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Abstract

In the future, connected vehicles will drastically reduce the number of road traffic accidents,

leading to safer, more reliable transportation. Connected vehicle technology will enable cars

to communicate with each other to share safety and infotainment information. However,

there are some key challenges which must be addressed before large-scale deployments of

this technology. First, the spectrum currently allocated for vehicular communication is in-

sufficient to sustain high network traffic loads in congested urban environments. Second,

GPS-based localization, which is critical for the operation of connected vehicles, is inade-

quate in urban environments. To address these challenges and improve vehicular networks,

this dissertation presents two key contributions: (1) a novel bumblebee-based vehicular dy-

namic spectrum access (B-VDSA) algorithm as a promising solution for spectrum scarcity,

and (2) signals-of-opportunity (SOP) based localization for GPS-denied environments.

The B-VDSA algorithm estimates optimal channels in a distributed and time-efficient

manner by utilizing bumblebee intelligence. The channel selection strategy derives fun-

damental concepts from the bumblebee foraging model. The algorithm is integrated into

the MAC layer of the DSRC and C-V2X protocol stacks to demonstrate its feasibility in

Vehicle-to-Vehicle (V2V) communication. Numerical simulation results showed substantial

gain in the probability of the best channel selection achieved relative to a uniform sampling

allocation approach. Similarly, we observed an increase in the probability of successful

reception when employing the bumblebee algorithm via a system-level simulator.

The SOP-based localization is a novel opportunistic approach of passive RF localization

designed for detecting “phantom car” attacks, i.e., vehicles intentionally reporting false in-

formation against the surrounding vehicles and communication networks. The feasibility of

the proposed SOP-based localization approach was evaluated using a custom-built Python-

based computer simulation platform. A hardware field experiment was also conducted for

evaluating the performance of the proposed approach incorporating radio frequency (RF)

localization, data fusion, and vehicle behavioral dynamics.
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Chapter 1

Introduction

1.1 Motivation

Vehicle technology is gradually moving towards context aware systems where vehicles

are cognizant of the environment for mobility decisions. Current vehicular systems heavily

rely on direct line-of-sight (LOS) for sensing the environment. Connected vehicles can ex-

change driving information via Basic Safety Messages (BSM) within a transmission range

of 500 meters [1]. The BSM can carry information regarding current position, speed of the

vehicle, direction, etc., and can provide critical support for vehicular technology infrastruc-

ture. Connecting vehicles via both wireless communication and networking solutions has

been extensively studied, especially Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure

(V2I) architectures. The IEEE 802.11p Dedicated Short Range Communication (DSRC)

standard [2] was the first framework designed to meet the demands of the Vehicular Network

(VANET) architecture. However, despite several of its initial advantages, IEEE 802.11p also

possesses shortcomings such as low reliability, hidden node problem, unbounded delay and

sporadic V2I connectivity [3].

Alternatively, the Third Generation Partnership Project (3GPP) specified an approach

to vehicular connectivity called Cellular Vehicle-to-Everything (C-V2X) in Release 14, where

direct communication is supported between vehicles to accommodate the latency require-

ments for time-sensitive vehicular applications. C-V2X offers several features designed to
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Figure 1.1: C-V2X evolution toward 5G beginning from IEEE 802.11p which provided the

foundation for 5G C-V2X [4].

support ITS applications with respect to coverage, mobility support, reliability, and scal-

ability. In particular, 3GPP added two new modes (Mode 3 and Mode 4) in order to

supplement Proximity Services (ProSe) for V2V communications [5]. The primary driving

force for C-V2X is the LTE backhaul network, which can directly be ported for vehicular

communication without spending billions on setting up an entirely new infrastructure and

large initial CAPEX requirement. Figure ?? describes the evolution of vehicular communi-

cation from 802.11p [4].

The major challenge in facilitating V2V communication is the spectrum requirement to

meet the rapidy growing demand for connected cars. FCC had earler allocated six channels

in the 5.9 GHz Intelligent Transportation Systems (ITS) band, which was around 75 MHz.

However, the channels were later reduced to only 30 MHz [6], which is clearly not enough to

sustain the high demand of connected vehicles. Currently, the most optimistic solution to

meet the spectrum scarcity demand is to leverage underutilized wireless spectrum without

interfering with the primary users. In this dissertation, digital television (DTV) band from

470 MHz to 520 MHz was chosen to demonstrate the feasibility of dynamic spectrum ac-

cess for vehicular communication. The primary user needs of the DTV band are relatively

stable when compared to other wireless frequency bands [7]. Hence, a simple spectrum man-

agement system can achieve good throughput and low latency without requiring complex

spectrum sensing techniques. The primary users (PU) are authorized for the spectrum use,

and their performance cannot be compromised in any scenario. Hence, FCC has laid down
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some guidelines on efficiently utilizing the spectrum without causing problems for primary

users (PU). This result can be achieved via spectrum sensing techniques such as energy de-

tection [8], matched filter detection [9], and, cyclostationary feature detection [10]. In recent

years, research has shifted to utilizing deep neural networks (DNN) or deep reinforcement

learning (DL) for predicting the white space (spectrum opportunity) with better accuracy

and low false alarms [11]. However, such channel sensing approaches possess two significant

technical challenges that need to be accounted for in connected vehicles environments:

• Highly dynamic vehicular environments leading to network topology and channel con-

ditions, which significantly impacts network reliability and efficiency. In particular,

the time-varying propagation characteristics of a connected vehicles, environment,

such as Doppler Effect, multipath fading channels, and transmission errors on the

control messaging need to be considered [12,13].

• The limited capability for information sharing, due to processing time or bandwidth

capacity limitations, makes network organization challenging. These constraints may

potentially make the adaptation to the current network conditions ineffective, al-

though information sharing may increase environmental awareness.

In this dissertation, we propose a novel biologically-inspired vehicular dynamic spectrum

access (VDSA) framework using bumblebee behavioral models to enable vehicular networks

to reliably access frequency bandwidth resources. The adaptive behavioral responses of

bumblebees are evolved to serve under similar complex and highly time-varying floral con-

ditions wherein the insects try to maximize the nectar reward [14]. In the vehicular domain,

the objective function’s goal is to find the optimal channel which gives the best throughput

and low latency performance. Second, the vehicular environment is analagous to bumblebee

habitat, where the channel energy changes in a temporal manner as the nectar in foraging.

The proposed channel selection algorithm developed in this work can rapidly and adaptively

respond to changes in the multi-channel environment. The algorithm can be integrated in

the MAC layer of both 802.11p and C-V2X technology, with their performance compared

against the baseline random access.



Chapter 1 5

1.2 State-of-the-Art

There have been several practical approaches proposed in the open literature that lever-

age distributed optimization techniques employed by natural model systems, such as ant

colonies, honeybees, and other insects, which all perform swarm optimization of available

resources [15]. In contrast to the individual-based bumblebee system, honeybees rely on

the ‘scout-recruit’ method where one individual (scout) communicates resource quality in-

formation to many individuals (recruits) [16]. If the quality of the resource decreases, then

the recruits are informed of a better food source by the scout when they return to the

hive. The scouting process and the need for worker bees to return to the hive in order to

be informed about a better food source is associated with time costs not present in the

bumblebee system (where individuals sample resource alternatives and then specialize on

the best one). Thus, the honeybee system is not an efficient resource exploitation mecha-

nism when resources vary rapidly and are unpredictable over time and space. Similarly, ant

colony behavior is based on tracking the pheromones that primer ants leave behind [17].

Although ant colonies are very efficient for routing scheduling and organization, this mech-

anism also cannot deal with the highly time-varying vehicular networking environment [18].

Reinforcement learning [19,20] mechanisms have been presented in the existing literature as

an alternative to colony behavior. Genetic algorithms provide a reliable optimization tech-

nique, but at the expense of a large computation latency with respect to converging to the

optimum value [21]. Partial swarm optimization is a very fast optimization technique since

it jointly solves the fitness function based on a multiobjective formulation [22]. However,

it is highly dependent on the initial information about the swarm structure, which is not

realistic for connected vehicle networks. The aforementioned techniques require that each

node within the network is dependent on the social interaction with all other nodes within

the network, which is not the case in applications such as connected vehicle networks.

We propose the bumblebee as a more suitable social insect model for studying distribu-

tion optimization of channel resources. Unlike ants and honeybees, individual bumblebee

foragers acquire information on their own and independently solve optimization problems

within the distributed network. Thus, bumblebees do not depend on a centralized infor-
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mation system, which can be highly ineffective and unreliable in environments that rapidly

change over time and space. For vehicular networks, this description corresponds to rapidly

changing environments, where centralized information may be inaccurate or too slow to re-

flect local changing conditions. Furthermore, vehicles may lose connectivity to a centralized

database or other neighboring vehicles under some conditions (e.g., highway, rural area).

In such a scenario, any optimization mechanism relying on centralized communication is

highly inefficient and poses a major safety concern. Bumblebee foraging behavior utilizes

individual decision mechanisms, which can include information about the behavior of others

but does not depend on it. Since there is no need to access any centralized system or wait

for information from others, the decision and adaptation to change can occur as rapidly

as their highly efficient neural processing system allows. Bumblebee framework provides

a opportunistic channel access scheme for enabling VDSA-based vehicular communication.

In congested environments, this framework improve throughput and reduce latency.

Connected vehicles need to accurately localize other vehicles for smooth traffic flow.

Human operated vehicles will be expected to co-exist along with connected vehicles. GPS

will not be sufficient in urban environments either due to unintentional effects like non-

line of sight (NLOS) and multipath propagation, or due to intentional GPS spoofing by

malicious users. In order to faciliate V2V and get accurate locations of vehicles, we have also

proposed a novel opportunistic approach of passive RF localization designed for detecting

“phantom car” attacks. The radio emissions from the vehicles such as Bluetooth, TPMS, or

cellular signals are exploited to accurately localize the vehicles with a proposed hybrid RSS

and TDoA localization scheme. The proposed scheme is also evaluated using a custom-built

Python simulator which incorporates a traffic flow model, realistic channel model, trajectory

estimation, and hybrid localization.

1.3 Research Contributions

This PhD dissertation presents three novel contributions for enhancing vehicular net-

working using bumblebee-based dynamic spectrum access and signals of opportunity.

The first research contribution provides a framework for opportunistic channel selec-
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tion in white spaces for V2V communication. The vehicular dynamic spectrum access

(VDSA) framework leverages under-utilized spectrum elsewhere, e.g., DTV bands, for im-

proving connectivity in congested environments. Figure 1.3 illustrates the wide array of

floral species which bumblebees need to sample for nectar reward estimation. In vehicular

communication, these flowers are represented as channels, and the nectar reward defines

the vehicle channel quality over time. The algorithm is enhanced by adding simple memory

model which helps in reducing the sampling overhead and also minimizes frequent chan-

nel switching which drastically affects the throughput. The algorithm is able to adapt to

time-varying interference environment and converge to optimal channels in the window of

coherence time.

Figure 1.3: Artificial mixed floral environment used to investigate memory-based decision-

making processes in bumblebees. Each color represents a species (channel) [23].

The second research contribution details the platooning-based VDSA framework. The

initial bumblebee algorithm is modified for improving data connectivity in platooning au-
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tomotive operations. Platooning requires seamless connectivity between master and slave

vehicles as the inter-vehicle distance is short. Loss of basic safety messages due to col-

lissions or high latency incurred due to radio environment map (REM)-based centralized

schemes can lead to traffic accidents. In this dissertation, we have proposed a reliable

Bumblebee-based VDSA framework which leverages a non-uniform sampling heuristic to

support optimal channel selections in a platoon operating enviornment.

Figure 1.4: Illustration of the proposed overall phantom car attack detection framework [24].

The third research contribution describes a novel localization framework (Figure 1.4)

which leverages wireless emissions from other vehicles in an opportunistic manner to ex-

ploit their positions. This project was a large colloborative effort, with the overall frame-

work consisting of traffic flow modeling, realistic RF emissions, and smoothing of trajectory

estimation using Kalman filtering. My contribution was integrating a realistic 3GPP ex-

tended vehiclular A (EVA) channel model in the overall custom-built Python framework.

The channel model was employed in order to create a non-ideal multipath for evaluting the

hybrid RSS-TDoA localization scheme.

The detailed contributions of the research are as follows:
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• Bumblebee Algorithm-based DSA (Chapter 3): The proposed bumblebee-

inspired algorithm with decision mechanism within a vehicular dynamic spectrum

access framework is explored. Channel reward levels stored in memory are weighed

against switch costs to decide whether to stay on the current channel or move to

a different channel. Channel reward information is frequently updated in memory

through periodic sampling, which provide vehicles with a more accurate estimate of

the degree to which channels differ in their quality for a given environment. Results

show that a large increase in channel selection performance was obtained for sparse

highway and urban traffic by utilizing our bumblebee-based algorithm enabled with

memory. Two simple memory structures using block sampling of the environment

followed by averaging energy values or selecting the maximum value, were designed

for channel selection [23,25–27].

• Memory-Enabled Bumblebee Algorithm (Chapter 4): The framework for a

memory enabled bumblebee foraging algorithm is presented and applied to vehicular

platoon communications. An optimized unequal sampling allocation heuristic is pro-

posed to estimate the CBR with sufficiently high accuracy. The results showed that

unequal sampling instant allocation approach outperforms the equal sampling alloca-

tion scheme with the proposed sub-optimal allocation heuristic. We also integrated

two memory models into the bumblebee foraging algorithm to leverage available mem-

ory, which boosts the probability of the best channel selection. Sliding window average

and exponentially weighted moving average memory schemes are employed, and their

performance is compared against the memoryless model. Different memory lengths

and forgetting factors are used in SWA and EWMA schemes, respectively. [28, 29].

• Phantom Car Attack Detection (Chapter 5): A comprehensive Python-based

simulator framework is implemented in order to evaluate and test custom localization

methods and communication protocols. A hybrid RSS-TDoA localization algorithm

is also proposed to exploit signals of opportunity from non-subscriber vehicles. Radio

frequency emissions from those vehicles can be detected by subscriber vehicles whose

postions are known perfectly. The emissions captured by different subscriber vehicles
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can be sent to a fusion center for accurate location and trajectory estimation. The

proposed approach was also validated using a hardware implementation. A small-

scale field experiment was conducted using RTL-SDR and Pluto SDR to validate the

computer simulation results [24] in WPI Gateway park.

1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 describes the bumblebee behavioral

model, which is based on foraging theory, and gives background on dynamic spectrum access.

In Chapter 3, a novel bumblebee-based dynamic spectrum access algorithm is proposed

for vehicular communication. Firstly, a performance bound for the proposed algorithm is

evaluated using queuing theory. Next, the algorithm is evaluated using a V2V system-level

simulator called GEMV2 and compared against a baseline model. Finally, the algorithm is

implemented on a software-defined radio (SDR) platform known as Pluto [30] in an ad-hoc

manner to demonstrate the performance.

In Chapter 4, the bumblebee algorithm is enhanced further by utilizing memory to

avoid frequent channel switchings. The channel sampling instants are allocated using a

heuristic in a non-uniform manner to optimize the sampling resources. Two different types

of memory models are employed and are compared against the memoryless model. In the

first part, focus is on a proposed heuristic to accurately estimate the channel busy ratio for

opportunistic channels. Next, the two memory models employed are described in detailed.

They are evaluated using an analytical simulation framework and compared against the

memoryless baseline algorithm. Finally, the full memory-based bumblebee algorithm with

optimal channel sampling heuritistic is evalued using a C++ system-level simulator for

platoon communication [28,29].

Chapter 5 discusses the identification and localization of adversarial vehicles using oppor-

tunistic radio frequency (RF) emissions. First, a custom simulation framework is described

in detail, which is implemented using the traces from sumo for vehicular trajectory and

3GPP extended vehicular channel model. The hardware test-bed was also developed using

inexpensive RTL-SDR radios acting as the receivers, and Pluto SDR was employed as source
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emitter. The localization estimates were computed during post-processing of the raw I/Q

samples [24].

Finally, the dissertation is concluded with Chapter 6. The main results are summarized,

and several avenues for future work are discussed.
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Chapter 2

Bumblebee Behavioral Models and

Dynamic Spectrum Access

Fundamentals

This chapter provides background knowledge on bumblebee-based distributed optimiza-

tion for channel selection and principles of Dynamic Spectrum Access (DSA) systems. The

chapter starts with the introduction of the bumblebee algorithm, and provides in-depth

information on the channel selection metrics employed using the pseudo-code. Foraging

theory, which is the foundation for bumblebee-based optimal channel selection, is also dis-

cussed to explain the motivation behind the behavioral model. Finally, dynamic spectrum

access is explained with its application to platooning.

2.1 Bumblebee Foraging Theory

Bumblebee foraging behavior utilizes individual decision mechanisms which can include

information about the behavior of other insects but does not depend on it. This section

describes bumblebee foraging theory in detail, which forms the foundation of the bumblebee

behavioral model as applied to vehicular communication. Bumblebees provide a robust bio-

logical framework for building and implementing cognitive algorithms for DSA in vehicular
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networks.

Bumblebees are social insects that form colonies comprised of a single queen and up to

several hundred workers. A small subset of workers called “foragers” have the sole task of

finding and collecting food for the colony in the form of floral nectar and pollen rewards.

Foragers routinely encounter a wide array of flowers with reward levels that rapidly change

over time and space (see Figure 1.3). Foragers are not pre-programmed with information

on the reward level associated with different flowers. Rather, they learn and remember

the reward level and sensory cues (color, odor, shape) associated with each flower species

and then decide which ones to visit. Importantly, bumblebee foragers do not depend on

“scout” bees such as honeybees or pheromone trails left by others insects such as ants.

Consequently, each individual has the capacity to learn, remember, and track changes in

floral rewards on its own. This system has evolved to enable maximal reward intake to the

colony across complex and highly variable floral conditions.

While searching for flowers containing the greatest reward, foragers implement a num-

ber of adaptive behavioral processes [31,32] that are comparable to those processes needed

for vehicles to function independently and effectively in a connected network environment.

First, foragers evaluate the available flower species and then select the type that yields the

greatest reward [33]. Second, foragers track and respond to changes in floral reward levels

in a flexible manner. Finally, foragers make floral decisions that maximize the rate of nectar

delivery to the colony [34]. For example, the decision on whether or not to switch to a new

flower species is based on a trade-off between the rewards gained by visiting a new type and

the time costs incurred when switching to that type. Although bumblebees primarily use

their personal experiences to make floral decisions, they can also enhance their knowledge

of floral environments by gaining information from other foragers. For example, individuals

can passively acquire information about reward quality from cuticular hydrocarbon “foot-

prints” left on flowers by previous foragers. Low hydrocarbon levels signal high likelihood

of reward, and high hydrocarbon levels signal low likelihood of reward [35]. In this way,

individual bumblebee foragers can use the experiences of others to increase their efficiency

of flower selection by minimizing the amount of time spent on empty flowers. By incor-

porating this agent-based approach learned from empirical studies of forager behavior, we
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greatly accelerate the subsequent development and implementation of cognitive algorithms

for optimal channel selection by vehicles in connected network environments.

Figure 2.1: The memory-based channel selection algorithm from bee (top) and vehicle

(bottom) perspectives. Like each bumblebee, each vehicle is equipped with memory to store

channel (floral) reward information, which is then used to select the channel (floral species)

with the highest reward quality out of those available. Vehicles (bumblebees) alternate

between sampling (Tst) and transmission (Ttx) periods to track changes in a time-varying

noisy resource environment [23].



Chapter 2 17

2.1.1 Translation Between the Two Worlds

Matching the terminology between bumblebee foraging and vehicular communications

is the first step in applying bumblebee behavior to the vehicular optimization problem

(Table 2.1). In-band interference is an unwanted phenomenon in the channel bandwidth.

The equivalent of this phenomenon for bees is the presence of other bees as competitors on

a particular species of flower. The presence of hydrocarbon secreted by bees correlates with

reduction in nectar reward due to the foraging of other bees. Inter-channel interference is a

form of interference produced by channels that is similar to the bee competitors’ effects on

nectar level estimations of alternative floral species. Channel energy levels are a key feature

with respect to channel access and is similar to nectar levels of the flowers for the foraging

bees. However, there is an inverse relationship between these two features. In vehicular

communications, it is desired to access the channel with as low energy level as possible since

low energy level means there is no other user in the channel, which also means low noise

levels and interference effects. On the other hand, bumblebees aim to access the flower with

the highest nectar (energy) levels since it means there are few other bees competing for the

same floral species, thereby increasing their rate of nectar return to the colony.

Table 2.1: Several Definitions in Connected Vehicular Communications and Their Equiva-

lent Definitions in Bumblebees [23]

Vehicles Bumblebees

In-band Interference Bees foraging on the same floral species

Out-of-Band Interference Bees foraging on alternative floral species

Minimum Channel Energy Level Maximum Nectar Level Per Floral Species

Computation/Process Time Handling/Searching Time

Latency vs. Reliability Sampling Frequency vs. Choice Accuracy

Switching Cost/ Time between channels Switching Cost/Time between Floral Species

Channel activity over time Floral Species occupancy over time

Channel-user distribution Bee distribution across floral species

Computation/process time of the algorithms used by connected vehicles corresponds
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to flower handling and search time of bees. Many algorithms have been proposed for

connected vehicles that provide an optimal channel access scheme [36, 37]. However, if

an algorithm gives the result after a longer time interval than the coherence time, the

environment conditions change and the output of the algorithm is no longer appropriate.

Focusing on vehicular ad-hoc networks (VANETs), there has been extensive research on

the application of optimization techniques based on natural models. For example, in [38],

artificial bee colony (ABC) optimization algorithm has been applied to VANETs in order to

overcome connectivity and signal fading issues. The authors in [39] employed modified GA

algorithms to optimize white space utilization in VANETs. The optimization of routing

protocol performance based on both particle swarm optimization (PSO) and ant-colony

optimization (ACO) in VANET is discussed in [40]. However, quantitative analyses on the

bounds of these approaches have been noticeably absent. Most of the research into bio-

inspired optimization techniques has been presented with a problem-specific approach. To

the best of the authors knowledge, no one has yet investigated quantitative performance

bounds at the vehicular level.

We leverage the concept of queuing theory in order to conduct a performance bound anal-

ysis of bumblebee-inspired distributed optimization operation in vehicle-to-vehicle (V2V)

environments. The work is based on the techniques presented in [7], where the authors as-

sume the channel is quasi-static whereas in this work we conduct the performance analysis

on a time-variant channel and further explore correlated effects between channels. Unlike

ants and honeybees, individual bumblebee foragers can acquire information on their own

and independently solve optimization problems within a distributed network. Consequently,

bumblebees do not need to depend on a centralized information system, which can be highly

ineffective and unreliable in environments that rapidly change over time and space [41]. For

vehicular networks, this description corresponds to rapidly changing urban environments,

where centralized information may be inaccurate or too slow to reflect local changing con-

ditions. Furthermore, a vehicle in a rural area may lose connectivity with a centralized

database or other neighboring vehicles. In such a scenario, any optimization mechanism

relying on this form of communication may po- tentially not work properly. In a honeybee

colony, the scout bee finds a food source, and then returns to the hive to perform a dance
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to communicate information on the food source to recruit bees [42]. If the nectar level

decreases at the food source, the worker bees are informed of a better food source when

they all return to the hive and decode the dance. The scouting process and the need for

worker bees to return to the hive in order to be informed about a better food source can

incur a significant delay penalty with respect to accessing a better food source. Thus, the

honeybee food selection process would be inefficient when the quality of each flower type

changes rapidly and unpredictably over time. Similarly, ant colony behavior is based on

the tracking of pheromones that primer ants have deposited [43]. Although ant colonies

are very efficient with respect to routing, scheduling, and organization, this mechanism also

cannot deal with highly time-varying environments.

As an alternative to colony behavior, reinforcement learning (RL) mechanisms have

been presented in the existing literature [44, 45]. Genetic algorithms provide a reliable

optimization technique but at the expense of a large computational latency with respect

to the convergence to the optimum value [46]. Partial swarm optimization is a very fast

optimization technique since it jointly solves the fitness function based on a multi-objective

formulation [47]. However, it is highly dependent on the initial information about the

swarm structure, which is not realistic for connected vehicle networks. Bumblebee foraging

behavior is mainly based on individual decision mechanisms, hence it is well-suited for

applications where decision-making is performed independently. Since there is no need

to access any centralized system or wait for information from others, the decision and

adaptation to change can occur as rapidly as their highly efficient neural processing system

allows.

Similarly, if bumblebees sample available species in a varying floral environment too

infrequently, they may be delayed in switching to a more rewarding floral species should

it become available. In other words, the tradeoff between latency versus reliability is mir-

rored with respect to the bumblebees in terms of sampling frequency versus choice accuracy.

Switching cost/time between channels should be considered although switching operations

provide the access to the channel with higher quality. Similarly, bumblebees switch to

the floral species with the highest nectar returns in order to gain more energy. However,

they can also incur a significant time cost when switching from one floral species to an-
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other. Channel activity over time helps to understand channel behavior as well as design

a prediction mechanism. Similarly, bees alter foraging decisions based on the number of

bees within and across floral species, often showing an Ideal Free Distribution [48]. We

detail specific components of the bumblebee system leveraged to create a vehicular channel

selection algorithm below.

2.2 Bumblebee-Based Channel Selection

The technical challenges resulting from the severe dynamic characteristics of the ve-

hicular networking environment makes it difficult to employ DSA via conventional ap-

proaches [49]. This is especially true when channel sensing parameters such as the noise

floor, propagation fading, and interference are time-varying. We explore how a DSA frame-

work for distributed Vehicle-to-Vehicle (V2V) networks can be based on adaptive behavioral

responses of animals that must survive under similar complex and highly varying resource

conditions in their natural habitat. In particular, we focus on bumblebee foragers since they

have evolved cognitive abilities that enable them to make adaptive behavioral decisions un-

der such conditions based on individually acquired information. Using the bumblebee model,

an efficient channel sensing and selection system has been developed that can rapidly and

adaptively respond to changes in multichannel environments. The key component of this

system is channel memory, which enables more accurate estimates of available channel qual-

ity to determine the optimum point to switch to better quality channel. Mapping of stored

information on channel quality using “Mean” strategy (i.e., past information on each chan-

nel gained through sampling is averaged and then used to make the decision on the channel

with the best quality).

2.2.1 General Overview

Section 2.2 describes the bumblebee-based optimal channel selection in details. We start

by giving the general overview of the bumblebee algorithm and discuss how bees sample

the flora species and optimizes the nectar reward. Figure 2.1 describes the mapping of

bumblebee foraging on different floral species and vehicles sampling different channels. The
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bumblebee algorithm operates in two modes.

1. Sampling : During the sampling interval, the radio collects stats like signal to noise

interference ratio (SINR) and channel busy ratio (CBR), which are fed to the channel

switching decision system.

2. Transmission: During the transmission interval, the vehicle initiates channel switch

announcement (CSA) and starts transmitting packets, while simultaneously monitor-

ing the current channel. If the SINR drops below a certain threshold, it switches to a

new channel based on the quality.

To leverage the potential of bumblebee foraging behavior [50] in connected vehicle envi-

ronments, we translated evolutionarily optimized [51] memory-mediated bumblebee foraging

strategies to a DSA decisionmaking algorithm for connected vehicle networks. One of the

major challenges faced by vehicles in a connected network environment is that they must

accurately estimate channel quality from power levels that significantly vary over both time

and space. The incorporation of an individual memory component into the algorithm design

overcomes this challenge by enabling individual vehicles to derive estimates of local channel

quality, which could then be shared throughout the vehicular network. Equipping vehicles

with an unlimited memory capacity would provide the most accurate estimate of channel

quality. However, unlimited memory would also generate additional costs, e.g., information

processing speed and time lag in reacting to environmental changes. Thus, determination of

an optimal decision-making strategy requires consideration of memory capacity, dynamics,

and associated costs. Bumblebees face identical constraints in choosing the optimal foraging

strategy in variable floral environments. They first start by sampling different floral species

and collect nectar reward information. The nectar reward values per floral species are stored

in their memory during, sampling interval, and the flower type with highest nectar reward

is selected. The bumblebees then start collecting nectar and take it back to the hive. If

the current floral species nectar reward drops below some threshold, they switch to a new

floral species. The threshold is determined by the next best floral species and the switching

cost, since switching from one floral species to another can incur search and handle time

penalties.
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We have modeled this bumblebee behavior to select optimal channels for V2V commu-

nication. We initialize the bumblebee algorithm by defining a set of opportunistic channels

in the dedicated memory of the vehicle [23]. During the initialization phase channel quality

is not available, so a random channel is selected for V2V. During the sampling interval, the

vehicles sample the channels and collect spectrum sensing data. The energy values collected

are then converted to the channel rewards and stored in the memory. In the transmission

interval, each vehicle selects the channel with the best reward gain and starts the trans-

mission. During transmission, the vehicle keeps monitoring the channel reward level. If

the level drops below a certain range, the vehicle switches to another channel provided the

switching cost is not too high. After the transmission interval, the vehicle initiates another

sampling interval where new sampling values are stored in the memory, and if a better

channel is available the vehicle switches to the new channel.

2.2.2 Channel Occupancy Characteristics and Theory

The channel occupancy ratio (COR) quantifies the channel usage across time. For

example, channel A has a COR of 90%, it means the channel was occupied most of the

time and can be avoided for spectrum access. If channels with high COR are selected, they

can lead to interference and packet collissions, leading to low throughput and worse latency

performance. In Figures 2.2, 2.3, and 2.4, we see the channel spectral map with respect to

time. Figure 2.2 describes the broadband personal communications service (PCS) and it

is a FCC-licensded frequency band near 1.9 GHz. This band currently support frequency

divison duplexing (FDD) and is used by cellular phone service providers to enhance LTE

coverage in the congested regions. In Figure 2.3, a channel characterization of GSM band

was performed in order to assess its performance for DSA. These bands will reallocated

for narrowband operations or NB-IOT, which was introducted in LTE Release 13 and can

support low throughput internet of things (IoT) devices.

Channel characteristics change stochastically with interference from incumbent or other

secondary users. Our memory-based bumblebee algorithm can help improve channel se-

lection performance by making switching decisions using past energy samples from the

channels. We conducted the channel characterization study for Personal Communications
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Figure 2.2: Fixed time snapshot of power spectral density of PCS band shows the vacant

and occupied channels in that band [23].

Service (PCS) [52], Global System for Mobile Communications (GSM) [53], and lower Long

Term Evolution (LTE) [54] bands using USRP N210 [55] software-defined radio in an indoor

laboratory environment. The Figure 2.5, 2.3, 2.4 show the snapshot of the power spectral

density of PCS, GSM and lower LTE band respectively.

Figure 2.5 shows the occupancy of PCS band through a 30 minutes period. The bands

from 1950 – 1980 have very high occupancy around 100%, while the other bands are very

underutilized or completely vacant. These bands can be used for vehicular communication

using DSA, and their occupancy can be stored in the memory to help avoid the occupied

channels during busy intervals (when channels are being used). Without loss of generality,

we will employ digital television (DTV) spectrum for this DSA-based vehicular architecture,

known as vehicular dynamic spectrum access or VDSA, since the primary users of this band

are relatively stable [7] when compared to other wireless frequency bands. Vehicles within

the vicinity individually detect available channels for unlicensed users. The spectrum is
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Figure 2.3: Fixed Time Snapshot of Power spectral density of GSM band shows the vacant

and occupied channels in that band [23].

sensed based on a mechanism that detects energy levels for each channel. The channel

model considers all entities specific to a vehicular environment such as multipath fading,

Doppler shift, and, scattering, which can be mathematically expressed as [56]:

h(τ, t) =
P−1∑
k=0

hk(t)e
−j2πfcτk(t)δ[τ − τk(t)], (2.1)

where τ is the path delay, t is time variable, hk(t) is channel envelope, and fc is the carrier

frequency. Using the channel impulse response, the detection problems can be formulated

as an M -ary hypothesis test; in this case the spectrum sensing performs a binary hypothesis

test as follows: 
H0 :y(t) = nr,

H1 :y(t) =

∫ ∞
−∞

h(τ, t)x(t− τ)dx+ nr
(2.2)

Once the SU vehicles occupy the available channel, H0, they need to periodically check

whether they may switch to a better channel. The key parameter associated with the

channel switching decision is the switching cost, which determines whether the vehicles
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Figure 2.4: Fixed Time Snapshot of Power spectral density of lower LTE band shows the

vacant channels in the band [23].

should continue to use the same channel or search for another. For example, if a vehicle

switches from channel A to channel B for better reward but does not take into consideration

the switching cost, it may actually have less throughput because, due to the lag in switching,

the vehicle didn’t use any channel for the switching duration. Also the channel it switched

to might only be slightly better than status quo. To counter this issue, we take switching

cost into consideration when maximizing the channel reward for vehicles. We cannot use

a fixed value for switching cost, because a fixed value does not work for a highly dynamic

connected vehicle environment. For example, the noise level may be low while the vehicle

drives across a highway during one time step, but then be high when the vehicle enters an

urban area during the next time step. In this example, switching to another channel may

not be the best decision since all of the channels could potentially be noisy.

We can overcome this issue by employing our bumblebee based algorithm which is suit-

able for a highly time-variant channel environment. For the bumblebee algorithm we first
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Figure 2.5: Percentage Occupancy of the PCS band during 30 minutes period from 1850–

1990 MHz bandwidth [23].

derive the channel reward function r(t) using the energy values of the channels. The channel

reward function r(t) is given by:

r(t) = |min(Ê)|−|Ê|, (2.3)

where |min(Ê)| is the noise floor of the vehicular radio and |Ê| is the energy value of

the channels used in DSA. Thus, the higher the channel reward better the channel qual-

ity. The channel reward function can be made more sophisticated to depend on the radio

characteristics and environment. Eq. (2.4) describe the memoryless bumblebee algorithm:

Switching

Decision
=

 rc ≤ (rn − sn), “Switch”

else , “Stay”
(2.4)

where rc is the current channel reward, rn is the new channel reward and s is the switch

cost for the new channel. The switching cost s in this work is described in terms of reward
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(% of reward value rc) to reduce the complexity. The switching cost will vary depending

on the cognitive radio characteristics and channel environment.

2.3 Vehicular Dynamic Spectrum Access

Focusing on vehicular ad-hoc networks (VANETs), there has been extensive research

on the application of channel selection techniques based on natural models. For example,

in [38], artificial bee colony (ABC) optimization algorithm has been applied to VANETs

in order to overcome connectivity and signal fading issues. The authors in [39] employed

modified GA algorithms to optimize white space utilization in VANETs. The optimization

of routing protocol performance based on both particle swarm optimization (PSO) and ant-

colony optimization (ACO) in VANETs is discussed in [40]. However, quantitative analyses

on the bounds of these approaches have been noticeably absent. Most of the research into

bio-inspired optimization techniques has been presented with a problem-specific approach.

To the best of the authors’ knowledge, no one has yet investigated quantitative performance

bounds at the vehicular level. In this dissertation, we leverage the concept of queuing

theory in order to conduct a performance bound analysis of bumblebee-inspired distributed

optimization operation in vehicle-to-vehicle (V2V) environments.

2.3.1 802.11p and C-V2X-based VANETs

Connecting vehicles by leveraging wireless communication and networking solutions has

been studied intensively in the past, especially with respect to Vehicle-to-Vehicle (V2V)

and Vehicle-to-Infrastructure [57]. IEEE 802.11p Dedicated Short-Range Communications

(DSRC)/Wireless Access in Vehicular Environments (WAVE) [58] standard was the first

framework designed to meet demands of Vehicular Network (VANET). Although 802.11p

was a good starting point, the standard has some obvious shortcomings, includin low relia-

bility, hidden node problem, unbounded delay, and sporadic Vehicle-to-Infrastructure (V2I)

connectivity [59, 60]. 3GPP Long Term Evolution (LTE) has been proposed to mitigate

some of the drawbacks of 802.11p with LTE Release 15, whose main focus is on low latency

for vehicular communication [61]. C-V2X, which uses LTE infrastructure for vehicular com-
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munication, is now seen as a mainstream contender for future connected cars. The primary

driving force for C-V2X is the LTE back-haul network, which can directly be ported for

vehicular communication without spending billions on setting up the entirely new infras-

tructure. Studies are now being conducted to evaluate the feasibility of LTE for vehicular

networks.

Figure 2.6: CBR β variation with cars arriving and departing the transmission range of the

platoon vehicles. Different channels have different β values based on the channel utilization.

Non-uniform channel sampling is performed by the platoon in order to find optimal channel

from L channels with least β. There are total N sampling periods which are distributed

across the channels to optimize the sampling resources [28].
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2.3.2 Platooning-based VDSA

Coordinated movement of a vehicle formation, known as platooning, is one prospective

application of emerging autonomous driving technology, in which a group of self-driving

cars and/or trucks forms a convoy, lead by a single vehicle [62]. Figure 2.6 describes the

platoon-based V2V communication system (in green). The vehicle in the front acts a master

vehicle (an AP) and selects the operating channel or primary channel, while other vehicles

follow the master as STA. For operations of autonomous driving, e.g., using Cooperative

Adaptive Cruise Control (CACC) [63], wireless communications can be used to exchange

control information within the platoon. Data exchange within the vehicular network, such

as within a platoon formation, can be realized with using short-range wireless communica-

tion schemes, such as Dedicated Short-Range Communications (DSRC). However, various

studies have show that solutions based on the IEEE 802.11p and Wireless Access in Vehicu-

lar Environment (WAVE) standards are susceptible to medium congestion when the number

of communicating cars is large [64] . An alternative approach to remedy this issue is to

offload traffic to other frequency bands, such as underutilized television channels (known

as TV White Spaces (TVWS) [65,66]); this concept is called Vehicular Dynamic Spectrum

Access (VDSA) [67]. Fixed locations and relatively stable transmission parameters of Digi-

tal Terrestrial Television (DTT) transmitters provide attractive spectrum opportunities in

TVWS that can be reused for vehicular communications. In order to employ the VDSA

framework for Vehicle-to-Vehicle (V2V) networks, the allocation of channels to the primary

users (i.e., DTT transmitters) and the associated power levels for the areas of interest should

be known. Optimal allocation be achieved using infrastructure support such as dedicated

databases, although in some areas these may be unavailable.

An alternative approach is to apply VDSA in a distributed manner, where each vehicle

or group of vehicles (e.g., platoon) selects a transmission channel based on spectrum sensing.

This approach has been proposed in [68], which relies on the behavioral model of bumblebee

foragers to provide efficient channel sensing and selection. We investigate the idea of partial

intra-platoon traffic offloading from the Control Channel (CCH) in congested 5.9 GHz

band to TVWS using the VDSA framework. Furthermore, we adopt the bumblebee-based
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algorithm from [68] to dynamically select the transmission channel in TVWS in a distributed

manner. We assume that all platoon vehicles perform spectrum sensing and share the

results with the platoon leader, which is responsible for the selection of the transmission

band. Furthermore, we evaluate the proposed distributed VDSA framework using computer

simulations aided with realistic DTT signal power obtained from measurements described

in [69].

2.4 Chapter Summary

In this chapter, we discussed bumblebee behavioral models and vehicular dynamic spec-

trum access in detail. Foraging theory, which forms the foundation for bumblebee-based

channel selection, also was discussed in detail. We also covered VDSA and the current chal-

lenges faced by spectrum sensing technologies, and how the proposed bumblebee algorithm

can help in overcoming these issues. We also covered vehicular access technologies such as

IEEE 802.11p and C-V2X. In the next chapter, we will examine the proposed bumblebee-

based channel access scheme in detail and present the results comparing the scheme against

baseline performance.
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Chapter 3

Proposed Bumblebee-based VDSA

Framework

This chapter presents a novel bumblebee VDSA algorithm which employs signal to

interference noise ratio (SINR) to make optimal channel switching decisions. The algorithm

employs a SINR-based objective function to compare the current channel performance and,

based on the output, either switches to a new channel or stays on the home channel [23].

The framework’s performance is evaluated using queuing theory in order to drive the upper

and lower bounds [25]. Afterwards, the algorithm is implemented on Pluto SDR for realistic

hardware performance statistics [26]. The bumblebee framework is also compared against

a centralized radio environment map (REM) by integrating it, within the medium access

control layer (MAC) of a system-level C++ V2V simulator in a platooning scenario [29].

3.1 Bumblebee-Based Switching Decision

Our proposed mechanism includes an individual memory structure to store the energy

levels of the channel during each energy detection period. In an interference-prone time-

varying environment, channel quality varies drastically across the spatial and temporal

domains. The proposed approach exploits memory to store the energy values of channels

across time and selects optimal channel based on past samples. Without memory, vehi-
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cles will frequently change channels based on environmental cues, leading to high switching

costs. The time a radio spends switching could have been utilized in transmission, thus

lowering throughput and channel utilization. With the help of memory, we can reduce the

computation load and eliminate inefficiencies of overzealous switching. Figure 3.1 gives

an overview of the proposed approach in a system-level block diagram. It illustrates the

bumblebee-inspired distributed optimization algorithm and the steps involved in the pro-

cess. In the first step, the bumblebee discovers a flower of a specific type (channel), and

depending on whether the flower type has been visited before or not the following decision

is made. If the flower type is new, we calculate its nectar amount and store it in memory.

Otherwise, we update the previous memory regarding the flower-type if the nectar level

has changed. Subsequently we compare the nectar level of the current flower-type with the

existing nectar rewards in the memory and based on the nectar value we harvest the nectar

and exit algorithm or we move onto new flower type. A time-varying stochastic channel also

poses the same problems in vehicular environment as a nectar distribution in flowers where

bumblebees forage. Because of the strong analogy between the two systems, we expect uti-

lizing bumblebee- inspired algorithms for autonomous vehicle channel selection to be highly

efficient. However, before utilizing the bumblebee model for optimization, we need to first

establish the bounds expected for efficiency via queuing theory.

Figure 3.1: Flowchart describing the bumblebee based distributed optimization algo-

rithm [25].

In the framework, we first initialize the model by assigning a random channel to the

vehicle. The vehicle (bumblebee) starts sampling the channels (floral species) from white

space DSA list and store the channel values in the memory. The channel with the high-
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est nectar reward (low interference) is selected and packet transmission is started (nectar

collection). In the meantime, the vehicle keeps monitoring the interference level of current

channel and if the quality drops it switches to another channel given the switching cost.

The algorithm 1 describes the memory based bumblebee algorithm in detail from imple-

mentation perspective in the vehicular communication framwork. The parameter M defines

the memory length, which depends on the sampling rate of the cognitive radio; N is the

total number of samples collected in sampling interval ts. In this work, we have kept the

sampling time ts = 200 ms fixed in all scenarios. It will be an interesting problem to see how

varying the sampling and transmission time affects the channel rewards of our bumblebee

algorithm, but it is out of the scope of the dissertation. For the simulation we have set the

memory length to 5N , 10N , 15N and 20N ; T is the total simulation time, r is the reward

values of the channel, C is the set consisting of all channels used in the simulation, s gives

the switching cost and finally V is the total number of vehicles. We initialize our bumblebee

model by assigning random channels to the vehicles and setting the memory length to l.

We then perform the computation for each time step. Discrete time steps approximate the

continuous real-time variation of the channel energies. As explained in Section 2.2, there

are two modes in the algorithm: sampling and, transmission. We start each iteration with

a sampling interval and we compute the energy values, map it to reward r, and select best

channel for each vehicle vi. In the transmission interval, we start using the channel while

simultaneously monitor the current channel reward values. If the current channel reward

value drops lower than those in the memory, we switch to the new channel if the switching

cost is low enough or else stay on the same channel. The parameter rnew is the reward

value for the new channel, we consider all the channels in the memory when making the

switching decision. For each time step iteration we have sampling and transmission inter-

vals. During the sampling interval we sample all the channels and add new values to the

memory. Depending on the memory length, we flush out the old values and keep inserting

the new values in First-in-First-Out (FIFO) fashion.

Methods such as genetic algorithm (GA) [70] and particle swarm optimization (PSO) [71]

are able to converge to the optimal solution without relying on social interaction. However,

the convergence time is much longer than the coherence time. Hence, these algorithms
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Algorithm 1 Memory Based Bumblebee Algorithm

1: procedure BumblebeeAlgorithm(M , r, T , C, V ,s)

2: Initialize:

vi ∈ rand{C}

M = l
3: for t = 1 to T do

4: Sampling Interval :

5: Compute Energy values E ∈ {C}

6: Map to reward r ∈ {C}

7: Select best {C} at t for vi

8: Transmission Interval:

9: Start the packet transmission

10: Monitor vi ∈ {C} for vi ∈ V

11: if ri < (rnew − s) then

12: Switch to the new Channel

13: else

14: Stay on the same channel

15: end if

16: end for

17: end procedure

18: procedure ChannelReward(E, C, T , V )

19: for t = 1 to T do

20: while c = 1 to C do

21: r(t, c) = |min(Ê)|−|Ê|

22: end while

23: V ← r(t)

24: end for

25: end procedure
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cannot be implemented for realistic V2V scenarios. We have analyzed the performance of

the propsed bumblebee framwork using the adaptive behavioral response mechanism in the

GEMV2 Vehicle-to-Vehicle (V2V) propagation simulator via MATLAB [72]. GEMV2 is a

computationally efficient propagation model for V2V communications, which accounts for

the surrounding objects. The model considers different V2V link types (LOS, non-LOS due

to static objects, non-LOS due to vehicles) depending on the LOS conditions between the

transmitter and the receiver in order to deterministically calculate large-scale signal varia-

tions [73, 74]. Additionally, GEMV2 determines small-scale signal variations stochastically

using a simple geometry-based model that takes into account the surrounding static and

mobile objects (specifically, their number and size). We use Simulation of Urban Mobility

(SUMO) [75] to generate the traffic data since it allows generation of different scenarios

such as different environments (e.g., urban, suburban, highway) and traffic densities (e.g.,

high-density, low-density, changing density). The channel sensing algorithm is performed

for DTV frequency band at 700 MHz.

Figure 3.2: Normalized squared magnitude of the channel impulse response: t refers to the

time variation on a channel. Three representative channels are visualized to indicate the

environment changes over time [23].

The resulting channel characteristic is shown in Figure 3.2. Vehicles switch between
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channels in order to find the most powerful available channel of a given time instant. The

adaptive behavioral response mechanism is needed to decide whether the channel is worth

switching to despite the switching cost. The individual memory helps provide a solid deci-

sions on channel switching. For example, a vehicle chooses to be on Channel 42, if available,

by using its individual memory since Channel 42 is more powerful based on its long term

behavior. Therefore, unwanted switching cost, which is caused by instantaneous decisions,

will be avoided.

3.2 Capacity Bounds using Queuing Theory

Queuing theory has often been used to model multiple access schemes or transmission

delay in communication systems, and for determining the performance bounds for vehicular

communication system [7, 76]. Previous work has been conducted on the application of

queuing analysis to cognitive radio systems [77–79]. The authors in [76] proposed a pri-

ority virtual queue interface at each unlicensed user in order to abstract the multimedia

user’s interactions and proposed a channel selection strategy. The queuing model intro-

duced in [77] analyzes the performance of a cognitive radio link subject to recurrent failures

and interruptions. The authors also incorporated network models with single or multiple

channels. From the perspective of unlicensed users, the activity of incumbent users can

be regarded as a server breakdown. Queuing models with server interruptions have been

widely studied in the literature. In [7] queuing theory was used to analyze the performance

of VDSA in vacant UHF TV channels from 470 – 698 MHz (channels 14 through 51) where

they carried out a measurement campaign along I-90 highway in Massachusetts to collect

data for analysis.

For the scenario being addressed in this dissertation, namely high- speed ground vehicles

performing dynamic spectrum access across stochastic time-varying vacant TV channels,

we propose a queuing model consisting of multiple server and same priority class . This

scenario can be formulated as an opportunistic multiple access problem [80]. We assume

a transmission range of 500 m for each consumer vehicle, the same as the transmission

range defined in the DSRC standard [81]. The vehicular channel connections are treated
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as an M/M/S queuing system due to the time-varying nature of the environment. The

arrival process is assumed as Poisson with arrival rate λ, and the inter-arrival times are

exponentially distributed with mean 1/λ. The service times of the servers are also assumed

to be exponentially distributed with mean 1/µ. The wireless channels/servers S are assumed

to be providing service independently of each other. The first-in first-out (FIFO) queuing

discipline is adopted to maintain the same priority for all the vehicles. The traffic intensity

ρ which depends on the number of vehicles N , λ, µ, and ,number of servers S is given by:

ρ =
Nλ

Sµ
. (3.1)

The probability that there are no jobs in service in such a system, is given by [80]:

P0 =

[ S−1∑
k=0

(Sρ)k

k!
+

(Sρ)S

S! (1− ρ)

]−1

, (3.2)

while the probability that all servers are busy, also referred to as Erlang-C Pm is given

by:

Pm =
(Sρ)S

S! (1− ρ)
P0. (3.3)

Thus, the probability of having at least one vacant UHF-TV channel is given by 1−Pm

. For M/M/S queuing model, the mean waiting time TW is given by [82]

TW =
ρ

λ(1− ρ)
Pm. (3.4)

The expected mean response time TR , which describes the mean amount of time spent

by each job in the queue, is expressed as:

TR =
1

µ
+ TW =

1

µ

(
1 +

Pm
S(1− ρ)

)
. (3.5)

For S channels/servers the optimal number of vehicles which can sustain the communi-

cation without breaking the connection, with each vehicle requesting data with a packet-rate

λ and 1-λ of the requested packets will be served within time t is given by [83]:

N <

µtS − log(
Pm
γ

)

λt
. (3.6)
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Figure 3.3: Total vehicles supported with optimal communication between the vehicles [25].

Eq. (3.6) shows that the number of vehicles N should be less than the bound to achieve

optimum performance. The Figure 3.3 shows the relationship between the number of vehi-

cles and packet rate with fixed number of channels.

3.2.1 Numerical Simulation Results

In Figure 3.4 we compare the switching cost between highway and urban environments.

The highway scenario as- sumes sparse traffic conditions (12 vehicles/km2), while the urban

scenario assumes dense traffic conditions (150 vehicles/km2 ). We assume a random channel

switching for both scenarios where vehicles decides to switch to another channel during each

time-step without any switching decision. The urban scenario has a very high switching

cost due to the highly stochastic nature of the environment. This highly time- variant urban

scenario is similar to the bumblebee foraging environment, where the nectar reward (noise

in the channel) varies rapidly, requiring the bumblebee to respond quickly. Thus, we expect

that applying the bumblebee-based distributed optimization algorithm will greatly reduce

switching cost by selecting the channel based on past experiences.
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Figure 3.5 shows the average number of cars per square kilometer simulated in GEMV

2 using SUMO. To estimate the bounds in a dense urban environment an average of 100

vehicles are used entering and leaving the downtown Worcester area. The figure shows how

the vehicles change each time-step around the area and later gradually exit it. In Figure 3.6,

the probability Pm of all servers being busy is shown for the Worcester area. The figure is

generated using 10 servers and two different packet rates λ are used. For λ = 10, we have

excellent Pm depending on the number of vehicles. But as the packet rate is increased, the

system’s performance begins to degrade. Finally, the mean response time is provided in

Figure 3.7 for both packet rates, and as expected we see the increase in mean response time

for higher packet rate.
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Figure 3.4: Comparison of Switching Cost in highway and urban environment. The high

switching cost in the urban scenario implies the high amount of channel switching which

results from highly time-variant channel [25].
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Figure 3.5: Average number of cars per square kilometer simulated in GEMV2 in Worcester,

MA [25].

3.3 System-Level Simulation Results

We have analyzed the performance of a DSA-based VANET using the adaptive behav-

ioral response mechanism in the GEMV2 Vehicle-to-Vehicle (V2V) propagation simulator

via MATLAB [84]. The channel sensing algorithm is performed for DTV frequency band

at 700 MHz.

3.3.1 GEMV 2 and SUMO

In Figure 3.8 we compare the memoryless bumblebee algorithm with random chan-

nel selection. In random channel selection vehicles select random channels at each time

step and stay on the channel until the connection is lost. The bumblebee framework

compares the current channel reward with other channels and switches if it is beneficial

after taking into account the switching cost. For the highway scenario, sparse traffic con-

ditions, 12 vehicles/km2 is simulated, whereas for urban traffic conditions we consider
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Figure 3.6: The Probability (Pm) of all channel being busy observed by the vehicles during

the discrete time-step emulating the real-world environment [25].

150 vehicles/km2. The number of randomly moving vehicles increases at each time step

from 0 to 800 vehicles for urban scenario, whereas for the highway scenario vehicles increase

from 0 to 180. We see a huge increase in the mean channel reward for both urban and

highway scenario at each time step.

For highly dynamic channel environments, the energy will vary instantaneously, and

without memory, vehicles cannot efficiently make a switching decision. For a memoryless

model, any channel switching is based on current time step data, and for highly time-variant

channel environment, it does not perform efficiently. In Figure 3.9 we compare the channel

reward for various switching cost under memoryless bumblebee model. It is evident from the

plots that as the penalty increases, the channel reward starts decreasing. As we discussed

earlier, the switching cost depends on the environment and cognitive radio characteristics,

and the channel reward will vary with the switching cost. For example, a better cognitive

radio will be able to switch to a new channel faster, and hence it will have low switching

cost.
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Figure 3.7: The predicted Mean Response Time (TR) for vehicles performing VDSA in a

simulated real-time environment [25].

In Figure 3.10 we compare our memory-based bumblebee algorithm using two different

memory strategies under both urban and highway scenarios. In the ”Max” memory strategy

we select the best channel reward from the past samples in the memory and compare it with

the current channel reward to make our switching decision. If the new channel has better

reward after taking switching cost into consideration then we switch to the new channel.

Using the “Max” strategy we see a 40% improvement in urban environment as we increase

the memory length from M = 0 (memoryless) to M = 20N . In “Mean” strategy we take

the average of all the channel rewards in memory and compare our current channel reward

with the mean values. If the reward is larger after subtracting the switching cost s, then we

switch to the channel; otherwise we stay on the same channel. Since by averaging out the

channel rewards we can better estimate the channel quality over time, the ”Mean” strategy

outperforms “Max” strategy (by approximately 50% for highway scenario and 9% for urban)

If we increase the memory length from M = 0 to M = 20N using the “Mean” scheme, we
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Figure 3.8: Mean Channel Reward ¯r(t) comparison for bumblebee model and random chan-

nel selection in urban and highway scenario. Vehicles employing the bumblebee framework

tends to choose the channel with best reward and hence maximizes the overall channel

reward [23].

see an overall increase of 52% for urban and 37% for highway scenario. These results show

by utilizing memory we can improve the channel selection performance drastically and use

the channels efficiently.

3.3.2 Bumblebee-based Platooning VDSA

The performance of VDSA in TVWS frequencies for intra-platoon communications has

been evaluated using system-level simulations of the considered scenario. We used a sim-

ulation tool developed in C++. The duration of a single simulation represented a platoon

traveling a distance of 5 km over a time period of 140 s. The distributed VDSA framework

was applied with 5 adjacent DTT channels having center frequencies located at 490 MHz,

498 MHz, 506 MHz, 514 MHz, and 522 MHz. Since the IEEE 802.11p standard uses 10 MHz

bandwidth and the center frequencies for VDSA transmission are assumed to be equal to
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Figure 3.9: Mean Channel Reward for memoryless bumblebee model for different values of

switching cost. The switching cost is computed in terms of channel reward to make it more

generalize and independent of cognitive radio characteristics [23].

the DTT channel frequencies, the signals from neighbouring bands may partially overlap.

Moreover, the two edge bands, i.e., at 490 MHz and 522 MHz, are used by DTT trans-

mitters, hence strong inter-system interference is expected. We compared the performance

of a bumblebee-based VDSA framework with the reference system that used transmissions

operating only in the 5.9 GHz band or in TVWS frequencies but without channel switching

(a fixed channel at 506 MHz was used). For the bumblebee-based approaches, three switch-

ing cost values were considered: 0 dB (no cost), 3 dB, and 6 dB. One should also note that

for the TVWS band, the default IEEE 802.11p CSMA sensitivity threshold was increased

by 10 dB in order to reduce the impact of transceiver blocking by high DTT power levels.

One important performance indicator for intra-platoon communications is transmission

reliability, which can be represented by the ratio of successful receptions to the total number

of messages transmitted. It is assumed this indicator should be kept over 99% to enable safe
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Figure 3.10: Mean Channel Reward for highway and urban scenario for different memory

size with 95% Confidence Intervals. The channel reward increases by using higher memory

size for both urban and highway scenarios for the “Mean” strategy. Using the “Max”

method the performance increase is only significant for the urban scenario. In comparison

to memoryless system we see an increase of about 52% in M = 20N memory size for urban

scenario for “Mean” strategy [23].

autonomous platooning. Fulfilling this requirement, especially in the case of high density

traffic on motorways, might not be possible when only CCH is used. This conclusion is

supported by the results shown in Figure 3.11, which presents the successful reception rate

of packets transmitted by the platoon leader versus the vehicle position in the platoon. Em-

ploying intra-platoon communications at TVWS frequencies with additional CACC packets

improves the reception rate, especially for vehicles at the tail of the platoon, which is mainly

due to the lower messaging rate of CCH and the higher transmission range for TVWS. How-

ever, the reception probability is almost the same for all transmission configurations using

TVWS. The application of the bubmlebee-based algorithm does slightly improve the recep-
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tion rate for the vehicles at the tail of the platoon, but the observed difference is marginal.

Surprisingly, the best reception rate is observed with the additional cost of 6 dB applied

in switching procedure. Hence, one may conclude that high sensitivity to changes in the

observed energy results in the selection of poor frequency bands.
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Figure 3.11: Probability of successful reception of leaders’ packets [29].

Besides the reliability requirement, another factor affecting the performance of VDSA

is the introduced cost of changing the operating frequency for the entire platoon, which

requires additional lend of dissemination and coordination effort. Such cost depends on

the number of frequency switches performed by each platoon. We considered three con-

figurations with different expected rates of switching depending on the selected value of

the C parameter in the bumblebee-based algorithm; an example of selected frequencies for

different configurations shown in Fig. 3.12. When the platoons are sufficiently separated,

they both select the middle frequency band (i.e., 506 MHz) since the interference from the

DTT is the lowest. However, when the platoons are closing, their transmission in the same

band starts to affect the channel selection procedure and switching starts. Since no coordi-

nation between platoons is applied, it is observed that sometimes both platoons select the

same band (the one with the lowest energy), which does not improve the performance. An

additional factor (e.g., randomness) could be introduced to improve the channel selection

procedure.
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Figure 3.12: Example of frequency switching for two platoons moving in opposite directions

and different considered switching costs C. It can be observed that frequency band switching

occurs when the platoons are close to each other in the time interval of 60-80 s. Frequency

bands at 490 MHz and 522 MHz are rarely or never selected due to the presence of DVB-T

transmissions [29].

The average number of switches, representing the expected additional cost of VDSA, is

given in Table 3.1. The highest rate of changes is observed with the 3 dB cost, although

the difference with the case for no switching cost is small and may be caused by chance

variations, e.g., use of shadowing for DTT. With 6 dB cost, the switching rate is lower with

only significant changes in sensed energy having impact on new channel selection.

Table 3.1: Average number of frequency changes with bumblebee-based algorithm using

different switching costs.

Platoon 0 dB (no cost) 3 dB cost 6 dB cost

1 3.9 4.1 3.4

2 4.4 4.5 3.6

An important consideration of using the TVWS as a secondary system is not to cause the



Chapter 3 48

degradation of the DTT service. Therefore, we investigated the Signal-to-Interference (SIR)

levels of the DVB-T transmission observed at the locations of the respective DTT receivers

as the platoons move across the motorway. According to [85], the SIR value of 39.5 dB

should be kept in order to provide the required QoS of DTT. Fig. 3.13 presents the empirical

cumulative distribution of the SIR values of the primary system obtained in simulations for

the protected locations of DVB-T receivers. The results indicate that for every considered

strategy, the SIR levels are similar with a slightly better performance achieved using the

bumblebee-based algorithm assuming 6 dB cost. However, for both observed DTT bands,

a large number of collected SIR samples is below the required threshold. This indicates

that the bumblebee-based algorithm should be enhanced with the measures to protect the

primary users, e.g., by modifying the channel switching metric. Furthermore, the available

spectrum is probably also significantly narrow to effectively mitigate the interference to

DTT without any power control applied.

Figure 3.13: Cumulative distribution of SIR for the protected DTT receivers [29].
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3.4 Hardware Validation

Bumblebee foraging behavior is mainly based on individual decision mechanisms, making

it well-suited for applications where decision-making is performed independently [86]. Since

there is no need to access any centralized system or wait for information from others,

decision-making and adaptation to change can occur as rapidly as the local information

processing system allows. A time-varying stochastic channel also poses the same challenge

in a wireless environment as a nectar distribution in flowers where bumblebees forage. Due

to the similarities between the two systems, we found that bumblebee-inspired algorithms

for optimal channel selection in a time-varying noisy environment, were observed to be

highly efficient [87].

Algorithm 2 Memoryless Bumblebee Algorithm

1: procedure BumblebeeAlgorithm(r, T , C, N)

2: for t = 1 to T do

3: Sampling Interval :

4: Compute Energy values E ∈ {C}

5: Map to reward r ∈ {C}

6: Select best {C} at t for ni

7: Transmission Interval:

8: Start the packet transmission

9: end for

10: end procedure

11: procedure ChannelReward(E, C, T , N)

12: for t = 1 to T do

13: while c = 1 to C do

14: r(t, c) = min{Ê}

15: end while

16: N ← r(t)

17: end for

18: end procedure
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Figure 3.14: Layout of the laboratory where the experiment is conducted. The layout shows

the location of each individual radio node [26].

Figure 3.15: The experimental test-bed consisting of six Pluto-SDRs forming an Ad-Hoc

network. The experiment is conducted in a controlled laboratory environment [26].

Algorithm 2 describes the bumblebee channel selection algorithm in detail. The bum-

blebee framework is initiated by sampling the channels in the list and then mapping the
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energy values to the reward r(t), which is a linear function of the energy value E. The best

channel is selected based on the reward r(t) and it is assigned to the node N . The channel

reward function r(t) is given by:

r(t) = min{Ê}, (3.7)

where min{Ê} is the minimum energy value of the channels used in DSA at that time inter-

val. A more complex channel reward function can be used based on the radio characteristics

and the channel environment. However, we have used a simple channel reward mapping to

reduce the processing delay caused during the channel selection algorithm. Here T is the

total simulation time, C is the set consisting of all channels used in the ad-hoc network

test-bed, s is the the switching cost, and N is the total number of Pluto SDR units. The

test-bed is initiated by sampling the spectrum space for ts duration and then assigning the

channel to our radios based on the channel selection strategy. In this work, we have kept the

sampling time ts = 300 ms fixed for both bumblebee and random channel selection. For

the bumblebee-based channel selection, the radio nodes select the best channel out of avail-

able options for each cycle using channel energy values. In the case of the random channel

selection algorithm, the nodes randomly select a channel and start the packet transmission.

Both schemes are employed on similar radio networks for time duration T , and their packet

delivery ratio performance is compared. Eq. (4.25) describes the memoryless bumblebee

algorithm:

Switching

Decision
=

 rc ≤ (rn − sn), “Switch”,

otherwise , “Stay”
(3.8)

where rc is the current channel reward, rn is the new channel reward, and sn is the switch

cost for the new channel during the sampling time interval. The switching cost s in this work

is assumed in terms of channel energy values in order to reduce the test-bed implementation

complexity. The switching cost will vary depending on the cognitive radio characteristics

and channel environment. In our prototyping test-bed, the wireless spectrum is sensed

based on a mechanism that detects energy levels for each channel. The channel model

considers all entities specific to a vehicular environment such as multipath fading, doppler
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shift, and scattering, which can be mathematically expressed as [56]:

h(τ, t) =
P−1∑
k=0

hk(t)e
−j2πfcτk(t)δ[τ − τk(t)], (3.9)

where τ is the path delay, P is total number of paths, t is time variable, hk(t) is channel

envelope, δ is the channel impulse response, and fc is the carrier frequency. Using the

channel impulse response, the detection problems can be formulated as an M -ary hypothesis

test. In this case, the spectrum sensing performs the following a binary hypothesis test:
H0 :y(t) = nr,

H1 :y(t) =

∫ ∞
−∞

h(τ, t)x(t− τ)dx+ nr
(3.10)

where y(t) is the received signal and nr is the noise. Once the vehicles occupy a channel that

is available, such as H0, they need to periodically check to see whether they can potentially

switch to a better channel.

3.4.1 Adhoc Network Testbed

The experimental test-bed was implemented using the ADALM-Pluto SDR units with

each radio connected to a desktop computer running Ubuntu 16.04. The configuration and

measurements for the ad-hoc network were performed using MATLAB [88]. Figure 3.14

describes the layout of the laboratory where the experiment was conducted. In this experi-

ment, we utilized six Pluto SDRs to form a wireless ad-hoc network where four radios were

configured as receivers with each listening to a different channel. One node was used as a

transmitter, which employed the bumblebee framework to select the optimal channel and

used it for packet transmission. We configured another radio to be an interference node

whose role was to select channels randomly. The interference node was added in order to

test the performance of the bumblebee framework in a interference-prone environment.

Figure 3.15 shows the experimental setup we used in our work to evaluate the perfor-

mance of bumblebee algorithm. In order to experimentally determine the channel selection

performance of the bumblebee framework, we conducted measurements up to ten minutes

for different packet sizes. Each trial was conducted three times in order to get an average
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estimate of packet delivery ratio (PDR) for each packet size. For the bumblebee frame-

work, we first start by sampling the channels in the list and select the channel with the

lowest energy at that time instant. The radio starts the packet transmission on the selected

channel for 60 seconds, whereupon it re-samples the channels and switches channels based

on the switching cost. Switching channels for every sampling interval based on channel

information may sound rewarding with an ideal radio. Without any channel switching de-

lay, as well as timing or frequency correction delay, selecting a channel with least energy is

the optimal choice. However, in the real-world we need to take the aforementioned delays

into consideration, which can severely affect the radio performance during frequent channel

switching. For example, using the ADALM-Pluto SDR takes about 300 ms to switch chan-

nels resulting in th eloss of approximately 10 packets of the size 800 bytes. Additionally,

it takes about 400–500 ms for the Phase-Locked Loop (PLL) implemented in MATLAB to

lock onto the signal to achieve accurate timing and frequency correction. Our bumblebee

channel selection algorithm takes this switching cost into consideration before making a

decision to switch to another channel. In this work, we implemented the switching cost

in a very simplistic manner in order to reduce the processing time and overhead delay for

making the switching decision.

We ran the same experiment for random channel selection wherein the transmitter selects

a random channel from a list and starts packet transmission. Random channel selection

does not sample the spectral environment, which results in a high frequency of collisions

with the interference node and incurring a high packet loss. In Figure 3.19, we can observe a

large difference in the PDR whilst comparing the two schemes. Severe packet loss is caused

due to the interference node and frequent channel switching. To evaluate the performance

of our channel selection algorithm, we first computed the channel sensing performance of

the energy detection. In this work, we used an adaptive threshold for the energy detection

scheme in order to efficiently determine the channel utilization. A fixed threshold can be

used in a static environment for accurate primary user (PU) detection but in a time-varying

noise environment it can lead to a high rate of false alarm and missed detection probabilities.

We compute the mean energy of all the channels in each time interval and then add a random

factor K to compute the final threshold. Consequently, the threshold changes dynamically
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Figure 3.16: Pd vs SNR for threshold factor K = 6, 8, 10, 12. As we increase K, the sensing

performance degrades due to large misdetections in the network [26].

with the environment and we can get an accurate estimate of the primary user. Figure 3.16

shows the probability of detection (Pd) vs SNR for the ED scheme for different K values. In

this work, we set the K value to 6 dB as that lead to the best detection probabilities. Lower

K values increase detection, but they also leads to an increase in false alarm probabilities.

We also tested the interference caused due to an increased number of nodes and how it

affects the packet failure rate. Two radios were configured in order to transmit and receive

packets continuously on single channel. The transmit power was kept fixed at 8 dBm,

while the receiver gain was changed to generate different Signal-to-Noise Ratio (SNR) data.

Initially, only the transmitter and receiver nodes were used to get the benchmark packet

failure rate (PFR) performance in the absence of any interference. An experiment was then

performed with four and six nodes; we observed that as the number of nodes increased,

the network performance degraded. The effect is more severe at low SNR values, where a

large amount of data packets are lost. Figure 3.17 shows the plot for PFR vs SNR as the
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Figure 3.17: Packet Failure Rate in an Ad-hoc network as the nodes are increased from

N = 2 to 6 for varying SNR [26].

number of nodes are increased from N = 2 to 6. Figure 3.18 describes the behavior of

the bumblebee framework in the presence of the interference node. The radio node avoids

the interference node to avoid the packet collisions based on the switching cost. If the cost

is high for the channel switching, then the bumblebee framework will stay on the same

channel. During the experimental run, channel 5 was being continuously used by the ISM

band users, which means it was never utilized by the radio node. Channel 2 was the most

rewarding during our simulation run, which was verified with the spectrum analyzer and is

evident by the bumblebee VDSA framework’s channel selection. Finally, we computed the

PDR for the ad-hoc network using the bumblebee and random channel selection scheme.

For each packet size, we performed the experiment for 10 minutes and ran it three times to

get the mean PDR performance. As the packet size was increased from 800 bytes to 1600

bytes we saw a decrease in PDR for both bumblebee and random channel selection. The

performance of random channel selection is severely affected by the interference node and
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Figure 3.18: Bumblebee algorithm switching from one channel to another avoiding the

interference node. During the entire experiment, radio running bumblebee algorithm stays

on channel 2, reducing switching cost [26].

frequent channel switching which causes additional packet loss. The bumblebee framework

on the other hand takes switching cost into consideration and avoid switching channels if

the reward is not worth it. Due to the relatively stationary laboratory environment, the

bumblebee framework used 902.55 MHz about 60% of the time. This reduced the need for

frequency switching and lead to a significant gain in bumblebee performance.

3.5 Chapter Summary

In this chapter, we presented the proposed bumblebee-based VDSA and compared it

against the random-access baseline. The performance bounds were evaluated using queu-

ing theory, consisting of multiple server and same priority class. The algorithm was also

implemented using Pluto software-defined radio and showed performance gain compared

to the random-access scheme, where RF parameters were kept same for both. Finally,
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Figure 3.19: PDR for bumblebee and random channel selection for different packet size.

Due to frequent channel switchings and large packet collisions with the interference node,

the random channel selection has a high packet loss. The variation of PDR for each packet

size was around 1%–2% in both bumblebee and random channel selection [26].

the distributed bumblebee algorithm was also compared against a centralized REM-based

architecture, where bumblebee algorithm achieved considerable gain in latency.
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Chapter 4

Memory-Enabled Bumblebee

Algorithm for Efficient Channel

Selection

In this chapter, we present the memory-enabled bumblebee algorithm with optimal chan-

nel sampling allocations for efficient channel selection. First, we introduce a heuristic to

utilize non-uniform sampling instants for optimally allocating resources. Instead of allocat-

ing sampling instances to all channels equally, the heuristic distributes sampling instances

to each channel based on the Channel Occupancy Ratio (COR). The performance is evalu-

ated using a C++ simulator in a platooning environment. Lastly, we consider sub-channel

selection in cellular V2X, where semi-persistent scheduling is modified to enable spectrum

access in DTV band.

4.1 MEBA for Platooning

A commonly used method for spectrum sensing is energy detection [8], which is simple

to implement and fast, and both of which are critical for V2V communications. While

the typical problem of energy detection is to obtain sufficient sensitivity in the presence of

noise, this is not the only important consideration for a V2V communications environment,
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where the primary challenge is bursty interference. Persistent interference can be assessed

via a single sweep of an energy detection process at each geographical location. However,

in case of bursty interference, a single sweep of an energy detection scheme can result in

the channel being detected as completely vacant or occupied at a single instant in time,

but this may not be the case at another time instant. The IEEE 802.11p standard for V2V

communications, which is considered in this work, employs bursty transmission that may

generate bursty interference for other users. Once spectrum sensing has been performed,

the platoon should find the optimal frequency channel in which to operate. The optimal

frequency channel is the one occupied for the lowest percentage of time, i.e., characterized

with the lowest Channel Busy Ratio (CBR). The CBR is also referred to by some authors

as Channel Occupancy Ratio or Duty Cycle. It is probability of an active transmission

in a given channel at a given time. Alternatively, the CBR can be defined as the ratio

of time when the channel is busy versus the total observation time [89]. The challenge is

how to reliably find the channel possessing the lowest CBR out of the considered set of

channels using a limited number of samples during a rapidly varying environment resulting

from vehicles movement. CBR estimation procedures are rarely discussed in the literature.

In [90], the authors focus on an optimization of the CBR estimation for weak signals that

are close to the noise floor. In particular, they consider the non-zero probabilities of false

alarm and miss detection. Unfortunately, the discussion was limited to a single channel

case and is not applicable to the multi-channel scenario considered in our research. Thus,

we concentrate on multi-channel CBR estimation while applying non-uniform allocation of

sampling instants among the channels. Additionally, we consider the effects of time-varying

CBR, which occurs in realistic V2V environment where vehicles employ VDSA.

4.1.1 Optimal Non-uniform Sampling Allocation

Consider a high-speed road consisting of four lanes, with two lanes devoted to each

direction. The cars exchange BSM messages via the IEEE 802.11p communication scheme

operating in the DTV band, as it is assumed that the nominal 5.9 GHz band is congested.

All the cars communicate over L frequency channels indexed by l = 1, ..., L. The traffic

generated by each car is – from the perspective of the platoon – random and of various
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intensity and duration. Therefore, each channel is characterized by Channel Busy Ratio

(CBR) denoted as βl ∈ 〈0, 1〉 for the l-th channel, which can be interpreted as the ratio

of time when the channel is busy to the total time of observation. In order to detect the

presence of other ongoing transmission, non-uniform channel sampling is performed; and

the sampling moments are depicted as red lines. The platoon aims to find the channel

with the lowest CBR (denoted as l̂) that allows for the highest reliability of intra-platoon

transmission:

l̂ = arg min
l

βl. (4.1)

It is possible that more than one channel will have the minimal value of βl. We denote

this set of optimal channel indices as O = {l̂|βl̂ = minl βl}. The complementary set of wrong

channel indices is denoted as W such that W∪O = {1, ..., L}. While βl is not known by the

vehicles, it has to be estimated using sensing. The cars perform periodic spectrum sensing

to find the most suitable channel to transmit. In our investigation, we chose an energy

detection with power threshold based on the Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA) scheme used in 802.11p [91] to detect signals that can block intra-

platoon communications. Various V2V communication protocols are able to operate under

significant interference, e.g., the required SINR level for the 802.11p transmission is 2 dB

for the most robust modulation and coding scheme (MCS) which is MCS 0. Therefore,

the platoon has to detect only the interference that is capable of blocking its transmission,

i.e., significantly above the signal noise floor. As such, we can safely ignore the non-

zero probability of false alarms, which is important for weak signal detection [90]. In the

simplest approach, the platoon, which is based on the available Nl sensing decisions for the

lth channel, estimates the βl value. The Maximal Likelihood (ML) estimator of βl is given

by:

β̂l =
kl
Nl
, (4.2)

where kl ∈ {0, ..., Nl} is the number of times the lth channel has been sensed as busy

over Nl sampling moments. While this estimator is consistent, i.e., converges to real βl

as Nl increases to infinity, in practice its accuracy is limited. This can be both a result

of finite number of sensing opportunities before the channel is selected, and the limited
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number of sensing results within a given time period due to the technical limitations of the

applied sensors (e.g., a sensor cannot sample more frequency channels as a result of high

frequency-switching latency).

Let us extend the above model to account for the increasing amount of platoon knowl-

edge. This knowledge is improved during each consecutive iteration, i.e., a selected time

period allowing for intra-platoon communications, performing of spectrum sensing and se-

lection of a new frequency channel to be used for communications. Each iteration, indexed

with (i), consists of limited total number of N sensing periods that can be carried over

all L frequency channels. At i-th iteration the platoon has to decide on the number of

sensing moments N
(i)
l assigned to each channel l ∈ {1, ...L} so that the total limit of N is

reached, i.e.,
∑L

l=1N
(i)
l = N . Observe that we assume the total number of sensing samples

N is fixed, e.g., as a result of the total number of cars in the platoon and the fixed iter-

ation duration. Without loss of generality, it can be assumed the first iteration is i = 1.

Based on the number of times channel l is detected as busy at iteration i, i.e., k
(i)
l , and the

prior knowledge obtained as a result of sensing in previous iterations, the estimate of βl is

obtained. Assuming a stationary βl, the ML estimator is specified as:

β̂
(i)
l =

∑
j≤i k

(j)
l∑

j≤iN
(j)
l

=
k̃

(i)
l

Ñ
(i)
l

, (4.3)

where k̃
(i)
l denotes the cumulative number of times the signal was detected, and Ñ

(i)
l is the

cumulative number of samplings done over all past and the current ith iteration.

The platoon switches its carrier frequency to the one of the lowest expected occupancy:

l̂ = arg min
l
β̂

(i)
l . (4.4)

The question is how to distribute N sampling moments among L channels in such a way that

probability of the optimal channel selection is maximized in each iteration. The discussion

on the optimal channel selection in the case of varying CBR values will be continued in

Section 4.3.1.
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Samples-to-Channel Allocation Strategies:

The simplest approach is to assign an equal number of sensing moments (referred from

now as equal allocation) to each channel:

N
(i)
l ≈

N

L
. (4.5)

The approximation sign is used as the number N
(i)
l has to be natural while the division of

N over L can result with a non-integer value. In such a case each channel will have assigned

bNL c samples and the remaining N−LbNL c
1 samples will be distributed randomly among all

L channels. However, after a few iterations if the estimated βl for some channels is relatively

low and very high for some others, the equal allocation could be not optimal. There is no

point in increasing the accuracy of CBR estimates for very busy channels, as these have

low probability of being selected as the optimal for V2V communications. The sampling

should then be increased for the channels with relatively low CBR value, as these are the

ones that may contain the optimal channel(s) for data transmission (i.e., the channels of

indices belonging to the set O).

Optimal Channel Sampling for A Priori Known CBR Values

This subsection focuses on the optimal allocation of samples among channels. The upper

bound of the probability of the optimal channel selection is calculated while adjusting

samples allocation, assuming the real βl values are known. In order to do so, first an

analytical formula for a tight Upper Bound (UB) and Lower Bound (LB) on the probability

of success will be derived. The probability of success, i.e., the selection of an optimal

channel, can be calculated for a given number of samples allocated till the ith iteration

to channel l, denoted as Ñ
(i)
l . Success is a random event that can be formally defined as

l̂ chosen using (4.4) belonging to O. The randomness is a result of β̂
(i)
l being a random

variable that depends on the random values of k
(j)
l and allocated N

(j)
l for j ≤ i according

to (4.3). The success will for sure happen every time when the minimal estimated CBR

value of any optimal channel, i.e., β̂
(i)
l for l ∈ O, will be smaller than minimal estimated

1The operation b·c represents the floor function, which outputs the greatest integer not greater than the

input argument.
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CBR for any wrong channel, i.e., β̂
(i)
l for l ∈W. This can be defined as:

Pr

{
min
l∈O

β̂
(i)
l < min

l∈W
β̂

(i)
l

}
≤ Pr

{
l̂ ∈ O

}
, (4.6)

where the left hand side constitutes a LB, and the right hand side forms the probability

of success. The above defined probability provides a lower bound for the total probability

of success, as it considers that for all the events when minl∈O β̂
(i)
l = minl∈W β̂

(i)
l the wrong

channel is selected. On the other hand, the upper bound of the probability of success can be

derived by counting all the events when minl∈O β̂
(i)
l = minl∈W β̂

(i)
l as success. This results

in:

Pr
{
l̂ ∈ O

}
≤ Pr

{
min
l∈O

β̂
(i)
l ≤ min

l∈W
β̂

(i)
l

}
. (4.7)

It is observed the right-hand side of the above formula can be partitioned into a sum of

probabilities, where the minimum estimated CBR for optimal channels will be lower than

the minimum for the wrong channels, and that both these minimums will be equal:

Pr

{
min
l∈O

β̂
(i)
l ≤ min

l∈W
β̂

(i)
l

}
= (4.8)

Pr

{
min
l∈O

β̂
(i)
l < min

l∈W
β̂

(i)
l

}
+ Pr

{
min
l∈O

β̂
(i)
l = min

l∈W
β̂

(i)
l

}
.

Let us define new random variables b(i) = minl∈O β̂
(i)
l and c(i) = minl∈W β̂

(i)
l . The

Cumulative Density Functions (CDFs) of b(i) and c(i) can be calculated assuming that β̂
(i)
l

values are independent among channels. This is a reasonable assumption, as for a given β̂
(i)
l

and N
(i)
l the number of times the signal is detected in channel k

(i)
l should be independent

from k
(i)
m for m 6= l (as a result of adjacent channels not overlapping in frequency). The

CDF of b(i) is denoted as Fb(i)(x) = Pr
{
b(i) ≤ x

}
. It is known that 1 − Pr

{
b(i) ≤ x

}
equals to Pr

{
b(i) > x

}
, i.e., probability that all ∀l∈Oβ̂

(i)
l are greater than x. Utilizing the

independence of the β̂
(i)
l random variables, with CDF denoted as F

β̂
(i)
l

(x) we obtain:

Fb(i)(x) = 1− Pr
{
b(i) > x

}
= 1−

∏
l∈O

Pr
{
β̂

(i)
l > x

}
= 1−

∏
l∈O

(
1− F

β̂
(i)
l

(x)
)
. (4.9)
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Following the same reasoning, the CDF for c(i) can be derived, yielding the expression:

Fc(i)(x) = 1−
∏
l∈W

(
1− F

β̂
(i)
l

(x)
)
. (4.10)

As the random variable β̂
(i)
l is, according to (4.3), a sum of binomial distributed random

variables k
(j)
l scaled by a given value Ñ

(i)
l , its CDF can be defined as:

F
β̂
(i)
l

(x) =

⌊
min(1,x)Ñ

(i)
l

⌋∑
q=0

(
Ñ

(i)
l

q

)
βql (1− βl)

Ñ
(i)
l −q. (4.11)

Recall that F
β̂
(i)
l

(x) is 0 for x < 0 and 1 for x > 1.

Knowing Fc(i)(x) and Fb(i)(x), the lower bound defined in (4.6) can be calculated. It is the

probability of all events when the random variable c(i) is greater than b(i). The probability

that a given random variable is greater than a given value is defined by a complementary

cumulative density function, i.e., 1−Fc(i)(x) for c(i). By the law of the total probability, the

probability of c(i) > x have to be added for all possible x values being values of a random

variable b(i) (for c(i) > b(i)), weighted by probabilities of b(i):

Pr
{
b(i) < c(i)

}
=

∫ 1

0
fb(i)(x) (1− Fc(i)(x)) dx, (4.12)

where fb(i)(x) is the Probability Density Function (PDF) of b(i). It is calculated using

differentiation operation as:

fb(i)(x) =
dFb(i)(x)

dx
. (4.13)

Observe that both b(i) and c(i) are specified in range 〈0, 1〉 that is reflected by the range

of integral. This probability can be calculated accurately using software tools as all these

distributions are for discrete variables (e.g., integration can be replaced with summation).

While the above formula gives the lower bound of the probability of success, the upper

bound requires additionally the probability that minimums of β̂
(i)
l for both the optimal and

wrong channel sets are equal, according to (4.8). This can be obtained by using PDFs of b(i)

and c(i), and, thanks to these events independence, integrate over all their possible values

as:

Pr
{
b(i) = c(i)

}
=

∫ 1

0
fb(i)(x)fc(i)(x)dx. (4.14)
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The PDF fc(i)(x) is calculated from Fc(i)(x) similarly as for the variable b(i) in (4.13).

The upper bound considers as a success all the events when: 1) the minimal estimated

CBR for the optimal channel is less than the minimal estimated CBR for a wrong channel,

and 2) the minimal estimated beta for both the optimal and wrong channel sets are equal.

To tighten the upper bound we focus on event 2). If this happens, the number of optimal

channels having the minimal estimated CBR value ranges from 1 to |O|, where |·| denotes

the cardinality of a set. This number can be denoted as a random variable qO ∈ {1, ..., |O|}.

Under the same condition, the number of wrong channels having the minimal estimated

CBR value ranges from 1 to |W| and is denoted as a random variable qW . We can assume

that selection of each of these qW + qO channels is equally probable while using (4.4). As

such, the conditional probability of success, i.e., considering the event 2) happens, equals

qO/(qO+qW ). Unfortunately, the probability derived in (4.14) does not differentiate between

various values of qO and qW . For each of these |W||O| events possibly different probability

is expected. However, the upper bound can be defined assuming the maximal value of

qO/(qO + qW ) factor for a non-empty set W, i.e., |O|/(|O|+1). The tightened upper bound

in respect to (4.7) can be defined as:

Pr
{
l̂ ∈ O

}
≤ Pr

{
b(i) < c(i)

}
+
|O|
|O|+1

Pr
{
b(i) = c(i)

}
. (4.15)

With the same reasoning, the lower bound (4.6) can be tightened, creating a new lower

bound, by considering not only all the events when b(i) < c(i) but also some part of events

when b(i) = c(i). It can be observed that for all the events when b(i) = c(i) the minimal

value of factor qO/(qO + qW ) is 1/(|W|+1). Therefore the improved lower bound is:

Pr
{
b(i)<c(i)

}
+

1

|W|+1
Pr
{
b(i) =c(i)

}
≤Pr

{̂
l ∈ O

}
. (4.16)

Finally, the lower and upper bounds to be used are defined by (4.16), and (4.15), respectively.

Probability of Success for Optimal Channel Sampling:

The previous section provided tight bounds for the probability of success in channel

selection, knowing the samples allocation for each channel Ñ
(i)
l as defined in (4.3), and

CBR βl. Now, the values of Ñ
(i)
l can be optimized in order to obtain the maximal possible
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probability of success. As the upper bound is being assessed, the usage of the upper bound

derived in the previous section is justified.

Let us first find global optimal solutions, i.e., what should be the total number of samples

taken in channel l over the current and all the previous iterations j ≤ i, i.e., Ñ
(i)
l , to

maximize probability of success in ith iteration. Every possible solution to this problem

can be represented as a L-tuple n(i) =
(
Ñ

(i)
1 , ..., Ñ

(i)
L

)
, for which each element is a natural

number. The number of all samples taken over all channels is iN , i.e.,
∑L

l=1 Ñ
(i)
l = iN . In

general, the total number of such combinations equals
(
L−1+iN
L−1

)
. However, it is reasonable

to assume that in the first iteration, before any knowledge about CBR of any of channels

is obtained, the equal allocation approach is used. As such, bNL c samples constitute a fixed

allocation of samples per each element of each possible tuple that is possibly increased

by any combination of iN − LbNL c samples distribution among L channels. There are(L−1+iN−LbN
L
c

L−1

)
possible allocations. These can be generated, e.g., using stars and bars

method, and will be denoted as a set N(i)
global. While the total number of possibilities rises

fast with the iteration index i and the number of samples allocated per iteration N , the

computational complexity of finding the global optimal solution can be significant.

The optimization problem is defined as:

n̂(i) = arg max
n(i)∈N(i)

global

Pr
{
b(i) < c(i)

}
+
|O|
|O|+1

Pr
{
b(i) = c(i)

}
, (4.17)

where n̂(i) is the optimal tuple of samples taken in each channel in i-th iteration. It is solved

by exhaustive search of the solution space, independently for each iteration i.

Iterative optimal solution: While the global method maximizes the probability of optimal

channel selection in ith iteration, its samples allocation does not consider how the samples

were allocated in previous iterations or the previous probability of success. As such this

upper bound can result, e.g., in the optimal cumulative number of samples allocated to

decrease over consecutive iterations, i.e., Ñ
(j)
l > Ñ

(i)
l for j < i. This is not possible in a

practical sensing system, when in each iteration a decision on samples distribution is made

and cannot be changed (the historical allocation) in the next iteration. In each iteration

only N samples can be allocated among L channels. Therefore, in i− th iteration (i > 1),

the solution space is defined as a set N(i)
iter of

(
L−1+N
L−1

)
L-tuples n

(i)
iter. Each element of this
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tuple is defined as N̂
(i−1)
l +N

(i)
l where N̂

(i−1)
l is the cumulative samples allocation Ñ

(i−1)
l

over all previous iterations, that has been decided as a result of optimization in the previous

iterations. The chosen allocation from i-th iteration over all channels, composed of elements

N̂
(i)
l , is denoted as a tuple n̂

(i)
iter.

In the case of the first iteration, bNL c samples are initially allocated to each channel. As

such only N − LbNL c samples have to be optimally allocated among L channels. In this

case, the solution space N(1)
iter is composed of

(L−1+N−LbN
L
c

L−1

)
tuples.

The optimization problem is defined as:

n̂
(i)
iter = arg max

n
(i)
iter∈N

(i)
iter

Pr
{
b(i)<c(i)

}
+
|O|
|O|+1

Pr
{
b(i) =c(i)

}
. (4.18)

Most importantly, in this case optimization has to be carried iteratively, each time increasing

i by 1, as the solution space N(i)
iter depends on n̂

(i−1)
iter , being the resultant samples allocation

in the previous iteration. The computational complexity of solving this problem is moderate

as the solution space N(i)
iter does not scale with the iteration index i, but depends only on the

total number of samples assigned per one iteration N , assuming a fixed number of observed

channels L.

While implementing the iterative solutions, it is important to consider that there might

be many optimal solutions, i.e., having the same upper bound of probability of success in

i-th iteration. However, depending on the choice in i-th iteration, the achievable upper

bound can vary in next iterations. The suggested solution is to evaluate in parallel all the

equally optimal solutions till some of them become better than others in the next iterations.

4.1.2 Analysis of Optimal Allocation and Proposal of Unequal Samples

Allocation

To observe how the optimal allocation differs from equal allocation, computer simula-

tions have been performed. The following arbitrary parameters have been selected: four

channels (L = 4) with β1 = 0.2, β2 = 0.35, β3 = 0.6 and β4 = 0.8. Samples distributions

were derived using both the iterative and global methods presented in Section 4.1.1. Both

upper and lower bounds for both optimal sampling methods are shown in Figure 4.1 for

N = 8. Both UB and LB are very close to each other and visibly overlap after the third
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iteration. As expected, the probability of optimal channel selection increases with a grow-

ing number of iterations. Simulation results are also presented, where in each case 100000

independent, random runs are performed to obtain sufficient statistical correctness. The

simulation result is bounded by the iterative optimal UB and LB; this is as a partial confir-

mation of the correctness of the derived bounds. However, this optimal samples allocation

approach is obtained knowing βi values. Without this knowledge, a standard solution is

equal allocation, meaning there are two new samples (for the considered case, when N = 8

and L = 4) obtained for each channel in each iteration. The equal allocation is visibly worse

than an optimal allocation, obtaining probability of best channel selection of 0.9 nearly 6

iterations after such a success probability is achieved for the optimal samples allocation.

Equivalently, the 0.9 probability of optimal channel selection will be achieved after 60%

more time for the equal allocation algorithm.
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Figure 4.1: Probability of optimal channel selection versus iteration for β1 = 0.2, β2 = 0.35,

β3 = 0.6, β4 = 0.8 and N = 8 [28].
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Figure 4.2: Cumulative number of sampling moments per channel (ch.) versus iteration for

β1 = 0.2, β2 = 0.35, β3 = 0.6, β4 = 0.8 and N = 8 [28].

Let us analyze the cumulative number of samples per channel taken for the optimal

allocation schemes. It is shown for the above defined set of parameters in Figure 4.2. Most

interestingly, it rises nearly linearly for each channel, both for iterative and global optimal

methods. However, the highest rise in number of samples is observed for the optimal channel

(ch. 1) and the wrong channel of the lowest CBR (ch. 2). After 20 iterations each of these

channels was sampled nearly 70 times (approximately 3.4 samples per iteration out of 8

available). At the same time, the third and fourth channels are sampled with approximately

0.8 and 0.35 samples per iteration, respectively. This result provides motivation to define

an unequal samples allocation heuristic:

N
(i)
l ≈

n
(i)
l∑L

q=1 n
(i)
q

N, (4.19)
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where:

n
(i)
l =


exp

(
γβ̂

(i−1)

l̃

)
for l = l̂

exp
(
γβ̂

(i−1)
l

)
elsewhere,

(4.20)

l̂ is obtained according to (4.4), l̃ is the channel index of the second-best estimated channel,

i.e., l̃ = arg minl∈{1,...,l̂−1,l̂+1,...,L} β̂
(i−1)
l and γ is a design parameter. The approximation in

(4.19) is required as the right-hand side values are not necessarily integers, and can require

rounding to obtain N
(i)
l summing up to N . The expected range for γ is from −∞ to 0.

While for γ = 0 an equal allocation is obtained, the lower the γ value, the higher portion

of samples are expected to be assigned to the channels of relatively low estimated CBR.

As an initial test, this heuristic is simulated for the system configuration as mentioned

above, and arbitrarily chosen γ = −4. The results are depicted in Figures 4.1 and 4.2. The

probability of the best channel selection is very close to the derived upper bound, delayed

approximately by a half of an iteration at the 0.9 probability level. At the same time, the

cumulative number of samples per channel, averaged over all simulation runs, resembles the

plots for global optimal solution.

To show that the proposed scheme works well even for sparsely sensed channels, the

number of samples available per each iteration is reduced to N = 6. The resultant proba-

bility of the best channel selection as a function of iteration is shown in Figure 4.3. First,

let us focus on the global and iterative UB and LB. The gap between the UB and LB is the

highest for the first iteration and equals about 0.13, but it rapidly decreases with increasing

iteration number. One interesting osbservation is the separation of iterative optimal bounds

and global optimal bounds between sixth iteration up to the twentieth iteration. While both

optimal solutions achieve probability of the best channel selection equally fast (around 0.8),

the iterative solutions apparently reach a plateau at this level. This behaviour is captured

by simulations, i.e., “iterative optimal” series. Interestingly, around the tenth iteration

the equal allocation strategy outperforms the iterative optimal solution. The greedy solu-

tion, i.e., the maximization of probability of the best channel selection in each iteration,

results in a temporal deadlock. Thus we conclude that there cannot exist a samples allo-

cation strategy that always achieves the global UB in all iterations for all possible system

configurations.
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Figure 4.3: Probability of optimal channel selection versus iteration for β1 = 0.2, β2 = 0.35,

β3 = 0.6, β4 = 0.8 and N = 6 [28].

From this perspective, it is positive that the proposed heuristic still performs well, close

to the global optimal solution for higher number of iterations. While the best channel is

selected with probability 0.9 after 12 iterations for the global optimal solution, the system

utilizing the proposed heuristic requires one more iteration. The same reliability is achieved

with equal sample allocation after 19 iterations.

A justification of the plateau in probability of the best channel selection can be found

by looking at the cumulative number of sampling moments per channel, given in Figure 4.4.

Until the tenth iteration in the iterative optimal solution, channel no. 1 is sampled only

once. In 80% of cases this results in the estimated CBR, i.e., β̂
(i)
1 , being equal to 0 as

β1 = 0.2. While the other, heavily sampled channels can achieve a zero-valued CBR with low

probability, the optimal channel is successfully selected in around 80% of cases. However, to

achieve the probability of optimal channel selection higher than 0.8, the first channel sensing
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Figure 4.4: Cumulative number of sampling moments per channel versus iteration for β1 =

0.2, β2 = 0.35, β3 = 0.6, β4 = 0.8 and N = 6 [28].

scheme has to be changed radically. It is visible between the fifth and sixth iteration for

global optimal solution when the cumulative number of samples for the first channel rises

from 1 to 13. At the same time, the number of samples drawn from the second channel

falls from 16 to 12. While this is globally optimal, it cannot be achieved with an iterative

solution that cannot decrease the number of cumulative past samples per channel while

proceeding with iterations. After the tenth iteration, the first channel starts to be sampled

the most often in the case of an iterative optimal solution (visible as the highest gradient of

values). Most importantly, the proposed heuristic approximates the global optimal solution

well after the sixth iteration. This result suggests it can be used to improve the probability

of optimal channel selection even for a limited number of samples per iteration N .
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The above discussion shows that the proposed heuristic works well in the two considered

system configurations, i.e., sets of βi, N , and L values. Consistency of this behavior should

be checked for another system configurations. Additionally, a recommendation regarding

choice of γ value should be provided. To do so, a set of 26 different N and L values

were considered. The focus was on systems where the numbers of available samples per

iteration is small, as this is the most challenging scenario for platooning using VDSA.

For each of these L and N configurations, 200 random βi sets (each of length L) were

chosen with βi ∈ {0, 0.1, ..., 1}. The limited set of possible CBR values mimics the discrete

character of CBR introduced by each vehicle transmitting in a given channel, and allows

faster convergence of the simulations. Finally, for a given set of N , L and βi parameters

100000 random runs were carried out to obtain the probability of optimal channel selection

as a function of iteration index, i.e., results similar to the ones presented in Figure 4.3.

For the equal sampling and unequal sampling with γ ∈ {−1,−2,−4,−8,−16} the itera-

tion at which the probability of optimal channel selection reaches 0.95 is stored. While the

absolute number of iterations required can vary significantly between various system config-

urations, a normalization has been applied. That is, the number of iterations required for

a given γ value is divided by the number of iterations required in equal allocation strategy.

The Cumulative Density Function (CDF) of this metric is presented in Figure 4.5, where

the results are estimated over all 5200 simulated system configurations. We observe that for

several system configurations, x equals 0.4, i.e., the required probability of the best channel

selection is achieved in 40% of iterations required for the equal allocation algorithm in the

case of γ = −8 or γ = −16. For 50% of cases, the best solution is γ = −4, for which the

required detection quality is obtained 30% faster (x = 0.7) than with the equal allocation

strategy. However, for all these γ values there is a small percent of system configurations

resulting in a normalized number of iterations required greater than 1 (x > 1), i.e., equal

sampling is a better solution in these cases.

The highest probability of this event is obtained for γ = −16 and equals 14%. Thus,

the recommended solution is to use γ = −2 since it obtains the lowest probability of being

outperformed by the equally samples allocation approach, i.e., occurs in 1.4% of system

configurations. At the same time, this approach achieves the required probability of optimal
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channel selection at least 14% faster (x = 0.86) across the 50% of system configurations.

For this performance indicator, the recommended sampling is slightly worse than samplings

with γ = −4, γ = −8 or γ = −16, but significantly better than sampling with γ = −1.

Table 4.1: Set of simulated N and L configurations

L N

3 3,4,5,6,9

4 4,5,6,7,8,12

5 5,6,7,8,9,10,15

6 6,7,8,9,10,11,12,18
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Figure 4.5: CDF of normalized number of iterations required to obtain probability of best

channel selection equal 0.95 over 5200 random system configurations (varying N , L and βi).

Normalization over number of iterations required by equal allocation [28].
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In the upcoming sections, if not stated differently, the unequal sampling algorithm will

use γ = −2.

4.1.3 Bumblebee Behavior-based Channel Sensing and Selection in Time-

varying Environment with Channel Switching Cost

In Section 4.1.1, we looked at the unequal sampling algorithm for fixed CBR and pro-

vided an analytical derivation on the optimal sampling distribution among the sensed fre-

quency channels. In this section, we will evaluate the performance of the considered channel

sampling scheme applied in the time-varying CBR scenario. To address the time-varying

environment, the knowledge of the prior values of the CBR that are stored in a mem-

ory will be utilized. Two types of memories will be directly implemented in the bumblebee

behavior-based algorithm proposed for the channel selection process. From the implementa-

tion perspective, the time-varying CBR is generated using the system-level V2V simulator,

described in Section 4.2, and imported into the analytical simulation framework to evaluate

the memory enabled bumblebee algorithm.

4.1.4 Memory-based Bumblebee Algorithm Description

We concentrated on a fully distributed scenario where each car makes its own decision

regarding the selection of the best frequency channel for V2V communications. However,

we would like to simultaneously benefit from access to knowledge on prior system states to

improve decision making. These assumptions are based on bumblebee foraging behavior,

where the insects make decisions to select the best flowers while collecting pollen. The

decision to be made by each car is either to switch the channel or to stay at the currently

selected one. We denote the currently (i.e., at iteration i) selected channel by a given car for

data transmission as l̂(i). Next, the set of all remaining channels (not used currently by this

car) at iteration i is denoted by Ô(i) = O− l̂(i). Then, the original bumblebee behaviour-

based channel selection is given by comparing the CBR with the candidate channel l∗ ∈ Ô(i),

for which the best channel reward is achieved (the lowest CBR, i.e., l∗ = arg minl∈Ô(i)

ˆ
β

(i)
l ).
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In particular, the following decision is done:

l̂(i+ 1) =


l∗, for β̄

(i)

l̂(i)
≥ (β̄

(i)
l∗ + χ)

l̂(i), for β̄
(i)

l̂(i)
< (β̄

(i)
l∗ + χ)

, (4.21)

where β̄
(i)

l̂(i)
is the current channel cost (i.e., observed CBR), β̄

(i)
l∗ is the cost for channel

l∗ ∈ Ô(i) and χ is the switching cost for the new channel. The purpose of the switching

cost is to avoid frequent channel changes or even the so-called “ping-pong” effect, where

the algorithm switches between two channels at each iteration. The higher the value of

χ, the less dynamic the channel selection. Furthermore, as the number of stored sensing

samples needs to be finite, we redefine the CBR estimate for channel l, comparing to (4.3),

as follows:

β̄
(i)
l =


∑i

j=i−J k
(j)
l∑i

j=i−J N
(j)
l

if
∑i

j=i−J N
(j)
l > 0

β̄
(i−1)
l if

∑i
j=i−J N

(j)
l = 0

, (4.22)

where J is an arbitrarily selected number of sensing iterations.

In an original, memoryless bumblebee algorithm, the car will make channel switching

decisions based on instantaneous values of the CBR for candidate channels (i.e., the channels

from the set O). However, such potentially frequent switching can lead to the performance

degradation due to the channel-switching hardware-lag, synchronization of the devices, and

control signaling. As discussed previously, such cost has to be considered in the switching

decision process, and was expressed by χ in (4.21). However, if the vehicle has access to the

past values of CBR, the performance can be improved by using memory. Consequently, the

problem of instantaneous and permanent channel switching may be mitigated, as the change

of the frequency band will be done in cases when the new channel opportunity is significantly

better (as it would result from the prior channel assignments). Both sliding window average

(SWA) and exponentially weighted moving average (EWMA) memory models are employed

via a heuristic approach (4.20). The SWA model can be represented as:

β̄
(i)†
l =

∑K
j=1 β̄

(i−j)
l

K
, (4.23)

where β̄
(i)†
l is the sliding window average for candidate channel l over last K past β̄

(i−j)
l (j =

1...K) values observed in i-th time interval.



Chapter 4 77

Next, the EWMA memory model is defined as:

β̄
(i)‡
l

=

 β
(1)
l , i = 1

αβ
(i)
l + (1− α)β

(i−1)
l , i > 1

, (4.24)

where β̄
(i)‡
l is the exponentially weighted average for l-th channel in i-th time period, and

α is the forgetting factor. The higher α implies more weight is given to the recent sample

in comparison to the past weighted values. Both memory models are tested with different

parameters and their performance is compared with no-memory bumblebee algorithm.

Algorithm 3 describes the proposed memory-enabled bumblebee VDSA algorithm ap-

plied to the V2V communications network, where the non-uniform spectrum sensing deci-

sions are made, and the estimated CBRs are calculated using a heuristic approach (4.20).

The proposed solution consists of two key actions, mainly: (i) sampling Interval, and (ii)

transmission interval. In the former action, one vehicle performs spectrum sensing in the

considered frequency band (e.g., TVWS) and facilitates opportunistic channel access. Be-

ing initialized with the randomly selected channel (from the available set O, in the second

phase the currently optimal channel (with the lowest CBR) is selected. We also assume

that during the sensing interval all the candidate channels can be evaluated by different

vehicles, whereas during transmission interval only sensing of current channel is feasible.

Once the channel is selected, real data transmission is realized.

4.1.5 Simulation Results

We evaluated the performance of memory-enabled non-uniform sampling-based bumble-

bee algorithm by means of extensive computer simulations. First, the time-varying CBR

values were generated in an accurate V2V simulator (developed in C++, [92, 93]), as illus-

trated in Figure 4.6. Here, the total sampling instants N is set to 8, and the total number

of channels is set to L = 4. One can observe the CBR values for the observed channels in

the considered period. For three channels the CBR values oscillate slightly around specific

value (i.e., around 0.3 for channel 1, 0.05 for channel 2, 0.6 for channel 4, and 0.9 for chan-

nel 4). Such a setup corresponds to the situation where, for example, one channel is highly

occupied by currently ongoing transmissions, whereas the other is almost empty. Moreover,
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a significant change in CBR is observed in channel 1, which illustrates a situation where,

for example, another car utilizing the same band appeared for awhile (i.e., when overtaking

the car). In further simulations, two different types of memory models are employed with

the bumblebee algorithm. For SWA, the β values are stored in memory, and the bumble-

bee algorithm makes the switching decision based on the sliding window average given by

Eq (4.23). In the EWMA model, recent β samples are given higher weight based on the

forgetting factor α.

Figure 4.6: Time-varying channel busy ratio generated using the simplified birth-death

process [94] with L = 4 [28].

First, the performance of the equal allocation approach is compared with novel heuristic-

based unequal allocation scheme using the CBR values generated via the birth-death pro-

cess. Figure 4.7 compares the two schemes with γ = −2, with the bar plot representing the

gain difference. The gain is computed by taking the difference between the two schemes

with the best channel selection probabilities as the performance metric. The gain values (in

percentage points) are plotted over the right y-axis across simulation time.

Based on Figure 4.7, the heuristic approach has a consistent gain over equal alloca-
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tion. This demonstrates the robust capability of the unequal heuristic approach which we

proposed. Furthermore, data-driven models can be employed that consider γ as a hyper-

parameter that can be tuned based on the environment. This approach is outside the scope

of the present dissertation, but may be studied in the future.

Figure 4.7: Performance comparison for equal sample allocation and the proposed heuristic

approach for γ = −2. It shows that heuristic approach outperform equal allocation with

no memory. The time from 10 – 30 shows a very high channel utilization where heuristic

needs to adapt to the variation but due to no memory the performance is low [28].

In this work, we evaluate the best sliding window length K and the forgetting factor

α values using analytical simulation. The simulation is performed with different forgetting

factors and sliding window lengths, and the values which provide the best channel selection

(%) are chosen to compare against the equal allocation. Figure 4.8 shows the comparison of

EWMA and SWA memory schemes with different parameters, where K = 4 and α = 0.7

provide the highest channel selection gain.

Figure 4.9 describes the advantage of adding memory in the system and exploiting the

past values. Three different memory lengths are used, i.e., K = 2, 3, 4, with sliding
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Figure 4.8: Best Channel Selection gain (%) is evaluated for different forgetting factors and

sliding window memory length. The plot demonstrate the optimal values of both EWMA

and SWA memory schemes computed using simulation [28].

window average compared against a memoryless scheme. It is observed that K = 4

provides the highest gain, with increases in the memory length (i.e., K > 4) yielding a

degradation in performance. The best channel selection gain on the right y-axis shows the

gain in performance against the memoryless system.

In Figure 4.10, we evaluate the performance of an exponentially weighted moving average

for α = 0.9, 0.8, 0.7, and compare it against a memoryless scheme. It is observed that

α = 0.7 provides the highest gain with decreasing values of α below this threshold leading to

diminishing performance. Similar to Figure 4.9, the best channel selection gain on the right

y-axis shows the improvement versus memoryless system when operating with α = 0.7.

4.2 Evaluation in Platooning Scenario

In this section, we present the results of an experimental evaluation of the proposed

VDSA algorithm using extensive and sophisticated simulations of the autonomous car pla-

tooning scenario, where multiple vehicles follow the platoon leader using the Cooperative
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Figure 4.9: Performance comparison for heuristic approach with γ = −2 for different mem-

ory lengths and equal weight tapering. Memory length K = 4 was found to be optimal in

simulation. The right axis shows the performance gain over memoryless case [28].

Adaptive Cruise Control (CACC) algorithm [63]. To facilitate proper CACC operation, pla-

toon cars communicate with each other using the IEEE 802.11p protocol [91] in a dynami-

cally selected frequency band, with the platoon leader broadcasting the mobility information

to all platoon members, while the other vehicles transmit their position and movement in-

formation only to their followers. The bumblebee-based VDSA performance was evaluated

using observations of the platoon leader packet success ratio (PSR), as the link between the

platoon leader and its followers limits the performance of CACC operation. Furthermore,

we observed the latency of selection of the best channel (i.e., the delay in switching when

the real CBRs facilitate the change of channel) for different channel sampling strategies.

4.2.1 Simulation Setup

To evaluate the performance of bumblebee-based VDSA for platooning, we considered

a scenario with a 5 km section of a 6-lane motorway. A single platoon occupied the outer



Chapter 4 82

Figure 4.10: Performance comparison for the heuristic approach when γ = −2 with different

exponentially weighted memory average tapering. α = 0.7 appeared to be optimal in

simulation. The axis on the right shows the performance gain over memoryless case [28].

lane, and the desired platoon inter-car spacing was 3 m. Two platooning configurations

were evaluated:

• A platoon consisting of 4 cars (one leader and three followers) with an approximate

platoon length of 25 m;

• A platoon comprising 10 vehicles with an approximate platoon length of 70 m.

Every platoon car transmitted its BSMV messages with a 100 ms period in the dynam-

ically selected TVWS band, with each packet comprising of 300 bytes of data. There were

four 10-MHz frequency bands available to switch between following the VDSA, with center

frequencies of 490 MHz, 506 MHz, 522 MHz, and 536 MHz. The bumblebee-based VDSA

procedure was applied periodically every 100 ms. Furthermore, each platoon car performed

sensing of a single selected frequency band in a 32 µs interval after transmitting its own

packet (with a delay between the end of transmission and the start of sensing selected ran-

domly between 1 ms and 5 ms). The sensing results gathered in a 10 s observation window,



Chapter 4 83

corresponding to J = 100 iterations of the VDSA algorithm, were used in the calculation

of the CBR estimates for the bumblebee-based VDSA. Furthermore, the calculated CBR

values were smoothed according to the EWMA rule, defined as in (4.24), with α = 0.7.

Two sensing channel selection methods were considered, with the band allocation for sens-

ing following (4.19) presented in Section 4.1.2 for γ = 0 (uniform sampling) and γ = −2

(non-uniform sampling), respectively.

Apart from the platoon other cars occupied different lanes of the motorway. They

were placed randomly following a uniform distribution with an average of 10 cars/km/lane.

Each non-platoon car broadcasted the 300 B BSM messages every 100 ms in a randomly

pre-selected frequency band (the band choice remained fixed for the whole simulation run

duration), chosen from the set available for the platoon VDSA, with the probabilities of

the available channels set as follows: {0.08, 0.28, 0.16, 0.48}. Furthermore, there were four

roadside units (RSUs) placed along the motorway every 1 km, with the first and the last one

transmitting 300 B messages every 2 ms in channel 1 (490 MHz), the second transmitting

in channel 2 (506 MHz), and the third using channel 3 (522 MHz). These infrastructure

transmitters contributed to the significant regional increase in the CBR for selected chan-

nels.

For both considered platoon configurations 10 independent simulation runs were per-

formed, with the duration of a single simulation run set to 140 s. The main simulation

parameters are summarized in Table 4.2.

4.2.2 Simulation Results for a Four Car Platoon

Simulations carried out with a 4-car platoon represent a scenario with a compact entity

that performs sensing and VDSA. As the platoon vehicles follow one another closely, the

whole platoon length is approximately 25 m. Thus variations in CBR measured by different

platoon cars should not impact significantly the results. Figure 4.11 shows the evolution

of the channel selected for transmission in the VDSA procedure for a specified simulation

experiment. The correct chanel is selected for both uniform and non-uniform sampling. Note
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Table 4.2: Simulation parameters

Parameters Values

Motorway length 5 km

Number of cars in platoon {4, 10}

Inter-car spacing in platoon 3 m

Messaging periodicity 100 ms

BSM message size 300 B

VDSA frequency bands (channels) {490, 506, 522, 536}

MHz

VDSA procedure periodicity 100 ms

Average number of non-platoon cars 10 cars/km/lane

Non-platoon car channel probability {0.08, 0.28, 0.16, 0.48}

Number and location of RSUs 4 (@ 1, 2, 3, 4 km)

RSU messaging periodicity 2 ms

Channels used by RSUs (1, 2, 3, 1)

Number of simulations per scenario 10

Single simulation run duration 140 s

that the best available channel, corresponding to the choice with perfect CBR knowledge,

is indicated with a solid blue line. However, when the number of samples collected per

single VDSA algorithm iteration is relatively small (e.g., 4 samples, which is equal to the

number of vehicles in platoon), some latency in channel switching is observed. This latency

is smaller in the case of non-uniform sampling, as more sensing slots are allocated to the

more promising channels than for uniform sampling. Therefore, using non-uniform sampling

enables the VDSA algorithm to switch faster to a better channel when CBRs change.

The ability to quickly detect the channel with the lowest CBR using non-uniform sam-

pling impacts the performance of intra-platoon communications. Referring to Figure 4.12,

we observe the estimated probability of successful reception of leader packets versus ve-

hicle position in platoon averaged over all simulation runs. We observe a slightly higher

probability that non-uniform sampling can enable cars 1 and 2 to switch faster to a better

band when CBR values change. This phenomenon is further highlighted in Figure 4.13,
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Figure 4.11: Selected channel (band) index versus time in the case of 4 vehicles platoon [28].

which presents the evolution of the successful reception of leader packets (measured in a

moving 10 s observation window) versus the time for a selected simulation experiment. The

reception rate drops in both cases around t = 60 s due to the increasing occupancy of the

currently used channel. It should be noted that with non-uniform sampling the switch is

performed faster, thus yielding a smaller drop in successful reception ratio.

4.2.3 Simulation Results for a Ten Car Platoon

The scenario with a 10-car platoon represents a more complicated situation, in which the

platoon length is significantly larger ( might exceed 70 m). In such a case, the sensing results

obtained for different platoon vehicles might differ significantly, thus affecting the ability to

select the lowest CBR channel in the VDSA procedure. This is clearly visible in Figure 4.15,

which presents the evolution of the channel selected for transmission in the VDSA procedure

in a selected simulation run. The VDSA algorithm switches frequently between bands in the

uniform sampling case, and it is not able to find the best one (represented with a solid blue

line) for the initial 60 s. This behavior results from the very limited number of collected

samples. Only a single sample per car was collected in each iteration, thus causing the CBR

values to be dependent on the location of a vehicle measuring the channel of interest. With

non-uniform sampling, more sensing slots are allocated to the potentially more suitable



Chapter 4 86

1 2 3

Car position in platoon

0.98

0.985

0.99

0.995

1
E

s
ti
m

a
te

d
 p

ro
b

a
b

ili
ty

 o
f 

s
u

c
c
e

s
s
fu

l 
re

c
e

p
ti
o

n

Uniform sampling

Non-uniform sampling (  = -2)

Figure 4.12: Estimates of the probability of successful reception of leader’s packets versus

car position in a 4-vehicles platoon [28].
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Figure 4.13: Example of time evolution of the successful reception ratio of leader’s packets

observed in a window of 10 s for car no. 2 in a 4-vehicles platoon [28].

channels, thus resulting in a higher level of accuracy of the CBR estimation. Thus, the

selected channel with non-uniform sampling follows closely the reference (with perfect CBR

knowledge) best channel, with only some latency introduced due to the averaging of results

in a 10 s observation window.
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Figure 4.14: Selected channel (band) index versus time in the case of 10 vehicles platoon [28].
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Figure 4.15: Estimates of the probability of successful reception of leader’s packets versus

car position in a 10-vehicles platoon [28].

The improved ability to find the lowest CBR channel with the non-uniform sampling

approach is also reflected probability estimates for successful reception of the leader packets,

as presented in Figure 4.15 (results averaged over 10 simulation runs). We observe that with

non-uniform sampling the VDSA algorithm is capable of reducing losses of transmitted

packets. Loss reduction is particularly apparent for cars at the tail of the platoon, where
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the reception rate is usually lower due to higher channel attenuation.
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Figure 4.16: Example of time evolution of the successful reception ratio of leader’s packets

observed in a window of 10 s for car no. 9 in a 10-vehicles platoon [28].

Figure 4.16 shows the evolution of the successful reception of leader packets (measured

within a moving 10 s observation window) versus time for a selected simulation run. With

uniform sampling, the VDSA algorithm is unable to find a channel guaranteeing sufficient

quality of transmission for the initial 60 s, thus resulting in a temporary packet error rate

over 5%, which is unacceptable for autonomous platooning. Overall, for a platooning sce-

nario employing the bumblebee-based VDSA algorithm, the intra-platoon communication

channels can be selected in a dynamic manner. However, the implementation needs to be

provided with a fairly accurate set of CBR values. These values can be reliably obtained

by providing a sufficient number of sensing samples for the prospective frequency bands.

With non-uniform sampling the values are secured faster for the channels of interest (i.e.,

the channels with low CBR) than with uniform sensing slots allocation.

4.3 Hardware Validation

Connected vehicles are capable of exchanging traffic environmental information via Ba-

sic Safety Messages (BSM) within a transmission range of 500 meters [7]. BSMs can contain
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information such as current position, speed of the vehicle and direction, and can provide

critical time-sensitive support for vehicular applications such as road safety systems and

self-driving car ecosystems. Connecting vehicles by leveraging both wireless communica-

tion and networking solutions have been exhaustively studied, especially with respect to

Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I). The IEEE 802.11p Dedicated

Short Range Communication (DSRC) standard [2] was the first framework designed to meet

demands of the Vehicular Network (VANET) architecture. However, despite several of its

initial advantages, IEEE 802.11p also possess a number of shortcomings such as low reliabil-

ity, hidden node problem, unbounded delay and sporadic V2I connectivity [3]. Alternatively,

the Third Generation Partnership Project (3GPP) specified an approach to vehicular con-

nectivity called Cellular Vehicle-to-Everything (C-V2X) in Release 14, where the direct

communication is supported between vehicles to accommodate the latency requirements

for time-sensitive vehicular applications. C-V2X offers several features designed to support

ITS applications with respect to coverage, mobility support, reliability, and scalability. In

particular, 3GPP added two new modes, Mode 3 and Mode 4 in order to supplement the

Proximity Services (ProSe) for V2V communications [5]. LTE enables wide coverage and

data transmission reliability with low latency. For instance, LTE Mode 3 enables V2V

communication via a sidelink channel with the support of an eNodeB i.e., resources are

scheduled with the help of base-station or centralized entity. In LTE Mode 4, vehicles can

autonomously schedule resources using sensing-based semi-persistent scheduling (SPS) in an

out-of-coverage scenario. Vehicles reserve the spectral resources that are sensed as vacant or

with minimal interference in order to accommodate BSM messages. However, the dedicated

LTE channels are unable to support cellular V2X communications in densely populated ur-

ban areas. To overcome the shortage of spectral resources, Vehicular Dynamic Spectrum

Access (VDSA) has been proposed as a viable solution that leverages the under-utilized

spectrum in licensed bands [95–97]. Without loss of generality, we will use digital television

(DTV) spectrum from 470 MHz to 520 MHz for our experiment with VDSA-based C-V2X

since the primary (licensed) users of this band are relatively stable when compared to other

wireless frequency bands. The primary users of the DTV band possess a more predictable

utilization of frequency bands. It is assumed that vehicles within the vicinity are designed
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to individually detect the available channels for unlicensed usage [7, 23].

4.3.1 Bumblebee Model for C-V2X VDSA

Stochastic time-varying channel environments make it difficult to employ VDSA effi-

ciently. Hence, a robust VDSA framework is required. The bumblebee-based VDSA algo-

rithm is well-suited for independent decision-making, and hence can perform very well in a

vehicular V2V communication environment. We also integrated our proposed bumblebee-

based VDSA algorithm with a realistic C-V2X testbed and evaluated its feasibility for

C-V2X.

Algorithm 3 Bumblebee-based VDSA Algorithm

1: procedure BumblebeeVDSAAlgorithm(SC, T, C, S)

2: Initialize:

Initialize random sub-channels at 2685 MHz

3: Sampling Interval :

4: Radio:1 Perform spectrum sensing in DTV band for 1000 sub-frames

5: Select the best sub-channels with energy ≤ “T”

6: Configure Radio:0 with selected sub-channels

7: Transmission Interval [Radio:0, Radio:1]:

8: Start the packet transmission

9: Monitor the current SC set and keep storing energy values Ei ∈ SCi

10: if S̄c ≤ (S̄i − C) then

11: Keep using same sub-channels

12: else

13: Switch to new sub-channels based on the memory

14: end if

15: end procedure

Algorithm 3 describes the bumblebee VDSA algorithm for cellular V2X in detail. In

this work, we employed bumblebee-based VDSA algorithm in the Digital Television (DTV)

band since the primary users of this band are not rapidly time-varying when compared to
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other wireless frequency bands. Additionally, the primary users of the DTV band possess

a more steady occupancy of the frequency band [98]. We implement the algorithm in

two steps: (i) Sampling Interval, and (ii) Transmission Interval. For this algorithm, we

make use of full duplex communications where two independently tunable radios are used.

Radio:0 performs the C-V2X communications using the LTE-Sidelink protocol stack with

Frequency Division Duplexing (FDD), whereas Radio:1 performs the spectrum monitoring

simultaneously and independently of the LTE Sidelink. We initialize our VDSA model by

assigning random SC resources to Radio:0 C-V2X allocated at 2685 MHz LTE band 7 and

start monitoring spectrum across the DTV band from 470 MHz to 520 MHz simultaneously

for 1000 ms. Since wired connections are employed for V2V communications, LTE band

7 was used instead of 5.9 GHz ITS band. Once we have the energy values E for set SC

based on the threshold value “T”, we sort them and select the best sub-channels based on

the bandwidth requirements. We employed 10 MHz and 5 MHz bandwidths, and did not

consider higher bandwidth values in order to reduce the computation load on our system.

Once Radio:1 has the desired SCi values, channel switching can be triggered, i.e.,

Radio:0 can switch from the 2685 MHz band 7 to the DTV band with the selected sub-

channels. During the transmission interval, Radio:1 keeps monitoring the entire DTV

spectrum. It stores the time-domain energy detection values E for sub-channels in the

memory and compares their mean values with the current sub-channels at periodic interval

α. This periodic interval can be tuned based on the environment, i.e., for rural highway

where the environment does not change that often the value can be kept large whereas for

urban environment the low value is needed to compensate for high channel variation. If the

mean energy values for the remaining sub-channels is greater than the current sub-channels,

Radio:0 keep on using the same sub-channels or else it switches to the new sub-channels as

selected by Radio:1. Equation (4.25) describes the switching decision, where S̄c is the mean

signal strength for the current sub-channels, S̄i is the mean energy values of sub-channels

which were selected from the channel set.
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Switching

Decision
=

 S̄c ≤ (S̄i − C), “Stay”

Otherwise , “Switch”
(4.25)

Switch cost C helps in reducing the unnecessary sub carrier switching as these can adversely

affect the performance due to resource selection and allocation delays.

4.3.2 OpenAirInterface-based Experimentation Testbed

The experimental testbed for evaluating the VDSA performance for bumblebee algo-

rithm was implemented using the OpenAirinterface (OAI) [99–101] LTE platform. OAI

is an open-source LTE experimentation and prototyping platform created by the Mobile

Communications Department at EURECOM for realistic 4G/LTE research. OAI is a fully

open-source software-defined radio (SDR) based solution that implements complete LTE

protocol stack using software. All elements of a LTE architecture: eNodeB (eNB), User

Equipment (UE), and core-network (CN) are implemented for a standard Linux-based PC

interfaced with a USRP SDR platform. For this testbed, we are using the LTE-Sidelink [102]

branch of the OAI project. LTE-Sidelink provides support for two Device-to-Device (D2D)

scenarios.

• Off-Network Scenario, where none of the UEs are connected to any network infras-

tructure and need to perform the scheduling assignment autonomously. In this work,

the scheduler allocates the resource blocks randomly for a given bandwidth.

• Relay-Network Scenario, where at least one UE is connected to the network and acts

as a relay for the data traffic from/to the out-of-coverage UE(s). The scheduling

assignment for the in-coverage scenario is performed by the base station.

We will be focusing only on the scenario 1 for this dissertation, where both the UEs

are outside the coverage area and they use sidelink communications to facilitate V2V.

Figure 4.17 shows the complete protocol stack for the LTE V2V as implemented on the OAI

platform. We integrated our bumblebee-based VDSA in the PHY and MAC layers of the

testbed to make it a full-duplex UE that can simultaneously sense DTV channels (Radio:1 )
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Figure 4.17: C-V2X Protocol Stack implemented on OAI testbed. The PHY layer is modi-

fied to integrate the bumblebee-based VDSA algorithm while reusing the higher layer setup

from OpenAirinterface. For the C-V2X Mode 4, random selection is employed on the

PSSCH (Physical Sidelink Shared) at a given channel pool [28].

Figure 4.18: C-V2X radio testbed consisting of two USRP X310. One X310 is equipped

with one SBX daughterboard for LTE transceiver link, whereas another X310 has two SBX

daughterboard for simultaneous C-V2X and spectrum sensing functionality. For the C-V2X

link, a wired connection is used whereas the VDSA band for the sub-channels is monitored

using the VERT2450 Antenna with 3 dBi gain. The Octoclock and GPSDO are used to

provide the external 10 MHz frequency reference in order to achieve sidelink synchronization

between the radios [28].

and facilitate V2V communication (Radio:0 ). We employed two NI USRP X310 SDR radios

using SBX-120 daughterboards for our bumblebee-based OAI testbed. The Vehicle:1 X310
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Table 4.3: Configuration parameters for bumblebee-based VDSA testbed.

Testbed Parameters Values

C-V2X Bandwidth[Radio:0] 10 MHz and 5 MHz

VDSA [Radio:1] Sampling Rate 15.36 MSps

FFT Bin Resolution [Radio:1] 1024

VERT2450 Antenna Gain 3 dBi

C-V2X Dedicated Frequency 2685 MHz

VDSA Frequency Band 470 MHz – 520 MHz

supports independent operation of both LTE and sensing of the DTV spectrum from 470

MHz – 520 MHz by using two different daughterboards on the SDR whereas the Vehicle:2

X310 only has one daughterboard for C-V2X communications. For spectrum sensing, time-

domain energy detection is implemented with Vehicle:1 sweeping the 50 MHz band in five

steps. We use a dwell time of 20 ms in each 10 MHz bin and then switch to the new bin.

An FFT size of 1024 is used to provide the necessary resolution for accurate detection of

LTE sub-carriers.

We are not performing dynamic spectrum access at subcarrier level, i.e., individual

subcarriers are not selected from the entire 50 MHz bandwidth. Rather, entire 10 MHz

contiguous block is selected based on bumblebee-based VDSA and then random subcarriers

are selected from the block. Implementing subcarrier level spectrum allocation on top

of OAI will be the focus of the future research. Figure 5.12 shows the testbed diagram,

where we are employing two X310 radios that are connected using an Octoclock and a GPS

disciplined oscillator (GPSDO). Octoclock and GPSDO are employed for the providing the

10 MHz reference signal that is required to provide the sidelink synchronization between the

radios. The SBX daughterboards for C-V2X connectivity on both radios are attached using

SMA cables whereas a separate SBX daughterboard on Vehicle:1 is used for performing

spectrum sensing and dynamic spectrum access.
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Figure 4.19: The power spectral density (PSD) for DTV band from 470 MHz to 520

MHz across 5 minutes time domain. There are spectrum access opportunities across both

time and frequency and due to the stationary nature of the band these opportunities are

static [28].

4.3.3 Measurement and Results

The DTV band possess stationary characteristics due to its primary users, i.e., TV

broadcasters that have a relatively stable spectral usage. This makes it very attractive

for dynamic spectrum access. We use the DTV UHF band from 470 MHz to 520 MHz.

Figure 4.19 shows the power spectral density (PSD) color-map across spectral and temporal

domains for five minutes. The color variation is from -110 dBm to -50 dBm, increasing in

intensity as we move to high PSD values. There are various time and frequency spectrum

access opportunities available in the 50 MHz wide spectrum. Due to the primary user’s

predictable nature, the spectral opportunities and channel characteristics will not vary

drastically. Figure shows two transmissions around 500.25 MHz and 513.25 MHz, which

are being continuously accessed, whereas the spectrum from 473 MHz to 489 MHz is being

utilized in an episodic manner.

We employ full-duplex radios for simultaneous monitoring of the DTV band and C-
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Figure 4.20: Monitoring the DTV channel 19 at 500 MHz using Radio:1 while simultane-

ously performing C-V2X communication using Radio:0. In the experiment, sensing radio

employing bumblebee algorithm monitors DTV channels whereas C-V2X radio keeps the

communication active. Sensing radio discovers DTV band with better channel quality and

perform the channel switching [28].

V2X communications. Figure 4.20 shows the full duplex capability of our bumblebee-based

VDSA system. Vehicle:1 performs C-V2X communication with 25 PRBs using the LTE

protocol stack while simultaneously monitoring the DTV spectrum for spectrum access

opportunities. Only 10 and 5 MHz of bandwidths are being utilized for C-V2X in order

to reduce the computation since performing spectrum sensing with larger bandwidth leads

to late packet replies and link breakage. The Radio:1 is able to sense three narrowband

transmissions across 496 MHz to 506 MHz. For sensing the entire 50 MHz DTV spectrum,

we start the channel sensing at 470 MHz, sense for 1 ms and store the channel energy value

in the memory. We collect the energy values for the entire 50 MHz spectrum and after some

processing make the switching decision for single block memory length. We have employed

different memory lengths to evaluate the bumblebee algorithm. Using more energy values

for making the switching decision leads to better accuracy but also adds to the latency and

memory usage of the system.

In Figure 4.21, we have computed the latency values for the different memory block

sizes and channel bandwidths for 5 MHz and 10 MHz. LTE supports different bandwidths

based on the availability, so the latency has been evaluated for different bandwidth values.

Figures shows that as we increase the memory size, the latency increases as we need to

process more data to make switching decisions. However, increasing the memory size leads
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Figure 4.21: Latency comparison for bumblebee-based VDSA algorithm for different mem-

ory block size. Two channel bandwidth 5 MHz and 10 MHz are employed for resource

allocation [28].

to better accuracy as we have better estimate of the channel quality. Consequently, there

is a trade-off between accuracy and latency that depends on the channel environment. For

an urban channel environment, larger memory size is required to accurately estimate the

channel quality, even if the switching decision leads to higher latency. Since selecting the

wrong subchannels can result in low packet delivery ratio (PDR). In [68], we evaluated

the PDR for the bumblebee-based algorithm with a random channel switching. From this

experimentation we observe large gap in performance due to erroneous selection by the

random channel access scheme. In a highway environment, low memory size can be employed

as the channel characteristics do not change frequently.

4.4 Chapter Summary

In this chapter, we presented a framework for a memory-enabled bumblebee foraging al-

gorithm for vehicular platoon communications. The optimized unequal sampling allocation
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heuristic is proposed to estimate the Channel Busy Ratio β with sufficiently high accuracy.

Based on the results obtained, the unequal sampling allocation approach outperforms the

equal sampling allocation scheme with the proposed sub-optimal allocation heuristic. We

have also implemented two memory models that are integrated with the bumblebee foraging

algorithm to leverage available memory, which boosts the probability of the best channel

selection. Sliding window average and exponentially weighted moving average memory

schemes are employed and their performance is compared against the memoryless model.

Using the SWA memory scheme, different memory lengths are utilized, and, similarly, dif-

ferent forgetting factors are used for the EWMA scheme. The simulation results show the

bumblebee algorithm with unequal sampling allocation heuristic provides higher accuracy

compared to the equal allocation scheme, especially in a scenario where sensing resources

are scarce.

Hardware validation was also performed to evaluate the feasibility of memory-enabled

vehicular dynamic spectrum access framework. We implemented memory-based VDSA

framwork on top of an open-source software-based platform of LTE system. We performed

switching at 2.685 GHz LTE band 7, to DTV spectrum around 500 MHz, and demonstrated

the feasibility for C-V2X system.
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Chapter 5

Passive Opportunistic RF

Localization of Connected Vehicles

In this chapter, we present a novel opportunistic approach for passive RF localization de-

signed for detecting connected vehicles, especially those referred to as “phantom cars” ,i.e.,

vehicles intentionally faking their position/velocity information to surrounding vehicles and

the communication network. Current state-of-the-art approaches for vehicle localization

mostly rely on either: (i) self-reported position/velocity updates obtained via navigation

technologies such as GPS [103], or (ii) cooperative communication approaches involving mul-

tiple vehicles exchanging situational awareness information with each other [104]. In both

cases, these approaches assume all vehicles truthfully share alocation information, which

might not be the case if malicious users such as phantom cars are present. Refering to Fig-

ure 5.1, the proposed approach extracts location information of a target vehicle without the

neeeding to cooperate with it. Multiple sensors surrounding the target vehicle opportunis-

tically and passively measure RF emission characteristics (e.g., received signal strength,

time difference of arrival) of on-board widely available wireless signals (e.g., 5G, Bluetooth,

WiFi). These characteristics are processed via data fusion and bounded via vehicle dynam-

ics behavioral models before being compared against reported positions. There are several

components used to perform this type of vehicle localization, such as traffic flow modeling,

data fusion, and RF emission propagation characterization. The focus of this chapter is



Chapter 5 100

the last component and how wireless localization techniques are used to establish positions

and velocities of these vehicles. To evaluate the feasibility of the proposed approach, a

custom-built computer simulation platform was developed via a multi-institution research

effort. The platform accurately models the vehicular environment and its associated RF

emissions characteristics. This dissertation presents a simple hardware field experiment

evaluating the performance of proposed approach incorporating RF localization, while data

fusion, and vehicle behavioral dynamics modules are included to help illustrate the viability

of identifying phantom car attacks within a non-cooperative framework.

Figure 5.1: Illustration of the proposed phantom car attack detection framework, where

Vehicles A, B, and C are passively sensing RF emissions coming from Vehicle D. These

RF emissions can be any form of wireless signal, including 5G cellular communications,

WiFi, Bluetooth, and tire pressure measurement sensor (TPMS) transmissions. It is im-

portant the surrounding vehicles are capable of detecting those signals although it is not

necessary to decode transmissions. From these intercepted RF emissions, each vehicle ex-

tracts RF characteristics such as received signal strength (RSS) and arrival time values.

These RF measurements are communicated to the network along with the precise posi-

tion of Vehicles A, B, and C. The network for perform RF localization via data fusion using

these measurements, and then compare with self-reported position information to determine

whether the network is under attack [24].
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5.1 Overall Framework

The approach taken to achieve the goal of the overall multi-institutional research effort

is shown in Figure 5.1. It consists of three fundamental building blocks: the RF sensor

network, the data fusion center, and the joint RF emission/traffic flow model.

The RF sensors are installed alongside a length of roadway and is designed to measure RF

emissions and post-process them before forwarding them to the data fusion center. Each

RF sensor possesses a sufficient level of intelligence to adapt and dynamically calibrate its

detection thresholds to increase detection and reduce false positives. The data fusion center

is responsible for taking all the RF emission measurements from the RF sensor network

and estimating location and trajectory information of every detected vehicle on the target

roadway. We also use a joint RF emissions/traffic flow model to characterize the RF propa-

gation in vehicle environment so that this information can be used for several initialization

and training tasks in the data fusion center. Furthermore, the data fusion center is capa-

ble of providing feedback to the RF sensor network and the joint RF emission/traffic flow

model such that they can fine tune their operations to improve effectiveness and accuracy

of the measurements. Consequently, the data fusion center is at the center of the proposed

approach.

Two types of prevalent road environments will be considered, namely, a multi-lane high-

way segment and a multi-lane arterial road segment (about 2.5 miles). In the road environ-

ment, each traveling vehicle can be associated with different types of RF emissions (e.g.,

WiFi, Bluetooth, TPMS) either emitted by the vehicle themselves or by device they carry.

RF emissions to be studied were all less than 6 GHz in frequency. Moreover, all RF emis-

sions resulted from COTS wireless devices commonly founded in typical road vehicles. RF

emission detection techniques included in this work were received signal strength indicator

(RSSI) and time-of-arrival (TOA). Other techniques such as angle-of-arrival (AOA) and

time-difference-of-arrival (TDOA) will not be studied although they could be used in any

future work resulting from this project. Localization and tracking framework will assume

to possess a network RF sensor connected to a centralized cloud center (CCC). RF sensors

will measure RF emissions and perform some adaptive signal processing to further enhance
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detection process, while the CCC is responsible for the data fusion of these RF emission

measurements and the calculation of each detected vehicle’s location and trajectory. Per-

formed exclusively in the CCC based on RF emission measurements collected by the RF

sensors. Data fusion converts this measurement information into identification, localization,

and target tracking information of multiple vehicles traveling on the road. This operation

produced location and the continuous trajectories of vehicles in the time-space domain. We

used models from both micro- and macroscopic perspectives in order to facilitate vehicle

localization and tracking. Microscopic models describe the movements of individual vehicles

on the road that interact with other vehicles and the operating environment (such as road

geometry), while the macroscopic models capture the characteristics of a traffic stream at

an aggregate level. We describe a joint analytical model that captures the characteristics of

RF emission propagation and traffic flow. Different from statistical models, the model will

base on the physical properties of the RF propagation and the behavior of vehicles, which

will result in realistic and deterministic characterization of RF propagation. Building on

the traffic-RF analytical model, it consists of the two integrated layers (vehicular traffic

and RF emissions) and provides a high-fidelity simulation environment across varying con-

ditions. The simulation platform will be used to train the data fusion framework in order to

initialize it, and to predict the traffic-RF emission dynamics based on previous RF sensor

inputs. (Communication protocol layers (e.g., link layer, network layer) will not be included

in this platform since it only focuses on RF emission information and not the information

contained within the transmission.

This work included implementing the EM emissions and sensing module which, will

be discussed in the following section. The remaining modules were implemented by other

colloborators on the project, and are out of the scope of this disseration. Although, there was

involvement by other collaborators on the development and implementation, the creation

of these modules were primarily the work of this dissertation’s author.
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5.2 EM Emissions and Sensing Module

The purpose of this module is to simulate the electromagnetic emissions from each

vehicle to each base station (or sensor). Using the road geometry and base station indices,

the power received can be determined by one of several electromagnetic models. The output

of the system is a vector of the received signal strength values at each base station and

vehicle ID. There are many different models that can be used to simulate the propagation

of an electromagnetic wave from transmitter to a receiver, from a simple path loss model to

complex ray tracing models that include multiple forms of wave-environment interactions.

We chose to first implement a Two-Ray Model [105]. This model is slightly more complex

than a simple path loss model and includes the effects of the electromagnetic wave reflecting

off of the ground. The received power is determined from the electromagnetic field, which

is composed of line-of-sight (LOS) and ground reflection (GR) components. Refering to

Figure 5.1, a propagation path exists between vehicle i and base station/sensor j, for all

vehicles and all base stations/sensors across every time instant.

To calculate the total electric field, we can sum the magnitudes of the components:

|ETOT |= |ELOS + Eg|, where ELOS and Eg correspond to the electromagnetic fields of the

LOS and ground reflection, respectively. The total electromagnetic field as a function of

distance is:

|ETOTd|= 2
E0d0

d
sin

(
θδ
2

)
, (5.1)

where E0 is the free-space electromagnetic field (in V/m) at some reference distance d0 (in

m), d is the separation distance between the transmitter and the receiver (in m), and θδ

is phase different between the LOS and GR E-field components. The phase difference is

calculated as:

θ∆ =
2π∆

λ
, (5.2)

where λ is the wavelength (in m) ∆ is the difference between the LOS path and the ground

reflection path, which can be approximated as, ∆ ≈ 2hthr
d . The values of ht and hr are the

heights (in m) of the transmitting and receiving antennas.
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Finally, the received power can be calculated (in W):

Pr(d) =
|ETOT |Grλ2

480π2
(5.3)

where Gr is the gain of the receiver in linear units. There are further simplifications for

(5.1), depending the TX and RX separation and the heights of the antennas. However,

these approximations limit the simulation condition and minimally reduce the computation.

The received powers are calculated for vehicle i and base station/sensor j and then the

information is output. For this module, we assume that the transmitter frequency bands

are those employed by Verizon’s cellular network which are band 2, 4, 5, 13, 46, 48, 66 in

North America. This work can be easily extended to other cellular bands and networks

without loss of generality. Vehicle antenna height will be assumed to be 1 m.

The concept of using Signals of Opportunity (SOP) to passively intercept EM emissions

from vehicles in order to extract RSS information that can subsequently be used by the

data fusion center as illustrated in Figure 5.2. Cellular base stations intercept EM emissions

originating from a road or highway where vehicles are located. The emissions are labeled

by their IDi information contained within the transmission header. Using the emission

signal strength, the RSS of each vehicle EM emission is calculated by every base station

and/or sensor at every sampling time instant. All of this information is collected, calculated,

and forwarded to the data fusion center for vehicle localization. The concept of received

signal strength-based localization is simple, where signal power is inversely proportional to

the square of the distance between transmitter and receiver [106]. However, in multipath

environments the problem becomes complex and can lead to large distance measurement

errors. Channel models are employed in the literature to estimate the RF signal strength

due to large-scale (propagation loss) and small-scale (multipath) which are later mapped to

range estimate values [107].

In this dissertation, a simple two-ray channel model is implemented as a baseline within

the overall simulator, which is later enhanced by 3GPP extended vehicular A channel model

(EVA) [61]. Since there is potentially multipath propagation influencing each EM emission

originating from every vehicle and intercepted by every base station and/or sensor, a two-

ray channel model is applied to each emission to capture the distortion experienced by these
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signals. Consequently, base station k collects RSS values Pi,k and Pj,k for vehicles IDi and

IDj , respectively, while base station m collects RSS values Pi,m and Pj,m for vehicles IDi

and IDj , respectively.

Figure 5.2: Input/output definition of vehicle electromagnetic (EM) emissions generation

module [24].

5.3 Simulation Workflow

For the overall project, we created a comprehensive computer simulation environment

shown in Figure 5.2. In this simulation environment, we employed SUMO to create realistic

traffic traces which are then fed to our C-V2X channel module to create realistic wireless

conditions. The free space path loss model (FSPL) states that for a certain frequency

in free space, the power of radio signal attenuates proportionally to d2, where d is the

line-of-sight (LOS) transmitter and receiver separation distance. However, in real-world

radio environments and more specifically for C-V2X, LOS communications are not always

possible and signal propagation can be affected by various physical characteristics like,
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reflection, refraction, diffraction, scattering, and their combination. The VZ subscriber cars

are assumed to be connected to the fusion center (FC) where the localization estimates are

extracted by employing hybrid RSS-TDoA localization.

Table 5.1: Simulation Parameters for C-V2X Channel Model

Scenario Environment Freuency Range (GHz) PLE σ (dB)

UMi SC
LOS

NLOS

2 - 73.5

2 - 73.5

2.0

3.1

2.9

8.1

UMi OS
LOS

NLOS

2 - 60.0

2 - 60.0

1.9

2.8

4.7

8.3

UMa
LOS

NLOS

2 - 73.5

2 - 73.5

2.0

2.7

4.6

10.0

In this dissertation, we have employed Close-in (CI) channel model with three different

types of scenario i.e., urban micro-cellular street canyon (UMi SC), urban micro-cellular

open square (UMi OS) and urban macro-cellular [108]. The simulation parameters used for

CI channel model are described in detail in Table 5.1. For this project, we have limited the

frequency to 5.9 GHz as that is current channel allocated for V2V and V2I applications [109].

The path-loss exponent (PLE) α and shadow fading (σ) can be tuned based on different

channel conditions. The equation for the CI channel model is given as [108]:

PLCI(f, d)[dB] = FSPL(f, 1,m)[dB] + 10n log10(d) + χCIσ , (5.4)

where n denotes the PLE (describing path loss in dB in terms of decades of distances

beginning at 1 m) and d is the Tx-Rx separation distance. The quantity FSPL(f, 1,m)[dB]

denotes the free space path loss in dB at a Tx-Rx separation distance of 1 m at the carrier

frequency f and is given as:

FSPL(f, 1,m)[dB] = 20 log10

(
4πf

c

)
. (5.5)

Referring to Eq. (5.4), shadow fading (SF) is expressed as [108]:

ØCI
σ = A− nD, (5.6)
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where, A represents PLCI(f,d)[dB] − FSPL(f,1m)[dB], and D denotes 10 log10(d). Shadow

fading’s standard deviation is given as [108]:

œCI =

√∑ (A− nD)

N
, (5.7)

where, N is the number of path loss data points. Now, path-loss exponent (PLE) n can be

obtained by minimizing
∑

(A− nD), thus yielding:

n =

∑
DA∑
D2

. (5.8)

Figure 5.3: Multi-modality data-fusion employing RSS and TDoA for non-VZ subscriber

localization [24].

Figure 5.3 describes the data-fusion module, which takes the received signal strength

(RSS) Pi,j (Modality = Power) and time-difference of arrival (TDoA) Ti,j (Modality =

Time) estimates of the subscriber vehicle with identification IDi and outputs the local-

ization estimate of non-subscriber vehicles. TDOA and RSS are extracted from a single

vehicle signal ‘RF emission‘ employing 5G C-V2X standard (specifically, LTE Mode 4).

The major assumption in the simulation framework for hybrid RSS-TDoA fusion is that

measurement uncertainty should not decrease as a result of fusion. The module computes

the x and y location estimate independently using RSS and TDoA-based localization and

then fuse the data based on weights and pass it to the fusion center for decision-making.
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Ordinary Least Square (OLS) algorithm is used for RSS-based localization whereas for

TDoA maximum likelihood estimate (MLE) is employed in order to avoid convergence is-

sues. Assume La,Lt, Lr are the localization measurement values of each method and where

La,Lt, Lr is equal to X̂1, X̂2, . . . , X̂n, the weighting factors of each sensor are defined as

W1,W2, . . . ,Wn. The Covariance Intersection method takes convex combination of mean

and co-variance estimates to fuse different random variables [110] and is given by:

P−1
cc = ω1P

−1
a1a1 + ...+ ωnP

−1
anan (5.9)

P−1
cc c = ω1P

−1
a1a1a1 + ...+ ωnP

−1
ananan (5.10)

where a1, ..an are defined as the means and Paa...Pnn as the co-variances of La,Lt, Lr. If

n pieces of information, labeled as a1, ..an, are to be fused together to yield an output,

C and
∑n

i=1Wi = 1. For the simulation, two use-cases are considered and the proposed

localization algorithm is evaluated against baseline RSS and TDoA.

1. Stationary Sensors and Moving Emitter: In this scenario, we assume that sensors

are deployed close to the base-station and are fixed. Using this setup, high accuracy

can be achieved as the location estimate of sensors are approximately equal to ground

truth. As C-V2X is rolled out for V2V applications, this use-case will be easier to

implement and integrate with the location server of network providers.

2. Moving Sensors and Moving Emitters: An out-of-coverage scenario where there

is no base-station vehicles will employ LTE Mode 4 to self-allocate spectrum resources

using SPS and will be able to localize other vehicles based on this use-case in GPS-

denied environments.

5.3.1 Use Case 1: Stationary Sensors and Moving Emitter

For proper benchmarking of our proposed hybrid RSS-TDoA algorithm, the localiza-

tion estimates are first calculated using individual RSS and TDoA modules, and are then

compared with the hybrid algorithm. Figure 5.4 shows the localization estimates computed

using received signal power and ordinary least square algorithm. The emitter vehicle follows

a straight trajectory along the highway given by ground truth. The simulated highway is
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850 meters long and is 4.7 meters wide per lane. The traffic is assumed to be bidirectional

but in this work, the emitter is following one lane and has straight trajectory. We have uti-

lized three base-stations that are deployed randomly to cover the entire simulation highway.

The distance measurement error is high when the vehicle is outside the trilateration zone

due to poor wireless link. The estimated position is smoothed out by applying the Kalman

Filter on the localization output from the different algorithms.

Figure 5.4: RSS-based localization using static sensors [24].

In Figure 5.5, the localization estimates are computed using maximum likelihood estima-

tion with input as time-difference of arrival. We do not assume the perfect synchronization

between the vehicles, and the timing drift is simulated using Gaussian noise with mean of

0 and standard deviation of 1 ns. Due to the timing drift, we see large positional errors

where the performance is worse than simple RSS-based localization. Finally, in Figure 5.6

we combine the RSS and TDoA estimates and use our fusion algorithm to get the final

trajectory. The accuracy is improved drastically for the estimates which are inside the

trilateration area, but outside we see higher errors compared to RSS due to poor TDoA

results.
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Figure 5.5: TDoA-based localization using static sensors [24].

Figure 5.6: Hybrid RSS-TDoA fusion-based localization using static sensors [24].

5.3.2 Use Case 2: Moving Sensors and Moving Emitter

The moving sensors scenario is useful when we are in out-of-coverage scenario. Vehicles

can schedule resources autonomously using SPS and can start V2V transmission. Localizing

non-VZ subscriber vehicles in this use-case is difficult as both sensors and emitters move

continuously. Figure 5.7 shows the RSS-based localization of moving emitter and sensor

location is also continuously updated. It is very critical for the VZ subscriber vehicles to

exchange traffic data in real-time to get good accuracy. Due to mobility of sensors, the
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RSS-based localization accuracy is particularly bad in low-connectivity zones. Figure 5.8

describes the TDoA-based localization using moving vehicles. Maintaining synchronization

with mobile sensors is not a trivial task but in this project, we assume the same timing error

as the static case. In Figure 5.9, we show our proposed hybrid RSS-TDOA fusion scheme

using moving sensors. Due to high positional errors using RSS localization, the output of

the hybrid fusion algorithm is closely aligned with the TDoA for the entire simulation run.

The simulation time was not large enough for the hybrid algorithm to give more weight to

the RSS, leading to the current output.

Figure 5.7: RSS-based localization using moving sensors [24].

Figure 5.8: TDoA-based localization using moving sensors [24].
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Figure 5.9: Hybrid RSS-TDoA fusion-based localization using moving sensors [24].

5.4 Small-Scale Field Experimentation

We conducted a small-scale field experiment in order to evaluate the performance of our

simulation framework and to demonstrate feasibility of proposed RF localization concept

using low-cost radio hardware communicating over-the-air with both emitter and sensor ve-

hicles in motion. Four different scenarios labeled A, B, C, and D were employed. Scenarios

A and B are “sanity checks” scenarios to ensure the sensor vehicle can detect the emitter

vehicle. In scenario A, we kept the emitter stationary, whereas in scenario B the emitter

was moving along straight line with respect to the static sensor. Scenarios C and D explore

effects of SOP-based localization when only emitter vehicle is moving and when all vehicles

(emitter, sensors) are in motion. In scenario C, all the sensor nodes were kept stationary

and emitter was moving in a straight path. Finally, in scenario D all vehicles and emitter

were moving along a straight line.

5.4.1 Experimental Setup

The experimental setup consisted of three RTL-SDR dongles, which were used as sensor

nodes, and one ADALM-PLUTO [30] acting as an emitter node. Figure 5.12 describes the

hardware testbed equipment as well as the software modules employed for the small-scale

field experiment. Four smartphones were also employed alongside software-defined radios



Chapter 5 113

Table 5.2: Configuration parameters for emitter and sensor.

Testbed Parameters Values

Emitter Sampling Rate [Pluto SDR] 15 Ksps

Transmit Power 8 dBm

Sensor Sampling Rate [RTL-SDR] 2.4 MSps

LTE Antenna Gain 8 dBi

Localization Channel Band 915.1 MHz

Figure 5.10: Experiments performed in straight North/South direction for its capacity to

drive three bikes and one emitter in a straight lane. Four different scenarios were evaluated

using the proposed localization technique.

to capture the GPS coordinate values of the emitter and sensor nodes. GPS Logger [111]

android utility was employed to capture GPS coordinates with periodic intervals of 10 Hz.

The I/Q sample measurements were performed using RTL-SDR software-defined radios and

the post processing was conducted on laptops running Linux. In the realistic prototype I/Q

samples captured by different radio-ends will be sent to the fusion center (FC). The fusion

center can process the data and generate real-time estimate of the location information.

The information can then be broadcasted back to the subscriber vehicles to mitigate GPS

errors or prevent attacks from malicious users. The laptops had i5 Intel processor with

eight cores and 3.41 GHz clock cycle running Ubuntu 20.04. The sensor node software was
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implemented using the librtlsdr library [112] where the radio locks to the emitter frequency

channel and logs the I/Q samples every 100 ms. The emitter node was implemented using

GNURadio library [113]. It generates a narrowband pulse and transmits it continuously over

the 915.1 MHz ISM band. The measurement samples collected by three sensor radios are

later combined in fusion center (single laptop) to generate output data. The measurements

are analyzed using Python NumPy package [114] and measurement plots are generated.

The timing drift caused by different sensor nodes is subtracted during post processing by

aligning the time-stamped I/Q samples with GPS coordinate logs. The RSSI values are

upsampled by the factor of ten to align the RSSI and GPS values for localization.

Figure 5.11: Raw estimated emitter trajectory, ground truth emitter trajectory, and trajec-

tory of the three sensors.

Table 5.2 describes the configuration parameters employed for the hardware testbed.

The narrowband sine pulse generated by emitter was centered around the 915.1 MHz ISM

band with a 15 Khz bandwidth and transmit power of eight dBm. The emitter flow-graph

implementation was done using GNURadio digital signal processing (DSP) framework [113].

The particular ISM band was chosen based on the spectrum measurement which showed

low interference levels in that particular geographical area.

The experiment was conducted in the parking lot of Worcester Polytechnic Institute,

Gateway campus in straight North/South direction. Figures 5.10 describes the venue of

experiment, where the total distance was 100 m marked by yellow line. We initially at-
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(a) Emitter configuration. (b) Localization Sensor configuration.

Figure 5.12: Localization testbed consisting of ADALM Pluto and RTL-SDR software-

defined radios along with smartphone which is equipped with GPS logger.

tempted to use rooted 4G LTE cellular phones as mobile emitter, but later cancelled this

plan due to adequate cellular access at the location. All three RTL-SDR software defined

radios had a sampling rate of 2.4 MSps around the emitter center frequency which is an

ISM band to intercept tone. The I/Q samples collected during the experiment were logged

as .csv file for post-processing. The LTE antennas were reinforced with low noise amplifier

(LNA) to boost the receiver sensitivity, especially at the edge of coverage. GPS locations

were continuously logged for each sensor and emitter with time-stamps to correlate with

the I/Q samples.

5.4.2 Localization Results

During processing, RSS measurements from RTL-SDR and location values from GPS

data loggers required resampling to ensure proper time alignment. The RSS measurements

were logged with the frequency of 1 Khz to reduce the effect of interference and multipath

in the measurements. During the experiment, we were observing the power spectral density

(PSD) of the emitter tone at 915.1 MHz and saw some unwanted signals at 914.3 and 915.8

Mhz which were filtered out during post-processing. The Ordinary Least Square (OLS)-

based RSS localization algorithm was used in order to compute the position estimates using

I/Q samples from the sensor nodes. The TDoA localization was not performed due to large
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timing errors incurred by the RTL-SDR dongle internal clock. The hardware experiment was

conducted in line-of-sight (LOS) conditions with considerable signal to noise ratio (SNR).

The SNR was greater than 20 dB for the entire experiment, as sensors were moving close

to the emitter.

Figure 5.11 describes the trajectory for the emitter and sensors, where latitude is on

x-axis and longitude is in y-axis. The estimated emitter values are overlayed over the figure

and we see the distance measurement error correlates to our simulation framework.

5.5 Chapter Summary

In this chapter, we implemented a comprehensive Python-based simulator framework

in order to evaluate and test custom localization methods and communication protocols.

We also proposed a hybrid RSS-TDoA localization approach which was implemented using

the simulation framework and was compared against baseline RSS and TDoA localization

techniques. We also conducted a small-scale field experiment using RTL-SDR and Pluto

software-defined radios for hardware validation. Our proposed approach enhances localiza-

tion in GPS-denied environments and detects phantom attack.
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Chapter 6

Research Achievements and Future

Work

The research achievements of this dissertation include a novel Bumblebee-based dynamic

spectrum access algorithm which was integrated into both 802.11p and C-V2X MAC layer,

and whose feasibility was demonstrated using software and hardware simulation frameworks.

The algorithm was enhanced with a memory, and two suitable models were evaluated based

on the vehicular network topology and the channel environment. The algorithm was also

implemented using a sofware-defined radio to obtain a realistic performance baseline.

6.1 Research Outcomes

In this dissertation, considerable achievements have been made in the area of dynamic

spectrum access applied to V2V platooning and C-V2X within a vehicular networking frame-

work. The achievements are summarized as follows.

• Novel Bumblebee-based DSA: The potential utility of a bumblebee- inspired

memory-based decision mechanism within a VDSA framework is demonstrated. Chan-

nel reward levels stored in memory are weighed against switch costs to decide whether

to stay on the current channel or move to a different channel. Channel reward infor-

mation is frequently updated in memory through periodic sampling, which provides
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vehicles with a more accurate estimate of the degree to which channels differ in their

quality for a given vehicular environment.

• Memory Enabled Bumblebee Algorithm: In this research vector, we presented

a framework for a memory-enabled bumblebee foraging algorithm for vehicular pla-

toon communications. The optimized unequal sampling allocation heuristic is pro-

posed to estimate the Channel Busy Ratio β with sufficiently high accuracy. The

unequal sampling instant allocation approach outperforms the equal sampling allo-

cation scheme with the proposed sub- optimal allocation heuristic. We have also

implemented two memory models that are integrated with the bumblebee for- ag-

ing algorithm to leverage available memory, which boosts the probability of the best

channel selection. Sliding window average and exponentially weighted moving aver-

age memory schemes are employed and their performance is compared against the

memoryless model. Different memory lengths and forgetting factors were used for

the SWA and EWMA schemes, respectively. The simulation results show the bum-

blebee algorithm with unequal sampling allocation heuristic provides higher accuracy

compared to the equal allocation scheme, especially in a scenario where the sensing

resources are scarce. We also evaluated our memory-enabled VDSA algorithm with

an open-source 4G/LTE testbed platform with full protocol stack for both E-UTRA

Node B (eNodeB) and user-equipment (UE). Specifically, we utilized the OpenAir-

Interface (OAI) LTE-Sidelink platform, which was designed for C-V2X applications.

Using a full-duplex radio architecture, i.e., simultaneously employing one radio chain

for C-V2X and another radio for sensing we demonstrated the novelty of our proposed

approach for vehicular C-V2X.

• Phantom Car Attack Detection Via Passive Opportunistic RF Localization:

In this work, we implemented a comprehensive Python-based simulator framework to

evaluate and test custom localization methods and communication protocols. We

also proposed a hybrid RSS-TDoA localization approach which outperform baseline

RSS and TDoA by significant delta. The performance evaluation was conducted

using our the simulation framework and was compared against baseline RSS and
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TDOA localization techniques. We also conducted a small-scale field experiment using

RTL-SDR and Pluto software-defined radios for hardware validation. The experiment

demonstrated the feasibility of our proposed hybrid localization approach using signals

of opportunity in a realistic multipath environment. Our proposed approach enhances

localization accuracy in GPS-denied environments and can detect phantom attacks.

6.2 Future Work

Based on the research contributions presented in Chapters 4 and 5, potential future

work in this field is as follows.

• First, we will explore a holistic memory model that can adapt to different time-varying

conditions. The model parameters can be tuned by employing machine learning. A

new heuristic can also be investigated where γ can be dynamically adjusted based

on the sampling instants and CBR variations of the channels. Finally, we would like

to perform over-the-air tests of the proposed algorithm using software-defined radio

(SDR) testbed technology.

• Second, we will also conduct an on-road study with full-duplex radios mounted on cars.

We will compute the optimal switching cost and switching cost evaluation interval for

urban and highway scenarios. The on-road study will conducted using C-V2X, which

is a widespread networking technology for V2V. The MAC layer of OpenAirInterface-

5G will be modified to perform scheduling assignment on sub-carrier level. Both

radios will be equipped with full-duplex capabilities and will perform off-network

V2V communication.
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Appendix A

Appendix: Channel Busy Ratio

Modeling

A.1 binomial based channel occupancy.py

Listing A.1: Binomial Distribution based Channel Busy Ratio

import time

from matplotlib import pyplot as plt

import numpy as np

import pandas as pd

from scipy.stats import bernoulli, binom

totaliter = 20

t = np.arange(totaliter)#

K = 2 # total number of channels

Nc = 10

plist = [0.3,0.1,0.8]

runs=10000

channeliddx = np.argmin(plist)

zlist = [0,1,2]

test = []

for z in zlist:

probchanest z 1 = np.zeros((totaliter,runs))
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for r in range(runs):

sumnk = np.zeros((K,),dtype=int)

channelestimate = np.zeros((totaliter, K))

for iteration in range(len(t)):

nk = np.zeros((K,),dtype=int)

if iteration== 0:

nk = (Nc//K)*np.ones((K,),dtype=int)

sumnk = sumnk+nk

for i in range(K):

CBR = bernoulli.rvs(plist[i], size=sumnk[i])

channelestimate[iteration, i] = CBR.mean()

probchanest z 1[iteration,r] =

(np.argmin(channelestimate[iteration,:],axis=0) == channeliddx)

else:

np.nan to num(channelestimate[iteration-1],copy=False)

temp = channelestimate[iteration-1, :]#previous beta estimate

for tap in range(len(temp)):

nk[tap] =

np.floor(((1/(temp[tap]+0.001))**z)/

(np.sum(np.divide(1,(temp+0.001))**z))*Nc)

while np.sum(nk)>Nc:

all positive = (nk>0).nonzero()

ind=np.random.randint((len(all positive),1))

nk[ind]=nk[ind]-1

nk[nk<0] = 1

while np.sum(nk)<Nc:

ind=np.random.randint((len(nk),1))

nk[ind]=nk[ind]+1

sumnk = sumnk+nk

for i in range(K):

CBR = bernoulli.rvs(plist[i], size=sumnk[i])

channelestimate[iteration, i] = CBR.mean()

probchanest z 1[iteration,r] =

(np.argmin(channelestimate[iteration,:],axis=0) == channeliddx)

test.append(np.mean(probchanest z 1,axis=1))
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plt.figure(figsize=(10,8))

plt.title('Beta Values = [0.1,0.3,0.8], N=6, l=2')

plt.plot(test[0], '--k', linewidth=2.0, label='z = 0')

plt.plot(test[1], '--gs', linewidth=2.0, label='z = -1')

plt.plot(test[2], '--bd', linewidth=2.0, label='z = -2')

plt.plot(test[3], '--r<', linewidth=2.0, label='WIA')

plt.plot(test[4], '--yˆ', linewidth=2.0, label='MWIA')

plt.xlabel('Number of Iterations', fontsize=16)

plt.ylabel('Probability of Selecting Best Channel', fontsize=16)

plt.grid()

plt.legend(loc='lower right')

plt.axis('tight')

plt.savefig('./weighted moving average 1.jpg')

A.2 cbr analytical evaluation.m

clear;

clc;

% close all

tic;

load('/home/ksgill/Desktop/Publications/IEEE-Access-2/Simulation/Matlab/data/

cbr all car den 3.mat')

runs=10000; % parallel in time

iterations=10;% in time

chosen channel= cell(3,1);

N=10;% no of sensing moments

channel width=4;

real beta all = cbr all car density 3(:,101:200)';

%% Bumblebee variables

bumblebee estimated channel cbr = zeros(length(real beta all), 3, channel width)

;

bumblebee est beta = zeros(10000,4);

for rb=1:length(real beta all)

real beta = real beta all(rb,:);
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[~,chosen indx] = min(real beta);

zlist=[-2];%[0,-0.5, -1, -2, -5, -8, -10];% for 0- equal allocation, positive

values should work

% [chosen channel{1},chosen channel{2},chosen channel{3},chosen channel{4},...

% chosen channel{5},chosen channel{6},chosen channel{7},...

% chosen channel{8},chosen channel{9},chosen channel{10}] = deal(zeros(runs,

iterations));

[chosen channel{1},chosen channel{2},chosen channel{3}] = deal(zeros(runs,

iterations));

for z=1:length(zlist)

beta est=zeros(runs,iterations,length(real beta));

sum k=zeros(runs,iterations,length(real beta));% cummulates k over

iterations

sum Nl=zeros(runs,iterations,length(real beta));% cummulates N l over

iterations

for r=1:runs

for i=1:iterations

if i == 1

Nl=round(N/length(real beta))*ones(1,length(real beta));

% possibly sum does not meet N - randnomly add or remove one

% sample till N is met

while sum(Nl)>N

all positive=find(Nl>0);

ind=randi(length(all positive),1);

Nl(ind)=Nl(ind)-1;

end

while sum(Nl)<N

ind=randi(length(Nl),1);

Nl(ind)=Nl(ind)+1;

end

for l=1:length(real beta)

if Nl(l)>0

instant k=sum(rand([1 Nl(l)])<real beta(l));

else

instant k=0;

end

sum k(r,i,l)=instant k;
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sum Nl(r,i,l)=Nl(l);

end

else

beta est=squeeze(sum k(r,i-1,:)./sum Nl(r,i-1,:));

[~,ind2] = sort(beta est, 'ascend');

beta est(ind2(1)) = beta est(ind2(2));

if (z == 1)

Nl=round(N*(beta est+0.001).ˆzlist(z)/sum((beta est+0

.001).ˆzlist(z)));

elseif (z ==4)

betax = 1-beta est;

if sum(betax) == 0 | | ~isempty(betax(betax<0))

Nl= round(N/length(real beta))*ones(1,length(

real beta));

else

Nl= floor((betax*N)/sum(betax));

end

if (z == 1 | | z == 2)

Nl=round(N*exp(beta est*zlist(z))/sum(exp(beta est*

zlist(z))));

elseif (z == 3)

temp = squeeze(sum Nl(r,i-1,:));

Nl=round(N*exp(beta est*zlist(z).*temp)/sum(exp(beta est

*zlist(z).*temp)));

else

disp('Error\n\n\n');

return;

end

%Without- problem if beta est equals 0-> Inf or NaN

% two loops below: randnomly improve allocation so that number

% of samples is N.

while sum(Nl)>N

all positive=find(Nl>0);

ind=randi(length(all positive),1);

Nl(ind)=Nl(ind)-1;

end
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while sum(Nl)<N

ind=randi(length(Nl),1);

Nl(ind)=Nl(ind)+1;

end

for l=1:length(real beta)

if Nl(l)>0

instant k=sum(rand([1 Nl(l)])<real beta(l));

else

instant k=0;

end

sum k(r,i,l)=sum k(r,i-1,l)+instant k;

sum Nl(r,i,l)=sum Nl(r,i-1,l)+Nl(l);

end

end

end

instant est beta=squeeze(sum k(r,:,:)./sum Nl(r,:,:));

[~,ind]=min(instant est beta,[],2);

for iter=1:iterations

all min ind=find(instant est beta(iter,:)==instant est beta(iter,ind(

iter)));

if length(all min ind)>1

ind(iter)=all min ind(randi(length(all min ind),1));

end

end

chosen channel{z}(r,:)=ind;

bumblebee est beta(r,:) = instant est beta(10,:);

end

bumblebee estimated channel cbr(rb,z,:) = mean(instant est beta,1);

end

disp(rb);

end

c1 = [0, 0.4470, 0.7410];

c2 = [0.8500, 0.3250, 0.0980];

c3 = [0.4660, 0.6740, 0.1880];

c4 = [0.3010, 0.7450, 0.9330];

%% Bumblebee Plots
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bumblebee estimated channel cbr h1 = squeeze(bumblebee estimated channel cbr

(:,1,:));

bumblebee estimated channel cbr h2 = squeeze(bumblebee estimated channel cbr

(:,2,:));

bumblebee estimated channel cbr h3 = squeeze(bumblebee estimated channel cbr

(:,3,:));

return;

%%

linewidthc = 2.5;

figure(1);

hold on;

grid on;

plot(cumsum(abs(squeeze(bumblebee estimated channel cbr(:,1,1))-real beta all

(:,1))),'color',c1, 'LineWidth', linewidthc);

plot(cumsum(abs(squeeze(bumblebee estimated channel cbr(:,2,1))-real beta all

(:,1))), 'color', c3, 'LineWidth', linewidthc);

plot(cumsum(abs(squeeze(bumblebee estimated channel cbr(:,3,1))-real beta all

(:,1))), 'color' , c4, 'LineWidth', linewidthc);

h = legend('Equal Allocation','$H {3}~z = -4$','$H {4}~z = -4$');

h.NumColumns = 1;

set(h,'Interpreter','latex','FontSize',14);

title("N = 10, l = 4")

xlabel('Time');

ylabel('Cumulative Absolute Error | \beta {est}-\beta {real} |');

set(gca,"box","on","FontSize",20, "LineWidth", 1.5);

%%

toc;

hold on;

grid on;

hold on;

grid on;

plot([1:iterations],mean(chosen channel{1}==chosen indx,1),'-s','Color',c1,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{2}==chosen indx,1),'-o','Color',c1,'

LineWidth', linewidthc,'MarkerSize',8);



Chapter A 127

plot([1:iterations],mean(chosen channel{1}==chosen indx,1),'--k' ,'LineWidth', 2

.5);

plot([1:iterations],mean(chosen channel{2}==chosen indx,1),'-d' ,'Color',c3,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{3}==chosen indx,1),'-ˆ' ,'Color',c2,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{6}==chosen indx,1),'-<' ,'Color',c2,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{7}==chosen indx,1),'->' ,'Color',c2,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{8}==chosen indx,1),'-*' ,'Color',c4,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{9}==chosen indx,1),'-p' ,'Color',c4,'

LineWidth', linewidthc,'MarkerSize',8);

plot([1:iterations],mean(chosen channel{10}==chosen indx,1),'-h' ,'Color',c4,'

LineWidth', linewidthc,'MarkerSize',8);

axis tight

xlabel('Iteration');

ylabel('Probability of Best Channel Selection');

set(gca,"box","on","FontSize",20, "LineWidth", 1.5);

title(strcat('$l~=~',num2str(channel width),'~N~=~',num2str(N), '~\beta = $ [',

num2str(real beta),']'),'FontSize', 20, 'Interpreter','latex');

subtitle('$(H 1-Z {Heuristic},H 2-W {eighted}~I {nverse}~A {llocation},H 3-z {

exponent},H 4-z {exponent~with~variance})$','Color',[0.25,0.25,0.25],'

Interpreter','latex');

legendstr = strcat('$Equal Allocation','~H {3}~z = -4~', '~H {4}~z = -4$~');

legendstr = strcat('z=',string(zlist));

for i=1:length(legendstr)

if i == 1 | | i==2 | | i==3

if i ==3

legendstr(i) = 'Equal Allocation';

else

legendstr(i) = strcat('$H 1$: ',' z=(',num2str(zlist(i)),')');

end

elseif i == 4

legendstr(i) = strcat('$H 2$:','$WIA$');
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elseif i == 5 | | i==6 | | i==7

legendstr(i) = strcat('$H 3$:',' z=(',num2str(zlist(i)),')');

else

legendstr(i) = strcat('$H 4$:',' z=(',num2str(zlist(i)),')');

end

end

h = legend(legendstr);

set(h,'Interpreter','latex','FontSize',14);

t = [1:iterations];

indexOfInterest = (t <= 10) & (t >= 4); % range of t near perturbation

for i=1:3

signal{i} = mean(chosen channel{i}==chosen indx,1);

signal{i} = signal{i}(indexOfInterest);

end

% bestoneshort = max(best one,[],1);

axes('position',[.15 .15 .5 .5])

box on % put box around new pair of axes

hold on;

grid on;

plot(t(indexOfInterest),signal{2},'-d','Color',c3,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{3},'-s','Color',c2,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{1},'--k' ,'LineWidth', 2.5);

plot(t(indexOfInterest),signal{4},'-d' ,'Color',c3,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{5},'-ˆ' ,'Color',c2,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{6},'-<' ,'Color',c2,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{7},'->' ,'Color',c2,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{8},'-*' ,'Color',c4,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),signal{9},'-p' ,'Color',c4,'LineWidth', linewidthc,'

MarkerSize',8);
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plot(t(indexOfInterest),signal{10},'-h' ,'Color',c4,'LineWidth', linewidthc,'

MarkerSize',8);

plot(t(indexOfInterest),bestoneshort(indexOfInterest),'hr' ,'LineWidth', 2.5,'

MarkerFaceColor','r');

set(gca,"box","on","FontSize",20, "LineWidth", 1.5);

axis tight
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