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ABSTRACT 

 

Rotational atherectomy (RA) is a minimally invasive interventional procedure to remove 

the calcified atherosclerotic plaque from arteries, restore blood flow, and treat cardiovascular 

diseases. It uses a high-speed, metal-bonded diamond abrasive grinding wheel to pulverize the 

calcified plaque into absorbable debris via a catheter through the artery. The grinding wheel is 

driven by a long flexible shaft rotational up to 230,000 rpm. RA procedure has complications 

including peri-procedural myocardial infarction, stroke, vascular access complications, coronary 

dissection, abrupt vessel closure, and perforation. RA operational guidelines, including the 

grinding wheel size and rotational speed, have been investigated to lower complication rates.  

However, the guidelines are still lacking consensus, and there is confusion in the grinding 

mechanism of RA. Specifically, the material removing rate (MRR) of RA under different wheel 

sizes and rotational speeds is unclear. 

This study aims to investigate RA MRR over a range of grinding wheel sizes and 

rotational speeds based on a tissue-mimicking phantom. Three grinding wheel sizes, 1.25, 1.5, 

and 1.75 mm in diameter, and three-wheel rotational speeds, 120,000, 150,000, and 180,000 rpm, 

were investigated. A tissue phantom was 3D printed to simulate the diseased region of the artery 

with calcified atherosclerotic plaque. The surrogate for the calcified plague was made of gypsum 

plaster and inserted inside the tissue phantom. The MRR was presented as the luminal area gain 

and measured by microscopy and image processing. 

The increase of either the grinding wheel size or rotational speed leads to a higher MRR 

and luminal gain in RA. The highest MRR and luminal gain achieved in this study by a 1.75 mm 

diameter grinding wheel rotational at 180,000 rpm were 2.49 mm2/ three pass and 5.08 mm2, 
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respectively. And the lowest MRR and luminal gain produced by the 1.25 mm diameter grinding 

wheel rotational at 120,000 rpm were 0.59 mm2/pass and 1.22 mm2, respectively. During RA 

with the same grinding wheel at a constant rotational speed, with the increase of the number of 

grinding passes, the MRR decreases. This study provides a thorough understanding of the wheel 

size and speed effects on RA MRR and engineering insights for potential improvements in RA 

devices and clinical operational guidelines. 

 

 

Keywords: Material removal rate (MRR), Rotational speed, Rotational atherectomy, Calcified 

plaque grinding, Grinding wheel size, Tissue Phantom 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Atherosclerosis 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality, with 62 

million patients in the US [1, 2]. In 2017, 868,622 people died because of CVD in the US [3], 

and approximately 18.6 million people died due to CVD in 2019 globally [2, 3]. CVD leads to 

expenses on clinical treatment. Between 2016 and 2017, the total cost of CVD was $363.4 billion 

[3]. Atherosclerosis is the leading cause of CVD, including coronary artery and peripheral 

arterial diseases [4]. It thickens the arterial wall with the accumulation of fatty and calcium 

materials (also known as plaque), narrows the arterial lumen, and decreases blood flow into 

downstream tissues, depriving nutrition and oxygen for proper functions. Figure 1.1 presents the 

development of atherosclerotic plaque. Atherosclerosis begins with an increasing level of the 

circulating lipid in the bloodstream and the accumulations of foam cells in the intimal layer of 

the artery [5]. Then the necrotic core inflames in the walls of arteries and leads to fatty streaks. 

The fatty streaks and the fibrous plaque build continuously as the fibrous plaque grows on fatty 

streaks [6]. Next the tissue inside the fibrous cap calcifies and causes hardening and narrowing of 

the artery. 
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Figure 1.1 Progression of atherosclerotic plaque. (a) The normal vessel, which has the 

normal level of circulating lipid. (b) The fatty streak and lipid accumulated in the intima, 

macrophages engulf lipid and become foam cells. (c) The lipid, macrophages, and smooth 

muscle cells continued to accumulate, with other immune cells such as lymphocytes will be 

trapped in the fibrous cap. (d) The graph shows a stable fibro atheromatous plaque, the 

mixture of lipid, smooth muscle cells, necrotic core and the calcification of the tissue are 

separated by the fibrous cap from the lumen [7] (the original graph is from Cellular and 

Molecular Pathobiology of Cardiovascular Disease). 

 

 

1.2 Treatments of Atherosclerosis and Atherectomy 

 Atherosclerosis can be treated by applying medications and angioplasty. Medications 

such as statins and other cholesterol medications can effectively prohibit atherosclerosis from 

becoming progressively worse [8], but they cannot remove the pre-existing lesions, especially 

the hardened calcified lesion. For those complex lesion cases, percutaneous coronary 

intervention (PCI) can be applied to remove the calcified lesion and open the blocked artery [9].  

Angioplasty is a procedure used to extend the narrowed coronary arteries in the heart 

[10], as shown in Figure 1.2 The whole process involves coronary angioplasty and stenting. A 
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guidewire will be threaded through the diseased location once the obstructions is located. A 

balloon catheter will be placed at the center of the diseased area and inflated to widen the 

clogged artery [11]. A stent is expanded with the balloon dilation through the artery and 

implanted permanently at the diseased section to keep the artery open [11]. The atherosclerotic 

plaque is soft in the early stages, and angioplasty procedures can open narrowed arteries. 

However, with the development of atherosclerosis, the wall of the artery thickens, and fatty 

deposit inside the vessel wall is calcified and hardened. Eventually, the hardness of the calcified 

plaque will be similar to bone [12]. Treating those cases simply with the balloon and sent 

deployment can lead to severe complications because of the high pressure needs to defeat the 

stiff calcified lesions [13]. In this case, it is necessary to use the rotational atherectomy (RA) 

procedure to remove the calcified material and restore part of the elasticity of the lesion. 

 

  

Figure 1.2 Procedure of angioplasty. (a) The diseased artery with calcified lesion. (b) 

The balloon is inserted in the artery and inflated to expand the stent and narrowed artery 

wall. (c) The stent is implanted at the diseased section. 
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RA is an interventional procedure that is used for plaque ablation by a high-speed 

rotational, metal-bonded, diamond-abrasive grinding wheel driven by a flexible drive shaft [14]. 

As shown in Figure 1.3, a stainless-steel guidewire leads the wheel to move translationally, and a 

flexible coil shaft drives the wheel to rotate about the guidewire. The rotational shaft is contained 

within a stationary plastic sheath with saline flows through the sheath for lubrication and 

cooling. This device is most effective in removing complex inelastic lesions [15]. 

 

   

Figure 1.3 Rotational atherectomy procedure. 

 

RA was invented in 1988 for calcified lesions treatment [16]. With the development of 

alternative methods and due to its technique's complexity, the uses of RA decreased for a while 

[16]. However, the number of medical treatments performed by RA has increased in recent years 

due to the increasing application of drug-eluting stents and the aggressive treatment of longer 

lesions [16]. 
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RA has been troubled with several complications [16], including restenosis (the regrowth 

of plaque after removal), vessel dissection and perforation (relates to excessive grinding), and 

slow-flow or no-reflow (potentially caused by large debris blocking downstream capillaries).  

Table 1 shows the main RA complications types and rates.  

 

Table 1.1: Major complications and rates of RA [51, 52] 

RA Complications    Rates 

Myocardial infarction 1.2-1.3% 

Emergency CABG 1-2.5% 

Artery dissection 10-13% 

Abrupt vessel closure 1.8-11.2% 

Slow-flow phenomenon 1.2-7.6% 

Perforation 0.4-2% 

Severe spasm 1.6-6.6% 

 

 

 Associated with these complications is the lack of a consensus in RA operational 

techniques including the grinding wheel rotational speed and size selection. For example:  

Grinding wheel size selection: 

 

• Tomey indicates the max burr to artery (B/A) ratio (the ratio of the burr diameter to the 

artery inner diameter) is 0.5 to 0.6 [17].  

• Sharma indicates the maximum B/A ratio is 0.4 to 0.6 [18]. 
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• P.L. Whitlow [18] and R.D. Safian [19] suggest the B/A ratio should be of 0.7.  

 

RA rotational speed: 

 

• Tomey suggests the rotational speed of RA should between 140000 to 150000 rpm [17]. 

• Experts in Europe recommend 135000 to 180000 rpm as the optimal range of wheel 

rotational speed [20]. 

• Paula Mota indicates the lower rotational speed of 130000 to 160000 rpm can ensure both 

the success rate and the safety of the RA procedure [21].  

 

Several engineering studies have been conducted on RA to understand its grinding 

mechanism including grinding force [22-25], temperature [26-28], debris size [29], wheel motion 

[30-32], wheel design [33-35], and abrasive cutting mechanics [36]. However, the plaque 

material removal rate (MRR) in RA still lacks investigation. A clinical study evaluated the effect 

of low (120,000 rpm) or high (220,000 rpm) grinding wheel rotational speed effect on the RA 

MRR, but was not able to obtain a conclusive result [37]. Another study also investigated two 

grinding wheel speeds (110,000 and 190,000 rpm) via both engineering bench-top setup and in 

vivo human subjects and found low-speed RA could achieve a higher MRR [38]. These two 

studies demonstrated the clinical interest in RA MRR, but were not sufficient to provide a 

thorough understanding of the wheel rotational speed effect on the RA MRR, due to the limited 

number of speeds under evaluation. 
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1.3 Study Goal and Objectives 

The goal of this study is to understand the grinding wheel rotational speed and wheel size  

effect on RA MMR. To achieve this goal, three research objectives are listed as following: 

 

1) Establish setup and experimental method for MRR investigation.  

2) Understand the grinding wheel rotational speed effect on RA MRR.  

3) Understand the grinding wheel size effect on RA MRR.  

 

In this study, a tissue phantom was designed and used as the calcified plaque surrogate, 

and RA was performed. Three different grinding wheels (1.25, 1.5, and 1.75 mm in diameter) 

were tested under three different rotational speeds (120,000, 150,000, and 180,000 rpm). The 

MRR was presented as the change of the luminal area per three passes. The plaque surrogate 

specimen was characterized by microscopy and image processing. The detailed experimental 

setup and methodology are introduced in Chapter 2; the results are presented in Chapter 3; an RA 

MRR model analytically derived is discussed in Chapter 4; the conclusions and future study are 

presented in Chapter 5. 
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CHAPTER 2 

 

EXPERIMENTAL SETUP AND METHODS 

 

2.1 Experimental Setup 

The Rotablator™ Rotational Atherectomy System (Boston Scientific, MA) was used in 

this study. As shown in Figure 2.1, the RA grinding wheel, via a flexible shaft, was driven by an 

air turbine. The wheel rotational speed was controlled by a pressure regulator that can adjust the 

compressed air pressure applied to the air turbine. The translation of the grinding wheel was 

controlled by a motorized linear stage. The grinding wheel, at the tip of the catheter, was 

introduced through a 3 mm inner diameter sheath into a PVC tube, simulating the femoral 

access. The PVC tube, as part of the arterial simulator, had blood-mimicking water pumped 

through at a rate of 30 mL/min, to simulate the blood flow in the coronary artery [32]. The PVC 

tubes were connected to the tissue phantom which simulated a diseased narrowed coronary artery 

with calcified plaque.  

   

Figure 2.1 Experimental setup. 
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The sizes of the grinding wheel applied in this study were 1.25, 1.5, and 1.75 mm. During 

the test, the grinding wheel moved translationally through the calcified plaque surrogate within 

the tissue phantom at a speed of 1 cm/s back and forth, as shown in Figure 2.2. 

 

  

Figure 2.2 Grinding wheel moves translationally through the tissue phantom. 

 

 

2.2 Tissue Phantom 

The tissue phantom, as designed in Figure 2.3, was printed by Connex3 Object 260 multi-

material 3D printer. It consists of two different materials. Polypropylene material (marked in red) 

served as the base structure to support the phantom. The rubber material marked in blue (Tango 

Black Plus, Stratasys), which has the similar tensile strength as coronary artery wall according to 

previous studies from Garcia-Herrera and Claes [52, 53], was coated on the polymer base to 

simulate the soft arterial wall. The rubber helped to seal the tissue phantom and prevent leakage. 

When testing, the plaster stacks were inserted into the tissue phantom, and the two parts of the 
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phantom were pressed together ensure the gapless contact among the plaster disks. The plaster 

disks served as the calcified plaque surrogate and have the thickness of 3 mm. The inner and 

outer diameter of the plaster disk were 2 mm and 12.8 mm, respectively. Five plaster disks were 

stacked together with the inner holes aligned with the 3D-printed rubber-coated channel and 

placed inside the tissue phantom. When testing, the grinding wheel moved translationally 

through this aligned channel with the speed of 1 cm/s back and forth; after grinding, eight 

surfaces of the five disks were examined under the microscope to qualify the cross-sectional area 

change. The two surfaces on the end of the plaster stacks were excluded from the examination 

for contacting the rubber surfaces. This device allowed us to simulate the diseased artery with 

calcified lesion and made it easy to measure the lumen diameter. 

 

 

Figure 2.3 Tissue phantom design with (a) overall and (b) inner dimensions (unit: 

millimeter) and materials, and (c) assembly with graphite plaque surrogate with (d) surfaces 

for microscopic characterization for MRR marked in red.  
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2.3 Calcified Plaque Surrogate 

Different calcified plaque surrogates have been applied in the previous studies for 

benchtop tests. For example, Raiders [39] and Tzafriri [40] used the plaque specimens harvested 

from cadavers in their experiment to investigate the treatment efficacy; Robert S [41] utilized the 

human ex-vivo calcified plaque to evaluate the efficacy of a percutaneous treatment; Kawase 

[42] used different sizes of calcium tubes that were made of calcium sulfate dehydrate to test the 

effectiveness of the scoring balloon catheter in expanding. Riel used plaster tubes with different 

thicknesses as models to test the efficacy of a scoring balloon catheter and a conventional 

balloon catheter. 

Currently, there is no commonly accepted engineering or animal model to replace the 

calcified plaque. For engineering benchtop tests, both inorganic and biological materials have 

been used as calcified plaque surrogates in the previous studies. Those materials are listed as 

below: 

 

• Biological materials for calcified plaque surrogate include bovine bone [43], CPL800 

AND CPL 1000 series [44]. 

•  Inorganic calcified plaque surrogates include plaster [45], cement [46], calcium tube 

[42], mixture of plaster and animal tissues [47], and graphite. 

 

Ultracal-30, as a plaster material, has been proven to be effective in simulating calcified 

plaque. Several studies have suggested that the plaster made by Ultracal-30 is a suitable material 

that can be used as the replacement of human calcified plaque. Scott’s study investigated this 
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topic. In his experiment, various materials were evaluated for the composition compared to 

human calcified plaque, including plaster, cement, plaster mixed with porcine blood, cement 

mixed with gelatin, cement mixed with porcine blood, and plasma [47]. A mostly rigid and 

visibly calcified human plaque was used as the reference standard when measuring the hardness 

of those materials. Penetration speed test was used to determine the hardness of the material. 

Among all those five materials, only plaster satisfied toughness, ease of preparation, and catheter 

damage evaluation standards. This indicates that the bare plaster has similar mechanical 

properties as human cadaver calcified plaque [47]. Besides, Robert S. identified the plaster 

(made by Ultracal-30) as an analog that has comparable mechanical properties (hardness, 

stiffness, and density) to femoral artery calcified plaque samples [48].  

Mold casting is commonly used to fabricate calcified plaque surrogates from Ultracal-30.   

In this study, as shown in Figure 2.4, a three-steps procedure based on 3D printing has been 

developed to fabricate the calcified plaque surrogate specimen that were previously introduced in 

Figure 2.4 (d).   

Step 1: Flexible silicone mold (FSM) design and fabrication  

Considering the brittleness of the plaster and the specimen geometry as a thin disk 

(Figure 2.3 (d)), an FSM was developed to facilitate the demolding. The FSM was designed to 

fabricate eight specimens in one batch, as shown in Figure. 2.4 (a) (CAD model using the same 

blue color to introduce the design). Steel rods can be inserted into the wells to create channels for 

simulating the arterial lumen.     



 
 

22 
 

  

Figure 2.4 Procedure of modeling calcified plaque surrogates: (a) FSM. (b)Transection of a 

hole on silicone mold. (c) Insert ϕ2 mm rods into the holes on silicone mold. (d) Pour the 

Ultracal-30 mixture into the silicone mold. 

 

 

  

Figure 2.5 Rigid mold for FSM: (a) CAD and (b) 3D printed part by Object 260. 
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To mold silicone for FSM fabrication, a rigid mold was 3D printed by Object 260 

(Stratasys, MN), as shown in Figure 2.5 (b). Before silicone molding, a coating (Smooth-On, 

Universal Mold Release) to facilitate demolding was applied on the inner surface of the rigid 

mold. Mold Star 30 (produced by SMOOTH-ON) was selected for silicone modeling. Solutions 

A and B were mixed in the volume ratio of 1:1 and poured into the rigid mold, cured for 2 hours 

in the pressure pot at 60 psi. The FSM is shown in Figure (2.4 (a)).  Steel rods of 2 mm diameter 

were inserted into the FSM, as shown in Figure (2.4 (c)), to create the lumen.     

Step 2: Ultracal-30 casting in FSM 

The Ultracal-30 powder, mixed with water in a weight ratio of 38:100. The Ultracal-30 

mixture was poured into the FSM. The FSM with Ultracal-30 mixture was placed inside a 

pressure pot (2.64 Gallon (10 Liters), TCP Global Commercial) at 60 psi pressure for 1 hour to 

collapse the bubbles for uniform and consistent specimen properties. 

Step: 3: Post processing of the specimen 

The casted specimens were removed from the FSM and the steel rods were punctured out 

to form the lumen. The casted specimens were then inserted into a specimen finishing fixture 

(SFF) to clean the casting flash and gain accuracy in thickness. The SFF design is shown in 

Figure 2.6 (a), and 3D printed by Object 260, with PVC material. When inserted, the casted 

specimen has extra 2 mm thickness on the top for abrasive polishing. Sandpaper was used to 

polish the top surface of specimen. This post-processing process is shown in Figures 2.6 (a) and 

(b). 
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Figure 2.6  The main post processing process for calcified plaque surrogate: (a) Insert the 

specimen in to SFF. (b) Polish the surface by using sandpaper and remove the 2 mm thick 

edge on the top of specimen. 

 

2.4 Experimental Design 

We investigated the RA MRR under three grinding wheel rotational speeds in this 

experiment: 120,000, 150,000, and 180,000 rpm. Three sizes of grinding wheels (1.25, 1.5, and 

1.75 mm in diameter) were tested. The cross-section area of the plaster specimen lumen on the 

eight surfaces was measured in every three passes. The mean and standard deviation of the cross-

sectional luminal gain and MRR for eight surfaces (1b,2a,2b,3a,3b,4a,4b,5a, shown in Figure 2.3 

(d)) were calculated. Each trial was tested for three times to ensure the repeatability of the 

experiment.  

 

2.5 MRR Measurement via Image Processing  

The specimens’ luminal gains after RA grinding were measured by a microscope, the 

magnification during imaging was maintained constant across specimens, enabled by the same 



 
 

25 
 

thickness (As show in Figure 2.6 (a)). A series images of the specimen cross-sectional area with 

the increasing grinding passes is shown in Figure 2.6 (b). At the same magnification, and at the 

same height of the specimen, a ruler was imaged for pixel size calibration.  

The image processing software ImageJ (version 1.52a) developed by the National 

Institute of Health) was applied in this project to measure the luminal area of each cross-

sectional surface. For each rotational speed 120,000, 150,000, and 180,000 rpm, after every three 

passes of grinding, the eight surfaces mentioned above (Figure 2.6 (d)) were measured under a 

microscope for cross-sectional area quantification. As shown in Figure 2.7 (a), the lumen can be 

identified as the darker region on the microscopic image.   

To identify the luminal region, thresholding was adjusted to 13.86%.  The number of 

pixels in the luminal area were calculated. The pixel size was calibrated with the ruler image to 

be 360 pixels/mm. Figure 2.7 (b) shows an example series of microscopic images, demonstrating 

the luminal gain over 15 grinding passes at an interval of 3 passes at the grinding wheel speed of 

180,000 rpm.  

 

 

Figure 2.7 Image processing of (a) a microscopic imaging of the cross-section lumen on the 

plaster specimen and luminal pixel thresholding imageJ and (b) the cross-sectional area 

increase over 15 passes at a rotational speed of 180,000 rpm. 
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To quantify the RA MRR, we considered measuring the change of the cross-sectional 

luminal area an optimal method, comparing to the mass change characterization for the following 

reasons:  

 

1. The plaster is a porous material that can absorb water, which is going to complicate the 

measurement.  

2. Direct measure of the lumen diameter using calipers is challenging because oftentimes 

the ground lumen turned out to be non-circular due to the gravity effect of the grinding 

wheel and the bending of the guidewire.  
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CHAPTER 3 

 

RESULTS 

  

 Figure 3.1 shows the luminal gain after 15 passes of grinding at different grinding wheel 

sizes and rotational speeds. The black dashes on top of each bar are the standard deviation of the 

data. At the rotational speed of 120,000 rpm, the luminal gains of the samples corresponding to 

the grinding wheel sizes 1.25, 1.5, and 1.75 mm are 1.22, 2.22, and 3.64 mm2. The 

corresponding area changes at the rotational speeds of 150,000 rpm are 2.25, 2.73, and 4.48 

mm2. The luminal gain at 180,000 rpm of different grinding wheels sizes are 3.14, 3.57, and 5.09 

mm2. The detailed results on luminal gain at different grinding wheel rotational speeds and sizes 

are summarized in Table 3.1. An analysis of variance (ANOVA) model of one group of test 

result was calculated to indicate that the grinding wheel speeds and sizes do control the RA 

MRR, as shown in Table 3.1.  

 

  

Figure 3.1 Luminal gain of samples at different grinding wheel sizes and rotational speeds. 



 
 

28 
 

Table 3.1 Luminal gain at different grinding wheel rotational speeds and sizes after 15 

passes of RA 

 

Grinding wheel diameter [mm] 

1.25 1.5 1.75 

Grinding wheel 

rotational speed 

[rpm] 

120,000 1.22 ± 0.013 2.26 ±0.012 3.14 ± 0.009 

150,000 2.22 ± 0.011 2.74 ± 0.009 3.57 ± 0.011 

180,000 3.64 ±0.013  4.48 ±0.011 5.09 ±0.010 
 

 

The uncertainties above may come from the bending of the guidewire, bouncing of the 

grind wheel, specimen defects, and the thresholding of the image processing.  

 

Table 3.2 Two-factor ANOVA model of MRR at different grinding wheel speeds and sizes 

for one group of test result 

Anova: Two-Factor Without Replication    

       

SUMMARY Count Sum Average Variance   
120000 rpm 3 2.47684 0.825613 0.289002   
180000 rpm 3 7.00723 2.335743 0.064446   
150000 rpm 3 5.31548 1.771827 0.147905   

       
1.5mm 3 4.64217 1.54739 1.05252   

1.25mm 3 4.04738 1.349127 0.528251   
1.8mm 3 6.11 2.036667 0.291783   

       

       

ANOVA       
Source of 

Variation SS df MS F P-value F crit 

Speeds 3.493814 2 1.746907 27.80651 0.004502 6.944272 

Wheel sizes 0.751411 2 0.375706 5.980318 0.062809 6.944272 

Error 0.251295 4 0.062824    

       

Total 4.49652 8     
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3.1 Grinding Wheel Rotational Speed Effect on Luminal Gain and MRR 

Figure 3.2  shows the rotational speed effect on luminal gain and MRR. The standard 

deviation of each experiment was also presented in the figures as error bars.   

 

 

 

 

 

 



 
 

30 
 

 

 

 

Figure 3.2 Luminal gain and MRR change with the increase of the grinding passes at three 

rotational speeds of 120,000, 150,000, and 180,000 rpm using the grinding wheel diameter 

of (a) 1.25, (b) 1.5, and (c) 1.75 mm. 
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For the same grinding wheel size, both luminal gain and RA MMR increase with the 

rotational speed. At the same grinding wheel size and the number of pass, the higher rotational 

speed leads to larger luminal gain and MRR. With the increase of the number of passes, the 

MRR decreases at any given grinding wheel rotational speed and size.  

 

 

3.2 Grinding Wheel Size Effect on Luminal Gain and MRR  

Figures 3.3 (a – c) show the grinding wheel size effect on luminal gain and MRR. The 

standard deviation of each experiment was also presented in the figures.   
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Figure 3.3 Luminal gain and MRR change with the increase of the grinding wheel 

sizes at three rotational speeds of 120,000, 150,000, and 180,000 rpm using the grinding 

wheel diameter of (a) 1.25, (b) 1.5, and (c) 1.75 mm. 
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As shown in Figure 3.3 (a – c), for the same rotational speed, both luminal gain and RA 

MMR increase with the increasing of the grinding wheel sizes. At the same rotational speed and 

pass value, the larger grinding wheel size corresponds to larger luminal gain and MRR.  With the 

increase of the number of passes, the MRR decreases at any given grinding wheel rotational 

speed and size.  
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CHAPTER 4  

 

DISCUSSION 

 

In this discussion, an analytical model of RA MRR was derived based on the analogy 

between RA. Due to the lack of a thorough understanding of the RA grinding mechanism, the 

proposed model was not able to fully capture the experimental data. However, we hope this 

discussion could lead to a deeper understanding of the RA MRR and the model can be improved 

when more data available on RA grinding is in the future.    

 

4.1 Analogy between RA and Constant Force Grinding  

The grinding wheel motion of RA cannot be actively controlled due to the lack of 

stiffness in this RA system with the long, a flexible drive shaft was required to navigate through 

the tortuous arterial path.  Most of the MRR models from the conventional grinding or 

machining with a fixed spindle of high stiffness, capable of achieving defined workpiece and 

grinding velocities and the depth of cut, are not applicable to RA. Instead, considering the 

grinding wheel orbital motion [32] induced centrifugal force, we find RA analogous to the 

constant force grinding processes, for example the belt grinding and hand polishing.   

As shown in Figure 4.1, in belt grinding (Figure 4.1 (a)) and hand polishing (Figure 4.1 

(b)) processes, the contact force, relatively constant, is controlled by the operator. This constant 

contact force between the workpiece and the grinding/polishing tool is a key factor affecting the 

MRR in these processes.  Similarly, in RA (Figure 4.1 (c)), according to the grinding wheel 

motion study conducted by Zheng et al [32], the grinding wheel at a constant rotational 

frequency (Ω) within the blood flow in the artery will develop an orbital motion, looping around 
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the arterial lumen at a constant orbital frequency (ω), which will lead to a constant centrifugal 

force, Fc, on the grinding wheel supplied by the contact between the grinding wheel and the 

arterial wall. This centrifugal force in RA, comparable to the manual applied contact force in 

constant force grinding, determines the MRR with the grinding velocity.  

 

 

Figure 4.1: The analogy between constant force grinding and RA: (a) a constant force 

applied from the operator’s hand to the workpiece-belt grinder contact, (b) a constant 

force applied in manual polishing, and (c) the orbital motion induced centrifugal force 

applied from the RA grinding wheel to the plaque for grinding.   Fc is the centrifugal force 

generated by wheel orbital motion. R is the radius of the arterial lumen. r is the radius of 

the grinding wheel. Ω and ω are the grinding orbital and rotational frequency, respectively. 

 

4.2 MRR Modeling in Constant Force Grinding  

MRR models in constant force grinding, for example the belt grinding, have been 

developed. Hamann et al. proposed an analytical model [49]:  
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                                              𝑀𝑅𝑅 =  𝐶𝐴𝐾𝑡𝑘𝑡
𝑉𝑏

𝑉𝑤𝐿𝑤
𝐹𝐴                                                  (4.1) 

where CA is MRR grinding process constant, kt is constant of resistance of the workpiece with 

grinding ability of the belt, belt wearing factor kt, grinding rate Vb, feed-in rate Vw, machining 

width Lw. And normal force FA. 

Preston’s [50] fundamental polishing equation is similar to Hamann’s analytical model, 

which states that MRR of a grinding process is related to the relative velocity Rv and polishing 

pressure, P. The equation is shown as follows: 

 

                                                         𝑀𝑅𝑅 = 𝐶𝑃𝑅𝑣                                                          (4.2) 

 

where C is a parameter determined by each polishing system. Both models indicate the velocity 

and the normal force are proportional to the relative grinding velocity and normal force.  

 

4.3 RA MRR Model  

Based on the aforementioned analogy between RA and the constant force grinding, as 

well as the analytical models developed for belt grinding, an analytical model for RA can be 

developed. The contact force in RA, as shown in Figure 4.1 (c), is the centrifugal force induced 

by the grinding wheel orbital motion, which can be described in the equation below: 

 

                                                                 𝐹𝑐 = 𝑚(𝑅 − 𝑟)𝛺2                                                              (4.3) 
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where m is the mass of grinding wheel, R and r are the radius of the arterial lumen and the 

grinding wheel, respectively.   

According to Zheng’s study [51], the RA grinding wheel orbital frequency is proportional 

to its rotational frequency:  

 

                                                                  𝛺 = 𝑎𝜔                                                                                (4.4) 

 

where 𝑎 is a constant.  

Substituting Ω in Equation 4.3 by Equation 4.4, the contact force can be calculated based 

on the grinding wheel rotational speed as:  

 

                                             𝐹𝑐 = 𝑚(𝑅 − 𝑟)𝑎2𝜔2                                                         (4.5) 

 

As shown in Figure 4.1 (c), the grinding wheel rotational and orbital directions are the 

same. The relative velocity between the abrasives on the grinding wheel and artery wall V is the 

addition between the grinding wheel surface speed and the grinding wheel linear speed due to 

orbital motion, which can be calculated as: 

 

                                              𝑉 = 𝜔𝑟 + 𝛺(𝑅 − 𝑟)                                                         (4.6) 

 

According to the MRR model in constant force grinding [61, 62] (Equation 4.2), with 

Equations 4.5 and 4.6 integrated, the RA MRR can be modeled as: 
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                             𝑀𝑅𝑅 =   [𝑟 + 𝑎(𝑅 − 𝑟)](𝑅 − 𝑟)𝑎2𝜔3𝑚                                         (4.8) 

 

To validate this model, we examined the MRR at the first grinding passes when R = 2 

mm, the initial value is a constant across different grinding wheel rotational speeds and sizes.  

Figures 4.2 and 4.3 were plotted based on the data from experiment result, which is plotted and 

compared with formular (4.8) to see if they have the same trend.     

 

 

Figure 4.2: MRR for different grinding wheel at rotational speed of 120,000, 150,000 

and 180,000 rpm. 
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Figure 4.3: MRR at different rotational speeds for different grinding wheel sizes of 

ϕ1.25, ϕ1.5 and ϕ1.75 mm. 

 

As can be observed in Figure 4.2, at a constant grinding wheel diameter, even though the 

MRR increases with the rotational speed, the rate of the MRR increase drops at the higher 

rotational speed. This cannot be explained by the model shown in Equation 4.8 where MRR is 

governed by the third order of the rotational speed. Similarly, at a constant grinding wheel 

rotational speed shown in Figure 4.3, the relationship between MRR and the wheel size is not 

well captured by Equation 4.8.   

We realized that the analogy between RA and constant force grinding has limitations.  

During constant force grinding, the contact between the workpiece and the grinding tool is 

maintained throughout the process. However, during RA, due to the flexibility of the drive shaft, 

once the grinding wheel contacts the plaque material, the grinding forces will push the grinding 

wheel away from the arterial wall.  It is the hydraulic force from the blood flow that drives 
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grinding wheel back in contact with the arterial wall. And again, the grinding wheel will be in 

contact with the arterial wall, generating grinding forces, and bounce away. This grinding wheel 

bouncing effect, also known as discontinuous grinding in RA, has been observed and introduced 

by Zheng et al [22]. Accordingly, besides contact force and relative velocity, in RA, the 

frequency of the grinding wheel bouncing on the arterial wall is the third factor affecting the 

MRR. This bouncing frequency is complicated by the grinding wheel rotational speed, grinding 

forces, and the hydrodynamic force from the blood flow and has not been well investigated.  

Without this bouncy frequency, the RA MRR model cannot be reliably developed.   

Besides the lack of understanding in RA grinding wheel bouncing frequency, the luminal 

radius, R, is increasing with the number of grinding passes. To fully capture the RA MRR, a 

mathematical description of the luminal gain over time is required as well. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE STUDY 

 

5.1 Conclusions  

RA is an interventional procedure that utilizes a high-speed grinding wheel driven by a 

long, flexible shaft to pulverize calcified atherosclerotic plaque inside arteries, restore blood 

flow, and treat cardiovascular diseases. RA has been studied extensively from both clinical and 

engineering perspectives, but still challenged by high complication rates and confusions in 

operational guidelines. This thesis studied the MRR in the grinding of calcified plaque by RA. 

Experiment methods and procedures were developed to investigate the effects of the grinding 

wheel rotational speed and size on RA MRR. In this experiment, the calcified plaque surrogate 

and a tissue phantom were designed and built to simulate the diseased artery. Three rotational 

speeds (120,000, 150,000, and 180,000 rpm) and three grinding wheel diameters (1.25, 1.5, and 

1.75 mm) were tested for MRR evaluation. The major achievements of this thesis include: 

 

(1) Design and fabrication of the tissue phantom. A tissue phantom was designed to mimic 

the human artery. The material selection of the tissue phantom is the most challenging 

process in this study. Since the water was circulated through the whole system, the tissue 

phantom should be well sealed to prevent water leakage. The tissue phantom surface 

coating material should be flexible to simulate the surrounding healthy tissue and reduce 

the damage caused by the rotational abrasive wheel. Excessive grinding and material loss 

at the entrance of the tissue phantom would cause deviations of the simulated 

physiological boundary conditions, resulting in grinding wheel entrapment or unstable 
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motion. The rubber material used in our experiment can effectively prevent being worn 

out by the grinding wheel. Moreover, the geometric design of the tissue phantom makes it 

easier to exchange the samples compared to other tissue phantom structures from 

previous studies. 

(2) Design and fabrication of calcified plaque surrogates. Previous studies have investigated 

the suitable surrogate that can mimic the human calcified plaque. Some studies used 

biological materials, but the modeling process is hard to replicate. The material selected 

in our study, Ultracal-30 plaster, is widely available with a mechanical property proven to 

be suitable for calcified plaque simulation. The procedure of calcified plaque surrogate 

fabrication using Ultracal-30 has been developed using soft silicone mold casting.  Our 

proposed procedure can be readily adopted and adapted for different geometries for other 

studies and purposes.  

(3) Engineering bench-top test setup for MRR quantification. The bench-top test setup 

developed in this study can capture key features of the physiological conditions for RA 

operation, including the atherosclerotic lesion, arterial path, and blood flow. RA 

operational guidelines can be individually controlled for engineering investigation.  

Comparing to animal, cadaveric, or human subject models, this proposed setup is more 

suitable for quantitative analysis.   

(4) Quantification of the RA MRR. Together with the design of the calcified plaque 

surrogate and tissue phantom assembly, a microscopy and image processing-based 

approach was developed to quantify the RA MRR. Considering the small amount of 

material removed during RA, we believe this is an optimal method for RA MRR 

quantification.  
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The discoveries and key conclusions of this thesis are: 

 

1) The luminal gain and MRR increase with the grinding wheel size at a given wheel 

rotational speed.  

2) The luminal gain and MRR increase with the grinding wheel rotational speed when the 

same size grinding wheel is used. 

3) During RA, at the same grinding wheel speed and size, the MRR decreases with the 

increase of the number of grinding passes.    

 

These findings provide insights in the RA grinding mechanism and operation. These 

results are new to the clinical field, even though they might be intuitive to mechanical 

engineering and grinding society. The RA MRR was only investigated in two previous studies 

[37, 38] which were not able to reach any conclusive results.   

The results in RA MRR observed in this study could lead to improvement of RA clinical 

guidelines and device design. In clinical practice, RA has time limits: each grinding process 

cannot exceed 30 s and the total operation time should not exceed five minutes [54]. Higher 

MRR can be beneficial to RA in terms of efficiency. However, to optimize RA clinical 

guidelines for optimal outcomes, besides MRR, the grinding wheel size and speed effects on 

grinding force, temperature, and debris size need to be considered.  
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5.2 Future Work 

The methodologies and models proposed in this thesis could be further improved and 

extended in the following directions: 

 

(1) With the method developed in this thesis, a wider range of grinding wheel rotational 

speed and size could be investigated to gain more data on RA MRR. Beyond RA, the 

MRR for other similar grinding-based atherectomy, including the orbital atherectomy, 

can be characterized.  

(2) This study focused on two most important RA operational guidelines, grinding wheel 

rotational speed and wheel size. Other factors, including the grinding wheel 

translational speed and pattern can be further investigated, even though clinical 

guidelines in this regard have been relatively consistent.   

(3) The bench-top test and tissue phantom design captured the main physiological 

conditions in RA operation but still were simplified with the straight artery and 

regular cylindrical lumen. Future studies can take the arterial curvature and irregular 

lumen surface morphology into consideration.  

(4) In the discussion of this thesis, an analytical model of RA MRR was attempted by not 

validated by the experimental data due to missing information in RA grinding 

mechanism. With a more thorough understanding of the RA grinding wheel motion 

and force in the future, an improved analytical model based on constant force 

grinding can be developed to explain the RA MRR.  
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