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Abstract: 
Individuals with physical impairments often need assistive devices such as reacher 

grippers to perform daily activities. Commercial reacher grippers can be difficult to use for 

individuals with reduced hand and wrist functionality. After evaluating these reacher grippers, a 

novel design was developed which decreases difficulties associated with using common reacher 

grippers. The design features electro-mechanical actuation to minimize the hand strength 

required to operate the device as well as forearm support to alleviate stress on the user’s wrist. 

Additionally, this design allows the claws to fully close in under one second. After performing 

electrical and mechanical analyses on the proposed design, a first generation prototype was 

manufactured. The device was subsequently tested for feedback and functionality by typical 

users with varying physical capabilities. Results indicated the device allows users to comfortably 

retrieve objects weighing up to four pounds from a distance of 32 inches away.  
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Chapter 1: Introduction 
 Throughout any given day, individuals must perform a multitude of tasks in order to live 

independently. These include such simple functions as walking up and down steps, using utensils 

for eating, and reaching to grab objects from a distance. It may be easy to overlook these 

activities among life’s complexities, but if the ability to complete any of these essential tasks is 

hindered, life can become notably more difficult. To help with such problems, assistive 

technology can be used to facilitate everyday living. Assistive technology may be defined as, 

“any product or service designed to enable independence for disabled and older people” (FAST, 

2015).  Individuals with physical or cognitive disabilities can use such technology to lead lives 

with reduced or no external assistance. 

 Physical disabilities are a particularly prevalent cause for assisted living and the use 

of assistive devices. According to the 2012 disability status report, over 40 million Americans 

(non-institutionalized) and roughly half of all Americans age 65 or older, were found to have 

either ambulatory, self-care, or independent living disabilities (Erickson et al., 2014). These 

categories of disabilities can cause difficulties walking, dressing or bathing, and carrying out 

daily errands. Specific disabilities of these kinds include arthritis, stroke, myopathy, tetraplegia, 

hemiplegia, peripheral neuropathy, cerebral palsy, Parkinson’s disease, multiple sclerosis, and 

many more. Any of these disabilities can lead to a unique set of problems, though many of the 

same daily tasks can be hindered by different impairments. 

 An individual with a physical disability may experience difficulty reaching and 

manipulating objects at various distances. People with impairments such as muscular atrophy or 

arthritis can have a limited range of motion, which may confine them to a narrow range of 

activities, or a lifestyle that requires caregivers. Assistive devices such as “reacher grippers” can 

alleviate some difficulties caused by these disabilities. More specifically, reacher grippers can 

increase an individual’s independence by increasing their effective range of grasp. This allows 

them to carry out daily tasks such as retrieving objects from the ground, moving items from far 

distances, and more complex tasks that require grasping at range (Prieto, 2008). 

 Reacher grippers cater to both people with and without physical disabilities, but all of 

these devices have various issues when used by individuals with certain hand impairments. For 

instance, the vast majority of reacher grippers are operated by squeezing a trigger apparatus to 
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open and close a set of claws. If an individual has arthritis in their back, they might use a reacher 

gripper to pick up items without bending over. However, if that individual also has arthritis in 

their hands, squeezing the trigger could be strenuous and painful. Many reacher grippers require 

a significant amount of strength to operate, versatile finger motion, and continuous force 

application from the user when grasping an object. These can all be problems for someone with 

reduced strength and control in their hands and wrists, and are areas in which current reacher 

grippers can be improved. 

 In order to more effectively accommodate users with these types of hand impairments, a 

device must be developed that improves upon the failings of commercially available reacher 

grippers. The ultimate objective is to increase the independence of the users. To do so, the device 

shall reduce the amount of dexterity, range of motion, and strength required to operate a reacher 

gripper. The process for creating this device will involve evaluating competing designs on their 

effectiveness at completing various tasks, designing and constructing an improved reacher 

gripper prototype, and evaluating the performance of said prototype with target users. The end 

result is a device that provides users with a safe, comfortable, and effective method of 

manipulating items at a distance in everyday tasks, allowing for a more independent lifestyle. 
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Chapter 2: Background 
Reduced functionality in a person’s hand or wrist can have a number of causes. Among 

the most common are arthritis, muscular dysfunctions, and neurological dysfunctions. Users with 

these types of disabilities might also have a need to pick up objects that are beyond their 

reaching capability. A large selection of commercial products and novel designs have been 

developed to aid with manipulating objects outside of a person’s reach, though they can be less 

effective in the hands of a user with hand and wrist impairments. Various testing procedures can 

be used to evaluate a person’s need for devices like reacher grippers and how well reacher 

grippers perform their intended functions. 

2.1: Hand and Wrist Impairments 

 Use of traditional reacher grippers is reliant upon the user’s ability to manipulate the 

device with their wrist and hand. Individuals that have problems with these sections of the arm 

will experience greater difficulty utilizing these devices. The following sections identify a few 

common types of disabilities related to hand and wrist control. Topics covered in these sections 

include definitions of these disabilities, symptoms of these disabilities, and how these disabilities 

affect an individual’s capabilities. 

2.1.1: Arthritis 

Osteoarthritis is one extremely common condition affecting hands and wrists. This 

condition occurs as the cartilage in a person’s joints degrades. In normal joints, cartilage covers 

surfaces of bones where they contact other bones. This covering provides a smooth sliding 

surface and also absorbs impacts. For an individual with osteoarthritis, the cartilage in certain 

joints breaks down, causing swelling, joint pain, and stiffness. The condition worsens over time 

as more cartilage is lost, until bone is contacting bone. Bones may develop spur growths as they 

degrade, and flecks of bone may chip off and float around in the joint, leading to more pain. 

Osteoarthritis can affect all joints, though it most commonly occurs in the knees, hips, lower 

back, neck, and finger joints (Fraser, 1999). 

Osteoarthritis is the most common chronic joint condition, as it affects 27 million 

Americans. The condition occurs most commonly in individuals over the age of 65, and one in 

twelve individuals over 60 have osteoarthritis in their hands. Osteoarthritis can develop at any 
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point in life, but old age, obesity, joint overuse, and genetics are all common risk factors (Fraser, 

1999). 

The pain and limited joint range that comes with osteoarthritis can severely limit a 

person’s ability to perform everyday tasks and can reduce his or her independence. Activities 

such as walking, bending, lifting objects, and climbing can become difficult if the lower 

extremities are affected. If osteoarthritis is present in a person’s hands, grasping objects and 

finely manipulating objects can also become a challenge. This includes a wide range of tasks 

such as typing, driving, opening containers, and sewing. Certain orthoses, often in the form of a 

glove, can be used to support and constrain the joints of the hand and wrist to reduce pain. 

Next to osteoarthritis, rheumatoid arthritis is the second most common form of arthritis, 

and is the most common form of autoimmune arthritis (Osteoarthitis, 2014; Ruderman & 

Tambar, 2013). Like osteoarthritis, rheumatoid arthritis is a chronic disease that causes pain, 

swelling, and limited motion in the joints. However, rheumatoid arthritis occurs when an 

individual’s immune system attacks his or her own joints. The exact cause for this malfunction of 

the immune system is unknown. Rheumatoid arthritis can affect any joint in the body, but most 

commonly affects the wrist, fingers, and feet. Over time, more joints may be affected than those 

at the initial onset of arthritis (Ruderman & Tambar, 2013). 

Approximately 1.5 million Americans have rheumatoid arthritis, with about three times 

more women than men being affected. Similar to osteoarthritis, the disease can begin at any age, 

though it commonly occurs between 30 and 50. Men typically develop rheumatoid arthritis later 

than women (Ruderman & Tambar, 2013; Fraser, 1999). 

As the immune system attacks the joints in rheumatoid arthritis, they can become loose 

and unstable, which limits their mobility and causes deformities. Fingers will bend with 

unnatural contours and may become locked into certain positions. Some common deformities 

include Boutonniere deformity, swan-neck deformity, hitchhiker’s thumb, and trigger finger 

(Fraser, 1999; Apfelberg et al., 1978). Wrist deformities can also reduce grasping ability by 

constraining or loosening tendons (Apfelberg et al., 1978). The odd positioning of a person’s 

digits and reduced strength caused by rheumatoid arthritis can add even greater difficulty to 

completing tasks that require hands, in addition to the limitations caused by stiffness and pain 

from other forms of arthritis. Orthoses such as specialized finger rings can be used to reposition a 

person’s digits to a more normal shape and provide joint support. 
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2.1.2: Muscle Dysfunctions 

Muscular atrophy is one of the more prevalent phenomena that can decrease muscle 

strength in the hands. It can be defined as a wasting or shrinking of any set of muscles. This 

decrease in muscle mass causes reduced strength. There are a wide variety of causes for 

muscular atrophy, but it is usually a result of muscle disuse, poor circulation, or malnutrition 

(Chris, 2015). If a person loses control of a set of muscles, from nerve damage for example, the 

unstimulated muscles will atrophy over time. Even if the person regains full control of these 

muscles, the atrophy will leave the affected area with a loss of movement and strength 

(Campellone, 2014). 

One cause of atrophy is muscular dystrophy; a group of diseases in which muscles are 

damaged and weaken over time. Muscular dystrophy is exclusively a result of faulty genes that 

are responsible for the production of proteins in muscle formation. The diseases can occur at any 

stage of life. Muscular dystrophy is not typically just linked to hands and arms, but all muscles, 

and can result in the inability to walk, breathing problems, scoliosis, heart problems, and 

swallowing problems (Mayo Clinic Staff, 2014). Other causes of muscular atrophy include 

aging, injury, rheumatoid arthritis, and osteoarthritis (Campellone, 2014). 

Tendonitis is another fairly common cause of impaired muscle function. It is an 

inflammation or degradation of tendons and other soft tissue that are connected to muscles and 

bone. Tendonitis usually occurs as a result of repeated, minor injuries to a tendon through an 

activity such as sports or manual labor, but can also be caused by a sudden and severe injury. 

Affected areas are most often the ankle, knee, hip, shoulder, elbow, and wrist. Tendonitis results 

in acute pain at the affected area and is worse during movement (Sheon, 2015). Weakness can 

also occur, although this is normally the result of a tendon actually tearing (Chris, 2015). The 

pain caused by tendonitis can result in reduced functionality of the affected area, similar to 

arthritis. However, tendonitis is almost always much more localized, meaning that an individual 

will not have as much difficulty performing a wide variety of everyday tasks. A person may 

recover from tendonitis fairly quickly, especially if treated at an early stage. The best method for 

treating tendonitis is to rest the affected area by avoiding heavy movement or movement that 

causes pain (Sheon, 2015). 
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2.1.3: Neurological Dysfunctions 

Carpal tunnel syndrome is a loss of hand function that occurs from median nerve 

compression. The median nerve is responsible for movement and sensation in the hand. It passes 

through the forearm into the hand through a space in between bones called the carpal tunnel. 

When the median nerve is compressed, an individual can experience tingling or burning 

sensations from the hand up through the forearm, numbness in the hand, and a loss of control and 

strength in the hand (Biundo & Rush, 2013). Between 4 and 10 million Americans have carpal 

tunnel syndrome, and it often occurs in both hands (Lawrence et al., 2008; Padua et al., 2005). 

Due to the hand dysfunction caused by carpal tunnel syndrome, individuals can have trouble 

with everyday tasks such as writing, buttoning clothes, or grasping and moving heavy objects 

(Biundo & Rush, 2013; Apfelberg et al., 1978). This difficulty is only increased if both hands are 

affected. Certain positions of the wrist, such as flexing or extending, can exacerbate the 

symptoms. Carpal tunnel syndrome is caused by thyroid disease, wrist fractures, rheumatoid 

arthritis, and more. The claim is often made that the syndrome is caused by repetitive work 

activities such as typing, though this is still debated (Biundo & Rush, 2013). Orthoses that 

constrain the hand, similar to those used with arthritis, can be used to alleviate pain and help 

recovery. 

Damage to the brachial plexus can also impede hand function. The brachial plexus is a 

group of nerves that runs from the brain through the neck and shoulder that is responsible for 

control and feeling in the shoulder, elbow, wrist, and hand. Damage to this group of nerves can 

disrupt function in any of the aforementioned areas. Damage may be caused by blunt or sharp 

force trauma, compression, or a variety of neurological diseases (“Brachial”, 2015). In general, 

brachial plexus disruption leads to stiffness, pain, loss of feeling and control, and muscle atrophy 

(“Nerve”, 2015). Most brachial plexus injuries are minor and will dissipate within a few weeks, 

though more serious injuries can cause permanent disability (“Brachial”, 2015).  

The following are some specific types of brachial plexus damage: radial neuropathy, also 

known as squash palsy or Saturday night palsy, occurs when the radial nerve is damaged. This 

nerve controls finger, hand, and wrist movement. Thus, radial neuropathy may present itself as 

hand and wrist paralysis. Ulnar neuropathy occurs when the ulnar nerve, responsible for the 

control of forearm and hand muscles, is injured. Paralysis or weakness may be present in the 

hand and ring and pinkie fingers as a result of ulnar neuropathy. Median nerve palsy, not to be 
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confused with carpal tunnel syndrome, is a result of damage to the median nerve. This can cause 

problems with sensation in the thumb, index, and middle finger. Thumb movement may be 

severely limited in what is known as ape hand deformity, and as a result, an individual will have 

great difficulty grasping objects (“Nerve”, 2015). 

2.2: Existing Solutions  
Reacher grippers are tools used to minimize the difficulty of completing everyday tasks 

that involve extended reach. These tools typically contain a grabbing mechanism such as a claw, 

an actuating mechanism used to control the grabbing mechanism, and a long rod that connects 

the actuating mechanism to the grabbing mechanism.  

The majority of reacher grippers use a claw-shaped design to grip objects, though some 

hold items with magnetic or adhesive tips (Chen et. al., 1998). Figure 1 shows a variation of the 

claw-shaped design. The claws are generally shaped in a way that allows them to close around 

objects of various sizes and shapes. A multitude of materials, surface patterns, and claw shapes 

are used to allow different types of contact between the claw and object being grasped. 

Reacher grippers tend to vary the most in their actuation mechanisms. A pistol grip and 

trigger is the most common among these mechanisms, and uses leverage applied at the trigger to 

pull a cable that forces claws closed. A squeeze-type trigger is another popular mode of 

operation. Instead of having the trigger on a pivot, the whole trigger slides towards the user’s 

palm. Like the pistol grip mechanism, this design puts the user’s hand in a cylindrical grip 

position and allows the user to apply force with all four fingers. A third method of actuation 

opens and closes the gripper by sliding a guide up and down the length of the shaft. One hand is 

Figure 1: Common Claw Design 
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placed at the base of the rod and the other is placed on the slider. This two-handed grip allows 

for greater stability when using the reacher gripper, and reduces the weight on any one hand.  

Additionally, some designs for reacher grippers add a locking feature that allows the 

claws to remain closed without continuous input from the user. This reduces stress on the user’s 

hand throughout the operation of the device. These methods for designing reacher grippers have 

been used extensively in various commercially available reacher gripper devices, while more 

uncommon methods have been conceptualized in patents. Both commercial and patent designs 

are discussed in the following sections. 

2.2.1: Commercially Available Devices 

Commercially available reacher gripper devices tend to be designed very similarly. 

However, there are some differences in their designs to accommodate various users or price 

points to be competitive in the market. A wide range of these variations can be described through 

the Ettore Grip’n Grab, the Medline Reacher, and the HealthSmart GripLoc brands of reacher 

grippers.  

2.2.1.1: Ettore Grip’n Grab 

The Ettore Grip’n Grab (GnG) is representative of the reacher gripper market as a whole. 

With a price point at $15, this reacher gripper is within average market value for these assistive 

devices. It is operated by applying a force to the pistol grip trigger, which closes the claws on the 

end of the shaft shown in Figure 2. The grabbing force is transferred from the trigger to the claw 

via a cable that runs the length of the shaft.  The handle and claws of the GnG are primarily 

made from plastic and rubberized material, while the shaft is made of aluminum. In total this 

device weighs 9.6- oz. (Amazon). While extending the user’s reach by 3-ft, the moment felt at 

Figure 2: Ettore Grip'n Grab (GnG) 
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the wrist from picking up objects is minimized due to the device’s light weight. Additionally, 

this device adds a rotating function that allows the claws to be in either the vertical and 

horizontal positions. 

This device is the best seller for reacher grippers on Amazon and has been reviewed by a 

large number of its users. Most reviews are positive citing this reacher gripper’s ability to pick 

up heavier objects (5-lbs), to rotate 90°, and to grasp objects both small and large. However, the 

next most popular review topics included the product’s poor durability and the difficulty users 

with arthritis had using the trigger. The GnG’s low cost and overall effectiveness seemed to 

outweigh these negative points for many users, though it is important to note these difficulties 

common to reacher grippers. 

2.2.1.2: Medline Reacher 

The Medline reacher (MR) is another inexpensive reacher gripper. At $8 this reacher 

gripper provides an alternative to the common pistol grip with the full hand squeeze trigger as 

shown in Figure 3. This actuator is connected by a metal rod, as opposed to the cable in the GnG, 

which transfers the applied force to a linkage at the end of the shaft. The claw mechanism on this 

reacher gripper is in the form of a “scissor linkage” that pivots about a fixed point on the shaft.  

The MR is comprised of a significant number of plastic parts, with the exception of the 

aluminum shaft. This reacher gripper weighs 14-oz. and extends the user’s reach by 31-in. 

Taking the ratio of device weight to device length, the GnG’s weight to length ratio is more than 

1.5 times better than the MR. Still, the MR is able to be used adequately without applying too 

much moment to the user’s wrist. 

Users of this device on (Amazon) appreciated the full hand grip for making it easier to 

keep the claws in the grasping position. Users also admired durable features such as the stiff 

metal rod that transferred force to the claws, as opposed to a thin cable used in products like the 

GnG. However, many customers expressed difficulty using this device because of the wrist and 

forearm strength required to hold objects in the claws’ grasp. Additionally, the design of the MR 

Figure 3: Medline Reacher (MR) 
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uses two rubber attachments on the tip of the plastic claws to grip objects. Users found that when 

these pieces did not contact the target object, it was nearly impossible to retain grip. 

2.2.1.3: HealthSmart GripLoc 

A more expensive option for a reacher gripper is the HealthSmart GripLoc (HSGL). 

Costing $40, more than double the price of the GnG, this reacher gripper is aimed at arthritic 

clientele. This device, unlike the majority of reacher grippers, requires two hands to use as 

shown in Figure 4. The “power slide” technology in this device operates similarly to both the 

GnG and MR by transferring an applied force to the claws via an internal pulley system. 

However, this device has an additional locking mechanism activated by twisting the slider 90º 

clockwise or counterclockwise.  This eliminates the need for continuous force input from the 

user while grasping an object.  

Similar to the previously mentioned reacher grippers, this device is made of plastic with 

the exception of the shaft. Combining a grip for users with arthritis and wider claws, this reacher 

gripper weighs 16-oz. and extends the user’s reach by 3-ft. The HSGL has a comparable weight 

to length ratio to the MR. The specialized features of this device combined with its high price 

may dissuade users from purchasing it in favor of cheaper options, as this reacher gripper has 

very few reviews. Those that reviewed the device seemed to like the comfort of using the slider 

to grasp objects and then locking the claws into place to relieve some stress on their hands. At 

the same time, one reviewer mentioned that the actual claw material made it very difficult to 

grasp most objects. 

2.2.2: Patents 

Numerous patents have introduced new ways of executing tasks intended for reacher 

grippers by various methods. Among these include novel ways of actuating claws, locking the 

device in specific positions, extending the length of the gripper, and adding electromechanical 

operation controls. 

Figure 4: HealthSmart GripLoc (HSGL) 
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2.2.2.1: Surgical Device with Double Jaw Actuation, US 5176699 

This device is intended for use in a medical setting 

which requires both accuracy and precision during operation. 

The device’s grabbing mechanism is common to typical reacher 

gripper devices. This surgical device opens and closes by 

running the upper and lower digits of the claw past each other. 

A grasp by the handle (30) can be pulled backward to draw the 

lower digit (57) the opposite end past the upper digit (63) as 

shown in Figure 6. The base 

of the digits is toothed (58, 

62) so that as they slide past 

each other, they induce 

opposing rotating motions on the opposite digit, opening and 

closing the claw also seen in Figure 6. One advantage to this 

device is that it can be locked into place if the claw is closed 

far enough using a ratchet mechanism between the handle and 

trigger parts of the grasp (40).  

2.2.2.2: Lock-Type Gripping Device for Handicapped 

Persons, US 4374600 

 This device adds functionality to the standard reacher gripper by including a rotatable 

arm shown in Figure 7. Such an arm is useful for users sitting in wheelchairs that might need the 

extra mobility to reach around obstacles such as a high cabinet. Tasks such as these would 

otherwise be unachievable with standard reacher 

grippers. The claws are opened and closed by pulling a 

trigger (54) which tenses a cable (78) that runs the 

length of the device. The middle of the shaft is jointed 

so that the arm can be folded up and down, locking into 

specific angle positions on the index plate (72). The 

claw can still be used in these positions allowing more 

freedom for the user to grab objects. The locking 

mechanism on this gripper, as shown in Figure 8, 

Figure 5: User Interface of Surgical 

Device with Double Jaw Actuation 

Figure 6: Claws of Surgical Device with 

Double Actuation Jaw 

Figure 7: Locking Mechanism of Lock-Type 

Gripping Device for Handicapped Persons 
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allows the user to safely operate the device by both sliding a “U” shaped block and then 

depressing a button to ensure no accidental release of the device.  

 

2.2.2.3: Handy Extending Grip, US 3112135 

This reacher gripper device adds an extending capability through a scissor like 

mechanism that is operated through the use of one finger in a scissor-like motion as shown in 

Figure 9. The extension links (12) are connected 

to one another on a central axis through hinge pins 

(14). At any extension state (collapsed to fully-

extended) the gripper mechanism is still 

functional. This is possible for two reasons. The 

first reason is that only the upper digit (20) is 

actuated in this device. The second is that this 

device is operated via a spool mechanism (26) 

which can be manually adjusted at each length to 

clamp the desired object. The spool itself is 

connected to the pincer by a wire. 

  

Figure 8: Shaft in bent variation of  Lock-Type 

Gripping Device for Handicapped Persons 

Figure 9: Extending capability of Handy Extending 

Grip 
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2.2.2.4: Grab Bot 

This reacher gripper design received a provisional patent as part of a previous Major 

Qualifying Project completed in AY 2011 at Worcester Polytechnic Institute (Busteed & Rinaldi, 

2011). This design, seen in Figure 10, made use of many features not fully utilized in previous 

designs, however, the most important additions were the electromechanical actuation of the 

claws and the increased arm support/ergonomic grip for users with physical disabilities. The 

electromechanical operation is 

controlled via a rocker switch 

placed at the location of the hand 

grip. This switch drives an electric 

motor which rotates a dual 

threaded rod that drives the two 

clamps together or away from each 

other depending on the user's input. 

This function both adds a way to 

keep the claws in positions along 

their clamping path as well as far more control of the claws than the common reacher grippers 

discussed in section 3.2.1. The other ergonomic aspects of this device also add to the successes 

of this design. By implementing a robust arm support, much of the stress normally applied at the 

wrist or forearm muscles is relieved by balancing the moments. Furthermore, a cylindrical 

handgrip was utilized to add further comfort to the user when operating the device. 

2.3: Evaluations 
In order to design and build an effective device, the metrics for measuring the 

performance of users and devices must be evaluated. Using a set of metrics allows designers to 

make valid claims regarding performance and effectiveness of a device. Below are some 

qualitative and task-oriented evaluations. These were utilized to determine which aspects were 

most helpful in the development of a new reacher gripper. 

2.3.1: Evaluating the Independence Level of a Person 

A person’s functional independence level depends on their ability to perform activities of 

daily living. Activities of daily living (ADLs) are defined as the things people normally do in 

daily living, including any daily activity that’s performed for self-care such as feeding oneself, 

Figure 10: SolidWorks Model of Grab Bot, Previous MQP (Busteed & 

Rinaldi, 2011) 
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bathing, dressing, grooming, working, homemaking, and leisure (Medical Dictionary). These 

activities are considered necessary for living a healthy independent life. The ability or inability to 

perform ADLs can be used as a very practical measure of ability/disability in many disorders 

(Medical Dictionary). 

To measure the independence level of a person with disabilities, clinicians recommend 

using self-administered evaluations. The DASH (Disabilities of the Arm, Shoulder, and Hand) is 

the most widely-accepted tool for measuring upper extremity disability. The Institute for Work & 

Health and the American Academy of Orthopedic Surgeons (AAOS) created the DASH by 

pooling together the items of several upper extremity questionnaires and filtering out any items 

which were too specific to any one disease or condition. Out of the 132 total items, 72% were 

relevant to the upper extremity as a whole. The DASH is a self-administered questionnaire that 

focuses on physical functions rather than specific conditions or afflicted parts of the body. It is a 

uniquely effective measure of upper extremity ability because it is not specific to any particular 

anatomic site or disease entity and only contains evaluation criteria that can be completed and 

understood by the patient with no in-depth medical knowledge or training (Hudak, 1996). 

Subjects begin the DASH by rating their own ability to accomplish various daily 

activities pertaining to the upper body. Twenty-one activities are rated on a scale of 1 (no 

difficulty) to 5 (unable). Examples of these activities are as follows: ‘prepare a meal’, ‘carry a 

heavy object’, ‘change a lightbulb overhead’, etc. Subjects are not required to rate the difficulty 

of all twenty-one activities. Subjects then rate symptoms from a list on a scale of 1 (not severe at 

all) to 5 (extreme severity). These symptoms include pain, tingling, weakness, and stiffness in 

the arm, shoulder, or hand. Subjects proceed to an optional module of the test where they can 

rate any difficulties they may be having related to work or recreation involving their arms, 

shoulders, or hands. After completing the sections listed, the sum of the ratings of each questions 

are determined by the equation: 

(
𝑆𝑢𝑚 𝑜𝑓 𝑛 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑛
− 1) ∗ 25 

where n is the number of completed responses. The maximum achievable score is 100 

and the minimum is zero. A score of 0-20 is considered normal, 20-40 indicates mild disability, 

60-80 indicates severe disability. Any retests require a minimum difference of 15 points in order 

to be considered clinically important (Institute for Work & Health and AAOS). 



 

15 

 

A consistent theme throughout the research on disability evaluations is that they focus on 

the capabilities of individuals rather than their disabilities. This makes sense, as the 

treatments/assistive solutions for any particular score on the DASH are often overlapping. For 

example, two subjects who scored similarly on the DASH may be given identical treatments, 

regardless of their particular condition. The proper treatment for upper extremity disabilities is 

dependent on the individual’s personal capabilities rather than the nature of their 

disease/condition. 

2.3.2: Evaluating the effectiveness of a reaching device 

The reacher gripper is a very popular form of assistive technology. Reacher grippers can 

improve the functional capabilities of individuals with disabilities by extending their range of 

reach. By doing this, users have less need to stretch or bend over, reducing possibility of further 

physical impairment (Chen, 1998). 

In response to a survey where reacher gripper owners indicated a high rate of 

dissatisfaction with their devices, Chen, Mann, Tomita, and Burford set out to create a method of 

evaluating reacher grippers. They first began by creating a questionnaire about common tasks for 

which reacher grippers are most commonly used. This list of tasks was compiled from a 

Consumer Focus Group on Reachers at The WNY Independent Living Center. The team 

conducted phone interviews where they asked sixteen reacher gripper users over the age of 65 to 

rate the importance of the tasks on a scale of 1 (unimportant) to 3 (very important). The 8 tasks 

which were determined to be ‘most important’ were then used as test criteria to measure the 

effectiveness of 3 different reacher grippers. 

Since the team could not test all the reacher grippers on the market, they decided to 

narrow their scope to 3 different reacher grippers, which were popular among users. Seven 

criteria for the “ideal” reacher gripper were identified by a focus group: 

 Adjustable Length 

● One-Hand Use 

● Life-Time Guarantee 

● Lock System for Grip 

● Forearm or Wrist Support 

● Lightweight 

● Four-Finger Action Trigger 
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The team selected three reacher grippers which satisfied at least five of these criteria to 

evaluate using their new reacher evaluation method. The reacher grippers were evaluated based 

on the speed and accuracy with which the users could operate them. The overall user preference 

was also taken into account when completing the following tasks: 

1. Put Cans into Cupboards 

2. Take out Cans from Cupboards 

3. Put Dishes into Cupboards 

4. Take out Dishes from Cupboards 

5. Pick up Remote Controls 

6. Pick up a Newspaper from the Floor 

7. Dressing, Pulling up Socks 

8. Opening/Closing Drawers 

Each task was timed to determine which reacher gripper allowed the user to complete the 

task in the shortest time. This was an unbiased and objective way of evaluating the user’s 

proficiency with each reacher gripper. However, the speed of task completion was only different 

when picking up remote controls. Subjects in this study were also asked to make comments 

about what they perceived to be the best as well as their least favorite reacher gripper. Comments 

for individuals’ “favorite” reacher grippers include: 

 Lightweight 

● Good Grasp 

● Forearm Support 

● Lock 

● Easy to Use 

● Easy to Squeeze 

● Comfortable to Use 

● Feel Secure 

● Functional 

● Sensitive Mouth 

● Long 

● Strong 

Comments for individuals’ “least favorite” reacher gripper include: 

 Bad Grasp 

● Complicated 

● Uncomfortable to Use 

● Unsecured 

● Clumsy 

● Heavy 
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● Difficult to Squeeze 

● Too Long 

● Not Strong 

● Don’t like Forearm Support 

● Too Short 

● Bad Mouth 

● Thick Handle 

● Hard to Use 

● Doesn’t Work Well 

● No Forearm Support 

● No Lock 

These comments are important criteria to consider in the design of a reacher gripper. 

They all factor into the overall effectiveness of the device as a commercial product and an 

assistive device. Using the feedback from users in this study, a better and more effective reacher 

gripper may be designed. 

2.3.3: Evaluations of Available Reacher Grippers 

All four of the reacher gripper devices described in the previous sections were tested 

using the evaluation of reacher grippers, based on typical activities which would require their use 

(Chen et. al., 1998). Many of the evaluations were then compared to typical users’ reactions to 

the devices. The results from this testing are listed in Appendix F. 

The GnG proved to perform precisely as many of its users explained through their 

reviews. The device’s light weight, ergonomic grip, and ability to rotate made it easy to use. 

However, the user needed to apply significant force on the trigger to maintain grip on objects 

throughout the tasks. The high amount of grip strength needed for this device would be 

problematic for users with arthritis or other ailments. Additionally, the geometry and material of 

its jaws made it effective at picking up most objects with thickness less than 4 in. 

In testing the MR, results indicated that it supplied a far greater force than the GnG to 

objects when successfully positioned. However, it was harder to accurately position the claws to 

grab an object at distance. The device also required a large amount of forearm strength to lift 

heavier objects. While this device is specified for picking up items under 5-lbs, users may 

require a reacher gripper that can exceed this specification for more widespread use.  

The HSGL, while intended for arthritic users proved to be the most limited commercial 

device throughout testing. While this device was more useful for picking up wider cylindrical 
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objects, it was deficient at grasping the larger range of objects able to be picked up by both the 

GnG and MR. This was due to both the poor design of the extra-wide claws and the 

ineffectiveness of the locking mechanism. For instance, in the locked position the claws could be 

forced open with relative ease. 

The Grab-Bot by far applied the greatest amount of gripping force out of all the grippers 

tested, meaning that it could pick up some heavier and slicker objects than the other grippers. 

However, it also performed worse than the other grippers in many aspects. The claws themselves 

were extremely thick and bulky, which made them difficult to maneuver into tight spaces when 

retrieving objects. The claws were shaped like half circles, which made picking up cylindrical 

objects that were smaller than the inner diameter of the claws very difficult. The speed of the 

claws was another great hindrance. It took eight seconds for the claws to go from fully open to 

fully closed. This made retrieving objects a time consuming process, especially if the object was 

not grasped correctly on the first try. Lastly the device was extremely heavy. At 4.1 pounds, it 

was difficult to wield, and required significant upper arm, hand, and wrist strength. 
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Chapter 3: Project Objective 
 There is a need to develop an assistive device for persons who have difficulty completing 

daily activities as a result of their limited reaching capabilities, hand and wrist strength, and hand 

control. A handheld electromechanical device that allows a user to grasp and manipulate objects 

in their area would augment the user’s ability to complete tasks normally hindered by their 

disabilities. Such a device could improve the independence of the user and allow for a less 

restricted lifestyle, while alleviating added risk of injury during everyday tasks. 
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Chapter 4: Functional Specifications 
The following chapter discusses the functional specifications considered in the design of 

the gripper device. These specifications were derived from observations made in preliminary 

evaluations of commercial reacher grippers and the Grab-Bot. The goal of functional 

specifications is to outline the typical usage and the actions which the device must be capable of 

performing/enduring. These specs are later translated to design specifications, which are 

engineering goals required to satisfy the intended functions of the device. 

Functionality  

1. The device is intended to allow the user to manipulate and relocate objects up to 3-ft 

away from the user’s normal reach. 

a. This is the primary function of the device. Users will need extended reach. 

2. This device must be able to accomplish tasks specified through established tests for 

reacher grippers in chapter 3 to evaluate level of independence in daily living situations 

a. This quantifies how well the device aids with daily tasks. 

3. The device must be capable of holding objects that: 

1) Measure between 0.0039-in and 5-in in their smallest dimension 

a) In order for an object to be grasped, the object must fit between the claws 

of the gripper. (A 12-in x 12-in x 5-in object would be able to be picked 

up by grasping the faces which are only 5-in apart. However, if the object 

does not have any dimensions less than 5-in, the claws would be incapable 

of grasping it.) 

2) Weigh up to 10-lbs. 

a) We wish to give the user the greatest freedom in what they can 

manipulate. Manual competitor products are designed to pick up 5-lbs, but 

adding an electromechanical element should allow the device to pick up to 

10-lbs. 

3) Have the form of any shape 

a) The shape of an object shouldn’t be a limiting factor for the device. 

4. The device must be able to function with droplets on its surface (i.e. equivalent to light to 

medium rainfall) 
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a. We are intending this device to be used for daily functions, which at sometimes 

may take place outdoors with a possibility of rain or in a wet environment 

(kitchen or bath). 

5. The device must be able to fully close from open position in under 4-sec. 

a. We would like the operation of the device to have a minimal effect on the user’s 

time. 

 

Convenience 

6. The device, in its most compact configuration, must fit within a cylinder of 9-in diameter 

and 24-in length. 

a. In order for the device to be used at all times it must be able to be stored in a 

compact manner. 

7. The device must weigh less than 4.1-lbs (weight of the previous MQP’s device). 

a. To improve upon the previous design, the previous MQP is a good reference 

(Busteed & Rinaldi, 2011). 

8. The device must be able to be donned and doffed with one hand in under 10-sec. 

a. This device is intended to be used periodically throughout the day, therefore the 

setup should have a minimal effect on the user’s time. 

9. The device must not require maintenance beyond replacing or recharging the power 

source. 

a. Competitive reacher grippers do not require maintenance from the users. 

10. The device must operate independent of an external power source. 

a. Having to plug in a device when it is being used can limit where and when it is 

able to function. 

 

Safety 

11. The device’s claws must not deflect more than 1/16-in perpendicular to their plane of 

motion under specified operating conditions. 

a. Since the claws only have two points of contact with the object, they must remain 

collinear in order to avoid creating a force couple on the object. 
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12. The device must be able to carry an object without continuous input from the user. 

a. The device should have some type of either locking mechanism or non-back 

drivable actuation. 

13. The coefficient of friction between the claws and a glass object should be at least 0.44 

(rubber on glass). 

a. In order to safely hold objects, the device should reduce the possibility of objects 

slipping from its grasp. 

14. The device must not have any sharp points, protruding electrodes, or entangling moving 

parts upon which the user is likely to injure his/herself or others. 

a. No injuries should result from the use of the device. 

 

Durability 

15. The device must be able to properly function after a 3-ft drop onto ceramic tiled surface. 

a. Humans are prone to accidents; therefore, the device must be robust. 

16. The device should be able to be used up to 75 times a day for a total lifespan of up to 2 

years (approximately 55,000 uses). 

a. The MQP: “Grab-Bot: Reaching/Retrieving Aid” established that an average 

reacher gripper would be 75 times per day (Busteed & Rinaldi, 2011). The device 

should satisfy these conditions at a minimum. 

17. The device must remain functional after the claws have been submerged in water up to 3-

in 

a. Items may need to be retrieved from water. 

18. The device must be able to operate within an ambient temperature range of 0˚-110˚F. 

a. The device should be able to operate in diverse environments to accommodate the 

largest number of users and uses. 

19. The device’s claws must be able to withstand temperatures up to 212˚F 

a. Items may need to be retrieved from boiling water. 
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Ergonomics 

20. The device must keep user’s wrist in a comfortable and anatomically neutral position 

(hand coplanar with forearm). 

a. Non-neutral wrist positions cause more muscle stress than neutral position. 

21. The device handle must be between 4-in and 6-in long. 

a. This accounts for the average width of the human palm. 

22. The device handle must be between 1-in and 1.5-in in diameter. 

a. This is recommended for maximum grip power (Patkin, 2001). 

23. The device handle should use ergonomic geometry to prevent sliding of the hand. 

a. Using ergonomic geometry would provide a more secure and comfortable grip for 

the user. 

24. The device must be designed to be operated by using the ‘power grip’ 

a. Makes use of stronger muscles in the hand so that the user can apply greater 

gripping force. 

25. The device should require no more than 3.7-ft-lb of ulnar deviation torque from the user 

to operate. 

a. This maximum value is determined by the average maximum ulnar deviation 

strength of people over 70 years old, with a safety factor of 2 (Patkin, 2001). 

i. (8.36 lb-ft) *(1-0.22)/ (2) = 3.7 ft-lb 

b. Individuals with joint pain or muscle weakness will have difficulty utilizing the 

device if it places great stress on the joints. 

26. The device should require no more than 16-lbf of grip strength for the user to operate. 

a. This maximum value is determined by the average maximum grip strength of a 

female rheumatoid arthritis patient (Patkin, 2001). 

b. For individuals with muscle weakness, the more strength required to operate the 

device, the more difficult it will be to use. 

27. The device operation must not require excessive movement in the user’s finger digits 

a. Individuals with joint pain, joint stiffness, or joint deformity may have a limited 

range of motion in the digits, and moving these joints may cause pain. 

28. Typical wrist orthoses gloves should not impede the user’s ability to use the device. 
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a. The device should be comfortable and easily used with devices that the users may 

require. Wrist orthosis gloves will constrain some thumb movement, hold the 

hand in the handshake position, and add extra material between a user’s palm and 

the device’s handle. 

 

Cost 

29. The prototype of the device must be able to be manufactured using on campus machine 

shops and commercially available parts. 

a. This will be the fastest and least expensive method for constructing the device. 

30. The device’s manufacturing should minimize the need for sophisticated machining 

operations. 

a. These processes are expensive and time consuming. 

31. The prototype of the device must cost no more than $495 to build 

a.  The budget is limited. 
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Chapter 5: Preliminary designs 
The following chapter presents the preliminary designs created during the design process. 

The designs are simple concepts which were later evaluated, narrowed down, and combined to 

form an overall design for the device. The preliminary designs in this section are separated into 

four distinct categories by function: Actuation, User Interface, Arm/wrist Support, and Claws. 

These components are defined as follows: 

 Actuation: Any components involved in moving or rotating the claws which do not come 

into direct contact with the user (i.e. motor, linkages, springs, gears, threaded rods, etc.). 

 User Interface: Any components which come into direct contact with the user during 

device operation.  

 Arm/wrist Support: Any component that comes into contact with the user to cancel the 

moment about the user’s wrist. 

 Claws: The components which directly contact the object being grasped. 

5.1: Preliminary Design 1 – Worm Gear with Dynamic Claw Energy Storage 
This design, shown in Figure 11, applies the torque of the motor directly to the jaws of 

the gripper, rather than using a pulley like the Grab-Bot design. It also allows for a greater range 

of motion of the jaws for gripping large 

objects (90-deg should be achievable). An 

electric motor (1) turns a worm (2) which 

turns worm gears (3) that are rigidly attached 

to the jaws (6) of the gripper via countersunk 

machine screws (4). This design provides 

nonbackdrivability as well as consistent 

gripping force throughout the entire travel 

motion of the jaws. The jaws/worm gears 

rotate freely around a shoulder screw (5). The 

shoulder screw has very tight tolerances and 

will allow minimal side-to-side deflection of 

the jaws; especially if low-friction bushings 

are press-fitted into the worm gear/jaw. When Figure 11: Worm Gear with Dynamic Claw Energy Storage 
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the jaws contact an object, the motor will keep turning and the L-shaped flat springs (7) will 

bend. Storing mechanical energy in the flat-springs allows the device to clamp down on an 

object. However, no energy is spent by motor to hold the object since the mechanism is non-

backdrivable. 

 Ninety degrees of motion for each jaw allows gripping of large objects. Gear ratios must 

be adjusted in order to achieve desirable open/close speed of the jaws. Material for the jaws will 

have a high coefficient of friction and a small amount of compressible length so that the gripping 

surface can conform between the jaws. 

5.2: Preliminary Design 2 – Scissor Linkage with Spring Energy Storage 
Figure 12 displays a simplified layout of this design. The claws (1) are opened and closed 

by the movement of the scissor-like linkage (2). As part (3) is moved to the right, the claws 

close, and as it is moved to the left, the claws open. The pin joint (4) in the scissor link is secured 

to the shaft (5) outlined in the diagram. This shaft surrounds all components in the diagram 

except the claws and the middle joints of the linkage (6) as the linkage expands and collapses. 

Joint (4) must be very secure to ensure that the linkage does not deflect and leave the plane of the 

diagram. Part (3) is connected to part (7) via a spring (8). A motor near the handle (9) spins a 

threaded rod (10). Part (7) is threaded along the inside, and as the threaded rod spins, part (7) 

translates along the shaft. This causes displacement in the spring. If the claws are initially open, 

as part (7) translates towards the motor, part (3) is pulled along too, causing the claws to close. 

Once the claws are together or are grasping an object, part (3) no longer moves. As part (7) 

continues to translate, the spring is stretched, which applies clamping force at the claws.  

Figure 12: Full Scissor Linkage Gripper Design 
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Diagram 2 in Figure 13 contains a more accurate representation of how part (3) and part 

(7) fit together. Diagram 2 displays a cross-sectional area through the middle of part (3) along a 

plane through the axis of the shaft. Diagrams 3 and 4 show three-dimensional views of parts (3) 

and (7) respectively. Part (7) fits within part (3). As part (7) translates towards the claws, the 

spring retracts until it 

reaches its neutral 

length. At this point, 

part (7) contacts a 

shelf (11) within part 

(3). From here, part 

(7) pushes part (3) 

towards the claws 

without storing any 

energy in the spring. 

A sliding resistor (12) 

is fixed to the top of 

part (7). The tab of 

the resistor (13) is 

confined in a slot (14) on the top of part (3). As part (7) moves in and out of part (3), the 

resistance of the resistor changes. Because the clamping force at the claws is linearly 

proportional to the deflection of the spring, the resistance can be used to approximate the 

clamping force. The amount of clamping force could possibly be indicated by colored LEDs at 

the handle, facing the user. Different colored LEDs would correspond to different amounts of 

force. 

5.3: Preliminary Design 3 – Compound Geared Mechanism 
This design, shown in Figure 14, makes use of a gear set to actuate the claws on the 

reacher gripper. This design uses widely available and inexpensive pinion gears, a compound 

gear, and a link. The torque from the motor (1) is transferred to the first pinion gear (2) via a link 

(3). The driving pinion gear then transmits the torque to the larger of the two gears on the 

compound gear (4). The smaller of the two gears on the compound gear then interacts with a 

larger output pinion gear (5). When this gear rotates, the opposite pinion gear (6) will rotate in 

Figure 13: Scissor Linkage Design Components 
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the opposite direction to open or close 

the claws. A type of gear train like the 

one being used is necessary to increase 

the difficulty of backdriving the 

device. This design also increases the 

mechanical advantage by increasing 

the gear ratio between the input and 

output gears at multiple stages. An 

important aspect of this design is 

securely mounting all of the gears to 

the frame while still allowing rotation. However, this may be accomplished through the use of 

lubricated bushings and shoulder screws which will both maintain the position of the gears while 

not adding friction, which would reduce the efficiency. Some difficulties with this design include 

the required geometry of the shaft needed to store all the components, the chance of gear 

backlash, and the non-limited rotation of the output pinion gear.  

5.4: Preliminary Design 4 – Hilt and Rocker Switch 

This design for the user interface features (Figure 15) an angled oversized handle for 

power grip. An oversized handle 

allows the user to position their 

hand in such a way that places the 

tip of their index finger directly on 

top of the rocker switch (shown on 

the front of the handle (1)). During 

normal operation, the user’s 

fingertip rests directly in the center 

of the rocker switch, preventing 

them from accidentally activating 

the device. To operate the claws of 

the device, the user simply moves 

their finger up or down to activate 

the rocker switch.  

Figure 14: Compound Geared Mechanism 

Figure 15: Hilt and Rocker Switch 

11 
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The rocker switch, when pressed upward will close the jaws until they contact an object. 

The device will ‘know’ when to stop the motor by measuring changes in current draw by the 

motor, distance traveled by a spring, or force sensing. A second click upward will activate the 

motor again, causing it to turn a specified number of rotations, providing a bit more clamping 

force at the claws. A third click will do the same to further tighten the grip. To release the grip, 

the user presses the rocker switch downward, activating the motor until the claws reach their 

fully-open position. 

This user interface also features a cushioned hilt at the top of the handle. When used in 

conjunction with a wrist/forearm support, the hilt can reduce the amount of force required from 

the top two fingers of the user to prevent the device from rotating downward out of the user’s 

hand. 

Without a forearm support, the device naturally wants to rotate downward about the 

bottom of the user’s hand, requiring equal force input from the wrist and top two fingers of the 

user. When testing the previous MQP team’s device, the forearm support actually moves the 

point of the rotation back onto the forearm of the user, where the forearm support ends. By 

moving this point of rotation, the user’s fingers actually have to work harder. By placing a hilt on 

top and supporting the wrist/forearm/bottom of the hand simultaneously, the device can no 

longer fall out of the hand of the user. 

Instead of a hilt, this design could use a small leather loop through which the user puts 

their hand. This kind of feature can be seen on Wii gaming system remotes or on digital cameras 

to prevent the user from accidentally dropping the device. These small leash-like loops are easily 

tightened using a small plastic slider. 

5.5: Preliminary Design 5 – Bi-Directional Trigger 
Diagram 1 in Figure 16 outlines the basics of this bi-directional trigger mechanism. To 

operate this device, users would place their palm and thumb around the handle portion (1). The 

fingers would wrap around the side of the handle, opposite the thumb, and pass through the loop 

(2). Users would grasp this device similarly to how they would grasp a lever action rifle. All four 

fingers could be used to both pull the loop towards the handle and push the loop away from the 

handle. This allows for a large amount of versatility in where the fingers are positioned. It also 

reduces the strength needed in any one finger to use the device. The loop pivots around a pin 

joint located inside of the device. A spring-loaded connector (4) is connected to the pivot. This 
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connector allows the loop to snap into three distinct positions as defined by the contours in part 

(5). Having the loop in one of these three positions can control when the claw is opening, when it 

is at rest, and when it is closing. Signals to the motor can be controlled by electrical contact 

between the connector and the divots of part (5). The signals could also be controlled with a 

potentiometer at the pin joint. The pin joint, connector, and part (5) could be done away with 

entirely by connecting the loop directly to the end of a three-position switch. A user cannot 

firmly grasp this device without pulling the loop toward the handle. Moment and force 

cancellation at the wrist would be needed to ensure that this does not happen unintentionally. 

Alternatively, the loop could be reduced in size to fit just the top two fingers. The bottom two 

fingers would be free to squeeze the handle. 

Diagram 2 illustrates an alternative design. The loop is connected to a slider (6) that 

translates along the shaft within a slot (7). The position of the slider could be determined by 

attaching it to a sliding resistor (8). 

5.6: Preliminary Design 6 – Primer Switch 
This design for the user interface (Figure 17) makes use of an ergonomic pistol or bike 

grip (1). Three buttons are located on the grip. The button placed at the thumb position is a 

primer button (2). This button does not allow the user to actuate the mechanism unless it is 

depressed. The button would have to register contact at switch found within the grip (3). When 

no pressure is applied a compression spring (4) will keep button 2 in its neutral position. If the 

Figure 16: Bi-Directional Trigger 
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primer is depressed, the user will have the opportunity to drive the claws forward using the 

button at the pointer finger location (5) or backward using the button at the middle finger 

location (6). Both buttons will act much like 

the primer in that they will contact a switch in 

the grip (7, 8) when depressed but will return 

to position by compression springs (9, 10). 

 This design will need to make use of 

programming to ensure the correct operation 

of the device at all times. In theory misuse of 

this design will be very difficult because the 

primer button is not in the natural position for the thumb, which would be on the side of the grip 

rather than the top. The difficulty with this setup is it may require some practice before a user 

can confidently operate the device. Another feature which may improve the interaction with the 

user would be a constant feedback system that will relay a light, digital readout, or intuitive 

analog gage that will notify the individual when certain thresholds of power are being applied to 

an object (i.e. none, contact, maximum).  

5.7: Preliminary Design 7 – Adjustable Forearm/Wrist/Hand Support 
This design, shown in Figure 18, features an adjustable wrist support for the device. A 

long screw (2) is placed in the handle (1) of the device. The wrist support (3) has a threaded hole 

down the center of it. The gap on the left side of the handle is 

a slot cut out of the back of the handle (1). The slot prevents 

the wrist support (3) from rotating, constraining the wrist 

support (3) to up and down motion only via the long screw 

(2). The user simply turns the screw head at the bottom of the 

handle until the wrist support (3) is raised to the perfect height 

for comfort.  

The wrist support needs to be adjustable because users 

have different sized hands. In order to take as much strain off 

the user as possible, the device must fit their hands/wrist very 

well, keeping the wrist in a perfectly neutral position, as 

necessitated in the design specifications. 

Figure 17: Primer Switch 

Figure 18: Adjustable 

Forearm/Wrist/Hand Support 
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In order to eliminate the moment about the user’s wrist, the support runs along the bottom 

of the user’s hand, across the wrist, and about an inch onto the forearm. 

5.8: Preliminary Design 8 – Articulated Arm Support 
Diagram 1 in Figure 19 illustrates an arm support rest (1) and its attachment to a gripper 

handle (2). The arm support is in the shape of half a cylinder, in which a user rests their forearm. 

The support cancels moment at the wrist caused by the weight of the gripper and whatever is 

being grabbed. It does this by applying a normal force at the bottom of the arm. The cylindrical 

shape allows for this normal force to be applied even when the forearm is slightly rotated about 

its axis. The support is connected to the handle by two beams (3) (4) with a pin joint in between 

them. Diagram 2 shows this connection in greater detail. The beams are joined to each other via 

two bolts (5) and two lock nuts (6). This articulation is positioned directly below the wrist and 

serves to allow a user to move their wrist from side to side. This increases a user’s range of 

motion and maneuverability when using the device. One problem with this design is that as the 

hand becomes more perpendicular with the forearm, less moment is canceled by the arm support.  

5.9: Preliminary Design 9 – Traditional Forearm Support 
This design for a forearm support, shown in Figure 20, makes use of traditional supports 

in assistive devices for users with multiple sclerosis or cerebral palsy. The design consists of 

Figure 19: Articulated Arm Support 



 

33 

 

three main parts. The first is the baton 

shaped metal shaft (1). The major function 

of this part is to add rigidity to the support 

so it will not deform. Attached to it is a 

rigid forearm support (2) which 

encompasses the forearm of the user. To 

make this more comfortable for the user a 

cushioned surface (3) is connected to the 

forearm support. An additional advantage 

of the cushioned surface is it allows the 

support to conform to users’ various arm 

sizes. The third component of the support is 

the grip (4) which connects to the baton shaped shaft. The placement and orientation of this grip 

maintains an ergonomic power grip that can easily be adapted to include controls for the user 

interface. Another positive aspect of this design is that it maintains a straight extension from the 

arm through the device to the claws which will enable a larger, more controllable, range of 

motion for the user.  

5.10: Preliminary Design 10 – Conforming Spring Claw 
This claw, shown in Figure 21, was designed to provide optimum conformity to an 

object, therefore providing maximum possible surface area contact between the claws and the 

object being grasped. The claw has a solid gripping surface, but the other side has cutout 

geometry, allowing the claw to bend. The spaces cutout of the back of the claw allow the piece to 

bend, but prevents the part from bending too much. This part can be easily manufactured by 3D 

printing. If it is printed flat on the bed of the printer as show here, the fibers of the plastic 

Figure 20: Traditional Forearm Support 

Figure 21: Conforming Spring Claw 
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filament will be put under tension when the part is in use, which will maximize the elasticity and 

yield strength of the part. For additional stiffness, a stiff metal band can be attached to the 

gripping surface of the claw. Another way to increase the stiffness would be to dip the part in 

polyurethane and let it dry, leaving a compliant polyurethane plate in each cutout space on the 

back of the claw. This claw design could also be used to store mechanical energy in the claws 

and is compatible with the actuation design that uses flat springs.  

5.11: Preliminary Design 11 – Asymmetric Bent Claw 
 Figure 22 illustrates the claws both in a closed and an open position. The main bodies of 

the claws (1) are angled in such a way that most objects that fit inside of the main gap (2) will 

have four points of contact with the claw. The claws can be opened outwards about 35° from the 

closed position in order to have parallel gripping surfaces on either side of a large object. The 

tips of the claws (3) extend outward to provide a more maneuverable gripping area. A small 

divot in one of the claws provides a gap (4) useful for picking up small objects, such as pens, that 

would not be confined in the main claw gap. The inner surface of one claw is lined with a 

compliant foam (5). This could provide an increased coefficient of friction and more contact area 

between the claws and an object compared to contact with hard plastic or metal. The other claw 

is lined with teeth (6) that could be made from plastic or rubber. This surface geometry would 

also increase the grip between an object and the claws. Each of these linings could be applied to 

one claw, or one lining could be applied to both claws.  

Figure 22: Asymmetric Bent Claw 
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5.12: Preliminary Design 12 – Three Digit Claw 
This design for the claw, shown in 

Figure 23, makes use of three digits rather 

than the standard two digit claws. The 

movement of these claws is interoperable with 

virtually any actuation method used with a 

typical. The major advantage to these claws is 

the three points of contact (1) which will 

interface with the object trying to be 

manipulated.  This feature will allow more 

control throughout the process because it will 

eliminate the possibility of the jaws deviating 

from their neutral plane. Another feature of this design is the ball or universal joints at the tips of 

the claw (2). This will allow all the forces being applied to the object to be parallel. The addition 

of a spring between the fingertip and the rest of the claw, not pictured in Figure 23, may improve 

the area of contact of the claw. 

5.13: Preliminary Design 13 – Conforming Foam Zig Zag Claw 

This claw design was inspired by the zig tech shoes made by Reebok and is shown in 

Figure 24. The claw structure (1) has a zig zag piece of foam polymer adhered to the bottom of 

it. The zig zag piece (2) is firm yet compliant, and its thin shape allows it to conform very well to 

objects. Free space is intentionally left between the claw structure (1) and the foam zig zag (2) to 

allow for maximum deflection and conformity.  

 The geometric profile of the claw is inspired by the claws of the Grip’n Grab, which 

seems to accommodate the shapes of many different objects very well. The S shape allows the 

ends of the claws to form a narrow pinching 

shape which is great for reaching into smaller 

spaces such as a cabinet. 

Figure 23: Three Digit Claw 

Figure 24: Conforming Foam Zig Zag Claw 
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Chapter 6: Final Design Selection 
After all preliminary designs had been generated for different parts of the device, a final 

concept of the full device was needed which incorporated the best aspects from the preliminary 

designs. Metrics were devised to compare the preliminary designs against each other. 

Combinations of the best preliminary designs were generated to form full device concepts, and 

these were compared to select the best overall concept. 

6.1: Component Attributes 
Several preliminary designs were ideated for each individual component of the device. In 

the original plan for narrowing down the designs, all preliminary designs for an individual 

component were compared against each other. Lists of desirable attributes were recorded for 

each component. After, one preliminary design was selected for each component that best 

satisfied the listed attributes of that component. To determined which attributes should carry 

more weight when evaluating the designs, attributes were compared using a pairwise comparison 

chart. 

In a pairwise comparison chart, all attributes are compared to each other one by one. If 

one attribute is deemed more important than the other, that attribute is given a score of 1, and the 

opposing attribute is given a score of 0. If two attributes are deemed to be of truly equal 

importance, they may both be given a 0.5. After all attributes have been compared, the scores of 

the attributes are totaled. The attributes with higher scores are deemed to be more important. The 

pairwise comparison chart for the preliminary designs of the claw components is shown below in 

Table 1. The pairwise comparison charts of the other components are found in Appendix A. 

As separate attributes were generated for each component to be used in these charts, a 

number of the attributes reoccurred across components. After some deliberation, the approach for 

Table 1: Claw Preliminary Design Pairwise Comparison Chart 
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selecting a final design was slightly modified. Preliminary designs were evaluated based on how 

well they served the final product as a whole. To select attributes for this process, observations 

were made on how well attributes scored in the pairwise comparisons for individual components, 

and which attributes reoccurred across multiple components. Reoccurring and high scoring 

attributes were selected to be used to evaluate the device as a whole. 

6.2: Device Attributes 
After all attributes were selected from the previous step, each was separated into six 

distinct categories that defined criteria for the device as a whole. This was done to facilitate 

grading the final designs. It was easier and more appropriate to evaluate a full device based on 

how well it met six criteria than it was to evaluate the device using a multitude of specific 

attributes that did not necessarily refer to the device as a single entity. Table 2 lists the attributes 

that define these six criteria. In order keep roughly the same number of attributes per criterion, 

some of the attributes listed were synthesized from multiple attributes. 

To be able to grade the designs fairly, a rubric was developed for determining how well a 

design met each of the six criteria. The grading scale was from one to five for each criterion. The 

attributes were specifically designed for receiving a one, three, and five in each category. These 

attributes were based on the attributes used to define the six criteria. If the design failed to meet 

one of any of the attributes for a score (three or five), it could not receive that score or higher. If 

Table 2: Full Device Grading Rubric 
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the design failed to meet at least half of the attributes for that score, it could not receive the next 

score down or higher (two or four). The cost and safety categories were an exception to this 

system. Cost was solely based on the price of the design. Safety was based on the number of 

safety concerns with the device. The grading rubric is shown in Table 3. 

Each criterion received a weighting as well. The importance of each criterion was ranked 

using a pairwise comparison chart. These results identified which criteria were more important 

than others, but did not necessarily reflect the weight of one criterion versus another. For 

example, the pairwise comparison chart could only discern that safety was more important than 

the other criteria, but if it was felt that safety was at least two times as important as the next 

criterion, this is not reflected in the pairwise comparison results. Therefore, using the pairwise 

results as guidance, specific weight values were assigned to each criterion as a percentage. The 

weights of all the criteria totaled to 100%. Each team member weighted the criteria individually, 

and the average of these values was used as the final weight for the criteria. These weights would 

be applied to the grading of each criterion in a later step to determine a final score for the 

preliminary designs. Table 3 contains the results from this weighting process. The pairwise 

comparison of the criteria may be found in Appendix A. 

 

 

Table 3: Criteria Weightings 
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6.3: Design Selection 
The next step was to create concepts of the full device that could be evaluated. Using a 

morphological chart (Table 4), six complete concepts were generated for the full device. The 

concepts were comprised of one preliminary design for each component. That is, one design for 

the actuation mechanism, one for the user interface, one the arm and wrist support, and one for 

the claws. The morphological chart was used to generate different combinations of the 

component designs. Designs were combined in a manner in which components would 

complement each other when placed into a whole device. 

Once the concepts were generated, they were graded using a rubric, and their scores were 

weighted to give each concept a final score. Some initial calculations were needed to evaluate the 

performance of the designs. These calculations mostly involved actuation speed and efficiency. 

These calculations can be found in Appendix A. The concepts all scored roughly the same for 

safety, and given the high weight given to that criterion, the devices were compared both with 

and without the safety score. The score table is located in Appendix A. 

 At the end of scoring, the results were scrutinized to determine why some designs 

scored poorly and why others scored well. This information was used to create two more 

concepts that would ideally score better than the previous concepts. These designs are 

highlighted in green on the morphological chart of full device concepts, Table 4. The additional 

concepts were then graded and did in fact score better. Of these two, the highest scoring one was 

chosen to comprise the final design, highlighted in yellow. A selection for the user interface is 

left out of the final design selection. This was because it was deemed that the differences 

Table 4: Morphological Chart of Full Design Concepts 
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between control schemes that used buttons or a rocker switch were insignificant compared to the 

logic that would be used to control the claw itself. The implementation of the control system is 

further discussed in the Electrical Analysis Section.  

6.4: Final Design 

Once the final combination of functions was determined the next step was to 

conceptualize a full design of the device. This task was completed using preliminary design 

sketches as references in order to model the device using Creo and SolidWorks. The final design 

may be seen in Figure 25. The design may be further broken into subassemblies based on the 

intended motion of the parts including translation, rotation, or fixation. Subassemblies include 

rotation of the head (1), claw coupler (2), driveshaft (3) (not visible), arm/wrist support (4), front 

casing (5), and back casing (6). 

6.4.1: Claw Coupler 

The function of the claw coupler subassembly is to both secure the claws to the device 

while simultaneously allowing rotation of the claws via the worm and worm gear interaction. 

The full subassembly may be seen in the exploded view in Figure 26. The claw coupler is 

constructed using five unique components. The only part which is currently sold is the worm 

gear. The worm gear, within the full assembly is positioned on an axle exactly half the radius of 

its pitch circle away from the worm’s pitch circle. Two identical disks then sandwich the gear by 

being placed in the gear’s reliefs on the top and bottom. After creating two identically flush 

surfaces, both the coupler and coupler clamp are placed over the combination of parts. A secured 

subassembly which is able to clamp the spring steel claws is eventually achieved by inserting 

Figure 25: Full Design as Modeled in Creo 
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screws which fix the components to each other. The claw may then be inserted in the slot 

between the coupler and coupler clamp, and secured via two screws.  

6.4.2: Driveshaft 

The driveshaft subassembly applies the torque to the output gears and actuates the claws 

to grasp objects. Figure 27 shows the subassembly and its five unique components. The motor 

which supplies the torque is placed near the back of the device where the user controls are 

located. It is mounted via its accompanying mounting bracket which secures it to the rear casing 

bottom. To transfer the rotation from the motor shaft to the driveshaft, a coupling hub 

subassembly is placed in contact with both components. The coupling hub is constructed of two 

stepped components which become fixed on their respective shafts and are then sandwiched to 

an equally stepped nylon disk. It is important to note that this particular shaft coupler only 

transfers torques and does not resist axial forces which may be produced from the worm. For this 

reason, flanged-thrust bearings are press-fit to the driveshaft component on each end to resist 

forces that would disrupt normal operation. After the second thrust bearing, a worm gear is press 

fit onto the driveshaft.  

 

Coupler 

Coupler Clamp 

Worm Gear 

Disk 

Claw 

Figure 26: Exploded View of Claw Coupler 
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The zeroth order prototype of the actuation mechanism was built using LEGOs and may 

be seen in Figure 28. The dual worm gear setup functioned as intended. It was determined that 

the gear ratio between the worm and the gears seemed to be suitable for a gripper. By visual 

inspection, the gear ratio was about 1:12. The gears were confirmed to be non-backdrivable. The 

plastic LEGO worm was able to turn the gears almost effortlessly without any lubrication. This 

helped confirm the purchase of plastic gears instead of metal.  

6.4.3: Rotation of the Head 

The rotation of the head as achieved with seven total components. Figure 29 shows a 

cross-sectioned balloon diagram of the subassembly whereas Figure 30 shows an isometric 

representation.  

Worm 

Bearing 

Driveshaft 

Coupling Hub Motor 

Mounting 

Bracket 

Figure 27: Driveshaft Subassembly 

Figure 28: Zeroth-Order Prototype of Worm 

Gear Mechanism 
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 The tubing is hollow polycarbonate tubing with a circular cross-section and is used to 

house the driveshaft. It also connects both casings in the device. The rotation receiver is a fixed 

component with two tiers of steps used to physically secure the position of the head as well as 

limit its rotation about the tubing to 90-deg. The rotation sleeve is the male component to the 

stepped-receiver. This component fixes the orientation (horizontal or vertical) of the front casing 

to the same as itself via a slot system which will be further defined later in this section. This 

allows the head to be in the same orientation as the sleeve. A bearing and compression spring are 

placed within the cavity of the rotation sleeve, between the front casing and tubing. The bearing 

ensures smooth translation of the rotation sleeve about the tubing whereas the spring is used to 

return the rotation sleeve back to its secured position after being manipulated by the user. The 

neck component is fixed to the front casing at the head of the device and has two holes which are 

in line with the slot found on the rotation sleeve. Pegs are placed in these holes, after all 

components are assembled on the tubing, to create a peg and slot connection.  

Rotation Sleeve Rotation Receiver 
Bearing 

Spring Tubing 

Neck 

Figure 29: Cross-Section of Rotation Subassembly 

Figure 30: Possible Configuration of Rotation Component 

Rotation Receiver 

Rotation Sleeve 
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Neck 

Steps 
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The zeroth order prototype of the rotation mechanism was built using scrap PVC pipe and 

masking tape (Figure 31). The notches cut into the PVC pipe fit together well and locked into 

place snugly. No peculiar observations were made as the prototype functioned as intended. 

 

6.4.4: Arm/Wrist Support 

To negate the forces and moments applied to the user’s hand and wrist the device has an 

arm support (1) and a wrist support (2) to ensure maximum comfort shown in Figure 32. The arm 

support is made of a molded thermoplastic to conform to the geometry of a forearm. It is then 

secured at the back of the rear casing top at an optimal distance from the grip. Furthermore, a 

padded foam insert is applied to the inside of the plastic. This configuration serves as mechanical 

stop to prevent the user’s arm from pivoting at the grip by imposing at least two additional points 

of contact. 

 

The wrist support’s purpose is to allow the user to wield the device without the specific 

requirement of high grip strength. It accomplishes this feat by wrapping around the operator’s 

wrist, via a semi-elastic strap, and affixing the gripper to the individual’s forearm. While this 

method does not eliminate the force at the wrist, in combination with the arm support, it transfers 

Figure 31: Zeroth-Order Prototype of Rotation Mechanism 

Figure 32: Arm and Wrist Support with User 
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the entirety of the forces felt at the wrist or hand onto the user’s arm. This is essential because 

persons with hand disabilities or elderly individuals will be able to manipulate the device more 

easily than those which require constant application of grip strength to counteract the weight of 

the device and the object being grasped.  

6.4.5: Casing 

The casing comprises a multitude of components on each end of the device and can be 

seen in its entirety in Figure 33. The primary functions of the casing are to protect the 

components from the environment and establish sufficient strength to support loads acting upon 

the device. At the head of the device, the shaft collar allows the front casing subassembly to 

rotate by resisting axial translation and allowing rotation about its axis. Following roughly 30-in 

of tubing, the rear casing secures the tube via a three-part case consisting of the rear casing wall, 

rear casing bottom, and rear casing top. The tubing is fixed within the rear casing wall. The rear 

casing bottom is the area where the electrical components and motor mounting bracket are 

secured. The rear casing top is then placed into the correct orientation and all three components 

are fastened to each other. The battery is to be secured at the rear of the device.  

6.4.6: Front Casing 

The location of the claws and their desired range of motion rely on the front casing show 

in Figure 34. Two custom printed casings are designed to achieve both tasks. Additionally, this 

casing also defines the length of the driveshaft and tubing by containing a cavity where a collar 

is being placed. This collar, as explained earlier, restricts the translation of the front casing. The 

two halves of the front casing are secured by fasteners. Furthermore, the neck acts as another 

securing method and is placed along the tubing. As explained earlier, pegs are inserted into the 

Figure 33: Casing Subassembly 
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neck which will translate along a slot in the rotation subassembly. These components allow the 

head to rotate as one unit, independent of the tubing. Ball and sleeve bearings are also introduced 

to this assembly to resist forces acting on the worm gears and driveshaft, respectively.  

6.4.7: Final Design Bill of Materials 

The final design consists of parts which can be purchased from McMaster-Carr, Grainger, 

SDP/SI, and The Home Depot. Those which cannot be purchased were rapid prototyped using 

the 3D printers at Worcester Polytechnic Institute. Parts were rapid prototyped on a Dimension 

SST 1200es system using low density ABS material. This 3D Printer is capable of printing 

within a tolerance of +/- 0.006-in and creates layers 0.01-in thick. For the scope of this project, 

these are acceptable limitations. The bill of materials may be seen in Figure 35. 

Figure 34: Front Casing Subassembly 
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Part Name Quantity Material Weight/Unit Subassembly Supplier Part #

SHAFT COUPLING HUB 2 ALUMINUM .000 lb DRIVESHAFT McMaster 59985K1

DISK 1 NYLON .001 lb DRIVESHAFT McMaster 59985K91

DRIVESHAFT 1 303 STAINLESS STEEL .212 lb DRIVESHAFT McMaster 16-Mar

THRUST BEARING 4 STAINLESS STEEL .038 lb FRONT CASING McMaster 6655K33

SLEEVE BEARING 3 OIL-EMBEDDED STEEL N/A CASING & FRONT CASING McMaster 6627K402

MOTOR 1 N/A .095 lb DRIVESHAFT Pololu 1163

MOUNTING BRACKET 1 ALUMINUM .009 lb CASING Pololu 1138

WORM 1 NYLON .005 lb DRIVESHAFT SDP/SI A 1M 5-Y24

WORM GEAR 2 NYLON .055 lb CLAW COUPLER SDP/SI A 1T 6-Y245008

ARDUINO UNO 1 CIRCUIT BOARD .055 lb CASING Arduino DEV-11021

ROCKER SWITCH 1 ABS N/A CASING Grainger 29FG30

7.4V BATTERY 1 LI-ION .156 lb CASING AA PPC CU-J702

MOTOR DRIVER 1 CIRCUIT BOARD .014 lb CASING Pololu 1451

TUBING 1 6061 ALUMINUM .256 lb CASING McMaster 9056K72

COMPRESSION SPRING 1 STEEL MUSIC WIRE .012 lb ROTATION McMaster 9657K407

COLLAR 1 ALUMINUM .075 lb CASING McMaster 6157K17

SLEEVE BEARING (ROTATION MECH) 1 BRONZE .080 lb ROTATION McMaster 6381K557

CLAW 1 1095 STEEL .09 lb CLAW COUPLER McMaster 9043K46

SURGICAL TUBING 1 LATEX RUBBER .025 lb CLAW COUPLER McMaster 5234K64

SET SCREW 1 STAINLESS STEEL .015 lb FRONT CASING McMaster 92313A537

REAR CASING BOTTOM 1 ABS .021 lb CASING

REAR CASING TOP 1 ABS .055 lb CASING

REAR CASING WALL 1 ABS .079 lb CASING

SLEEVE BEARING SPACER 2 ABS .001 lb CASING

FRONT CASE BOTTOM 1 ABS .145 lb FRONT CASING

ROTATION RECEIVER 1 ABS .065 lb CASING

ROTATION SLEEVE 1 ABS .115 lb ROTATION

FRONT CASE TOP 1 ABS .145 lb FRONT CASING

NECK 1 ABS .053 lb FRONT CASING

COUPLER CLAMP 2 ABS .025 lb CLAW COUPLER

LEFT CLAW COUPLER 1 ABS .045 lb CLAW COUPLER

RIGHT CLAW COUPLER 1 ABS .045 lb CLAW COUPLER

1/4-20 x 1" Countersunk 12 Steel .015 lb N/A

1/4-20 x 2.5" BOLT 2 STEEL N/A FRONT CASING

1/4-20 NYLON INSERT NUT 2 STEEL N/A FRONT CASING

GRIP 1 ABS N/A CASING

Figure 35: Bill of Materials 
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Chapter 7: Engineering Analysis and Design 
 Before confidence may be placed that the design will satisfy the customers’ needs 

assurances must be made that it can withstand the forces applied via picking up objects and 

maneuvering them. Additionally, the forces or moments applied to the user cannot exceed the 

requirements. This analysis was completed only after visual representations of components and 

the forces or moments applied were developed. Free body diagrams and their respective 

assumptions may be found in their entirety in Appendix B. Furthermore, various materials were 

selected that could accommodate the operational loads of the device. Once structural integrity of 

the parts was confirmed through stress analysis, the required motor, power supply, and electrical 

components were selected. 

7.1: Kinematic Analysis and Motor Selection 
In order to find an appropriate motor to drive the claws, torque and speed analysis needed 

to be conducted. Initially, it was assumed that the claws would be picking up objects no heavier 

than 5-lbs. The most torque would need to be supplied by the motor when the claws were 

grasping an object at their tips, due to the large lever arm from the gear shaft to the claw tip. If 

the claws were covered with surgical tubing, the smallest coefficient of friction between the 

claws and a grasped object would be equivalent to the coefficient of friction between rubber and 

glass, 0.45. The length of the claws was 5-in, and the gear ratio of the worm gear was 25. The 

efficiency of worm gears is usually 0.80, so this was used as the efficiency value. Based on these 

assumptions, the required motor torque was calculated as 9-oz*in in order to hold a 5-lb object 

while being held with the claws gripping in a horizontal position, with the device held steady in a 

horizontal plane. The calculations are found in Appendix B. 

One of the other functional specifications was that the claws would be able to open and 

close in under 4-sec. Based on a gear ratio of 25 and the fact that each claw is designed to open 

30°, the motor would need to rotate 13.1 revolutions in less than 4-sec. It would not be difficult 

to find a motor that could spin at least this fast. The calculations for this speed are found in 

Appendix C. 
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Once these values were calculated, a motor needed to be found to match. The motor 

would ideally be as light and small as possible to reduce the weight and profile of the device. 

The motor selected was a Pololu 6 Volt, 73:1 gear ratio motor seen in Figure 36.  

The maximum torque provided by this motor is 60-oz*in. This yields a safety factor of 

6.7 for picking up 5-lb objects, which is useful, as more torque is needed to secure objects that 

are being swung. The motor’s maximum speed is 180-rpm. While the motor is opening and 

closing the claws, it is very close to unloaded, and thus close to maximum speed. This means that 

the claws go from fully open to fully closed in about 0.69-sec. The motor weighs 43-g and 

measures 20-mm in diameter. This means that it can easily fit into the device housing and will 

not add excessive weight. 

7.2: Motor Control Logic 

The main principle behind the operation of the gripper is that the claws will stop closing 

automatically when they apply a specified amount of force. This force is regulated using code 

uploaded to a control board on the gripper. The torque of the motor is proportional to the 

pushback force applied at the claws. Motor torque is also proportional to the electric current that 

the motor draws. Therefore, the force applied at the claws can be determined by measuring the 

current draw. Greater current draw means more force applied at the claws. The claws of the 

device are made of flexible spring steel. If the claws are closing around an object, they will 

deflect as they apply more force. Once the motor meets the prescribed current limit, it will stop 

moving. The claws are non-backdrivable, so once the motor stops, the claws will remain 

deflected and apply force to the grasped object. 

The user controls the operation of the claws using a three position rocker switch in the 

gripper handle. This switch has two control schemes which can be toggled using another switch. 

The first control scheme is the main control scheme. Setting the switch to the bottom position 

Figure 36: Pololu 73:1 Metal Gear Motor 20Dx42L mm 
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sets the claws to open until they contact the edge of the claw casing and stop. The middle 

position sets the claws to close until they apply a light gripping force to an object, about 3-lb. 

This is for grasping delicate objects. The top switch position has the claws close until they apply 

a strong force, about 6-lb. This is for grasping heavier objects. The second control scheme 

replaces the middle switch function with immediately stopping the motor. This allows the user to 

manually set the position of the claws. The bottom position opens, the middle position stops, and 

the top position closes. The maximum force limits were retained in order to prevent users from 

stalling the motor. 

To control the motor, an Arduino Uno is used, which runs a unique code. The program 

controls the motor through a state machine and interrupt service routines as seen in Figure 37. 

The program starts with a setup phase that assigns modes to pins and other processes. 

Immediately after, the program enters a continuous loop, running the same code over and over 

again. The main body of this loop is a three case state machine. Every time the loop is run, a 

group of code in one of the three states, or cases, is selected to execute. These states correspond 

to the position of the switch. The first case tells the motor to open until it hits the casing, the 

second tells the motor to close until a small force is applied, and the third case tells the motor to 

close until a large force is applied. In each case, the Arduino reads the current being drawn by 

the motor. If the current is below a specified value, the motor continues driving. If the motor 

draws current above a specified value, the motor is stopped until the state changes. The specified 

current values can be adjusted in the program to change the amount of force the claws apply, 

allowing it be calibrated easily. 

In the setup phase of the program, the program checks the position of the mode-toggle 

switch. If the switch is in the default position, the state machine executes as described above. If 

the switch is in the other position, the middle switch state, State 2, is altered so that the motor is 

set to stop regardless of the motor current reading. This means that the motor will immediately 

stop in the middle switch position. To change control schemes, the mode-toggle switch must be 

flipped and the control board must be reset by turning off and on the power. 

Interrupts are used to change states. Interrupts are small sections of code that execute 

instantaneously regardless of what else is happening in the main code. The three position rocker 

switch is connected to two input pins in the Arduino control board. These pins are set to have 

pull-up resistors which means they are set to a default state of HIGH unless they are grounded 
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through the switch. When the switch is moved, one of the two pins will go from HIGH to LOW 

or vice versa. When the switch is in the middle position, both pins are HIGH. When the switch is 

in the up position, the first pin is set to LOW while the second remains HIGH. When the switch 

is in the down position, the second is set to LOW while the first pin remains HIGH. Depending 

on which pin changes state, a certain interrupt will be triggered. These interrupts tell the program 

to change to the appropriate state based on the switch position. Using interrupts in this manner 

ensures that the state is changed as quickly as possible. Figure 37 provides a flowchart of the 

basic logic behind the state machine.

 Figure 37: State Machine Logic 
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As one would expect, a number of problems were encountered with how the code was 

implemented, which had to be addressed. For example, switches have a tendency to bounce a 

signal when they change position, meaning that interrupts would trigger tens of times in an 

instant when it was only supposed to trigger once. To fix this, a debunking script was added to 

the interrupts. 

Another notable problem involved the fact that interrupts for Arduino can be set to trigger 

based on whether the received signal rises (LOW to HIGH), falls (HIGH to LOW), or simply 

changes (either rises or falls). Setting different interrupts to trigger during a rising or falling 

signal would allow the program to immediately set the state machine case to the proper case, as it 

can differentiate between the switch moving into the top position and moving out of the top 

position. However, due to unknown reasons, the Arduino was only triggering interrupts during a 

change in signal, meaning an interrupt would be triggered both if the switch moved into a 

position or out of a position. To solve this problem, the program had to be altered so that the 

proper interrupt function was selected based on the previous state of the state machine. For 

instance, when the switch is flipped from the middle position to the top position, the interrupt for 

the top position is triggered. In the interrupt, the program checks the previous state, which was 

state 2. It then knows the switch is in the top position and then sets the current state to state 3. 

When the switch is flipped back to the middle position, the interrupt for the top position is 

triggered again. The program checks the previous state, which was 3. It knows the switch is in 

the middle position and sets the current state to 2. 

A third problem that required attention was related to motor inrush current. When motors 

move from a stopped position, there is a large spike in current often many times the current they 

draw when stalled. The program uses current to detect how much force the claws are applying. 

This means that the motor would begin to spin, the program would sense that its current draw 

was above a specified limit and stop the motor immediately. To solve this, a delay was added to 

each case in the state machine. After the motor changes direction or goes from stopped to start, 

the program waits 500ms before checking the current. 

7.3: Control System Components 
The entire control system is composed of a handful of electrical components. Figure 38 

provides a wiring diagram for the component connections. The system can be explained by going 

over each component individually.  
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Arduino Control Board 

The Arduino Uno is the main component of the control system. It executes the code by 

reading and outputting signals to and from other electrical components. It also supplies a 5 Volt 

line to power some of the other electrical components. 

 

Motor Driver 

The Pololu VNH5019 motor driver allows the Arduino to interface with the motor. The 

Arduino uses two pins to send signals to the motor driver dictating what it wants the motor to do. 

The motor driver then interprets those signals, takes power from the battery, and supplies it to the 

motor to give the proper speed and direction. The driver also sends a signal to the Arduino 

corresponding to the amount of current drawn by the motor. The Arduino can also send a PWM 

signal to the driver, which dictates how fast the motor should be going. However, there was 

some difficulty sending a signal to the board that would have the motor spin fast enough, so the 

Figure 38: Control System Wiring Diagram 
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PWM pin on the board was set to a constant 5-V. This means that the motor spins at max speed 

whenever it is spinning at all. 

Voltage Reference 

As mentioned before, the motor driver sends a voltage to the Arduino that is proportional 

to the current the motor is drawing. The Arduino reads this as an analog signal. This analog 

signal must be compared with a reference voltage to be assigned a value between 0 and 1024. 

This value can be used in the program to set a value for the maximum allowable current. 

However, the driver only outputs about 140-mV for every 1-A of current the motor draws, and 

the motor draws a maximum of 3.3-A. The internal reference voltage of the Arduino is not 

precise enough to be able to interpret the signal from the driver accurately. To solve this 

problem, an external reference voltage was used. This electrical component outputs a steady 

1.25-V to be used as the reference for the analog signal. 

Battery 

The battery supplies power for the Arduino and the motor. The Arduino Uno requires a 

minimum of 7-V to function properly, so a 7.4-V, 1400-mAh battery was selected. At 2.5-oz, 4-

in long, and 0.87-in in diameter, it is relatively small and lightweight. Most importantly, it is 

rechargeable. Assuming that the motor draws an average of 1-A while it is running, and the 

Arduino has negligible current draw, the motor should be able to run for 1.4 hours continuously 

before needing to recharge. 

Motor 

Most of the specifics of the motor have been discussed in a previous section. However, 

an important aspect of the motor is that it is rated for 6-V. Both the Arduino and the motor run 

off of the same power supply, yet the Arduino requires a minimum of 7-V to function properly. 

To avoid supplying an overvoltage to the motor, the battery voltage would need to be stepped 

down from 7.4-V to 6-V. Unfortunately, this cannot be done by simply adding a resistor in series 

with the battery, as the current drawn by the motor varies. Adding a resistor in series would 

supply the motor with an inconsistent voltage. Therefore, it was determined that overvoltaging 

the motor would be the best solution. By using the 7.4-V battery, the motor is overvoltaged by 

23%. Overvoltaging a motor will decrease its lifespan, but for the first-order prototype, this 

should be acceptable. 
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Switches 

There are three switches in the system. The first is a three-position rocker switch 

embedded in the gripper’s handle. This switch lets the user control the motor. Moving the switch 

to different positions grounds corresponding pull-up pins on the Arduino, which let the program 

position the switch. The second switch is a two-position switch that sets how the three positions 

of the rocker switch correspond to the motor’s behavior. The switch can be put into two different 

positions for two different control schemes that were described in an earlier section. The third 

switch is the power switch. This two-position switch cuts the power to the Arduino and can be 

used to reset the system. 

7.4: Deflection Analysis 
For the device to function properly all parts, identified as critical, cannot deflect more 

than a tolerable distance. In the following subsections, each of these parts will be further 

scrutinized to assure their functionality in the design. 

7.4.1: Tubing 

The tubing of the device cannot bend more than ½-in because it holds the driveshaft; if 

the driveshaft bends more than this it would risk gear separation. MathCAD was used to 

determine the deflection at the end of the tubing given an object at the claws weighing 5-lb, 29-in 

length (from handle), and variable tube cross-sections. The moment of inertia was calculated 

first, followed by deflection and bending stress. The driveshaft was neglected from the analysis 

because it has such a small moment of inertia compared to the tubing. For the selected tubing 

(OD: 7/8”; ID: 0.805”) of aluminum, the max deflection was 0.498-in, bending stress safety 

factor of 4.9, and a weight of 0.265-lb.  

These findings were further validated using the CAD modeling software Creo Parametric 

3.0. The analyses shown in Figure 39 were evaluated by applying fixed constraints to the rear 

face of the aluminum tubing. The full weight of the object was directed downward on the front 

face of the tubing as a distributed load. From these constraints a maximum stress was observed at 

the critical section on the top of the tubing near the rear face of roughly 8,000-psi, much lower 

than the yield strength of the material. Furthermore, similarly to the calculations, a maximum 

displacement of 0.42-in at the front face of the tubing when a loading of 5.7-lbf was applied was 

found. These results validate the choice of selecting this tubing. 
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7.4.2: Spring Steel Claws 

The claws of the device should bend no more than 0.125-in in order to give the motor 

enough lag time to measure the current required to stop before the motor stalls. Too much 

deflection would diminish the possible clamping force, while too little deflection could damage 

the motor. Calculations which may be found in Appendix E utilized MathCAD to determine the 

proper thickness of the claws to obtain a deflection at the end of the claws given the following 

constraints: swinging object weighing 3-lbs (which was measured through testing to generate 

5.7-lbf while swinging the device up and down); 5.25-in in length (unsupported); 0.875-in wide; 

variable thickness. The deflection horizontally was determined to be 0.125-in and 0.002-in 

vertically. A bending stress safety factor of 2.3 was observed. With these parameters, the total 

weight of the claws is 0.106-lbs. 

These findings were further validated using the CAD modeling software Creo Parametric 

3.0. The analyses shown in Figure 40 were obtained by applying fixed constraints to surfaces 

denoted within the figure by blue stars (due to the orientation of the image, the opposite face of 

flat section denoted is not displayed, but was also fixed). The x and y components of the applied 

force were then placed at the tip of the claw as shown in Figure 40. From these constraints a 

maximum stress at the critical section at the first “bend” of the claws was found to be well under 

the yield stress for the spring steel. Furthermore, similarly to the calculations, a maximum 

displacement of 0.13-in, mostly in the horizontal direction, was observed at the face where the 

loading was applied. These results validate the choice of selecting claws of this thickness and  

geometry. 

Figure 39: Bending Stress and Deflection of Al Tubing as Simulated Using Creo 
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7.4.3: Front Casing 

Free body diagrams and preliminary analyses indicated that the only other component 

which would need to be validated to withstand operating conditions was the front casing. The 

casing’s critical sections had to be designed to resist fracturing which would cause the device to 

either break or improperly function. However, simple analyses of this complex geometry did not 

provide adequate findings to use as evidence of validating parameters. Therefore, Creo Software 

was used to identify the maximum stresses and deflection to determine if the design met its 

requirements.  

The front casing, in the worst case scenario, is subject to two forces (3.3-lbf in the 

negative x-direction as shown by the red line in Figure 41 and 6-lbf in the negative y-direction as 

shown by the green line in Figure 41) applied at the surface where the worm gears’ axles connect 

to the front casing. The results of this study can be seen in Figure 41. It was assumed that the 

surfaces displayed in the figure with small blue stars were constrained. The maximum stress on 

this ABS casing was under 400-psi, well within a tolerable range of stress for the material. 

Moreover, the static analysis also demonstrated the minimal deflection observed in this casing, 

less than 0.01-in. 

Figure 40: Bending Stress and Deflection of Spring Steel Claws as Simulated Using Creo 
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Figure 41: Bending Stress and Deflection of Front Casing as Simulated Using Creo 
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Chapter 8: Manufacturing 
The following chapter is an overview of the manufacturing steps involved in creating the 

first-order prototype of the gripper device. This stage of the project entails extensive trial and 

error in order to get the device working properly. For clarity, the assembly steps of the prototype 

are presented first, then specific issues with the device are in the following sub-section. After 

completing the troubleshooting process, the device able to be assembled from start to finish 

according to the assembly instructions. The manufacturing stage of the project is necessary 

before the device’s design could be evaluated under real-life conditions. 

8.1: Assembling the Prototype 
 Once all parts and materials were acquired, the following procedure was followed to 

assemble the device: 

1. Slide worm onto drive shaft until the screw holes line up with the grooved section of the 

shaft. Tighten set screws with Allen key. 

2. Press flanged sleeve bearings into 3D printed ‘sleeve bearing spacers’, shown in Figure 

42. 

 
Figure 42: Model of Sleeve Bearing Spacer 

3. Press ‘sleeve bearing spacers’ into either end of the aluminum tubing until the flange 

meets the end of the tubing. 

4. Lubricate drive shaft and sleeve bearings with white lithium grease. 

5. Insert shaft into tubing through one of the sleeve bearings. Hold tubing and shaft vertical, 

worm-side facing up while rotating the shaft with your fingers to locate the shaft through 

the second sleeve bearing. 

6. Slide rotation ‘receiver’ onto tubing, shown in Figure 43. Tighten set screw until secure. 
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Figure 43: Model of Rotation Receiver 

7. Slide rotation ‘sleeve’, shown in Figure 44, onto tubing. 

 
Figure 44: Model of Rotation Sleeve 

8. Slide compression spring onto tubing. 

9. Slide ‘rotation casing’, shown in Figure 45, onto tubing. 

 
Figure 45: Model of Rotation Casing 

10. Pre-load spring and turn set screws into either side of the ‘rotation casing’. Do not tighten 

against tubing to allow head to rotate. 

11. Slide shaft collar over tubing. 

12. Fit sleeve bearing onto shaft, flange against the front of the worm. 

13. Fit ‘front casing bottom’ onto tubing. Locate shaft collar into the designated cutout in the 

‘front casing bottom’ and move tubing forward until the worm fits snugly between both 

sleeve bearings. Tighten shaft collar. 

14. Insert ¼-20 bolts up through bottom of ‘front casing bottom’. 

15. Assemble left and right claw assembly. 

a. Fit ‘claw coupler’, shown in Figure 46, onto the side of the gear. 
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Figure 46: Model of Claw Coupler 

b.Attach ‘spring steel claw’ to ‘claw coupler’ with two ¼-20 screws. 

c. Attach surgical tubing to ‘spring steel claw’ by wrapping segments of florist wire 

over it and twisting them until tight. Trim excess florist wire with wire cutters. 

16. Slide thrust bearings and claw assemblies onto bolts. 

17. Place ‘front casing top’ over bolts and fasten with nuts. 

18. Fasten ‘rotation casing’ to front casing with screws. 

19. Slide ‘grip’, shown in Figure 47, onto tubing. 

 
Figure 47: Model of Grip 

20. Slide ‘rear casing wall’ onto tubing until flush with ‘sleeve bearing spacer’. 

21. Attach motor and motor bracket to ‘rear casing bottom’ with screws. 

22. Attach shaft coupling hub to drive shaft. Tighten set screw. 

23. Attach shaft coupling hub to motor shaft. Tighten set screw. 

24. Attach bread board and motor driver to ‘rear casing bottom’. 

25. Connect wires (see wiring diagram). 

26. Fasten ‘rear casing top’ to device with screws. 

8.2: Troubleshooting the Prototype 
 While the device was designed to function properly, some issues did arise in the 

manufacturing phase that required action. 
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8.2.1: Motor Misalignment 

After assembling the rear casing, the motor shaft was aligned slightly above the drive 

shaft. The shaft coupler which was purchased is designed to compensate for slightly misaligned 

shafts, however it still caused some problems. The misalignment caused the two shafts to push 

away from each other and the motor to wobble on its bracket, ultimately loosening the set screws 

holding the shaft coupling hubs in place. We were able to improve the shaft alignment by 

shaving down the plastic surface which the motor bracket was attached and bending the bracket 

slightly. The shafts are now only slightly misaligned and do not cause any noticeable issues. 

Additionally, the motor shaft is a bit smaller than the hole of the shaft coupling hub. 

When the set screw of the shaft coupling hub was tightened down on the motor shaft, the shaft 

was forced into a non-concentric position in relation to the hub. Because the shaft coupling hub 

was not concentric with the motor shaft, the hub wobbled during operation, forcing the hubs 

apart and making the motor work harder to overcome the friction of the sliding shaft coupling 

parts. 

To resolve the wobbling problem, the size of the motor shaft had to be increased by a 

small amount. A single piece of duct tape on the round side of the motor shaft prove to be the 

best solution. The flat part of the motor shaft, where the set screw presses onto, was left bare so 

that the set screw of the shaft coupling hub would have enough friction to stay in place. 

8.2.2: Gear Misalignment 

The holes of the front casing which locate the gears in relation to the worm were too 

close to each other, making it impossible to fit the top of the casing over the bolts. It is uncertain 

whether this was due to human or 3D printing error. This problem was initially solved by boring 

out the holes in the outward direction with a Dremel multi-tool. After this modification, the gears 

were able to mesh properly without binding. However, to align the gears properly, the ends of 

the bolts had to be delicately maneuvered into place each time the front casing was opened and 

closed. External star-shaped lock washers were used to ‘bite’ into the casing and prevent the 

bolts from drifting outward away from the worm. 

This solution worked while rotating the drive shaft by hand. However, when the motor 

was attached to the shaft, it would only run for a short time before the separation forces from the 

worm-gear interaction forced the bolts out of alignment. The final solution to this issue was to 

reset the gears to their proper locations, measure the distance between the centers bolts, and 
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fabricate a thin plate which would locate the bolt heads at the proper distance. A thin piece of 

polycarbonate sheet was cut into a rectangular piece which had two 1/4-in holes 2.26-in apart 

drilled into it. These plates were placed on top and bottom of the casing, over the previous bolt 

holes. Not only do they keep the gears in perfect alignment, but they also seem to distribute the 

compressive force of the bolts across the surface of the casing, eliminating the need for the two 

screws at the front of the front casing. 

8.2.3: Insufficient Space in Rear Casing 

When modeling the rear casing of the device, the power plug for the Arduino as well as 

the driver for the motor were overlooked. To make room for these components, the back wall of 

the rear casing was cut out and a new extension was fabricated out of polycarbonate. 

8.2.4: Electrical Issues 

The device tends to misbehave when the wires are moved into certain orientations. Since 

the casing is so small on the inside, the wires have to be compressed in order to attach the top of 

the rear casing. When the wires are moved it sometimes causes the Arduino to get stuck in an 

undesirable state where the motor moves continuously without responding to any input by the 

user via the rocker switch. The frequency of these mishaps was reduced by replacing certain 

wires that may have been damaged and securing wires to the bread board with tape. 

8.2.5: Design for Assembly 

The rear casing could have been planned out bit better. At first it was thought that the 

motor and all other electronics should be mounted on the rear casing panel so work could be 

easily completed. However, since a bread board is being used, it is only necessary to have access 

from the top. The layout of the casing had already been determined when it was realized that a 

switch to toggle control modes was needed alongside a power switch. The switches were 

therefore mounted on the same surface as the rest of the electrical devices. This was the only 

possible way to link the shaft couplings before closing the rear casing. In hindsight the motor 

should have been mounted on one half of the casing and electronics on the other. This was able 

to be worked around for the prototype, but should be addressed in later versions. Additionally, no 

place was designated for the battery, which ended up being zip-tied next to the grip of the device. 
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8.2.6: Fastening Fixed Components 

Fastening 3D printed parts was a recurring issue as set screw holes were not accounted 

for in many of the CAD models. It was then necessary to drill holes into low-density parts which 

had very limited material for the screws to secure themselves. Many of the holes which were 

drilled became damaged over time and required a lot of reworking to fix, resulting in wasted 

time and effort when the holes could have been printed from the beginning and made the proper 

way. 

8.2.7: Claw Geometry 

The shape of the claws had to be changed in order bring the middle of the claws together 

more when closed. Adding two 90-deg bends to the base of each claw makes them more suitable 

for grasping objects in the desired range of size. 

8.2.8: Shaft Coupler/Worm 

During operation, the shaft coupler hub and worm kept loosening and moving with 

respect to the drive shaft due to the high torque of the motor and the axial forces due to the 

worm-gear setup. To secure these components a Dremel multi-tool was used to grind flat 

surfaces on to the drive shaft where the components attached so the set screws could sit better on 

the shaft and would be less likely to loosen. 

8.2.9: Front Casing Weight Reduction 

After assembling the device, it was heavier in the front than expected and required 

substantial muscle strength just to wield the device. In order to reduce the moment at the wrist 

caused by the weight in the front, the front casing was taken apart and all components were 

weighed individually. The claw coupler clamp pieces were not serving any function at all since 

the claw couplers fit so snugly over the gears, but were contributing significantly to the weight. 

By removing these pieces completely and using smaller screws in the couplers and smaller 

washers on the top of the casing the total weight of the front casing was reduced by 15%. 
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Chapter 9: Evaluating the Prototype 
 In order to create a viable product, the reacher-gripper must satisfy some basic 

requirements. At the initial stage, it must succeed at meeting the functional specifications which 

are intertwined with the measurement of success. In order to accomplish this, protocol must be 

developed to measure those specifications which can be measured. Additionally, outside 

observations and opinions on the device must be included to establish a consensus on what was 

accomplished and where the product may be improved. 

9.1: Functional Requirement Evaluation 

To evaluate the functional requirements various measurements were conducted and 

experiments performed to evaluate the device performance in comparison to the design 

specifications. The following specifications required physical measurements which may be 

gathered through the use of rulers, scales, and stopwatches: 

1. The device must extend user’s reach by 3-ft. 

2. The device must hold objects up to 10-lbs in weight. * 

3. The device must be able to fully close (from open position) in under 4-sec. 

4. The device must weigh less than 4.5-lbs (previous MQP). 

5. The device must fit within a cylinder of 9-in diameter and 24-in length.  

6. The device must be able to be donned and doffed in under 10-sec. 

Additional specifications were measured during use of the device: 

7. The device can hold objects whose smallest dimension is between 0.0039-in. and 5-in. 

8. The device’s claws must not deflect more than 1/16-in perpendicular to their plane of 

motion under specified operating conditions. 

9. The device should require no more than 3.7-ft-lb of ulnar deviation torque from the user 

to operate. 

10. The device should require no more than 16-lbf of grip strength for the user to operate. 

The majority of these metrics were found to be accurate measures of requirements the 

device must satisfy, however after progressing through the test process some specifications were 

found to not accurately reflect the success of the device. These findings will be discussed further 

in the results and conclusions section of this report. 

Additionally, to verify the theoretical analysis of forces experienced by the user and the 

potential grip force applied to objects, a test protocol was developed to validate the results using 

fixtures, digital force gages, and Logger Pro software. The first tests were conducted to 
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determine the forces experienced by the user. Figure 48 the setup of the experiment conducted in 

Olin Laboratory at WPI. 

 

The Logger Pro software allowed for real-time analysis of the forces experienced at the 

location of the wrist and the forearm. This analysis was accurately measured by using two force 

sensors at the designated location. The sensor located at the wrist used a thin string to connect 

the device to the sensor to measure the vertical force induced on the user. To measure the vertical 

force on the user’s arm, a bumper sensor was used on the support. Both loadings, unloaded and 

2.5-lbs object being grasped by the claws were analyzed and their results recorded. 

Another important measurement which needed to be identified was the actual force the 

device was capable of exerting. Figure 49 shows how this metric was evaluated. Utilizing a force 

gage, spring, string, and fixturing the force being applied by the claws was measured by 

actuating the device and recording the reading displayed through software. A spring placed at the 

gage allowed the force being applied by the claws to be transferred throughout the claw’s closing 

motion. This test was conducted three times to generate the most accurate output. Throughout 

this test, the device was kept stationary on a fixture to isolate the motion of the claw. The results 

of this test may be found in the results and conclusions section.  

Figure 48: Test Setup for Forces Experienced by User 

Force Sensor 
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9.2: Functional Testing Results 
Results from functional testing indicated that the device satisfied the vast majority of the 

requirements laid out in functional specifications. However, as mentioned earlier, some 

requirements were found to be incongruent with the needs of the final device. The requirement 

that the device extend the user’s reach by 3-ft wasn’t entirely accurate to the industry standard 

extension length. Once this fact was understood the group decided to manufacture the device to 

extend the user’s reach by 32-in, a more accurate reflection of competitive devices. Another 

specification that was determined to be unfounded was the requirement that the device pick up 

objects weighing up to 10-lbs. This value was derived from both the MQP completed in 2011 

which stated 8-lbs as the goal, in addition to commercial grippers’ typically published maximum 

threshold of 5-lbs (Busteed & Rinaldi, 2011). While these devices may be capable of maintaining 

their structural integrity at this weight, users are typically incapable of lifting objects weighing 

more than 3-lbs at that distance. When tested the device was found to successfully hold up to 4-

lbs, which exceeded this new limit. Lastly, the packaging specification of being able to fit within 

a 9-in diameter cylinder that is 24-in long is no longer needed as an articulating arm design that 

could fold was no longer being pursued. Therefore, to limit the length of the device to 24-in 

would not allow for approximately 3-ft of extension. 

Some specifications were designed to limit the hindrance on the user’s time or effort to 

operate. The device was found to close in under 1-sec (mean = 0.75-sec) when recorded using a 

stopwatch. This finding far exceeds the parameter of closing in under 4-sec, however it also 

demonstrates that the user can operate the device at close to the same speed as a mechanical 

Figure 49: Test Setup to Measure Force Output at Claws 
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alternative. Another specification that was intended to limit the time requirement on the users 

was the ability to don and doff the device in under 10-sec. When analyzed it was found that the 

device took an average of 4-sec to don and the same amount of time to doff, well under the 

proposed limit. The overall device weight was determined to be a total of 1-lb less than the 

previous reacher gripper MQP (Busteed & Rinaldi, 2011), weighing in at 3.5-lbs. Although this 

is still a large amount of weight for the user to wield, the design incorporated a method of 

mitigating the perceived weight at the wrist, thereby requiring minimal grip strength to operate. 

This design also eliminates the need for ulnar deviation because the wrist and forearm are 

essentially fixed to the rear casing.  

The last requirement was the breadth of items that the device could grasp. During 

background testing the commercial grippers were unable to pick up objects such as paper, on the 

smaller end, and wider objects such as peanut butter jars, on the larger end. The specification 

was therefore to be able to pick up objects from .039-in to 5-in, width of paper and peanut butter 

jar, respectively. The design that was manufactured successfully picked up paper and has the 

ability to grip objects up to 7.9-in. 

In addition to testing for functional specifications, evaluations to identify key results that 

may impact the usefulness of the assistive device were developed. As described in the testing 

chapter experiments were devised to test different forces that may be applied to user’s along with 

the grip force the claws can apply. The loads at the user’s forearm and wrist were found to be 

approximately 4-lbf and 8-lbf under no loading, respectively. With a 2.5-lbs loading the forces 

are 9-lbf and 14-lbf for the forearm and wrist, respectively. These results show the large increase 

in strength needed at the user's wrist given an increased load experienced by the user at different 

loads. After constructing a fixture to evaluate the clamping force, the device was determined to 

be capable of applying 8-N of force to an object. While this value is slightly below the 

theoretical calculation of 12-N, this still seems to be acceptable due to the control logic in the 

device. The experiment tested the force applied by one claw, however the device can only detect 

the current draw. Since the controller cannot detect any difference between one claw being 

loaded and both claws being loaded, the closing motion may have been terminated prematurely. 

9.3: User Evaluations 
In order to determine whether the device was viable as a commercial product, it needed to 

be tested with prospective users. User feedback would provide invaluable insight about the 
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strengths and weaknesses of the device by those who would purchase it. Specifically, it would be 

useful to know how much effort it required to manipulate objects with the device, how easy it 

was to understand how to use the device, how comfortable it was to use the device, and perhaps 

most importantly, if users would be willing to purchase a device similar to this prototype. These 

evaluations, along with other feedback, would help determine what improvements would be 

needed to turn this device into a marketable item. 

The intended user group for this device is individuals in need of a way to extend their 

reach, and who have impairments in their arms and hands. As mentioned previously, these types 

of individuals are likely to be the elderly living independently or perhaps in some sort of assisted 

living. This user group was selected as the primary test population. Younger and more able-

bodied participants were sought out to be testing participants as well, since it was easier to access 

these types of participants, and doing so would provide a greater number of samples in the 

testing. Additionally, these users might have different perspectives on the device and provide 

alternative types of feedback that may not have been received otherwise. 

In order to find elderly participants, staff at The Village at Willow Crossings Retirement 

Community in Mansfield, Massachusetts were contacted. After they expressed interest in aiding 

the project team, they were sent an overview of the proposed testing. A similar proposal was also 

sent to the Institutional Review Board at WPI. The proposals were approved by both parties, and 

an invitation was extended to conduct evaluations at Willow Crossings. Individuals who are 

living independently and those in need of assisted living both attend Willow Crossings. Here, 

there are various activities in which seniors can participate, and the testing was promoted as one 

such activity. Unfortunately, none of the seniors living independently were able to participate in 

the testing, so results were limited to those in assisted living. To recruit younger participants, 

friends and acquaintances at Worcester Polytechnic were contacted and asked to participate in 

the evaluations. 

The device evaluation consisted of two trials. The first trial was for evaluating a common 

reacher gripper, the Grip ‘n Grab, and the second trial was for evaluating the prototype, the Grab 

Bot II. A common reacher gripper was used in the first trial to serve as a comparison for the 

device to determine its ability to compete with what was available on the market. The Grip ‘n 

Grab was chosen as it had the most conventional design for a reacher gripper, and it scored the 

highest during the preliminary evaluations of commercial grippers. 
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The evaluation trials were conducted following the reading of an informed consent form 

to the participant. This form is included in Appendix D. After the participant had understood and 

signed the consent form, the evaluation of the two devices commenced. The participant was 

asked for their age, and what type of impairments they have in their arms, if any. These 

responses were recorded on a form by one of the investigators. This response form is located in 

Appendix D. The response form was accompanied by a script used by an investigator for the 

duration of the trials, found in Appendix D. 

At the start of each trial, the participant was given either the Grip ‘n Grab or the Grab Bot 

II, along with a brief verbal explanation of how to operate it and a demonstration by one of the 

investigators. They were then allowed to practice using the device. When the participant was 

given the Grab Bot II, they were instructed to strap themselves into the device, though they were 

allowed to ask for assistance with putting it on if needed. 

During the trials, the participant was asked to retrieve four different objects using the 

device and place them on a table top. There was a light object on the ground, a heavy object on 

the ground, a light object on a raised surface such as a cabinet, and a heavy object on a raised 

surface. Due to the various times and locations of the testing, the items and placement of those 

items was not consistent for all tests. However, certain aspects remained constant. The light 

objects weighed between 0.2-lbs and 0.5-lbs, and were items such as television remotes and 

empty cups. Heavy objects weighed between 1.3-lbs and 2.0-lbs, and were items such as 

containers of liquid and shoes. The surface upon which objects were deposited was about 36in 

from the ground. The raised surface from which objects were retrieved was about 60in from the 

ground. If the participant felt uneasy standing for the duration of the testing, they were allowed 

to sit in a chair, and the raised surface was changed to about 48in above the ground. After the 

participant had retrieved an object, they were asked to rate the difficulty of retrieving that object 

from 5 (easy) to 1 (hard). The scale of difficulty was presented to them visually as well as 

verbally. The scales used for these ratings are found in Appendix D. It would have been more 

informative if more trials could have been conducted with a greater number of commercial 

reacher-grippers and a variety of items, but this greater amount of activity may have been too 

much of a strain on some elderly participants. 

At the end of the trials, the participant was asked a series of questions about their 

thoughts on the device they had just used. These questions included: how comfortable was the 
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device to use, how easy was it to understand how to use, what did the participant like about the 

device, and what did the participant not like about the device. Additional questions were asked 

for the Grab Bot II. These included: how easy was it to take the device on and off, what would 

the participant use this device for, what improvements they would make to the device, and how 

much would they pay for the device. Once the participant had answered these questions, their 

part in the evaluation was over. The next step was to evaluate the results.  

9.4: User Testing Results 
This section discusses the results of the user-based testing. The responses of the Willow 

Crossings residents are compared to those of the WPI students for both the Grip ’n Grab trials 

and the motorized gripper trials. Results from this research contains both quantitative and 

qualitative responses. Figure 50 compares how the two device were evaluated by the two user 

groups. It displays a sum of all questions rated 1 to 5, with 1 being an unfavorable performance,  

and 5 being a favorable performance. The data are composed of the rankings of task performance 

difficulty for all four tasks, comfort, ease of donning and doffing, and intuitiveness. The Grip ‘n 

Grab received higher ratings among both user groups than the motorized gripper. This is likely 

because the Grip ‘n Grab is a well-refined commercial product while the motorized gripper is a 

first-order prototype. The motorized gripper had closer ratings to the Grip ‘n Grab among WPI 

students than Willow Crossings residents. It was likely rated much higher with the student group 

because they are younger and more able-bodied than the users at Willow Crossings. The 

motorized gripper is much heavier than the Grip 'n Grab so it is not surprising that elderly users 

would have trouble operating it. 

Figure 50: Average Device Ratings for Each User Group 
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 Figure 51 compares the averages for the task easiness ratings for all four tasks. The 

averages for each individual task can be found in Appendix D. The motorized gripper scored 

slightly worse than the Grip ‘n Grab among both user groups. Both user groups rated the Grip ‘n 

Grab at the same level of difficulty, but WPI students found the motorized gripper more easy to 

use than the Willow Crossings residents by a score of 0.2. This is likely due to the fact that the 

motorized gripper weighed 2.9lb more than the Grip ‘n Grab, which would have made less of a 

difference to the able bodied students. The highest difference in averages for the motorized 

gripper versus the Grip ‘n Grab in terms of difficulty was 0.3. 

 

Figure 52 depicts how comfortable users were when operating the devices. For Willow 

Crossings residents, the Grip ‘n Grab was rated higher than the motorized gripper. This was the 

opposite for WPI students, though the discrepancy was not as high. WPI students rated the 

comfort of the motorized gripper a score of 1.2 higher than the Willow Crossings residents, and 

rated the Grip ‘n Grab a score of 0.5 lower than the Willow Crossing residents. It is easy to 

believe that the Willow Crossing residents would find the motorized gripper less comfortable, as 

it is heavier and more restrictive, but it is unclear what the WPI students found to be more 

comfortable in the motorized gripper. 

Figure 51: Ease of Completing Tasks 
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Figure 53 shows the results pertaining to the difficulty of putting on and taking off the 

motorized gripper. This criterion did not apply to the Grip ‘n Grab, Willow Crossings residents 

rated the motorized gripper a score of 0.9 lower than the WPI students. This can likely be 

attributed to the fact that the elderly participants had less hand strength and dexterity than the 

WPI students, which would make strapping and unstrapping the Velcro wrist support more 

difficult. 

 

Figure 54 displays how easily comprehensible users found the gripping devices. Both 

groups stated that the Grip ‘n Grab was easier to understand than the motorized gripper. The 

Figure 52: User Comfort Level 

Figure 53: Ease of Donning/Doffing Device 
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differences between each group’s ratings of the devices are relatively small, and likely not 

significant due to the small sample size of participants. 

 

Users were asked how much they would expect to pay for a device like the motorized 

gripper if it were a fully realized commercial product. Both young and old participants had 

similar response ranges as seen in Figure 55, with a total minimum of $20 and a maximum of 

$100. There was no apparent mode for a sample this small, though such a value would be useful 

for determining a reasonable market price. 

 

 

 

Figure 54: Intuitiveness of Device 

Figure 55: User Estimations for Price 
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9.5: Favorable Aspects of Device 
Users of the motorized gripper reported that they liked the following features of the 

device: 

 Longer claws 

 Automatic 

 Can grab large objects 

 Controls are simple 

 Grasp is more secure 

 Better at grabbing unorthodox objects 

 Less hand strength required 

Most frequently users (n=6) mentioned that the claw geometry of the motorized gripper 

provided an advantage in picking up objects over the Grip ‘n Grab. The rest of the responses 

were unique. 

9.6: Unfavorable Aspects of Device 
Users of the motorized gripper reported that they disliked the following features of the 

device: 

 Heavy (n=5) 

 Awkward angles 

 Clumsy 

 Not working properly (control malfunction) (n=4) 

 Hard to control 

The most common critique among the responses was that the device weighed too much. 

The second most common critique related to the improper function of the device’s controls. The 

remaining responses had to do with the ergonomics and controllability of the device. 

9.7: User-Suggested Improvements to be Made to Device  
Users of the motorized gripper gave the following suggestions for improving the device: 

 Move the weight backward 

 Make buttons easier to push 

 Change control scheme (n=4): make middle button stop 

 Make back support more secure 

 Design better gripping geometry for the claws (n=2) 

 Implement an extendable shaft 

 Give it the ability to bring objects closer to you 
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The most common suggestion was to improve the improperly functioning controls. The 

second most common response was to improve the claw geometry, which contrasts interestingly 

with the large number of positive response towards that aspect of the design. 

9.8: Additional Comments from User Testing 

 Users indicated a possible need for adjustable length reacher gripper. 

 Most users used a second hand while using the Grip ‘n Grab 

 Switch was difficult to use / understand 

 Some users believed gripper had a second functionality as a cane 

 Clients with prior experience using a reacher gripper indicated that their device was only 

able to be used 50-60 times before breaking 

 Users indicated primary use in the kitchen 
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Chapter 10: Conclusions and Recommendations 
A device was successfully developed that allowed users with reduced hand and wrist 

functionality to grasp and manipulate objects at a distance. Users with impairments such as 

arthritis were able to manipulate objects less than 2lb from various heights. The device also 

greatly improved upon the design developed by the previous MQP (Busteed & Rinaldi, 2011). 

The device was able to fully open and close in under 1 second and weighs 3.5 lbs. This is 87.5% 

less time and 15% lighter than its predecessor. Additionally, the device has force-sensing 

abilities which prevent the device’s claws from crushing objects in its grasp or over-torqueing 

the motor. 

Individuals that used the device found it to be advantageous in a number of ways. The 

device was found to be about as easy to utilize as a commercial gripper for retrieving a variety of 

common objects. Some users found that the claw design of the device was more useful for 

picking up larger and more irregularly shaped objects. Additionally, users appreciated the fact 

that less hand strength was required to operate the device than normal grippers. 

There were a number of areas for improvement related to the device. In almost all user 

evaluations, the device was rated more poorly than the commercial gripper. One of the most 

notable complaints about the device was its high weight. Users noted that this aspect made the 

device unwieldy and difficult to use. Another issue with the device was the frequency of minor 

electronic malfunctions in the control interface. This was the result of a number of factor that 

could not be fully addressed in the time allotted. This flaw is not intrinsic to the design of our 

device, but simply our implementation of it. 

Despite the flaws with the device, the device has marketable value due to its novelty. The 

most unique aspects of the design are the non-backdrivable actuation and clamping spring steel 

claws. This means there is no actuation force needed to maintain a grasp on an object, and no 

need for the user to engage any locking mechanisms. There are currently no grippers on the 

market with non-backdrivable claws or with a form of energy storage similar to our design. 

Users have stated that they would be willing to pay $50 to $100 for the device. If the drawbacks 

of the device are addressed, it could be sold as a commercial product. 
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10.1: Recommendations for Future Work 
If future work were to progress on this project, there would be specific avenues in which 

effort should be focused. Specifically, reducing the weight of the fully assembled device, 

improving the assembly process, altering the types of bearings utilized, utilizing more flexible 

claw material, and optimizing the rotation mechanism for individuals with reduced hand strength 

would be advantageous. 

10.1.1: Weight Reduction 

One of the heavier parts in the front casing of the device was the shaft collar. At the time 

of purchase, its weight was not considered. However, when the device was picked up it was a bit 

heavier than expected and the solid aluminum shaft collar stuck out as a major contributor. This 

part could have easily been 3D-printed out of ABS and functioned properly without adding much 

weight. 

10.1.2: Bearing Decisions in the Front Casing 

The thrust ball bearings used above and below the claws in the front casing were very 

tall, requiring a larger front casing than originally intended. A flanged sleeve bearing should 

have been used instead as they are rated for even more axial force than the thrust ball bearings 

and require almost a 1/4-in less space. With these bearings, head casing height may have been 

reduced by about a 1/2-in. 

10.1.3: Spring-Steel Selection 

The spring steel selected for the claws was heavier in hand than expected. It would have 

been better to use thinner spring steel because it would be lighter and more flexible. The 

flexibility of the claws is essential for the operation of the device because it provides a cushion 

for the Arduino to sense changes in current and allows the device to clamp down on objects 

quickly. 

10.1.4: Rotation Mechanism 

The compression spring of the rotation mechanism is a little too stiff for the user to 

compress. The springs were only available in certain sizes and range of stiffness. The size of the 

shaft and rotation mechanism components necessitated a spring constant of 10-lbf/in when a 

spring constant of 7-lbf/in was more desirable. 
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10.1.5: Reduction in Front Casing Size and Weight 

Since the operation of the device only requires using a 30-deg section of the gears, the 

rest of the gears could be cut off in order to reduce packaging size and weight. New claw 

couplers could be made to fit onto the gears. If mass-produced, the spring-steel claws could be 

fastened directly onto the gears without any need for separate coupler parts. 

When purchasing the gears, the option to get them with or without brass inserts was 

available. The former was chosen without realizing how much weight they would add to the 

device. At the time the decision was made, it was not yet decided whether the gears would mount 

on fixed or rotating shafts and wanted to keep options open. 

10.1.6: Fastener Sizing  

All 3D printed parts of the device are over-sized for their required function. While the 

outer dimensions were necessitated by functional requirements and average human proportions, 

the wall thicknesses were primarily dictated by hardware size since the screws fastened directly 

into the walls. However, the ‘proper’ way to fasten 3D printed parts is to create separate bosses 

for screw holes instead of fastening them directly into the walls of the parts, which was realized 

later. This makes sense because most mass-produced parts have separate cylindrical bosses for 

screws. 

While dimensioning the parts, calipers were used in order to visualize how large or small 

each part would be. However, the big mistake was in choosing ¼-20 screws to be the standard 

hardware size for the device. The device should have been designed with these screws in hand, 

so that a sense for how large and heavy they were may have been realized. Since the means to 

factor hardware into a stress analysis were not available, we ended up overlooking this area. In 

hindsight hardware one, two, or three sizes smaller may have been sufficient and would have cut 

down on the overall weight of the device. 

10.1.7: Scaling Production 

To produce a viable product to market there are some very specific changes that need to 

be made in regards to materials, processes, and actual design. As the current model only 

represents a prototype and proof of concept, a production version requires further work. In the 

interest of time available to undertake an MQP, WPI’s rapid prototyping services to generate 

components with minimal lead time. If a full-scale production line were to be created for this 

reacher gripper, an investment in tooling to create injection molded parts would be made. 



 

80 

 

Injection molded parts would be desirable due to their low cost, comparable strength to the 

prototype, and minimal time to produce. The only major cost associated with this option would 

be to create custom tooling in order to mold the following parts: rear casing bottom, rear casing 

top, rear casing wall, front case bottom, front case top, neck, coupler clamp, claw couplers, and 

grip.  

In addition to designing the tooling, the design of certain parts should be revisited with 

respect to fastening. A method of fastening which would allow for easier assembly, along with 

reduction in parts and weight, would be to design snap fits into the device rather than screws. By 

utilizing the plastics’ tensile strength and geometry to secure parts to each other a reduction of at 

least 0.25-lbs may be realized. Considering the device weighs under 3.5-lbs, this is a significant 

margin for a simple and cost-effective fix. Furthermore, if this product were to be assembled on 

an assembly line, this alteration would minimize the instructions and movements required by 

workers. Moreover, this would reduce the cost required to assemble. 

Regarding the parts which were purchased at base price, if a company intended to sell a 

viable product they would have to reduce this cost. The most likely route that would 

accommodate such a solution would be to identify a quality supplier that could provide bulk 

quantities at reduced price. Unfortunately, this may require a prolonged contract with the 

supplier that would require further research into estimated sales. This step is essential to ensure 

inventory does not outweigh the market.  
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Appendix A: Design Selection 

 
 

Table 7: User Interface Preliminary Design Pairwise Comparison Chart 

Table 6: Arm/Wrist Preliminary Design Pairwise Comparison Chart 

Table 5: Actuation Method Preliminary Design Pairwise Comparison Chart 

Table 8: Attributes Used to Define Device Criterions 
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Table 9: Full Preliminary Design Criteria Pairwise Comparison Chart 

Table 10: Final Design Scoring 
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Appendix B: Free Body Diagrams 

 

  

Figure 56: FBD of Full Device 
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Figure 58: FBD of Claw (Front View) 

Figure 57: FBD of Claw (Top View) 

Figure 59: Claw Coupler (Front View) 



 

87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60: FBD Claw Coupler (Top View) 

Figure 61: FBD Worm Gear (Top View) 
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Figure 62: FBD Pole (Front View) 

Figure 63: FBD Pole (Left View) 
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Figure 65: FBD Worm (Top View) 

Figure 64: Front Casing (Top & Bottom View) 
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Figure 66: FBD of Front Casing (Left View) 
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Appendix C: Kinematics of Final Design 

 

 

 

Figure 67: FBD of Gear Mechanism and Basic Calculations 
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Figure 68: Required Torque Calculations Using MathCAD 

Figure 70: Kinematic Diagram of Claws 

Figure 69: Closing Speed Calculation of Claws 
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Appendix D: User Evaluation 

 

 

 

Figure 71: User Evaluation Forms for Donning, Intuitiveness, Usability, and Comfort 
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Grab Bot II Testing Survey Responses 

 

WPI Department of Mechanical Engineering 

 

Principle Investigators: 

 

 Allen Hoffman: ahoffman@wpi.edu 508-831-5217 

 Holly Ault: hkault@wpi.edu 508-831-5498 

 

Student Investigators: 

 

 Nathan Alvord: nalvord@wpi.edu 508-816-3942 

 Matthew Lesonsky: milesonsky@wpi.edu 603-289-3733 

 Reed Standley: rmstandley@wpi.edu 781-561-5626 

 

Participant Number_____ 

 

Participant Gender_____ 

 

Participant Age_____ 

 

Date_____________ 

 

Location / Residency______________________________ 

 

Do you have any sort of impairments or difficulties with grasping or lifting objects? 

 

____________________________________________________________________________ 

 

Have you ever used reacher-grippers, such as the one we have here, for picking up objects?  

 

_______ 

 

If so, do you ever experience any problems when using reacher grippers? What type? 

 

_____________________________________________________________________________ 

 

Grip n’ Grab: 

 

Ease of picking up 1st light object from the ground _____ 

 

Ease of picking up 2nd light object from the ground _____ 

 

mailto:ahoffman@wpi.edu
mailto:hkault@wpi.edu
mailto:nalvord@wpi.edu
mailto:milesonsky@wpi.edu
mailto:rmstandley@wpi.edu
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Ease of picking up 1st heavy object from the ground _____ 

 

Ease of picking up 2nd heavy object from the ground _____ 

 

Ease of picking up 1st light object from a shelf _____ 

 

Ease of picking up 2nd light object from a shelf _____ 

 

Ease of picking up 1st heavy object from a shelf _____ 

 

Ease of picking up 2nd heavy object from a shelf _____ 

 

How comfortable was it to use the Grip ‘n Grab (scale 5-1)? _____ 

 

How easy was it to understand how to use the Grip ‘n Grab (scale 5-1)? _____ 

 

What were some things that you liked about the device? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

What were some things that you disliked about the device? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Any other comments? 

 

______________________________________________________________________________ 

 

Grab Bot II: 

 

Ease of picking up 1st light object from the ground _____ 

 

Ease of picking up 2nd light object from the ground _____ 

 

Ease of picking up 1st heavy object from the ground _____ 

 

Ease of picking up 2nd heavy object from the ground _____ 
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Ease of picking up 1st light object from a shelf _____ 

 

Ease of picking up 2nd light object from a shelf _____ 

 

Ease of picking up 1st heavy object from a shelf _____ 

 

Ease of picking up 2nd heavy object from a shelf _____ 

 

How easy was it to put on the Grab Bot (scale 5-1)? _____ 

 

How easy was it to take off the Grab Bot (scale 5-1)? _____ 

 

How comfortable was it to use the Grab Bot (scale 5-1)? _____ 

 

How easy was it to understand how to use the Grab Bot (scale 5-1)? _____ 

 

What were some things that you liked about the device? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

What were some things that you disliked about the device? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Would you presently have use for this device? If so, what tasks would you use it for? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

What improvements would you make to this device, if any? 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

How much would you be willing to pay for this product? ____________ 

 

Any other comments? 
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Informed Consent Agreement for Participation in a Research Study 

 

Investigators: Nathan Alvord, Matthew Lesonsky, and Reed Standley 

 

Contact Information: 

 

Student Investigators: 

 

 Nathan Alvord: (508)-816-3942 nalvord@wpi.edu 

 Matthew Lesonsky: (603)-289-3733milesonsky@wpi.edu 

 Reed Standley: (781)-561-5626rmstandley@wpi.edu 

 

Principle Investigators: 

 

 Allen Hoffman: (508)-831-5217 ahoffman@wpi.edu 

 Holly Ault: (508)-831-5498 hkault@wpi.edu  

 

Title of Research Study: Grab Bot II Evaluation 

 

Introduction 
You are being asked to participate in a research study.  Before you agree, however, you must be 

fully informed about the purpose of the study, the procedures to be followed, and any benefits, 

risks or discomfort that you may experience as a result of your participation.  This form presents 

information about the study so that you may make a fully informed decision regarding your 

participation.  

 

Purpose of the study: The purpose of this study is to evaluate the “Grab Bot II,” a new type of 

reacher-gripper. The study will look at the Grab Bot II’s functionality, how easy it is to operate, 

and its marketability. The results and suggestions we receive from this study will help in making 

further improvements to the Gab Bot II. 

 

Procedures to be followed: You will be conducting identical trials for each of several assistive 

devices including the Grab Bot II and commercially available reacher-grippers. You will take 

hold of the device by yourself if you are able. You will then retrieve heavy and light objects from 

high and low locations. Both during and after these trials, you will be asked to answer questions 

about your experience using the assistive devices. The complete procedure is expected to take 45 

minutes. 

 

Risks to study participants: There is a possible risk of dropping a small object onto your lower 

extremities, such as your feet, while using the reacher-grippers. There is also the possibility of 

experiencing discomfort in the hand or arm due to the weight of the objects being manipulated. 

You should discontinue the test if you experience more than minor discomfort. 

 

mailto:nalvord@wpi.edu
mailto:milesonsky@wpi.edu
mailto:rmstandley@wpi.edu
mailto:ahoffman@wpi.edu
mailto:hkault@wpi.edu
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Benefits to research participants and others:  There are no directs benefits you for 

participating in this activity. Involvement in this activity may aid the development of a product 

available for purchase.  

 

Record keeping and confidentiality:  All records will be kept confidential. Participants will 

remain anonymous, as their names will not be linked to any data. Surveys will be kept in a 

locked drawer. Once data is compiled electronically, the surveys will be destroyed and the 

compilation will be kept under a password. The three student investigators along with project 

advisors, Professors Ault and Hoffman, will have the only access to the data. Records of your 

participation in this study will be held confidential so far as permitted by law. However, the 

study investigators, the sponsor or it’s designee and, under certain circumstances, the Worcester 

Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect and have 

access to confidential data that identify you by name. Any publication or presentation of the data 

will not identify you. 

 

Compensation or treatment in the event of injury: If the assistive devices are used properly as 

instructed there should be no risk of injury. In the event that an accident happens, please report it 

to the student investigators who will take further action. You do not give up any of your legal 

rights by signing this statement. 

 

For more information about this research or about the rights of research participants, or in 

case of research-related injury, please contact the student investigators with the 

information listed at the top of the page or one of the following contacts: 

 

IRB Chair- Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu 

 

University Compliance Officer- Jon Bartelson, Tel. 508-831-5725, Email: jonb@wpi.edu 

 

Your participation in this research is voluntary.  Your refusal to participate will not result in 

any penalty to you or any loss of benefits to which you may otherwise be entitled.  You may 

decide to stop participating in the research at any time without penalty or loss of other 

benefits.  The project investigators retain the right to cancel or postpone the experimental 

procedures at any time they see fit. 

 

By signing below, you acknowledge that you have been informed about and consent to be a 

participant in the study described above.  Make sure that your questions are answered to your 

satisfaction before signing.  You are entitled to retain a copy of this consent agreement. 

 

 

 

 

 

___________________________   Date:  ___________________ 

Study Participant Signature 

mailto:kjr@wpi.edu
mailto:jonb@wpi.edu
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___________________________                                
Study Participant Name (Please print)    

 

 

____________________________________ Date:  ___________________ 

Witness (Student Investigator) 

 

 

___________________________                                

Witness Name (Please print) 
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Team Gripper 15 
Grab Bot II Testing Survey Script 

 

WPI Department of Mechanical Engineering 

 

Principle Investigators: 

        Allen Hoffman: ahoffman@wpi.edu 

        Holly Ault: hkault@wpi.edu 

 

Student Investigators: 

 

 Nathan Alvord: nalvord@wpi.edu 

 Matthew Lesonsky: milesonsky@wpi.edu 

 Reed Standley: rmstandley@wpi.edu 

 

Thank you for taking the time to help us evaluate the Grab Bot II. Today you will be using two 

different reacher-gripper devices designed for picking up objects at a distance. The first of these 

devices is a commercially available reacher gripper. The second device, the Grab Bot II, was 

designed and built by students at Worcester Polytechnic Institute. You will be using these two 

devices to pick up a variety of objects from different locations, and then give your opinions on 

what it was like to use the devices. Your feedback and suggestions will help improve the Grab 

Bot II. Before we begin the trials, we have a few quick questions: 

 

What is your age? 

 

(For Village at Willow Crossing) Do you live at Willow Crossing or do you live elsewhere? 

 

Do you have any sort of impairments or difficulties with grasping or lifting objects (e.g. arthritis, 

nerve damage, muscular atrophy)? If so, what are they? 

 

Have you ever use reacher-grippers, such as the one we have here, for picking up objects? 

 

If so, do you ever experience any problems when using reacher grippers? What type of 

problems? Any discomfort? 

 

We will now begin the trials. There will be two trials: one using the Grip n’ Grab and one using 

the Grab Bot II. In each trial, you will attempt to pick up eight objects: two light objects on the 

ground, two heavy objects on the ground, two light objects on a shelf, and two heavy objects on 

a shelf. Using the assistive devices in any way you like, you will attempt to retrieve the objects, 

bringing them as close to your body as possible. If you experience great discomfort at any point, 

stop using the device and notify one of us. 

 

We will start with the Grip n’ Grab. Please pick up the device. Squeezing the trigger opens and 

closes the claws. The head of the device can be rotated by pulling the head outward and twisting. 

mailto:nalvord@wpi.edu
mailto:milesonsky@wpi.edu
mailto:rmstandley@wpi.edu
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Take a few moments to practice with the device. 

 

Please retrieve the light object on the ground. 

 

On a scale of 1 to 5, how easy was it to retrieve this object, with 5 being as easy as 

picking it up with your own hands if it were in reach, and 1 being almost impossible? 

 

Please retrieve the next light object on the ground. 

 

How difficult was it to retrieve this object on a scale of 5 to 1, 5 being as easy as using 

your hands, and 1 being almost impossible? 

 

Please retrieve the heavy object on the ground. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the next heavy object on the ground. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the light object on the shelf. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the next light object on the shelf. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the heavy object on the shelf. 

 

 How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the next heavy object on the shelf. 

 

 How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please put down the Grip n’ Grab. We will now ask you some additional questions about the 

Grip n’ Grab. 

 

On a scale of 5 to 1, how comfortable was it to use the Grip n’ Grab, 5 being not 

uncomfortable at all, and 1 being extremely uncomfortable? 
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On a scale of 5 to 1, how easy was it to understand how to use the Grip n’ Grab, 5 being 

you understood how to use it immediately with almost no practice needed, and 1 being it 

was a struggle to figure out how to get the Grab Bot to do what you wanted, even after 

using it for a while. 

 

What were some things that you liked about the device? 

 

What were some things that you disliked the device? 

 

Do you have any additional comments about the device? 

 

Now we will begin the Grab Bot II trial. Please put on the Grab Bot II, tightening the strap 

around your arm. Attempt to do this yourself, but let us know if you need assistance. 

 

A switch on the handle controls the claws. The bottom switch position automatically sets the 

claws to an open position. The middle position on the switch automatically sets the claws to a 

closed position that lightly grips an object. The top position on the switch automatically sets the 

claws to a closed position that tightly grips an object. The head of the device can be rotated by 

pushing the grip near the head outwards and then twisting it. 

 

Take a few moments to practice with the device. 

 

Please retrieve the light object on the ground. 

 

On a scale of 5 to 1, how difficult was it to retrieve this object, with 5 being as easy as 

picking it up with your own hands if it were in reach, and 1 being almost impossible? 

 

Please retrieve the next light object on the ground. 

 

How difficult was it to retrieve this object on a scale of 5 to 1, 5 being as easy as using 

your hands, and 1 being almost impossible? 

 

Please retrieve the heavy object on the ground. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the next heavy object on the ground. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the light object on the shelf. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 
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Please retrieve the next light object on the shelf. 

 

How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the heavy object on the shelf. 

 

 How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please retrieve the next heavy object on the shelf. 

 

 How difficult was it to retrieve this object on a scale of 5 to 1? 

 

Please take off the Grab Bot II. 

 

The trials have concluded. We will now ask you some additional questions about the Grab Bot II. 

 

On a scale of 5 to 1, how easy was it to put on the Grab Bot, with 5 being almost no effort 

to 1 being almost impossible? 

 

Using the same scale, how easy was it to remove the Grab Bot? 

 

On a scale of 5 to 1, how comfortable was it to use the Grab Bot, 5 being not 

uncomfortable at all, and 1 being extremely uncomfortable? 

 

On a scale of 5 to 1, how easy was it to understand how to use the Grab Bot, 5 being you 

understood how to use it immediately with almost no practice needed, and 1 being it was 

a struggle to figure out how to get the Grab Bot to do what you wanted, even after using 

it for a while. 

 

What were some things that you liked about the device? 

 

What were some things that you disliked the device? 

Would you presently have use for this device? If so, what tasks would you use it for? 

 

What improvements would you make to this device, if any? 

 

If a device like this were to become a refined, commercially available product, how much 

would you be willing to pay for it? 

 

Do you have any additional comments about the device? 

 

This concludes the evaluation. Thank you very much for your time and effort here today. Do you 

have any questions for us? 
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Appendix E: Deflection Calculations 
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Appendix F: Gripper Benchmark Testing 
Table 11: Grip 'n Grab Task Evaluation Scores 

 Product: 
Grip n 
Grab   

     

Task Weight 
Difficulty 

(1-5) Weighted notes 

Pick up remote 
controls 36 1 36  

Pick up newspaper 
from floor 34 1 34  

Put cans into 
cupboards (full) 31 1 31 

the jaws barely fit around the container. it couldn't fit 
around a salsa jar. This is a big problem because salsa 
jars are very common and there are a lot of common 
containers that are bigger than it 

Take out cans from 
cupboards (full) 31 1 31  

Put dishes into 
cupboards 30 3 90  

Take out dishes 
from cupboards 30 2 60 

had trouble getting between plates, two hand operation, 
required too much grip force to carry safely 

Dressing, pulling 
up pants 30 5 150  

Open and close 
drawers 28 1 28  

Clean up 27 1 27 
very fast, the head is quickly rotatable so the gripper can 
easily be changed back and forth for quick clean up 

Take out clothes 
from the closets 26 3 78 decreased sensitivity played a part in this,  

Open or close the 
doors 24 3 72 would work better with more grip force/less deflection 

Pull out slippers 
from under the 

beds 22 1 22  

Take out clothes 
from racks or coat 

hangers 22 1 22 rubber helps jaws grip cloth very well 

Take out mail from 
the mailbox 22 2 44 better with pointier ends 

Turn lights on or off 21 1 21 lightweight and agile, very easier to do precise things 

Open or close the 
refrigerator 20 3 60 

this required a lot of grip strength, the cable seemed to 
stretch inside 

Open/close the 
oven or microwave 

oven 19 1 19  

REACHER 
SCORE   84%  
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Table 12: Medline Task Evaluation Scores 

 Product: Medline   

     

Task Weight 
Difficulty 

(1-5) Weighted notes 

Pick up remote controls 36 1 36 jaws barely wide enough to grip controller 

Pick up newspaper from 
floor 34 1 34 very firm grip 

Put cans into cupboards 
(full) 31 3 93 

the jaws BARELY fit around it. big problem. it was 
so close that the gripper could not release the 
object 

Take out cans from 
cupboards (full) 31 3 93 requires a lot of grip strength when horizontal 

Put dishes into 
cupboards 30 3 90  

Take out dishes from 
cupboards 30 2 60 

had trouble getting between the plates, but was 
able to carry the plate using medium grip strength 

Dressing, pulling up 
socks 30 5 150  

Open and close drawers 28 1 28 
Hard to aim/control when hand is not clenched, but 
when hand is clenched you have a lot of control 

Clean up 27 2 54 fast, but a rotatable head would have helped 

Take out clothes from 
the closets 26 4 104 

handle slips in the hand a lot, required a lot of 
forearm strength due to overhand grip 
(nonrotatable head) 

Open or close the doors 24 3 72  

Pull out slippers from 
under the beds 22 1 22  

Take out clothes from 
racks or coat hangers 22 1 22  

Take out mail from the 
mailbox 22 2 44 pointier ends would help 

Turn lights on or off 21 1 21 
shaft directly in-line with forearm makes easier to 
push things up or down 

Open or close the 
refrigerator 20 2 40 solid rod reduces required user gripping strength  

Open/close the oven or 
microwave oven 19 1 19  

REACHER SCORE   77%  
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Table 13: GripLoc Task Evaluation Scores 

 Product: GripLoc   

     

Task Weight 
Difficulty 

(1-5) Weighted notes 

Pick up remote 
controls 36 1 36 jaws could be better 

Pick up newspaper 
from floor 34 5 170 not enough grip strength 

Put cans into 
cupboards (full) 31 2 62 grip feels very insecure 

Take out cans from 
cupboards (full) 31 2 62  

Put dishes into 
cupboards 30 5 150 

the jaws deflected too much and there wasn't enough 
grip force 

Take out dishes from 
cupboards 30 5 150  

Dressing, pulling up 
socks 30 5 150 no grip with the tips of jaws, they deflect very easily 

Open and close 
drawers 28 5 140 lock mechanism doesn't lock very hard 

Clean up 27 3 81 it wasn't as quick as the other devices 

Take out clothes 
from the closets 26 1 26 

when using jaw tips it is completely impossible, but just 
letting the coat hanger hang on it works great. two 
hand action is way more easy to control 

Open or close the 
doors 24 5 120 it has no strength or grip for this application 

Pull out slippers from 
under the beds 22 2 44  

Take out clothes 
from racks or coat 

hangers 22 2 44 
no mechanical feedback to the user...could just be 
because it is so darn weak 

Take out mail from 
the mailbox 22 3 66  

Turn lights on or off 21 1 21  

Open or close the 
refrigerator 20 5 100  

Open/close the oven 
or microwave oven 19 5 95 

could use pointier ends, also awkward to maneuver 
without a handle like the other ones. you have to put 
your elbow up just to get the jaws in line with the object 

REACHER SCORE   53%  
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Table 14: Grab-Bot Task Evaluation Scores 

  Product: Grab-Bot  

     

Task Weight 
Difficulty 

(1-5) Weighted notes 

Pick up remote 
controls 36 1 36 grip is very strong, but jaws are slow 

Pick up newspaper 
from floor 34 5 170 

Jaws too bulky to get under newspaper, foam deflects too 
much 

Put cans into 
cupboards (full) 31 2 62 

the circular jaws are useless because nothing fits into 
there. the other more elliptic jaws contact objects much 
better 

Take out cans from 
cupboards (full) 31 2 62 slow 

Put dishes into 
cupboards 30 4 120 

two hands required for this. caused the central pulley to 
move out of the channel, so jaws were no longer fixed 
from rotating side to side. 

Take out dishes 
from cupboards 30 5 150 

the jaws were too big to fit in between the plates at all. no 
chance. plus the head cant rotate so you can't get 
anything 

Dressing, pulling up 
socks 30 5 150  

Open and close 
drawers 28 1 28 

the foam conforms to the shape of the drawer handle, 
allowing the gripper to use a lateral force on the handle 
instead of frictional 

Clean up 27 3 81 
SO SLOW. however it could pick up a very heavy olive oil 
container which none of the others could handle 

Take out clothes 
from the closets 26 4 104 

jaws are very clunky, speed is a huge issue trying to find 
out the proper way to grip something takes WAY longer 
because each attempt takes like 10x longer than the 
manual grippers 

Open or close the 
doors 24 5 120 

the circular section of the jaws hit the doorframe, 
preventing it from being able to grasp the door knob 

Pull out slippers 
from under the 

beds 22 2 44  

Take out clothes 
from racks or coat 

hangers 22 4 88 

it took a long time for the motor to squeeze the last 
fractions of an inch to be able to grasp the shirt and the 
foam tips provided no help 

Take out mail from 
the mailbox 22 5 110 the jaws were too big to fit into the mailbox 

Turn lights on or off 21 1 21  

Open or close the 
refrigerator 20 1 20 the non-backdrivability and stiff jaws made this perfect 

Open/close the 
oven or microwave 

oven 19 2 38  

REACHER SCORE   58%  
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