
A Card-based Detective Game Editor

A project proposal for the MS in Interactive Media & Game Development at WPI

By Qihuan Aixinjueluo

Advisor: Jennifer deWinter

Readers: Dean O’Donnell, Jennifer Rudolph, Wenhua Du

Abstract

Games are an expression of the cultural

context form which they are made. For this

project, I was interested in developing a

Chinese detective game genre, which

focused on a scholar interviewing and

judging from a place of interviewing. In

order to create such games, I made a “Card

Detective Editor,” a system that supports

game designers and developers in designing

their own detective games which an

emphasis on interviewing and formula

creation. This report provides an overview

of this editor and early user testing of the

system. Data from the testing indicates that

the tutorial structures and editor provide the

necessary support for game designers

interested in Chinese detective games to

design their own dynamic narratives.

Introduction

In Chinese famous detective stories

like Di Renjie [1] and Jutice Bao [2], the

protagonists are government officers. They

functioned as judges by interrogating related

people and getting secondhand information

from assistant officers. Tiejun Lin also

claimed that in ancient China, judicial

inspections were usually committed by

secretariats or slaves and reported in detail

to the officers in charge [3]. That provided

me the insight that it would be a different

experience for players if they can only read

and organize information to solve crime

cases. This is different from Western

detective narratives, which ask detectives to

go to different locations and people,

interview, and sometimes fight.

My goal was to create an editor and

game catalog that focused on this culturally-

centered Chinese detective narrative

structure. Thus, for this project, I designed

and developed an editor that is suitable for

making Chinese-content, card-based

detective game. My design goal for the

editor is allowing developers both with and

without programming experience to

implement their story into a card-based

detective card game especially suitable for

Chinese narrative content. In the games,

players need to organize and cards in a

logical way to solve crime cases. A short

sample game was made and implemented in

the tutorial of the game editor, helping

developers understand the usage of the

game editor by guiding them to build the

sample game step-by-step.

Background

There are many detective games on the

market. Take famous Ace Attorney [4] series

as an example, which marries detective

research with courthouse drama from a

Japanese perspective. In detective games,

players are often asked to collect

information, solve cases, and show the

process of their reasoning.

Different detective games apply

different mechanics to let players show their

thoughts. A straightforward game mechanic

to do this is using a sequence of multiple

choices. But there are also some unintended

consequences of this: the questions and

choices may give out the answers; players

can also get the answer by exhausting all

provided choices.

These drawbacks prevent players from

thinking answers on themselves. A better

practice is used in game Detective Grimoire

[5], in which players need to select correct

words and put them in a right sentence to

show their reasoning. I decided to adapt this

mechanic to design my game editor to

include a way to organize cards. I modeled

Detective Grimoire and built my formula

system. Players need to select the right

formulas and put right cards in it to

complete a sentence and show their thoughts

on the case.

In addition to computer games, the

market also has a number of detective card

game, which use cards to play the primary

role in the narrative and puzzle. So far, most

detective games on the market are board

games such as Sherlock Holmes: The Card

Game [6] and Detective: A Modern Crime

Board Game [7]. In these board games, part

of the information is given to the players in

the form of playing cards. I decided to use

cards as the basic units of my game too

because cards have moderate amount of

information on them can be arranged easily

so that they work well with the experience

of organizing information.

Zhai [8] considered favorability as

indirect resource that can be exchanged and

a method of power reproduction in Chinese

context. So, I think favorability is a suitable

Chinese element that I can integrate in my

game design. Based on that, I built my

favorability system, making players try to

balance their relationship with multiple non-

player character organizations. The card

game Reigns [9] gives me a lot of insight in

this part. Reigns is a card-based narrative

game with a very good slice of the

experience of balance. Reigns asking

players to act as an emperor balancing

different attributes of a country by making

decisions.

There are some game engines on the

market focusing on narrative games. Some

of them requires coding skills from

developers like BK engine [10]. Twine [11]

is a good example of game engines made for

non-programmers. I also designed my editor

to not require programming skills from

developers by using condition cards to keep

track of all the conditions. However, neither

of these engines cleanly support and

promote a Chinese narrative structure of

collecting information and inferring

conclusions based on complex relationships.

What became apparent in this project was

that I would need to build my own editor,

because unsurprisingly, engines reflect the

cultural assumptions and ideologies from

which they are built.

Twine also allows developers to

arrange passages around the screen

according to their needs without altering the

underlying logic [12]. This idea meets my

need in the game session of allowing

players to organize information. In playing

session, I also allowed players to drag and

drop cards as they need. So that players can

put cards they think relative together or

arrange cards according to their logic. Emily

Short also pointed out that stories written in

Twine had their unique structure [13]. That

indicated that my editor also requires stories

in unique structure to work. Mia and Dan

discussed the difference between a more

specific game engine with general game

engine like Unity. They claimed that a more

specific game engine sacrifices flexibility

for more rapid developing process [14].

That can be applied to my editor too. My

editor has the limitation of can only being

used to make a very specific kind of game.

On helping developers with

understanding the logic of an unfamiliar

game engine, Chover, Marin, Rebollo, and

Remolar [15] has done an ideal model work

for me. They have developed a simplified

2D game engine. In their work, they also

used a visualized behavior tree to avoid

coding requirements of their developers.

Another insight in their work that they try to

make their algorithm very consistent. They

realize all their logic by controlling actors.

When they need to test whether there are 3

Actor 1 in a row, instead of using loop, they

try to ask their developers to create a new

actor and move along all space to find

whether there are 3 Actor 1 in a row. This

practice greatly reduces the learning time of

the developers by using the same concepts

for as much mechanics as possible in the

engine and avoiding introducing new

concepts. In my editor design, I also tried to

make some supportive functions such as

dialogs and conditions in the form of card to

keep the consistency.

Engine overview

The editor organizes information in the

form of cards (see Figure 1 for the logic of

the card types). The developers’ jobs are to

build a deck of cards with relationship to

each other and put all information on cards.

Based on their functions, I divided them into

7 different types: character, organization,

clue, condition, formula, dialog and ending

(see Table 1 for a full explanation of each).

For example, characters related to the case

will be shown as character cards which will

includes name and description. Likely clue

cards are clues and inferences related to

games. Also, some more abstract concepts

will also be in the form of cards like dialogs

and endings. All of the cards should be

made by developers to form a game. I will

cover the abstract cards in more details in

later sessions. To provide contrate examples

when I explain the specific components of

the game editor, I will briefly introduce my

sample game Find the robber.

Figure 1: Structure of Card Types

Table 1: Card Types/Functions and

Developer Abilities

Character card

• Name and description about an in-game

character

• Developers specify character name,

organizations, description, card image

and condition card.

Clue card

• Name and description about a clue

related to the case

• Developers specify clue name,

description, card image, and condition

card.

Organization card

• Name, description, members of an

organization related to the case.

• Developers specify organization name,

description, card image, and condition

card

Condition card

• A functional card used as intermediary

between player behaviors and new cards

• Developers specify condition elements

and the change of organization

favorability.

Formula card

• An interactable card with an incomplete

sentence, used for players to arrange

their card based on logic

• Developers specify condition card, text

prompts, amount and type of card it

asks for.

Dialog card

• A functional card includes the

information of a dialog. Triggers dialog

box in game instead of given to players

as a card

• Developers specify condition card,

content, character, and whether there is

a question asking for a card.

Ending card

• A functional card includes the

information of a possible ending.

Triggers an ending scene in game

instead of given to players as a card.

Developers specify condition card,

ending text.

Example Game: Find the Robber

Find the robber is a brief sample game

I made as an evidence of the working editor

and built in my editor tutorial. I will use it

as an example to talk about what the game

is like and how the developers should do to

build it.

The sample game is a short story about

an old man was robbed on the road and he

did not know who the robber is because he

was knocked down from behind. The robber

took away the old man’s package and a

passerby ran after and caught the robber.

However, when people came to them, a

young man and a woodcutter accused each

other to be the robber. Players will play the

role of a government officer in charge of the

case and need to use observation and

interrogation to find the real robber.

The right solution is when player ask

both suspects, they will both claim they are

innocent, and they catch the other. Player

will also find the young man to be very

exhausted. It is not likely that the young

man with worse stamina can catch the

woodcutter. So, the player can tell the young

man is the robber. It might not be a good

detective story with perfect logic, but we

can explore most of the mechanics of the

editor with this example.

Potential conditions

There are four kinds of conditions that

players can potentially trigger with their

actions. The conditions will be checked and

taken care of by the game editor. Every time

players do something that might trigger

conditions, the game will check whether any

condition preset by the developers is met. If

so, the game editor will trigger next steps. I

will explain the four correspond actions that

might trigger conditions one by one in this

section and explain how to preset conditions

in the follow section of condition cards and

elements.

 Using Formulas

Using formulas means players put

cards in their hand in some certain

incomplete sentences to make them

meaningful to show their reasoning. The

incomplete sentences are called formulas.

For instance, one of the formulas in the

sample game is called “ask for detail” which

writes “If I want to know more about the

case, I should ask”. It is an incomplete

sentence with a blank (I call it slot in the

editor), asking player to fill a character card

to complete it. If the player put “young

man” character card in it, it becomes a

meaningful sentence means player’s

character ask young man for more

information. To allow players to use a

formula in game, developers should build a

formula card with the prompt and slot on it

and cards that can be potentially put in the

formula. Figure 2 is the user interface (UI)

that will be used to build a formula card.

The formula system is built because

when using formula system, questions might

not be necessary for the game progression to

promote. Questions themselves might give

out the answers. Choosing correct formula

also provide players with more challenges,

requiring them to really understand what

happened in the cases. Also, formula system

is the mechanic I designed for developers to

create an ancient Chinese detective

experience of organizing information.

 Finishing Dialogs

Finishing dialogs means the game

shows players a piece of dialog and players

finish reading them. Some dialogs are with

questions and ask players for some certain

cards. When the sample game approaches

the end, the old man will ask players who is

the real robber. And players are supposed to

show him the character card of the young

man as the answer. To make it possible for

players to finish a dialog, a dialog card is

needed (a character card and an optional

condition card needed for a dialog card may

also be needed). All dialogs in game are also

cards made by developers. Instead of being

given to players’ hands, dialog cards will

trigger corresponding dialogs on the bottom

of the screen. Developers should specify

who the dialog is with, what the content is,

and whether there is a card required from

Figure 2: Build formula card

interface

players. Figure 3 is the UI that will be used

to build dialog cards. Dialogs with questions

are necessary when developers are trying to

build a detective game with longer process.

Developers might want check players’

progression at some points of the games.

Also, integration is also an important part of

the cases solving in ancient China [3],

having dialog system can recreate the

experience.

 Passing time

Developers of detective games might

want see players try solving the cases

instead of trying out all options. Passing

time is a system that players used to prevent

players from overmuch trying. Every time

players try to fulfill a formula, no matter

they do it correct or wrong, time will past by

one. In the sample game, players will have

five units of time to solve the case. Time

pass will be taken care of by the game editor

automatically.

 Changing favorability

Favorability is the value I used to

strengthen the Chinese context. Developers

are expected to create incentives for players

to maintain good favorability level with all

organizations. Changing favorability is a

little more complex, it stands for an

organization’s favorability towards players’

character is changed. Players might trigger

favorability increase or decrease as a result

of other actions. It is both a result of

behaviors and a behavior itself. I will cover

it in the following section on conditions.

Conditions cards and condition

elements

Condition cards and condition elements

are the tools I provided developers to check

players’ behaviors and give feedbacks.

Behaviors themselves are not enough for a

game loop. Developers still need some way

to tell the game editor what behaviors they

are expecting and what reactions should the

game gives players as feedbacks.

To achieve this goal, I introduced the

concept of condition cards and condition

elements. Condition cards are abstract cards

that only help developers to set up the

interaction of cards and cannot be viewed

by players in their playing session.

In Twine, conditions are set by some

text-based scripts. And players interact with

the conditions by picking provided choices.

The condition card method I am introducing

here can set conditions by making and

choosing cards which make the process

more consistency with other parts of the

game development.

Developers can specify a condition

card for every card. When a card is specified

a condition card, it will not be given to the

player until the condition card is triggered.

Every possible player behavior can trigger

correspond condition element. Take the

sample game as an example: when players

ask young man for more information. A clue

card called “young man’s statement” will be

given to players. So, the condition element

here is use young man character card to

complete the formula “ask for more detail”.

Any condition card can record up to 3

condition elements, the relationship among

Figure 3: Build dialog card

interface

which can be defined by developers as

“alternative” or “necessary”. “Alternative”

means the condition card will be triggered if

any of the condition element is met (as

shown in Figure 4), while “necessary”

means the condition card can only be

triggered when all the condition elements

are triggered (as shown in Figure 5).

If developers want to give the card “young

man’s statement” to players once players

asked young man, developers should make a

condition card called “ask young man for

detail” with only the above condition

element on it. As a result, when players

filled the “ask for detail” formula with the

character card young man, the condition

card will be triggered. Then the developers

can make the card they want to reward

players for their correct behavior, in this

case, the “young man’s statement” card and

specify the “ask young man for detail” as its

condition card. At this point, the “young

man’s statement” card will be hidden at the

beginning of the game and shown to player

when players try to finish “ask for detail”

formula with “young man” character. The

logic of using condition cards to given new

cards is summarized as Figure 6.

The basic logic of the game editor is

that developers only set prerequisite for

condition cards and regular cards when

making them without worrying about what

the cards will trigger. For example, when

developers want to build a condition card,

they set condition elements that will trigger

the condition cards. They do not have to set

what cards will be given to players at this

time yet. Likely, when developers make a

formula or a dialog, they do not worry about

what condition cards the dialog or the

formula will trigger. In sample game, when

developers build the “ask for detail” formula

card, they do not know what cards can

possibly work with it. When they make the

“ask young man for detail” condition card,

they do not worry about what cards will

specify it as their condition card either. For

all cards, developers only need to set when

it is triggered or should be given to the

players.

Figure 6: logic of giving

feedbacks on player actions

Figure 5: Necessary structure

Figure 4: Alternative structure

Introducing condition cards and

condition elements provides developers with

the potential to make complicated logic.

Triggering of a condition card can work as a

condition element of another condition card

so the condition card can be nested, forming

an “alternative” (or “necessary”) structure of

more than 3 condition elements. Figure 7

shows a structure of nested condition cards.

Changing of favorability is also an

affiliated function of the condition card.

When a condition card is triggered,

favorability of organization will be changed

as defined.

Figure 8 is the UI that will be used to

build dialog cards.

Other mechanics

The editor also allows developers to

share their work with players on other

devices. Developers can export their work.

The exported game file can be recognized

and run on any other device with the editor

on it.

Method for evaluating

usage of the game editor

The goal of the evaluation is to see

whether participants can understand the

working logic of the game editor and

implement their story in mind into a card-

based detective card game. The culture

content can be tested in future research.

The research was held via zoom. 4

university level students are invited to

participate in the test. They aged from 22 to

25. Two of them are male and two of them

are female. I personally invited them based

on the consideration of their previous

experience with programming languages

and game development.

One of them has both game-making

experience and programming skill. One only

has game-making experience, one only has

programming language skill, and one has

neither.

Based on learning the usage of a new

game editor is challenging already. All of

them are speakers of Chinese with some

experience with Chinese narrative. I hope

this research can focus more on the usability

of the card system. Participants were asked

to share their screen with me in the whole

process so I can see what they were doing

great or struggling with.

At the beginning of the test, I asked

whether the participants have previous

experience in game making or programming

language skills.

Then they were asked to follow the in-

game tutorial to build the sample game Find

the robber. The process took around 30

minutes.

Figure 7: Nested condition cards

Figure 8: Build condition card

interface

The tutorial step by step walks the

players through the development of Find the

robber. Developers are asked to build 19

cards. In the tutorial there are 3 character

cards, 4 dialog cards, 2 formula cards, 3

clue cards and 1 ending card. The tutorial is

made up with 154 tips in the form of

floating text boxes showing the developers

to build the game step by step. The tutorial

also explains the logic of condition cards,

dialog cards and ending cards. The tutorial

is designed to explain the working logic of

the card system and familiarize developers

with the editor by giving them some

firsthand experience.

Participants were asked to play with the

game they just made to understand players’

side of view of the game. That cost about 5

minutes. After that, they were asked to build

another simple game with their own

imagination. The process took 20 minutes to

60 minutes based on what game the

participants try to make.

 Finally, we had short interviews about

their experience, their difficulties, and

suggestions. The interviews took around 10

minutes.

Here are the questions covered in the

interviews:

• Please describe the story of the game

you trying to build in the game editor, as

detailed as possible.

• Do you feel you have to change some

content of your story to make it adapt to

the format of card game? Please

describe.

• Are there any functions or cards type

you think would make editor more

convenient to use if added?

• Is there any simple logic they want to

realize but it takes them excessive

repetitive work for you to implement?

• Have you realized that condition cards

can be nested to create more complex

logic?

Optional questions included:

• I found you stopped at process ****,

what problem you have met?

• I found you never made ****, why not?

• What is the most difficult part for you to

understand?

• I can now explain that to you, do you

feel the tutorial showed the right

process?

Results and Discussion

3 of 4 testers finished the task of

making a small level of detective game

using my editor and their own story.

From the test I learnt that the tutorial

did a great job on showing participants how

to use the condition cards to make an

interactive level. When following along

with the tutorial, they all said they found

things making sense at some point. Two

(one without any programming skills or

game development experience) of them

immediately understood how to use

condition cards to create conditional events

in game and 3 of them have noticed the

possibility of nesting multiple condition

cards to create more complex logic.

The result shows the editor is usable

for developers without previous experience

of programming or game development.

However, the test also revealed some

problems of the existing tutorial system.

The tutorial lacks marks of progression,

while the process is long and repetitive for

participants. Two of the participants

expressed they are upset about the overlong

tutorial. They cannot get any feedback

during the develop process. Given the

complexity of learning a new game editor, I

think the existing components in the tutorial

are necessary for developers and hard to be

reduced significantly. One possible solution

is to have a progression UI in the tutorial

system, letting them know how much work

is left.

The tutorial does not emphasize the

logic that every card should only be

specified with prerequisites instead of

consequences. One participant got confused

about whether condition cards should know

what cards will be given to the player on its

triggering. This problem can be solved by

rephrasing the logic more clearly. The

conditional mechanics is the core part of the

editor design. Developers cannot create

interactive experience unless they

understand the logic of condition cards and

elements.

Some problems with the editor also

showed up during the tests:

In the editor, especially the scene used

to build condition cards, there can be three

to four layers of forms popping up, asking

for different information. For example,

when developers try to build a using

formula condition element, a form will pop

up ask for which kind of condition element

are you making. Then, a form will pop up

ask for which formula are you going to use.

Finally, a form will pop up ask for what

answer are you expecting in the formula.

That can be confusing for the developers

still learning how to use the game editor.

This problem can be solved without hurting

its current ability to meet the goal of

building a card-based detective game by

designing a flatter UI layout. For example, it

might be better if the form asking for which

formula can be placed next to the form

asking for which kind of condition element

and have some lines to guide develops’ sight

instead on the top of it.

One tester mentioned that for formulas

and dialogs with questions, developers can

only make conditions for predicted answers.

It could be hard for developers to make

conditions for all the not specifically

predicted (in most of the cases, if I want the

game to react to all wrong answers in a

certain way, it would be very difficult).

Detective games usually need general

feedbacks to all wrong answers, and I also

need to build an easier way to implement

that in games. A possible solution to this

problem is that I can add a “not” structure

besides the “alternative” and “or” structures

in the condition card building scene. The

“not” structure only accepts one condition

element, when the element is triggered, the

condition card will be not triggered. When

the element is not triggered, the condition

will be triggered.

When a mistake is made during the

development. It can be too much trouble for

developers to fix it. A tester found that if a

card is built incorrectly all its dependent

cards need to be deleted and rebuild. For

example, when a condition card is checking

whether a formula is used correctly but the

formula card is deleted, the condition card

will be voided automatically and require a

completely remake. That problem decreases

the editor’s usability to build detective

games. A solution to this is I can mark the

dependent cards as inactive when their

depended cards are deleted and allow

developers to go back to their building

scene to just redo part of the work related to

the deleted cards.

Conclusion

Based on the research result, I believe

that the goal of allowing my users to

implement their story in mind into a card-

based detective card game is in process.

Developers are able to turn their detective

stories into detective card games using my

game editor. However, some functions I

provided are not very convenient to use and

require improvements.

The strengths of the program include

the following: The design of condition card

is the very core design of the editor. It

makes the editor harder to understand for

beginners, but it also increases the

consistency of the editor by making all

kinds of cards to use condition card to

control when they should be given to the

players. Also, the possible to nest condition

card opens the editor with far more

possibilities. For example, if I want a

condition card to be triggered when anyone

of a group of five condition elements is

triggered. I can make a condition card A to

hold 3 of them and use another condition

card B to hold other 2 of them and condition

card A. In that case, the condition card B is

the condition card I am looking for. The

consistency lowers the learning curve for

developers while the nested condition card

makes the editor be able to support a wider

range of detective stories.

Another strength is that the one

participant with no programming experience

can understand the working logic and use

the editor to build a card-based detective

game. That means the editor can also be

used by developers with no programing

skills.

In future developments, I should

provide some kinds of debugging approach

to developers to support the game engine.

For now, developers can only guess where

they did wrong if somethings work

differently from their expectation. I should

design and build a debugging system to help

developers to correct mistakes more easily.

For example, for now developers can not

see whether the condition cards and

condition elements are triggered as their

expectation. I can develop a mode letting

developers see whether the condition cards

and elements are triggered correctly.

In Chinese detective stories, officers

usually use bluffing as a method of

interrogation. The game editor right now

does not support developers to put more

creative detective methods in their detective

stories. I need to implement some

mechanics to provide developers with

bigger freedom of their stories.

Citations:

[1] van, G. R. H. (1976). Celebrated cases

of judge Dee = Dee goong an: An authentic

eighteenth-century Chinese detective novel.

Dover Publications.

[2] Ting, W. (1974). Longtu Gongan. Tianyi

Publications.

[3] Lin, Tiejun. (2016). On the Origin of the

Ancient Power of Judicial Investigation:

According to the Record of Qin and Han

Dynasty. Journal of Political Science and

Law, 2016(1),145-153.

[4] Ace Attorney (GBA version) [Video

game]. (2001). Capcom.

[5] Detective Grimoire(PC version) [Video

game]. (2014). SFB Games.

[6] Sherlock Holmes: The Card Game

[Board Game]. (1991). Schmidt Spiele.

[7] Detective: A Modern Crime Board Game

[Board Game]. (2018). Ignacy Trzewiczek.

[8] Zhai Xuewei. (2014). Favor, Face and

reproduction of power. Sociological Studies,

5, 48-57.

[9] Reigns (PC version) [Video game].

(2016). Nerial.

[10] BKEngine (PC version) [Software].

(2014). Bakerymoe.

[11] Klimas, Chris. (2014). Twine

[Software].

[12] Friedhoff, J. (2013). Untangling Twine:

A Platform Study. DiGRA Conference.

[13] Short, Emily. (2012, November 23).

Interview With Porpentine, author of

howling dogs. Emily Short's Interactive

Storytelling (blog).

http://emshort.wordpress.com/2012/11/23/in

terview-with-porpentine-author-ofhowling-

dogs/

[14] Consalvo, M., & Staines, D. (2021).

Reading Ren’Py: Game Engine Affordances

and Design Possibilities. Games and

Culture, 16(6), 762–778.

https://doi.org/10.1177/1555412020973823

[15] Chover, Miguel & Marín, Carlos &

Rebollo, Cristina & Remolar, Inmaculada.

(2020). A game engine designed to simplify

2D video game development. Multimedia

Tools and Applications. 79.

10.1007/s11042-019-08433-z.

