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Abstract 
 

Legged robots allow for travel over the variable terrain commonly found on Earth, which 

is more difficult for traditional wheeled systems. The MIT Leg Lab made great progress with 

both bipedal and quadruped robots in the 90s. Currently, advances have been made with legged 

robots through companies like Boston Dynamics. These robots provided the inspiration for 

Robodog. Legged robots pose a variety of challenges from mechanical design to control, and as a 

result, WPI has not produced many successful legged robots. For our project, we designed a 

quadrupedal robot to accomplish a basic walking gait.  It stands at 21 inches and weighs 18.9 lbs. 

Robodog was designed and manufactured from the ground-up, and is the first step toward 

cheaper quadrupeds. This was accomplished using servo motors and a parallel elastic system to 

decrease motor load and increase efficiency. After extensive experimentation our quadruped is 

capable of successfully walking. 
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Executive Summary 

 In this Major Qualifying Project (MQP), we designed, built, tested, and refined a 

quadrupedal robot for all terrain usage. The robot was meant to be capable of walking over small 

obstacles and uneven terrain like that of some planets in our Solar System. This report details our 

work in getting a robotic quadruped around the size of a medium sized dog to walk, while still 

keeping costs reasonably low. First, the various research done before the project was started is 

presented, which includes the workings of previous quadrupeds, and research into the various 

gaits of 4 legged animals. After this is a summary of the goals set at the beginning of the project. 

The next section details the various designs for the mechanical systems, electronics, and coding 

involved in the development of Robodog, and then the various experimentation done to refine 

and improve these designs. Finally, the various methods used in the construction and assembly of 
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the final robot are discussed, and the report ends with various steps any successors could make in 

improving this project. 

 Robodog is built from mostly aluminum, in order to keep costs low, have a light body, 

and still have strong support. The frame is made of Aluminum 80/20, chosen for its easy 

configurability, and the legs are made of Aluminum 6061, chosen for its workability.  

 The dog is actuated by servo motor, as well as a parallel elastic system on the lower knee 

joint. This elastic system was key in ensuring that there was enough torque to get such a large 

robot to walk. The elastic system charges as the leg lifts, and releases as the leg steps. Using this 

system allowed the dog to work with lower cost motors, and makes these motors more efficient. 

This allows the motors to save energy during its running, but also when at rest, since the elastics 

allow the Robodog to stand without power. Robodog was able to successfully walk, and with the 

usage of a parallel elastic system, two walking gaits were achieved, the walking trot and the 

lateral sequence.  

Introduction 

 The motivation for the study of legged robots is inspired by the limitations of wheeled 

robots. Wheeled robots tend to need a flat surface to run, but flat surfaces are rare in the 

unexplored places on earth, and on the other planets of the Solar System. Another issue with 

legged robots is cost, where for many quadrupeds, the cost of which makes them unfeasible. The 

advent of a low cost robotic quadruped could result in advances in not just space exploration, but 

also in general everyday usage in carrying objects, shipping, and other general utility 

Wheeled robots and their limitations are apparent when dealing with nonuniform 

surfaces. For example, the surface of the Moon and Mars have many craters and slopes 

throughout their surfaces. In everyday life on Earth, there are stairs, hills, and terrain to navigate, 
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which can be difficult for wheeled robots. Legged robots take inspiration from living things that 

navigate such obstacles easily.  

This project was undertaken by two senior undergraduate students at Worcester 

Polytechnic Institute(WPI). Every part of the process of creating a working quadruped was done, 

from design, to testing and experimentation, to construction and manufacturing. This project can 

be seen as a first step in the interest of building low cost robotic quadrupeds with parallel elastics 

systems, and ideally future work can be done to improve upon the work done here. This report 

details the various processes and challenges encountered, so that future work done on this 

concept can learn from the insight gathered from this project.  
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Background 

Gait Research: 

 In order to control a legged robot, one must look to nature and way other legged creatures 

move. By looking at the movement of quadrupeds in different gaits, determining a control 

pattern was possible. Quadrupeds have various gaits, both symmetrical, meaning that any given 

side’s (left or right) pair alternate, and asymmetrical, meaning that the pairs move together [1,2]. 

For this project, focus was placed on the walking gaits due to limited motor torque.  

The first gait in the symmetrical gaits section of Figure 1 shows the walking trot. This 

gait requires the diagonal leg pairs to alternate phases with a short time where all four legs are in 

contact. The second walking gait is the lateral sequence gait which is more complicated, but 

allows for potential for three legs on the ground at a given time with worst case being two legs 

on the ground. It should be noted that gait diagrams like Figure 1 are just a general rule of thumb 

and actual contact times vary depending on leg lengths and various other variables [2]. This 

diagram served as a basis for RoboDog’s control scheme. 

 

Figure 1: Gait Timing Graphs [1] 
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To help with understanding the movement of canines, videos of canines were observed at 

various speeds [3]. These videos were analyzed using a program called Tracker. This program 

allows for frame to frame motion analysis and provide information on leg angles during impact 

and lift off, as well as, foot pathing. Figure 2 shows an example of this software being used on 

the dog video. 

 

Figure 2: Dog walking on treadmill and being tracked via Tracker software 

 

Other Legged Robots: 

 Design inspiration for this project came from the multitude of legged robots that came 

before RoboDog. MIT Leg Lab’s design process had a big impact on the design process that was 

followed for RoboDog. Starting off with a single leg to ensure proper specifications and results 

was inspired by the Leg Lab and a circular track from the single leg was even constructed. 

Though RoboDog’s single leg was never meant for independent travel, it served as an interesting 

point of research to determine the leg’s fitness for the resulting quadruped.  

 More recently, Boston Dynamics various quadrupeds inspired the design choices that 

were made as the project progressed. Boston Dynamics has created quadrupeds like BigDog, 
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Wild Cat, Spot and Mini-Spot. Given the planned size and budget of RoboDog, Spot and Mini-

Spot served as main focal points. Particularly, the leg orientation of Spot and Mini-Spot inspired 

RoboDog’s final design. It became clear that have inverted back legs would be the best approach 

for RoboDog in terms of clearance. Videos of Spot and Mini-Spot also assisted in understanding 

the controls and the general movement of quadruped robots. 

 

Figure 3: Boston Dynamic’s Spot [4] 

DH Parameters: 

 During the development of RoboDog’s various leg designs, it was necessary to analyze 

the inverse kinematics of the legs. Normally a simple 2-DoF doesn’t require DH parameters to 

calculate the Inverse Kinematics, but by using Work-Energy Equivalence the torque our motors 

would ideally need to output could be determined. Below is an outline of DH parameters, Work-

Energy Equivalence and how it pertained to this project. 

 DH parameters are a tool used to convert from one coordinate plane to another. This is 

most helpful with multi-DoF system as it allows one to calculate the movement of a given joint 
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or end-effector with respect to its or any other coordinate frame. This allows one to look at a 

desired output and figure out the necessary joint angles to get that output. 

 For RoboDog’s 2-DoF leg DH parameters were used to transform from the hip joint to 

the foot in order to understand the movement of the leg with respect to the hip joint. With DH 

parameters matrices for transformation were created (See Figure 3 for an example matrix). The 

matrices consist of a rotational and translational element. The various DH parameter as as 

follows: d is the distance along the previous z axis to the common normal, θ is the angle about 

the previous z axis to align with the new x axis, a is the length of the common normal, and ᅇ is 

the angle about the new x axis to align the previous z axis with the new z axis [5]. With multiple 

matrices between various coordinates we can multiply them to get the relation from one to 

another. After obtaining the matrix the Work-Equivalence theorem can be used.  

 

Figure 4: Transformation Matrix with DH parameters [5] 

 The Work-Equivalence theorem is based off the conservation of energy. The work done 

linearly will be equal the rotational work done. Given a desired force matrix and the needed 

torque matrix can be determined [6]. This is done by using the Jacobian of the system, as shown 

by the equation below, where Fq, JT, and Fx are the torque, jacobian and force matrices 

respectively. 

Fq = Jee
T*Fx 

The Jacobian can be calculated from the transformation matrix obtained from the DH parameters 

and consists of a linear and angular part. The linear results from the partial derivatives of the 



10 
 

translational components of the transformation matrix and the angular is the partial derivatives of 

the angular components (See Figure 4). With this, the leg design can be properly analyzed.  

 

 

 

Figure 5: Jacobian [6] 

  

Objectives: 

 The objectives for this project were to create a quadruped robot capable of 1.5 mph 

walking, while standing at 21 in. This robot would hopefully be capable of walking over variable 

terrain, like gravel, and up and down inclines of up to 30 degrees. RoboDog was also meant to be 

very cheap and be fairly simple compared to other quadruped robots, which usually have custom 

motors and sensor rigs. 
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Design and Experimentation 

Leg Design 1: 

 

Figure 6: Initial Leg Design 

The initial design was a simple 4 bar linkage. The goal of this first design was to get a 

motion that resembled the output of the stepping motion of a dog. The design was inspired by 

other legged linkage designs. After testing with a preliminary design in Working Model, a 

wooden model was built, to test various leg lengths, and observe the output. This model was 

powered by hand, turning the input link. Later, two stoppers were added to test the feasibility of 

using stoppers to raise the leg.  

 Next this leg design was modeled in CAD. This was done to simulate the motion of the 

leg with a motor, and easily see the difference in output with various motor speeds. In CAD, 

collision with the included stoppers was difficult to simulate, but CAD programs were able to 

generate valuable mass, material properties, and motion. From these results, Aluminum 6061 

was chosen as the material for the leg, due to this material being relatively strong, lightweight, 

and inexpensive. A model was built with the aluminum, and motion of the leg was tested with a 

motor and collar.  
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Leg Design 2: 

 The next designs made use of springs in conjunction with the motor to store and release 

energy. The first attempt to integrate springs with the leg design involved adding a torsion spring 

at the input link of the initial design. This spring would be oriented in the opposite direction of 

the motor output, so that as the motor turned it would charge the spring, and the release in spring 

energy would cause the leg to walk. Since torsion springs were unavailable at the time, this idea 

was simulated in CAD. 

Leg Design 3: 

 After performing testing with prior leg designs, it was determined that having 

independent control of the elbow joint would be worth the tradeoff of having additional 

complexity. In order to get elbow control, it was originally thought a direct connection to a 

precision servo would be a sufficient, but would result in the servo operating at stall torque for 

extended periods of time. Professor Popovic suggested a device that could be charged by a servo 

and retracted by a spring system. Accordingly, the spring force would be used in the most 

demanding areas to protect the servo from having to actuate. The implementation of this design 

would require two per leg, one for the upper leg and one for the lower leg. An alternative design 

based on these properties involved a piston-based system that ran to various pulleys. 
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Final Design: 

 

Figure 7: Upper chain sprocket 

 The piston design was ultimately determined to be too difficult to implement as the piston 

could only move in linearly in one direction while requiring the upper leg to rotate around an 

axis. Thus pushing and pulling on one end of the upper leg with the piston would not be possible, 

since the path that the end of the leg would traverse would be curved. This issue was also 

compounded with problems supporting the piston. 

The final model implemented a simple design, where each joint of the leg was actuated 

by a servo geared up via sprocket and chain. Initially, a 1:5 gear was used for the upper hip joint, 

and a 1:3 gear ratio for the knee joint. This was eventually changed after the results of various 

experimentation. A list of material used in the design and test process can be found in Appendix 

D. 
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Mount Design: 

 

Figure 8: CAM tool paths for machined mounts 

 With the aforementioned final design of the leg, the servomotor the would need to be 

mounted to the upper leg. This mount would need to be secure so as to resist reactionary forces 

from the drive train. The initial motor mount was put together using various scrap, and supported 

by wood and duct tape. This was a temporary measure to use in the testing of the leg. The final 

model would machine the mounts for the motors in order to have a consistent mount for each 

motor, as well as to make them as secure as possible. The mounts were machined on a Haas 

MiniMill, and consisted of a plate with a rectangular pocket and holes to screw into the attached 

screw holes on the servo. Eight of the described plates were machined to fit the RJX hobby 

servos. The RJX hobby servos were later switched out for Savox servos. Due to a similar servo 

size being ordered, the plates were quickly modified to fit the new servo screw holes by filing the 

ridges on the screw hole ridges. 

 With the plates completed, the servos themselves could be mounted to an attachment 

piece, which then had to be mounted to the legs. For the lower leg mounts, the plate needed to be 

mounted onto the upper leg, while for the upper leg the plate had to be mounted to the frame of 

the body. The lower leg mount needed to be especially secure since the piece that the plate would 
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be mounted on would be moving. The system would have to make sure that nothing came loose, 

or would shake during the movement of the leg. To this end, two thicker brackets of aluminum 

were drilled and tapped, such that they could be screwed into the plate to the brackets and to the 

leg. Special care was considered while dimensioning the location of the mount on the leg as the 

chain was both difficult to adjust and the size of the chain and teeth meant that the sprockets 

would have be at certain distances from each other, otherwise the chain would catch on the 

sprocket, or be too loose. As we also found with the prototype leg, we would only have one 

chance to get this dimension correct, since if we made a mistake, we would have to make the 

holes larger to space the chain and sprockets properly. This results in a too loose of fit of the 

shafts on the leg, which causes it to wiggle.  

Feet Design: 

 The Hydrodog used simple rubber caps as feet. These caps were initially used as a 

placeholder, with the intention of replacing these caps for the final design, since they didn’t have 

much friction with the ground, and had a small area in which it contacted the ground. These feet 

were mostly used for force testing with the prototype leg. Eventually, a design was developed for 

a larger foot at the base. This was done with a triangular prism, held with a pin to the bottom of 

the lower leg, to allow for rotation. This is similar to an ankle joint, which allows the rotation of 

the foot forward and backward. This prism was made of aluminum, which doesn’t have much 

friction with the ground, so some different material would need to be added to the bottom of the 

foot. Tests were conducted on various nonmetal materials found in the lab, to see which would 

have the best friction with the ground. To do this, strips of materials such as rubber and latex 

were cut out at the same dimensions as the bottom of the feet. Then, a weight was placed onto 

the strip, and how much force it took to pull the strip and weight to slide on the ground was 
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measured. The more force it took to pull it along, the greater friction there was between the 

material and the ground. After these tests the material with the best friction with the ground to 

use was latex, from latex tubing around the lab. A section of this tubing was cut out, and then 

flattened, and superglued to the bottom of the foot.  

 With the triangular piece pinned to the bottom of the leg, the foot simply hangs in place, 

but without a way to restrict its rotation, the foot would flip over when in use. The next iteration 

of the foot design was inspired by the achilles heel that humans have. As a human walks, the 

weight of the person is shifted forward, and the back of the foot is pulled by the achilles heel. To 

mimic this pull, a spring was placed on the back end of the foot, to be connected to the back of 

the leg. As the leg goes through its pull through phase, the foot is on the ground and rotates 

backwards relative to the leg. This increases the distance between the back end of the foot and 

the leg. By putting a spring here, the motion of the leg charges the spring, and as foot lifts again, 

the spring pulls the foot to rotate forward.  

 This accomplishes several things. Since the spring will try to return to its initial length, 

this ideally prevents the foot from rotating too far backwards. This also ensures that the foot 

stays at the same orientation when the foot isn't on the ground, and that the foot will always 

return to the same orientation after lifted off the ground. The original intention of the design was 

to help to shift the weight of the foot forward, and it does accomplish this to a degree, however 

the springs available and at this size were not strong enough to make much of a difference in 

shifting weight. As a result, the spring is mostly used as a positioning tool.  

 This foot design was novel for legged robots, and was used in most of the tests run. Later, 

it was observed that perhaps these feet gripped too well on the surfaces that Robodog was tested 

on, and so made it difficult to lift the leg again from the ground.  Observing other legged robots 
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seemed to show that most legged robots had small feet, especially compared to the size of the 

leg. In an effort to reduce friction, the feet were replaced with tennis balls, that the legs were 

slotted into. These ended up working much better on the tile floors in the lab. The previous foot 

design may have potential for future work on this project.  

 
Single Leg Experimentation: 

 

Figure 9: Prototype Leg 

 Rigorous testing was done for the initial prototype leg. The first leg was a way to prepare 

and figure out issues concerning assembly of the legs for the final robot. This leg also was used 

for force testing to determine final components necessary, testing the pathing of the leg, as well 

as basic walking tests.  

 Having a prototype leg allowed tests to be run for the forces that the leg can produce. At 

the end of the lower leg, at the foot, the leg needs to push down with greater force than the 

weight of the robot, divided by the number of legs are on the ground. At any time, the fewest 

number of legs in contact with the ground is two, so any single leg needs to be able to support 
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half the weight of the entire robot. Through testing, the original design with a 3:1 gearing at the 

elbow joint, was found to not have enough force to support the entire robot. The lower joint was 

more important in supporting the robot, since the lower leg was significantly longer than the 

upper leg, which meant that the moment arm was much longer, and that it would take more 

torque at the lower joint to counteract the normal force from the floor at the foot. This joint was 

switched to a roughly 4.5:1 gearing at the elbow joint. This would provide more torque at the 

joint, in exchange for a lower range of motion and less speed.  

 Several tests were done to try and measure the forces the foot could generate. For force 

downward, the “body” of the single leg was secured and then powered the foot to push down 

during pull through phase of a walking gait on a force sensor. This test had issues, since it was 

difficult to have the leg pull through at a point where data could be collected. The leg would 

often pull past where the force sensor was, and the small surface area of the initial foot used, it 

was difficult to orient the sensor so all of the force generated by the leg was recorded. A different 

method was tried, where the leg was run to stand, and kept powered, and then the force sensor 

was pushed against the bottom of the foot until the motor started to give. This method also didn’t 

work well, since the set screws that held the shafts in place started to slip before the servos 

would give way. This led to the use of a thread locking fluid to secure the screws. In the end, leg 

and body was flipped upside down, and the leg tried to lift a weight upwards.   

 Building a prototype leg gave an idea of the weight of each leg, and therefore allowed a 

better estimation for the total weight of the dog, since the majority of the weight would be in the 

legs. The body would mostly be an aluminum 80/20 frame, with some electronics on it, which 

overall weighs much less than the components of the legs. The leg initially weighed around 6 lbs, 

which was difficult for the leg to lift itself with. Measures were taken to reduce the weight as 
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much as possible, and the biggest impact to this was the changing the material of the sprockets. 

The large upper sprocket weighed about 1 lb, and the lower sprocket weighed about 0.7 lbs. 

These were switched to use nylon sprockets, each of which weighed less than 0.1 lbs. Just by 

switching the sprockets the weight of a single leg was reduced by around 1.5 lbs. These nylon 

sprockets didn’t have holes for set screws, which were drilled and tapped in the machine shop 

afterwards. For the large 40 and 45 tooth sprockets, the screws would hold, since there was much 

more space for more threads. However, when attempting to replace the smaller 9 tooth sprockets 

with nylon sprockets, the sprockets were too small, and so even when drilling and tapping holes 

the screws wouldn’t hold.  

 

Figure 10: Example of the clamp that was replaced 

 Assembly of the single leg led to important knowledge and experience regarding putting 

the legs together. The first leg had many improvised or suboptimal systems, which were 

replaced. For example, the first leg attached the shafts to the leg bars with clamp hubs, that were 

tightened by screws. These were hard to attach, partially due to difficulties with placing the 

screw holes to mount the hubs. These screw holes had to be precisely placed to allow the hub to 

fit in line with the shaft. This was difficult to do with the limited tools in the lab, and since at the 
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time we didn’t have full access to the machine shop. Another major issue with the clamp hubs 

that these would slip. For the rest of the duration of testing, the clamps were superglued to the 

shafts to maintain the connection without slip. For the final legs, the shafts were instead welded 

to the bars of the leg. 

 Another major insight gathered regarding assembly had to do with the chain, as well as 

the distances of the sprockets to each other. Since the chain has certain spacing in between the 

chains, and the sprockets’ teeth were spaced accordingly, the chain could only be certain lengths 

so that the chain fit with the teeth without being loose or catching on a tooth. This became an 

important issue when building the other legs. When drilling the holes to put the shafts in, the 

placement and angle of the hole had to be precise to make sure the sprockets and chain fit 

properly. This was one of the reasons we decided to be trained to use the machine shop, to use 

the drill press for more precise holes.  

This switch in gearing created issues when assembling the leg. The chain was sized to fit 

the previous gearing and distance between the two sprockets, but when the new gearing was 

introduced, the chain had to be resized, and didn’t fit properly with the distance between the two 

sprockets. Since the holes had already been drilled into the aluminum, there was no way to 

change the distance without widening the hole. This meant that when running the leg, the shaft 

wasn’t secured, and thus could wobble while operating. A piece was added to support the shaft 

and keep it level, and eventually added a bearing to keep the shaft stable. 

Elastic System Experimentation: 

 The use of elastic systems in robotics is common. When elastic elements are discussed, 

the two main systems are series elastics and parallel elastics. The main difference is that a series 

elastic does work in one direction on its own and is charged in the other direction. A parallel 
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elastic works in line with a motor or other actuator and results in both contributing to work at the 

same time (usual in the same direction for one phase and opposite direction for the other). The 

difference in performance of series elastics versus parallel elastics has be researched, but results 

have not shown anything definitive if one is better than the other [7]. Most likely the best answer 

is a combination of both in a system. 

For RoboDog’s legs a parallel elastic system was used for the joint that would be doing 

the most work when lifting the weight, the lower knee joint. The general idea behind this system 

would be for when the leg lifts up, this would charge a spring. As the leg steps through, the 

spring would release its energy, and help the leg step through. We first built a rig to test this 

concept, and went through various ideas to actually implement this in the robot.  

  

Figure 11: Parallel Spring System Testing 

 After deciding to implement a parallel elastic system, we decided to build a rig to test this 

concept. The servomotor spline is attached on one end to a pulley with a weight on one end, so 
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that when the servo runs, it raises the weight. On the other end, a spring is attached to a fixed 

point. When the weight is lowered, the spring is charged, and when the servo raises the weight, 

the spring releases, to help the servo lift the weight. We tested in two ways, once with a just a 

simple lowering and lifting up once, and then again while cycling lifting and lowering the 

weight. We measured the effectiveness of the spring in helping the servo by looking at the 

current draw of the servomotor. We found that with the spring, the current draw of the servo was 

much less, which was a good sign for the effectiveness of a parallel elastic system. 

Unfortunately, when we cycled the weight, it was difficult to track differences in the current 

draw.  

 After this, we had to decide how to implement an elastic system to a joint. We had a few 

ideas on how to do this. It seemed that the elastic system would be most valuable on the lower 

knee joint, where the moment arm was longest, and thus required the most torque. Our first idea 

was to have a drum, in which at one point we would attach a pulley with a spring. This drum 

would be fixed to the shaft, so as the leg lifts, the drum would turn, and charge the spring. We 

eventually decided that we didn’t have enough space on the leg to put a drum. Next, we decided 

to try using latex tubes as an elastic element instead of springs, since it would be easier to deal 

with for construction. With the latex tubes, we first tried attaching one end along the back side of 

the lower leg, and then attaching to the upper leg. This method wouldn’t in much extra torque at 

the joint, since the moment arm would be too small. Finally, we decided to essentially use a 

portion of a drum, in a sort of “pie” shape. This we decided to make ourselves by 3D printing, 

rather than ordering a drum. The added benefit of 3D printing, meant that we could save space 

by designing the pies to attach over the half inch collars that keep the legs on the shaft. The set 

screw for these collar would be replaced by longer screws, that function simultaneously as set 
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screws and to keep the pies in place. These pies would have a hole as far out on the pie as 

possible, to make the moment arm as long as possible, and this hole would have a latex tube 

looped through, the other end which attaches to the upper leg. This became the general design for 

the implementation of the elastic system. 

Electronics and Sensors: 

 With the design described above an electronics system needed to be created that allowed 

us to optimize the performance of our system while still being fairly simple and inexpensive. For 

ease of use, a prototyping board like the Arduino Uno was used for the prototype leg. Eventually 

the processor was swapped for a Spider Board because of the extra analog ports needed for the 

potentiometers. The Spider Board also has the memory and power of a Arduino Mega, which 

came in handy when writing code. Rather than have to worry too much about memory usage, 

more processor-heavy code could be written. Deciding on the right motors was the one bigger 

decisions made on this project. 

 Motor choice was based around a few key factors. First the leg needed to be capable of 

lifting at least half the body weight of the dog because that would be the worst case scenario in a 

Lateral Sequence Gait. With the various leg designs made creating enough force to do this 

required an incredible amount of torque. Upon settling on the 2-DoF design of the final leg the 

high torque servos already available in lab were chosen. The RJX Hobby Servos chosen were 

convenient, fast and had a considerable amount of torque. To justify the use of these motors the 

Work Equivalency calculations were done, which is briefly outlined in the background of this 

paper. The aim for forces was 12N of force in the x direction for propulsion and 24N of force in 

the y direction for counteracting gravity.  This vertical force was calculated based off of a 

estimated body weight for the dog. The estimation was made using the current weight of the 
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prototype leg. Force in the x direction was less exact and quite excessive, but it was for a safety 

factor. The angles were determined from tracking software placed on a dog video that 

determined the angle of the leg segment at the beginning of the contact phase. Lengths of the 

segments were based off the prototype legs dimensions. Below shows the calculations and 

matrices constructed to calculate the necessary motor torques. 

 

Figure 12: Coordinate frames and the DH Parameters 
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Given the gear ratios of 1:5 in the upper joint and 1:4.5 in the lower these number are 

very close to the 2 Nm output of the RJX motors. With the budget restriction, the choice to stick 

with these motors was made. The thought was that the force in the upper joint was excessive due 

to the -12N pull in the x direction. Even with the hope that these calculations were excessive it 

seemed that after we built the dog the RJX motors weren’t enough to get the job done. This was 

most likely due to losses in the system and the fact that these RJX motors had already been worn 

out on a previous lab project. After a bit of research, the Savox motors of a similar size were 

found, which meant we would not have to adjust our motor mounts, but had a 1.4 more Newton-

meters. The only tradeoff was that these Savox motors ran a bit slower. With this the decision 

was made to just replace the lower motors as those needed the most torque when it came to 

upward motion with the long forearm segment.  

 In order to power these motors a four cell LiPo battery was used. To use this battery Buck 

Converters to step down the voltage for each motor were used because the RJX motors required 
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8.4V and the Savox motors required 7.4V. The Buck Converters chosen worked well for the 

prototype leg so there was little reason to move toward a different converter. These converters 

allowed the incoming 16.3V to be brought down to the desired output for every motor as well as 

the Spider Board. 

 Finally, sensors were needed for our system to work well. Since using the servos had 

built in potentiometers controlling their movement was trivial. It only took sending the desired 

angle to the servos to make them move to that angle. Even with this convenience, knowing the 

actual angle of the leg joint is important. The actual angle reports what the angle is even though 

the desired angle sent to the motor might be different. This gives the control system how far a 

given leg has made it through its phase and serves as an input for our control system. Simple 

10K Ohm potentiometers were used to calculate this angle and calibration code was written and 

used that gave the potentiometer output as a motor angle. This not only monitored the legs 

during movement, but made it possible for the dog to be placed in a desired position, to record 

the necessary motor outputs from the potentiometers and then run it in code to get the same 

result. 

Code Design: 

 Due to the constraints mentioned before, the two gaits used for testing the quadruped 

were the trot gait and the lateral sequence gait. Both of the gaits were programmed based off of 

the timing diagram shown in Figure 1. Using a timing structure that alternates the point to point 

movement of the legs at given times. This timing structure cycles to keep movement forward. 

PID control is used to increase the time between timing phases. The input for this control is the 

actual angle of the legs versus the desired angle. Extra time is given based off the leg needing the 

most time to catch up, while the others remain in their desired positions. 
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 To move to their desired positions, the legs were calibrated so that a given “xy” position 

could be requested and the processor would be able to determine the necessary motor outputs to 

achieve it (See Appendix C for Potentionmeter Calibration Code). The equation for this were 

determined through calculations made in MatLab (See Appendix B) whose inputs were 

determined by measure the leg’s maximum ranges of motion. A full look at the code can be seen 

in Appendix A.  

Construction, Testing, Results 

Machining Parts: 

 For cutting and drilling the lengths of the legs, there were the various tools in the 

Washburn machine shops for this purpose. As mentioned earlier, when drilling holes for the 

mounts, precision was essential, or else the chain and sprocket system wouldn’t work properly. 

The lower servo mounts had pieces that were cut by bandsaw, to ensure a clean cut, and for 

convenience. The most important piece was the plate that the servomotor was screwed into. This 

piece was machined with a CNC Mill. We did every part of the CNC process, from the making 

the CAD, to using the CAM to define the tool paths, to assembling and loading the tools, and 

finally operating the machine.  

 Only the single plate was machined, due to issues with fixturing parts with angles in it. 

When holding a workpiece in a vice for machining, there is a large force applied by the vice onto 

the piece. With an angled piece, this concentrates the stress from the vice onto the angle, and 

with thin pieces this can cause deformation. By just machining the one single plate, the rest of 

the mount would have to be assembled, so it wouldn’t look as neat, and allow more 

imperfections. The plate was the most important part though, and it was essential for this part to 



28 
 

be precise so that the motor would be held securely, and prevent losses from the motor moving in 

its mount.  

3D Printing Parts: 

 For sensor mounts, strong, light parts that could be made quickly were necessary, so that 

multiple designs could be tested. For this the sensor mounts and part of the elastic system were 

3D printed, with a PLA 3D printing filament. For the pot mounts the pieces were attached, so 

that one end holds an end of the potentiometer still and the other end follows the rotation of the 

joint. For the elastic system, the 3D printed piece was essentially a substitute for a drum, and so a 

means to increase the moment arm and get more torque out of the elastic system. There wasn’t 

enough space on the shaft of the lower joint to actually add a separate drum, so the printed piece 

was fitted over the collars that held the legs in place.  

 The pot mounts consisted of 2 pieces. One piece was used to hold the potentiometer 

itself, and then attach to the shaft of the lower joint. These pieces had to be dimensioned to fit the 

shaft, since glue and leaving a hole for a set screw weren’t options. The printed pieces would be 

too thin, and the material would hold a threading poorly. Most glues also didn’t work well when 

trying to glue a PLA piece and an aluminum piece. In order to get a proper fit, tolerancing fit 

tables were used to help get a good idea of how to dimension the 3D printed piece. The size of 

the shaft is measurable, and so for the piece that needs to fit over the shaft can simply be the 

difference in clearance, since the assumption is made that the printer is very accurate with the 

tolerance of its printed pieces. For these pieces, a Locational Clearance fit was used, after some 

experimentation with some various other fits. A Locational Clearance fit provides a snug fit for 

stationary parts, but can still be disassembled and reassembled easily. This was ideal because 

often times the pieces around the lower joint would need to be adjusted. A similar approach was 
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also used to fit the potentiometer itself to the mount, while accounting for the lip on the 

potentiometer for the wires.  

 In order to keep the turning end of the potentiometer still, the end would have to held 

with some still part on the robot. First the printed part for the potentiometer was fitted to the 

semicircular shape of the potentiometer. The shape of the other end depended on which joint that 

the potentiometer was on. For the lower joint, this piece was attached to the servo motor that 

powered the lower joint, which was mounted to the upper leg. Since there would be no forces on 

this piece, the piece was simply fitted to the size of the motor with two prongs. The piece was 

held by the friction of the fits. For the upper joints, the piece was attached to the frame of the 

robot itself. To prevent any complications, this piece was made as simply as possible, a long rod 

with a hole at the end to screw it to the aluminum 80/20 frame. An added benefit was by printing 

the same piece twice, the positioning of the legs could be adjusted to the same place, the same 

distance from the end of the frame. Later, brackets were added to maintain stability of this piece, 

since it is only attached by screw at one end, this allows it to rotate along the axis of the screw. 

Adding brackets helps to restrict this rotation, and ensures that the piece stays in place during the 

running of the leg.  

 For the elastic system, there wasn’t enough space on the lower shaft to place a drum, as 

previously planned. The compromise was made, so that a piece was made to fit over a piece that 

was already there in previous designs, the collars that held the legs in place on the shafts. These 

collars were held by set screw, and so these set screws were replaced, and also used to hold the 

piece in place on the collar. This way, the printed piece was held secure to the collar and thus the 

shaft, and the screw would still work as a set screw. In terms of attaching the elastic system, that 

posed some challenges as well. After deciding to use latex tubes for the elastic system, one end 
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could be looped to the mount for the servo motor. The other end would have to be attached to the 

printed piece. After testing a few designs, the way it was done was to add a hole to the printed 

piece, to loop the tube through. Then, to attach two ends of the latex tube, a zip tie was used. A 

groove was added to the piece so that the loop that the latex tube was in would be fairly uniform. 

These parts worked well, and always held, even through rigorous stress testing.  

 

Elastic System Results: 

 The parallel elastics used for RoboDog provide the necessary torque for RoboDog to 

stand without power. In addition, the elastics allowed for much more efficient standing. During 

testing standing would normally pull 0.51 amps, but with the parallel elastic system, the current 

draw was around 0.01-0.04 amps. Full cost of travel (COT) calculation were not completed, but 

it seems reasonable from previous small scale testing that current draw during high stress 

situations (contact phase), would be reduced. This amp draw may be shifted to the lifting phase 

of a given leg, but still keeps the motor further away from stall torque current draw. 

Control Testing: 

 The trot gait that RoboDog was capable of producing was not ideal; however, it proved 

capability of the robotic system. During the trot gait, RoboDog made short and quick movements 

of the feet and shuffled forward. An increase in the distance of the feet travel could potentially 

make this trot gait better, but the vertical height might need to be reduced to increase the useful 

workspace. Due to the servo motors in use, angles of motion were limited and thus so was the 

workspace. Graphs of these workspaces can be found below in Figure 13.  

 RoboDog’s lateral sequence gait was more promising as the quadruped was capable of 

making more natural looking steps forward. This gait led to some balance issues, which could be 
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potentially be fixed with an Inertial Measurement Unit (IMU). Aside from the balance issues the 

lifting of the front paws was limited. This resulted in the front feet not being capable of moving 

over rougher terrain. A redistribution of the center of gravity toward the center of the quadruped 

and/or stronger motors could help to fix this. 

 

Figure 13 a: Left Side leg workspaces  

 

Figure 13 b: Right Side leg workspaces  

Conclusion 

 As a result of this project, it has been found that parallel elastics have been capable of 

helping motors with less desirable torque outputs. Without these parallel elastics, RoboDog was 

only just capable of lifting itself up, while with them it could stand without power. It has also 

been found that it is possible to create a quadruped of this size capable of walking while still only 
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spending a fraction of the cost used for more refined quadrupeds like Spot and MIT Cheetah. 

Unfortunately, RoboDog did not meet all the goals that were originally set out. The dimensions 

were met, but the performance was not. While being capable of walking, RoboDog was not 

capable of going over coarse gravel due to motor strength and weight distribution, which lead to 

less than desirable foot clearance in the front. 

 For future work, the use of an IMU for balancing would be advised. This will allow for 

some much more interesting control choices. In addition to an IMU, stronger motors that are not 

limited in their rotation like the current servos should be explored. These new motors will allow 

for more gait options, foot pathing and a much easier time with controls. As the calculations 

showed, stronger motors were probably needed and the replacement of solely the lower leg joint 

might have only alleviated some of the force issues. Simply replacing the upper motors with 

more Savox motors with better controls might solve a majority of the issues RoboDog faces, but 

more exact calculations of the required torques should be completed before that choice is made. 

For controls, the use of a cosine function for the “x” coordinates and a sin function for the “y” 

coordinates of the foot pathing could be used to create a decent spline curve. These function 

could be stretched and altered through their amplitudes and potential through their periods. 

Though not specifically used, the following is for those interested in more detailed control of 

legged robots [8]. 
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Appendix A: Arduino Code 

//FinalCodeWithPID.ino 
 
#include <Servo.h> 
#include <PID.h> 
#include <Math.h> 
 
//servo pins 
#define LH_upperPin 24 
#define LH_lowerPin 25 
#define LF_upperPin 41 
#define LF_lowerPin 40 
#define RH_upperPin 8 
#define RH_lowerPin 6 
#define RF_upperPin 5 
#define RF_lowerPin 4 
 
bool startLF = false; 
bool startLH = false; 
bool startRF = false; 
bool startRH = false; 
 
int flubb = 10; //variable to give pull phase an extra kick until control maybe 
//if we want it to  
double upY = 30; //in mm 
double downY = -30; //in mm 
double upX = 30; //in mm 
double downX = -30; //in mm 
 
 
//number of elements in point to point movement with standing as first element 
const int arrayPoints = 4; 
class TimeWiz { 
  private: 
  public: 
    double lift = 1.5; 
    double pull = 7; 
    unsigned long alottedTimeLift = 0; //ms 
    unsigned long alottedTimePull = 0; //ms 
    unsigned long lastTime = 0; 
    unsigned long timeSet = 0; //the original time when walking begins 
    double unit = 700; //ms 
    unsigned long runTime; //ms how long the specific move has been running 
     
 
    void initialize(){ 
      this->alottedTimeLift = this->liftTime(); 
      this->alottedTimePull = this->pullTime(); 
    } 
     
    //returns the lift time 
    unsigned long liftTime(){ 
      return (unit*lift); 
    } 
    //returns the pull time 
    unsigned long pullTime(){ 
      return (unit*pull); 
    } 
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}; 
//angle of upper and lower with respect to the legs 
class Leg { 
  private: 
  public: 
    String name = ""; 
    double upperAngle = 90; //standing? position 
    double lowerAngle = 90; //standing? position 
 
     
    double standingX = 0; 
    double standingY = 0; 
     
    //create dimensions for leg in mm 
    double upperLength = 0; 
    double lowerLength = 0; 
 
    //conversion for the actual to servo 
    double lowerConversion = 0; 
    double upperConversion = 0; 
    double lowerInterc = 0; 
    double upperInterc = 0; 
 
    //previous angles 
    double previousLower = 0; 
    double previousUpper = 0; 
    //previous x & y 
    // double previousX = 0; 
    // double previousY = 0; 
 
    //standing boolean 
    bool standing = true; 
 
    //create servo objects 
    Servo upperServo; 
    Servo lowerServo; 
     
    //boost increment for back legs 
    double increment = 0;  
 
    //calibration value for the pot offset 
    double upperPotCalibration = 0;  
    double upperPotInt = 0; 
    double lowerPotCalibration = 0;  
    double lowerPotInt = 0; 
 
    //Time creation 
    TimeWiz Time; 
     
    //array of movements 
    double upperArray[arrayPoints] = {0}; 
    double lowerArray[arrayPoints] = {0}; 
 
    //PID variables 
    double input; 
    double output = 0; 
    double setPoint = 0; 
    //constants 
    int kp = 1; 
    int ki = 0; 
    int kd = 0; 
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    //PID direction 
    bool motorDir = true; //Default is direct 
     
    //PID controller 
    PID pid = this->initializePID(); 
 
    //counter for part of legs step movement 
    double counter = 0; 
    //potPin 
    int upperPotPin = 0; 
    int lowerPotPin = 0; 
    //state of leg is cycle (used in switch case) 
    int state = 0; 
 
    /*runs calculation to get the radian values 
 
      ArrayPos conform to 0 being standing, 1 being state0, 2 being state1, 3 being state3 
 
    */ 
    double calculations(double x, double y, int arrayPos){ 
      double a = this->upperLength; 
      double b = this->lowerLength; 
 
      double theta1 = 2*atan((2*a*y + (pow(a,2)*sqrt((- pow(a,2) + 2*a*b - pow(b,2) + pow(x,2) 
+ pow(y,2))*(pow(a,2) + 2*a*b + pow(b,2) - pow(x,2) - pow(y,2))))/(- pow(a,2) + 2*a*b - 
pow(b,2) + pow(x,2) + pow(y,2)) + (pow(b,2)*sqrt((- pow(a,2) + 2*a*b - pow(b,2) + pow(x,2) + 
pow(y,2))*(pow(a,2) + 2*a*b + pow(b,2) - pow(x,2) - pow(y,2))))/(- pow(a,2) + 2*a*b - pow(b,2) 
+ pow(x,2) + pow(y,2)) - (pow(x,2)*sqrt((- pow(a,2) + 2*a*b - pow(b,2) + pow(x,2) + 
pow(y,2))*(pow(a,2) + 2*a*b + pow(b,2) - pow(x,2) - pow(y,2))))/(- pow(a,2) + 2*a*b - pow(b,2) 
+ pow(x,2) + pow(y,2)) - (pow(y,2)*sqrt((- pow(a,2) + 2*a*b - pow(b,2) + pow(x,2) + 
pow(y,2))*(pow(a,2) + 2*a*b + pow(b,2) - pow(x,2) - pow(y,2))))/(- pow(a,2) + 2*a*b - pow(b,2) 
+ pow(x,2) + pow(y,2)) - (2*a*b*sqrt((- pow(a,2) + 2*a*b - pow(b,2) + pow(x,2) + 
pow(y,2))*(pow(a,2) + 2*a*b + pow(b,2) - pow(x,2) - pow(y,2))))/(- pow(a,2) + 2*a*b - pow(b,2) 
+ pow(x,2) + pow(y,2)))/(pow(a,2) + 2*a*x - pow(b,2) + pow(x,2) + pow(y,2))); //in radians 
      double theta2 = 2*atan(sqrt((- pow(a,2) + 2*a*b - pow(b,2) + pow(x,2) + 
pow(y,2))*(pow(a,2) + 2*a*b + pow(b,2) - pow(x,2) - pow(y,2)))/(- pow(a,2) + 2*a*b - pow(b,2) 
+ pow(x,2) + pow(y,2))); //in radians 
      Serial.print("Theta1: "); 
      Serial.println(theta1); 
      Serial.print("Theta2: "); 
      Serial.println(theta2); 
      double endLowerAngle = theta2*this->lowerConversion + this->lowerInterc; 
      Serial.print("Lower After Conversion: "); 
      Serial.println(endLowerAngle); 
      double endUpperAngle = theta1*this->upperConversion + this->upperInterc; 
      Serial.print("Upper After Conversion: "); 
      Serial.println(endUpperAngle); 
      //adjusts the array  
      *(upperArray + arrayPos) = endUpperAngle; 
      *(lowerArray + arrayPos) = endLowerAngle; 
    } 
    /* 
    @param 
    double endUpperAngle 
    double endLowerAngle 
 
    Takes the upper and lower motor outputs from calculations. 
 
    */ 
    void moveDistance(double endUpperAngle, double endLowerAngle, char side){ 
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      bool initLift = true; 
       
      //standing will just be the angles set here 
      if(this->standing){ 
        this->lowerAngle = endLowerAngle;  
        this->upperAngle = endUpperAngle; 
        this->previousLower = endLowerAngle; 
        this->previousUpper = endUpperAngle; 
        // this->previousX = x; 
        // this->previousY = y; 
      } 
 
 
    } 
    /*@return 
        returns a pid controller that is used to calculate control of a given leg 
    */ 
    PID initializePID(){ 
        //MotorOutput and PID controller 
        MotorOutput motorOut(&this->output,this->motorDir); 
        PID pid(&this->input,this->kp,this->ki,this->kd,&this->setPoint,motorOut); 
        return pid; 
    } 
 
    //drive legs to predetermined angles 
    void driveLeg() { 
      //handles incrementation thats over capability 
      if (this->upperAngle > 180) { 
        this->upperAngle = 180; 
      } 
      else if (this->upperAngle < 10) { 
        this->upperAngle = 10; 
      } 
       
      // Serial.print("Upper Angle: "); 
      // Serial.println(this->upperAngle); 
      //handles incrementation thats over capability (ADAPTED FOR NEW SERVOS) 
      if (this->lowerAngle > 160) { 
        this->lowerAngle = 160; 
      } 
      else if (this->lowerAngle < 10) { 
        this->lowerAngle = 10; 
      } 
       
      //drive lower servo 
      this->lowerServo.write(this->lowerAngle); 
      //drive upper servo 
      this->upperServo.write(this->upperAngle); 
       
      // Serial.print("Lower Angle: "); 
      // Serial.println(this->lowerAngle); 
 
    } 
 
    //gives angle percentage based off the start and end angles 
    void movePercentage(double startAngleLower, double endAngleLower, double startAngleUpper, 
double endAngleUpper, double stepAmount, double count) { 
       
       
      double movePercL = (double)(startAngleLower - endAngleLower) / stepAmount; 



38 
 

      double movePercU = (double)(startAngleUpper - endAngleUpper) / stepAmount; 
 
      this->lowerAngle = startAngleLower - (double)(movePercL * count); 
      this->upperAngle = startAngleUpper - (double)(movePercU * count); 
 
       
       
    } 
 
    //reads the potentiometer and returns an appropriate angel for it 
    //NEEDS TO BE FIXED FOR THE TWO POTCALIBRATION AND INT NUMBERS 
     double angleRead(int x){ 
        double val = analogRead(x); 
        double mappedVal = map(val,0,1023,0,270);  
        return mappedVal; 
    } 
 
 
}; 
 
Leg LF; //front left 
Leg LH; //back left 
Leg RF; //front right 
Leg RH; //back right 
 
 
double liftStep = 3; //just because i have only to steps in lift now 
double pullStep = 7; //4/02 thoughts are maybe to tweak this and counter timer thing for 
separate legs 
 
//intialize lastTime 
unsigned long lastTime = 0; 
bool flipTrot = true; //for standing trot 
 
 
 
bool initializeTimeMove = false; //allows to set the first initial timeSet so that future 
moves can use millis without issue 
 
int legCycle = 0; //states 
 
double LHupperPull = 0; 
double LHlowerPull = 0; 
double LHupperLift = 0; //mind have intermediate lift for all lifts but this will be final 
before pull 
double LHlowerLift = 0; 
 
double LFupperPull = 0; 
double LFlowerPull = 0; 
double LFupperLift = 0; 
double LFlowerLift = 0; 
 
double RFupperPull = 0; 
double RFlowerPull = 0; 
double RFupperLift = 0; 
double RFlowerLift = 0; 
 
double RHupperPull = 0; 
double RHlowerPull = 0; 
double RHupperLift = 0; 
double RHlowerLift = 0; 
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double sampleTime = 200; //for .1 seconds (HAS ABOUT 20% propogated error at worst over time) 
 
void setup() { 
  Serial.begin(9600); 
  //give names to help with final output 
  LF.name = "LF"; 
  LH.name = "LH"; 
  RF.name = "RF"; 
  RH.name = "RH"; 
  
  LH.upperConversion = -413.8; 
  LH.lowerConversion = 271.7; 
  LF.upperConversion = -382.6; 
  LF.lowerConversion = 353.6; 
  RH.upperConversion = 549.6; 
  RH.lowerConversion = -288; 
  RF.upperConversion = 380.2; 
  RF.lowerConversion = -362.3; 
 
  LH.upperInterc = -885.6; //decrease by 10 
  LH.lowerInterc = -239.7; //decrease by 10 
  RH.upperInterc = 1448; 
  RH.lowerInterc = 451.1; 
  RF.upperInterc = 1096; 
  RF.lowerInterc = 560.4; 
  LF.upperInterc = -880.5; 
  LF.lowerInterc = -349.4; 
 
  LH.upperLength = 174; 
  LH.lowerLength = 377; 
  RH.upperLength = 170; 
  RH.lowerLength = 370; 
  RF.upperLength = 170; 
  RF.lowerLength = 375; 
  LF.upperLength = 175; 
  LF.lowerLength = 370; 
   
   
  //potentiometers 
  LH.upperPotPin = A10; 
  LH.lowerPotPin = A15; 
  LF.upperPotPin = A8; 
  LF.lowerPotPin = A11; 
  RH.upperPotPin = A7; 
  RH.lowerPotPin = A6; 
  RF.upperPotPin = A9; 
  RF.lowerPotPin = A13; 
 
  LH.upperPotCalibration = 85.00; 
  LH.upperPotInt = -21750.00; 
  LH.lowerPotCalibration = 3.85; 
  LH.lowerPotInt = -340.00; 
 
  LF.upperPotCalibration = 6.54; 
  LF.upperPotInt = -1016.54; 
  LF.lowerPotCalibration = 4.05; 
  LF.lowerPotInt = -241.35; 
 
  RH.upperPotCalibration = 7.39; 
  RH.upperPotInt = -751.30; 
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  RH.lowerPotCalibration = 4.41; 
  RH.lowerPotInt = -272.35; 
 
  RF.upperPotCalibration = 5.86; 
  RF.upperPotInt = -816.55; 
  RF.lowerPotCalibration = 4.05; 
  RF.lowerPotInt = -345.76; 
 
 
  //states for movement in state functions of legs 
  // LH.state = 3; 
  // LF.state = 0; 
  // RH.state = 3; 
  // RF.state = 3; 
 
  LH.lowerAngle = 50; //brought up to let right back come down 
  RH.lowerAngle = 150; 
  RF.lowerAngle = 130; 
  LF.lowerAngle = 80; //brought down 
  LH.upperAngle = 140; 
  LF.upperAngle = 130; 
  RF.upperAngle = 50; 
  RH.upperAngle = 60; //went up 
 
  LHupperPull = 0; 
  LHlowerPull = 0; 
  LHupperLift = 0; //mind have intermediate lift for all lifts but this will be final before 
pull 
  LHlowerLift = 0; 
 
  LFupperPull = 0; 
  LFlowerPull = 0; 
  LFupperLift = 0; 
  LFlowerLift = 0; 
 
  RFupperPull = 0; 
  RFlowerPull = 0; 
  RFupperLift = 0; 
  RFlowerLift = 0; 
 
  RHupperPull = 0; 
  RHlowerPull = 0; 
  RHupperLift = 0; 
  RHlowerLift = 0; 
 
  // RH.counter = 6; //based off excel they should have completed this much movement 
  // RF.counter = 4; 
  // LF.counter = 1; 
 
  // RH.Time.runTime = 4200; //6*unit 
  // RF.Time.runTime = 2800; //4*unit 
  // LF.Time.runTime = 700; //1*unit 
 
  //need to get them to this pose pause then let it run?? USE pots and PID to control speed of 
the gait (-- counter for everyone based off PID??) 
   
  LH.pid.setMinMax(10,180); //set for servo motors 
  LF.pid.setMinMax(10,180); 
  RH.pid.setMinMax(10,180); 
  RF.pid.setMinMax(10,180); 
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  //ATTACH all the motors 
  LH.upperServo.attach(LH_upperPin); 
  LH.lowerServo.attach(LH_lowerPin); 
 
  LF.upperServo.attach(LF_upperPin); 
  LF.lowerServo.attach(LF_lowerPin); 
 
  RH.upperServo.attach(RH_upperPin); 
  RH.lowerServo.attach(RH_lowerPin); 
 
  RF.upperServo.attach(RF_upperPin); 
  RF.lowerServo.attach(RF_lowerPin); 
} 
 
void loop() { 
 
  unsigned long now = millis(); 
  unsigned long timeChange = (now - lastTime); 
 
 
  //standing for x milliseconds 
  standing(5000); 
 
  //trot for x milliseconds 
//  trotWalk(18000); 
//  standing(100000); 
 
  LH.standing = false; 
  LF.standing = false; 
  RH.standing = false; 
  RF.standing = false; 
 
  LHupperPull = 150;// from 180 
  LHlowerPull = 60;// from 10 
  LHupperLift = LH.upperArray[1]-10; //mind have intermediate lift for all lifts but this will 
be final before pull 
  LHlowerLift = LH.lowerArray[1]+40; //30 for more lift 
 
  LFupperPull = 88.7 + 30; 
  LFlowerPull = 96.9 - 20; 
  LFupperLift = 75.6; 
  LFlowerLift = 155.6; 
 
  RFupperPull = 138.6 - 40; 
  RFlowerPull = 134 + 30; 
  RFupperLift = 180; 
  RFlowerLift = 30.9; 
 
  RHupperPull = 10; 
  RHlowerPull = 150;// from 160 
  RHupperLift = RH.upperArray[1]+10; 
  RHlowerLift = RH.lowerArray[1]-30; //30 for more lift 
 
  double sort = 0; 
  double threshHold = 5; //5 degree leeway 
 
  if (timeChange >= sampleTime) { 
     
    Serial.println("Start of Cycle"); 
    Serial.println(timeChange); 
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    switch (legCycle){ 
      case 0: 
 
        sampleTime = 200; //reset time 
        //LH 
        Serial.println("Made it to 0"); 
        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,1); 
        //LF lift 2 
        LF.lowerAngle = LFlowerLift; 
        LF.upperAngle = LFupperLift; 
        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,5); 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,7); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
         
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
         
 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
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        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 1: 
        sampleTime = 200; //reset time 
        //LH 
        Serial.println("Made it to 1"); 
        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,2); 
        //LF lift 3 
        LF.lowerAngle = LFlowerLift-10; 
        LF.upperAngle = LFupperLift; 
        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,6); 
 
        //RH lift 1 
        RH.lowerAngle = RHlowerLift; //might need to be higher not sure depends but dont move 
the uppe yet 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
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        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 2: 
        sampleTime = 200; //reset time 
        //LH 
        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,3); 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,1); 
         
        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,7); 
 
        //RH lift 2 
        RH.lowerAngle = RHlowerLift; //might need to be higher not sure depends but dont move 
the uppe yet 
        RH.upperAngle = RHupperLift; 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
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        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 3: 
        sampleTime = 200; //reset time 
        //LH 
        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,4); 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,2); 
         
        //RF lift 1 
        RF.lowerAngle = RFlowerLift; 
 
        //RH lift 3 
        RH.lowerAngle = RHlowerLift+10; //might need to be higher not sure depends but dont 
move the uppe yet 
        RH.upperAngle = RHupperLift; 
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        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 4: 
        sampleTime = 200; //reset time 
        //LH 
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        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,5); 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,3); 
         
        //RF lift 2 
        RF.lowerAngle = RFlowerLift; 
        RF.upperAngle = RFupperLift; 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,1); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
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        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 5: 
        sampleTime = 200; //reset time 
        //LH 
        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,6); 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,4); 
         
        //RF lift 3 
        RF.lowerAngle = RFlowerLift+10; 
        RF.upperAngle = RFupperLift; 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,2); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
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        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 6: 
        sampleTime = 200; //reset time 
        //LH 
        LH.movePercentage(LHlowerLift,LHlowerPull,LHupperLift,LHupperPull,pullStep,7); // 
might need to speed up and have this complete already 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,5); 
         
        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,1); 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,3); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
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        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 7: 
        sampleTime = 200; //reset time 
        //LH lift 1 
        LH.lowerAngle = LHlowerLift; 
 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,6); 
 
        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,2); 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,4); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
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          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 8: 
        sampleTime = 200; //reset time 
         //LH lift 2 
        LH.lowerAngle = LHlowerLift; 
        LH.upperAngle = LHupperLift; 
 
        //LF 
        LF.movePercentage(LFlowerLift,LFlowerPull,LFupperLift,LFupperPull,pullStep,7); 
 
        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,3); 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,5); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
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        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
 
        sampleTime += sort; 
 
        break; 
      case 9: 
        sampleTime = 200; //reset time 
        //LH lift 3 
        LH.lowerAngle = LHlowerLift-10; 
        LH.upperAngle = LHupperLift; 
 
        //LF lift 1 
        LF.lowerAngle = LFlowerLift; 
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        //RF 
        RF.movePercentage(RFlowerLift,RFlowerPull,RFupperLift,RFupperPull,pullStep,4); 
 
        //RH 
        RH.movePercentage(RHlowerLift,RHlowerPull,RHupperLift,RHupperPull,pullStep,6); 
 
        LH.driveLeg(); 
        LF.driveLeg(); 
        RF.driveLeg(); 
        RH.driveLeg(); 
 
        LH.input = LH.angleRead(LH.lowerPotPin)*LH.lowerPotCalibration + LH.lowerPotInt; 
        LH.setPoint = LH.lowerAngle; 
        if(abs(LH.input - LH.setPoint) <= threshHold){ 
          LH.output = 0; 
        } 
        else{ 
          LH.pid.outputControl(); 
        } 
         
        LF.input = LF.angleRead(LF.lowerPotPin)*LF.lowerPotCalibration + LF.lowerPotInt; 
        LF.setPoint = LF.lowerAngle; 
        if(abs(LF.input - LF.setPoint) <= threshHold){ 
          LF.output = 0; 
        } 
        else{ 
          LF.pid.outputControl(); 
        } 
 
        RH.input = RH.angleRead(RH.lowerPotPin)*RH.lowerPotCalibration + RH.lowerPotInt; 
        RH.setPoint = RH.lowerAngle; 
        if(abs(RH.input - RH.setPoint) <= threshHold){ 
          RH.output = 0; 
        } 
        else{ 
          RH.pid.outputControl(); 
        } 
         
        RF.input = RF.angleRead(RF.lowerPotPin)*RF.lowerPotCalibration + RF.lowerPotInt; 
        RF.setPoint = RF.lowerAngle; 
        if(abs(RF.input - RF.setPoint) <= threshHold){ 
          RF.output = 0; 
        } 
        else{ 
          RF.pid.outputControl(); 
        } 
 
        if(LH.output>RH.output){ 
          sort = LH.output; 
        } 
        else{ 
          sort = RH.output; 
        } 
 
        if(sort < RF.output){ 
          sort = RF.output; 
        } 
        if(sort < LF.output){ 
          sort = LF.output; 
        } 
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        sampleTime += sort; 
 
        break; 
    } 
     
    lastTime = now; 
    if(legCycle == 9){ 
      Serial.println(legCycle); 
      legCycle = 0; 
    } 
    else{ 
      legCycle++; 
      Serial.println("++"); 
    } 
  } 
 
   
 
   
} 
void trotWalk(int x){ 
  while(millis() <= x){//millis() <= x is real code 
    unsigned long now = millis(); 
    unsigned long timeChange = (now - lastTime); 
     
    if(flipTrot && timeChange > 500){ 
      LF.moveDistance(LF.upperArray[0],LF.lowerArray[0],'L'); 
      LF.lowerAngle -= 20; 
      LF.upperAngle += 20; 
//      LF.lowerAngle += 20; //cuz it needs to be up more 
     
      LH.moveDistance(LH.upperArray[1],LH.lowerArray[1],'L'); 
//      LH.lowerAngle -= 20; //extra forward boost 
      LH.lowerAngle += 10; //more lift 
     
    
      RF.moveDistance(RF.upperArray[1],RF.lowerArray[1],'R'); 
//      RF.lowerAngle -= 20; //extra lift 
       
      RH.moveDistance(RH.upperArray[3],RH.lowerArray[3],'R'); 
      RH.lowerAngle = 160; 
      RH.upperAngle = 10; 
 
      flipTrot = !flipTrot; 
 
      lastTime = now; 
    } 
    else if(!flipTrot && timeChange > 500){ 
      LF.moveDistance(LF.upperArray[1],LF.lowerArray[1],'L'); 
 
//      LF.lowerAngle += 10; //cuz it needs to be up more 
     
      LH.moveDistance(LH.upperArray[3],LH.lowerArray[3],'L'); 
      LH.lowerAngle = 10; 
      LH.upperAngle = 180; 
      
      RF.moveDistance(RF.upperArray[0],RF.lowerArray[0],'R'); 
      RF.lowerAngle += 20; 
      RF.upperAngle -= 20; 
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      RH.moveDistance(RH.upperArray[1],RH.lowerArray[1],'R'); 
      RH.lowerAngle -= 10; //more lift 
       
      flipTrot = !flipTrot; 
 
      lastTime = now; 
    } 
 
    LH.driveLeg(); 
    LF.driveLeg(); 
    RH.driveLeg(); 
    RF.driveLeg(); 
  } 
} 
void bowDown(int x){ 
   while (millis() <= x) { //millis() <= 5000 
    //calculate all movement (scratch for loop if im planning different movement for each leg) 
     
 
    LF.moveDistance(LF.upperArray[0],LF.lowerArray[0],'L'); 
    LF.upperAngle = 180; 
    LF.lowerAngle = 160; 
    
    LH.moveDistance(LH.upperArray[0],LH.lowerArray[0],'L'); 
    
    RF.moveDistance(RF.upperArray[0],RF.lowerArray[0],'R'); 
    RF.upperAngle = 10; 
    RF.lowerAngle = 30; 
     
     
    RH.moveDistance(RH.upperArray[0],RH.lowerArray[0],'R'); 
     
 
    LH.driveLeg(); 
    LF.driveLeg(); 
    RH.driveLeg(); 
    RF.driveLeg(); 
     
    startLF = true; 
    startRH = true; 
    startRF = true; 
  } 
} 
 
void standing(int x){ 
  while (millis() <= x) { //millis() <= 5000 
    //calculate all movement (scratch for loop if im planning different movement for each leg) 
     
    Serial.println("LH"); //gonna be outside of workspace 
    LH.standingX = -60; 
    LH.standingY = -480; 
    Serial.println("0"); 
    LH.calculations(LH.standingX,LH.standingY,0); 
    Serial.println("1"); 
    LH.calculations(LH.standingX,LH.standingY+upY,1); //makes equilateral triangle???? 
    Serial.println("2"); 
    LH.calculations(LH.standingX+upX,LH.standingY,2); 
    Serial.println("3"); 
    LH.calculations(LH.standingX+downX-20,LH.standingY,3); 
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    Serial.println("RH"); 
    RH.standingX = -60; 
    RH.standingY = -480; 
    Serial.println("0"); 
    RH.calculations(RH.standingX,RH.standingY,0); 
    Serial.println("1"); 
    RH.calculations(RH.standingX,RH.standingY+upY,1); //makes equilateral triangle???? 
    Serial.println("2"); 
    RH.calculations(RH.standingX+upX,RH.standingY,2); 
    Serial.println("3"); 
    RH.calculations(RH.standingX+downX-20,RH.standingY,3); 
 
    Serial.println("RF"); 
    RF.standingX = 0; 
    RF.standingY = -460; 
    Serial.println("0"); 
    RF.calculations(RF.standingX,RF.standingY,0); 
    Serial.println("1"); 
    RF.calculations(RF.standingX,RF.standingY+upY,1); //makes equilateral triangle???? 
    Serial.println("2"); 
    RF.calculations(RF.standingX+25,RF.standingY,2); 
    Serial.println("3"); 
    RF.calculations(RF.standingX-50,RF.standingY,3); //4/02: -50 for front legs 
     
    Serial.println("LF"); 
    LF.standingX = 0; 
    LF.standingY = -450; 
    Serial.println("0"); 
    LF.calculations(LF.standingX,LF.standingY,0); 
    Serial.println("1"); 
    LF.calculations(LF.standingX,LF.standingY+upY,1); //makes equilateral triangle???? 
    Serial.println("2"); 
    LF.calculations(LF.standingX+25,LF.standingY,2); 
    Serial.println("3"); 
    LF.calculations(LF.standingX-50,LF.standingY,3); 
 
     
 
    LF.moveDistance(LF.upperArray[0],LF.lowerArray[0],'L'); 
     
    LH.moveDistance(LH.upperArray[0]-20,LH.lowerArray[0]+50,'L'); 
    
    RF.moveDistance(RF.upperArray[0],RF.lowerArray[0],'R'); 
     
    RH.moveDistance(RH.upperArray[0],RH.lowerArray[0],'R'); 
     
 
    LH.driveLeg(); 
    LF.driveLeg(); 
    RH.driveLeg(); 
    RF.driveLeg(); 
     
    startLF = true; 
    startRH = true; 
    startRF = true; 
  } 
} 
 
void potReading(){ 
  while(1){ 
//     double LHupper = LH.angleRead(LH.upperPotPin); 
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//     double LHupperCal = LHupper*LH.upperPotCalibration + LH.upperPotInt; 
//     Serial.print("LH Upper Required Motor Value: "); 
//     Serial.println(LHupperCal); 
//     double LHlower = LH.angleRead(LH.lowerPotPin); 
//     double LHlowerCal = LHlower*LH.lowerPotCalibration + LH.lowerPotInt; 
//     Serial.print("LH Lower Required Motor Value: "); 
//     Serial.println(LHlowerCal); 
//     Serial.println(""); 
 
//     double LFupper = LF.angleRead(LF.upperPotPin); 
//     double LFupperCal = LFupper*LF.upperPotCalibration + LF.upperPotInt; 
//     Serial.print("LF Upper Required Motor Value: "); 
//     Serial.println(LFupperCal); 
//     double LFlower = LF.angleRead(LF.lowerPotPin); 
//     double LFlowerCal = LFlower*LF.lowerPotCalibration + LF.lowerPotInt; 
//     Serial.print("LF Lower Required Motor Value: "); 
//     Serial.println(LFlowerCal); 
//     Serial.println(""); 
 
     double RHupper = RH.angleRead(RH.upperPotPin); 
     double RHupperCal = RHupper*RH.upperPotCalibration + RH.upperPotInt; 
     Serial.print("RH Upper Required Motor Value: "); 
     Serial.println(RHupperCal); 
     double RHlower = RH.angleRead(RH.lowerPotPin); 
     double RHlowerCal = RHlower*RH.lowerPotCalibration + RH.lowerPotInt; 
     Serial.print("RH Lower Required Motor Value: "); 
     Serial.println(RHlowerCal); 
     Serial.println(""); 
 
//    double RFupper = RF.angleRead(RF.upperPotPin); 
//    double RFupperCal = RFupper*RF.upperPotCalibration + RF.upperPotInt; 
//    Serial.print("RF Upper Required Motor Value: "); 
//    Serial.println(RFupperCal); 
//    double RFlower = RF.angleRead(RF.lowerPotPin); 
//    double RFlowerCal = RFlower*RF.lowerPotCalibration + RF.lowerPotInt; 
//    Serial.print("RF Lower Required Motor Value: "); 
//    Serial.println(RFlowerCal); 
//    Serial.println(""); 
 
 
 
 
  } 
 
} 
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Appendix B: MatLab Scripts 

function [theta1,theta2,sym1,sym2] = mathLeg(lenU,lenL,lenX,lenY) 
%use this to solve the system of equations to get the angle in radians for a 
given length and position 
    syms u; 
    syms l; 
    syms a; 
    syms b; 
    syms x; 
    syms y; 
     
    eqn1 = b*cos(u + l) + a*cos(u) == x; 
    eqn2 = b*sin(u + l) + a*sin(u) == y; 
    sol = solve([eqn1,eqn2],[u,l]); 
    sym1 = sol.u; 
    sym2 = sol.l; 
    theta1 = subs(sol.u,[a,b,x,y],[lenU,lenL,lenX,lenY]); 
    theta2 = subs(sol.l,[a,b,x,y],[lenU,lenL,lenX,lenY]); 
 

function y = workspaceCalc(a,b,xMin,xMax,yMin,yMax,xAmp,zAmp,zPos,xPos,label) 
%use to graph a workspace using min max radians and graphs a spline using 
cosine and sin 
    %x is the theta2 
    %y is the theta1 
     
    yRange = (yMax-yMin)/10; 
    xRange = (xMax-xMin)/10; 
    t1 = yMin:yRange:yMax; 
    t2 = xMin:xRange:xMax; 
    t3 = [xMin,xMin,xMin,xMin,xMin,xMin,xMin,xMin,xMin,xMin,xMin]; 
    t4 = [yMin,yMin,yMin,yMin,yMin,yMin,yMin,yMin,yMin,yMin,yMin]; 
    t5 = [xMax,xMax,xMax,xMax,xMax,xMax,xMax,xMax,xMax,xMax,xMax]; 
    t6 = [yMax,yMax,yMax,yMax,yMax,yMax,yMax,yMax,yMax,yMax,yMax]; 
     
    %vary both 
    M1 = b*cos(t1+t2) + a*cos(t1); 
    M2 = b*sin(t1+t2) + a*sin(t1); 
    %vary upper with lower min 
    N1 = b*cos(t1+t3) + a*cos(t1); 
    N2 = b*sin(t1+t3) + a*sin(t1); 
    %vary upper with lower max 
    J1 = b*cos(t1+t5) + a*cos(t1); 
    J2 = b*sin(t1+t5) + a*sin(t1); 
    %vary lower with upper min 
    G1 = b*cos(t4+t2) + a*cos(t4); 
    G2 = b*sin(t4+t2) + a*sin(t4); 
    %vary lower with upper max 
    P1 = b*cos(t6+t2) + a*cos(t6); 
    P2 = b*sin(t6+t2) + a*sin(t6); 
     
    x = xAmp*cos(0:0.1:2*pi) + xPos; 
    z = zAmp*sin(0:0.1:2*pi) + zPos; 
    plot(M1,M2,'-o',N1,N2,'-o',J1,J2,'-o',G1,G2,'-o',P1,P2,'-o',x,z); 
    title(label); 
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    axis([-250 200 -520 -370]); 
    xlabel('x (mm)'); 
    ylabel('y (mm)'); 
    y = true; 
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Appendix C: Pot Calibration Code 

Pot Calibration 
//ServoTest.ino 
 
 
#include <Servo.h> 
 
Servo lower; 
Servo upper; 
Servo upper2; 
Servo lower2; 
 
#define potPinUpper A8 
#define potPinLower A11 
 
double potCalUpper = 0; 
double potCalLower = 0; 
double potIntUpper = 0; 
double potIntLower = 0; 
 
double upperAngle = 10; 
double lowerAngle = 160; 
 
void setup() { 
  Serial.begin(9600); 
  // put your setup code here, to run once: 
 // myServo.attach(8); 
  upper.attach(41); 
//  upper2.attach(24); 
  lower.attach(40); 
//  lower2.attach(25); 
} 
 
void loop() { 
   upper.write(upperAngle); 
   lower.write(lowerAngle); 
   delay(3000); 
   double upperPot1 = angleRead(potPinUpper); 
   double lowerPot1 = angleRead(potPinLower); 
   double upperAngle2 = 180; 
   double lowerAngle2 = 10; 
   upper.write(upperAngle2); 
   lower.write(lowerAngle2); 
   delay(3000); 
   double upperPot2 = angleRead(potPinUpper); 
   double lowerPot2 = angleRead(potPinLower); 
   double y1 = (upperAngle - upperAngle2); 
   double y2 = (lowerAngle - lowerAngle2); 
   double x1 = (upperPot1 - upperPot2); 
   double x2 = (lowerPot1 - lowerPot2); 
   potCalUpper = (y1/x1); 
   potCalLower = (y2/x2); 
 
   potIntUpper = (upperAngle - (potCalUpper*upperPot1)); 
   potIntLower = (lowerAngle - (potCalLower*lowerPot1)); 
    
   Serial.print("Pre-calibrated Upper Value: "); 
   Serial.println(upperPot1); 
   Serial.print("Calibrated Upper Value: "); 
   double calibratedU = ((upperPot1*potCalUpper)+potIntUpper); 
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   Serial.println(calibratedU); 
   Serial.print("Motor Upper Value: "); 
   Serial.println(upperAngle); 
   Serial.print("Upper Calibration Value: "); 
   Serial.println(potCalUpper); 
   Serial.print("Upper Intercept Value: "); 
   Serial.println(potIntUpper); 
    
   Serial.println(""); 
    
   Serial.print("Pre-calibrated Lower Value: "); 
   Serial.println(lowerPot1); 
   Serial.print("Calibrated Lower Value: "); 
   double calibratedL = ((lowerPot1*potCalLower)+potIntLower); 
   Serial.println(calibratedL); 
   Serial.print("Motor Lower Value: "); 
   Serial.println(lowerAngle); 
   Serial.print("Lower Calibration Value: "); 
   Serial.println(potCalLower); 
   Serial.print("Lower Intercept Value: "); 
   Serial.println(potIntLower); 
 
   Serial.println(""); 
    
 
//   upper2.write(180); 
//   lower2.write(10); 
 
//  upper2.write(180); 
//  lower2.write(120); 
 
//  delay(100); 
//  upper.write(180); 
//  delay(100); 
//    for(int i = 0; i<180; i++){ 
//      upper.write(i); 
//      lower.write(abs(i-180)); 
//      delay(10); 
//    } 
// 
//   
//    for(int i = 180; i>0; i--){ 
//      upper.write(i); 
//      lower.write(abs(i-180)); 
//      delay(10); 
//    } 
//   
   
} 
 
double angleRead(int potPin){ 
    double val = analogRead(potPin); 
    Serial.print("Analog Read: "); 
    Serial.println(val); 
    double mappedVal = map(val,0,1023,0,270);  
    return (mappedVal);//*potCalibration + potInt); 
  } 
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Appendix D: Bill of Materials 

Item Producer/Website Item # 
  

#25 Roller Chain McMaster-Carr 6261K171 
  

9 Tooth Finished-Bore Sprocket for ANSI Roller Chain McMaster-Carr 2737T1 
  

1/2in Bore Size 28 Tooth Finished-Bore Sprocket for ANSI Roller 

Chain McMaster-Carr 2737T21 
  

1/2in Bore Size 45 Tooth Finished-Bore Sprocket for ANSI Roller 

Chain McMaster-Carr 2737T31 
  

Aluminum Mounting Hub for 1/4in shaft pololu.com #1993 
  

0.500in Bore Size Dual Pinch Bolt, Tapped Clamping Hubs ServoCity.com 545340 
  

10k Potentiometers digikey 
   

Set Screw Shaft Collars McMaster-Carr 9414T11 
  

Buck DC Converter Amazon 
   

Machinable Bore Sprocket #25 10 Tooth Nylon McMaster-Carr 60425K13 
  

Machinable Bore Sprocket #25 45 Tooth Nylon McMaster-Carr 60425K34 
  

Machinable Bore Sprocket #25 40 Tooth Nylon McMaster-Carr 60425K33 
  

Multipurpose 6061 Aluminum, Rectangular Bar McMaster-Carr 
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Standard Hub Horns ServoCity.com 525132 
  

Aluminum Mounting Hub for 1/4in shaft pololu.com #1993 
  

#25 Roller Chain McMaster-Carr 6261K171 
  

9 Tooth Finished-Bore Sprocket for ANSI Roller Chain McMaster-Carr 2737T1 
  

Buck DC Converter Amazon 
   

 


