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Introduction: Motivation

I Safety is a fundamental requirement in critical applications.

I Safety is an especially challenging problem when sensors are
affected by faults and malicious attacks.

I Preventing the system from detecting and preventing safety
violations.

I Biasing estimates of the system state.

Figure: Safety failure due to sensor fault.1

1
Phil McCausland, Nov. 9, 2019, Self-driving Uber car that hit and killed woman did not recognize that

pedestrians jaywalk,
https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-did-not-recognize-n1079281
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Introduction: Problem Statement

How to design a control policy that guarantees that the system
remains in a safe region with a desired probability when one or
more sensor faults occur?
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Related Work

I Detecting sensor faults [Wang et al‘04] and attacks [Chang
et al‘18].

I Control Barrier Function(CBF) is proposed and used to
verify and enforce safety properties[Ames et al‘14].

I CBFs for stochastic systems [Clark 19], high relative
degree systems [Xiao et al‘19] and safe reinforcement
learning [Cheng et al‘19] are investigated.

I CBFs for scenarios with sensor faults and attacks have not
been considered.
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Contributions

I Propose a class of Fault Tolerant Control Barrier Functions
(FT-CBFs) for CPS with sensor faults.

I Derive sufficient conditions to ensure that safety is satisfied
with a desired probability.

I Compose CBFs with Control Lyapunov Functions (CLFs)
to provide joint guarantees on safety and stability of a
desired goal set under faults.

I Evaluate our approach via a numerical study. The
proposed control policy ensured convergence to a desired
goal set without violating safety in the presence of a sensor
attack.
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Preliminaries: System Model

Consider a nonlinear control system with state xt ∈ Rn, input
ut ∈ Rp and the observation yt ∈ Rq. The impact of the fault is
denoted by at .

dxt = (f (xt ) + g(xt )ut ) dt + σt dWt (1)

dyt = (cxt + at ) dt + νt dVt (2)

f : Rn → Rn Locally Lipschitz
g : Rn → Rn×p Locally Lipschitz
Wt ∈ Rn Brownian motion
Vt ∈ Rq Brownian motion
c ∈ Rq×n Observation Matrix
at ∈ Rq Impact of the fault
σt ∈ Rn×n Standard deviation
νt ∈ Rq×q Standard deviation

Table: Notation
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Preliminaries: Safety and Fault Model

Safety Model:
I The safe region of the system C ⊆ Rn defined by

C = {x : h(x) ≥ 0}, ∂C = {x : h(x) = 0} (3)

where h ∈ C2(C) : Rn → R. Assume that x0 ∈ int(C).
Fault Model:
I {r1, . . . , rm}: the set of possible faults.
I r ∈ {r1, . . . , rm}: the index of the fault.
I F(ri ) ⊆ {1, . . . ,q}: affected observations.
I Assume that F(ri ) ∩ F(rj ) = ∅ for i 6= j .

Figure: Illustration of safety model and fault model
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Preliminaries: Problem Formulation

I Problem Formulation:
Given a set C and a parameter ε ∈ (0,1),
construct a control policy: {yt ′ : t ′ ∈ [0, t)} → ut ,∀t , s.t.

Pr(xt ∈ C ∀t) ≥ (1− ε),

for any fault r ∈ {r1, . . . , rm}.
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Preliminaries: Assumptions

Define f (x ,u) = f (x) + g(x)u.
We assume that the system (1)(2) satisfy the conditions [Reif et
al‘2000]:

1. There exist constants β1 and β2 such that E(σtσ
T
t ) ≥ β1I

and E(νtν
T
t ) ≥ β2I for all t .

2. The pair [ ∂f
∂x (x ,u), c] is uniformly detectable.

3. Let φ be defined by

f (x ,u)− f (x̂ ,u) =
∂f
∂x

(x − x̂) + φ(x , x̂ ,u).

Then there exist real numbers kφ and εφ such that

||φ(x , x̂ ,u)|| ≤ kφ||x − x̂ ||22

for all x and x̂ satisfying ||x − x̂ ||2 ≤ εφ.
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Preliminaries: EKF

The Extended Kalman Filter (EKF) for the system (1)(2) is defined by

dx̂t = (f (x̂t ) + g(x̂t )ut )dt + Kt (dyt − cx̂t ),

where Kt = PtcT R−1
t and Rt = νtν

T
t . The matrix Pt is the

positive-definite solution to

dP
dt

= AtPt + PtAT
t + Qt − PtcT R−1

t cPt

where Qt = σtσ
T
t and At = ∂f

∂x (x̂t ,ut ).
Theorem 1 [Reif et al‘00]
Suppose that the conditions of Assumption 1 hold. Then there exists
δ > 0 such that if σtσ

T
t ≤ δI and νtν

T
t ≤ δI, then for any ε > 0, there

exists γ > 0 such that

Pr

(
sup
t≥0
||xt − x̂t ||2 ≤ γ

)
≥ 1− ε.
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Preliminaries: Control Barrier Function (CBF)

I CBF is used to guarantee safety constraints h(x) ≥ 0.
I Impose an affine constraint on the control at each time

step.
I Ensure that when h approaches the boundary, the the rate

of increase dh
dx decreases to zero.

I Hence, If the system is initially in the safe set and satisfies
the CBF for all time t, then safety condition will be satisfied
for all time
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Preliminaries: SCBF

Theorem 2 [Clark‘20]
For a system (1)–(2) with safety region defined by (3), define

hγ = sup {h(x) : ||x − x0||2 ≤ γ for some x0 ∈ h−1({0})}

and ĥγ(x) = h(x)− hγ . Let x̂t denote the EKF estimate of xt , and
suppose that there exists a constant δ > 0 such that whenever
ĥ(x̂t ) < δ, ut is chosen to satisfy

∂h
∂x

(x̂t )f (x̂t ,ut )− γ||
∂h
∂x

(x̂t )Ktc||2

+
1
2

tr
(
νT

t K T
t
∂2h
∂x2 (x̂t )Ktνt

)
≥ −ĥ(x̂t ). (4)

Then Pr(xt ∈ C ∀t | ||xt − x̂t ||2 ≤ γ ∀t) = 1. We call a function h
satisfying (4) a Stochastic Control Barrier Function (SCBF).
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Proposed CBF Construction: Strategy

Figure: The case of one-fault-pattern observation

I If there is one fault pattern, then we can just exclude the
affected sensors from the estimation process and use a
CBF constraint.
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I If there is one fault pattern, then we can just exclude the
affected sensors from the estimation process and use a
CBF constraint.
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Proposed CBF Construction: Strategy

Figure: The case of m-fault-pattern observation

I If there are m fault patterns, then we can maintain m state
estimates x̂t ,i : i = 1, ...,m, each excluding sensors
affected by one fault {1, ...,m} \ F (ri), and have a
corresponding CBF constraint for each.

I The problem that arises is: what if there is no control input
that simultaneously satisfies the CBF constraints? This
can be viewed as a conflict between the estimates.
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Proposed CBF Construction: Strategy

The state estimates may appear in three forms

Figure: The state estimates have a single control input that ensures
safety for both

I To enable detection, we may use the estimators of
unaffected or pruned sensor sets x̂t ,i,j : i < j , each of which
omits all sensors affected by either fault ri or fault rj for
some i , j ∈ {1, . . . ,m}. These estimators are used to
remove conflicting constraints.
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Proposed CBF Construction: Strategy

The state estimates may appear in three forms

Figure: The state estimates are far enough from the boundary that
the system can prioritize the more ”critical” one

I To enable detection, we may use the estimators of
unaffected or pruned sensor sets x̂t ,i,j : i < j , each of which
omits all sensors affected by either fault ri or fault rj for
some i , j ∈ {1, . . . ,m}. These estimators are used to
remove conflicting constraints.
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Proposed CBF Construction: Strategy

The state estimates may appear in three forms

Figure: The state estimates are far enough apart that the erroneous
estimate (estimate from faulty sensors) can be detected

I To enable detection, we may use the estimators of
unaffected or pruned sensor sets x̂t ,i,j : i < j , each of which
omits all sensors affected by either fault ri or fault rj for
some i , j ∈ {1, . . . ,m}. These estimators are used to
remove conflicting constraints.
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Proposed CBF Construction: Safe Control Policy

1. Attempt to select a control input that guarantees safety for
the fault pattern that estimates are close to each other. If
no such control input exists, then go to Step 2.

2. Prune constraints corresponding to x̂t ,i if ||x̂t ,i − x̂t ,i,j ||2
exceed a certain threshold value. If ut still cannot be found,
then go to Step 3.

3. Prune the corresponding constraints with the largest EKF
residue.

17 / 31



Proposed CBF Construction: Safe Control Policy

We compute the control input by following three steps:
1. Select ut satisfying all the constraints.

I Define Xt (δ) = {i : ĥi (x̂t,i ) < δ}, δ > 0. Let Zt = Xt (δ).
I Define a collection of sets Ωi , i ∈ Zt , by

Ωi ,

{
u :

∂hi

∂x
(x̂t,i )f (x̂t,i ,ut )− γi ||

∂h
∂x

(x̂t,i )Kt,ic||2

+
1
2

tr(νT
t,iK

T
t,i
∂2hi

∂x2 (x̂t,i )Kt,iν t,i ) ≥ −ĥi (x̂t,i )

}
. (5)

I Select ut satisfying ut ∈
⋂

i∈Xt (δ)
Ωi . If no such ut exists,

then go to Step 2.
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Proposed CBF Construction: Safe Control Policy

2. If x̂t,i deviates from x̂t,i,j by more than a threshold value, the
corresponding constraints Ωi need to be removed from the set of
constraints, since such deviations are likely to be due to faults. If
ut cannot be select, then go to Step 3.

Figure: An example to help illustrate step 2

3. Remove the indices i from Zt corresponding to the estimators
with the largest residue values until there exists ut ∈

⋂
i∈Zt

Ωi .
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Proposed CBF Construction: FT-CBF

Theorem 3
Define hγi = sup

{
h(x) : ||x − x0||2 ≤ γi for some x0 ∈ h−1({0})

}
and ĥi (x) = h(x)− hγi . Suppose γ1, . . . , γm, and θij for i < j are
chosen such that the following conditions are satisfied:

1. Define Λi (x̂t,i ) = ∂hi
∂x (x̂t,i )g(x̂t,i ). There exists δ > 0 such that for

any X ′t ⊆ Xt (δ) satisfying ||x̂t,i − x̂t,j ||2 ≤ θij for all i , j ∈ X ′t , there
exists u such that

Λi (x̂t,i )u > 0 (6)

for all i ∈ X ′t .

2. For each i , when r = ri ,

Pr(||x̂t,i − x̂t,i,j ||2 ≤ θij/2 ∀j , ||x̂t,i − xt ||2 ≤ γi ∀t) ≥ 1− ε. (7)

Then Pr(xt ∈ C ∀t) ≥ 1− ε for any fault pattern r ∈ {r1, . . . , rm}.
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Proposed CBF Construction: FT-CBF Construction

I The conditions of Theorem 3 are not guaranteed to hold,
and depend on the system dynamics, level of noise, and
the geometry of the safe region.

I We analyze for the following special cases for LTI systems
with dynamics

dxt = (Fxt + Gut ) dt + σdWt . (8)

I Half-plane Constraint with LTI System
I Consider constraints of the form h(x) = aT x − b
I In this case, ∇ĥi (x) = aT for all i and x , and Λi (x̂t,i ) = aT G.

I Ellipsoid Constraints with LTI System is described in the
thesis.
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Proposed CBF Construction: Half-plane Constraint
with LTI System

I Suppose aT G 6= 0, we can choose an index l ∈ {1, . . . ,p}
such that [aT G]l 6= 0.
I [u]s = 0 for s 6= l
I [u]l > 0 if [aT G]l > 0
I [u]l < 0 if [aT G]l < 0.
I Hence, we can choose u satisfying aT Gu > 0, the first

condition of FT-CBF.
I Suppose aT G = 0 and the system is controllable

I There exists a minimum i such that aT F iG 6= 0, since the
LTI system is controllable.

I We can choose an index l ∈ {1, . . . ,p} such that
[aT F iG]l 6= 0

I [u]s = 0 for s 6= l
I [u]l > 0 if [aT G]l > 0
I [u]l < 0 if [aT G]l < 0.
I A high relative degree half-plane constraint can be satisfied

with the desired probability.
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Joint Safety and Stability

I Stability Problem Statement:
Define the goal set G by G = {x : w(x) ≥ 0} for some
function w . The goal of the system is to asymptotically
approach the set G with some desired probability.

I Stochastic Control Lyapunov Functions: [Florchinger‘97]
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Joint Safety and Stability: CBF-CLF

I The policy is similar to the CBF-based approach, with
additional constraints to satisfy the stability condition. This
leads to another m linear inequalities.

I A controller that reaches a goal set defined by a function V
while satisfying a safety constraint C = {x : h(x) ≥ 0} can
be obtained by solving the optimization problem

minimize uT
t Rut

s.t. Λi(x̂t ,j)ut ≤ ωj ∀j ∈ Xt (δ) (CBF)
Γi(x̂t ,i)ut ≤ τ i ∀i ∈ Yt (V ) (CLF)

(9)

at each time step, where R is a positive definite matrix
representing the cost of exerting control.
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Case Study: System Model

For a reach and avoid task, consider a differential drive wheeled mobile robot (WMR),
with dynamics [ẋt ]1

[ẋt ]2
θ̇t

 =

cos θt 0
sin θt 0

0 1

([ωt ]1
[ωt ]2

)
+ wt (10)

I ([xt ]1, [xt ]2, θt )
T : the vector of the horizontal, vertical, and orientation coordinates for the WMR

I ([ωt ]1, [ωt ]2)
T (the linear velocity and the angular velocity around the vertical axis): the control input

I wt : the process noise.

Feedback Linearization [Chen et al‘20]:

I The controllable linearized model and the obsevation model with w
′
t : the process

noise, at : the impact of the attack and vt : the measurement noise.
[ẋt ]1
[ẋt ]2
[ẍt ]1
[ẍt ]2

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




[xt ]1
[xt ]2
[ẋt ]1
[ẋt ]2

 +


0 0
0 0
1 0
0 1

([ut ]1
[ut ]2

)
+ w

′
t (11)


[yt ]1
[yt ]2
[yt ]3
[yt ]4
[yt ]5
[yt ]6

 =


1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




[xt ]1
[xt ]2
[ẋt ]1
[ẋt ]2

 + at + vt (12)
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Case Study: Settings
Settings:

I There is one redundant sensor for the horizontal coordinate and one for the
vertical coordinate.

I The observation for the orientation coordinate θt is attack-free and noise-free,
which enables feedback linearization based on the variable θt .

I The WMR is initially in the safe region. It aims to reach the goal area without
entering unsafe region (e.g. black line).

I The adversary aims to drive the robot into unsafe region by spoofing its sensor
measurement with consistent bias (e.g. red line).

I The CLF: V (x) = (xt − xg)T Pd (xt − xg), parameter settings are in the appendix

Figure: Visualization of settings in case study
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Case Study: Numerical Results

The proposed algorithm was performed using Matlab.

(a) (b)

Figure: Evaluation of our proposed approach on a linearized wheeled
mobile robot model.
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Conclusion and Future Work: Conclusion

I Proposed a new class of CBFs for safety and stability of
stochastic systems under sensor faults and attacks.

I Constructed a CBF for each state estimator
I Proposed a scheme for using additional state estimators to

resolve conflicts between constraints
I Derived sufficient conditions for ensuring safety with a

desired probability
I Showed how to compose our proposed CBFs with CLFs to

achieve joint safety and stability under faults and attacks.
I Our approach was validated using MATLAB-based

numerical study.
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Conclusion and Future Work: Future Work

I Attacks that jointly affect sensors and actuators.
I Analysis under arbitrary geometries and nonlinear

dynamics.
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Proposed CBF Construction: Safe Control Policy

Figure: Safe control strategy flow chart
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