current, and ultrasonics. 

Unfortunately, these inspection techniques are usually tailored to specific industrial 

components and flaw t ypes. They furthermore require sophisticated test arrange-

ments which are not scalable to high-speed inspection.

As computer systems have evolved, research in computer vision based optical 

NDE methods have become feasible. These optical approaches can be broadly cat-

egorized into two parts, computer vision based and neural network based. While 

computer vision based optical NDE methods are highly efficient, they require hu-

man intervention in identifying critical flaw f eatures. M oreover, c omputer vision 

algorithms are highly sensitive to the manufacturing environment, particularly fluc-

tuating light conditions and background noise. As an alternative, convolutional 

neural networks (CNNs) are increasingly employed in nondestructive optical in-

spection. Even though state-of-the-art CNNs have proven efficient when coupled 

with transfer learning, they are generally not optimized for rapid testing of produc-

tion samples on low-cost, dedicated hardware platforms.

In this dissertation, we propose a general workflow to automatically construct 

and optimize a CNN architecture using existing computational frameworks. The 

proposed approach is tested with different production datasets for surface flaw in-

spection. Based on a novel sensing arrangement, we achieve precision of nearly 99%

for both datasets. Out of other convolution acceleration techniques like fast finite 

impulse response (FIR) and fast Fourier transform (FFT), we use Winograd based 

accelerators to speed up the convolutions. State-of-the art Winograd based accel-

erators are usually designed to perform stride-1 convolutions. In this research, we 

developed a Winograd accelerator which can perform both stride-1 and stride-2 con-

volutions on the same hardware platform. The novel hardware implementation is 3.25 
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times more computationally efficient for stride-1 convolutions when compared to a 

standard approach, while it is 1.44 times more efficient for stride-2 convolutions. It 

therefore lends itself as a highly flexible, scalable and rapid inspection methodol-

ogy suitable for many high-volume production environments.
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Chapter 1

Review of Existing NDT

Techniques

Due to increased recall of consumer product particularly the automotive industry,

nondestructive inspection of metallic components has become a center of attention

in these industries. Many companies have often relied on visual/human perception

to decide the quality of metallic components. However, visual inspection alone of

complex metallic components can prove to be inconsistent in deciding the quality

of the product. Visual inspection requires high concentration as well as consistency

from the inspectors. The computer vision or artificial intelligence based systems can

achieve consistency which is unmatched by human inspectors. Due to significant

improvement in artificial intelligence algorithms and ease of deployment, extensive

research varying from image retrival to autonomous driving is being done. Inspec-

tion of high volume complex metallic components remain an active area of research.

1.1 Review of Existing NDT Methods

In this section, we will review some of the existing nondestructive testing (NDT)

techniques that are already in use in the manufacturing industry. The most common

NDT techniques used today in industry is acoustic resonance in [7]. Apart from

acoustic resonance, we discuss optical testing, laser testing, eddy current testing,

and magnetic particle testing. Nondestructive testing techniques generally follow
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three steps for the diagnosis of defects in metallic components, i.e., detection, lo-

calization, and characterization. Acoustic Resonance Testing (ART) uses the vibra-

tional characteristics of an object to find defects. Acoustic resonance testing is used

in a wide range of products and it is a rapidly growing NDT method. The refer-

ences [7, 8] proposes a ART based method that performs rapid detection of defects

like cracks, other manufacturing-related flaws, within less than a second per com-

ponent. ART is usually done as a whole-part test, which means that measurements

taken at one place can show defects everywhere on the part. ART can make quanti-

tative, objective judgments and can be completely automated, which can eliminate

human error. ART uses the fact that a part’s physical structure makes it to have a

unique and distinct set of harmonic and characteristic frequencies. When a part is

subjected to an external force, or dropped upon a suitable surface it will resonate at a

particular frequency which is specific and unique to that part, which are also called

natural modes. These modes are impacted by cracks and other material related de-

fects which causes a change in the resonant frequencies. Every defective part will

cause a vibration to change than a flawless parts with same physical properties will

have the same vibration properties. After a hammer impact on the component, the

characteristic frequencies of the part will be excited, while every other frequency will

attenuate. This resonance is captured with a microphone to get the resonance spec-

trum. By measuring the location and amplitude of many peaks of the part’s response

and then comparing these peak values to an existing database of acceptable values,

defective parts are separated. ART can also be used to find components with cracks,

out-of-tolerance dimensions, and voids among many other things. While ART can-

not determine the cause of rejection, with the help of appropriate transducer sensi-

tivity and software we can reliably find faults in a component. ART is being used

on some automotive production line along with power transformer, piping sections

and many other applications to ensure 100% compliance with specifications. Some

of these applications are discussed below.

In reference [1] proposes a nondestructive, acoustic emission method of detecting

cracks caused by an automotive stamping process. In order to obtain high quality

and reliable components, continuous monitoring of crack detection based on non-

destructive tests is required in manufacturing process. Additionally, it is important
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to use an optimized method that will automatically adapts to its surrounding en-

vironment and to the facility. In [1], they propose a comparative method which

measures the amplitude distribution between cracked and un-cracked components.

The cracked components from the automotive stamping release low elastic energy, a

filter is used which sets at a particular frequency. An amplitude distribution method

is then applied with ratio conversion to get digitization. In another experiment of

inspection of the spot weld quality, reference [2] uses a real-time, portable, through-

transmission and continuous wave ultrasonic non-destructive evaluation system.

They used an ultrasonic transducers which are attached to the top as well as bot-

tom electrode arms of the spot welding machine. An improvement is seen in the

results demonstrated when compared to other destructive tests.

Partial Discharge (PD) detection which is based on ART technique, is achiev-

ing importance due to its many advantages like being on-line nondestructive, local-

ization of PD sources. Acoustic resonance in transformers and reactors is usually

associated with high degradation of the core as well as tank assemblies and the in-

sulation system. Detection along with analysis of such resonance can lead to early

detection of defects in the power equipment. In reference [3], the authors identify

the response of acoustic resonance signals from utility inductive reactors to develop

a monitoring system. A number of reactors are subjected to acoustic resonance mea-

surements. The results obtained were compared with concurrent dissolved gas in

oil analysis. Developing a monitoring system with the help of results is discussed in

[4] with the help of experiments conducted with testing of power transformers. The

ART data in addition to PD signals, may contain acoustic resonance signals. These

signals come from different sources like thermal, electrical, mechanical, etc. For a

realistic analysis of ART data, it is important to remove noise. Acoustic resonance

signals of different characteristics are generated by different defects, which discrim-

inate PD from noise. A precise knowledge of the individual characteristics of the

sources is required. Prior knowledge of known defects in power transformers has

greatly to gather ART characteristics as well as sperate out noise from PD source.

Next, we look at other areas where acoustic resonance is highly successfully and

used for NDT. In [5], the authors propose a higher order statistics (HOS) to classify
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acoustic resonance events for a ring-type parts such as steel pipes. The diagonal bi-

spectrum allows for separation in the original deformation from the reflections pro-

duced in the suppressed chord. A cumulate-based independent component analysis

(ICA) is used before the bi-spectrum. Such an algorithm will suppress the mutual

influence in the sensors. For high-pressure stainless steel pipe defect evaluation, an

acoustic resonance along with the hydrostatic testing has been successfully imple-

mented by reference [6]. This technique uses only 100 kHz and 300 kHz frequencies

of the acoustic resonance sensors that are mounted on the pipe. Many hydrostatic

pressures ranging from zero to 120 bars are applied to the pipe and ART signals are

captured on a computer. The processed AR parameters such as crest factor and AR

energy,are used to indicate growth in the pipe material or crack initiation. Several

micro cracks have been found by micro structure test in both defected pipes. On sim-

ilar lines, [9] proposes a crack detection system for synthesized metallic pieces which

can be done in real time. The signal measured with the help of ART is then passed

to a signal-processing algorithm to conduct spectral analysis. The spectrum is ob-

tained by applying an FFT based chirp algorithm and from the resonance frequencies

a minimum Euclidean distance algorithm, controlled by the false alarm probability,

is applied to parts that are cracked or defective pieces from the production system.

The system provides satisfactory results when tested in different environments and

on different objects. Hence, sufficient sensitivity is a key advantage of AR technique

when applied to detect a micro cracking propagation.

Another NDT technique we will discuss is in the form of Magnetic particle Test-

ing (MT) which uses ferromagnetic materials after being magnetized. The disconti-

nuity in the component generates a leakage magnetic field. When the lines of mag-

netic induction either leave or enter the surface, magnetic field is created. Under

appropriate lighting conditions, the deformities, their location and severity can be

seen when the defective object absorbs magnetic particles. Therefore, in ferromag-

netic material based components, magnetic particle indications are used to identify

defects. Exposed small defects which cannot be seen by naked eye or under micro-

scope or near-surface flaws that are not exposed but are just few millimeters under

surface can be detected by magnetic particle testing as shown in [10]. Magnetic parti-

cle testing is more suitable to area defects like cracks formed due to welding, rolling,
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quenching, plating, casting, grinding, fatigue or forging. It is not very effective on

volume type flaws such as incomplete fusion, gas pole or slag. Magnetic flaw de-

tection can be shown in several ways. The methods which use magnetic particles

are called magnetic particle testing, while those that do not use magnetic particles

are usually known as magnetic leakage. In this form of testing, predominantly in-

duction coil, Hall element or magnetic tube is used. This is a cleaner way of testing

compared to using magnetic particles but not as intuitive. Another NDT technique

we would like to discuss is eddy current testing. In the mid 1990s eddy current test-

ing was predominantly used on steam generator tubes [11]. The structural integrity

of a metallic component can be evaluated using eddy current testing by estimating

the parameters associated with defects. Most eddy current testing based algorithms

propose to use Neural Network (NN) for classification. It is difficult to use just the

statistical regression and accurately measure the parameters from two interdepen-

dent, complex and simultaneous systems. Hence, use of artificial neural networks

(ANNs)is explored to deal with such complex relation between gathered data and

defect properties. In reference [11], inspection of an in-service nuclear steam gener-

ator and its surrounding support structure is performed. The pulsed eddy current

data was obtained using a single driver with an array of eight pick-up coils config-

ured for inspection of Alloy-800 SG tube fretting, accompanied by tube offset within

a simulated corroding ferromagnetic support structure. Modified principal com-

ponent analysis was used to process time-voltage data. This helped to reduce the

data dimensionality. The scores were then fed to a NN which would simultaneously

target four parameters associated with hole size, fret depth, support structure, and

tube off-centering in two dimensions. Similarly, in references [12, 13] they have used

a NN along with eddy current testing for defect classification. Particularly in [12]

proposes to use discrete Fourier transform, wavelet transform and principal compo-

nent analysis (PCA) to extract relevant features which will be further passed on to

the ANN. The synthetic data set generated with the help of finite-element modeling

of eddy current probe is used to extract features which will then be fed into a NN.

In [13], they reliably estimate the dimension and shape of a crack in conductive ma-

terials using eddy current principle and NN based post processing. A comparison

between neural network and support vector machine (SVM) based classification is
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done after the design and tuning stages of eddy current testing. To solve the in-

version problem in eddy current testing, reference [18] proposes a neural network

mapping approach. They use a data fusion, a data fragmentation technique and

PCA data transformation to solve the inversion problem.

Continuing with the steam generator tubes testing topic, [14] proposes an exam-

ination of support structures coupled with maintenance programs that can prevent

and ameliorate these effects by implementing pulsed eddy current in combination

with principal components analysis (PCA). Conventionally, inspection of eddy cur-

rent technologies are extended to be used for activities like detection and scaling

indications from wall loss, cracks, other degradation modes in the tubes, frets at

supports and also for assessing support structure conditions. Nevertheless, there

are limitations for these methods when multiple degradation mode are present at the

same time, or when added with fouling. A similar example is an eddy current NDT

of thick ferromagnetic tubes with average wall thickness calculated with an exciter

coil. In [16] studies the consequences of the excitation frequency and the interval

between the detected signal sensitivity coil to the tube properties, a foundation for

using pulsed eddy current (PEC). It is done inorder to defeat the key disadvantages

of these eddy current tools. With continuous frequency spectrum and time gap of

direct and remote zone signals, the pulsed eddy current, simultaneously measures

the average wall thickness and inner diameter with exciter separated by 1 detec-

tor coil by couple of tube diameters. Few other applications which are employed

with pulsed eddy current NDT are explained in [15, 17, 19, 20, 21]. In reference

[15], an application of pulsed eddy current NDT scheme is testing aging aircraft

wing. The current methods of crack detection with bolt hole eddy current requiring

fastener release, effects confirmatory damage hence [15] proposes an NDT where

pulsed eddy currents induced in the aluminum wing structure are probed in center

over a metallic fastener that assist in recording and analyzing response signals with

the assistance of modified principal components analysis and showing breakup of

groups of PCA scores from fasteners along with and without borehole notches. In-

order to achieve a relative distance measurement between scores with cracks and

without cracks, a cluster analysis method Mahalanobis distance (MD) is used. Us-

age of multiple sensors in pulsed eddy-current detection for three-dimensional (3-D)
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subsurface flaw imaging is discussed in [17]. To expel the variations among devices

based on the Hall Effect, a normalization technique has been proposed in [17]. A

feature supported principal component analysis technique for multiple sensor fu-

sion has been extracted by an orthogonal information here. Features of multiple

projection coefficients achieved through these sensors are used for 3D design and

measurement.

Pulsed eddy current is often preferred over eddy current due to its many features

like wide frequency range and large exciting currents. Pulsed eddy current testing

is especially effective for reconstruction of stress corrosion cracks (SCCs). In [19], the

authors investigates various ways to reconstruct SSC profile with the help of stochas-

tic optimization of neural network or simulated annealing on the pulsed eddy cur-

rent signals. In [20], the authors introduces a pulsed eddy current thermography

to detect surface cracks. Pulsed eddy current thermography uses infrared camera

to pickup the heat developed by eddy current distribution. This helps to identify

defects over a wide area in a mater of milliseconds. Reference [20] studies the ef-

fect of pulsed eddy current thermography on carbon fiber reinforced plastic (CFRP)

materials. They observe the heating pattern of CFRP material when subjected to

directional electrical conductivity. One more example of pulsed eddy current ther-

mography is shown in [21]. Stainless steel is important in many industries, hence it

is key to understand the stainless steel weld which is the weaker section of the com-

ponent but plays an key role in structure integrity. Reference [21] also introduces a

component analysis to remove any influence of weld irregularities which can play

a role in improving the defect information for pulsed eddy current thermography

testing.

The fourth method we would discuss is laser based NDT. Typically, laser inspec-

tion is done in tubular structures like pipes. In reference [22], the authors propose

a non-contact laser-based inspection method to inspect the inner surface of mini-

diameter pipes. This inspection is based on a position-sensitive detector (PSD). A

light is projected onto the inner wall of the pipe with the laser beam by reflecting

it using two mirrors. This will create four current signals when the light spot is de-

tected by the 2-D PSD. The inner wall can be scanned by the laser beam with the help

of a micro motor. Then a data segmentation and least squares fitting algorithms are
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used on the co-ordinates obtained to reconstruct the curve section. To inspect flaws

in inner surface of a long curved mini-diameter pipe, a mini-robot is used. Based on

similar concept, references [23, 24] present a new automated inspection methodol-

ogy for pipes. A standad CCTV camera is attached to a low-cost laser profiler. Both

the references [23, 24] acquire images of pipe wall through light projection. The only

difference between these two approaches is they acquire image by laser based pro-

filers but are analyzed differently. In [23] uses artificial neural network to analyzes

the image data. While, [24] uses the intensity distribution from the image and pass it

on to artificial neural network for fault detection. Similarly, in [25] the authors pro-

pose a method using triangulation to locate a spot on surface of a pipe using laser

spot arrays in a 3D co-ordinate reference system of the camera data. Reference [26]

introduces an thermal excitation based infrared thermography from a CO2 laser of

10.6m wavelength. In their work, the main focus is of finding flaws in bio ceramics

through thermal excitation. The thermal excitation is achieved by focusing the laser

beam from vertical to horizontal direction. As a basis, they used a temperature of

a fault free sample and compared it with other samples to find faulty and fault free

sample.

The industry is moving towards optical image based NDT. Over past few years,

a trend in optical NDT is seen. In [29], an automated 3D optical measurement sys-

tem is proposed. Typically, coordinate measurement machines (CMMs) in industrial

inspection provide accurate measurement. However, the CMMs are very time con-

suming. The authors of reference [29] used a pixel- to- pixel sensor calibration. This

can acquire a patch-by-patch data of an automotive part. Further the patch is in-

spected for defects, which saves a lot of time. Optical NDT is predominantly used

to detect the surface flaws. These surface flaws can be on wind turbine blades,pipes

or automotive parts. Reference [27] studied that it is possible to detect and classify

small cracks with hair like thickness. The optical NDT setup is not sensitive to crack

orientation or the angle at which the camera is setup. The uneven background is

negated with the help of canny edge detectors as it uses threshold values. Using

both the sobel and canny edge detectors increases the accuracy of detecting cracks

as it reduces the noise in the image. Most of the conventional NDTs are time con-

suming, [28] proposes a new digital image processing based NDT approach which
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can potentially decrease the inspection time. The image is analyzed in the transform

domain using the Counterlet Transform (CT) and Discrete Cosine Transform (DCT).

The counterlet transform uses iterative filter banks and creates a 2D spectrum of

fine slices. The directional energy components of the decomposed sub-bands are

recorded. These energy values are used to differentiate between the faulty and fault

free part. In another approach of discrete cosine transform, the 2D- spectrum is di-

vided into high and low frequency components. The feature vectors are basically

first order moment of these components.A correlation based classifier is needed to

classify the part under test into a faulty or fault free bins. In the experimental results,

it was seen that discrete cosine transform performs better than Counterlet transform.

As seen in the past few examples many of the feature extraction techniques used

are observed in algorithms like face recognition or image retrieval. Hence, authors

in [30] used face recognition algorithms to perform optical NDT. The the proposed

methodology primarily focuses on running the algorithm in real time by maintain-

ing its computational efficiency in high volume manufacturing environments. For

training, the algorithm uses previously classified images. These images of parts un-

der test are then classified into two bins, faulty and fault-free. In [30] the authors

proposes a method to detect surface breaking cracks which combines Discrete Co-

sine Transform with Fisher’s Linear Discriminant Analysis.

As discussed earlier, the optical NDT is typically used for surface flaw inspec-

tion. In manufacturing industries, identifying surface flaws is key to produce high

quality components. Evolution in cameras, image processing algorithms and com-

puter systems, made use of optical inspection techniques for surface defect inspec-

tion commonplace. Few examples of optical NDT based surface law inspection are

steel products, rail tracks, screen glasses, etc. [31, 32, 33]. A lot of details are captured

by cameras and the image processing algorithms can be used to extract features and

classify surface flaws. Li et al [33] proposed an automated optical inspection system

fo rail components inspection like anchors, tie plates and ties. The system had four

cameras which captured images at 20 frames/sec. A entropy-rate clustering and

shape contraint based real-time optical inspection system is shown in [34]. They di-

vided the captured image into multiple sections which is then classified into multiple
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flaws. Tao et al., [35] proposed a surface inspection system for larger-aperture op-

tical elements. In this approach they combined bright-field and dark-field imaging

system to achieve high efficiency as well as high accuracy. The methods discussed

above are very specific to the components under test and cannot be scaled or generic

use.

The optical NDT methods can be classified into two categories; deep-learning

methods and conventional methods. The conventional methods are mostly two-

fold. Fist they use computer vision algorithms for feature extraction and second,

they use classifier for classification. In [36, 37], the features from the image are ex-

tracted using histogram curve and edge detection. In reference [38] use a rotational

invariant measure of local variance operator for feature extraction and support vec-

tor machine as classifier. The accuracy of the computer vision based optical NDT

methods is directly related to the quality of image and features it possess. However,

there is still a human reliance relative to the selection of features. Furthermore, the

computer vision based NDT methods cannot be generalized as they are customized

for a particular inspection task.

In recent years, deep learning based optical inspection methods are being devel-

oped for feature extraction and classification. In [39, 40] proposes a deep learning

based optical inspection method. A photometric stereo image data set of steel com-

ponents is used to train the convolutional neural networks for defect detection by

[41]. The major obstacle for deep-learning techniques is availability of large dataset

for training. This issue is solved by using transfer learning. in tansfer learning, the

neural networks are trained on generic datasets with millions of images initially.

Then they are re-trained on target dataset. This approach is used by [42, 43] for

surface defect detection, where they initially use generic dataset to train the neural

network and then retrain it on target dataset. In transfer learning, the general rule

of thumb is, the features in generic and target dataset should have some similarities.

Otherwise, it is difficult to achieve high classification accuracy with this method.

Another such CNN based optical NDT is shown by Natarajan et al. [44]. A opti-

cal defect inspection and localization method is proposed by [45], where they use a

sliding window-based CNN approach. A faster R-CNN based optical NDT is used

for multi-type defect detection by [46]. In reference [47], a deep convolution neural
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network (DCNN) is used for surface flaw inspection. Here one DCNN is used for

localizing key defective areas, while another one is used for defect classifications.

Similarly, Xian et al. [48] proposed a twofold methodology in which they cascade an

auto encoder for localization of fault and a CNN for classifying faults.

1.2 Motivation

The motivation behind this dissertation is to develop and implement a highly ef-

ficient as well as consistent optical NDT algorithm for surface flaw inspection of

metallic parts. The algorithm should be highly effective but at the same time easy to

implement on the factory floor. Even though many NDT approaches are proposed in

the past, like magnetic particle laser scanning, acoustic resonance, eddy curent test-

ing for nondestructive testing, these algorithms are highly specific to the part under

test and cannot be generalized easily. These algorithms require highly sophisticated

equipment which are often expensive and complex to use. We wanted to concentrate

our effots on optical NDT which has shown to be successful for surface flaw inspec-

tion in recent years. In this thesis we focus on developing a convolutional neural

network based optical NDT. The thesis makes the following contributions:

(1) A novel image acquisition process that can efficiently image a cylindrical object

as well as compensate for variable lighting effects on the metallic surface.

(2) A classification scheme suitable for industrial implementation with greater re-

liability and accuracy using a compact CNN architecture. The compact CNN

is trained by employing transfer learning and fine turning.

(3) An Evaluation procedure that can be performed on samples of poly-crystalline

diamond cutter (PDCs) and that can be compared with conventional methods.

(4) A compact CNN whose low number of parameters and small weight size can

be seamlessly implemented on cost-effective embedded devices like FPGAs

and TPUs.

(5) Explore a compact CNN using automated machine learning techniques that

achieves high classification efficiency.



12 Chapter 1. Review of Existing NDT Techniques

(6) Use model compression methods like parameter pruning and weight quanti-

zation to compress the compact CNN to fixed point form.

(7) Develop a FPGA based convolution accelerator that will deploy compact CNN

for nondestructive testing.

1.3 Organization of Thesis

This thesis is organized into six chapters. After reviewing the state-of-the art of

various inspection systems in Chapter 1, Chapter 2 gives a brief introduction of con-

volutional neural network and algorithmic optimizations iuse to accelerate CNN

implementation on hardware. Chapter 3 discusses various CNN optimization algo-

rithms used for CNN model compression. Chapter 4 presents a unique hardware

architecture to implement CNN on FPGA. In chapter 5, we review the experimental

setup and demonstrate results of the proposed approach. Finally we conclude in

Chapter 6 and provide an outlook for future work.
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Chapter 2

Convolution Neural Networks

The increasing requirement for extracting useful information from raw data like im-

ages, videos, speech, text has dominated recent research. Convolution Neural Net-

works (CNNs) are at the heart of this research due to their impressive ability to

learn from the raw labeled data. Hence CNNs are used as a de-facto in many ma-

chine learning applications like image/speech/text classification, image segmenta-

tion, etc. CNNs come at a huge computational cost as some recent CNNS require up

to 32 GOP/s to classify one image frame. Such high computational cost requires a

dedicated acceleration platform. Graphics processing units (GPUs) are widely used

to implement CNNs due to their ability to parallelize the workload. Even though

GPUs offer high performance throughput, they are known to be power hungry. In

recent years, Field Programmable Gate Arrays (FPGAs) based CNNs have been used

in embedded applications as well as High Performance Computing (HPC) data cen-

ters due to their power efficiency.

Although GPUs can provide high computational performance, the recent re-

search is moving towards FPGA based CNN acceleration techniques for two rea-

sons. First, due to advancement in FPGA technology, FPGAs can deliver high perfor-

mance throughput of the order 9 TFLOP/s which is comparable to the GPUs while

being power efficient. Secondly, current CNNs research is driving towards making

CNNs compact and sparse. These factors make development of FPGA based CNN

accelerator more viable than GPU based.
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TABLE 2.1: Tensor Sizes of Convolution Elements for a given Layer l.

Notation Name Tensor Size Description
X Input Feature Map B × N × N × P B: Batch Size;

N: Height and Width;
P: No. of Input Channels

Y Output Feature Map B × O × O × K B: Batch Size;
O: Height and Width;

K: No. of Output Channels
θ Learned Filter Kernel M × M × P × K M: Height and Width;

P: No. of Input Channels;
K: No. of Output Channels

β Learned Bias 1 × 1 × 1 × K K: No. of Output Channels

2.1 Layers in Convolution Neural Network

The CNN is build by pipelining different layers to create a deep, feed-forward,

sparsely connected network. Every layer has a set of input and output data called

Feature Map (FM). Before diving deep into various convolution layers, let us under-

stand some of the prerequisites. First, we will understand what a tensor is. Math-

ematically speaking, a tensor is an object that can establish a relationship between

group of objects related to a vector space. A scalar value is a zeroth order tensor, a

vector is first order tensor. Similarly, a matrix is second order tensor, which makes a

color image a third order tensor. A RGB image is a tensor of dimension W × H × 3.

With convolution we are extracting features like edges from the image. We typ-

ically use odd dimension filters so as to keep the convolutions around the center

pixel. But this can throw away any information on the edge of the image. Hence,

padding is done along all the edges of the image to preserve the information. We

pad the image with zeros and a padding parameter p which represents number of

rows/columns of zeros added on each side. A stride is a step taken in convolution.

A stride s can reduce the size of the output by a factor of s. Once we have figured out

the stride and the padding we can define the convolution product between a image

tensor and a filter kernel.

The tensors used in the subsequent sections are summarized in the Table 2.1
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2.1.1 Standard Convolution Layer

Standard Convolution (SC) layer involves convolution of input feature maps with a

specific filter followed by summation of the results into one channel. As seen in Fig.

2.1, the output feature maps are an inner product of the filter and input feature maps.

The feature extraction is carried out by applying filter kernels θconv to the input layer

Xconv. The input has a certain depth P. For first layer, if the input image is RGB,

the depth P is 3. For layers after first layer, the input is output feature map Yconv of

previous layer. When a 3D filter kernel θ is convolved with a 3D input tensor X, a

2D feature map is generated. If K such 3D filter kernels were used, it would give a

3D output feature map Y. Most convolution layers add a bias β to the output feature

map Y. The mathematical computations involved in standard convolution layer are

given in Equation 2.1.

Yconv[b, o, o, k] = βconv[k] +
P

∑
p=1

M

∑
m=1

M

∑
m=1

Xconv[b, p, o + m, o + m].θconv[k, p, m, m] (2.1)

FIGURE 2.1: Standard Convolution Layer (SC).

2.1.2 Depthwise Separable Convolution Layer

As the name suggests, the standard convolution (SC) is factorized into two separate

operations. The first operation is depthwise convolution (DC) followed by point-

wise convolution (PC). Fig. 2.2 depicts the depthwise, and pointwise convolution

schemes. In DC layer, every input feature map convolves with its respective filter

and generates its corresponding output feature map. Pointwise separable layer is
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(a) (b)

FIGURE 2.2: Depthwise Separable Convolution Layers (DSC). (a)
Depthwise Convolution Layer (DC), (b) Pointwise Convolution Layer

(PC).

similar to convolution layer but it only uses filters of size 1 x 1. Notice in Fig. 2.2,

a convolution layer can be formed by cascading a DC followed by a PC layer. Such

cascading of layers is called a Depthwise Separable Convolution (DSC) layer. The

purpose of using depthwise separable convolution over the standard convolution

scheme is to significantly reduce, both the number of operations and parameters.

We will show mathematically how the depthwise separable convolution layer

can reduce the number of parameters and operations as compared to standard con-

volution layer. As denoted in Fig. 2.2, for an input tensor of N x N x P and a kernel

size of M x M x P x K, the number of weights (WSC) and number of operations (OSC)

needed for the SC (for stride = 1) is given by:

WSC = M × M × P × K (2.2)

OSC = N × N × M × M × P × K (2.3)

Similarly, for depthwise separable convolution, the weights and number of opera-

tions become

WDSC = M × M × P︸ ︷︷ ︸
DC

+ P × k︸ ︷︷ ︸
PC

(2.4)

ODSC = N × N × P × M × M︸ ︷︷ ︸
DC

+ N × N × P × K︸ ︷︷ ︸
PC

(2.5)
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The depthwise separable convolution effectively reduces the parameters such as

weights and number of operations by a factor of:

ORF =
OSC

ODSC
=

M2 × K
M2 + K

(2.6)

Typically, for a kernel size of M = 3, the reduction factor in number of operations

and weights is about 8 to 9 times.

2.1.3 Fully Connected Layers

Fully Connected layer (FC) as the name suggests connects each node to all the nodes

in adjacent layers. This is used to establish a linear transformation between the in-

put and out vectors. As shown in Fig. 2.3, each connection between two nodes

represents a weight. The fully connected layers are deployed at the end of convo-

lution pipeline when a CNN is used for classification task. The FC layer is simply

a convolution layer without wweight sharing i,e, N = M. Similar to convolution

layers, the fully connected layers are accompanied by non-linear activation layers.

The mathematical representation of a fully connected layer is given by

YFC[b, o] = βFC[k] +
P

∑
p=1

N

∑
n=1

N

∑
n=1

Xconv[b, p, n, n].θconv[k, p, n, n] (2.7)

FIGURE 2.3: Fully Connected Layer (FC).



18 Chapter 2. Convolution Neural Networks

2.1.4 Activation Layer

Non-linearity layer also called as activation layer is used so that the CNN model

learns rather than memorize the data. ReLU6 (rectified linear unit) shown in Fig.

2.4 is most commonly used. Other non-linear functions used are hyperbolic tangent

and sigmoid. Mathematically, an activation layer is represented by

Yact[b, k, o, o] = act(Xact[b, p, n, n]) act = TanH, Sigmoid, ReLU (2.8)

FIGURE 2.4: Activation Layer (ReLU6).

2.1.5 Pooling Layers

Pooling layers are used to reduce the spatial dimension of the layer. Average or

max pooling layers are commonly used which outputs the average or maximum

value of subarea. Figure 2.5 shows a simple 2 x 2 average and max pooling. The

benefit of adding a pooling layer is not only to reduce the dimension of the model

and computations in following layers but to also add a translation invariance. The

pooling layers are mathematically represented as shown in Equation (2.9).

Ypool [b, k, o, o] = pool(u,v∈[1:M])(Xpool [b, p, n + v, n + u]) pool = Avg., Max. (2.9)
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FIGURE 2.5: Pooling Layers (Max. Pooling and Avg. Pooling).

2.1.6 Batch Normalization Layer

Batch Normalization was introduced by to improve the time required for training.

This was achieved by linearly shifting and scaling the given batch of Inputs to have

no mean or unit variance. Batch normalization is alos used in Binary Neural Net-

work (BNN) to reduce the quantization error as compared to arbitrary distribution.

The mathematical equation for a batch normalization layer is given in (2.10). Here

the parameters µ and σ are statistics collected during training. The hyper-parameters

used in training are denoted by α, ϵ and γ.

YBN [b, k, o, o] =
XBN [b, p, n, n]− µ√

σ2 + ϵ
γ + α (2.10)

2.2 Parallelism in Convolution Neural Networks

Due to the large number of computations involved in CNN, it is extremely difficult

for real-time CNN inference on low-power embedded devices like FPGA. In order to

achieve this task, we exploit the extre concurrency displayed by CNNS. The different

types of parallelism explored in CNNs are itemized below.

(1) Batch Parallelism: CNN can simultaneously classify different frames grouped

together as batches. This will reuse the filter in each layer so that overhead

of using DRAM to transfer the filter kernel is reduced. This accelerates the

inference process.

(2) Inter-Layer Parallelism: Since CNN inference is a feed-forward network. It

has multiple layers that are data dependent on each other. These layers can be

pipelined by launching the next layer before the current layer is finished.
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(3) Inter Feature Map Parallelism: Each output feature map in the convolution

layer can be processed separately. We can implement WK feature maps of Yconv

in parallel (0 < WK < K).

(4) Intra Feature Map Parallelism: Multiple pixels of one output feature map can

be processed parallely by calculating Wo × Wo values of YConv[K] (0 < Wo ×

Wo < O × O).

(5) Inter Convolution Parallelism: The 3D convolutions can be split as sum of 2D

convolutions as shown in (2.11). These convolutions can be calculated paral-

lely Wp elements at a time (0 < Wp < P).

(6) Intra Convolution Parallelism: The 2D convolutions can be processed in pipeline

fashion. In this method Wm × Wm multiplications are implemented parallely

(0 < Wm × Wm < M × M).

2.3 Algorithmic Optimizations for Accelerating FPGA-based

CNN

Computational transformations are required in order to accelerate different convo-

lution layers as well as fully connected layer. The transforms vectorize the imple-

mentations and decrease the MAC operations. These transforms are predominantly

developed to be implemented on CPUs and GPUs in the form of software libraries

like OpenBlas and cuBLAS for CPU and GPU respectively. However, some concepts

can be used to accelerate CNNs on FPGA.

2.3.1 GEMM Transformation

A common method to implement CNN on CPUs and GPUs is to map the convolu-

tion as well as fully connected layers into General Matrix Multiplication (GEMM).

Reference [49] used GEMM based approach to develop OpenCL based FPGA CNN

Accelerator. In GEMM based works, as both the input feature maps and filter ker-

nels are effectively 3D, they are flattened into a 2D matrix. A input convolution layer

Xconv of size PMM ×OO and filter kernel θ of size K × PMM to give output feature

maps as shown in Figure 2.6
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FIGURE 2.6: GEMM operation as a component of GEMM-based con-
volution algorithm.

Similarly, for fully connected layers a batch of feature maps are flattened into

chw x B matrix. The feature maps of FC layer are mapped in such a way that they

are loaded once per batch. This approach is used in [50, 51] to increase the compu-

tational throughput without increasing memory bandwidth. As the sparsity of the

network grows the efficiency of this method increases.

GEMM-based algorithms convert convolution operation into matrix multiplica-

tion operation by performing im2col or im2row memory transformations. The mem-

ory transformations copy input pixels into a matrix row that are corresponding to

output pixels. These input pixels and filter kernels are matrix multiplied to obtain

output matrix. The memory overhead for such operation is trivial, for example, in a

3x3 convolution each pixel of the input feature map is repeated 9 times.

2.3.2 FFT Transformation

Fast Fourier Transform (FFT) is a very commonly used algorithm to convert con-

volutions into Elementwise Matrix Multiplication in the frequency domain. This is

because the convolutions in the time-domain are multiplications in the frequency

domain. The equation (2.11) shows how a convolution can be achieved using a FFT

and a IFFT transform.

Yconv = F−1(FXconv ×Fθconv) (2.11)

First, both the input feature map and filter kernel are transformed into the Fourier
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domain by performing a FFT of length (N + M -1). Then they are elementwise multi-

plied, which is followed by an inverse Fourier transform to obtain the output feature

map in the time-domain.

The use of FFT for convolution reduces the number of arithmetic operations re-

quired and the arithmetic complexity is of the order o (W2logW). However, using

FFT also introduces complex number calculations. Typically, FFT transformation is

used when the kernel size is greater than five [52, 53]. Reference [54] implemented

overlap and add FFT method to reduce the computational complexity to O(W log

k), but this can be applied to convolutions which have signal size larger than filter

size which is the case with convolution layers.

The overlap and add FFT (OVA-FFT) based convolution method will sample the

data into small portions and treat them independently for convolution with the filter.

The data is segmented into small parts of size Xconv[n − mL], where L is length of

each part. Then convolution is performed by using FFT method and the outputs are

aligned and added.

In Figure 2.7, we compare the FFT based convolution method and Overlap and

Add FFT based convolution method. In OVA-FFT convolution method, minimal

increment in intermediate memory is required compared to FFT base convolution.

(a)

(b)

FIGURE 2.7: Different convolution schemes.(A) FFT-Conv with com-
putational complexity of O(N2log(N)). (B) FFT-OVA-Conv with
O(N2log(K)) where data dimension is N × N and filter dimension

is K × K.
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2.3.3 Winograd Transformation

Winograd minimal filtering was developed by [55] to exploit the overlapping in

stride one convolutions. However, recent works have developed a way to imple-

ment Winograd transform on stride two convolutions as well. Winograd minimal

filtering algorithm works best when the filter kernel is less than 3. Some studies [56]

report acceleration of 8x compared to a GEMM based implementation of VGG16 on

TitanX GPU. In the Winograd transformation the input feature map and filter kernel

are transformed into the Winograd domain. The output feature map is the result of

an elementwise matrix multiplication of the transformed filter kernel with the input

feature map. But this is still in the Winograd domain and needs to be transformed

back. A Winograd algorithm requires (u + k − 1)2 multiplications while standard

convolution requires u2xK2.

Winograd algorithm has a few other advantages than just reducing the num-

ber of multiplications. The multiplications are effectively replaced by additions and

shifting in the Winograd algorithm. But the transformation matrices can be gen-

erated offline and stored in LUTs [57]. The Winograd transform can utilize loop

optimization techniques to improve the performance. Loop unrolling can be used

to increase the throughput while loop tiling can be used to optimize the memory

bandwidth.

2.4 Data-path Optimizations for Accelerating FPGA-Based

CNN

GPUs are predominately used to implementing CNNs as they can exhibit high de-

grees of parallelism. Due to the resource limitation on FPGAs, it is challenging to

exploit all parallelism patterns. The current deep CNN models cannot be fully un-

rolled, i.e. executed parallelly even for a single layer due to the sheer volume of

operations involved. Hence all the state-of-the-art FPGA implementations of CNN

are done by temporally iterating data through Processing Elements (PEs). There are

three methodologies namely Systolic Arrays, SIMD and Dataflow Model of Compu-

tation(MOC) that are broadly used when designing PEs for FPGA implementation.
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2.4.1 Systolic Arrays

Systolic arrays were adopted early on to accelerate CNN on FPGA. A systolic array

is a static collection of PEs that operate under the control of a CPU. The PEs are

arranged in a 2D grid which are controlled by a CPU host. These PEs are agnostic

to CNN architecture. These PEs can support CNN upto a certain filter kernel size

for which it is designed. For example, in [58], the PEs can support convolution upto

filter size of 7, while in [59], the PEs can support convolution upto filter size of 10.

Systolic arrays do not support data caching, hence it is required to fetch inputs and

write outputs of convolution operations to an off-chip memory. Hence performance

efficiency of systolic arrays is memory bandwidth limited.

2.4.2 SIMD Accelerators

The systolic arrays demonstrate inefficiency due to their dependency on memory

bandwidth of the device. Recent research [60, 61, 62, 63, 64] focused on flexible

single instruction multiple data (SIMD) accelerators for speeding up CNNs. The

general flow in this architecture is to fetch feature maps and weights from DRAM

and cache them in on-chip buffers. This data is passed to the PEs and the results are

again stored on on-chip buffers. Upon completion of a layer the results are moved

to DRAM for the next layers. Each PE has its own computational units and on-chip

buffers for data caching.

With SIMD Accelerators, the challenge while mapping CNNs comes down to

finding optimal number of PEs, number of DSP blocks in each PEs, on-chip buffer

sizes for data caching and scheduling of data to maximize the throughput [63, 64,

65]. For convolution layers, we need to consider loop optimization strategy to find

out the optimal PE configuration. There are two types of loop optimizations con-

sidered, loop unrolling and loop tiling. We are trying to optimize the seven nested

loops shown in Eqn. 2.1 that perform convolution by loop unrolling or loop tiling.

We determine the unrolling and tiling factors to find the optimal number of PEs,

DSP blocks per PE, on-chip buffer sizes and number of DRAM access required.
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2.4.3 Dataflow Model of Computation (MOC)

CNN architectures are feed-forward by nature, hence they are contradictory to a Von

Neumann execution methodology. If CNN implementations have to access each

instruction from memory they would be memory bound. The dataflow MOC ap-

proach can simultaneously process multiple streams of data through multiple frag-

ments of instructions. The dataflow MOC architectures are referred as Data-flow

Process Networks [66]. In such network [67, 68], each node is a fundamental pro-

cessing element known as an actor and the edge is a communication FIFO Channel.

Abstract tokens are exchanged between the actors through FIFOs. The actor is ex-

ecuted only when there is availability of input operands, in other words, they are

data driven. A CNN can be mapped into such an approach as the layers in CNN

only process data once they have feature maps available.
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Model Compression

As deep neural networks are explored, it is imperative to reduce the size and compu-

tation costs in order to enable real-time applications. There are some fundamental

challenges in implementing deep neural networks on portable embedded devices

due to memory bandwidth, energy consumption and resources available. There is

a growing need to have efficient compact convolution neural network frameworks

to be deployed on embedded hardware. For example, a deep neural network like

ResNET-50 [69] is 50 layers deep and has about 95 MB of weights along with 3.8 bil-

lion floating point multiplications to process a single image. It is almost impossible

to implement such a network efficiently on embedded devices like an FPGA. If we

can discard some redundant connections, the network will still work the same bar-

ing a slight drop in efficiency, but it would save about 75% of parameters and 50%

of computational time [70].

There are four categories in which convolution neural network compression al-

gorithms can be classified: parameter pruning and sharing, knowledge distillation,

low-rank factorization and compact/transferred convolution filters. The redundancy

in the network connections is exploited by parameter pruning and sharing to com-

press the CNN. A special structural convolution filters are designed to save storage

space and parameter space in compact/transferred convolution filters approach. A

distilled compact CNN model is trained to produce the output of a larger CNN

model in knowledge distillation. Finally in low-rank factorization, the matrix/tensor

decomposition is used to predict the CNN parameters. We have summarized all the

four categories in Table 3.1.

The transferred/compact filters methods are typically used only for networks
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TABLE 3.1: Summary of Different Model Compression Techniques.

Compression
Technique

Description Model Training Supported

Parameter Prun-
ing & Sharing

Reduces redun-
dant parame-
ters

Both Convolu-
tion & Fully-
Connected
layers

Can support training
from scratch or transfer
learning

Transferred or
Compact Convo-
lutional Filters

Design struc-
tural filters to
save space

Convolutional
layer only

Only supports training
from scratch

Low-rank Factor-
ization

Matrix decom-
position to esti-
mate useful pa-
rameters

Both Convolu-
tion & Fully-
Connected
layers

Can support training
from scratch or transfer
learning

Knowledge Dis-
tillation

Train a smaller
network from a
larger network

Both Convolu-
tion & Fully-
Connected
layers

Only supports training
from scratch

with purely convolution layers. If the CNNs have fully connected layers, then pa-

rameter pruning and sharing, low-rank factorization and knowledge distillation

methods are used. The parameter sharing and pruning approaches have differ-

ent methods like quantization, binarization to compress the CNN so they are lit-

tle bit difficult to integrate in the CNN pipeline, while the low-rank factorization

method fits well into the CNN pipeline to be easily integrated in the CPU/GPU en-

vironment. With respect to the training protocols, the knowledge distillation and

transferred/compact filters method require training from scratch, while parameter

pruning and sharing as well as low-rank factorization allows for transfer learning or

training from scratch. Since these methods are mutually exclusive in terms of their

compression approach, they can be clubbed together to further optimize a CNN.

Transferred/compact filters along with parameter pruning and sharing, while quan-

tization with low-rank factorization can be used together to achieve better compres-

sion of CNNs.
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3.1 Parameter Pruning and Sharing

Initial research [71] showed promised that pruning is effective to reduce the com-

plexity of the CNN. Following this research, more efforts were focused on identify-

ing the redundant parameters in a network that can be pruned in order to improve

the generalization of the CNN. The parameter pruning and sharing can be further

categorized into 3 parts: pruning and sharing, quantization and binarization and

finally structural matrix.

3.1.1 Pruning and Sharing

Parameter pruning and sharing is used to reduce the complexity as well as the over-

fitting in the CNNs. Early adoptions of pruning [72] reduced the number of connec-

tions with the help of hessian loss function and it was found this approach provides

better pruning results than magnitude based weight decay method [73]. For both

these approaches training was done from scratch.

In recent years, there is a growing consensus of pruning the redundant param-

eters of a pre-trained CNN. Some of the recent works [74, 75, 76] proposed to re-

duce the redundant parameters using a data-free method or using a lost-cost hash

function to group wights in buckets for sharing. Some works like [77] proposed to

remove the redundant parameters, followed by quantization and encode the quan-

tized weight using huffman coding to improve the space requirements. Currently,

there active area of research is to introduce the sparsity constraint while training the

CNNs. These constraints are introduced in optimization with l0 and l1 norm regu-

larizers [78, 79, 80].

Some of the drawbacks for pruning and sharing is that it requires additional

iterations in order to converge. Furthermore,a manual setup is required to fine-tune

the parameters and can be inefficient for some applications.

3.1.2 Quantization and Binarization

In quantization, the idea is to reduce the number of bits required to represent indi-

vidual weights. Some of the approaches [81, 82] used k means scalar quantization

to reduce the size of the weights. It is seen in [83] that 8-bit quantization of weights
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have little effect on accuracy. A stochastic rounding based 16-bit fixed point repre-

sentation is used in [84] which drastically reduces the memory usage while having

minimal effect on accuracy. In reference [85], it is shown that Hessian weight can

be used to identify the importance of the network parameters and they proposed

to minimize the Hessian weighted quantization errors for clustering the network

parameters.

Some quantization approaches represent each weight in 1-bit, hence binarizing

the weight. A few networks that are developed to train with binary weights are

BinaryNet [86], XNORNet [87], BinaryConnect [88].The core idea to learn the binary

weights or activation during training. It has been observed that CNNs trained using

back-propagation even the binary weights are more resilient to weight-distortion.

One of the interesting approach proposed by [89] quantized the weigths by weight

sharing and then encoding then using Huffman coding as well as a codebook. They

first establish the network and train normally. Then they prune the network and re-

train it on the sparse connections. Once the training is done on the pruned network,

the weights are grouped and quantized according to the codebook. Further they

encode the quantized weights with Huffman coding and store them. This approach

has not only seen great reduction in memory usage but state-of-the-art performance

amongst all the quantization strategies.

The quantization and binarization do come with some drawbacks. On large net-

works like ResNet or GoogleNet, binary or quantized weights have seen reduction

in classification accuracy. This is due to both quantization and binarization does not

account for its losses in while training the network.

3.1.3 Structural Matrix

In fully-connected networks, the bottleneck is the memory consumption. It is impor-

tant to determine any redundancy in the full-connected layers. The fully-connected

networks employ nonlinear transform in the form of f (x, M) = σ(xM), where x is

the input vector, M is m × n matrix of parameters and σ(.) is an element-wise non-

linear operator. For a large dense matrix M, the cost of storing and computation

times is O(mn). A naive approach to prune parameters would be to use x as a pa-

rameterized structural matrix. A matrix that can be effectively represented by fewer
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number of parameters is called a structural matrix. Usually, the structure should not

just reduce the memory usage but also lower the computation time by accelerating

the training and inference with the help of fast matrix-multiplication.

A novel Adaptive FastFood transform was proposed by [90] to re-parameterize

the matrix multiplications of fully-connected layers. The adaptive FastFood trans-

form matrix R ∈ Rn×d is defined as:

R = SHGΠHB (3.1)

where S, G, B are random matrices and H is the Walsh-Hadamard matrix. Here Π ∈

0, 1d×d is a random permutation matrix. This approach of re-parameterizing a fully

connected layer with d inputs and n outputs resulted in reduction in storage and

computation costs from O(nd) to O(n) and O(nlog(d)), respectively.

However, the issue with this kind of optimization approach is that it may intro-

duce a bias to the network which will hurt its accuracy. There is not a definitive or

theoretical approach to find the structural matrix.

3.2 Transferred or Compact Convolution Filters

A large amount of empirical evidence suggest that the translation invariant prop-

erty of CNNs combined with parameter sharing can provide good predictive per-

formance. Reference [91] introduced equivariant group theory, which is first of its

kind in compressing CNNs using transferred convolution filters. The concept of

equivalence is described as follows:

T 1ϕ(x) = ϕ(T x) (3.2)

where ϕ(.) is the network or layer, x is an input and T (.) is the transform matrix.

The above equation suggest that, for any given input x, first transforming it with

T (.) and then passing it through the network or layer ϕ(.) would result in same as

first passing the input through then network or layer and then transforming it. It is

noted that the transforms T (.) and T 1(.) may not be same.



3.3. Low-Rank Factorization 31

This directive is followed by many recent works [92, 93, 94, 95] to build the

convolution layers from a set of base filters. Reference [94] observed, the convo-

lution layers of initial stages created redundant filters to extract positive and nega-

tive phase information of input. Hence they developed a transform which simply

performs a negation function as given in (3.3).

T (Wx) = W−
x (3.3)

Here, Wx is the basis convolution filter and W−
x is the filter whose activation is op-

posite to the original basis filter and performed after max-pooling. This approach

resulted in 2x compression in size of the convolution layers. They also observed that

the negation transform also acts as a strong regularizer which improves the classi-

fication accuracy. Similarly, reference [94] observed wide diversity of pattern rep-

resentations in the convolution layers. Hence, they figured it is incorrect to discard

single threshold weak signals. They proposed a multi-bias non-linearity activation

function that will generate more patterns in less feature space at reduced computa-

tional cost. The transform was proposed is as shown in (3.4) with δ as a multi-bias

factors.

T ϕ(x) = Wx + δ (3.4)

There are a few issues with this kind of approach where a transform is applied

to convolution filters. Firstly, they can be applied to wide/flat networks like VGG16

but not thin/deep architectures like GoogleNet. Secondly, the transfer function can

lead to unstable results due to issues with learning.

3.3 Low-Rank Factorization

The majority of computations in CNNs arise from convolution operations. Hence

reducing the number of convolutions will reduce the size of the CNN as well as

increase the computation speed. A convolution layer is effectively a 4D tensor, hence

there is a large amount of redundancy.

The low-rank approximation is done on each layer individually. The parameters
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of one layer are fixed before moving onto the next layer. The layers are then fine-

tuned to compensate for the reconstruction error. There are two types of low-rank

compression methods. The first, reference [96] uses Canonical Polydaic (CP) de-

composition, which uses the nonlinear least squares to compute the decomposition.

Reference [97] used Batch Normalization (BN) decomposition in order to transform

the activation of hidden units. Both the CP and BN decomposition schemes can be

employed to train CNNs from scratch. However, there is a slight difference between

them. In CP decomposition, the best rank for decomposition may not exist whereas

in BN, there is always a valid decomposition. For a fully-connected layer, both CP

and BN decomposition schemes can be applied as a fully-connect layer which is

effectively a 2D matrix.

Some of the drawbacks of low-rank approximation is finding the decomposition

which is sometimes computationally expensive. The low-rank decomposition fails

to optimize the CNN globally as it performs decomposition layer-by-layer. Low-

rank factorization requires extensive training to converge compared to the original

model as it is done layer-by-layer.

3.4 Knowledge Distillation

In knowledge distillation (KD), reference [99] trained a compressed model with

strong classifiers on a pseudo-labeled dataset which produced the output of the

larger network. In KD, the larger teacher model transfers its knowledge to the

smaller student models by providing the class distributions via softmax. In [98]

the student network is penalized based on the softened version of the teacher out-

put. The student model was trained to predict the output labels of the teacher model.

Reference [99] proposed a framework which would build thin and deep models from

wide and shallower models. This framework would create a thinner and deeper stu-

dent models. Here the student models would mimic the feature maps of the teacher

model.

Knowledge distillation make the deeper models thinner, hence reducing the com-

putation time. However, KD can be only applied to networks which uses softmax
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at the classification layer. Furthermore, the assumptions are very strict to achieve

comparable performance with other approaches.

3.5 Summary and Challenges

To summarize the usage for various compression techniques, we provide different

scenarios in which certain approaches can be made more efficient. To choose which

compression approach to use depends on the application at hand. In some classifica-

tion like medical image classification, transferred convolution filters may work bet-

ter as there is a rotational component to the medical images. If one is working with

limited or small size datasets, then knowledge distillation can be beneficial. The

compact student model can learn from the teacher model. If one is building com-

pact models from pre-trained large models then pruning and sharing or low-rank

factorization methods can prove to be beneficial. Usually the pruning and sharing

approach gives sizable reduction in network size while not hurting the accuracy by

much. In order to maximize the performance one or more compression approaches

can be combined together. For example, in object detection which has both convolu-

tion and fully-connected layers, one can use pruning and sharing as well as low-rank

factorization to improve the performance of the model.

However, the above mentioned techniques still pose some challenges. One of

most important challenges is to implement the CNNS on small hardware platforms

like FPGAs or Tensor Processing Units. The model compression approaches should

efficiently map the large CNNs on such platforms. The pruning approach is still

a black-box mechanism. Most of the algorithms are build on well designed mod-

els. Hence there is little room to change the configuration like hyper-parameters or

architecture.
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Hardware Architecture

In this chapter, the implementation of the proposed NDTNet on hardware is pre-

sented. A generic CNN accelerator architecture is shown in Fig. 4.1. Due to the shear

size of the data involved, the weights and intermediate data are stored in external

DRAM memory. The input and weight data from the DRAM memory is loaded onto

the on-chip input buffers and is further passed to the processing elements (PEs). The

intermediate result from the PEs is stored in on-chip output buffers which is then

written back on DRAM memory and will be used as input data in following layers.

FIGURE 4.1: Generic Architecture of FPGA based CNN Implementa-
tion.

4.1 Convolution Operation and Loop Optimizations

A convolution is the accumulation of products of input data like raw pixel values or

intermediate feature maps with filter kernel, along different kernel dimensions. A

convolution is performed in four nested loops as shown in Fig. 4.2. Various param-

eters seen in Fig. 4.2 are generated by using the following terminology; i, k and o

stand for input, kernel and output, respectively, x and y are width and height, and
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FIGURE 4.2: Nested Loops of Convolution Neural Network.

N stands for number of feature maps as well as filter kernels. Equation (4.1) shows

the loop operations seen in Fig. 4.2, where S is stride.

Data(o; x, y) =
Ni f

∑
ni=1

Nky

∑
ky=1

Nkx

∑
kx=1

Data(i; Sx + kx, Sy + ky)× weight(i, o; kx, ky) + bias(o)

(4.1)

In this dissertation, we have used loop optimization techniques in the form of

loop unrolling for parallel computations and loop tilling for efficient data buffering.

Loop unrolling helps us decide how many number of DSPs are required and how

many PEs can be implemented in parallel. Loop unrolling also impacts the number

of buffer access required to transfer data into and from PEs. Loop tilling exploits the

spatial locality of data access by splitting the CNN layer into small tiles. Tiling sizes

is determined by the on-chip memory available. This also impacts the number of

DRAM memory accesses and consequently affects latency. The loop unrolling and

tilling affect key specifications of accelerator like latency, DSP and on-chip memory

usage and consequently power consumption.

4.1.1 Convolution Acceleration Strategy

To obtain a precise acceleration strategy, first we need to understand how loop un-

rolling works and what combinations of loop unrolling can be explored. Unrolling

different loops gives different parallelization which can affect PE architecture.
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1) In loop 1 unrolling as shown in Fig. 4.3, the inner product Ukx and Uky pixels

and filter kernel from different (x,y) location is calculated each cycle and accu-

mulated using an adder tree. This requires Ukx × Uky multipliers and fan-in

adder tree.

2) For loop 2 unrolling, Ui f different filter weights and feature maps from the

same (x, y) position are used to compute the inner product each cycle. As

shown in Fig. 4.4, Ni f multipliers are required but fan-in for adder tree is 1.

3) In loop 3 unrolling, every cycle Uix × Uiy pixels from different (x, y) location

are multiplied with same filter kernel. As seen in Fig. 4.5, loop 3 unrolling

requires Uix × Uiy multipliers, but the products are independent, no adder

tree is required.

4) In each cycle, for loop 4 unrolling one pixel from feature map is multiplied

by Uo f filter weights at same (x, y) location but different filter kernels. This

requires Uo f multipliers and no adder tree is necessary due to independent

outputs as shown in Fig. 4.6.

FIGURE 4.3: First Loop unrolling of Convolution Neural Network.

FIGURE 4.4: Second Loop unrolling of Convolution Neural Network.
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FIGURE 4.5: Third Loop unrolling of Convolution Neural Network.

FIGURE 4.6: Fourth Loop unrolling of Convolution Neural Network.

In order reduce the number of DRAM access, we need to reuse both input fea-

ture maps and filter kernels. There are two types of data reuse, spatial and temporal.

When feature map or filter kernel is read from on-chip buffer and is used by mul-

tipliers in same cycle, it is called spatial reuse. Temporal reuse means when same

feature map or filter kernel is used in multiple consecutive clock cycles.

Some of the most common loop unrolling optimizations can be categorized into

four categories. Loop 1, loop 2 and loop 4 unrolled together (Type-I); Loop 2 and

loop 4 unrolled (Type-II); Loop 3 and loop 4 unrolled (Type-III) and finally, loop 1

and loop 3 unrolled (Type-IV). In Type-I, by unrolling loop 1, loop 2 and loop 4, we

are achieving parallelism at input, kernel and output. This is most common combi-

nation of unrolling seen in many works. If a PE is designed for Type-I unrolling, we

can achieve the output feature map without needing intermediate buffering. Type-I

uses Ukx × Uky × Ui f × Uo f multipliers and generate only Uo f outputs. As filter

kernels are not reused, DRAM access to load filter kernels and store output fea-

ture maps is very often, which can increase the latency. Additionally, Type-I is not

very efficient to implement depthwise convolution as there is no need for loop 2
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unrolling. In Type-II unrolling combination is similar to Type-I without loop 1 un-

rolled. It has the same drawbacks which Type-I has. Moreover, both Type-I and II

unrolling combinations do not unroll loop 3, hence they do not reuse filter kernels

which will increase latency due to frequent DRAM access.

Focusing on input feature map as well as filter kernel reuse would help with

finding the most efficient loop optimization. In Type-IV, as loop 1 and loop 3 are un-

rolled, it promotes both input feature map and filter kernel reuse. Although, further

data resuse cannot be exploited as loop 4 is not unrolled, so we would need to either

load input feature map or filter kernel No f times. In Type-III, both loop 3 and loop 4

are unrolled hence reusing both input feature map and filter kernel. We would need

Uix×Uiy×Uo f multipliers, depending on DSP slices available on the FPGA, a high

degree of parallelism can be achieved. For smaller FPGAs, Type-III cannot exploit

filter kernel reuse completely as is less efficient as there are not enough DSPs.Due

to this in our work we used a modified Type-III unrolling combination. Instead of

using only one filter weight in loop 3 unrolling we propose using a matrix 5× 5 filter

weights and reduce the number of Uix depending on DSP availability. This 5× 5 fil-

ter weight matrix can be used to get four partial convolution results when the filter

kernel is of size 3 × 3 or one partial convolution with filter kernel of size 5 × 5 or for

different combination of winograd algorithm.

4.2 Convolution Acceleration Performance Dependency

In this section, we look into factors we need to consider when deciding the unrolling

and tiling sizes. The most important factors to look at are DRAM access latency

and on-chip buffer size. We also need to consider the computation latency for each

convolution.

4.2.1 Computation Latency

The number of multiplication operations required for any given convolution layer is

shown in equation (4.2)

# Muls = Ni f × Nix × Niy × No f × Nox × Noy (4.2)
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By unrolling the number of PEs that decide the level of parallelism achieved is

given by equation (4.3).

# PEs = Ui f × Uix × Niy × Uo f × Uox × Uoy (4.3)

Let the the size of a input buffered tile be Ti f × Tix × Tiy which produces the

output buffered tile of size To f × Tox × Toy. Hence in theory the clock cycles required

to complete the convolution of one buffered tile (# ClockC1T) with the number of

PEs possible with any given unrolling strategy is shown in equation (4.4).

# ClockC_1T = ⌈
Ti f

Ui f
⌉ × ⌈ Tix

Uix
⌉ × ⌈

Tiy

Uiy
⌉ × ⌈

To f

Uo f
⌉ × ⌈ Tox

Uox
⌉ × ⌈

Toy

Uoy
⌉ (4.4)

Similarly, number of tiles (# Tiles) in any given convolution layer is shown in

equation (4.5).

# Tiles = ⌈
Ni f

Ti f
⌉ × ⌈Nix

Tix
⌉ × ⌈

Niy

Tiy
⌉ × ⌈

No f

To f
⌉ × ⌈Nox

Tox
⌉ × ⌈

Noy

Toy
⌉ (4.5)

Thus from equations (4.4) and (4.5) we can determine the number of clock cycles

(# ClockC_CL) required for a convolution layer as shown in equation (4.6) below.

# ClockC_CL = # ClockC_1T × # Tiles (4.6)

The above equation gives us the latency of one convolution layer. Let us now

find computation delay of one convolution tile and subsequently of one convolution

layer in terms of milliseconds. We assume only that there is one PE i.e. no paral-

lelism. Hence Ui f = Uix = Uiy = 1. And from equation (4.4), we get

# ClockC_1T = Ti f × Tix × Tiy × ⌈
To f

Uo f
⌉ × ⌈ Tox

Uox
⌉ × ⌈

Toy

Uoy
⌉ (4.7)

If we assume we can buffer in a complete input feature map into one tile, then

Ti f = Ni f Tix = Nix Tiy = Niy and Tox = Nox. Therefore, substituting this into

equation (4.7) we get,

# ClockC_1T = Ni f × Nix × Niy × ⌈
To f

Uo f
⌉ × ⌈Nox

Uox
⌉ × ⌈

Toy

Uoy
⌉ (4.8)
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Thus, the computation delay (ComputeD) in (ms) can be found with the help of

equation (4.8).

ComputeD (ms) =
# ClockC_1T

Operating_Freq(MHZ)× 103 (4.9)

where Operating_Freq(MHZ) is the operating frequency of the accelerator in

MHz. Using equation (4.5) and our assumption regarding tiles above, the number

of tiles in one convolution layer is # Tiles = ⌈No f
To f

⌉ × ⌈Noy
Toy

⌉. Therefore, the com-

putation delay for a whole convolution layer is ComputeD_CL (ms) = # Tiles ×

ComputeD (ms).

4.2.2 On-Chip Buffer Size and Access Latency

The on-chip buffer size completely depends on the tiling size. The size of input

buffer (InBu f _Size) required to store one tile is given as follows:

InBu f _Size (bits) = Tix × Tiy × Ti f × Bits_per_Pixel (4.10)

Similarly, the size to store the weights in its corresponding weight buffer (WtBu f _Size)

is given as:

WtBu f _Size (bits) = Tix × Tiy × Ti f × To f × Bits_per_Weight (4.11)

The size required to store one tile of output feature map in output buffer (OutBu f _Size)

is as follows:

OutBu f _Size (bits) = Tox × Toy × To f × Bits_per_Pixel (4.12)

Equations (4.10 - 4.12) are the theoretical maximum possible buffer sizes for in-

put, weight and output buffers of all convolution layers. In actual implementation

the buffer sizes for all these buffers would be greater than the these theoretical values

due to inefficient storage pattern. For example, if the input buffer size requirement

is X, the actual buffer size in implementation would be 2ceil(log2X). Hence the extra

space is wasted.
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The number of on-chip buffer access (# Bu f _access) in terms of bits is computed

by multiplying number of clock cycles accesses (# CC_access) with the bit width of a

given buffer (Bu f f er_Bw).

# Bu f _access(bits) = # CC_access × Bu f f er_Bw (4.13)

A general assumption is that during every clock cycle, the data is continuously

read from input and weight buffers and written into output buffer. A good esti-

mation for on-chip buffer access during computation will be if the number of clock

cycles accesses are equal to the number of computation cycles while the buffer width

is the width of either of input or weight or output buffer. Depending on the unrolling

strategy used, the data stored in the input buffer or weight buffer can be read multi-

ple times. But the data written to the output buffer is only once for one convolution

operation. Hence the size of read and write operations of the output buffer remains

the same. The size of data read from input buffers can be much greater than data

written in input buffers. This is also true for weight buffers as well.

Size and Storage Estimation for On-Chip Buffers

For Uox parallel computations in one feature map row, the width of input buffer

would depend on Uox. The total number of input buffers depend on Uoy that will

perform Uoyparallel output computations. In Fig. 4.7, c(x) is the one input feature

map in the xth column of a given row. Here x ∈ {1, 2, . . . , Tix − 2 × pad}. Here the

Tix includes the left and right padding as it is taken care by the line buffer. The total

number of words in one row (# 1row_words)can be given by below equation.

# 1row_words = ⌈ (Tix − 2 × pad)
Uix

⌉ (4.14)

As seen in Fig. 4.7, r(i, y) corresponds to ith element of the feature map in the

yth row. Here, i ∈ {1, 2, . . . , Ti f } and y ∈ {1, 2, . . . , Tiy}. The Tiy includes any top

or bottom padding. The adjacent rows are stored continuously in a same input

buffer for stride 2. In one input buffer, the number of rows of input feature maps

(# 1Fmap_rows) can be given by
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FIGURE 4.7: Address logic for Input Buffer.

# 1Fmap_rows = ⌈⌈
Tiy

stride
⌉ × 1

Uoy
⌉ × stride (4.15)

We aligned the storage location of subsequent feature maps with the first feature

map for simpler address generation logic. The depth one input buffer (Depth_inBu f )

which stores Ti f input feature maps for a given convolution layer is shown in equa-

tion (4.16) by using equations (4.14 and 4.15).

Depth_inBu f = # 1row_words × # 1Fmap_rows × Ti f (4.16)

The bit width of a single input buffer is Uox × Bits_per_Pixel. For efficient buffer-

ing we are using a ping-pong buffer structure. Hence each clock cycle Uox × Uoy

pixels can be passed on to the MAC units in the pipeline. Therefore, the input buffer

size for one convolution layer in terms of bits (In_Bu f (bits)) is expressed by

In_Bu f (bits) = Depth_inBu f × Uox × Uoy × 2 × Bits_per_Pixel (4.17)

The actual input buffer size would be maximum value of equation (4.16) com-

puted for all convolution layers. This value is larger than the estimated value in

equation (4.10) due to mismatch in tile and buffer dimension.

We can find the storage requirements for weight buffer as above. In Fig, 4.8,

k(x, y) is one weight element in Nix × Niy kernel. Here, x ∈ {1, 2, . . . , Tix} and
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FIGURE 4.8: Address logic for Weight Buffer.

y ∈ {1, 2, . . . , Tiy}. We always have one weight kernel always buffered in the de-

sign. The weight kernels corresponding to same input channels i.e. Tix × Tiy are

stored in continuous addresses, while the weights corresponding to different input

channels Ti f are stored in different addresses as we serially compute the channels.

To parallelly compute Uoy, the weights are stored in same address of Uoy buffers.

The depth of weight buffer (Depth_wtBu f ) is given by

Depth_wtBu f = Tix × Tiy × Ti f × ⌈
To f

Uoy
⌉ (4.18)

Like the input buffer, we use a ping-pong buffer structure for efficient data ac-

cess. Hence the weight buffer size for one convolution layer in terms of bits (Wt_Bu f (bits))

is expressed as

Wt_Bu f (bits) = Depth_wtBu f × Bits_per_Weight × Uoy × 2 (4.19)

The actual weight buffer size in the design would be maximum of equation (4.19)

computed across all convolution layers.

We expect Uox × Uoy × Uo f outputs from MAC units every Nix × Niy × Ni f clock

cycles. The bit width of one output buffer is Uox × Bits_per_Pixel. In Fig. 4.9, c(x)

is the xth column element of the output feature map row, where x ∈ {1, 2, . . . , Tox}.

The r(o, y) corresponds to the yth row in the oth output. Here y ∈ {1, 2, . . . , Toy} and

o ∈ {1, 2, . . . , To f }. In one row, we have Tox elements. These elements are continu-

ously stored as the output buffer uses row-major storage format. The c(x) elements
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FIGURE 4.9: Address logic for Output Buffer.

would then require ⌈ Tox
Uox

⌉ continuous addresses. The value Tox is equal to Nox in or-

der to enable the row-major storage format. Each buffer stores a maximum of Uo f

elements. In the design each output buffer can store a maximum⌈ To f
Uo f

⌉ feature maps.

Each feature map has Toy number of rows. Hence the depth of the output buffer

(Depth_outBu f ) is given by

Depth_outBu f = ⌈ Tox

Uox
⌉ × Toy × ⌈

To f

Uo f
⌉ (4.20)

We use ping-pong buffer structure, hence the output buffer size for one convolu-

tion layer in terms of bits (Out_Bu f (bits)) is expressed as

Out_Bu f (bits) = Depth_outBu f × Bits_per_pixel × Uox × 2 × Uo f (4.21)

Clock Cycle Requirements for On-Chip Buffer Access

The biggest bottle-neck in a CNN accelerator design is memory bandwidth. Fur-

thermore, the energy consumption is directly proportional to the number of times

memory is accessed. Reducing buffer access through loop unrolling strategies, i.e.

sharing as much data as possible between multiple PEs, is one of the most efficient

way to reduce energy consumption as well as address the increase in latency caused

frequent memory access.

The number of clock cycles required for a MAC computation of one tile is pre-

cisely equal to the on-chip buffer access shown in equation (4.13). Hence the number
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of clock cycles required for all convolution layers (# CC_Conv) is. Here #CL is the

number of total convolution layers and #T is tiles in each convolution layer.

# CC_Conv =
#CL

∑
L=1

# ClockC_1T[L]× #T[L] (4.22)

We will now calculate the read clock cycles for input and weight buffer. For input

buffer, Uox × Uoy pixels are reused by Uo f MAC units. While, for weight buffer Uo f

weights are reused by Uox × Uoy MAC units. Hence, the read access time for both

input and weight buffers (Rd_InBu f and Rd_WtBu f respectively) in terms of bits is

expressed as

Rd_InBu f (bits) = # CC_Conv × (Uox × Uoy × Bits_per_pixel) (4.23)

Rd_WtBu f (bits) = # CC_Conv × (Uo f × Bits_per_weight) (4.24)

Now we discuss the write part of the input and weight buffer. As we know,

before the computation begins the input feature map and weight data is loaded into

these buffers from DRAM. But due to unrolling strategies used, we don’t need to

load new weight or input data every clock cycle as it is reused multiple times. The

number of tiles in which new weight and input data is written every convolution

layer is

# Wt_T = ⌈
No f

To f
⌉ (4.25)

# In_T = ⌈
Noy

Toy
⌉ (4.26)

The number of bits of one tile of input and weight data written in one write cycle

to the corresponding buffers can be expressed as

# Wt_1T(bits) = Depth_wtBu f × Bits_per_Weight × Uoy (4.27)

# In_1T(bits) = Depth_inBu f × Uox × Uoy × Bits_per_Pixel (4.28)
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Using the above equations (4.27-4.28) the total amount of data in terms of bits

that is written into the input and weight buffers is found as

# Wt_Conv(bits) =
#CL

∑
L=1

# Wt_1T[L]× #T[L] (4.29)

# In_Conv(bits) =
#CL

∑
L=1

# In_1T[L]× #T[L] (4.30)

For each output buffer, every clock cycle one word is written from its correspond-

ing tile. Hence the number of clock cycles required to write data into output buffer

is simply the depth of the output buffer times number of tiles in that layer. So for the

whole convolution the clock cycles required to write the data in the output buffer is

# Out_CC_Conv =
#CL

∑
L=1

Depth_outBu f [L]× #T[L] (4.31)

Therefore, the number of bits written in output buffer is as follows. Since every

output is written and read from the output buffer only once, the size of data writ-

ten into the output buffer (Out_Conv_Wr) and read by DMA (Out_Conv_Rd) is the

same.

Out_Conv_Wr = Out_Conv_Rd = # Out_CC_Conv× # Out_Bu f ×Uox × Bits_per_Pixel

(4.32)

4.2.3 DRAM Data Access

Theoretically the size of data read from or written into DRAM for one tile should be

same as the data that is buffered into the input/weight/output buffer. The number

of bytes of input, weight and output data that is read from or written into DRAM

for one tile is given by
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In_Rd(byte) = InBu f _Size/8 (4.33)

Wt_Rd(byte) = WtBu f _Size/8 (4.34)

Out_Wr(byte) = OutBu f _Size/8 (4.35)

The latency of the DRAM transaction for one tile is determined by the data ac-

cessed by DRAM and memory BW (Mem_BW in GB/s) as

DRAM_1T(ms) =
In_Rd or Wt_Rd or Out_Wr

Mem_BW × 106 (4.36)

In order to achieve maximum efficiency the bitwidth for both the DMA (DMA_bit)

and DRAM (DRAm_bit) is set to 512 bits. Uox number of pixels are generated in par-

allel PEs. The group of Pox pixels that will be make up one DMA address is given

by

#Uox_G = ⌊DMA_bit/(Uox × Bits_per_Pixel)⌋ (4.37)

The effective DMA bits for the input and output data (DMA_bits_e f f ) and weight

(DMA_wt_bits_e f f )out of the set DMA bits (512) is given by

DMA_bits_e f f = ⌈#Uox_G × Uox × Bits_per_Pixel
DMA_bit

⌉ (4.38)

DMA_wt_bits_e f f = ⌈
⌊ DMA_bit

Bits_per_weight⌋ × Bits_per_weight

DMA_bit
⌉ (4.39)

The intermediate results from the convolution layers are stored row-by-row, then

map-by-map and finally layer-by-layer in the DRAM. Each convolution tile requires

Tix × Tiy × Ti f input data. The size in terms of bytes that is read from the DRAM for

one convolution tile is

In_Rd(byte) =
Tix × Tiy × Ti f × Bits_per_Pixel

DMA_bits_e f f × 8
(4.40)

Similarly, the data written into DRAM from the output buffer of one convolution

tile is given as
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Out_Wr(byte) =
Tox × Toy × To f × Bits_per_Pixel

DMA_bits_e f f × 8
(4.41)

The bytes of weights that are read from DRAM for one convolution tile is

Wt_Rd(byte) =
Tix × Tiy × Ti f × To f × Bits_per_weight

DMA_wt_bits_e f f × 8
(4.42)

4.2.4 Implementation

In this section, the implementation of proposed NDTNet on hardware is presented.

We have used Winograd’s algorithm to boost convolution acceleration. Most ac-

celeration algorithms are focused on solely improving stride-1 convolutions. In this

work, we proposed a single datapath solution for both stride-1 and 2 convolution ac-

celeration. Furthermore, the proposed hardware implementation in addition to stan-

dard convolution (SC), depthwise convolution (DC), pointwise convolution (PC),

and depthwise separable convolution (DSC) as needed in modern CNNs.

4.3 Architecture Overview

The overall hardware architecture is shown in Fig. 4.10. The proposed hardware

architecture can be divided into three parts: 1) Neural Engine array; 2) Memory

Organization; 3) Controller. The neural engine (NE) array is responsible for imple-

menting all the different layers in the CNN as describe in Section II. The weights

and input data are stored in external DDR memory. On-chip feature map buffers are

used to reduce the latency caused by off-chip memory operations.

4.3.1 NE Array

Each NE array consists of a Line Buffer, a Winograd based Convolution Accelera-

tor, an Adder Tree used for standard convolution and adding biases, a pooling and

ReLU stage. We have used an input channel level of parallelism in the NE array.

Each accelerator in the NE array performs the convolution in parallel on different
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FIGURE 4.10: Block diagram of the proposed Hardware Accelerator.

input channels. There are two datapaths in NE array, first for standard and depth-

wise convolution which uses Winograd’s algorithm to accelearte convolutions. Sec-

ond datapath consists of simple multiplier array for pointwise and fully connected

convolutions. The number of parallel NE arrays depends on the DSP amd on-chip

memory available on FPGA. The line buffer serves two purposes, first to automati-

cally pad the input data when required and second to provide the window for matrix

multiplication. The implementation of the line buffer is shown in Fig. 4.11. We have

used a Winograd’s algorithm based convolution accelerator that can perform 1 and

2 stride convolutions. Complete details of the approach is discussed in the following

subsection.

4.3.2 Memory Organization

In this accelerator design, we have adopted a hierarchical memory organization.

An efficient memory organization requires striking a fine balance between on-chip

memory resources and the latency of external DDR memory. Due to the large size of

the external DDR memory, it is used to store the input as well as the output feature

maps and the parameter data. The feature maps are always stored in a row-major
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FIGURE 4.11: Line Buffer Architecture.

fashion. The on-chip memory is used as input and intermediate feature map buffer.

The amount of on-chip memory required will depends on the number of NE arrays

operating in parallel. The parameters, specifically the convolution kernels and bi-

ases are initially stored in external DDR memory. Depending on the layer, these

parameters are loaded onto the on-chip memory. We have used a ping-pong buffer

to reduce the effect of latency caused by the DDR memory. In a ping-pong buffer,

when one buffer is loading the data from external memory, the other buffer is send-

ing the data to carry out the convolution.

4.3.3 Controller

The entire CCN computation can be divided into three parts: 1) load data, 2) cal-

culate and 3) save data. These parts correspond to the I/O memory operation with

external DDR memory as well as the convolution using the accelerator. A 32-bit in-

struction set is created to implement these three parts. The instruction set is made

up of different fields which provides information on convolution layers, number

of channels in the current layer, size of the feature map, stride, address of on-chip
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memory and instructions (load data, save data and calculate). This instruction set is

loaded into a register from which the controller reads the instruction and decodes it.

The controller executes its state machine depending on the type of instruction. It will

monitor the progress of each instruction and will issue control signals as required.

The controller communicates with the host through interrupt. Once interrupted, the

host will read the status registers and assign the next instruction to the controller.

4.3.4 Direct Memory Access

In this sub-section we will discuss the Direct Memory Access (DMA) used to load or

store data to the external DDR memory. DMAs are used to offload data transaction

tasks from CPU to speed up the memory transfer as well as keep the CPU less busy.

We use AXI DMA IP available for Xilinx SOC FPGAs. This IP provides a high band-

width for data transfer between DDR memory and AXI-4 Stream peripherals. In

our case the convolution accelerator block as a whole will act as a peripheral to the

CPU. There are two modes in DMAs, direct register mode and scatter-gather (SG)

mode. DMAs configured in direct register mode use less resources provide lower

performance. The DMAs configured in scatter-gather provide higher performance

but require more resources than direct register mode.

When the DMA is configured in direct register mode, the CPU will load the

length of data transfer, address of memory-mapped streaming peripherals, address

of DDR memory, etc. in the specific registers of DMA to perform either memory-

mapped to DDR or DDR to memory-mapped data transactions through DMA. Even

though the CPU is not actively involved in the memory transactions, there is still

some involvement which could potentially affect other tasks handled by the CPU

or there will be added latency in memory transactions due to CPU being busy with

other tasks.

The SG mode makes use of buffer descriptors (BD) that can be stored in any

memory-mapped block like BRAMs. The job of BDs is to provide the fundamental

parts of data transfer i.e. address where the data is stored and where the data is to

be loaded and size of data. In SG mode, the processor does not directly provide the

address of DRAM or memory-mapped peripheral for data transfer. The BDs will

provide this address. The BDS will contain the important details like the address



52 Chapter 4. Hardware Architecture

and size of data transfer relevant to the data that the DMA will receive of transfer

to the DRAM. There are two types of BDs viz., transmission BDs and receiving BDs.

The transmission BDs are responsible for data transmission from DRAM to DMA

through the MM2S (memory-mapped to stream) channel. While the receiving BDs

are responsible for data transfer from DMA to DRAM through the S2MM (stream

to memory-mapped) channel. Depending on the type of data transfer or number of

data transfers, we can have CPU generate one or more BDs and store it in BRAM.

The DMA will sequentially process the BD from the BRAM till there are no BDs left

in BRAM unless the DMA is not in cyclic mode. In cyclic mode the DMA will go

back to the first BD and keep on cycling through the BDs in the BRAM. Once the

DMA processes the final BD which is also called the ’Tail BD’, the data transmission

is stopped and CPU is notified that the data transmission is done. The CPU can then

update the BDs as and when required for the future data transmissions.

4.4 Winograd’s Algorithm based Convolution Accelerator

The Winograd’s algorithm exploits the overlapping computations in neighboring

windows ref34. The algorithm replaces multiplications with additions, thereby re-

ducing the number of multiplications required per convolution operation. Since

multiplication requires more hardware, the trade-off proposed by the algorithm is

quite desirable.

Winograd formulated an efficient method that uses transformation matrices A,

B and G on the input data d, kernel k while generating output y as shown in Eqn.

4.43, where (.) is the dot product.

y = AT[(Gk)⊙ (BTd)] (4.43)

For a convolution of 1-D input of size 4 and a kernel of size 3, the Winograd’s al-

gorithm require 4 multiplications to generate 2 outputs while a conventional method

requires 6 multiplications. This algorithm was originally proposed for 1-D convolu-

tions only F(m,r), where m is size of output and r is size of kernel.

Lavin and Gray ref35, introduced matrices that are compatible for 2-D convolu-

tions. For 2-D convolutions, the Winograd’s algorithm takes the form of F(m x m, r
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x r), where the kernel size is r x r, the output size is m x m while, the input is n x n

which is given as n = m + r - 1. Equation 4.43 can be modified for 2-D convolutions

as follows

y = AT[(GkGT)⊙ (BTdB)]A (4.44)

where, ⊙ is element-wise matrix multiplication.

In recent years, some researchers have adopted Winograd’s algorithm to reduce

the computation cost of CNN. As mentioned above, Lavin and Gray modified the

Winograd’s algorithm for stride-1 2-D CNN and implemented it on a GPU. It re-

duced the use of multiplications by 2.25x and improved the performance over the

CuDNN library. An OpenCL based FPGA implementation of CNNs using Wino-

grad’s algorithm is proposed by ref36 for the 1-D convolution. A 2-D CNN using

Winograd’s algorithm is implemented on a FPGA platform by Huang et al ref37.

Most of the implementations of Winograd’s algorithm are for stride-1 convolutions

ref40; ref41; ref42; ref43. Yepez and ko ref44, proposed modifications on Winograd’s

algorithm for stride-2 1-D, 2-D and 3-D convolutions.

In a CNN that uses both stride 1 and 2 convolutions, using Winograd’s algorithm

will require two separate data-paths. A F(2 x 2, 3 x 3) convolution requires 16 and

25 multiplications for stride 1 and 2, respectively ref44. As the number of stride-

2 convolutions are fewer than stride-1 in any given CNN, the additional resources

allocated for stride-2 makes the design less efficient.

In this dissertation, we propose a single datapath that can be used for stride-1

and 2 convolutions. For a stride-2 convolution with a 3-by-3 kernel, the input size

should be 5-by-5. In order to have the same datapath, the number of multiplications

performed for both stride-1 and 2 convolutions should be the same. We propose to

use a F(3 x 3, 3 x 3) Winograd based convolution which will require a 5-by-5 input

data and will provide a 3-by-3 output. This approach will require 25 multiplications

compared to 81 required by a conventional convolution to get similar number of

outputs, which is 3.25x computationally more efficient. As seen in Fig. 4.12, we can

use the same 5-by-5 input data with 3-by-3 kernel, but for stride-2 convolutions, it

will give 2-by-2 output instead of 3-by-3 output.
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FIGURE 4.12: Proposed Winograd’s algorithm for both stride-1 and
stride-2 convolutions.

Since there are no available F(3 x 3, 3 x 3) Winograd matrices, we derive them

using the Chinese Remainder Theorem as it was done originally in [17].

Using the Chinese Remainder Theorem, we can solve the above equations repre-

sented in matrix form as follows:

The three element filter g and data d can be represented as follows:

g(x) = g2x2 + g1x + g0 (4.45)

d(x) = d2x2 + d1x + d0 (4.46)

The linear convolution d ∗ g is

y(x) = d(x)g(x) (4.47)

For the polynomial m(x) of degree 5,

y(x) = d(x)g(x) mod m(x) (4.48)
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We select m(x) as

m(x) = m(0)(x)m(1)(x)m(2)(x)m(3)(x)m(4)(x)

= x(x − 1)(x + 1)(x − 2)(x − ∞)
(4.49)

The residues of m(x) w.r.t. g(x) is

g(0) = g(x) mod m(0)(x) = g0

g(1) = g(x) mod m(1)(x) = g0 + g1 + g2

g(2) = g(x) mod m(2)(x) = g0 − g1 + g2

g(3) = g(x) mod m(3)(x) = g0 + 2g1 + 4g2

g(4) = g(x) mod m(4)(x) = g2

(4.50)

and for d(x) is,

d(0) = g(x) mod m(0)(x) = d0

d(1) = g(x) mod m(1)(x) = d0 + d1 + d2

d(2) = g(x) mod m(2)(x) = d0 − d1 + d2

d(3) = g(x) mod m(3)(x) = d0 + 2d1 + 4d2

d(4) = g(x) mod m(4)(x) = d2

(4.51)

Define M(i)(x) = m(x)/m(i)(x), which gives us:

M(0)(x) = (x2 − 1)(x − 2) = x3 − 2x2 − x + 2

M(1)(x) = (x2 + x)(x − 2) = x3 − x2 − 2x

M(2)(x) = (x2 − x)(x − 2) = x3 − 3x2 + 2x

M(3)(x) = (x2 − 1)(x) = x3 − x

m(x) = (x2 − 2x)(x2 − 1) = x4 − 2x3 − x2 + 2x

(4.52)

To solve with the help of Chinese Remainder Theorem, we need to obtain n(i)(x)

and Ni(x) from the equation below,

n(i)(x)m(i)(x) + N(i)(x)M(i)(x) = 1 (4.53)
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TABLE 4.1: Values for n(i)(x) and Ni(x)

i m(i)(x) M(i)(x) n(i)(x) N(i)(x)
0 x x3 − 2x2 − x + 2 1/2(−x2 + 2x + 1) 1/2
1 x − 1 x3 − x2 − 2x 1/2(x2 − 2) −1/2
2 x + 1 x3 − 3x2 + 2x 1/6(x2 − 4x + 6) −1/6
3 x − 2 x3 − x 1/6(−x2 − 2x − 3) 1/6

n(i)(x) and Ni(x) values are tabulated above in Table 4.1 The residues of d(i)(x)

can be represented in matrix form as follows:

A =



1 0 0

1 1 −1

1 −1 1

1 2 4

0 0 1


The G matrix can be constructed by setting the rows Gi equal to the product of

coefficients of g(i−1) and and N(i−1)

G =



1/2 0 0

−1/2 −1/2 −1/2

−1/6 1/6 −1/6

1/6 1/3 2/3

0 0 1


Finally, the B matrix is constructed such that the values in Bi are equal to coeffi-

cients of M(i−1)

B =



2 0 0 0 0

−1 −2 2 −1 2

−2 −1 −3 0 −1

1 1 1 1 −2

0 0 0 0 1


With the help of the above transform matrices, we can use Eqn. (2) to compute 2-D

convolutions with stride 1 and 2 using 25 multiplications.

The NE array are designed to accommodate the Winograd’s algorithm which
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requires transformation of input, output and filter kernel. In order to optimize re-

sources, the filter kernels for standard and depthwise convolution stored in DDR

memory are already transformed in Winograd domain. The input data transforma-

tion and inverse transformation are done in the NE array. Fig. 4.13(a) shows the

architecture of both input as well as inverse transformation. In order to accomplish

the transformations in Winograd’s algorithm, which are of the type X = BTdB, we

split the operation in two parts, X′ = BTd (performed in the block with subscript 1)

followed by X = X′B (performed in the block with subscript 2). All transformations

are done using left shifts and adders only. The outputs of each part are registered

using flip-flops in order to get timing closure at higher clock frequency. This comes

at a cost of two clock cycles in increased latency for each transformation, i.e., input

and output.

Each input transformation block consist of five identical DataT1 and DataT2 blocks

as seen in Fig. 4.13(a). The inputs to each DataT1 block (e.g. d00, d10, d20, d30, d40) is a

column from the tile generated by the line buffer. The DataT1 block performs matrix

multiplication of BT (from Eqn. (3)) and d (input data) to generate intermediate re-

sult of input transformation (e.g. Btd00, Btd10, Btd20, Btd30, Btd40). This intermediate

result is then passed to each DataT2 block to complete the input data transforma-

tion. The output of DataT2 block is forwarded to an 5 x 5 element-wise multiplier

array to perform X ⊙ Y = (G f GT)⊙ (BTdB). Each DataT1 block requires three 2’s

complement, five left shift and eleven addition operations, while each DataT2 block

requires three 2’s complement, three left shift and eleven addition operations.

The output transformation block is shown in Fig. 4.13(b). The result of element-

wise matrix multiplication X ⊙Y (e.g. XY00, XY10, XY20, XY30, XY40) is passed as the

input to each OutT1 block. As mentioned earlier, the transformation blocks are split

into two parts, the OutT1 block is responsible to perform AT[(GkGT)⊙ (BTdB)] part

of the equation 2. This intermediate result (e.g. AtXY00, AtXY10, AtXY20, AtXY30,

AtXY40) is passed as input to OutT2 block which generates the final output of Wino-

grad’s algorithm. Five OutT1 and three OutT2 blocks are required to complete the

output transformation. Every OutT1 and OutT2 block requires one 2’s complement,

two left shift and seven addition operations. The final output using Winograd’s

algorithm accelerator F(3 x 3, 3 x 3) is a 3 x 3 and 2 x 2 matrix for stride-1 and 2
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(a)

(b)

FIGURE 4.13: Transformation block for F(3 x 3, 3 x 3). (a)Input trans-
formation block, (b) Out transformation block.

convolutions, respectively.
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Chapter 5

Results and Discussion

5.1 Dataset Generation

The poly-crystalline diamond (PDC) that we are inspecting is a cylindrical shaped

component as shown in Fig. 5.1. It is not possible to image the whole surface of a

cylindrical object in one image. Hence an image acquisition system is developed as

shown in Fig. 5.1. We used a servo motor which rotates at 10 Hz frequency in a roller

fixture to rotate the PDC. We take multiple images of the PDC while it is rotating.

A 5 mega-pixel camera is used to image small stripes of the PDC. Once the PDC is

completely imaged, the images are passed through a custom code that will collect

the stripes of PDC and stich them together. This creates an image of approximately

FIGURE 5.1: Image Acquisition Setup and poly-crystalline diamond
(PDC) under test.
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7000 x 2500 pixels. It is difficult to image the metallic surface in normal lighting due

to their high reflectivity. Therefore, we used a special lighting setup in which we

used two types spotlights red and blue in a dark room. The red light is positioned

in parallel to the camera, while the blue spotlight is positioned at an angle with re-

spect to the camera. The red light reflected from the PDC into camera will have the

same angle as the incident light from the spotlight. This setup of red spotlight pro-

vides specular reflection. Since the blue spotlight is at a certain angle the reflected

light from the PDC into camera will have a certain angle. As the angle of reflection

of blue spotlight is not same as incident angle, it provides diffused reflection. This

provides us with baseline standard. When looking into the red channel of the im-

age the diamond part of the diamond is medium bright in color while the smooth

metallic surface is bright in color. The scratches, dust and stains appear bright while

the smooth metal appears dark while the diamond part appears medium dark in the

blue channel. When the red and blue color channels are combined we get the image

of the PDC as seen in Fig. 5.2(a).

(a)

(b)

FIGURE 5.2: (a) Raw Image of poly-crystalline diamond (PDC)
acquired from the imaging setup, (b) Labeled Imaged of poly-

crystalline diamond (PDC)
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Since the PDC has to be kept at the same location on the roller fixture, it is possi-

ble it is not kept consistently at the same location. A realignment algorithm is used

which compare the image acquired image with a sample to check for any misalign-

ment and correct it if necessary. The majority of the flaws are on diamond-metal

interface and the metallic surface. The image is cropped such that any unnecessary

to save valuable processing time. As most neural network takes input image of size

224-by-224 or 227-by-227. IF the image of size 7000-by-2500 is feed directly to the

neural network it will be resized to the desired input size. This will downscale the

image and remove important details from the raw image. The image is sub-divided

into 224-by-224 tiles at a stride length of 32. Each tile of image corresponds to 6-by-6

mil inch of the PDC surface. As only the red and blue spotlights are used, there is

no information in the green channel. The green channel is used to label the image

as shown in Fig. 5.2(b). This is done by adding the marking the flaw zones with 255

value in the green channel. This is done only on the training and validation dataset

by an expert operator. As the neural network architecture expects three channels

and there is no spectral information in the green channel. Hence the green channel

is filled with the data from the red channel. This can be seen in the image as it is in

yellow color as shown in Fig. 5.3(a).

The flawed regions are marked by expert operators in the green channel as shown

in Fig. 5.2(b). The training, validation and testing images are generated from 207

PDCs. The neural network is feed with 224-by-224 sized image tiles. The tiles are

generated with a stride length of 32 to get a total of 600 tiles from each image. The

stride length of 32 is selected in order to center the flawed image tile over the labeled

flaw. In any PDC image, the flawed part is smaller than unflawed part. This has to

be reflected in training dataset. Burt the number of unflawed tiles should not be too

large otherwise we run the risk to create a bias for neural network towards unflawed

surface. The training set consists of over 120,314 image tiles with 75 % of unflawed

tiles and 25% of flawed tiles. The validation dataset consists of 17,700 image tiles

with same ratio of flawed to unflawed tiles. We have further used data augmen-

tation to improve the overall distribution of the under-represented class. We have

used only vertical flip in data augmentation due to the limitation of region of inter-

est. We have ensured that the repetition of similar flaws is reduced and a variety of
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flawed and unflawed features are present in the dataset.

Apart from the PDC dataset, we tested our approach on another dataset. The

other dataset used is an open source NEU surface defect database [100] which con-

sists of six types of flaws such as inclusions, crazing, patches, rolled-in scale, scratches

and pitted surface. The images in datasets are shown in Fig. 5.3(b) Both the two

datasets provide us with wide variety of flaws to examine our proposed approach.

5.2 Model Compressing Techniques Implemented

A fast inference of the part-under-test on embedded platforms can be achieved if the

CNN model deployed is compact. The key bottlenecks for fast CNN implementa-

tion is memory bandwidth and multiply accumulate (MACs) operations. The above

proposed architecture take care of MACs, but the memory issues for embedded plat-

forms still remains. In order to reduce the size and number of weights stored, model

compression techniques like parameter pruning and quantization are employed.

(a)

(b)

FIGURE 5.3: Datasets used in Experimentation. (a) Poly-Crystalline
Diamond Dataset, (b) NEU Surface Defect Dataset.
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In parameter pruning, the redundant weights are explored in training and conse-

quently pruned. The quantization technique stores the weights in fixed-point as

compared to floating-point representation.

5.2.1 Network Pruning

Algorithm 1: Parameter Pruning

1 Create network;
2 Train network to learn features and connections;
3 Set X% sparsity for the network;
4 Gradually increase the sparsity to X’% while fine-tuning the network;
5 Evaluate network and modify final sparsity X’% if required;

Network pruning is a efficient way to reduce the complexity as well as size of

the network. An elementary approach is to remove unnecessary non-informative

weight from the network. Molchanov, et.al, [101] demonstrated that pruning stateof-

the-art CNNs does not affect accuracy of the model. A rudimentary method to

prune, is to the set a threshold and remove the weights that are below this level.

It is a good starting point, but it is very fortuitous. The pruning approach used in

our work is presented in Algorithm 1. Once the network is created, we train it for

few epochs. This allows the network to build features maps and learn the connec-

tions between neurons. Set an initial sparsity level X. This level will tell the algo-

rithm what percent of the weights to be pruned. We iteratively increase the sparsity

level to X’. While the level in gradually increased we fine-tune the network and let it

recover from loss of parameters to achieve better convergence. We use the API pro-

vided by TensorFlow to achieve this. The API takes initial and final sparsity, starting

and ending step, frequency of pruning. A starting step is the beginning point and

end step is final point of pruning. The frequency is interval after which weights will

be pruned.

5.2.2 Weight Quantization

All CNNs employ floating-point variables, as they are deployed on CPUs and GPUs

that can handle them. Fixed-point variables are most commonly used on embedded
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Algorithm 2: Weight Quantization

1 Generate Training graph for your network;
2 Set [Upper bound:2N , Lower bound:0] for N-bit quantization ;
3 Add fake quantization TensorFlow operations in your training graph;
4 Train the network till convergence is achieved;
5 Generate evaluation graph and freeze the variables;

platforms as they utilize less hardware resources and are memory efficient. Quanti-

zation is representing a floating-point variable as an integer only, i.e. as fixed-point.

Since the quantization process is non-linear, the quantization error will propagate

and it will result in sub-optimal performance of the network. Hence quantization

of a trained network from floating-point to fixedpoint parameters is not an ideal

solution. A typical approach to tackle this issue is using simulated quantization

[102]. In this process the effects of quantization are taken into account while training

a neural network. By quantization, we intend to achieve an inference model with

fixed-point parameters that can be easily deployed on embedded platforms. The

inference model is nothing but a forward pass in training model. Hence while train-

ing with simulated quantization, the parameters in forward pass are quantized to

fixed-point. During back-propagation or backward pass, the parameters are kept in

their original floating-point representation. Algorithm 2 describes the procedure to

achieve simulated quantization.

5.3 Neural Network Architecture

5.3.1 Heuristically built Convolution Neural Network

All modern efficient convolution neural network architectures are based upon depth-

wise separable convolution (DSC) blocks [106, 107]. As the name suggests, the stan-

dard convolution (SC) is factorized into two separate operations. The first operation

is depthwise convolution (DC) followed by pointwise convolution (PC). The SC in-

volves convolution of input channels with a specific kernel followed by summation

of the convolution results into one channel. In DC, each input layer performs the

convolution on its respective kernel and generates one output channel. Pointwise

convolution is simply a SC performed using a 1 x 1 kernel. The purpose of using
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depthwise separable convolution over the standard convolution scheme is to signif-

icantly reduce, both the number of operations and parameters. For an input tensor

of N x N x P and a kernel size of M x M x P x K, the number of weights (WSC) and

number of operations (OSC) needed for the SC (for stride = 1) is given by [106]: Sim-

ilarly, for depthwise separable convolution, the weights and number of operations

become

The depthwise separable convolution effectively reduces the parameters such as

weights and number of operations by a factor of: ORF = OSC/ODSC = M2K/M2+

K Typically, for a kernel size of M = 3, the reduction factor in number of operations

and weights is about 8 to 9 times. Recent architectures like MobileNetV1/MobileNetV2

[106, 107] use depthwise separable convolution. MobileNetV2 is known to be one of

the highly efficient small scale networks in the ImageNet competition [108]. In this

competition, the CNNs are trained on millions of images belonging to thousands of

classes and are tested for top-1 or top-5 accuracy. As seen in Fig. 5.3, the features in

the image of the part-under-test are fewer when compared to features that are found

in the ImageNet database [108]. The features are diverse and complex in the Ima-

geNet database, while the deep layers in the CNN are trained to identify them. The

CNN trained on ImageNet database will attempt to find complex features that are

not present in the target database, thus resulting in poor efficiency. It can be argued

that transfer learning should be used, in which the last fully-connected (FC) layer

of the CNN pre-trained on a database (typically ImageNet) is removed and a new

FC layer consisting of classes in the target database is created. This CNN is then re-

trained on the target database. However, the sole purpose of building deep CNNs

is their ability to identify complex features and to distinguish between thousands of

classes, which is not the case in the target database.

We implemented a classification scheme in NDTNet (Nondestructive testing net-

work) which employs depthwise separable convolution. The NDTNet starts with an

input layer that accepts an input tensor of size (224-by-224-by-3). It is followed by a

zero-padding layer in order to include boundary pixels in the convolution. This is

succeeded by a standard convolution layer, a batch-normalization layer and a rec-

tified linear unit (ReLU) layer. The batchnormalization layer helps to control the
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sensitivity of the initial weights. It keeps a check on the activation function from go-

ing too high or too low. Finally, the batch-normalization helps to avoid over-fitting

of the data. Over-fitting implies the neural network memorizes the data instead of

learning the data. The above layers are followed by a combination of depthwise

separable convolutions, batch-normalization and ReLU layers which is termed as

bottleneck [107], as seen in Fig. 5.4. The detailed architecture is demonstrated in Ta-

ble I. The dense layers at the end of the network are used to obtain the class scores.

In order to reduce over-fitting, we use dropout layers following the dense layers.

Based on the dropout value (0.0-1.0), the neurons in this particular layer are deac-

tivated randomly. This forces the layer to learn the same features with different

neurons which in return provides better generalization. The dropout is only active

during the training phase. The first few layers of any CNN capture generic features

like color, patches, blobs, edges, lines, etc. Thus, the initial layers of the NDTNet are

similar to those of MobileNetV2.

Input

PWC, 

ReLU6

DWC, 

ReLU6

PWC, 

Linear

Add

(a) Stride = 1

Input

PWC, 

ReLU6

DWC, 

Stride = 2,

ReLU6

PWC, 

Linear

(b) Stride = 2

FIGURE 5.4: Bottleneck architecture for two different strides.

Since both networks use depthwise separable convolution, it will enable us to

use the weights of MobileNetV2 trained on the ImageNet database. Through this

approach, we can fine-tune the weights of the initial layers that identify generic fea-

tures rather than randomly initializing them. The remaining layers are trained from
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scratch on the target database. The depth of NDTNet is heuristically determined

after various experiments on the target database while examining the convergence

of training and validation accuracy. The NDTNet architecture that was finalized is

detailed in Table 5.1. When compared to other state-of-the-art network, NDTNet

requires least number of parameters and the size of weights is considerably small.

As seen in Table 5.2, NDTNet has one fifth the number of trainable parameters as

compared to MobileNetV2. This significant parameter reduction provides us with

a compact structure that reduces the training and, more importantly, the classifica-

tion time; this makes it suitable for real-time implementation on the factory floor.

Furthermore, the reduction in size and parameter will allow NDTNet to be imple-

mented on inexpensive embedded devices like FPGA and TPUs.

TABLE 5.1: NDTNet Architecture

Input Layer Output Stride Repeat
Tensor Channel Factor

224 x 224 x 3 SC 32 2 -
112 x 112 x 32 Bottleneck 16 1 -
112 x 112 x 16 Bottleneck 24 2 2
56 x 56 x 24 Bottleneck 32 2 2
28 x 28 x 32 Bottleneck 32 2 3
14 x 14 x 32 Bottleneck 72 2 2

7 x 7 x 72 Bottleneck 432 1 2
7 x 7 x 432 Avg. Pool 432 - -
1 x 1 x 432 Dense - - -
1 x 1 x 108 Dense - - -

1 x 1 x 2 Dense - - -
TABLE 5.2: Comparison of size and computational cost with other

state-of-the-art CNNs

Network Parameters Weight Time
(Reference) (Million) (MB) (Images/sec)

VGG16 [103] 15 M 28 360
ResNet50 [104] 25 M 48 380

DenseNet121 [105] 8.6 M 20 375
MobileNetV2 [107] 3.6 M 8 410

NDTNet 0.7 M 2.5 425
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5.3.2 AutoML based Convolution Neural Network

AutoML means automatic machine learning and its objective is to enable the users

whose expertise is not machine learning to use it in their domains. There are sev-

eral AutoML platforms and services that are predominantly available on large cloud

computing infrastructure. But there are many reasons that prohibits users from us-

ing them. First, the AutoML that is implemented on cloud-computing infrastructure

require complicated Docker container configurations and use of kubernetes. Some

one who doesn’t have a computer-science background would have tough time to

using a cloud-based AutoML frameworks. Second, the cost to use the cloud-based

depends upon the hours of service used. Someone that is new to this domain would

end up spending more money than required. Finally, there is no guarantee of se-

curity or privacy of the data. If there is a AutoML platform which runs locally it

would be idea for new users or to those whose applications are not complex. One

such AutoML platform in AutoKeras [110], which is an open-sources software is

ideal for such use case. It provides configurable application programming interface

(API) which can be easily used by users without deep understanding of computer-

science. For advanced user, AutoKeras allows to to configure details of the system

like hyperparameters and layers to meet their requirements. In next subsection we

will discuss how AutoKeras was used to generate compact convolution network.

Only the front-end details are described as the back-end implementation is beyond

the scope of this thesis. I encourage the readers to read the AutoKeras paper [110]

for further details on backend implementation of the platform.

Using Autokeras

There are two important components of Autokeras viz., Automodel and Block. Au-

tomodel is the base class for the classifier and it combines the hypermodel with the

tuner to tune the hypermodel. AutoKeras allows us to stack such blocks sequentially

to create a classification pipeline. At the start of each classification pipeline one has

to provide a ’Node’ which tells what type of data is being passed. The ’Block’ can

be anything from pre-processing layer to a full-fledged convolution neural network.
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The users can choose to use an existing neural network architecture in their pipeline

or provide parameters to build their own network.

In the implementation, I used both standard convolution as well as separable

convolution layers. I started with a ImageInput block as the convolution neural net-

work is dealing with images. This was followed by convolution block with kernel

size set to three. In order to add separable convolution layer, we just need to set the

separable argument of the ConvBlock API to true. For separable layers, the kernel

size was set to three as well. It is desirable to have more separable layers than stan-

dard convolution layers simply due to there effectiveness in making model compact

as described above. The number of filters in standard convolution block were set

to 32 and for separable convolution block were set to 64. Then a dense block was

added to the pipeline which would also add a flatten layer. Finally a classification

head is joined to classify into bins. The snippet of the basic code to build the model

is shown in Figure 5.5. The AutoKeras will add the max-pooling layers wherever

necessary. It will also add dropout layers in the dense block to avoid overfitting.

One needs to set the maximum trials to 15 for the Autokeras to generate a model.

One important thing about AutoKeras is the searching of a network and training of

a network is done parallely by the CPU and GPU respectively. Hence it is not nec-

essary that as the trial count increases we would get networks that perform better

than previous. As a user one can choose to store all the network models generated

by AutoKeras or overwrite the best performing model with even better performing

model in consequent iterations.

FIGURE 5.5: Psuedo Code snippet of how to build CNN using Au-
toKeras.
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Although AutoKeras is based upon Keras platform, it does not natively sup-

port any model compression algorithms. One cannot use any tensorflow APIs to

perform quantization or pruning on AutoKeras generated model. We wanted to

optimize the model generated by AutoKeras further by implementing parameter

pruning and data quantization as shown earlier in Algorithm I and II. But to do this

we first need to convert the AutoKeras model into its Keras equivalent so that we

can use the trained weights as well as use the Tensorflow APIs. As mentioned earlier

we have an option to save only the best performing model. So once the initial train-

ing is done, we load the best performing model. We wrote a function which would

take this model and based on its layers will create a sequential Keras model. The

first layer is Input layer (from Keras) as opposed to ImageInput layer (from AutoK-

eras) with shape of (224, 224, 3). Then based on the layer i.e convolution, separable,

flatten, dense, max-pooling we will add that layer with the same number of filters

kernels in each layer and each filter kernel is of size 3. Once we succesfully build the

model, then we can use the Tensorflow APIs to quantize or prune the model. For

quantization, we used quantization aware APIs available from Tensorflow. In this

network, we only quantized the dense layers. For parameter pruning, we performed

pruning on all layers as followed the Algorithm I. The lower and upper bounds for

sparsity was set to 30 and 80 percent respectively.

5.4 Implementation Details

The software part of the algorithm which involves created a neural network and its

training or using Autokeras to generate a neural network as well as the model com-

pression algorithms are coded in python 3.6 on deep learning platforms like Keras

[109] and Tensorflow. We have used AutoKeras platform which is also based on

Keras, to generate multiple CNN candidates for a given dataset. All the training was

done on a single local machine which housed Intel core i7-8700k CPU with Nvidia

GTX-1080 TI GPU with 11 GB of memory. In order to increase the training speed,

the intermediate training weights were stored on M.2 PCIE NVMe SSD storage on

the machine.



5.4. Implementation Details 71

For heuristically built convolution neural network, we trained the CNN for 20

epochs with each epoch having no. o f Images
Batch size iterations. The batch size was set to 32 as

higher batch size sometimes result in out of memory (OOM) exception from GPU.

As mentioned in previous section, the ratio of flawed to unflawed images in the PDC

dataset is highly unbalanced. When we use such datasets, we have to take certain

measures so that the CNN does not develop a bias towards a class in dataset that is

large in number. To tackle this issue we used class weights, which trains the model

in such a way that it pays more attention towards the under-represented class of

the dataset. The class weight is a parameter passed while training and it was set

to 3:1 flawed to unflawed ratio. We used L1 regularization and dropout in dense

layers to avoid overfitting. The initial learning rate for Adam optimizer was set to

4.5 × 10−3 with 2 × 10−5 weight decay. For quantization aware training we trained

the model for 20 epochs with each epoch having 100 steps. Similarly, for param-

eter pruning the number of epochs were set to 20 but he iterations in each epoch

was equal to no. o f Images
Batch size∗2 . The important components in this parameter pruning algo-

rithm is initial and final sparsity, begin and end step, and finally frequency at which

to prune. For initial and final sparsity, as mentioned above we selected 30% and

80% respectively. The begin step is start of the training i.e. 0th step and end step is

no. o f iterations per epoch ∗ (epoch − 2). The frequency at which the parameters are

pruned is set to once every two epochs. This is done so that the network gets ample

training to recover from the pruning. For AutoKeras implementation, the maximum

trails to search a best performing candidate network was set to 15. This number is

heuristically found and setting a very high number can result in unnecessary waste

of training time. The model compression algorithms used after finding the best can-

didate follows the same strategy as discussed above.

The hardware implementation is done using verilog language on Xilinx Plat-

form. We implemented on two types of microprocessor cores; first Xilinx proprietary

Microblaze softcore and Arm core on Nexys Video FPGA and Zynq ZCU104 FPGA

boards respectively. On both the boards we used a direct memory access Xilinx IP to

remove the host intervention during memory transfer which would allow for faster

and efficient access with the external DDR memory.
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5.5 Results and Discussion

In this subsection we perform a quantitative evaluation of the NDTNet and compare

it with the state-of-the-art CNNs. First, we compare the parameters of the proposed

NDTNet with other networks. As seen in Table 5.2, the proposed NDTNet requires

the least number of parameters and size of weights. Due to the size of NDTNet, it

can sample the images faster than any other state-of-the-art networks. Hence, it is

more suitable to enforce such a network on a real-time basis on the factory floor.

In classification schemes that involve imbalanced data sets, using the accuracy

alone is not a satisfactory metric. For example, let us assume there are 100 samples

of which 90 are unflawed and 10 are flawed. If the classification scheme determines

each sample to be unflawed, we would still obtain 90% accuracy. For better quan-

titative evaluation of the proposed algorithm we are using statistical indicators like

precision, recall, average precision and F1 score as defined [111]:

Precision =
TP

TP + FP
(5.1)

Recall =
TP

TP + FN
(5.2)

Avg. Precision =
TP + TN

TP + TN + FP + FN
(5.3)

F1 Score =
2 × Precision × Recall

Precision + Recall
(5.4)

Here TP denotes true positive, TN is true negative, FP is false positive and FN is

false negative. TP and FP are the defect regions correctly and incorrectly identified.

In Table 5.3, we evaluate the performance of the proposed NDTNet for different

training methods. While the average precision and F1 score statistics give us an

overview of a particular network, it is the precision and recall indicators that are of

key importance to us. High precision means the algorithm returns more appropriate

than inappropriate results, while high recall implies the algorithm returns mostly

appropriate results.
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5.5.1 Results for Heuristically built NDTNet

The proposed NDTNet achieves 98.7% precision and 99.3% recall, respectively, when

partial transfer learning is adopted. When NDTNet is trained from scratch, a drop

in performance is observed. A state-of-the-art network, like MobileNetV2, has a

similar architecture, hence we evaluate it by training it from scratch as well as, us-

ing the same transfer learning. It can be seen that we achieve similar results as the

propose NDTNet for both training methods. The best performance for surface flaw

classification is achieved when the transfer learning method is adopted. This is be-

cause the weights in the initial layers are not randomly assigned. Most recent flaw

evaluation techniques discussed in the literature that use neural networks employ

VGG16 due to its simplicity. To assess the proposed NDTNet against other net-

works, we analyzed our data set on a VGG16 based network as proposed by Tao

et.al. [114] and Sun et .al. [112] for classification accuracy and speed to implement.

The results are similar in terms of classification accuracy; reference [112] reported

that they can classify one image (224,224,3) in 39 ms, while the proposed NDTNet

can classify one image in 2.35 ms. This is due to the architecture of the network

used, as shown in Table 5.2, the parameters would make it difficult to implement a

VGG16 based network on cost effective embedded devices like FPGAs. Further, we

also tested our database on conventional feature extraction (Gabor) and classifica-

tion (SVM) discussed in [113]. We observed poor classification accuracy, while the

time required for feature extraction and classification is very large. This performance

is expected as feature extraction and classification is useful when we are inspecting

patterns or textures. Typically flaws on metallic surfaces are sparse and randomly

distributed, hence conventional feature extraction and classification methods do not

TABLE 5.3: Performance Evaluation of NDTNet with MobileNetV2
for various training methods

Network Train. Method Pre. % Rec. % Avg. Pre. % F1 Scr. %
NDTNet Part. Trans. Learn. 98.7 99.3 97.6 99.0

MobileNetV2 [107] Trans. Learn. 97.2 98.6 96.7 97.9
VGG16 [112] Trans. Learn. 96.5 97.2 95.9 96.8

Gabor + SVM [113] Scratch 80.4 81.6 79.5 80.8
NDTNet Scratch 93.3 96.2 92.0 94.7

MobileNetV2 [106] Scratch 93.2 96.4 91.9 94.8
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perform well.

Now let us see the performance of proposed NDTNet when model compression

algorithms discussed above are used. We demonstrate the performance of the pro-

posed NDTNet for four cases. For the first case (Normal), the precision of param-

eters is kept 32-bit floating point. In second case (Weight Pruning), the parameters

are pruned for up to 90% sparsity of the network. The parameters are quantized

to 8-bit fixed point precision in the third case (Quantization). Finally, both weight

pruning for 90% sparsity and quantization to 8-bit fixed point of parameters is done

in case four. The results for all the cases is tabulated in Table 5.4. As it can be seen in

Table 5.4, we achieve three times size reduction by weight pruning and up to eigh-

teen times by weight pruning along with quantization. Despite of compromising

on the precision as well as number of parameters, the performance is reduced by

less than 2%. The comparison of the proposed NDTNet with other state-of-the-art

CNNs, like VGG16 [112], which are widely used in inspection techniques [113] and

MobileNetV2 [107] which was specifically developed to be implemented on mo-

bile devices, is shown in Table 5.5. Although, there is no significant difference in

precision, the size of NDTNet is much smaller than the state-of-the-art networks.

We compare the proposed NDTNet, with a VGG16 based network [112] developed

for optical nondestructive testing. Due to the fact that the type of flaws are differ-

ent, it is difficult to compare the statistical indicators. Instead, we will compare the

speed of inference Since VGG16 and MobileNetV2 were designed to classify images

in thousands of classes, they are large in size. For a pass-fail classification scheme, a

compact CNN like NDTNet performs just as well as the state-of-the-art. This perfor-

mance paves the way to implement such a compact CNN on cost-effective embed-

ded platforms like FPGAs.

TABLE 5.4: Performance Evaluation of NDTNet for Different Ap-
proaches

Approach Size Prec. % Rec. % Acc. % F1 Scr. % Speed
(MB) (FPS)

Standard 3.6 98.7 98.35 97.79 98.49 176.54
Wgt. Prun. 1.3 98.34 97.8 97.12 97.89 181.37

Quant. 0.95 96.69 97.03 95.3 96.85 191.17
Wgt. Prun. with Quant. 0.2 98.01 97.64 96.8 97.82 198.01
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TABLE 5.5: Comparison of NDTNet with other state-of-the-art CNNs

Network Parameters Weight Precision
(Reference) (Millions) (in MB) %

VGG16 [112] 15 M 28 97.30
MobileNetV2 [107] 3.6 M 10 98.70

NDTNet 0.25 M 3.6 98.85

5.5.2 Results for AutoML built NDTNet

We tested the proposed AutoML based NDTNet framework on two datasets men-

tioned above. The CNN architectures obtained from the AutoKeras platform are

listed in Table 5.6. A slight difference in the architectures for the two datasets is ob-

served, which means AutoKeras tuned the architecture according to the features in

a dataset.

The efficiency of Winograd’s algorithm when accelerating convolutions on some

widely used CNNs like VGG16 [112] and MobileNetv2(MNetv2) [107] as well as on

the NDTNet [115, 116] and NDTNetv2 is demonstrated in Table 5.7. NDTNet is the

previous iteration of the proposed work in which the compact CNN model was de-

veloped heuristically along with model compression techniques. It is observed that

TABLE 5.6: NDTNETv2 Architecture generated by AutoKeras for Dif-
ferent Datasets

Dataset
Input
Tensor

Layer
Output
Channel

Stride
Repeat
Factor

PDC
Dataset

224x224x3 SC 32 2 2
114x114x32 SC 32 2 2

60x60x32 DSC 64 2 2
32x32x64 DSC 64 2 2
16x16x64 Pool 1024 - -
1x1x1024 FC - - -
1x1x32 FC - - -
1x1x2 FC - - -

NEU
Sur-
face
De-
fect
Dataset
[100]

224x224x3 SC 32 2 2
114x114x32 SC 32 2 2

60x60x32 SC 32 2 2
32x32x32 DSC 64 2 2
16x16x64 DSC 64 1 2
16x16x64 DSC 64 1 2
16x16x64 Pool 1024 - -
1x1x1024 FC - - -
1x1x32 FC - - -
1x1x6 FC - - -
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an operation reduction of around 60% in million operations MOPs for each CNN

when the Winograd convolution accelerator is used compared to conventional con-

volutions. Transfer learning was adopted while training VGG16 and MobileNetv2,

while trained NDTNet and NDTNetv2 from scratch. It can be seen in Table 5.7, the

precision for NDTNetv2 is marginally better than other CNNs for both dataset 1

(DS1) consisting of PDC images and dataset 2 (DS2) which is NEU surface defect

database [100].

I implemented the proposed Winograd convolution accelerator on Zynq ZCU104

and Nexys Video FPGA boards. Table 5.8 shows resource utilization of the proposed

implementation on both the boards operating at 100 MHz. Since Winograd’s algo-

rithm uses less number of multiplications compared to a conventional approach, it

enabled us to achieve higher throughput. We used 76% and 89% DSP slices (used for

multiplications) on Zynq and Nexys FPGAs respectively. Each multiplication opera-

tion uses one DSP, we used 16-bit fixed point representation. After each convolution

layer we have Relu6 which gives results between [0, 6]. We use QS3,8 fixed point

when storing the result of each layer. However, we maintain precision in the inter-

mediate stages. As Winograd’s algorithm compensates reduction in multiplication

by additions, we require more LUTs than usual to perform arithmetic operations

seen in input and output transformation. We required over 90% of available LUT re-

sources on both FPGA boards to implement the proposed accelerator. As mentioned

earlier, on-chip data storage is the biggest bottleneck for CNN implementations on

FPGA, we managed to use almost all of the available Block RAMs (BRAMs) to cache

the input and output feature maps as well as to store the intermediate feature maps.

The use of flip-flops (FFs) is done to achieve timing requirements.

In order to conduct a fair comparison between different Winograd convolution

TABLE 5.7: Performance of WINOGRAD based Convolution in dif-
ferent CNN Models

CNN
Model

Convent.
MOPs

Wino.
MOPs

Saving
Rate(%)

Precision(%)
DS1 DS2

VGG16 [112] 30800.2 11597.6 62.3 96.5 95.7
MNetv2 [107] 585 244.82 58.1 97.2 96.5
NDTNet [115] 278.1 115.77 58.4 98.7 96.9

NDTNetv2 188.2 80.36 57.3 99.1 98.6
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TABLE 5.8: Resource Utilization of NDTNETv2 on ZYNQ-ZCU104
and NEXYS VIDEO

Board Resources LUTs BRAMs DSP FFs

ZYNQ-
ZCU104

Available 230k 412 1728 460k
Used 221k 381 1312 132k

Utilization 91% 93% 76% 29%

NEXYS
VIDEO

Available 134k 365 740 269k
Used 129k 360 656 75k

Utilization 96% 99% 89% 28%

accelerator implementations, we use DSP efficiency which is in giga operations per

seconds per DSP (GOPS/DSP). The throughput of an implementation depends on

resources used in parallel which can vary greatly depending on the FPGA board

used. We managed to achieve 0.93 and 0.82 GOPS/DSP efficiency with Zynq and

Nexys boards respectively. Even though both the boards use Winograd F(3 x 3, 3

x 3), we had to slightly adjust the implementation on the Nexys board in order to

manage the resources while achieving desired throughput. Hence, the Nexys board

achieve slightly less DSP efficiency than Zynq board. In Table 5.9, we compare our

proposed Winograd implementation with previous state of-the-art Winograd im-

plementations. We have comparable DSP efficiency with the previous works while

having similar resource utilization. While reference [118] shows impressive DSP ef-

ficiency, their design is optimized for standard VGG16 convolutions. The presented

implementation can perform in addition to standard convolution (SC), depthwise

convolution (DC), pointwise convolution (PC), and depthwise separable convolu-

tion (DSC) as needed in modern CNNs. Furthermore, we can achieve 198 frames

TABLE 5.9: Performance Comparison with STATE-OF-THE-ART
WINOGRAD based Convolution Accelerators for FPGA

[116] 2017 [117] 2018 [118] 2020 Proposed Work
Platform ZYNQ VCU ARRIA ZYNQ NEXYS

ZC706 440 10 ZCU104 VIDEO
Freq. [MHz] 100 200 250 100 100
CNN Model VGG-16 VGG-16 VGG-16 NDTNetv2 NDTNetv2

Precision 16-bit 16-bit 16-bit 16-bit 16-bit
Winograd F(4x4, 3x3) F(2x2, 3x3) F(2x2, 3x3) F(3x3, 3x3) F(3x3, 3x3)

LUTs 156k 189k 181k 210k 129k
DSP 725 1376 1344 1312 656

GOPS 660 821 1642 1218 534
GOPS/DSP 0.91 0.6 1.22 0.93 0.82
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per second on the Zynq board, while the Nexys board can achieve 152 frames per

second.
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Chapter 6

Conclusion

6.1 Conclusion

This dissertation proposed a novel compact convolution neural network approach

called NDTNet for metallic surface flaw detection. The NDTNet addresses impor-

tant challenges such as consistency, accuracy and speed in nondestructive testing of

metallic parts. The proposed system consists of image acquisition, pre-processing

and classification. It proposes a framework based on AutoKeras to automatically

design and optimize CNNs for metalllic surface flaw inspection. By using transfer

learning, we find a compact CNN using AutoKeras platform for a particular dataset.

The architecture of NDTNet consists of mostly depth-wise separable convolution

layers which enables us to reduce the number of parameters. The result is a signif-

icant increase in the classification speed. When compared to other state-of-the art

CNNs developed for nondestructive testing of metallic surfaces, NDTNet is almost

15 times faster. Second, we optimize the CNN using model compression techniques

like parameter pruning and quantization. Finally, to accelerate the convolutions on

hardware, a Winograd’s Convolution Algorithm is employed. For 2-D convolutions,

the F(2 x 2, 3 x 3) Winograd is very popular. However, most Winograd base accel-

erators are capable of performing stride-1 convolutions only.This dissertation devel-

oped a F(3 x 3, 3 x 3) Winograd so that we are able to accelerate both Stride-1 and

Stride-2 convolutions. For stride-1 convolutions, the proposed Winograd is 3.25x

computationally efficient, while stride-2 is 1.44x efficient than standard convolution

algorithm. Without any optimizations, the classification statistics of NDTNet such as

precision and recall are not compromised. Based on practical testing performed on
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approximately 100 PDCs, it can be seen that NDTNet achieves a precision of 98.7%

and a recall of 99%. Thus, the results obtained so far suggest that the accuracy and

speed of the proposed NDTNet is suitable for real-time optical nondestructive test-

ing of metallic surfaces. When model compression techniques are used on NDTNet,

we observe precision and recall statistics of 96-98%. For hardware implementation,

the Winograd based convolution accelerator was implemented on Zynq ZCU104

and Nexys Video FPGA boards. The proposed system achieves a comparable 0.93

and 0.87 GOPS/DSP performance efficiency, respectively. When evaluated the pro-

posed framework on two different datasets of metallic objects with varying degrees

of flaws were employed. First dataset consisted of PDCs which had surface pitting

flaws, while second dataset has six types of flaws like crazing, inclusion, patches,

pitting, rolled-in surface and scratches. The framework was able to achieve 98% of

precision on both the datasets, as discussed in Chapter 5.

6.2 Future Work

This work can be further enhanced by adding a localization of an object or flaw

feature in addition to classification. Furthermore, AutoML optimizations can be in-

corporated to improve the time required to find the best candidate CNN. Finally, an

automated script that finds optimized CNN candidate and produce TCL scripts to

generate hardware depending on the available FPGA resources on board should be

explored as part of future research efforts.
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