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Abstract

The purpose of this project was to investigate the safety of urban arterial non-
access controlled roads in Worcester, Massachusetts. An investigation into the dependent
variable proved inconclusive and the historical accident rate was used. The best
functional form for these roads was unclear so both linear and log-linear models were
developed. A linear model was developed that predicted the total accident crash rate and
log-linear model was developed to predict the same thing. A second linear model was
developed to predict the total injury accident crash rate. The models were validated using
independent data where the linear total accident crash rate model was found to be the
most robust of the three in that both state primary roads and other arterial roads could

have crash rates predicted to a better than fifty percent error.
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1 Introduction

Road safety is important to all of society. Even though people seldom
consciously think about road safety, almost everyone uses the road network in one
capacity or another and expect to survive the experience without injury. More than that,
people don’t even consider the event something “to survive” and consider traveling on
the roads to be a basic part of life. Since there is such a large volume of road users,
safety is important. Everything from cars and trucks, to public transportation and

pedestrians needs the transportation network to be safe and efficient.

United States (1987) Rural Roads
O Urban Roads
10% O Interstate

37% 53%

Figure 1: Distribution of Fatalities for Different Road Categories in the United States

Crashes can occur on any road at any time when a vehicle comes in conflict with
a fixed or moving object. The majority of accidents occur on “two-lane rural roads ...
which are the locations of 50 to 60 percent of all severe accidents in Europe and the
United States (Lamm, 9.1).” Rural roads have the majority of crashes occurring on them,
so the majority of safety research has been focused on those roads. That still leaves
approximately 40 to 50 percent of crashes occurring on urban roads and interstates (See

Figure 1). Patrons of those roads also deserve to be treated to safe roads.
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When looking at the numbers of fatalities and injuries that occur annually on the
roadway system in the United States, the safety issue becomes even more evident. In
1998, in the Unites States alone there were 41,171 fatalities that occurred on the roadway
system. There were even more injuries, almost 3.2 million injures (See Figure 2). With

approximately half of these occurring in urban areas that is a staggeringly large number

of accidents that safety improvements can strive to eliminate.

Injuries by Transportation Mode , 1998

Fatalities by Transportation Mode, 1998
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Figure 2:Fatalities and Injuries by Transportation Mode in the United States (1998)
(Pedestrian Safety Roadshow)

The calculated costs of accidents come from wage and productivity losses,
medical expenses, administrative expenses, vehicle damage, and employer costs. In 1993
the cost of a death due to traffic accidents was calculated to be $900,000, a disabling
injury was calculated to be $32,000 and a property-damage only (PDO) accident was
calculated to cost $5,800 (Poch and Mannering 105). These values, however,
underestimate the cost of accidents by not including the value of a “person’s natural
desire to live longer or to protect the quality of one’s life” (Poch and Mannering 105).
This desire is difficult to place a monetary value on and in 1995 the willingness to pay for

this was estimated at $3,000,000 (Poch and Mannering 105). Even if some percentage of

these accidents can be prevented, millions of dollars could be saved each year.
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The safety of urban roads has not yet been fully examined due to the complex
nature of the issues and the lack of resources available to devote to the problem. The
main factors exerted on driving behavior include human factors, physical features of the
site, traffic, legal issues, environment, and the vehicle (Choueiri et al 34), all which
contribute to the complex mix of causes of traffic accidents.

Urban roads can be divided by more than just location in terms of population
centers, but by the type of traffic using the roads. Table 1 shows the typical distribution
of travel volume and length of roadways of the functional systems for urban areas. Road
systems developed for urban areas usually fall within the percentage ranges shown. This
table shows that the majority of travel in urban areas occur on the arterial roads. These
arterial roads account for up to 25% of the urban roadway length indicating that the
majority of travel occurs on a minority of roads. Accidents may not be exactly linearly
distributed between these types of roads, but the most efficient way to improve the
overall safety of the road system is to focus on the areas with the most traffic.
Fortunately, this area of arterial roads has the least number of actual miles, making

improvements to this area effect the majority of drivers.

Table 1:Typical Distribution of Urban Functional Systems

Range
Systems Travel Volume (%) | Length (%)
Principal arterial system 40-65 5-10
Principal arterial plus minor arterial street | 65-80 15-25
system
Collector Road 5-10 5-10
Local Road System 10-30 65-80

(Greeenbook, Exhibit 1-7, 12)
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1.1 Problem Statement

Quantifying the safety of urban and suburban roads and streets has not attracted
the same attention as two-lane rural roads. Since two-lane rural roads have been
examined and analyzed in depth, determining the safety of urban and suburban arterials is
the next area to be attacked. The creation of a method that can quantify the safety of
urban arterials would enable transportation planners and managers to determine the safety
of their particular network and help prioritize road creation and improvement projects.
Currently the agencies that are responsible for all the road systems do not have
quantifiable tools for considering safety in their decisions. Often when difficult choices
need to be made, priority is given to factors such as cost, operational impacts,
environmental impacts and experience, but not necessarily safety improvement. The
purpose of this research is to help predict the safety performance of various elements
considered in planning, design, and operation of non-limited-access urban arterials. By
monitoring accident rates at a specific site, traffic safety engineers and researchers hope
to be able to detect when or if safety has deteriorated. An accurate prediction of the
number of accidents, or accident rate, occurring at a particular site is invaluable in the
assessment of the effectiveness of an improvement program (Higle & Witkowski 24). An
accurate way to help prioritize improvement projects will allow the limited dollars to be
used in such a way as to make the most of them and the most possible improvement.

Safety is often defined as the accident rate of a road section. “Vehicle accidents
are complex events involving the interactions of five major factors: drivers, traffic, road,
vehicles, and environment (e.g., weather and lighting conditions)” (Miaou, 7).

Developing accident prediction models is a way to summarize these complicated
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interactive effects and try to explain the variation between sites from one time to another.
Once a model is found that represents the relationship between all factors, it can be used
to aid in finding cost-effective methods to reduce accident frequency/severity over the
long term. Traffic and safety engineers would like to control all of these major factors,
but are limited to what they can actually influence, which puts limits on how effective
prediction models can be. Driver behavior is a complex issue that has been attempted to
be modeled, but to no great success and is therefore usually left out of prediction models.
Environmental conditions cannot be controlled and vehicles are available today in greater
number of types and quality causing many areas where uncertainty can occur in
prediction models. This leaves only roadway and traffic characteristics that can be
controlled by highway engineers and used with any level of certainty in prediction
models.

This project will develop an accident prediction model for the safety of urban,
non-access controlled, arterial roadways. This will involve looking at variation in
accident frequency due to both systematic variations due to differences in sites and
random variation. Systematic variation can be explained as the variation of long-term
means among different sites and time intervals while random variation can only be
explained as the accident variation without physical explanation. The random variation
is, however, assumed to follow probability laws and relatively homogeneous sites are
often characterized by a probabilistic distribution. Researchers typically use normal
distributions, Poisson distributions or negative binomial distributions. Variation also
enters modeling because not all the needed information is readily available and the

available sample size is finite. There is also the issue that the accident rate associated
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with a particular site is itself a random variable, which cannot be predicted with absolute
certainty (Higle & Witkowski 24). The variables this project will examine as possible
regressor variables are limited to ones that are either already available, or easily
obtainable without complex collection procedures, which would restrict the use of any
developed models.

A standard practice for identifying unsafe locations is based on historical data
where a site is classified as hazardous if accident history exceeds a specified level usually
defined as a certain accident rate or number of accidents per year (Higle & Witkowski
24). A common method used in practice is to identify a site as hazardous if its accident
rate exceeds the mean accident rate over all sites in the region plus a multiple of the
standard deviation (Higle & Witkowski 24). But, due to the random variations that are
inherent in accident phenomena, historical accident data do not always accurately reflect
long-term accident characteristics making this an inaccurate method for identifying
hazardous sites (Higle & Witkowski 24). A better method for identifying hazardous
locations includes looking at factors other than just historical accident data. The more
factors used the more accurate identification as a hazardous site can be. In short, arterial
roads in Worcester, Massachusetts will be examined for their traffic, land use, access,
alignment, hazards and other characteristics that can affect the causes of accidents and
models will be developed to predict the safety of urban arterial roads.

Chapter 2 gives background information related to the types of roads under
consideration and some background on the mathematical theory. Chapter 3 gives an
overview of the methods used to complete this project while chapter 4 covers what data

was collected and how that was done. Chapter 5 consists of the majority of the
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mathematical analysis while chapter 6 gives the results of that analysis with an overview
of the three models developed in this project. The validation of the three models is

covered in chapter 7 and chapter 8 gives the conclusion that can be draw from this work.
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2 Background Information

For an accident prediction model, there are several areas where some background
information would be useful. These areas encompass topics relating to roadway and

traffic concern as well as those that are related solely to modeling.

2.1 Functional Classification

Functional classification is the grouping of highways by the type of service they
provide and was developed to help with transportation planning (Greenbook 1). The
classification system recognizes that individual roads do not serve travel independently;
rather, travel involves movement through a network of roads, which can be separated by
use (Greenbook 4). Roads are classified in the United States according to the
combination of mobility and access on each roadway. The type of classification
determines and aids in the design and maintenance of the road networks. The major
divisions between access and mobility necessitate the differences in the functional classes
(Greenbook 6). The higher the access function of a road, the lower its mobility function
becomes, similarly the higher the mobility function the lower the access function; this can
be seen in Figure 3. Limited access on arterials enhances their primary function of

mobility while full access on local roads promotes accessibility to individual land parcels.
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PROPORTION OF SERVICE
Mobility Arterials
Collectors
ss IR | Locals

Figure 3: Relationship of Functionally Classified Systems in Serving Traffic Mobility and Land
Access

(AASHTO Greenbook Exhibit 1-5)

Highways and streets are described as rural or urban roads, depending on their
location. This differentiation is due to fundamental differences in characteristics between
urban and rural areas specifically in land use and population density, which significantly
influence travel patterns (Garber & Hoel 658). After the primary classification, highways
are then classified under the following categories: arterials, collectors, and local roads.
Local roadways emphasize the access function. Arterials emphasize mobility for through
movements over long distances, while collectors offer approximately balanced service for

both mobility and access.

2.1.1 Urban Roads

Urban roads are facilities located in urban areas, which are designated by state
and local officials. Areas designated as urban can vary slightly by state though they are
usually classified as having populations of 5,000 or more (Garber & Hoel 658). Urban
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locations can be further divided into areas with population of 50,000 or more, urbanized
areas, and areas with populations between 5,000 and 50,000, small urban areas (Garber
& Hoel 658). Urban areas have a high intensity of land use and large amounts of travel,
which makes the placement of urban roads more critical than those in rural areas, since
urban roads have less space in which to be built. The high density of roads and traffic
makes the safety of these roads critical. Figure 4 shows the basic layout of an urban

network.

LEGEND

i  Artorial Strest wmama Colléctor Street
kst Commercial Ares s Public Ares
=—— Locsl Street

Figure 4: Schematic of the Functional Classes of Urban Roads

(Garber and Hoel 659)

2.1.1.1 Urban Arterial System
The urban arterial system is divided into principal arterials and minor arterials.
Urban principal arterials serve the major activity centers, which consist of the highest
traffic volume corridors, which carry the longest trips. They carry a high proportion of

the total vehicle-miles of travel within the urban areas, even though they amount to a
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relatively small percentage of the total network (Greenbook 11). Principal arterials tend
to bypass the central business districts and carry most of the trips entering and leaving
cities. All controlled access facilities are within this system, though access control is not
necessarily a condition. Principal arterials can also be further divided into subclasses
based mainly on access control: (1) interstates with full access control and grade-
separated interchanges, (2) expressways which have controlled access but may also
include at-grade interchanges and (3) and other principal arterials which have little or no
access control. (Garber & Hoel 659).

Streets that interconnect with and augment the urban primary arterials are
classified as urban minor arterials. This system places more emphasis on access and
offers lower mobility than the primary arterials. Although minor arterials “may serve as
local bus routes and may connect communities within the urban areas, they do not
normally go through identifiable neighborhoods” (Garber & Hoel 659, Greenbook 11).
Despite the differences that exist between principal arterials and minor arterials, they are

all classified as high mobility and low access facilities.

2.1.1.2 Urban Collector System and Local Road System

Urban collector streets’ main purpose is to gather traffic from local streets in
residential areas or central business districts and channel it into the arterial system.
Collectors, therefore, go through residential and commercial areas and ease traffic
circulation through neighborhoods and business districts. Collectors can penetrate
residential neighborhoods, distributing trips from the arterials through the area to their

ultimate destinations.
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The urban local road system includes all other streets in urban areas that have not
been included in the previous systems. The main purpose of these streets is to provide
access to abutting land and furthermore to allow traffic on that land access to the
collector system (Garber & Hoel 660). The local roads are intended to serve multiple
types of traffic, including pedestrians and cyclists, and due to the many users through
traffic is discouraged to improve safety for the slower ones (Lamm 3.1). This system has

the lowest level of mobility, but the highest level of accessibility.

2.1.2 Rural roads

Rural roads consist of all other roads not located in an urban area. They function
by connecting separate cities together instead of connecting parts of cities together as is
commonly found in urban roads (Garber & Hoel 660). Arterial highways in rural
network provide direct service between cities and larger towns, while collectors serve
smaller towns connecting them to the arterial network, gathering traffic from the local
roads, which serve individual farms and other uses. This network can be viewed in Figure
5. Similar to the urban network, the rural network is divided into arterial, collector and

local roads.
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Figure 5: Schematic of the Functional Classes of Rural Roads

(AASHTO Greenbook Exhibit 1-3)

2.1.2.1 Rural Arterial System

The rural arterial system is divided into principle arterials and minor arterials.
The principle arterials are composed of most of the interstate and account for most
statewide trips. Freeways are a special type of arterial consisting of divided highways
with full access control and no at-grade crossings (Garber & Hoel 660). This class of
highway includes the heavily traveled routes that warrant multilane improvements and
most of the existing rural freeways (Greenbook 8). The minor arterials assist in
connecting cities and towns and all the rural arterials are characterized by uninterrupted,
high-speed flow. Due to the large traffic volume on these roads much time has been

spent researching the safety of this part of the road network.

2.1.2.2 Rural Collector System and Local Road System
Highways classified as rural collectors primarily carry traffic within individual
counties. Major collector roads mostly carry traffic to and from large cities that are not

directly served by the arterial system, and also carry the majority of the intra-county
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traffic (Garber & Hoel 660). The rural minor collectors bring traffic from local roads and
transport it to the arterial systems. Collectors are all characterized by more moderate
speeds than arterials, and a larger amount of accessibility, though some can have access
control.

The rural local road system contains all the roads still remaining within the rural
classification. These roads serve trips of short distances and provide direct access to
individual residences (Garber & Hoel 661). Conversely, the system also links the
individual properties to the collector system. Like all local roads, rural local roads are

characterized by low speeds and high access.

2.2 Roadway Alignment

A roadway’s alignment is composed of its horizontal and vertical orientation.
Vertical alignment includes tangent grades and sag, or crest, vertical curves. Horizontal
alignment, similarly, consists of level tangents and circular curves. These elements all
contribute to the safety of the road design.

Many studies have been conducted to investigate the effects of various alignment
designs on safety including those by Lamm, Hadi, and Gibreel (Lamm et al) (Hadi et al
169) (Gibreel et al 305). Many elements have been found to affect safety through all
aspects of alignment design. Studies have also indicated that improvements to highway
alignment could significantly reduce the number of crashes that occur on those roadways
(Gibreel et al 305) (Poe & Mason) (Miaou et al A). But, only quantitative relationships
can adequately show the relationship between design elements and crash rates allowing
highway planners and designers to use the information to make informed decisions about

better designs.
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2.2.1 Cross Section

Much of the research on cross-section design safety has been devoted to two-way
two-lane rural highways. Figure 6 shows the major components in a divided cross-
section design. The cross slope, lane width, shoulder width and type are the elements

given the most focus during the design process.
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Figure 6: Cross-section of a Divided Roadway
2.3 Cross slope

Undivided roads have a crown or high point in the middle with a downward slope
towards both edges, though unidirectional slopes may also be used. The primary purpose
of having a cross slope is to facilitate drainage. A steep crown is desirable to make the
water flow as quickly as possible away from the main traveled path, but too large of a
slope can cause vehicles to drift towards the lower edge of the road (Greenbook 313).
The two elements need to be balanced in order to get the most benefit from the crown
before the negative consequences come into play. American Association of State
Highway and Transportation Officials (AASHTO) has produced a generalized set of
guidelines to help designers in choosing the proper amount of cross slope to use on road
designs. Accepted cross slope rates range from 1.5 to 2 percent for two lane roads. As

additional lanes are added the cross slope rate may be increased by 0.5 to 1 percent.
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Slopes larger than two percent are not desired on high-speed roads due to the fact that
high crowns can cause trucks with high centers of gravity to sway when traveling at high
speeds (Greenbook 313). In areas of high rainfall, cross slopes can be extended to 2.5

percent to handle the large volume of water (Greenbook 314).

2.3.1.1 Lane width

The lane width of roads can greatly influence the safety and comfort of driving.
Lane widths generally range between nine and twelve feet where the minimum width is
limited by the width of the design vehicle for the road. The maximum width for lanes is
limited by the amount of space needed where drivers could perceive a lane where one
does not actually exist. The recommended lane width for all new roads by AASHTO is
twelve feet (Greenbook 316). Increasing lane width to the maximum value can reduce
crash rates for urban freeways and undivided highways (Hadi et al 176). In some
situations such as low-speed facilities, urban areas with restrictive development and right-
of-way, and low volume roads in rural and residential areas, smaller lane widths are
permitted. Russia and European countries have developed an empirical relationship

: : 1 .
between pavement width and accidents N = ———————where N is the number of

0.173W -0.21
accidents per million-vehicle kilometers and W is the pavement width in meters. This
shows that accident rate decreases with an increase in pavement width (Gibreel et al 308).

The above relationship helps support the idea that lane widths affect roadway safety.

2.3.1.2 Shoulder Types and Width

Shoulders are the area of the road intended for stopped vehicles, emergency

vehicles and structural support of the roadway. Shoulders can vary in width and type,
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surfaced or un-surfaced. Surfaced shoulders use asphalt or concrete pavement, gravel,
shells, and crushed rock as surfacing material while un-surfaced shoulders are typically
dirt and grass. In urban situations, parking lanes can help to provide some of the same
services as shoulders on rural roadways. Widths range from two feet wide on minor rural
roads to twelve feet on major roads with most shoulders ranging between six and eight
feet (Greenbook 318). Research has shown that increasing the outside shoulder width to
between ten and twelve feet helps to decrease accident rates (Hadi et al 176).

Choueiri et al found that there is a tendency for accident rates to decrease with
increasing overall pavement width up to 7.5 meters (25 feet) on two-lane roads (Choueiri
et al 37). This was confirmed by many studies in countries including the United States,
Germany, Canada, and the former United Soviet Socialist Republic (Choueiri et al 37).
Though the accident rate decreased, the accident cost rate, an indication of severity
tended to go up with increased pavement widths (Choueiri et al 37). This is due to the
fact that roads with wide lanes and shoulders tend to have higher speeds and the accidents
that occur on them tend to be very severe. This shows why the individual lane and
shoulder widths, as well as the overall pavement width of the road, are important.

Some roads, especially in urban areas have shoulders that are used primarily for
parking. This allows space for parallel parking, but increases the number of roadside
hazards that can be struck by moving vehicles. The problem of hazards versus need for
parking in commercial urban areas needs to be balanced to prevent problems occurring
from the presence of parked vehicles. This balance is mostly necessary in locations
where the road has been divided to allow for higher speeds, where the parked vehicles

permit for increased pedestrian presence.
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2.3.1.3 Curbs

The type and location of curbs can affect driver behavior, especially their feelings
of comfort. Curbs can make drivers more comfortable by illuminating the edge of the
road. Curbs are primarily intended for drainage and delineation of road and sidewalks.
They consist of a vertical or raised portion to physically create a barrier between spaces
with different purposes such as roads for vehicle travel and sidewalks for pedestrian
travel. Curbs are used on all types of low speed urban highways, though caution needs to
be applied when placing curbs on high-speed roads (Greenbook 323). Caution is needed
because curbs can cause problems when they are struck at high speeds causing vehicles to
flip. The positive benefits of curbs, for delineation and directional control of water, need

to be balanced with their adverse affects on safety for high-speed vehicles.

2.3.2 Horizontal Alignment

Horizontal alignment describes the variation in placement of horizontal design
elements of the roadway, which consists of level tangents separated by curves.
Horizontal curves can consist of simple curves, single circular arcs or compound curves
of two circular arcs on the same side of a common tangent (Easa 1). A simple curve is
bordered on both sides by tangents and consists of a single circular curve. Compound
curves consist of two or more curves in a row, which all turn in the same direction and
any two successive curves have a common tangent point (Garber & Hoel 701). Reverse
curves consist of two simple curves of equal radii turning in opposite directions with a
common tangent point. Reverse curves are generally used to alter the alignment of a
highway (Garber & Hoel 706). Designers try to avoid reverse curves whenever possible,

in order to avoid the sudden radical change in alignment which can cause the driver to
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have problems staying in their own lane (Garber & Hoel 707). Spiral curves are also
known as transition curves and gradually increases or decreases the radial force as a
vehicle is entering or departing from a circular curve (Garber & Hoel 707).

A large number of accidents tend to occur at horizontal curves. A study by
Choueiri et al showed that a negative relationship between radius of curve and accident
rate exists, meaning the smaller the radius the more accidents occurred (Choueiri et al
44). To combat this safety issue, when there is space available, large radii should be used
on horizontal curves. Once radii became greater than 400 to 500 meters (1,650 feet), the
marginal increase in safety per increase in radius is very low (Choueiri et al 44).

Horizontal alignment uses design speed as an overall design control and uses
friction, superelevation and curvature to set specific limits. The limits are based on
mechanical relationships, but the values used in design are adjusted due to practical limits
determined empirically over the range of values allowed (Greenbook 131). A design

speed, superelevation, and friction factor have to be chosen and then the minimum radii

2

can be determined by R =
15(e +

) where R is the minimum radius (ft), u is the design

speed (mph), e is the superelevation, and fs is the coefficient of side friction.
Superelevation is an “inclination of the roadway towards the center of the curve”
(Garber & Hoel 67) and is regulated by AASHTO with maximum values being limited by
design speed and environmental factors. In areas with snow and ice the super elevation is
restricted to less than eight percent, though in other areas it can be as high as ten or
twelve percent (Greenbook 141). The relationship between geometric design,
specifically horizontal design and operating speed has been shown in studies for all types

of roadways. Relationships between geometric design and operating speed on two-lane

36



rural highways show that horizontal curvature is a significant effect on operating speed
(Poe & Mason 18). High-speed geometric design is based on design values for geometric
elements that promote speed consistency and safety (Poe & Mason 18). Low-speed
design tries to provide access and accommodate mixed types of users such as bicyclists
and pedestrians with the goal of maintaining lower speeds to achieve the functionality of
the road and improve overall safety (Poe & Mason 18).

Due to the relationship between horizontal alignment and operating and design
speeds, many researchers have attempted to create a quantifiable relationship between the
two. Lamm and Glennon independently examined this relationship in depth. Both
groups developed models for predicting the 85" percentile speeds of vehicles using
degree of curvature (degrees/100 ft) as a variable.

V85=94.37-1.83DC (Lamm’s group)

V85=93.8-2.59DC (Glennon’s group) (Poe & Mason 19)

Both models displayed very similar relationships with only minor differences.
The constant reflects the differences in the maximum speeds allowed on the tangent or
straight sections of roads and then an adjustment is made based on the specific curve.
Lamm and Choueiri’s work in the late 1980°s confirmed the importance of the radius of
curve (degree of curve) by concluding that it is the most influential parameter in
determining accident rates on horizontal curves (Gibreel et al 309). The probability of
accidents is higher on curves than on tangents since the road is changing causing the
driver to do more work allowing room for more mistakes and can be especially dangerous
when high-speed roads have sharp curves that abruptly slow traffic making the situation

ripe for an accident.
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2.3.3 Vertical Alignment

Vertical alignment consists of straight sections of grades, or tangents connected
by vertical curves. The curves consist of single parabolic arcs (sag or crest) or compound
curves (unsymmetrical curves) of two parabolic arcs with a common tangent (Easa 1).
Design of vertical alignment, therefore, consists of choosing the proper grade and the
layout of the curve. The proper grade is important since vehicles traveling upward tend to
loose speed due to the downward force from the weight of the vehicle unless the driver
accelerates (Garber & Hoel 56). Trucks and buses are especially affected by long grades,
on upgrades speed reduction can be extreme and on downgrades the brakes may not be
strong enough to slow and stop heavy vehicles. This is a key concern on higher speed
roads (45 mph and up), but is less of a concern on slower speed roads. The sharpness of
the grade will also affect this, with larger grades having a more significant effect on
traveling vehicles.

The selection of maximum grades for a highway depends on the design speed, and
a general heuristic is that grades of 4 to 5 percent have little to no effect on passenger cars
(Garber & Hoel 675). Table 2 shows the maximum allowable grades for urban arterials
as recommended by AASHTO. Similar tables exist for urban and rural collectors and
local roads with the allowable grades increasing slightly as roads increase in accessability

and decrease in mobility. Maximum grades are specified by design speed and terrain

type.
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Table 2: Maximum Grades for Urban Arterials

US Customary Units

Maximum Grade (%) for Specified Design Speed (mph)
Type of Terrain |30 35 40 45 50 55 60
Level 8 7 7 6 6 5 5
Rolling 9 8 8 7 7 6 6
Mountainous |11 10 10 9 9 8 8

(AASHTO Exhibit 7-10)

Some studies have examined the point when grade starts playing a significant role
in increasing accident rates. A study done in 1973 with data from the United Kingdom,

the former Soviet Union and Germany found a direct relationship between accident rate

and grade. N =0.265+0.105G +0.023G> where N equals the number of accidents and
G is the percent of grade. This shows that accident rates increase with an increase in
grade (Gibreel 309). A later study in 1994 concluded that accident rate slightly increases
with increases in grade up to six percent and sharply increase at grades higher than six
percent indicating that for rolling and mountainous terrain, the grade plays a large role in
effecting accidents (Choueiri et al 44). Minimum grades can also be an important issue.
They are based on the need to provide adequate drainage especially when there are curbs
present, which prevent free drainage from all parts of the roadway (Garber & Hoel 676).
If the minimum grade is not large enough, water can collect on the pavement and
contribute to the road’s deterioration and increase accidents by causing vehicles to
hydroplane.

Vertical curves are supposed to provide a gradual change from one grade to the
next for a smooth overall ride and are mostly parabolic in shape and can be classified as
crest or sag curves (Garber & Hoel 676). To design a vertical curve, the criteria to
consider includes the minimum stopping sight distance for crest curves, headlight sight

distance for sag curves, drainage, comfort and appearance for both types of curve.
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Headlight glare and minimum sight distance work in a similar fashion, by providing
minimum allowable lengths for the curves. Available sight distance should be designed
to be equal or greater than the required sight distance to make certain that all the design
requirements are met. Headlight glare conditions are most important on sag vertical
curves where on-coming traffic can blind the driver if the curve is designed improperly.
Driver comfort is also most important in sag vertical curve conditions where gravitational
and vertical centripetal forces are acting in opposite directions, so the rate of change of
grade needs to be kept within “tolerable limits” (AASHTO Greenbook 269). The
appearance consideration is that long curves have a more pleasing appearance than short
ones, which can give the appearance of a sudden break in the profile (AASHTO
Greenbook 270). Appearance and comfort are only given a passing consideration, as
most curves that are designed for the minimum sight distance will already be appropriate

for comfort and appearance.

2.4 Access Control

The function of a highway system is to provide both mobility and access. Arterial
roadways can be designed with various levels of both accessibility and mobility.
Arterials often have infrequent access points and barriers to prevent crossing, as found in
the interstate system or principal arterials, or they can be designed with low access
control with many direct access points for all land uses as in the minor arterials.
Improving safety is an important goal of access control management. To help in
evaluating the possible benefits, models to predict crashes based on road geometry and

access control characteristics are being developed.
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One of the major indications of access control management is the presence of
medians and islands on the roads and at intersections. A common access control
technique involves the use of medians and refuge islands to increase safety by decreasing
the number of possible vehicle or pedestrian conflicts. The definition of a median is “the
portion of a highway separating opposing directions of the traveled way”’(Green Book,
341). This definition does not, however, state what the function of a median is or how it
is to be constructed. There are a variety of different median types in use where some are
combined with barriers designed to prevent out-of-control vehicles from crossing into
opposing vehicles and wider medians relying on their width to prevent opposing vehicle
crashes. Medians can be divided into three major types: raised, depressed or flush, and

installed for several different reasons.

2.4.1 Median Purpose

Medians are an effective method for increasing safety and vehicle capacity on
arterials and are generally considered to improve pedestrian safety. The main goals of a
median include a) separating opposing vehicles b) providing vehicles with a safe clear
zone to avoid other moving vehicles and reduce roadside object collisions and c)
providing a refuge for turning or crossing vehicles and pedestrians (Knuiman et al 71).
Medians can be designed for one or more of these general goals. One way for reaching
these goals is for medians to provide an additional lane for thigh speed traffic by creating
left turn bays and removing the turning vehicles from blocking the traffic flow.
Similarly, medians will protect entering vehicles that want to cross one or both directions
of traffic. Medians on a divided highway can provide a recovery area for out-of-control

vehicles, by allowing space for the vehicle to regain control before crossing into the
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opposing traffic. A side benefit of medians on arterials is that they can provide a
landscaping area, as long as vegetation is frangible and will not cause fixed object
collisions. Despite these opportunities for medians to protect vehicles and pedestrians,
their safety benefits are largely unknown and theoretical since the true effects of medians
are difficult to quantify.

Similar to medians, refuge islands are designed to provide a place of safety for
pedestrians who cannot safely cross the entire roadway at one time due to changing
traffic signals, oncoming traffic, or the pedestrian’s own capabilities. They are
particularly useful at locations where heavy volumes of traffic make crossing difficult
especially on multilane roadways, large or irregularly shaped intersections and at
signalized intersections (Bowman & Vecellio a 180). However many studies done on the
effect of medians on improving pedestrian safety have been called into question due to
the researchers disregard of changing pedestrian and vehicular volumes throughout the
time period of the study (Bowman & Vecellio a 183).

The before and after studies of pedestrian accidents in areas with median
installations often do not take into account the increased number of pedestrians when a
median or island is installed. Larger numbers of pedestrian accidents at a specific
location may not be alarming if the accident rate is calculated, but getting realistic
pedestrian counts is difficult and rarely done. Therefore, Bowman and Vecellio’s
findings of higher accident rates for undivided arterials than for arterials with raised or
two-way-left-turn-lane may be due to larger volumes of pedestrians being attracted to the
areas with undivided cross sections than the median treatment being effective. Medians

and refuge islands are both techniques intended to increase pedestrian safety, but the
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actual effect on pedestrian safety is unclear and, like medians, difficult to quantify

especially as most studies have focused on the safety benefits to motorized vehicles.

2.4.2 Median types

There are three major types of medians, raised, depressed, and flush. Depressed
medians are generally used on freeways to help create more efficient drainage and snow
removal. According to AASHTO’s Policy on Geometric Design of Highways and
Streets, depressed medians should have side slopes of 1V:6H, but 1V:4H also may be
adequate (Green Book 341). Figure 7 shows the layout of typical depressed medians.
This type of median separates the opposing traffic, but may cause problems in providing
a safe clear zone between the two directions. This can be due to the depression intended
to aid with drainage not being properly maintained and vegetation growing up. Also, if

the slopes are built too steep a vehicle could roll over while in the median.
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Figure 7: Depressed Median
Exhibit 7-7 AASHTO’s Green Book
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Raised medians, on the other hand, are seldom used in freeway situations any
more. On freeways, raised medians cause problems for out-of-control vehicles. The
slope, while separating the traffic flows, does not allow for the out-of-control vehicles to
use the median as a place of refuge and avoid vehicles and objects. The out-of-control
vehicle cannot climb the slope and the high slope tends to cause the vehicles to roll over
and land back in the traffic stream that was just left.

However, raised medians of a different style have an application on arterial streets
where it is desirable to regulate left-turn movements, by limiting left turns and U-turns
except at designated points. Separating the traffic in arterial streets also increases the
comfort level of the driver and increases the traffic speed. In this situation, the term
raised median implies the use of a curb and ability to be used as a pedestrian refuge as
seen in Figure 8. In order to be officially called a pedestrian refuge, medians must be at
least 4 feet wide, though 6 feet is needed for multiple pedestrians, bicyclists and

wheelchairs.
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Figure 8: Raised Curb Median

Raised curb medians were the predominant treatment first used in urban areas.
They were found to be effective in controlling left turn movements and separating
opposing traffic flows as well as providing pedestrian refuge. Table 3 shows a compiled
list of the advantages and disadvantages of raised medians. Use of raised medians
increases traffic flow and speed limits while reducing the number of mid block collisions
by limiting the number of conflict points. However, there is often an increase in crashes
at intersections and sometimes an increased number of fixed object collisions. Increasing
congestion, limited right-of-way, high construction cost, and the need for more left turn
opportunities resulted in the increasing use of flush medians, specifically two-way left-
turn lanes in urban locations where previously a raised curb median would have been

installed (Bowman & Vecellio a 181).

45



Table 3: Advantages and Disadvantages of Raised Medians

Advantages

Disadvantages

1. Discourages new strip development and
encourages large planned development

1. Reduces operational flexibility for
emergency vehicles and others

2. Allows better control of land use by
local government

2. Increases left turn volume at major
intersections and median openings

3. Reduced number of conflicting vehicle
maneuvers at driveways

3. Increases travel time for vehicles
desiring to turn left where median openings
are not provided

4. Safer on major arterials with high (>60)
number of driveways per mile (>37
driveways per km)

4. Reduces capacity at signalized
intersections

5. Increases traffic flow

5. Possible increase of accidents at
intersections and median openings

6. Desirable for large pedestrian volumes

6. Usually increases fixed object accidents

7. Permits circuitous flow of traffic in grid
patterns

7. Requires motorists to organize their trip
making to minimize the need for U-turns
and use the arterial only for relatively long
through movements

8. Allows greater speed limits on through
road

8. To minimize delay requires inter-parcel
access, which may not be under
government control or would be expensive
to purchase and construct

9. Safer than TWLTL in 4 lane sections

9. Restricts direct access to adjoining
property

10. Safer than TWLTL in 6 lane sections
but depends on number of signals/mile,
driveways/mile, ADT and approaches/mile

10. Installation costs are higher

11. Encourages access roads and parallel
street development

11. Can create on over concentration of
turns at median openings

12. Reduces accidents in mid-block areas

12. Indirect routing may be required for
some vehicles

13. Reduces total driveway maneuvers on
the major roadway

13. When accidentally stuck, curb may
cause driver to lose control of the vehicle

14. Low maintenance cost of raised
medians, depending on final design

14. A median width of 25 ft (7.6 m) is
needed to accommodate U-turns

15. Studies have shown that delay per left
turning vehicle does not increase, up to the
studied volume of 3700 vph

16. Curbs discourage arbitrary and
deliberate crossings of the median

17. Reduces number of possible median
conflict points

18.Provides separation between opposing
traffic flows
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Table 3: Advantages and Disadvantages of Raised Medians Continued

Advantages Disadvantages

19. Provides a median refuge area for
pedestrians

20. With raised grass medians, an open
space is provided for aesthetics

Bowman & Vecellio

Two-way left-turn lanes are a type of flush or traversable median, which is a
median treatment type that is delineated but does not physically restrict traffic
movements. Delineation comes from marking the pavement with appropriate stripping.
Common types of flush medians are narrow divider strips, alternating left turn lanes and
two-way left-turn lanes, which are collectively referred to as painted medians (Bowman
& Vecellio a 180). Two-way left-turn lanes (see Figure 9) are intended to remove left
turning vehicles from the main traffic throughways and to provide a storage area until a

large enough gap in traffic is available to complete the turning movement.

Figure 9: TWLTL
Garber & Hoel 164

A compiled list of advantages and disadvantages that come from installing two-
way left-turn lanes can be seen in Table 4. Two-way left-turn lanes help to improve
safety by removing the turning vehicles from the through-traffic lanes, but at the same
time maximizing access for the turning vehicles. This is a beneficial solution because
emergency vehicles do not run into access problems and the two-way left-turn lanes
eliminates island fixed objects, which occur with raised medians. Problems can occur,
however, with conflicting turning movements, visibility problems and safety for

pedestrians.  Visibility problems range from problems seeing he turning vehicles to

47




problems, especially at night, in determining the location of the two-way left-turn lane,

while pedestrians loose their island refuge and have a further lane of traffic to cross.

Table 4: Advantages and Disadvantages of TWLTL

Advantages

Disadvantages

1. Left turning vehicles are removed from
through traffic while maximum left turning
access to side streets and driveways is still
provided

1. There are conflicting vehicle maneuvers
at driveways

2. Delay to left turning vehicles and others
is often reduced

2. Poor operation of roadway if stopping
sight distance is less than AASHTO
minimum design

3. Operational flexibility for emergency
vehicles and others is enhanced

3. No pedestrian refuge areas for
pedestrians free from moving vehicles

4. When less than 60 commercial
driveways per mile (37 driveways per km)
are permitted to be constructed two-way
left turn lanes appear to be safer

4. Operate poorly under high volume of
through traffic

5. Roads with two-way left turn lanes are
operationally safer than roadways with no
separate left turn lanes in the median

5. Should not be used when access is
required on only one side of the street

6. Detours can be easily implemented when
required by maintenance in adjacent lanes

6. Visibility problem of painted median
especially with snow and rain or when
pavement markers outlive their design life

7. Provides spatial separation between
opposing traffic flows

7. A safety problem when they are used as
a passing lane

&. Eliminates the median island fixed
object

8. High maintenance cost of keeping the
pavement striped and raised pavement
markers in proper operating condition

9. Provides temporary refuge for disabled
vehicles

9. Must continually instruct the public on
proper use and operation

10. Can be used as a reversible lane during
peak hours

10. Delays to left turning vehicles increase
dramatically when two way through
volume reaches 2800 vpd

11. Permits direct access to adjoining
properties

11. Limits operating speed to a maximum
rate 45 mph (73 km/hr)

12. Does not guarantee unidirectional use
at high volume intersections

13. Are not aesthetically pleasing for some
people

14. Allows numerous potential traffic
conflict points

Bowman & Vecellio
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Another type of flush median that has attempted to eliminate some of these
problems is the alternating left turn lane which provides left turn opportunities for one
direction at a time with both directions have turning capabilities over limited sections of
the roadway (Bowman & Vecellio a 181). Alternating lanes have similar properties to
two-way left-turn lanes, but eliminate possible conflicts by turning vehicles at the price of
eliminating some access. This type of median works well in small urban areas especially
where only one side of the road is developed otherwise the access restrictions can create

more problems.

2.4.3 Median Width

Median width is defined as the width separating the traveled ways and includes
the median width as well as the inside shoulder width. This is an important distinction,
especially with traversable medians, because shoulder width provides some of the same
services as a median, recovery room specifically, and may sometimes be difficult to
distinguish especially for unpaved shoulders next to grass medians. It has been suggested
that median widths should be at least 60 feet wide on rural highways and as narrow as 10
feet on urban highways if a barrier is used, but these are just heuristics and few studies
have provided quantitative measures on the effect of median width on frequency and
severity of accidents (Knuiman et al 70). Little guidance is given for median widths even
by AASHTO. AASHTO’s guidelines give a general range of median widths ranging
from four to eighty feet or more, with no apparent upper limit. In urban arterial
situations, a minimum width of four feet is used under the assumption that “a median 4 ft
wide is better than none” (Green Book 478). When left turn lanes are desired, the median

should be at least eighteen feet wide allowing room for the lane and a separator, though
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in restricted locations a twelve foot median may be used (Green Book 478). Overall, the
median must be wide enough to give the motorist the perception of safety for whatever
movements are being completed, turning, crossing or straight movements (Knuiman et al
79). While minimal guidelines are given by AASHTO on the widths of medians, there is
no agreed upon way to quantify what widths should be used to increase or even to ensure
safety of either vehicles or pedestrians. The following sections go into further detail

about the effects medians have on safety.

2.4.4 Effects of Medians on safety

Medians have long been recognized as an effective method of increasing vehicle
safety and capacity on urban arterials. But, a summary of quantitative results for flush
medians on highways has only shown that wider medians have lower accident rates.
There is not a fixed amount of safety gained per increase in width. This unknown
quantity of safety is reflected in the limited amount of guidelines for median widths.
Since the safety benefit of medians is unknown, the best width to maximize safety is
equally unknown.

Knuiman et al looked at the effect of median width on frequency and severity of
accidents on homogenous highway sections with a traversable median (Knuiman et al
70). A homogenous section in this case means that the geometric and cross-section
variables (lane width, pavement type, shoulder width, shoulder type, number of lanes) are
constant. The aims of Knuiman et al’s modeling process were to obtain standard errors
and confidence intervals for estimated accident rates and to determine whether the
observed reduction in crude accident rates for wider medians persisted after adjusting for

other roadside characteristics.
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Using a log-linear regression model, Knuiman et a/ included variables such as
functional classification, posted speed limit, access control (none, full, partial) curvature,
average daily traffic and section length in their models. Many of the variables considered
were correlated with median width, which made the fitting of the interactions between
median width and other variables difficult. The estimated effects of median width
obtained from the fitted models may, therefore, be conservative due to the inclusion of
variables correlated with the width (Knuiman ef a/ 73). Knuiman et a/ found that there is
little reduction in accident rates for medians up to twenty-five feet and decline in rates is
most apparent for median widths beyond twenty to thirty feet with the decreasing trend
leveling off somewhere between sixty to eighty feet (Knuiman et al 76).

While not giving exact numbers, Knuiman et a/ did manage to give a better range
of median widths to use than do earlier assumptions. They found that the decrease in
accident rates tapers off after sixty to eighty feet, showing that building medians larger
than eighty feet will not be cost effective in reducing accidents. A few more accidents
may be prevented by larger medians, but not to any noticeable degree. Also shown was
that the minimum width should really be approximately twenty-five to thirty feet which is
where observable decreases in accident rates can be seen. The study concluded “accident
rates decrease with increasing median width, even when other confounding variables are
controlled for” (Knuiman et al 77). What was not found with the decreasing accident
rates was a concurrent decrease in the severity of accidents. Median width affected as
many of the severe crashes as the less severe ones, and primarily lowered multi-vehicle

crashes but had no effect on single vehicle run-off-the-road crashes (Knuiman et al 79).
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So while a more effective median width can be chosen, there are still many other

confounding variables that affect safety of vehicles.

2.4.5 Comparison of Median treatment safety

Urban locations primarily use raised curb medians or two-way left-turn lanes.
Studies looking at the relative safety between the two have discovered conflicting results.
Some researchers have found no difference in the accident rates of the two treatment
types, some found two-way left-turn lanes to have higher rates and still other researchers
found raised medians to have the higher accident rates. When examined individually,
the installation of a median whether raised or painted typically resulted in a lowering of
accident rates and improvement of safety (Bowman & Vecellio a 182). Both median
types showed typical reduction in total number of vehicle accidents in the 25 to 35-
percentage range (Bowman & Vecellio a 186) and both resulted in a reduction in accident
severity (Bowman & Vecellio a 187).

Brown and Tarko have developed prediction models for total number of crashes,
number of property-damage only crashes and number of fatal and injury crashes with the
prime interest of seeing if controlling access does improve safety. Brown and Tarko
chose to make crash frequencies proportional to traffic volume, despite this not being an
exact fit, the data showed this to have an insignificant effect on the models (Brown and
Tarko 71). Brown and Tarko found more access points to results in a higher crash rate,
the presence of an outside shoulder reduces crashes, the presence of traffic signals to
increase rates, and medians with no opening to decrease accident rates (Brown and Tarko
72). Brown and Tarko concluded that in general access control has a beneficial effect on

safety.
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Bonneson and McCoy also developed models for predicting the safety of urban
arterial streets focusing on use of specific median types (Bonneson & McCoy 33). They
created three median specific models for raised medians, two-way left-turn lanes and
undivided cross sections. For arterial streets the independent variables included in the
accident prediction models include traffic demand, road length, driveway density, median
type, number of lanes, and adjacent land use. Bonneson and McCoy found several trends
from their modeling, including raised-curb median treatments having the lowest accident
rate, two-way left-turn lanes slightly higher and undivided segments the highest rates
(Bonneson & McCoy 35). Land use was also show to be important with business and
office land use locations having consistently higher accident rates than residential and
industrial areas. Despite being unable to yet agree on the safer median treatment between
raised medians and two-way left-turn lanes, most researchers agree that either treatment
will reduce accident rates compared with an undivided cross section, so that proper use of

access control methods does result in safer roads.

2.5 Intersection Accidents

A major theory behind intersection accidents is that the number of accidents at an
intersection is proportional to the sum of flows that enter the intersection (Hauer et al 49).
This is sometimes referred to as the traffic intensity or the total number of vehicles
entering an intersection per year and is often one of the most important factors in
predicting injury accidents (Lau & May 63). Several problems exist with this type of
thinking including that problems occur when looking at specific accident types, it is an
overly simplistic version of events and is very dependent on correlation. Another theory

is that accidents relate to the products of conflicting flows (Hauer et al 49). Hauer et al
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found that accidents tend to be related to the product of flows with each flow raised to a
power of less than 1 (Hauer et al 49). This cross street traffic, traffic from the minor road
is an indication of how many possible conflicts could exist at the intersection. Accidents
between vehicles proceeding in the same direction have to be estimated separately from
accidents between vehicles (turning, left) in multiple approaches.  Customary
categorization of accidents by initial impact (rear end, turning movement, sideswipe, etc)
is not very informative (Hauer et al 56). It cannot be assumed that classification of an
accident as an angle accident implies that vehicles were traveling at right angles to each
other. To be specific the categories need to clearly show the relationship between the
vehicles involved in the accident. This becomes an important issue when categorizing
accidents.

Important factors when developing models that deal exclusively with intersection
accidents include traffic intensity, percent of cross street traffic, intersection type, signal
type, number of lanes on the main and side streets, and left turning arrangements (Lau &
May 65). At the time of Lau and May’s work the current intersection models in
California only used traffic intensity and intersection type to predict accidents (Lau &
May 65). Other factors such as turning movement counts and conflict analysis may help
in creating prediction models, but these types of data are more time intensive and difficult
to collect and are not readily available for use in developing prediction models.

Hauer et al find that intersection accidents are not proportional to the sum of
entering volumes. Accident rates should not be calculated on the “basis of the sum of

entering volumes to compare the safety of two different intersections” (Hauer et al 57).
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Another issue with junction models is that they are usually limited to major
intersections with roads of collector or arterial classification. There are many minor
junctions that exist where knowledge of the traffic flows on the minor roads are unknown
and the collection of such data would prohibit the usefulness of such a model. Separate
models of minor junctions are not possible without data collected just for that purpose
(Mountain 705). The separation and delineation made between link sections and minor
and major intersections make the combination of the three important and the effect of one

on the other significant.

2.6 Modeling Types and Issues Related to Modeling

Mathematical modeling is a technique to create a quantifiable method to predict
the occurrence of certain events. An accident prediction model is an equation that
expresses accident frequency as a function of traffic flow and other road characteristics.
Many models have been created to calibrate relationships between shoulder width, lane
width and shoulder type on two-lane rural highways and several studies have looked at
the effects of median width and type. Hadi et al looked at roads in Florida separated by
location, access type and number of lanes (Hadi et al 170). Many issues have been
brought to light due to issues relating to both modeling and the nature of traffic accidents.

Several of the more important issues comprise the following sections.

2.6.1 Generalized Linear Modeling

Generalized linear modeling (GLM) is the most straight forward method used to
develop mathematical models. A GLM is usually made up of three components: a
random component, a systematic component, and a link function that connects the other

two to produce a linear predictor (Lord & Persaud, 103). In generalized linear modeling
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an important assumption is that random error occurs only in the dependent variable and
that the explanatory variables are known without error (Maher & Summersgill 293). This
is an important assumption to keep in mind since not all the necessary variables
contributing to car accidents are known without error. For geometric and control
variables such as number of lanes and presence of a median, the variables are known
without error, but not so for all the traffic characteristic variables such as volume and
percentage of heavy vehicles. Ideally traffic flow should be the average annual daily
traffic (AADT) over the whole time period under consideration, but data often comes
from a “snapshot” of a single day from the study period and some time not even that
(Maher & Summersgill 293). Since volume studies are very time consuming, they are
not performed on a regular basis and are adjusted based on state factors.

The GLM is flexible in the choice of probability distribution for the random
component, making this kind of model effective for traffic safety where number of
accidents and other variables follow a Poisson or negative binomial distribution and
further variables follow a normal distribution. In the past, models have been developed

that follow all of these distributions depending on what exactly is being studied.

2.6.2 Linear Modeling

There have been many studies which have the goal of establishing relationships
between traffic accidents and road geometry, as well as determining the effect of road
and intersection design on the frequency of accidents (Maher & Summersgill 281). The
majority of studies have historically used conventional analysis, linear regression, which

assumes that the dependent variable is continuous and normally distributed with a
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constant error variance. = Most often the regression coefficients are found by the
traditional method of least squares (ordinary least squares).

This method results in point estimators, £, that have minimum variance.

Analysis of variance (ANOVA) approach is typically used and separates the sum of
squares and degrees of freedom associated with the dependent variable. The mean

squared error, MSE, can be found on the ANOVA table and is an unbiased estimator of

variance (o). The variance of the error terms (&) is also an indication of the variance

of the probability distributions of the dependent variable.

The variance is used to calculate the coefficient of determination, R*, which
represents the proportion of variability explained by the regression function. The
coefficient of determination is the most common method for determining the quality of
the model in question and ranges between zero and one. An R’ value near zero indicates

that there is not a strong linear relationship between the dependent and independent
variables. A value of R® near one indicates a strong linear fit where the model explains

the variability in the data. The use of R’should be used with caution to ensure the
correct interpretation and be accompanied by the examination of scatter plots (Garber and
Ehrhart 78). R* is only a useful parameter when looking at linear regression models; it
does not apply to anything other than a normal distribution. A low value may not just
mean that the model is a bad fit for the data, but that there is not a linear relationship
between the examined variables and another functional form (logarithmic, exponential)
or distribution (Poisson, negative binomial) should be used.

Some traffic engineers believe that the coefficients of accident prediction models

can not be properly estimated by ordinary least-squares or weighted least-squares
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regression methods due to the non-negative, discrete nature of accident counts and the
fact that variance of the number of accidents increases, but not linearly, as traffic flow
increases (Lord & Persaud, 103). In approximately the last ten to twenty years there has
been a tacit agreement among modelers that conventional normal or lognormal regression
models don’t have the necessary statistical properties to describe vehicle accidents. A
major problem with linear/multilinear modeling is that it may predict negative accidents,
which is not a possibility in real life (A Miaou et al 12). A location with no accidents can
occur, but not a location with negative ones. The relationships between accidents and
related factors do not always reflect linear behavior causing multi-linear regression to be
inappropriate for analyzing the causes of accidents (Saccomanno & Buyco 24). Instead,
as modeling programs have become more accessible, sophisticated and user friendly,
transportation professionals have begun to estimate model coefficients by using
maximum-likelihood methods to calibrate generalized linear models. The use of other
types of distributions has also become more popular. The favored choice of models
appears to be the Poisson and negative binomial distributions. Another natural choice of
function due to the nature of accidents is the exponential function, which has been widely

used by statisticians and econometricians (Miaou, 8).

2.6.2.1 Model Fit

Once a model has been developed, it needs to be shown to work for the
application for which it has been applied. The quality of the model must also be
obtained.

The coefficient of determination (R?) has traditionally been used over the past

approximately thirty years as a criterion to determine how well the developed models fit
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the observed data (Miaou 6). R”has been used to determine overall quality and usability
of a model. “The R? statistic is a measure of the percentage of unconditional variance of
the dependent variable explained by the available covariates” (Miaou, 13). For any given
data set the R” value of the developed model has a minimum lower bound of zero and an
maximum upper bound of one. So a model with a coefficient of determination of 0.85
would be considered good while a model with a coefficient of 0.36 would be considered
as a poor candidate. An R*value of 0.7 or less is often considered the breaking point and
models with lower values are typically not recommended for use (Miaou 6). The R” is
often used to indicate the model fit to the data but also as a way to compare models.
When comparing two or more models that predict the same thing, whether vehicle speed
or accident rates, often models can look very different from each other with different
variables and coefficients. Using the R* values to compare the relative quality of models
from different studies helps by standardizing the model quality and simplifying the
comparison process. The decision to try and add variables to the model can also be

formed from the R* value. Using a constant upper bound of one, many researchers look
at (I—Rz) as a measure of potential improvement that can be gained by including

additional covariates (Miaou 6). Increasing the number of variables is not, however,

always the best move.
The adjusted coefficient of determination, or R’, is a modified measure that

allows the total number of degrees of freedom (DOF) in the model to be reflected in R* .

R’ is used in model’s developing phase to decide which explanatory variables should be

included. The model with the largest R’value is typically considered the best. The

reason for using the adjusted coefficient is that it includes information about the degrees
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of freedom in the model. Including more variables in a model may slightly improve the
R? value, but if the increase in the coefficient is not large enough, the loss of degrees of
freedom can counteract the minimal benefits. This adjusts for the fact that more variables
is not always better. Both the coefficient of determination and the adjusted coefficients
are most commonly used for models with normal distributions and can loose some or all
of their true meaning if applied to non-normal distributions (Bonneson & McCoy 31).
Miaou et al. found that the R” statistic is only meaningful in measuring the goodness-of-
fit for “normal linear regression models with additive mean functions” (Miaou 13).
Accident prediction models are non-normal and typically non linear. Miaou et al. showed
by example that R? is not always an appropriate way to make decisions about quality and
goodness-of-fit for accident models. Since the use of these coefficients is relatively
simple (larger value equals better quality) the temptation to use coefficients of
determination with non-normal distributions must be avoided.

Another major pitfall of coefficients of determination comes with the use of
binary response models. The upper bound for a perfect model can be less than one,
implying that a model with a low value of R? does not mean the fit is poor. Briide and
Larsson showed that the R” value of “Poisson regression models is dependent on the
mean level of the dependent variable (i.e., the mean level of accident frequency)” (Miaou
6). It was shown that the higher mean accident levels would result in higher R* values
regardless of the quality of the model. This is a reason why R values of accident
prediction models for urban areas have typically been reported higher than those for rural
areas, based solely on the higher accident rates (Miaou 6). This also implies that R?

values should not be the only method chosen for comparing goodness-of-fit of models
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when they are from different studies especially when different locations, accident types,
or time periods are involved (Miaou 7).

There are many statistical tests and criteria that are available for evaluating the
quality of the goodness-of-fit of a model and several should be used in conjunction to
determine the quality for accident prediction models. A good check of model fit is the
statistical significance of the variable coefficients, which can be found by looking at the
standard error and 95 percent confidence intervals for each coefficient (Bonneson &
McCoy 30). Checking that the individual variables are significant and that with 95
percent confidence their coefficients won’t become zero helps to ensure the quality of the
model.

Other well-known statistics to measure the quality of the fit between the observed
Y and the fitted values /I, are the scaled deviance (SD) and the Pearson X~ statistic.

SD = ZZ{yi log[%j - - ﬂ)}

i

(v, - 4)
)(2 - zA i
27

When there is perfect agreement these statistics are zero, otherwise they are
positive. The scaled deviance is based on the log likelihood function and the estimation
of parameter estimates are obtained through the maximum likelihood and is the more

commonly used of the two statistics (Maher & Summersgill 283). This statistic follows

the y’ distribution with n-p-1 degrees of freedom, where n is the number of observations,

and p is the number of model variables. This statistic is asymptotic to the y? distribution

for large sample sizes and exact for normally distributed error structures (Bonneson &
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McCoy 30). However, this statistic is not well defined in terms of minimum sample size
and non-normal distributions (Bonneson & McCoy 30). This is a statistic that people
tend to take at face value, but since it is not well defined for non-normal distributions,
care should be taken to ensure that it is applied mainly to linear models, but if it is used
for non-normal distribution models, that it is not the only qualification for goodness of
the model.

Other model fit techniques include the Cumulative Residuals Method (CURE),
which investigates the quality of fit by plotting the cumulative residuals for each
independent variable. This is a graphic method that allows the fit of the function to the
data to be observed (Lord & Persaud 106). An advantage of this and other graphical
methods is that CURE 1is not dependent on the number of observations as other
techniques are which allows models developed from any sample size to be assessed with
this method (Lord & Persaud 106).

Akaike’s information criterion, AIC, can be used for multivariate models to
predict the fit of a model based on the expected log likelihood (Garber and Ehrhart 78).
It is based on the Kullback-liebler information criterion, which measures the distance
between the true model and the hypothesized model (Garber and Ehrhart 78).

ACI = —21n(L)+2k where L is the Gaussian likelihood of the model and K is the

number of free parameters in the model. In terms of sum of square of the errors

SSE

n—k

ACI =nln( j+2k where n is the number of model residuals,

SSE = Z(yi - j/l.)z y,1s the observations y=model estimates. The first term measures

badness of fit or bias and the second measures complexity of the model. The goal for
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selecting the model is to minimize the criterion and select the best fit with the least
complexity (Garber and Ehrhart 78).

The dispersion parameter, 0, can also be used to measure fit by assessing the
amount of variation in the observed data. A dispersion parameter near one indicates that
the assumed error structure is approximately equivalent to that found in the data

(Bonneson & McCoy 31).

2.6.3 Bernoulli Random Variables

A Bernoulli random variable, named after the Swiss mathematician James
Bernoulli, can take on only two values (e.g. 0/1, on/off, yes/no, present/not present,
success/failure) with respective probabilities of 1-p and p (Ross 144).

p)=p

p0)=1-p

p(x)=0if x#20 or x#1

A Bernoulli trial consists of selecting and testing one item from a finite set of
items and seeing which value it has (Petruccelli et al 136). The probability of success in
a Bernoulli trial is always nonnegative and at most unity.

An indicator variable is used to designate whether or not an event occurred or if a
characteristic is present. If A is an event, then the indicator random variable /, takes on
the value of 1 if A occurs and the value of zero if A does not occur.

1,(z)=1,if zO 4

1,(z) =0, otherwise (Rice 34)

Indicator random variables are, therefore, a special case of Bernoulli random

variables with only probabilities of zero or one. Both Bernoulli random variables and the
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more specific indicator variables are commonly used in traffic models. For instance in a
model that is predicting the 85" percentile speed of a vehicle an indicator variables could
be used to show the presence of horizontal curves where a zero would mean a straight

road and a value of one would men that one or more curves were present.

2.6.4 Binomial Distribution

There are n independent experiments or trials performed in a binomial distribution
where each trial results in a “success” with the same probability p or a “failure” with the
same probability 1-p. “The total number of successes, X, is a binomial random variable
with parameters n and p” (Rice 34). K is the number of successes that occur throughout
the entire experimental program. FEach experiment is constructed from independent
Bernoulli trials.

A classic example used in binomial distributions is the situation of tossing a coin
multiple times. A coin is tossed 10 times (i.e., n, the number of trials, equals 10) and the
total number of tails is recorded (i.e., k, the number of successes, equals the number of

tails observed). The probability that X=k or p(k) can be found by the following method:
n _
P(x) = plk)= [ ]pk(l — p)' " where k =0,1,2,....
The distribution for tossing a coin 10 times is shown in Figure 10 as a binomial

n
distribution. “There are {kj ways to assign k successes to n trials” (Rice 34). The

combinatorial notation (k} can also be written in the following way:

W(Petruccelli et al 167). This allows the entire probability distribution to be
Wn—=k)
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!
shown by: p(k): n. )' pk(l— p)”_k. The mean of the binomial distribution is

i\(n - k
M =np, the variance is 0> = np(l - p), and the standard deviation is 0 = 1/nph - pj

(Petruccelli et al 1168).
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Figure 10: Binomial Frequency Function n=10. p=0.5

The binomial distribution can consist of Bernoulli trials and other types of
situations. In the Bernoulli trial, there are only two options, but binomial distributions
can be used when there are more than two optional answers. For instance, a die typically
has six sides. This can be used in binomial distributions in many different ways. For
example, a success could be considered rolling an even number (2, 4, or 6). Therefore
there are multiple chances for a success to happen, but there is still only the two options
of “success”(even number) and “failure” (odd number). There are three key assumptions
in binomial distributions: (1) each trial is independent, (2) each trial results in only one of
two possible outcomes, and (3) the probability of a success in each trial is constant
(Montgomery and Runger 74). The binomial distribution is used extensively in statistical

and probability applications. In spite of the need for the individual trials to be
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independent, certain continuous problems can be modeled using this distribution. For
example, time and space problems, which are generally continuous, may be modeled by
discretizing time into finite intervals with only two possibilities within each interval.

Then what happens in each time (or space) interval becomes a trial (Ang & Tang 109).

2.6.5 Log-Linear Models

Log-linear models assume that the effect of variables on the accident rate is
multiplicative rather than additive as in linear models (Knuiman et al 72). Estimated
rates from log-linear models cannot be negative, which fit accident rates in that you can
have zero accidents or a positive number of accidents, but negative accidents do not exist.
“Zegeer et al considered both additive and multiplicative (log-linear) models and
concluded that the multiplicative models provided a better fit to the data” (Knuiman et al

72). Knuiman et al assumed a negative-binomial variance function for the accident count
per section so Var(Y ) =E (Y ) +k* [E (Y )]2 where k is the same for all section and Var(Y)

and E(Y) are the variance and expected value respectively.

This has the form of 10g()l)=a+,81X1+,82X2+...+,8ka where

A=R=F (R) = {ADT *E3(6};)*T*L} *10° and X is the indicator variable for categorical
roadway characteristics or actual values for quantitative roadway characteristics.
Loglinear models are where the predictive variable is really the log of the variable.
Advantages of using loglinear models include having continuous and categorical
variables. “A loglinear approach allows the statistical significance of partial and

marginal association to be tested for a given combination of categorical factors”

(Saccomanno & Buyco 25). Multiplicative models also assume that the effects of
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individual variables work together and that they do not act independently from one
another, so that combinations of characteristics rather than individual ones better explain

events.

2.6.6 Poisson Modeling

The majority of studies, historically, have used conventional regression analysis,
which assumes that the dependent variable is continuous and normally distributed with a
constant variance. Early modeling work used multiple linear regression modeling with
assumed normally distributed errors, but as work progressed the nature of traffic
accidents showed that it is better to assume a Poisson distribution for the frequency of
accidents. The assumption of a normal distribution is not correct when applied to
crashes, which are discrete, non-negative variables whose variance depends on its mean
(Hadi et al 169). Beginning in the early 1990’s, researchers started to try to over come
some of the problems associated with linear regression. Poisson regression models,
widely used in modeling accident and mortality data in epidemiology, began to be
applied to traffic accidents (A Miaou et al 12). Poisson regression and negative binomial
regression have both been used to combat the incorrect assumptions of normality for
accident counts. The Poisson model “although representing a significant advance in
accurate and reliable modeling capability, is not without its weaknesses and technical
difficulties which must be overcome if it is to be used effectively” (Maher &
Summersgill 282).

Poisson regression is a nonlinear approach to modeling where the response
variable is a count, or a discreet event, with large outcomes being rare events (Neter et al

609). The Poisson distribution model was named for the French mathematician S. D.
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Poisson who lived from 1781 to 1840 (Petruccelli et al 147). He introduced the concept
in a book regarding the application of probability theory to lawsuits and criminal trials
(Ross 154). The book was designed as a contribution to judicial practices and contains
“so much preliminary material of a purely mathematical and probabilistic nature that it
must be regarded as a textbook on probability with illustrations from the courts of law”
(Haight 113). The following are examples of random variables that usually obey the
Poisson probability laws:

e The number of people in a community living to 90 years of age,

* The number of customers entering a post office on a given day, or

* The number of a-particles discharged from radioactive material over a given
time.

Count data has been analyzed by ordinary linear regression and the advantage of
using Poisson regression comes from the fact that the distribution is tailored to the
discrete and often highly skewed distribution of the dependent variables.

In a Poisson distribution, there are two main sources of variability; the differences
in mean accident frequency among similar segments and randomness in accident
frequency. In spite of similarity between roadway segments, each has its own unique
mean accident frequency (m), where the distribution of m within a group of similar
segments can be described by a probability density function with mean E(m) and
variance Var(M) (Bonneson & McCoy 29). This distribution has been adequately
described by the gamma density function (Bonneson & McCoy 29). If accident
occurrence at a segment is Poisson distributed then the distribution of accidents around

the E(m) of a group of segments can be described by the negative binomial distribution.
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Poisson regression models discreet events (Y, = 0,1,2,...) where a large number of

occurrences is rare. The dependent variable follows a Poisson distribution where

Y —
1(r)= %f") Y, =0,12,..

f (Y ) is the probability that the outcome is Y

Y!=Y(Y-1)(Y-2)...3%2%1

While Y can take on only nonnegative, integer values, |[L can be any positive
number. As can be see in Figure 11, where P =1.75, the probabilities for the Poisson
distribution are graphed. The probability mass function is defined for an infinite set of
possible values of Y, though there will be a finite upper bound on the values of Y that are
actually observed (Petruccelli et al 147). Despite there being an upper bound on the
observed values of Y, the Poisson distribution allows for modeling of random phenomena
without having to know the maximum value that the random variable can take

(Petruccelli et al 148).
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Figure 11: Probability Mass Function of a Poisson distribution with p =1.75
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As [ gets larger, the mode moves away from zero causing the distribution to
resemble more and more that of a normal distribution (Allison 218). A unique feature of
the Poisson distribution is that the mean is equal to the variance.

E{%} = p

o} =p

The parameter U depends on the explanatory variables and it is standard to let [
be a log-linear function of the X variables logu, = 5, + B, X, +..+ 5, X, .

In the above model form it is assumed that the counts were collected over a
certain period of time. The Poisson distribution can also be applied when the dependent
variable is collected over different lengths of time or space for different individuals. In
ordinary regression analysis, the individual event count could be simply divided by the
length or time interval. That will not work in “Poisson regression because a division by
time implies that the resulting model no longer has a Poisson distribution” (Allison 228)
and the observed number of accidents at a site is assumed to be Poisson distributed about

a mean of 4., which is assumed to be proportional to the length of the observation period
T, (Maher & Summersgill 282). When this situation arises, the probability distribution

can be adapted by t the number of units of time or space to which the Y value

corresponds.

7(r)= w Y, =012,

The Poisson regression model can be stated as Y, = E{Y} +& i=12,.n. The
mean response for the i"™ case, M, is assumed to be a function of the set of predictor

variables X,..., X . ,u(X i ,B) denotes the function that relates the mean response L, to
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X, the values of the predictor variables for case i and B the values of the regression

coefficients (Neter et al 610). There are several commonly used functions for Poisson

regression including:
=X, B)= X8

p(x,. B) = explx, )

U

u, = ul(x,. ) = log,(x,5)

In all of the cases the mean response L, is a nonnegative value. The distribution
of the error terms & is a function of the distribution of the response variable which is
Poisson distributed. The Poisson model can be stated as: Y, are independent Poisson

random variables with expected values £, where f, = ,u(X 0 ,B).

e u”
)4

Poisson distributions model the probability of discrete events by P(Y)=

The Poisson distribution can be derived as the limit of a binomial distribution as the
number of trials, n, approaches infinity and the probability of success on each trial, p,
approaches zero in such a way that np = A (Rice 39). Where Y is the number of events
in a chosen period and p is the mean number of events in the chosen period. The Poisson
regression model assumes that the mean number of events is a function of regressor

variables. To estimate crash frequencies, they are assumed to be Poisson distributed by

. Y1 equals the number of crashes at road section ‘i’ for a

chosen time period. 3 is the vector of parameters to be estimated g, (X i ,B)is the mean

number of crashes on section ‘i’ which is a function of a set of regressor variables X. Xi
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is the vector of regressor variables for segment i. The function 4, (X i ,B), which relates

the distribution mean to regressor variables, is the link function g, (X i ,6’) =e"”. The

regressor or explanatory variables are items such as traffic glows and geometric
characteristics. The vector X, containing the explanatory variables has 1 as its first term
so that the first term in vector B is the interceptor or constant. When sites are lengths of

road rather than junctions it is usually assumed that 4 is also proportional to the length
L, as well as the time period, so that A, is in terms of accidents per kilometer per year.

One of the main problems is the phenomenon of overdispersion where the
assumption of a pure Poisson error structure can be seen to be inadequate. The negative
binomial model is often chosen to overcome this issue as an extension to the Poisson
model. Often, however, variances greater than the mean are observed due in part to not
including all the relevant variables in the model (Knuiman et al 72). When variances

greater than the mean are observed, it is called overdispersion.

2.6.6.1 Overdispersion

It is important for models to try and explain the variation in accidents between
sites. A model should have terms for the relevant flows, then explanatory variables for
physical characteristics and control variables. But final models still are often in the
technical sense inadequate, with the explanatory variables not providing complete
explanation of the variability between sites. The major reasons for this are that there are
(a) unobserved explanatory variables, (b) there are errors in the explanatory variables,
and (c) the model was mis-specified (Maher & Summersgill 288). Overdispersion is the

term used to describe this problem of not fully explaining the variability in the model and
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is a problem often associated with Poisson regression. This occurs when variances
greater than the mean are observed which can be due in part to not including all the
relevant variables in the model (Knuiman et at 72).

Overdispersion occurs because there is no random disturbance term in the

equation logu, = B, + B, X, +..+ B, X, that would allow for omitted explanatory

variables (Allison 223). This is because a disturbance term would produce larger
variances in the dependent variable. Overdispersion does not produce a bias in the
regression coefficients, but it will cause underestimation of standard errors and
overestimation of chi-square test statistics, which can cause a model to be regarded more
highly than it should. Also, implied by overdispersion is that the ‘“conventional
maximum likelihood estimates are not efficient, meaning that other methods can produce
coefficients with less sampling variation” (Allison 223). If the lack of efficiency is
ignored, it is relatively simple to correct the standard errors and test statistics for
overdispersion. “Take the ratio of the goodness-of-fit chi-square to its degrees of
freedom, and call the result C. Divide the chi-square statistic by C. Multiply the standard
error of each coefficient by the square root of C.” (Allison 223)

The deviance and the Pearson chi-square are both goodness-of-fit chi-square
values and the theory of quasi-likelihood estimation proposes the use of the Pearson chi-
square statistic (Allison 223). Adjustment for overdispersion can greatly affect the
significance of the regression coefficients. Comeeron and Trivedi have suggested a test
involving simple least-squares regression to test the significance of the overdispersion

coefficient (Hadi et al 171).
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Statistical Analysis System (SAS) can control for overdispersion by using either
of the above methods: the deviance or the Pearson chi-square value. To do this
automatically, SAS has the options of PSCALE (for Pearson) and DSCALE (for
deviance) as options in the MODEL statement. This produces the corrected standard
deviations without the uncorrected ones being present in the output.

There are several ways in which a basic Poisson model can be modified to correct

for overdispersion. One that has been suggested is the quasi-Poisson (QP) model where

the variance of Y is given by k4. The parameter k’can be estimated by any of the

2
, X , and D (Maher & Summersgill 288). The parameters
N-p) (N-p) " E(sD)

statistics (

estimated are identical to those of a pure Poisson model with the difference occurring in
the magnitude of the standard errors, which are inflated by a factor of k. Due to this,
some model variables would no longer be found to be significant. In terms of
significance thee types of models perform badly when the percent of fitted values less

than 0.5 gets over 60 percent (Maher & Summersgill 288).

2.6.6.2 Maximum Likelihood

The maximum likelihood method is commonly used to estimate regression

coefficients.

. e [, A1 exp| - 3 w(x,. )
L(,B) - |_|fl( '): I_I [/J(Xmg)] e;f’[ ,LI(XI.,,B)] — {i=l : p }}
i= ! 7

=1

A functional form is chosen and the maximum likelihood estimates of the regression

coefficients are produced. Numerical search procedures, iteratively reweighed least
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squares and statistical software can be used to obtain the maximum likelihood estimates

(Neter et al 610)

2.6.6.3 Test of Fit

A formal test of the fit of the response function is based on the model deviance

DE V(X 0. G, ¢ p—l)' If n is large then the deviance follows an approximate chi-square

distribution with n-p degrees of freedom (Neter et al 595). If

DEV(XO,XI,...XP_I) < x*(1-a;n - p)then H, is concluded
If DEV(XO,XI,...XP_I) > x? (1 -asn-— p)then H, is concluded

Where H, is the model is a satisfactory fit for the type of model chosen.

2.6.6.4 Deviance Residuals

A large ratio of deviance to degrees of freedom suggests that a problem with the
model exists. A large deviance relative to the degrees of freedom exemplifies the
problem of overdispersion (Allision 222).

Residual analysis helps to show if models follow the model assumptions. This
type of analysis is most useful when using a normal distribution and must be modified
when being applied to different distributions. Instead of just residual analysis, the
deviance residual is more useful when dealing with Poisson distributions. The deviance
residual for case 1, dev,is defined as

4
dev, = 1{2)’1. loge(%] -2y - ,[Il)}

and the overall deviance is defined as
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i=1

DEV(XO,XI,...XP_1)=Z{Zn:Yiloge(%J‘ (1, - Ai)}
i=1 i

where [ is the fitted value for the i™ case (Neter et al 611). The sign of the
deviance residual is selected according to whether Y, — fI; is positive or negative.

A graphic display of the deviance residuals that helps to identify outlying
residuals is the index plot. Index plots and half-normal probability plots are useful in
identifying outliers and checking model fit (Neter et al 611).

Inferences for a Poisson regression model can be carried out. The mean response

for predictor variables X,can be estimated by substituting X, into A = ,u(X ,b).

Estimation of probabilities of certain outcomes for given predictor variables can also be

Interval estimation of individual

Y —
obtained by substituting £, into f (Y ) = ﬂ%'(’u).
regression coefficients can be carried out by using the large-sample estimated standard

deviations furnished by regression programs (Neter et al 612).

2.6.7 Geometric Distribution

The geometric distribution is constructed from independent Bernoulli trials, but
instead of a fixed number of trials, trials are conducted until a success is obtained. A
success occurs with probability p, and X is defined as the total number of trials up to and

including the first success. “In order that X=k there must be k-1 failures followed by a
success” (Rice 36). p(k)=P(x =k)=(1-p) " p, k =1,2.3,...
Figure 12 shows an example of a geometric probability mass function. The

distribution acquires its name from the fact that the probabilities decrease in a geometric

progression (Montgomery and Runger 78).
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Figure 12: Probability Mass Function of a Geometric Random Variable with p=0.1
2.6.8 Negative Binomial Regression

The negative binomial distribution is a natural extension from the Poisson
distribution, which accounts for the excess variability that is sometimes observed in
accident prediction model. This distribution has gained favor for use in transportation
studies, being used to help overcome the problems that occur with Poisson modeling,
specifically the variance is allowed to be different from the mean in negative binomial
regression (Hadi et al 171). Both models are related to the Bernoulli sequence (Ang &
Tang). The negative binomial model can be considered a more generalized distribution
for count data than the Poisson model due to a disturbance term that helps to overcome
the overdispersion problems that Poisson modeling is prone to (Allison 226). The beta
coefficients in the model were estimated by the method of quasi-likelihood (Knuiman et
al 72). Maximum likelihood estimation is also an efficient way to estimate parameters in
negative binomial regression. logA, = B, + BX, +..+ B X, +0c, The dependent
variable Y is assumed to follow a Poisson distribution with the expected value

A conditional on & (Allison 226). The expected value of & is assumed to follow a
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standard gamma distribution. It then follows that the unconditional distribution of

Y follows a negative binomial distribution (Allison 226).

The negative binomial distribution is based on a negative binomial random
variable where the number of successes is fixed and the number of trials is random. This
is different from the binomial distribution, where the number of trials is fixed (Devore
111). There are several conditions that need to be satisfied for an experiment with a
negative binomial random variable and distribution. These include the following:

1. The experiment consists of independent trials,

2. Each trial can result in a success or a failure,

3. The probability of success is constant from trial to trial, and

4. The experiment continues until a total of r successes have been observed,
where 1 is a specified positive integer (Devore 111).

The random variable of interest is X = the number of failures which precede the

™ success. X has possible values of 0,1,2... The probability mass function for the

k-1

negative binomial distribution can be written as P(X = k) :( .
;-

jpr(l — p)” where

k=r,r+1,... . Figure 13 shows the probability mass function of a negative binomial

random variable. “Suppose that a sequence of independent trials is performed until there

are r successes in all; let X denote the total number of trials. To find P(X=k), we can
argue in the following way: Any particular such sequence has probability p’(l - p)k_r ,

from the independence assumption. The last trial is a success, and the remaining r-1

successes can be assigned to the remaining k-1 trials in ( 1jways” (Rice 37). If the 1™

r -

occurrence happens at the k™ trial, there will be exactly r-1 occurrences of the event in
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the prior n-1 trials and at the k™ trial, the event also occurs (Ang & Tang 113). ‘X’ is
usually defined as the total number of trials in the distribution, but is sometimes defined
as the total number of failures in the distribution (Rice 38). The way of writing the
probability mass function allows for the relationship between the binomial distribution
and the negative binomial distribution. Both distributions consist of a sequence of

independent trials.

0.05
0.045
0.04 | R .
0.035{ o R
0.03 - %e
0.025 *
0.02 -
0.015 - *oe,
()
0.01 - *0e
0.005 MCIIN
Rl 0400000000

f(x)

Figure 13: Probability Mass Function of a Negative Binomial Random Variable with k=1/9
and r=2

Since the mean does not have to be equal to the variance in a negative binomial

distribution, it follows that the mean does not equal the variance. The mean for a
negative binomial random variable is equal to (/= E (x) = A . The variance is equal to

2

o V(x) = r(l - p)/ p* (Montgomery and Runger 82).

Brown and Tarko have used negative binomial regression models with the

following form Y =k * LEN *YRS * AADT" * exp(z B *X i) where Y=expected number

of total, fatal injury or PDO crashes, k=intercept coefficient, LEN = length of the

segment, YRS =number of years of accident data, AADT =average annual daily traffic, v,
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B are model parameters, and X; are variables representing segment characteristics. The
models found all employed the same parameters of access density, indicator variable for
outside shoulder, indicator variable that a TWLTL is present, indicator variable if median

has no openings, and proportion of access points that are signalized (Brown and Tarko).

2.6.8.1 Goodness of fit

Hadi et al found overdispersion to be significant for all the highway types they
investigated and chose negative binomial regression to estimate the model parameters
(Hadi et al 172). All Poisson and negative binomial models used by Hadi failed to pass
the chi-squared goodness of fit test at the 0.05 percent confidence level. Hadi et al found
similar results reported by other researchers. The chi-squared goodness of fit test is not
truly suitable for non linear problems, which includes models following a Poisson or
negative binomial distribution (Hadi et al 172). Due to the goodness of fit test not being
truly applicable, other criteria have been suggested for determining model acceptance
including the following:

* The signs of all parameter coefficients are as expected,

* AIC is the lowest possible value, and

* Each individual parameter is accepted when tested with appropriate statistical
methods (Hadi et al 172).

2.6.9 Variable Selection

In addition to choosing the correct model distribution, there needs to be methods
for choosing the correct variables to include in a regression model. Most studies that
evaluate the effects of road safety measure are observational studies, non-experimental,
in which the treatment being studied is not assigned at random. There are many such
variables that exist, some of which can be evaluated and some which cannot. “A
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confounding variable is any exogenous (i.e., not influenced by the road safety measure
itself) variable affecting the number of accidents or injuries whose effects, if not
estimated, can be mixed up with effects of the measure being evaluated” (Elvik, 631).
“Controlling, or not controlling, for confounding factors may profoundly affect study
results” (Elvik, 635), some of this must be done in the early stages of the study when first
selecting variables to gather information on, and some can be done in the later stages of
modeling.

Several different methods are available to select the variables once they have been
included in the study. To determine which variables to include in the model with non-
normal distributions, Hadi et al prefer the Akaike’s information criterion (AIC). AIC=-
2*ML+2*K; K is the number of free parameters in the model and ML is the maximum
log likelihood(Hadi et al 171). The smaller the AIC value is the better the model (Hadi et
al 171).

The development of a model is typically obtained by including additional terms
one at a time and testing their significance by the drop in scaled deviance or by the t-ratio

(ratio of the estimated coefficient to its standard error) (Maher & Summersgill 283). The
drop in scaled deviance should be compared with a y* distribution with as many degrees
of freedom as there are extra parameters in the model (Maher & Summersgill 283). A
well fitting model or adequate model, the value of the scaled deviance and x* should
come from a x* distribution with (N - p) degrees of freedom where N is the number of

observations and p is the number of parameters which have been estimated (Maher &

Summersgill 283).
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A formal method for testing that an individual parameter should be included in
the regression model exists. Individual parameters, regression coefficients from the [3-
vector, can be tested to see if the null hypothesis that a given parameter [3; is zero is true.

The method used by Hadi et a/ was based on the standard errors of coefficients

2
2 J

X = where b; is the estimate of [3; and SE; is the standard error of the coefficient
(SE] jz J ]

Bi. A chi-square test with one degree of freedom was used to test the hypothesis (Hadi et
al 171). This test allows for enough evidence to exist to show either that a f3; is equal to
zero, that the corresponding X —variable should not be included in the model, or that [3; is
not equal to zero and the corresponding X-variable should be included in the model.

An important part of determining if a variable should be included is that the
coefficient should have the expected sign and the t-statistic should show that the variable
is significant (A Miaou et al 13). The level of statistical significance needs to be
carefully considered. Maher and Summersgill did not accept variables at less than five
percent level and did not reject any variables at the one percent level or better without
careful thought (Maher & Summersgill 284). A level of significance of five to ten
percent is commonly used, depending on the study parameters. The stability of the model
should also be considered. When variables are associated with one another then
introducing one will tend to strongly affect model parameters. Care should be taken to
minimize the correlation between variables that are likely to appear in the models. It is
also important that the effect of the variables is understandable and makes sense. Mainly
the sign of the parameter should make sense in the context of the study. If the volume is

a variable and the sign is negative, that would mean the more traffic, the fewer accidents
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and that is not typically the case. The size of the effect and ease of measurement is
important in that variables which have a large effect on accidents in relation to their range
and were straight forward to measure are preferred for ease of duplication (Maher &

Summersgill 285).

2.6.9.1 Variable Transformations

Transformations on certain variables can improve their statistical power for
identifying possible relationships. Typically curve radius and grade are variables that are
transformed (Fitzpatrick et al (2001) 20). Fitzpatrick et al (2001) kept grades at +/-4
percent or essentially flat and constant between all sites so were not used as a variable.
Common transformations for curve radius are square root of radius and inverse of radius
(Fitzpatrick et al (2001) 20).

During data analysis, modifications of variables may occur. In Fitzpatrick et a/
(2001) access density was originally modeled as a continuous variable but analyses
showed that access density was not significant. Further investigation was done due to the
preliminary work. A break point was identified for a reasonable division and access
density was changed to a class or indicator variable with classes of low density (<12
points/km) and high density (>12 points’km) (Fitzpatrick et al (2001) 20). Another
modification that was done by Fitzpatrick et al (2001) was changing median type from
three classes (raised, TWLTL, none) to two classes (presence or absence of median).
Transforming variables whether by a mathematical change such as a square root, or by
content change, by changing a continuous variable into an indicator variable, is done to
increase the statistical power of both the individual variable, but more importantly that of

the model as a whole.
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2.6.9.2 Multicollinearity

Focusing on a specific group of roads gives some variables a limited range of
possible values. Due to the limited range, some variables may be correlated with others
and in some cases can be explained and expected. In some circumstances the limited
range in variables can create apparent relationships that may not be valid and can
significantly affect the results of regression analysis (Fitzpatrick et al (2001) 20). “Using
Statistical Analysis System (SAS) and the proc CORR command, those variable pairs
with multicollinearity problems were identified. The value of 0.05 for alpha was used.”
(Fitzpatrick et al (2001) 20). To help minimize the effects of multicollinearity,
Fitzpatrick et al (2001) averaged inside and outside lane widths to create one lane width
variable, similarly inside and outside super-elevation rates were averaged to create one
value for each curve (Fitzpatrick et al (2001) 20). The correlation between variables
means that the variation in the data explained by one is replicated by the other and that
there is no statistical gain from including both in the final model. To have the best
possible model, it would be advantageous that the included variables explain different

part of the variation within the data set.

2.6.9.3 Outliers

In addition to knowing what type of data to include, it is important to know what
type of data to not include. Outliers are data points that were collected using the same
methods as all the other points, but do not fall within the same range as the remainder of
the data. Points that are outliers are often summarily discarded. This is a problem,
because the only points that should be discarded are if there is a known error that occurs

with the measurements, otherwise the points may be showing a valid trend in the data that
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there is not enough other data to strongly support, or the point could be different due to
lack of an additional explanatory variable.

In addition to outliers, influential points also need special consideration. These
are points that do not deviate significantly from the rest, but by including them in the
model they have a stronger influence on the model than other points do. Schurr et al
began the modeling process by identifying “influential study sites” or outliers that would
strongly influence the model (Schurr et al 63). The sites so identified were removed
from the data set before the model was built. The blanket removal of outlying points
from a data set needs to be carefully considered and have valid reasoning behind it, else
the model will not be a good reflection of the truth. In the collection process, data can be
discarded due to instrumental errors or incomplete data points. But once the model
building process is begun, none of the data points should be removed from the data set.
This could cause relationships that are not truly present to be seen and conversely cause

relationships that are present to be overlooked.

2.6.10 Uncertainty of Predictions

Once the model has been fitted and the parameter estimates found, the amount of
uncertainty attached to predictions from the model needs to be considered. The
parameter coefficients are only estimates of the true values and as such each has standard
errors. Uncertainty in the coefficients leads to uncertainty in the linear predictor and
finally to uncertainty in the prediction value. The uncertainty of the prediction, measured
by its error variance can be approximated by Var(/i )= Var(/?)/i2 where 7 = ,@T x (Maher

& Summersgill 290). The uncertainty of the estimate to the true mean A consists of the

85



regression effect (uncertainty in A) and overdispersion (uncertainty in A about A, where
Var(/l) = Var(X ‘A )+ Var(/i )) (Maher & Summersgill 290).

Quasi-Poisson model: Var(A) = (k2 - l)fl +Var() 2

Negative Binomial model: Var(A) = A {l +Var( A)[l + lﬂ
a a

The predicted error variances of the negative binomial and quasi-Poisson models
are very different especially for extreme values. While the choice of model has little
effect on the form of the fitted model, it can greatly affect the estimate of the uncertainty

of the model (Maher & Summersgill 290).

2.6.11 Trend

Accident counts can show trends due to transitory changes in factors such as flow,
weather, economy, and accident reporting practices. Accident models that account for
these types of trends should provide better estimates of safety than the more traditional
models in identifying hazardous locations and evaluating treatments (Lord & Persaud,
102). There are three main categories of proposed methods to deal with trend: marginal
models (MM), transition models (TM), and random-effects models (REM). These three
procedures all have different limitations:

* Temporal correlation in the data is ignored (REM & MM)),

* Model type may not be appropriate for accident prediction models (REM & TM),
or

* Too complicated for average modelers (TM & MM).
The generalized estimating equations (GEE) procedure overcomes these
limitations (Lord & Persaud, 102). Lord and Persaud found when comparing generalized

linear models and GEE with and without trend that the temporal correlation contributes to
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approximately half of the standard errors (Lord & Persaud, 105). The standard errors for
the GEE models were roughly twice those of the GLM models. If time trend is not of
interest, the dispersion parameter was found to be slightly higher for the GEE than the
GLM procedure (Lord & Persaud, 105). Using time trend also allows for potentially

dangerous trends to be identified and investigated earlier.
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3 Methodology

In order to see what previous research methods have been used, existing methods
for the determination of safety of two lane rural roads will be reviewed. This will include
a literature search and review of existing techniques. Different techniques will be
examined and reviewed for their applicability to urban arterial streets and roads. Work
on urban roads will also be assessed to see if it can be applied to urban arterials and to see
what types of analysis tools were considered to be reliable.

Miaou dissected the modeling process into five major tasks which are required to
develop accident prediction models: (1) find a good probability function to describe the
random variation, (2) determine an appropriate functional form and parameterization to
describe the effects of multiple variables, (3) select the right variables, (4) obtain
estimates of the regression parameters and (5) assess the quality of the model, ways to
improve it, and to ensure the model fits the required specifications (Miaou, 8). Sample
size is always a crucial point of throughout the modeling process. By nature, sample
sizes are limited and minimum sizes need to be chosen to ensure that the best possible
model can be developed. The impact of omitted variables should be considered, as well
as the potential for variables that were not considered. In addition to considering all
possible variables the chosen sites used to create the models should be fairly
homogeneous to help eliminate the unforeseen variations.

After a thorough examination of existing research, data will be collected. This
will occur by one or more of the following methods, including receiving data from local
or regional agencies and gathering data from roads neighboring Worcester Polytechnic

Institute. Many different variables need to be considered and then either rejected or
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accepted as explaining a significant amount of variation in the final model. Two major
types of variable data area needed: geometric and non-geometric data.

Non-geometric data includes information regarding the traffic characteristics and
vehicle crashes. This includes traffic flow (AADT), vehicle distribution (trucks,
passenger vehicles, vulnerable road users (pedestrians and cyclists)), speed limit, one/two
way traffic, surrounding land use, bus stops, parking conditions, and accident number and
type.

Geometric data is also needed to help fit the model to the specific location where
it is being applied. The geometric data includes segment length, number of lanes,
number of minor crossings/side roads, sidewalks (access point frequency), road width,
number of driveways (two-way total)/km, number of bus stops (two-way total),
crosswalk frequency, type of median (none, TWLTL, raised), traffic islands, type of land
use (residential, business, and other (industrial)), and percentage of segment length on
which parking is allowed. Some of the variables will be used directly as numerical input
values, but some will be used as an indicator variable.

One specific issue that has to be determined is what defines a section length. One
rule of thumb is that signalized intersections are natural delineators of road sections since
major changes in volume occur at those locations. Traffic signals imply that there is
considerable traffic on both roads and the mixing of traffic streams can create an issue in
regards to what causes an accident. It could be that the junction is not safe due to the
combination of the two different road geometries and usage, but not that the design of the

roadway itself is unsafe. The mixture of traffic streams makes it difficult to assign an
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accident to only one of the intersecting roads causing discrepancies in the accident data.
Another group identified road sections by the type of median.

Once all the data has been acquired, it has to be assembled in order and placed
into models. The most common method is to use generalized linear modeling techniques.
With linear modeling techniques it has to be assumed that the distribution of accidents
follows a pattern (discrete, nonnegative and rare) and is not just a random occurrence.
The two most widely used distributions are the Poisson distribution and negative
binomial distribution. There are positive and negative aspects to using either major type
of distribution. Poisson distribution is easier to use than the negative binomial one, but
problems can arise due to the phenomenon of “overdispersion.” Overdispersion is when
the observed variance is actually greater than the mean and causes standard errors to be
underestimated (Greibe, 275). Negative binomial distribution is more difficult to
implement, but allows for a greater variance in the data, which eliminates the
overdispersion issue.

Separate models can be determined for a combination of all accidents, including
property-damage-only accidents, all injury and/or fatality accidents and for specific types
of accidents that it may be important to look at more closely (single vehicle accidents,
rear-end accidents, crossing accidents, and turning accidents).

Once the model has been developed, it needs to be verified showing it to be an
accurate representation of accidents falling into the study’s characteristics (size of
roadway and AADT). Statistical methods will be used to show that model is a good fit
for the data used to develop it. The final step includes using the developed model to

compare the predicted results with the actual accident records. A technique known as
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bootstrapping allows for the use of part of a database for model development and part of
the data base for model verification, which allows for this comparison otherwise a new
data set can be used. If the difference in the model’s results and the accident records is
statistically insignificant then the model is a good representation of the urban arterial

roadways that fall into the study’s criteria.
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4 Data Collection

Data are needed to develop a model for predicting accidents on any road type.
“Accuracy of prediction models depends on the details of the information base on which
the models are built” (Lau & May 62) which indicates that the better and more accurate
the data collection, the better the prediction models will be. The following sections
describe the types of data that were collected and how the data were obtained. The site of
the road sections used was mostly random in nature. Due to using only sites in a single
geographic area, the findings of this study should only be interpreted as explaining the
relationships in this study sample and only extrapolated to similar areas (Tarris et al). A
goal of the study by Schurr et al was to minimize uncertainty in the final results by
reducing the number of extraneous variables, which could influence operating speeds, the
variable they were most interested in. Only sites with pavement of fair or better were
chosen to eliminate the pavement influence. If there were roadside elements near the
curve site such as bridges, guardrails, intersections within 1000 feet of the point of
curvature on the approach the curve, the site was not used (Schurr et al 62). For this
reason, each possible variable was carefully collected so that its importance could be
considered and if necessary, used to eliminate outlying data points from the study. An
important issue was to keep data collection simple, so if the data was available it was
used, otherwise if collection was simple, counting or easy to measure, it was collected in
the field. If data collection was difficult or time consuming, such as new volume counts
and turning movement counts, then it was not considered a viable variable.

Roadways included in this study were urban arterial roads, consisting mainly of

state routes. Belmont Street and Highland Street are both part of Route 9. Chandler
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Street is part of Route 122, while Park Avenue is part of Route 12. These roads were
chosen in part due to their geographical location of spanning Worcester from east to west.
Figure 14 shows the roads used in the study to create the prediction models. The map

also displays the boundaries of the City of Worcester and most of the arterial roadways
throughout the city.
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Figure 14: Worcester City Limits Displaying the Study’s Road Sections
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4.1 On-Site Data
A form was developed in order to assist in the collection of geometric data. This
form covers the data that needed to be collected from each site, consisting mainly of

geometric, land use, and roadside data. This can be seen in Figure 15.

Date: Weather

width of fanes:

type of shouder.  paved dirt none

width of shoulder:

sidewalk present:  yes no width:

Posted Speed: curb present: both  no
Minor Access Points (Road Names)
drainage present  yes o

# of driveways pavement quality: good fair bad
#0f parking lots describe:

roadside hazards: firehydrants mailboxes utiitylight poles  benches wees pavement marking quality  good fair bad

overhead
monument fences buildings sign poles sign pakingallowed  yes  no % allowed

parking meler rock road lighting present not %

signt distance issves: no yes
Section Length " describe:

Vertical Grade: &3 Crest on soad: &3
horizontal curvature describe: straight curve
Terain Type: level roling mountainous approximate curve fengii

radius

Land Use % residentiat commerical industrial

median ype: grass pavedwicub  painted other
# lanes Going Left: Going Right width ft in

Figure 15: Data Collection Form
4.1.1 Speed Limit

The posted speed limit was gathered to help give an indication of how fast drivers
should be going on the road. The posted speed limit also gives an expectation of how
the traffic should be flowing. When there is not a posted speed limit in Worcester, the
city follows  Massachusetts  State  Law, Chapter 90, Section 17
(www.state.ma.us/legis/laws/mgl/90-17.htm). If a vehicle is on a divided roadway
outside of thickly settled areas or business districts, it can travel at 50 mph. If a vehicle is
on any other road outside of a thickly settled area or business district, it can travel at 40
mph. Inside thickly settled areas or business districts, vehicles can travel at 30 mph and
in school zones are limited to 20 mph. These general rules are superceded by posted
speed limits. Most of the road segments examined in this study did not have posted
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speed limits. Only ten segments had posted speed limits and the remainder of the
segments had their speeds inferred from the Massachusetts State Law or surrounding
sections with posted speeds. Speeds throughout the study area range from 25 mph to 40

mph.

4.1.2 Length

Section length plays an important role in predicting accidents. Accidents are
usually transformed into accident rates, where the number of accidents is normalized by
time, traffic volume and length and then the accident rate is used as the dependent
variable. Determining whether accidents are distributed linearly by segment length and
traffic volume is key to that assumption. If accidents are not linearly distributed than the
use of accident rates is not appropriate. Segment length is also important in that the
longer the segment is the more crashes are expected to occur on it. The relationship
between accidents and segment length may be linear or exponential in nature, but
intuitively the longer a segment the more area where an accident can occur.

Due to the various ways segment length can play a role with crashes and accident
rates the way roads are divided into sections is very important. There are two main
schools of thought. In rural conditions, where most prior roadway research has been
done, segments are divided by changes in geometry, such as changes in lane width or
shoulder width or changes in paving materials. In urban locations, segments tend to be
defined by intersections. The segment length may include intersections with local roads,
while intersections with collectors or arterials indicate the end of the segment (Brown and
Tarko 71). The definition of Brown and Tarko’s segment length is more appropriate in

this situation than the definition used in rural locations. Major intersections with traffic
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signals on urban arterials show that there is a significant change in traffic conditions at
that point. That change of conditions between one segment and the next is important to
recognize. Major intersections also provide a very exact way to identify the segments
without the possibility of mistaking the ends of the segment. The segment lengths in this
study ranged in length between 226 ft to 5,245 ft with an average segment having a
length of 1,346 ft. The variation between residential and commercial land use areas helps

to explain the variation in length of the segments.

4.1.3 Access Control

Access points on urban arterial streets consist of major intersections (i.e.,
intersection with traffic signals), minor intersections (i.e., without traffic signals) and
entry points such as driveways and parking lots. The number of access points gives an
indication of how many places there are were vehicles could get into turning conflicts and
possibly crashes. Brown and Tarko’s study used access density as a variable to
characterize conflict points and driveway accidents. According to studies in Indiana,
driveway accidents compose between 14 and 33 percent of all accidents in cities (Brown
and Tarko 68). It included driveways, signalized and un-signalized roads (Brown and
Tarko 70). Access density is one way to use the data, but that assumes that the access
points are linearly related to the segment length. Using the data as a continuous count
variable or as a density variable are both possibilities for variables for predicting
accidents. Access points need to be examined to be certain that there is a linear
relationship between access points and segment length before using density as a variable
in an accident prediction model. Some studies have used access density as a qualitative

variable listing the density into groups of high, medium, and low density. This may be an
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effective method if access density as a continuous variable is insignificant in an accident
prediction model. In this study, the road segments were divided by major intersection, so
that there are only minor intersections, driveways, and parking lots that make up the
access points. The three classes were recorded separately so that each can be examined

individually for any relationships to accident occurrence.

Figure 16: Examples of Minor Access Points

This study defined minor access points as public roadways that intersect the road
segment but do not have any signalized control. There may, however, be stop or yield
controls present. The occurrence of minor access points ranged from zero to thirteen per
segment with an average of four points per segment. Driveway counts varied
dramatically between zero and sixty-six per segment with an average of eight driveways
per segment. Figure 16 shows an example of a driveway access point and a minor road
access point. Some of this variation is due to the fact that some of the road segments
were located in fully residential areas and some were located in commercial areas.

Parking lot counts varied due to similar reasons as driveways with a range of zero to
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thirty-three with an average value of seven per segment. The land use surrounding the
segment strongly influences the division between driveways and parking lots and the
number of access points is important in showing locations where vehicles can enter the

traffic stream.

4.1.4 Vertical Alignment

Vertical alignment has an important role in helping to determine safe design
criteria, specifically maximum grade allowances. Vertical grades affect the ability of
some vehicles, especially large trucks and buses, to safely traverse some roads. The
grades found on the road segments ranged from less than one percent up to a maximum
of 10.9 percent grade. As can be seen Table 5 in from AASHTO’s Green book, the
maximum grade observed falls under the maximum for its design speed of 30 mph in
mountainous terrain. Most of the grades observed fall well below the maximum

allowable values recommended by AASHTO.

Table 5: Maximum Grades for Urban Arterials

Maximum Grade (%) for Specified Design Speed
(mph)
Type of Terrain 30 35 40 45 50
Level 8 7 7 6 6
Rolling 9 8 8 7 7
Mountainous 11 10 10 9 9

From Exhibit 7-10 AASHTO’s Greenbook
4.1.5 Land Use

Land use gives an indication of the type of traffic that is expected to use the
roadway. Residential areas tend to have drivers who are familiar with the roadway and

expect turning vehicles and pedestrians throughout the area. Commercial areas, on the
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other hand, lend themselves to fewer places for turning, with more parking lots than
driveways, while also having pedestrians, the drivers will not be as familiar with the
roads and traffic patterns in commercial areas. Examples of residential and commercial
land use can be seen in Figure 17. The other main alterative for land use is industrial use.
The residential category indicates land use from both single-family dwellings to
apartment complexes. Commercial areas are associated with customer trips that occur
throughout the business day. Industrial use refers to land where non-professional
employees make the majority of trips with the trips taking place during shift changes
(Bonneson & McCoy 28). Large trucks are associated with both commercial and
industrial areas, which have very different dimensions from passenger vehicles and roads
with high percentages of trucks need to be designed to accommodate the larger

dimensions.

Figure 17: Examples of Commercial and Residential Land Use

Land use can vary drastically along the length of an arterial, but also can vary
significantly between each side of the road. When there were multiple uses along a
segment Bowman and Vecellio assigned a type on the basis of observed activity at the
time of the field survey (Bowman & Veccellio b 170). Similarly, when Bonneson and

McCoy observed varied land use, the most dominant type would be chosen (Bonneson &
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McCoy 28). This method of picking one type of land use has the result of eliminating the
variation of use throughout the segment, but this variation may strongly influence the
travel patterns. With this in mind, land use was categorized by the percentage of land use
between all three possible types in each segment; residential, commercial, and industrial.
This allows for the possibility of having multiple land uses in a single road segment and
does not disregard the differences. If multiple land use does not have a strong influence
on the prediction model, the dominant type of use can still be identified and used as a
variable in the prediction model. The sections that were used in this study were divided
mainly between residential and commercial areas. There was only one segment that had
any industrial land use. Overall, approximately 25 percent of the land examined was

residential and 75 percent was commercial.

4.1.6 Medians

Medians have always been important in terms of roadway safety. Experts have
agreed that the use of medians increases safety, but that affect has not been quantified.
Safety experts have also disputed the type of median that provides the best safety
measure. The undisputed fact remains, however, that median treatments do have an
effect on vehicular safety. An example of a common median treatment in Worcester can

be seen in Figure 18 that of a raised and curbed median.
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Figure 18: Raised Median from the Study Area

Three major types of median treatments were included; raised median, two-way
left turn lanes (TWLTL), and undivided treatment. Due to the area chosen for data
collection (i.e., Worcester, MA) there were not any TWLTL available in the study area.
There were a few segments that had raised median treatments consisting of curbs
surrounding grass or pavement, but most had undivided treatments. The lack of
variability in the existing conditions will not allow for a full exploration of this issue with
the data available but a partial one may be possible. The width of a median has also been
shown to play an important part in the safety of a roadway. Due again to the small
number of available sites with suitable treatment, there is not a large enough variability
among the sites with raised medians to show effects on safety due to median width. The
four sites identified as having raised median treatments had widths ranging from 5.5 feet

to eight feet.

4.1.7  Cross-Sectional Alignment

Cross section alignment plays an important role in helping drivers to feel that they
are using a safe road especially when referring to lane and shoulder widths. When lanes

are narrow, drivers feel crowded by passing vehicles and are more prone to feeling
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uncomfortable. Increasing lane widths up to the AASHTO standard of 12 feet helps to
alleviate that discomfort. In studies, the number of accidents has been shown to decrease
as the lane width increases up to the standard width. For this reason the lane widths were
all recorded, to see first if the roadways are being built according to the AASHTO
recommendations, and secondly to see if the road sections that are built with 12-foot
lanes have fewer accidents than road segments that are smaller. For the same reasons the
number of lanes was recorded. Most of the segments had one or two lanes going in each
direction, with a few exceptions of three lanes and one case of four lanes. The widths
similarly varied depending on the section being examined. There was an overall average
lane width of 12.5 feet, which is due to the fact that many of the roads with one lane in
each direction were twenty feet wide. These lanes are not truly twenty feet wide but
there is no distinction between the parking lane and the traveling lane leading to this large
lane width. If a segment had on-street parallel parking, the parking area was included in
the lane width measurement because the lanes were not well delineated and some times
no vehicles were present at the time of the on-site investigation to mark the parking lane.
Similar to number of lanes and lane width is the effect of shoulder width.
Shoulder widths have been examined in great detail in many studies to determine their
safety benefits. For that reason the type of shoulders and their widths were recorded.
Possible shoulder types include paved shoulders and dirt/grass shoulders. However, in
urban settings, roadway shoulders are not a requirement and due to space constrictions
are seldom used. This was found to be the case in the sections reviewed during this

study. No segments were found to possess actual shoulders, and a variable that has been
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thoroughly studied and found to be an important factor in rural settings has little impact
in an urban location.

A different variable exists that is seldom found in rural settings and is frequent in
urban settings that of sidewalks. Sidewalks provide a place for pedestrians to safely walk
along busy roads without intruding on the traveled way. Since wider lanes make drivers
safer and feel safer, it has been suggested that the same could hold true for pedestrians
feeling safer on wider sidewalks. Therefore both the presence of sidewalks and their
width were noted at the physical inspection of each site (See Figure 19). The width of
sidewalk was recorded for both sides of the road if it was present, but if a sidewalk was
present on at least one side of the road, it was concluded to be present along the entire
length. It was found, by this definition of a sidewalk on at least one side of the road, that
every road segment reviewed had a sidewalk with widths ranging from five to 12.5 feet.
The minimum width of sidewalks should be determined by the necessary width needed to
accommodate people with disabilities and strollers. The maximum width is determined
by space availability and convention. An average sidewalk width of nine feet was found

in the study area in Worcester.

Figure 19: Example of a Sidewalk in a Residential Area
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Drainage becomes an important consideration when there is not a large amount of
land available for building roads. Water on road surfaces can become a hazard,
especially with large rainfall amounts and during winter months when hydroplaning and
black ice are of major concern. To investigate whether or not drainage could be a cause
of accidents, its presence was noted for each segment. That was accomplished by
recording if there were curbs present on the side of the road to help direct water flow and
by recording the presence of any drainage structures, such as catch basins or manholes.
For each segment in the study, a curb was found to exist on both sides of the road, and
drainage structures were present along the entire study length. Figure 20 shows an

example of what drainage structures were found throughout all of the roadway segments.

Figure 20: Example of Roadside Drainage

Another feature that assists with drainage is the crest of the road, which helps to
direct water away from the main travel path and into the catch basins. The crest was
measured along the road segments to see if there was adequate provision for this issue.

The values found for the amount of cross slope on the roadway ranged from 0.3 to 6.8
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percent with an average of four percent. There were four sections where the cross slope
exceeded 6 percent, the maximum recommended value by AASHTO and two cases were
the cross-slope was less than the recommended 1.5 percent minimum. This could
indicate problems with drainage and may also indicate an increase in accidents on

segments that do not meet AASHTO’s recommendations.

4.1.8 Roadside Hazards

Roadside hazards provide opportunities for vehicles to hit objects located on the
roadside. The more hazards that exist on a given road, the more opportunities are present
for a vehicle to collide with those objects. During the on-site inspection, the number and
type of roadside hazards were recorded. This was done for the possibility that a
relationship exists between either the total amount of hazards or a specific type or
combination of hazards. The types of hazards recorded included fire hydrants,
mailboxes, light poles, utility poles, benches, trees, monuments, fences, buildings, sign
poles, overhead sign poles, parking meters, rocks and electrical boxes (See Figure 21).
The number of hazards ranged from ten to 338 per segment with an average of 79 hazards
per segment. This is also an area where a rate, or a density, may be a more appropriate
representation of the hazards, so the possibility of normalizing the roadside hazards by
length may have a better effect for predicting accidents. Either a continuous variable of
number of hazards per segment or a qualitative variable of hazards per mile could be used
as a variable in the accident prediction model. Some researches have used hazard density
as an indicator variable, separating section into high medium and low-density locations,

which is another way that the data could possibly be used.
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Figure 21: Examples of Roadside Hazards

4.1.9 Horizontal Alignment and Sight Distance

Like vertical alignment and cross sectional alignment, horizontal alignment can
have a significant effect on accidents. Horizontal curvature is often a controlling factor
for safe speeds on roadways and for the comfort of drivers. If a curve is too sharp for a
given design speed, it can cause discomfort for drivers and passengers even if the car can
safely travel around the curve. Horizontal alignment can also cause sight distance
problems in high-speed areas. There were fifteen curves identified throughout the study
segments. Of these curves none were identified as having a radius that was inappropriate
for the design speed of the segment. Of the sight distance problems identified throughout
the segments, only one was due to the horizontal alignment. The other two were due to
vertical alignment that blocked the sight of the traffic signals, but in both cases signs and
other warning devices were present to help eliminate the problems. The only horizontal
curve that caused possible sight distance problems was like the other sites, marked with

signs, specifically chevrons, and at the posted speed limit would be safe.
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4.1.10 Other On-Site Data

Several other pieces of information were collected in the hopes that one or more
of them may be identified as having a significant influence on accident occurrence.

Pavement quality was identified as something that could cause accidents to occur.
Data for this issue was collected at each segment and the pavement was identified to be in
good, fair or poor condition. A pavement was classified as a good pavement if there were
very few disturbances in the surface of the pavement. A few cracks or patching would
qualify a pavement as good. A fair pavement would have significant amounts of
cracking and rutting. Bad pavement would have to have visible potholes, large ruts or
other serious problems. Problems that can occur to negatively effect pavement quality
include rutting and cracking and can be seen in Figure 22. At the sites used in the study,
all the pavements fell into either the good or the fair category. This was to be expected
due to the usage patterns of the roads investigated. Urban arterial roads have heavy
volumes of traffic and poor conditions can cause large congestion problems quickly.
Poor conditions on arterial roads are avoided by having significant amounts of repair on

the roads.

Figure 22: Examples of Problems in Pavement Quality
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Pavement marking, like pavement quality, was theorized to have an influence on
accidents on urban arterial roadways. Again, like pavement quality, pavement markings
were categorized as good, fair or poor quality. A good pavement marking was all present
and able to been easily seen, while a fair marking was starting to fade in places. A bad
pavement marking, on the other hand, was very faded and in places not even visible. The
majority of pavement markings qualified for fair or good status with only five segments
having bad pavement markings. The greater variation in quality is because the lifetime of
pavement markings is significantly shorter than that of the pavement, allowing the
pavement to still be in good condition while the markings have worn away. Figure 23
shows two locations of pavement markings with the left hand side representing a bad

marking and the right hand side representing a fair pavement marking.

Figure 23: Exampled of Pavement Markings

Lighting is an issue of major concern on rural roads. Due to its importance in that
type of road, the amount of roadway lighting was recorded. The urban setting, however,
makes lighting a much less prominent issue. Of all the segments in the study, only one
did not have roadway lighting along its entire length, and that segment was only
approximately 20 percent unlit. Due to the high volume and high speed of urban arterials

and their position in important areas of cities with many turning possibilities, the urban
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arterials are usually well lit. This has the effect of lighting not playing such a large role
for urban arterials as they do in rural locations and possibly urban collectors and local
streets.

Another possible variable for consideration is the amount of on street parking.
The amount of on street parallel parking gives an indication of the type of expected
traffic on the roads. Areas that do not allow on-street parking tend to have higher
volumes and higher speeds. Conversely, areas with a large amount of street parking will
have slower speeds, but may still have high volumes. Some segments examined had no
on-street parking while other segments had 100 percent on-street parking. Twelve
segments, in fact, allowed no parking at all. The average amount of parking was 40
percent for each segment. One segment even had a small section of perpendicular

parking.

4.2 Off-site Data

Some data was also needed that could not be collected at the individual sites.
This was used to supplement the geometric, land use and roadside data by identifying

accident and traffic conditions.

4.2.1 Volume Data

Average daily traffic (ADT) and average annual daily traffic (AADT) are used to
indicate traffic conditions or congestion levels of a road section. ADT plays an important
role in determining the safety of a roadway by helping to characterize the types of
accidents that are likely to occur on roads. It is also important because the more traffic
on a road the more possibilities exist for conflicts and crashes. Studies performed on

two-lane rural highways in the former Soviet Union show that the number of accidents
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increased in proportion to the traffic volume (Gibreel et al 309). In Sweden single
vehicle accident rates decreased as traffic volume increase, and the accident rate of
multiple vehicle accidents increased as traffic volume increased (Gibreel et al 309).
Depending on the type of accident being reviewed ADT can have varying effects. The
study on Swedish accidents shows this. The more traffic present the more multi-vehicle
accidents occur. In the same way as there is more traffic, it is less likely that only a
single vehicle will be involved in an accident. This shows why it is important to consider
the ADT when looking at accidents in general and at specific types of accidents such as
multi-vehicle crashes or single-vehicle run-off-the-road crashes. Hadi et al also found
that crash frequency increases with higher ADT for all highways types investigated
during their study, including two-way two-lane and four-lane undivided urban highways
and divided urban highways (Hadi et al 173).

The number of lanes varies from one road section to another, especially in urban
areas and the differences in number of lanes can sometimes have a large effect on the
ADT. In a study on truck accidents and geometric design, ADT was generalized by
considering the AADT per lane (A Miaou et al 15). This was done to help make the
volume more representative of the actual road conditions.  Using just the volume
numbers can be misrepresentative when some roads have only two lanes and others have
more. By using just the AADT by lane, comparisons between road segments with
differing geometric characteristics can be more easily completed. The above are reasons
why it is important to have information available on the ADT in order to develop an

accurate prediction model.
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Due to time constraints, the ADT needed to be gathered from existing data and
could not be gathered specifically for this study over the exact roadway segments.
Counts were gathered from several different sources, including the Worcester
Department of Public Works, Traffic Engineering Division, the Central Massachusetts
Regional Planning Commission (CMRPC) and the Massachusetts Highway Department
(MHD). The data from CMRPC consisted of un-factored ADT’s throughout Worcester
that were gathered by public and private companies. The data from the Worcester
Department of Public Works, Traffic Engineering Division was in the original raw data
listed by hour. The data from the MHD was already factored and given by year for
locations that have had multiple counts over several years. The un-factored data was
multiplied by a weekday monthly factor that was obtained from the MHD website.
Factoring allows for a more accurate value for the ADT.

The study period covers three years from 2000 to 2002. The most accurate way to
deal with volume data would to have volume counts for each of the three years. This
however, is unpractical in that the data was not available and counts are not conducted
annually through out the study area. Due to those facts the most recent and available data
was used and if necessary projected to the center of the study time period. An average
growth rate of 2 percent per year was used as the value used by the Worcester Traffic
Engineering Division. The ADT’s of the road sections ranged from 11,000 vehicles per

day to 47,000 vehicles per day with an average ADT of 25,000 vehicles per day.

4.2.2 Heavy Vehicles

The percentage of heavy vehicles can be very influential on the number of

accidents. Heavy vehicles have different characteristics than smaller vehicles (Figure
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24). The major differences are that heavy vehicles take longer to speed up and slow
down, need larger turning radii, on long upgrades they can slow down considerably, and
on long downgrades their brakes may not be able to stop the vehicle. This is mostly a
concern over the long distances in rural locations, but in the idea that what is important in
one region can be important in another the data was gathered. The data came from the
Central Massachusetts Regional Planning Commission (CMRPC) and is taken from their
list of peak period turning movement counts. When both an morning and evening period
was listed, an average of the two was used for the data point. The amount of heavy
vehicles ranged from 0.4 to 3.1 percent with an average of 1.7 percent of traffic being

heavy vehicles.

Figure 24: Example of a Heavy Vehicle

4.2.3 Crash Data

The other main type of off-site data gathered was the number of observed crashes.
The crashes were complied from the Worcester accident database, which lists all reported
accidents in the city of Worcester. Three years of crash data was used from 2000 to
2002. Accident data can be separated in many ways: accident type, location and time
period. “It might be asked whether data could, or should, be disaggregated so that each

year/site combination provides a unit of data” (Maher & Summersgill 292). This can
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make a difference in modeling overdispersion because one cause of overdispersion is the
influence of variables not included in the model that remain the same from year to year
which can be thought of as a site effect (Maher & Summersgill 292). Using each
year/site as a data point does not allow for the errors to all be seen as independent as the
errors in the same site in different years are likely to be highly correlated (Maher &
Summersgill 292). But using each year/site as a data point allows for more data points to
be used when considering the data. Use of multiple observations from each intersection
could cause the “gamma error term in the negative binomial model could be correlated
from one observation to the next, which is a violation of the error-term independence
assumption made to derive the model” (Poch and Mannering 111). This results in a loss
of estimation efficiency (standard errors of coefficients will become larger) and could
lead to wrong conclusions regarding coefficient estimates (Poch and Mannering 111).
The way the accident data was recorded allows for this possibility if it is found to be
necessary. If at all possible it is better to avoid the problems associated with correlation
of the data points.

The accidents were recorded by which segment they occurred on. Further
separating the accidents was categorizing them by occurring on the main part of the
segment or occurring on the major intersection of the segment. The major intersection of
the segment was defined as the intersection occurring at the end of the road segment.
The beginning of the roadway segment was the end with the lowest street number and the
end of the segment had the highest street numbers. Hadi et al performed separate
analyses for non-intersection or mid-block crashes and all crashes, which include

intersections, interchanges and railway crossing crashes (Hadi et al 171). The accidents
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were recorded in such a way that separate analyses for mid-block and all crashes can be
done. The crashes were also recorded by type of crash; fatal, injury, and property-
damage only (PDO) crashes. Throughout the study period there were 2,842 reported
crashes, but there was only one fatal crash on the roads in the study. There were also a
total of 1,930 PDO crashes. It is believed that the reporting level for injury accidents is
between eighty to ninety percent and that for PDO accidents it is around fifty percent or
less of the accidents being reported (Lau & May 58). Since fatality crashes are rare and
PDQ’s are often not reported, Lau and May suggest that injury accidents are the best
category for using to develop prediction models (Lau & May 58). The reporting levels
for accidents however are not likely to change suddenly, so that if the number of reported
PDO accidents is used it represents an unknown but constant percentage of the true
number of accidents and therefore is acceptable to use for predictive purposes.

The separation of the observed crashes allows for the possibility of multiple
prediction models being developed. Other researchers, including Brown and Tarko, have
been able to create prediction models for total number of crashes, fatal crashes, injury
crashes and PDO crashes (Brown & Tarko). Due to the nature of the data collected
models for total number of crashes, total injury and fatal crashes and PDO crashes can
possibly be developed for the data from Worcester. The classification of the accidents
was kept simple with just injury, fatal and PDO as options. Lau and May kept to this
classification in their intersection crash study and advantages of this include easy
comprehension of the type of accident and there can be a simple translation to monetary
terms (Lau & May 58). A major disadvantage of this technique is that it is an inadequate

way to reflect the overall collision process and the concept of collisions. Further
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classification, however, is difficult since the main descriptive terms, sideswipe and
angled collision, usually describe more than one situation. An angled collision can be
caused when a vehicle is turning left or right or slides sideways, all very different
situations described with the same phrase. Further classification, can get complicated
very quickly with many possible types of collisions and become a time consuming and
tedious process. The accidents can be used in the model to predict the total number of
accidents or a more common way is to predict an accident rate. Accident rates can
normalize the number of accidents by time, ADT and length. Knuiman et a/ calculated
accident rate per 100 million vehicle miles traveled which they calculated by:

_ Y
" ADT*365*T*L

(Knuiman et al 71)

where: R= the observed accident rate
Y= the observed number of accidents
ADT= the average daily traffic in vehicles per day
T=the number of years of crash data
L=the section length
Another way to construct accident rates is to use the rate per million of entering

vehicles (RMEVs) which is the number of accidents per million vehicles entering the

study location.

RMEV =

%k
w (Garber & Hoel, 139)

where: RMEV=accident rate per million entering vehicles

A=total number of accidents or number of accidents by type occurring in 1 year at
the study location

V=Average daily traffic (ADT) * 365
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This type of rate is commonly used to measure accident rates at intersections.
Garber and Hoel also developed a rate per 100 million vehicle miles (RMVM) which is
the number of accidents per 100 million vehicle miles of travel over the study section
(Garber & Hoel).

A4%*1,000,000
VMT

RMVM = (Garber & Hoel, 140)

where: RMVM= number of accidents per 100 million vehicle miles of travel

A=total number of accidents or number of accidents by type during a given period
at the study period

VMT=total vehicle miles of travel during the given period
=ADT*(days in study period)*(length of road)

The number of accidents compared to volume over a roadway segment is small,
so that multiplying by a large factor helps in the analysis. The accident rate can
correspond to different accidents depending on the desired parameters. Rates for serious
injury accidents, all injury accidents, PDO accidents, multi-vehicle accidents, head-on
accidents, sideswipe opposite direction accidents, single vehicle accidents, single vehicle
rollover accidents and any other type that in depth study is desired for can be calculated

and each analyzed individually using regression modeling.
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5 Analysis
The analysis procedure began with trying to identify the exact form the dependent

variable will take. Traditionally, this would be an accident rate and it was investigated
and was found to be the best variable to be used as the dependent variable. Then once the

dependent variable was determined a prediction model was developed.

5.1 Accident Rate Analysis

Most traffic and safety engineers take a great deal of their information about a
road’s safety from its calculated accident rate. An accident rate is a mathematical
representation of the relationship between the major factors that influence accidents.
This rate allows comparison between different sites, by normalizing the number of
accidents on the road by time, length, and volume. If one road has many accidents and a
very large volume it can have a lower accident rate and therefore be deemed safer than
another road with fewer numbers of accidents but a greatly smaller ADT. Accident rates
are usually expressed as a ratio of the number of accidents divided by the amount of
travel for a comparable mix of mitigating factors. The amount of travel or exposure
measures the number of opportunities available for each accident to occur (Saccomanno
& Buyco 23). “The relationship between accidents and traffic flow, the most common
measure of exposure, has been shown actually to follow a nonlinear relationship, in
which accident counts usually increase at a decreasing rate as traffic flow increases”
(Lord 17). Due to this relationship between accident rate and assumed level of safety, the
mathematical relationships that go into accident rates were investigated, including total
number of accidents per segment, ADT, time period of the study and segment length.

One significant issue that occurs when looking at traditional accident rates is that the
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numerator and denominator in accident rates are both random quantities that can
contribute to the overall uncertainty about accident rates. Accident counts have been
found to be an inaccurate estimation of safety since they are usually random and
independent events (Lord 18). Since more exact data is not available, these inexact

figures must be used.
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Figure 25: Accident Rate vs. ADT with Linear Trend Line

Figure 25 shows the relationship between accident rate in accidents per million
vehicle miles and ADT. The trend line helps to show that as volume increases the
number of accidents increase. This is a linear trend line to give the general impression of
how the data is represented. The large amounts of scatter make a more specific

relationship difficult to assess with the Worcester data.
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5.1.1 Linear Accident Rate Analysis
Working towards the goal of finding each segment’s accident rate, the first thing
that was examined was the linear relationship between the traditional variables involved,

specifically the relationship between total number of accidents, volume, and length.

5.1.1.1 Accident Rate and Volume

Volume versus total number of accidents per segment was the first relationship
examined. A linear model predicting the total number of accidents for the entire study
period per segment by volume was developed: Acc = 54.67658 +0.001994DT . The
parameter estimate for volume (ADT) is positive which means that the higher the volume
becomes, the more accidents there will be. This is to be expected because the more
vehicles that are present on the road the more possibilities exist for conflicts between the
different movements of the vehicles. A problem with this model is that if there is no
traffic (ADT=0) the model still predicts accidents. Numerically this is not a problem, but
in practice if there are no vehicles on the road, no traffic accidents can take place on the
road. The Analysis of Variance (ANOVA) table given below gives the highlights of the
model. The coefficient of determination is only 0.0853, showing that volume alone is not

a good representation of the variability in the data.

Table 6: ANOVA Table for Total Number of Accidents and Volume

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 1 7894.04451 | 7894.04451 | 2.33 0.1393

Error 25 84631 3385.2463

Corrected 26 92525

Total

Root MSE 58.18286 R-Square 0.0853

Dependent 105.25926 Adj. R-Sq 0.0487

Mean

Coeff Var 55.27577
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One way to see what is happening with a linear regression is to plot the regression
line in relationship to the points from which it was formed. This allows the viewer to see
if there are any outlying points that are affecting the regression line or if there are any
patterns that could be taking place. Including confidence bands on this plot also allows
for an observer to see where points should be falling in order for the regression line to be
a valid reflection of what is occurring. Figure 26 shows the regression line, the actual
points, and the 95 percent confidence bands. The 95 percent confidence bands present
with the regression line show the location of where with 95 percent confidence the true
regression line of this relationship lies. The use of only volume does not seem to be the
best idea for a relationship, as most of the points, showing the actual data, fall far outside

of the confidence bands.

total

vol

Figure 26: Confidence bands for Regression of Total Number of Accidents and Volume

The assumptions of any model need to be tested in order to determine if the model

is an appropriate way to look at the relationships in question. An assumption of linear
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regression is that the variables follow a normal distribution. The plot of the predicted
values versus the residuals is a good way to see if any deviation from normality exists.
By examining Figure 27, there does not appear to be a strong deviation from normality
(i.e. there points do not form a pattern) and the variance appears to be fairly constant (i.e.
the points lie within a constant band around zero) with the model using only total number
of accidents and volume. Constant variance is another assumption in linear modeling.
There is a certain amount of symmetry in the residuals with half falling above and half
falling below the zero line. No obvious outliers can be identified by lying far from the

majority of the points, which are all good indications of following the model

assumptions.
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Figure 27: Predicted Values vs. Residuals for Total Number of Accidents and Volume

The normal probability plot in Figure 28 also shows that there is not a significant
deviation from normality. The solid line is the normal probability distribution. The

dashed line is the distribution from the data set and the histogram is also from the data
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set. The model has a distribution with a flatter and lower peak value and a slightly wider
base than the normal distribution. These minor departures could also be due to the small
sample size used for this investigation. A departure from normality would mean that a
model of this functional form would be inappropriate for the given data. Since the dash

line follows the solid line closely, normality is assumed.
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Figure 28: Normal Probability Plot for Total Number of Accidents and Volume

The investigation in the linear relationship between total number of accidents and
annual daily traffic shows that while the relationship most likely is linear, there is some
minor deviations from normality. Also found was that while there may be a relationship
between total number of accidents and ADT, volume does not explain much of the

variation that occurs in accident data.
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5.1.1.2 Accident Rate and Length

Similarly to the investigation of volume versus total number of accidents, segment
length versus total number of accidents per segment was examined with linear regression.
A model of the form Acc =54.67658 + 0.00199Len was found. The parameter estimate
for segment length is positive which means that the longer the segment is the more
accidents there should be. This like the volume study is an intuitive conclusion as the
longer the segment is, the more possibilities for vehicle conflicts. A problem that exists
with this model is that if a segment has no length, that there are still accidents occurring.
This is impossible in reality.

The analysis of variance table below shows some of the important statistics
relating to this model. The coefficient of determination, most often used to compare
models is equal to 0.0674 in this case. This shows that the use of length as an
explanatory variable can explain only 6.74 percent of the variation in the data and also
implies that there are most likely other variables that can explain some of the variation.

This combination explains even less of the variation in the data than did the total number

of accidents versus volume.

Table 7: ANOVA Table for Total Number of Accidents and Segment Length

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 1 6237.13397 | 6237.13397 | 1.81 0.1909

Error 25 86288 3451.52205

Corrected 26 92525

Total

Root MSE 58.74966 R-Square 0.0674

Dependent 105.25926 Adj. R-Sq 0.0301

Mean

Coeff Var 55.81424
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Again, looking at a plot with the regression line, the actual points and 95%
confidence bands, length alone is not a good indication of total accidents (see Figure 29).
As with volume, most of the points fall outside of the confidence bands. This helps to
show that a better model is most likely needed to explain the majority of the variation in

accident data.

total

Figure 29: Confidence Bands for Regression of Total Number of Accidents and Segment
Length

Checking the model assumptions, as with total number of accidents and volume,
there does not appear to be a strong deviation from normality in the predicted versus
residual plot in Figure 30. One point appears to be located further away than the others,
but not enough to be called an outlier. There appears to be a constant variance, as the
points lie in a mostly constant band around zero, which is one of the assumptions for
linear modeling. The clustering of the points on the left side of the graph has to do with

the selection of the data points rather than with systematic departures from the basic
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assumptions. These observations indicate that linear modeling is an acceptable way to

look at this relationship.
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Figure 30: Predicted Values vs. Residual for Total Number of Accidents and Segment
Length

The probability plot below does not appear to have a strong deviation from
normality. The solid line is the normal distribution. The dashed line is the distribution of
the residuals and the histogram is of the residuals. The peak of the distribution from the
model is further towards the left than the normal distribution as is the base of the
distribution. Since there are only minor departures from normality, the plot shows that the
data most likely follows a normal distribution, meaning that a linear relationship is

present and the model assumptions hold true.
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Figure 31: Normal Probability Plot for Total Number of Accidents and Segment Length

The normal quantile plot also reveals a small departure from normality, but this
departure could be explained by the use of other explanatory variables (See Figure 32).
The solid line shows where the data points would be for perfect normality and the dotted
line shows where the data is actually located. This small amount of deviation is not a
large concern, but with a larger data set, could prove to be showing that the data is not

truly linear.
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Figure 32: Normal Quantile Plot for Total Number of Accidents and Segment Length

There is a small possibility that the total number of accidents and segment length
do not have a linear relationship, but there is no doubt that segment length alone does not
describe an adequate amount of the variation in the crash data. The relationship may be
linear, but the models formed by both segment length and traffic volume alone, do not
correctly represent what happens in actual situations. The fact that according to the two
above models developed, accidents can occur when there is no traffic volume on the road
or not length to the segment is worrisome. This means that further steps must be taken in

looking at accident rates.

5.1.1.3 Accident Rate with Length and Volume

As both volume versus total number of accidents and segment length versus total
number of accidents appear to follow a normal distribution but do not explain a large
amount of the variation in the data a model was developed that combined the two

explanatory variables in one model. The parameter estimate for length is positive which
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means that the longer the segment is the more accidents there should be. The coefficient
for ADT is also positive which means that the more traffic the more accidents occur.
These are the expected values for the sign of each of the two coefficients. By combining
these two variables into one equation, much more of the variability in the model is
explained. Individually, just using length explained 6.74 percent of the variation and just
using volume as an explanatory variable explained 8.53 percent of the variation in the
model. Using both variables in the model increased the variation explained to 25.4
percent, which is more than the individual amounts combined. Key numbers, including

the coefficient of determination can be seen in Table 8.

Table 8: AVOVA Table for Accidents, Segment Length and Volume

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 2 23545 11773 4.10 0.0295

Error 24 68980 2874.15623

Corrected 26 92525

Total

Root MSE 53.61116 R-Square 0.2545

Dependent 105.25926 Adj. R-Sq 0.1923

Mean

Coeff Var 50.93249

The regression procedure found the following formula to be representative of the
given data. Acc =—7.48971+0.02302Len +0.003214DT . Both predictor variables, Len
and ADT, have the expected positive sign, but the intercept term is problematic. The
negative intercept shows that if there was no volume and no segment length there would
be negative accidents. This is not possible in reality, so this cannot be used to show the
relationships between the total number of accidents, segment length and traffic volume.
The significance of each of the three parts of the equation can be tested using statistical

methods, which show that while the parameters for segment length and ADT are
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significant to greater than five percent, the intercept term is not significant and does not

help in explaining the variation in the data as shown in Table 9.

Table 9: Parameter Estimates for Accidents, Segment Length and Volume

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 -7.48971 41.80557 -0.18 0.8593

Length 1 0.02302 0.00987 2.33 0.0283

Vol 1 0.00321 0.00131 2.45 0.0218

To check that the model assumptions are met, the predicted values versus the
residual values were examined in Figure 33. This residual plot shows that the there is not
a substantial departure from normality in the data. There is no discernable pattern in the
points and they are evenly distributed between positive and negative values. A constant
variance can be seen, by the points being distributed in two constant bands, above and
below zero. One point falls slightly further away then the rest at —110 but this remains
close enough to not be considered an outlying point and not be considered a departure
from a constant variance. This plot allows for the linear modeling assumptions to be met,

and for linear regression to be an adequate representation of this particular data.
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Figure 33: Predicted Values vs. Residuals for Accidents, Segment Length and Volume
Similarly, the boxplot of the residuals shows that they are evenly distributed by

the plot being symmetric (See Figure 34). The symmetry helps to confirm that the choice
of a linear distribution was appropriate. This also helps to show that no one point is a

major outlier and affecting the overall model.

residuals on the negative side.
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Figure 34: Boxplot of Residuals for Accidents, Segment Length and Volume

The normal quantile plot, shown in Figure 35, demonstrates that there may be
some minor deviations from the normal distribution. The solid line represents normality
and the dotted line represents the actual data. There is a minor pattern that may be
explained by a sinusoidal wave, or could be natural variation in the given data set. The
departure from normality, however, is not enough to cause the linear relationship to be
entirely disregarded. But due to previous investigations there is a non-linear relationship
between accident rate and especially traffic volume. That is what is most likely causing
the data to not fully follow a normal distribution, but due to the small data set, the non-

linear relationship discussed by Lord (Lord 17) cannot be fully duplicated.
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Figure 35: Normal Quantile Plot for Accidents, Segment Length and Volume
5.1.2 Accident Rate with Non-Linear Distributions

Due to the uncertainty about the relationship between length, volume and total
accidents, these variables were examined under a Poisson distribution and a negative
binomial distribution. The reason for exploring other distributions can from the issue that
traffic accidents themselves are non-negative discrete counts that do not follow a normal
distribution. Therefore distributions that consider count data as their basis were reviewed

as possibly being more appropriate for predicting the number of accidents.

5.1.2.1 Accident Rates with Poisson Distribution

The model developed that used the Poisson distribution showed a large amount of
overdispersion, which is an indication that the mean is very different from the variance.
This violates a very basic model assumption. The deviance divided by the degrees of
freedom shows this quality. This value was 27.7869. A value of one indicates that there
is not a problem of overdispersion; the larger the value, the greater the variance and mean
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differ. This can be seen in Table 10. This is also an indication that the data does not

adequately fit this functional type of model.

Table 10: Criteria for Assessing Goodness of Fit for Accident Rates using a Poisson

Distribution
Criterion DF Value Value/DF
Deviance 24 666.8856 27.7869
Scaled Deviance 24 24.0000 1.0000
Pearson Chi-Square | 24 644.1454 26.8394
Scaled Pearson X2 24 23.1816 0.9659
Log Likelihood 377.8728

The model using the Poisson distribution is as follows:

Totalaccidents = 3.5914 + 0.0002/ength + 0.0000vo! .

All of the variables are significant to greater than 95 percent. This can be seen in
Table 11. The confidence limits also show that there is a possibility that the coefficients
for both segment length and volume can be zero, which is a questionable result: having a
coefficient of zero means that the variable in question does not affect the number of
accidents that occur. Based on observation, the idea that volume and segment length
have no effect on the number of accidents that occur is ludicrous. Since the model

assumptions do not hold true this relationship is invalid.

Table 11: Analysis of Parameter Estimates for Accident Rates using a Poisson Distribution

Parameter | DF Estimate | Standard | Wald 95% Chi- Pr>
Error Confidence Limits | Square ChiSq

Intercept | 1 3.5914 0.4115 2.7848 14.3980 | 76.16 <0.0001
Length 1 0.0002 0.0001 0.0000 | 0.0004 |5.55 0.0184
Volume 1 0.0000 0.0000 0.0000 | 0.0001 6.04 0.0140
Scale 0 5.2713 0.0000 5.2713 5.2713

5.1.2.2 Accident Rate with Negative Binomial Distribution

Using the negative binomial distribution to model length, volume and total
accidents allows for the problems of overdispersion to be overcome. The model is almost

identical to that which follows the Poisson distribution, but the problem of overdispersion
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is almost completely overcome. Totalaccidents = 3.6605 + 0.0002/ength + 0.0000vo!/

The coefficients are very similar, but the elimination of the overdispersion problem,
makes the data better fit this distribution. The deviance divided by the degrees of
freedom value is 1.1713, which is a very low value, making this a very good model for

these variables (See Table 12). A value of 1.0 would show that there is no problem of the

variance being greater than it is allowed to be.

Table 12: Criteria for Assessing Goodness of Fit for Accident Rates using a Negative
Binomial Distribution

Criterion DF Value Value/DF
Deviance 24 28.1119 1.1713
Scaled Deviance 24 24.0000 1.0000
Pearson Chi-Square | 24 24.9062 1.0378
Scaled Pearson X2 24 21.2632 0.8860
Log Likelihood 9199.8261

The variables are almost significant to the 95 percentile, with volume being 3.99
percent and length being 5.61 percent. This can be seen in Table 13. Again as with the
model developed using the Poisson distribution, the 95 percent confidence limits show
that the coefficients for both segment length and volume have a chance of being zero, but
as zero is at the lower limit of the confidence band is not a likely situation. Both models,
using the Poisson distribution and the negative binomial distribution, however, do not

provide a good method for constructing an accident rate.

Table 13: Analysis of Parameter Estimates for Accident Rages using a Negative binomial

Distribution
Parameter | DF Estimate | Standard | 95% Confidence Chi- Pr>
Error Limits Square ChiSq
Intercept 1 3.6685 0.4185 2.8483 4.4886 76.85 <0.0001
Length 1 0.0002 0.0001 -0.0000 | 0.0004 3.65 0.0561
Volume 1 0.0000 0.0000 0.0000 0.0001 422 0.0399
Dispersion | 1 0.2546 0.0755 0.1424 | 0.4551
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5.1.2.3 Accident Rate with Natural Logarithm

In hopes that the accident rate can be reconstructed, a model using the natural
logarithm of volume, length and total number of accidents was developed. This was done
assuming the variables all followed a normal distribution. By using

N = A(ADT)*(length)“ as the base model where N equals the total number of accidents,

and length equals the segment length, if the coefficients are found to be equal to

approximately positive one (i.e. B=C=1), then that will show that the traditional formula

. . . . N .
for accident rates is valid. Since —————— =rate to equate the accident rate to the
ADT * Length

model N =rate* ADT * Length where the coefficient A is equal to the accident rate and B
and C should be approximately positive one. For ease of modeling, the following is what
was actually modeled: In(N) =1n(A4) + Bln(vol) + Cln(length). The model then gives
values for each of the predictive variable’s coefficients. The model that resulted from
this is the following: In(totalaccidents) = —4.43339 + 0.66394 In(vol) + 0.32276In(length) .
The coefficient of determination of this model is 0.1915, which means that 19.15 percent
of the variation in the variables is explained by this model. This model does not explain
all of the variation that occurs in the data, but the rest can hopefully be explained by

additional variables. See Table 14 for more detailed numerical analysis.
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Table 14: ANOVA Table for Accident Rates with Natural Logarithm

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 2 1.94447 0.97224 2.84 0.0780

Error 24 8.20810 0.34200

Corrected 26 10.15257

Total

Root MSE 0.58481 R-Square 0.1915

Dependent | 4.48268 Adj. R-Sq 0.1242

Mean

Coeff Var 13.04601

As with other investigations above, the significance of the coefficients was
examined. The natural logarithm of segment length and volume are significant to more
than 90 percent, which is a common cut off point for including variables in a regression

model. The parameter estimates and their F-values for the significance tests can be seen

in Table 15.
Table 15: Parameter Estimates for Accident Rates with Natural Logarithm
Variable DF Parameter Standard F Value Pr>|t|
Estimate Error
Intercept | -4.43339 4.01313 -1.10 0.2802
In(Length) 1 0.66394 0.34040 1.95 0.0629
In(Vol) 1 0.32276 0.15509 2.08 0.0483

This investigation results in having N =e™** ADT***length®** . Here the

coefficients for B and C are not equal to positive one, but closer to positive one half.
These were not the expected values, which implies that the traditional accident rate
formula is not applicable to at minimum this data set and at maximum all accident data.
The above investigations show that the traditional relationships used to calculate accident
rates are not applicable to this data and another way of determining the accident rate or

risk of an accident occurring must be found.
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5.1.3 Accident Risk Analysis

The goal of the accident rate analysis is to be able to determine the safety of
different road segments based on roadway and traffic characteristics. To compare
segments, an accident rate tends to be more helpful than just an accident count. The rate
that is being search for is the accident "risk" or the probability that a vehicle on a segment
will be involved in an accident. The risk should be different for each road segment.
Based on the above work, Poisson regression had severe overdispersion problems, so the
negative binomial distribution was examined to try to overcome those problems. Use of
the negative binomial distribution and natural logarithm did not appear to adequately
describe how the accident data related to ADT and segment length. The earlier linear
regression was also not helpful in describing the relationships between volume, length
and number of accidents.

The preliminary problem is determining the risk of an accident on an individual
segment. This has traditionally been accomplished by using an accident rate. The above
analysis has shown that with this data, this is not an adequate way to describe the
accidents that occur on the segments. Instead, an accident risk will be used. This is the
probability of an accident occurring to an individual vehicle on the segment. Each
occurrence of an accident is an independent action. There are a known number of
accidents that occur on each segment over the three year time period. There are also a
know number of trials, or possibilities of accidents over the three year time period, which
is the total number of vehicles that have passed through the segment which is calculated
by an accurate estimation of the volume by multiplying the ADT by 365 days per year by

three years.
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With a known number of trials and known number of successes, or accidents, the
best way to determine the actual risk of an individual vehicle being in an accident is
through the binomial distribution. The binomial distribution is often used to find the
probability of an event with a given number of trials and successes. The binomial
distribution deals with independent events, which is true with accident occurrences. The
risk of an accident is equal for any passing vehicle and each vehicle has an equal chance
of being in a crash.

The traffic volume ranges from 11,000 to 47,000 vehicles per day. Time is
constant over all the segments, with each segment lasting three full years. This allows
the number of trials per segment to vary from twelve to fifty-one million vehicles. The
number of accidents per segment similarly has a large amount of variation between 26

and 254 accidents per segment. The binomial distribution’s probability mass function is

n -
P(X :k):(k]pk(l— p)" ‘. There are n trials and k successes. Since this is a

distribution, there are infinite possibilities for what the actual probability is. However,

the best point estimate, which will be used to identify the risk of an accident occurring for

an individual vehicle, is E The best point estimate allows for the most likely probability
n

on each segment to be used as the accident risk for each road segment.
The risk for an accident to occur varies according to the roadway segment. These
risk range between 9.537 #1077 and1.03*107°. After further consideration the accident

risk was normalized by length converting it back into the more traditional accident rate.
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5.2 Accident Risk Prediction Model Development

The first step in the model development was reducing the number of variables to a
workable number. The combinations of the variables can be made to produce the best

possible model.

5.2.1 Primary Elimination of Variables

Since the data set has a relatively small number of data points, and there exist a
potentially large number of variables, some of them need to be eliminated early on in the
development process. The primary elimination was to look at groups of variables and
remove the ones that do not help explain variation in the data. The fifty-six primary
variables were divided up into groups, which have similar characteristics. The variables
were divided into six major groups to try and to an initial elimination of variables that do
not have a large influence on the data. The groups consist of hazard variables, cross-
section variables, traffic characteristic variables, horizontal and vertical alignment
variables, access variables and the remaining variables. Each group is examined
individually to see if there are any variables that can quickly be eliminated to help lower

the number of possible variable to consider for the final model to a more workable size.

5.2.1.1 Variables Relating to Roadside Hazards

There are many of variables that relate to the number and type of roadside hazard.
It was decided to try and determine which were the most influential and important of
these variables to include in a prediction model that includes the influence of more than
just the roadside hazards. Using a selection process of the adjusted coefficient of

determination, the variables were compared in multiple combinations to determine the

optimum combination. The adjusted coefficient of determination adjusts R* by dividing
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each sum of squares by its associated degrees of freedom. The adjusted coefficient may
actually become smaller when additional X variables are introduced into a model,
because any decrease in the error sum of squares may be more than offset by the loss of a
degree of freedom in the denominator (Neter et al 231). This is what makes comparisons
by adjusted coefficient of determination fit better than comparisons by just the coefficient
of determination.

Due to the goal of finding hazard variables of most interest, more possible models
other than the model with the greatest adjusted coefficient of determination were
examined. The top models sorted by adjusted coefficient of determination were
examined to show which variables were used most often in these models. All seventeen
possible hazard variables were included in the top models, but as the reasoning for
looking at these was to eliminate some possible variables, an in depth look at the
variation of the use of the variables was done. The variables Aydrant (number of fire
hydrants on the segment) and benches (number of benches on the segment) were included
in all the top models. Variables upole (number of utility poles on each segment),
building (number of buildings on each segment), ospole (number of overhead sign poles
on each segment), and hazards, representing the total number of hazards were found in
more than eighty percent of the top models. The other variables that were used in more
than fifteen percent of the models were electrical (number of electrical/traffic control
boxes), pmeter (number of parking meters), fence (number of fences), trees (number of
trees), pole (number of telephone poles, light poles, and sign poles), spole (number of

sign poles) and density (the number of hazards per mile). Some of the variables that were
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excluded from further consideration include the counts of mailboxes, stone monuments,

rocks, and light poles on each segment.

Table 16: ANOVA Table for the Best Model using only Hazard Variables

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 6 3898.85678 | 649.80946 6.35 0.0007

Error 20 2048.15673 | 102.40784

Corrected 26 5947.01352

Total

Root MSE 10.11968 R-Square 0.6556

Dependent | 23.14741 Adj. R-Sq 0.5523

Mean

Coeff Var 43.71840

The model that had the largest adjusted coefficient of determination for hazards
included just six variables: hydrant, upole, benches, building, ospole, and hazards.
Hydrant is the total number of fire hydrants on the segment while benches is the total
number of benches observed on the road segment. Upole is the number of utility poles
on the road segment while ospole is the total number of overhead sign poles observed on
the segment. Hazards is the variable that represents the total number of roadside hazards
observed and building represents the number of buildings throughout the segment. The
adjusted coefficient of determination for this model is 0.5523; meaning that 55 percent of
the variation in the model can be explained by this model and the coefficient of
determination is 0.6556. These and other informative numbers can be seen in Table 16.
The coefficients for the different variables may not be what were actually expected
(hazards and hydrant had negative coefficients), but the model is not of what was of
primary interest in this situation (See Table 17). The model was mainly to show what

hazard variables are of main interest.
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Table 17: Parameter Estimates for the Best Model using only Hazard Variables

Variable DF Parameter Standard t Value Pr>|t|
Estimate Error

Intercept 1 26.47713 5.26992 5.02 <0.0001
Hydrant 1 -4.14853 1.91712 -2.16 0.0427
Upole 1 0.79928 0.43373 1.84 0.0802
Benches 1 7.28857 3.69220 1.97 0.0624
Building 1 0.69990 0.30342 231 0.0319
Ospole 1 5.74825 1.46561 3.92 0.0008
Hazards 1 -0.23315 0.12022 -1.94 0.0667

Some further analysis was done primarily to confirm that that best model from
this group followed the basic model assumptions. Figure 36 shows the distribution of the
residuals for this model.

distributed about zero with approximately half falling above and below zero. Normally

This figure shows that the residuals are basically evenly

distributed residuals are a sign that the data fits the normal probability model.
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Figure 36: Boxplot of Residuals for the Best Model using only Hazard Variables

An assumption when dealing with multiple linear regression is that the data
follows a normal distribution and the variance is constant. The graph in Figure 37 shows

the studentized residuals versus the predicted values for this model. This conveys that

142




there is a constant variance in this model. The studentized residual plot helps to show
that there are no severe outlying data points. A heuristic for outliers is that if they are
greater than four in the studentized residual plot then the point could be considered an

outlier. None of data points follows that heuristic.
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Figure 37: Residuals and Studentized Residuals vs. Predicted Values for the Best Model
using only Hazard Variables

Another way to visually check that the data follows a normal distribution is to
look at the normal probability plot (See Figure 38). The solid line is the normal
probability distribution, while the dashed line represents the distribution that can be
developed using the data from the model. The two lines almost exactly line up, showing

that using the normal probability distribution was a good assumption for this data.
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Figure 38: Normal Probability Plot for the Best Model using only Hazard Variables

Similarly the normal quantile plot is effective in showing when the data does not
follow a normal distribution. When the assumption is correct, the residuals fall along the
straight line. If the assumption is wrong, the residuals will not fall along the straight line,
but may follow a different pattern. Figure 39 show that the residuals fall along the
straight line, showing that the assumption of normality is correct with using the hazard

variables regressed against the rate variable.
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Figure 39: Normal Quantile Plot for the Best Model using only Hazard Variables

The best model using only hazard variables does follow all the assumptions of
linear regression. This shows that this is so far a good choice of distributions for this data
set and allows the four variables to be removed from further consideration since hazard

variable models are normal in distribution.

5.2.1.2 Variables Relating to Cross-Section Alignment

There are also many variables that relate to the different elements that compose
cross-sectional alignment. Of the nineteen identified variables, it was felt that some of
them would not have strong influences on accident rates. It was decided to try and
eliminate the least influential of these variables. Using a selection process of the adjusted
coefficient of determination, the variables were compared in multiple combinations to
determine the optimum combination.

The top models, sorted by adjusted coefficient of determination, were examined

to show which variables were used most often in these models. Only eighteen of the
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nineteen possible variables were present in the top models. The missing variable was
perpendicular, which represents the amount of perpendicular parking on each road
segment, however, this only occurred on one segment so was not expected to be
influential. A further examination was made of the remaining eighteen variables. The
variables of widthsr (width of the right shooulder), widthsidl (width of the left sidewalk),
and widthl2 (width of the second lane in the left direction) were included in more than 80
percent of the top models. Variables that appeared in more than fifteen percent of the top
models were retained for inclusion in further model development.

Some of the variables that were excluded from further consideration include the
percentage of parking, the number of lanes going in the right direction, and the width of
the second and third lanes going in the right direction. By eliminating these variables,
there is a more reasonable number of variables that are related to cross-sectional

alignment to include in further model development.

Table 18: ANOVA Table for the Best Model using Cross-Section Variables

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 5 2474.03957 | 494.80791 2.99 0.0342

Error 21 347297395 | 165.37971

Corrected 26 5947.01352

Total

Root MSE 12.86000 R-Square 0.4160

Dependent | 23.14741 Adj. R-Sq 0.2770

Mean

Coeff Var 55.55700

The model that had the largest adjusted coefficient of determination for hazards
included just five variables: crest, llanes, widtha, widthsr, and widthsidl. Crest is the
maximum recorded value of the crest on each segment while /lanes is the total number of

lanes in the left direction on the road segment. Widtha is the average width of the lanes
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on each road segment while widthsr is the width of the should on the right side of the
road. It is interesting that this variable was shone to be such a significant one, since there
was only one segment with a recorded shoulder. Widthsidl is the variable that represents
the width of the left hand sidewalk. The adjusted coefficient of determination for this
model is 0.2770, meaning that 27 percent of the variation in the model can be explained
by this model and the coefficient of determination is 0.4160. These and other informative
numbers can be seen in Table 18. The coefficients for the different variables may not be
what were actually expected (/lanes has a negative coefficient meaning that the more
lanes in the left direction there are the fewer accidents occur), but the model is not of
primary interest in this situation (See Table 19). The model was mainly to show what

cross-section variables are of primary concern.

Table 19: Parameter Estimates for the Best Model using Cross-Section Variables

Variable DF Parameter Standard t Value Pr>t|
Estimate Error

Intercept 1 80.02889 32.53926 2.46 0.0227
crest 1 2.20930 1.77988 1.24 0.2282
llanes 1 -11.57391 6.94379 -1.67 0.1104
Widtha 1 -4.74875 1.58690 -2.99 0.0069
widthsr 1 -3.87422 2.01539 -1.92 0.0682
Widthsidl 1 2.77757 1.29274 2.15 0.0435

Some further analysis was done primarily to confirm that that best model from
this group followed the basic model assumptions. Figure 40 shows the distribution of the
residuals for this model in a boxplot. This figure shows that the residuals are basically
evenly distributed about zero with approximately half falling above and below zero.

Normally distributed residuals are a sign that the data fits the normal probability model.
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Figure 40: Boxplot of Residuals for the Best Model using Cross-Section Variables

An assumption when dealing with multiple linear regression is that the data
follows a normal distribution and the variance is constant. The graph in Figure 41 shows
the studentized residuals versus the predicted values for this model and shows that there
is a constant variance in this model. The studentized residual plot also helps to show that
there are no severe outlying data points. A heuristic for outliers is that if they are greater
than four in the studentized residual plot then the point could be considered an outlier.

None of data points follows that heuristic.
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Figure 41: Studentized Residuals vs. Predicted Values for the Best Model using Cross-
Section Variables

Another way to visually check that the data follows a normal distribution is to
look at the normal probability plot (See Figure 42). The solid line is the normal
probability distribution, while the dashed line represents the distribution that can be
developed using the data from the model. The two lines almost exactly line up with the
model’s distribution peaking to the left of the normal distribution, showing that using the

normal probability distribution was a good assumption for this data.
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Figure 42: Normal Probability Plot for the Best Model using Cross-Section Variables

Similarly the normal quantile plot is effective in showing when the data does not
follow a normal distribution. When the assumption is correct, the residuals fall along the
straight line. If the assumption is wrong, the residuals will not fall along the straight line,
but may follow a different pattern. Figure 43 shows that the residuals fall along the
straight line, showing that the assumption of normality is correct with using the hazard

variables regressed against the rate variable.
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Figure 43: Normal Quantile Plot for the Best Model using Cross-Section Variables

The best model using cross-sectional alignment variables follows all the
assumptions of linear regression. This shows that this is an acceptable choice of

distributions for this data set.

5.2.1.3 Variables Relating to Traffic Characteristics

There are two variables that relate to traffic characteristics. It was decided to try
and determine if both would be important in a prediction model. Again, using a selection
process of the adjusted coefficient of determination, the variables were compared in
together individually to determine if they should be combined or kept separate.

Due to the goal of finding the traffic characteristics of most interest, all three
models including the one with the greatest adjusted coefficient of determination were
examined. The two possible traffic characteristic variables examined were vo/ and

heavyveh. Vol is the annual daily traffic of each roadway segment and heavyveh is the
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percentage of volume that is composed by heavy vehicles. The top model consisted both

of the traffic characteristic variables.

Table 20: ANOVA Table for the Best Model using Traffic Characteristics

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 2 1536.79919 | 768.39959 4.18 0.0277

Error 24 4410.21433 | 183.75893

Corrected 26 5947.01352

Total

Root MSE 13.55577 R-Square 0.2584

Dependent | 23.14741 Adj. R-Sq 0.1966

Mean

Coeff Var 58.52681

The adjusted coefficient of determination for this model is 0.1966, meaning that
19 percent of the variation in the model can be explained by this model and the
coefficient of determination is 0.2584. These and other informative numbers can be seen
in Table 20. The coefficients for the variable may not be significant to the desired
amount of @ =0.01, with volume being significant to a 0.12 level, but the model is not of
what was of primary interest in this situation (See Table 21). The model was mainly to

show which traffic characteristics are of major importance.

Table 21: Parameter Estimates for the Best Model using Traffic Characteristics

Variable DF Parameter Standard t Value Pr>|t|
Estimate Error

Intercept 1 -4.91602 11.50883 -0.43 0.6731

Vol 1 0.00051943 | 0.00032341 | 1.61 0.1213

heavyveh 1 7.65513 2.72203 2.81 0.0096

Some analysis was done to confirm that that the model from this group of
variables followed the basic model assumptions. Figure 44shows the distribution of the
residuals for this model, which shows that the residuals are basically evenly distributed
about zero with approximately half falling above and below zero. There is a small lack

of symmetry in that there is a larger variance on the positive side for the residuals, but
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this is not large enough to cause serious concern. Normally distributed residuals are a

sign that the data fits the normal probability model.
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Figure 44: Boxplot of Residuals for the Best Model using Traffic Characteristics

An assumption when dealing with multiple linear regression is that the data
follows a normal distribution and the variance is constant. The graph in Figure 45 shows
the studentized residuals versus the predicted values for the traffic characteristics model
and conveys the basic principle that there is a mostly constant variance in this model.
This can be seen by the even distribution of the residuals around zero and by the lack of a
pattern in the locations. A heuristic for outliers is that if they are greater than four in the
studentized residual plot then the point could be considered an outlier. Based on this rule

of thumb there are no outlying points in this data set.
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Figure 45: Studentized Residuals vs. Predicted Values for the Best Model using Traffic
Characteristics

Another way to visually check that the data follows a normal distribution is to
look at the normal probability plot (See Figure 46). The solid line is the normal
probability distribution, while the dashed line represents the distribution that can be
developed using the data from the model. The two lines match closely; deviating only on
the right side of the plot, showing that using the normal probability distribution was a

good assumption for this data.
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Figure 46: Normal Probability Plot for the Best Model using Traffic Characteristics

Similarly the normal quantile plot is effective in showing when the data does not
follow a normal distribution. When the assumption is correct, the residuals fall along the
straight line. If the assumption is wrong, the residuals will not fall along the straight line,
but may follow a different pattern. Figure 47 shows that the residuals almost all fall
along the straight line, showing that the assumption of normality is correct with using the

hazard variables regressed against the rate variable.
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Figure 47: Normal Quantile Plot for the Best Model using Traffic Characteristics

While not being able to eliminate any of the traffic characteristic variables, the
model using them follows all the assumptions of linear regression. This continues to

shows that a normal distribution is a good choice for this data.

5.2.1.4 Variables Relating to Horizontal and Vertical Alignment

There are five variables that relate to horizontal and vertical alignment. Using a
selection process of the adjusted coefficient of determination, the variables were
compared in multiple combinations to determine the premier combination. The five
possible horizontal and vertical alignment variables examined were length, SD, curve,
type, and grade. Length is the overall length of the segment, while SD represents the
presence of a stopping sight distance problem. Curve is an indication of how many
horizontal curves there are in the roadway segment. If this variable proves to be
insignificant during the model development process it may be converted to a simple

indicator variable showing that the segment is either straight or curved. #ype indicates
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what the terrain is classified as with zero representing level terrain, one representing
rolling terrain and two representing mountainous terrain. Grade indicates the maximum
grade observed on the roadway segment.

The goal of examining this group is to find which variables are of most interest in
further model development. The models with the highest adjusted coefficient of
determination were examined to see which of the alignment variables occurred most
often. All of the possible alignment variables were included in the top models, but as the
reasoning for looking at these was to eliminate some possible variables, a further
examination of the use of the variables was done. The findings of this review show that
each variables was used the same number of times as the other variables in the top
models with each variable appearing in over fifty percent of the top models sorted by
adjusted coefficient of determination. This shows that there is not enough of a difference

between the variable that would support dropping any of them at this time.

Table 22: ANOVA Table for the Best Model using Alignment Variables

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 3 2807.71384 | 935.90461 6.86 0.0018

Error 23 3139.29968 | 136.49126

Corrected 26 5947.01352

Total

Root MSE 11.68295 R-Square 0.4721

Dependent | 23.14741 Adj. R-Sq 0.4033

Mean

Coeff Var 50.47195

The model with the largest adjusted coefficient of determination included the
variables length, SD and curve. The adjusted coefficient of determination for this model
is 0.4033; meaning that 40 percent of the variation in the model can be explained by this

model and the coefficient of determination is 0.4721. These and other informative
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numbers can be seen in Table 22. This model was examined in further depth than the
others, to ensure that the model assumptions are being followed. The coefficients for the
variable may not be significant to the desired amount ofa =0.01, with SD being
significant to a 0.28 level, but the model is not of what was of primary interest in this
situation (See Table 23). The model was mainly to show which variables relating to

horizontal and vertical alignment are of greatest interest in further modeling

development.

Table 23: Parameter Estimates for the Best Model using Alignment Variables
Variable DF Parameter Standard t Value Pr>|t|

Estimate Error

Intercept 1 34.67169 3.79513 9.14 <0.0001
Length 1 -0.01237 0.00307 -4.03 0.0005
SD 1 8.03475 7.31378 1.10 0.2833
curve 1 7.63052 3.56643 2.14 0.0432

Some analysis was done to confirm that that the model from this group of
variables followed the basic model assumptions. Figure 48 shows the distribution of the
residuals in a boxplot for this model, which shows that the residuals are basically evenly
distributed about zero with approximately half falling above and below zero. Symmetric

residuals are a sign that the data follows the normal probability model.
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Figure 48: Boxplot of Residuals for the Best Model using Alignment Variables

An assumption when dealing with multiple linear regression is that the data
follows a normal distribution and the variance is constant. The graph in Figure 49 shows
the studentized residuals versus the predicted values for the alignment model and conveys
the basic principle that there is a mostly constant variance in this model. This can be seen
by the even distribution of the residuals around zero and by the lack of a pattern in the
locations. A heuristic for outliers is that if they are greater than four in the studentized
residual plot then the point could be considered an outlier. Based on this rule of thumb
there are no outlying points in this data set. There is a slight bias towards positive
residuals, but this is not strong enough to imply that the data does not follow a normal

distribution.
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Figure 49: Studentized Residuals vs. Predicted Values for the Best Model using Alignment

Another way to visually check that the data follows a normal distribution is to
look at the normal probability plot (See Figure 50).
probability distribution; while the dashed line represents the distribution that can be
developed using the model developed with just horizontal and vertical alignment
variables. The two lines match closely, deviating only slightly with the model having a

lower and flatter peak than the normal distribution, showing that using the normal

Variables

probability distribution was a good assumption for this data.
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Figure 50: Normal Probability Plot for the Best Model using Alignment Variables

Similarly the normal quantile plot is effective in showing when the data does not
follow a normal distribution, which does not apply in this situation. Figure 51 shows that
the residuals almost all fall along the straight line, showing that the assumption of

normality is correct with using the hazard variables regressed against the rate variable.
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Figure 51: Normal Quantile Plot for the Best Model using Alignment Variables

While not being able to eliminate any of the horizontal and vertical alignment
variables, the model using those variables follows all the assumptions of linear
regression. Not being able to eliminate any of the variables also leads to the assumption

that these may all prove to be important variables for safety purposes.

5.2.1.5 Variables Relating to Access Control

There are several variables that relate to the number and type of access control. It
was decided to try and determine which were the most influential and important of these
variables to include in a prediction model that includes the influence of more than just
access control. Using a selection process of the adjusted coefficient of determination, the
variables were compared in multiple combinations to determine the optimum
combination.

Due to the goal of finding access control variables of most interest, more possible

models other than the model with the greatest adjusted coefficient of determination were
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examined. The top models sorted by adjusted coefficient of determination were
examined to show which variables were used most often in these models. All of the five
possible access control variables were included in the top models, but as the reasoning for
looking at these was to eliminate some possible variables, an in depth look at the
variation of the use of the variables was done. The variables considered were maccess
(the number of minor street access points on each segment), driveways (the number of
driveways on each segment), parkinglots (the number of parking lots on each segment),
drivepark (the total number of driveways and parking lots on each segment), and
allaccess (the total number of access points on each segment). Out of the top twenty-
three models, each variable was used either nine or ten times. So each access control

variable was present in over forty percent of the top models. This prevents any of the

access control variables from being immediately eliminated from the list of potential

variables.
Table 24: ANOVA Table for the Best Model using only Access Variables
Source DF Sum of Mean F Value Pr>F
Squares Square
Model 1 1073.64374 5.51 0.0272
Error 25 4873.36978
Corrected 26 5947.01352
Total
Root MSE 13.96191 R-Square 0.1805
Dependent | 23.14741 Adj. R-Sq 0.1478
Mean
Coeff Var 60.31736

The model that had the largest adjusted coefficient of determination for hazards
included just one variable: allaccess. Allaccess is a continuous variable that represents
the total number of access points on each roadway segment. The access points include

minor roads, driveways and parking lots. The adjusted coefficient of determination for
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this model is 0.1478; meaning that 14 percent of the variation in the model can be
explained by this model and the coefficient of determination is 0.1805. These and other
informative numbers can be seen in Table 24. The coefficients for the variable may not
be what were actually expected, allaccess has a negative coefficient meaning that the
more access points present the fewer accidents occur, but the model is not of what was of
primary interest in this situation (See Table 25). The model was mainly to show what

access control variables are of main interest.

Table 25: Parameter Estimates for the Best Model using only Access Variables

Variable DF Parameter Standard t Value Pr>t|
Estimate Error

Intercept 1 29.14389 3.70789 7.86 <0.0001

Allaccess 1 -0.32124 0.13688 -2.35 0.0272

Further analysis was done primarily to confirm that that best model from this
group followed the basic model assumptions. Figure 52 shows the distribution of the
residuals for this model. This figure shows that the residuals are basically evenly
distributed about zero with approximately half falling above and below zero. Normally

distributed residuals are a sign that the data fits the normal probability model.
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Figure 52: Boxplot of Residuals for the Best Model using only Access Variables

An assumption when dealing with multiple linear regression is that the data
follows a normal distribution and the variance is constant. The graph in Figure 53 shows
the studentized residuals versus the predicted values for the best access model and
conveys the basic principle that there is a mostly constant variance in this model. A
heuristic for outliers is that if they are greater than four in the studentized residual plot
then the point could be considered an outlier. Based on this rule of thumb there are no

outlying points in this data set.
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Figure 53: Studentized Residuals vs. Predicted Values for the Best Model using only Access
Variables

Another way to visually check that the data follows a normal distribution is to
look at the normal probability plot (See Figure 54).
probability distribution, while the dashed line represents the distribution that can be

developed using the data from the model. The two lines match closely; showing that

The solid line is the normal

using the normal probability distribution was a good assumption for this data.
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Figure 54: Normal Probability Plot for the Best Model using only Access Variables

Similarly the normal quantile plot is effective in showing when the data does not
follow a normal distribution. When the assumption is correct, the residuals fall along the
straight line. If the assumption is wrong, the residuals will not fall along the straight line,
but may follow a different pattern. Figure 55 shows that the residuals follow the straight
line, showing that the assumption of normality is correct with using the hazard variables

regressed against the rate variable.
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Figure 55: Normal Quantile Plot for the Best Model using only Access Variables

The best model using only access control variables follows all the assumptions of

linear regression. This shows that this is a good choice of distributions for this data set.

5.2.1.6 Variables Relating to All Other Characteristics

There are several variables that have not found a home in any of the earlier
categories. It was decided to put any remaining variables in a group and determine which
were the most influential and important of these variables to include in a prediction
model. Using a selection process of the adjusted coefficient of determination, the
variables were compared in multiple combinations to determine the optimum
combination.

There were four variables that did not fit into any of the other categories which
include markings, lanelength, pavement, and lighting. Markings is the variable that
considers the condition of the pavement markings on each segment. These can be

classified as good, fair or poor depending on their quality. Similarly, pavement is the
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variable that considers the condition of the pavement and again it can be classified as
good, fair or poor. Lighting represents the percentage of each roadway segment that has
lighting, this is important as lack of lighting is often a cause of accidents. Lanelength is
the variable that represents the total miles of lanes on each segment. This helps to
normalize segments that have different lengths and different numbers of lanes.

Due to the goal of finding the variables of most interest, the top models were
sorted by adjusted coefficient of determination and examined to show which variables
were used most often in these models. All of the possible variables were included in the
top models, but as the reasoning for looking at these was to eliminate some possible
variables, an in depth look at the variation of the use of the variables was done. The top
models were compared to see how often the variables appeared in each. There was no
clear division with one or more of the variables not appearing in the top models. Each
variable was present in over fifty percent of the top models. This prevents any of the

variables from being eliminated from the list of potential variables.

Table 26: ANOVA Table for the Model using Other Variables

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 2 2130.96238 | 1065.48119 | 6.70 0.0049

Error 24 3816.05114 | 159.00213

Corrected 26 5947.01352

Total

Root MSE 12.60960 R-Square 0.3583

Dependent | 23.14741 Adj. R-Sq 0.3049

Mean

Coeff Var 54.47524

The model that had the largest adjusted coefficient of determination for hazards
included just two variables: markings and lanelength. The adjusted coefficient of

determination for this model is 0.3049; meaning that 30 percent of the variation in the
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model can be explained by this model and the coefficient of determination is 0.3583.

These and other informative numbers can be seen in Table 26. The coefficients for the

variable may not be what were actually expected, allaccess has a negative coefficient

meaning that the more access points present the fewer accidents occur, but the model is

not of what was of primary interest in this situation (See Table 27). The model was

mainly to show what access control variables are of main interest.

Table 27: Parameter Estimates for the Model using Other Variables

Variable DF Parameter Standard t Value Pr>t|
Estimate Error

Intercept 1 39.47000 5.79125 6.82 <0.0001

Markings 1 -4.23065 3.80893 -1.11 0.2777

lanelength 1 -14.62690 4.17076 -3.51 0.0018

Some further analysis

was done primarily to confirm that that best model from

this group followed the basic model assumptions. Figure 56 shows the distribution of the

residuals for this model. This figure shows that the residuals are evenly distributed about

zero with approximately half falling above and below zero.

residuals are a sign that the data fits the normal probability model.
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Figure 56: Boxplot of Residuals for the Model using Other Variables

An assumption when dealing with multiple linear regression is that the data
follows a normal distribution and the variance is constant. The graph in Figure 57 shows
the studentized residuals versus the predicted values for the best other model and conveys
the basic principle that there is a mostly constant variance in this model. There is a slight
unevenness with the positive residuals having a larger variance, but this is not large
enough to be of any concern. A heuristic for outliers is that if they are greater than four
in the studentized residual plot then the point could be considered an outlier. Based on

this rule of thumb there are no outlying points in this data set.
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Figure 57: Studentized Residuals vs. Predicted Values for the Model using Other Variables

Another way to visually check that the data follows a normal distribution is to
look at the normal probability plot (See Figure 58).
probability distribution, while the dashed line represents the distribution that can be

developed using the data from the model. The two lines match closely; showing that

The solid line is the normal

using the normal probability distribution was a good assumption for this data.
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Figure 58: Normal Probability Plot for the Model using Other Variables

Similarly the normal quantile plot is effective in showing when the data does not
follow a normal distribution. When the assumption is correct, the residuals fall along the
straight line. If the assumption is wrong, the residuals will not fall along the straight line,
but may follow a different pattern. Figure 59 shows that the residuals closely follow the
straight line, showing that the assumption of normality is correct with using the hazard

variables regressed against the rate variable.
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Figure 59: Normal Quantile Plot for the Model using Other Variables

The best model using other variables follows all the assumptions of linear

regression. This shows that this is a good choice of distributions for this data set.

5.2.1.7 Summary of Primary Variable Elimination

The primary elimination was intended to be a rough elimination of variables that
do not have a strong effect on predicting crashes. The variables eliminated at this stage
deal mainly with roadside hazards and geometric alignment. This is too be expected
since these are the areas with the largest number of possible variables. The variables that
were eliminated include the number of mailboxes, the number of stone monuments, the
number of rocks, the number of light poles, the percent of perpendicular parking, the
percent of parallel parking, the number of lanes going in the right direction, the width of
the second and third lanes in the right direction. The first of these can be eliminated
based on the fact that they were not used often or found to be significant and that they are

accounted for in the overall variable that accounts for all the roadside hazards present on
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the road segment. The number of light poles again is counted in the variable pole, which
is a count of all the poles on the segment. The percent of perpendicular parking was a
variable that was expected to have little or no effect with predicting crashed due to the
fact that perpendicular parking was only found to exist on one road segment and is an
unusual style of parking on urban streets. The information in the other variables relating
to the number of lanes traveling in the right direction and the width of the second and
third lanes traveling in that direction is also duplicated in other variables that remain for
further consideration. The total number of lanes and the average lane width take these
variables into account. This primary elimination however did allow for some variables to
be eliminated from further consideration and it allowed for information to be gathered
relating to how the different variables relate to each other and to the crashes that occurred

over the arterial segments.

5.2.2 Secondary Variable Elimination

The first round of variable elimination allowed for eight variables to be discarded
at this stage of the model development. This reduction brought the total number of
possible variables down to forty-eight which can be seen in Table 28. The variables were
divided into two groups that could be run together and the most common variables
examined, in the same way as the primary variable elimination method. There were still
too many variables to be run in one modeling attempt, so a secondary elimination process
was undertaken.

Looking at variables that could be combined into one overall variable and looking
at correlations between similar variables was the basis of the second elimination method.

By looking at correlations, it can be seen if variables are describing the same variation in
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the data. A high correlation value means that the variables in question describe the same
variation in the data and are highly correlated, while a low correlation value means that

the variables do not describe the same variation in the data.

Table 28: Variables Remaining after the Primary Elimination

Variables:

ospole drivepark length llanes
upole allaccess grade widthl3
vol benches SD median
Pmeter hydrant curve widthm
maccess building curves widthr1
Fence other/electrical | crest widthsida
Spole hazards widthl2 | lane
residential density widthl1 widtha
commercial driveways markings | widthsidr
pole heavyveh widthsidl | widthsr
parkinglots trees pavement | lighting
lanelength industrial type parking

Six variables describe the access on each roadway segment. The correlation
between these variables was reviewed to try and eliminated some of them from further
investigations. The variable of allaccess was considered the basic variable in that as it is
a count of all access points on a road segment, it should explain the majority of the
variation in the data. Two of the other access variables, driveways and drivepark, have
high correlation coefficients with 0.9041 and 0.9854 respectively (See Table 29) allowing
them to be removed from further consideration. Since the data variation can be almost
equally described by another variable, they are not needed for further model
development. It was also determined on further reflection that the variable density should
be eliminated since it is the number of hazards per mile for each segment. It is a
compiled variable that takes into account the total number of roadside hazards and the

segment length. Since it is made up of variables that are already included in the model

development it can be left out of further development.
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Table 29: Pearson Correlation Coefficients for Access Variables

maccess [parkinglots|driveways|drivepark|allaccess|density
maccess |1 0.2549 0.5775 10.5713 |0.7027 |-0.29
parkinglots|0.2549 |1 0.2493  10.6381 |0.606 |0.208
driveways [0.5775 (0.2493 1 0.9047 10.9041 |-0.06
drivepark [0.5713 ]0.6381 0.9047 |1 0.9854 10.042
allaccess [0.7027 10.606 0.9041 [0.9854 |1 -0.02
density  |-0.288 0.2081 -0.0628 10.0416 |-0.0238 |1

There were three variables that describe the width of the existing sidewalks: a
variable for the ‘left’ sidewalk width, the ‘right’ sidewalk width and the average sidewalk
width. The correlation between the three variables was examined to see if they were
describing the same variation in the data. The Pearson correlation coefficients can be
seen in Table 30. There is a strong correlation between the variables of widthsida and
widthsidl with a coefficient of 0.9635. Strong correlation also exists between widthsida
and widthsidr with a coefficient value of 0.9670. These coefficients show that there is a
high correlation between the variables in question and that these variables are describing
almost the same variation in the base data. Since the variables are describing the same
variation, they are not all needed to be in the final model. This allows for both widthsidr
and widthsidl to be eliminated from further models with widthsida covering the same data

variation.

Table 30: Pearson Correlation Coefficients for Sidewalk Widths

widthsidajwidthsidl widthsidr
widthsida|1.0000 [0.9635 ]0.9670
widthsidl |0.9635  |1.0000 0.8644
widthsidr|0.9670 0.8644 [1.0000

Similarly to the variables describing sidewalk width above, there are three
variables that explain the number of lanes that exist on each roadway segment: /lanes,

rlanes, and lane. These describe the total number of lanes in the ‘left’ direction, the total
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number of lanes in the ‘right’ direction and the total number of lanes on the segment.
The Pearson correlation coefficients (as seen in Table 31) were examined in the hope that
two of the variables could be eliminated, having the variation in the data that they explain
be covered by the joint variable of lane which can be described as llanes + rlanes. The
correlation between lane and the other two variables were greater than 95 percent

allowing both //anes and rlanes to be removed from further consideration.

Table 31: Pearson Correlation Coefficients for Lane Variables

rlanes |llanes |lanes
rlanes|1.0000 (0.8637 |0.9675
llanes [0.8637 {1.0000 [0.9631

lane (0.9675(0.9631 {1.0000
There are variables that describe the width of the different lanes in addition to the

variables that describe the number of lanes on each road segment. The correlation
coefficients can be seen in Table 32. In this set widtha was the variable assumed to be
the base, since it contained the information from the other variables by being an average
width of all the lanes. Using this assumption of a base variable, it was determined that
two other variables are highly correlated with widtha, that of widthil and widthrl, the
widths of the centermost lane going in both directions. They were correlated with
Pearson coefficients of 0.9048 and 0.9176 respectively. This allows the two variables to
be eliminated from further use in the final model development. The variables of widthi2
and widthl3 were also looked at because their values are included in the average width
variable, which means that including them and the average width lets that information be
double counted in the final model development. Due to this repetition of the data the two

variables were also removed from further consideration.
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Table 32: Pearson Correlation Coefficients for Lane Width Variables

widthll |widthl2 |widthI3 |widthrl |widtha
widthl1|1.0000 |-0.6562 |-0.2717 |0.8329 ]0.9048
widthl2|-0.6562 |1.0000 [0.0760 |-0.7353 |-0.5517
widthl3]-0.2717 |0.0760 [1.0000 |-0.3112 |-0.4125
widthr1/0.8329 |-0.7353 |-0.3112 [1.0000 |0.9176

widtha |0.9048 |-0.5517 |-0.4125 |0.9176 [1.0000
In terms of cross section variables there are two that describe the presence of a

median, by use of an indicator variable, or its width, by the use of a continuous variable.
The two variables show a very high correlation with each other, allowing the base
variable to be kept for further model development (See Table 33 for correlation
coefficients). It was decided to use the presence of a median as the more important of the
two variables. This was done because on the range of segments examined there was not a
large amount of variation in the median widths observed, with variation existing only
from 5.5 to 8 feet. Then the indicator variable was used as the base variable and the

continuous variable was removed from further development.

Table 33: Pearson Correlation Coefficients for Median Variables

median |widthm
medain {1.000 0.987

widhtm ]0.987 1.000
There are a lot of possible variables that can be used to describe roadside hazards.

In order to eliminate some of them, first all the variables that describe a pole were
examined. These included variables that describe overhead sign poles, utility poles, and
sign poles. Pole was used as the base variable since it consists of all the other pole
variables added together. The correlation between pole and spole is very high with a
Pearson’s coefficient of 0.9822, which means the pole variable describes the same

variation, as does the spole variable, letting spole be removed from further consideration.
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This can be seen in Table 34 with the correlation coefficients for the pole variables.
There is also a fairly high correlation between upole and pole with a coefficient of
0.7643. Though this is a slightly lower correlation that would be discarded without any
thought, it was deemed large enough to allow the variable to be discarded and get the

total number of variable to be used in further model development to become smaller.

Table 34: Pearson Correlation Coefficients for Pole Variables

upole |spole |ospole |pole

upole [1.0000 |0.6580 |-0.0631 |0.7643
spole ]0.6580 [1.0000|0.0331 |0.9822
ospole|-0.0631 |0.0331 |1.0000 ]0.0313

pole 0.7643 ]0.982210.0313 [1.0000
The other variables that represent roadside hazards were also looked at for

possible correlations. Hazards was used as the base variable, which represents the total
number of hazards on each road segment. This comparison took place in several steps to
make looking at the correlation matrixes easier. Table 35 shows the first set of
correlations that show a large correlation between hazards and hydrants, buildings and
trees. All three of these correlation coefficients are greater than 0.8 allowing the
variables to be removed from further evaluations. The variable electrical was also
removed from further consideration based on the fact that only three segments have the
variable and it does not appear to be significant in the amount of variation in the data that
it can explain. So in an effort to reduce the total number of variables electrical was

discarded.
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Table 35: Pearson Correlation Coefficients for Hazards (1)

hazards hydrant |buildinglelectricaljtrees

hazards |1.0000 |0.8382 ]0.9296 |0.0652 |0.8603
hydrant |0.8382 |1.0000 |0.7352 |-0.0322 |0.7388
building 0.9296 |0.7352 [1.0000 [0.0512 |0.7464
electrical|0.0652 |-0.0322 0.0512 [1.0000 ]0.0670

trees 0.8603 |0.7388 |0.7464 10.0670 |1.0000
Looking at the second matrix of correlation coefficients in Table 36, there is only

one variable that has a strong correlation to the base variable of hazards. The variable
pole has a correlation coefficient of 0.9528 meaning that most of the variation in the data
that is explained by the variable pole is also explained by the variable hazards, allowing

pole to be disregarded.

Table 36: Pearson Correlation Coefficients for Hazards (2)

hazards |benches [pole fence |pmeter |ospole
hazards |1.0000 [0.1209 ]0.9528 |0.5242 |-0.0365 |-0.0769
benches [0.1209 |1.0000 |0.0730 [0.1602 |-0.0543 |-0.1335
pole 0.9528 10.0730 |1.0000 |0.5581 |-0.1427 [0.0313
fence 0.5242  10.1602 |0.5581 |1.0000 |-0.1518 |-0.0505
pmeter |-0.0365 |-0.0543 |-0.1427 |-0.1518 [1.0000 |-0.0982

ospole |-0.0769 ]-0.1335 ]0.0313 |-0.0505 [-0.0982 [1.0000
There are two variables that describe vertical alignment that of grade and type.

Grade is a continuous variable giving the maximum vertical grade observed on the road
segment. Type classifies the segments according to level, rolling, or mountainous terrain,
so both variables give similar information. The correlation matrix between the two
variables was examined and the coefficient was found to be 0.8888 (See Table 37). This
is large enough to allow one of the variables to be removed from further examination.
The variable of grade was kept as the base variable on the understanding that in this case,
the divisions of the #ype variable may not be the best possible and that the maximum

grade would be more useful.
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Table 37: Pearson Correlation Coefficients for Vertical Alignment

grade |type
grade [1.0000 |0.8888

type |0.8888 |1.0000
Similar to the variables relating to vertical alignment, there are two variables that

describe a segments horizontal alignment. Curve and curves are a continuous and
indicator variable respectively that represent either the number of horizontal curves or the
presence of one or more horizontal curves. The coefficient between curve and curves is
0.7906, meaning that 79 percent of the variation in the data is explained by the two
variables (See Table 38). This allows one of the two to be eliminated from further
evaluation. It was determined that the presence of horizontal curvature was more
important than the actual number of horizontal curves that where present on each road

segment. The variable curve was removed from further consideration.

Table 38: Pearson Correlation Coefficients for Horizontal Alignment

curve |curves
curve 1.0000 |0.7906

curves  [0.7906 |1.0000
There are three variables that describe land use on each road segment. The

variable that represents the percentage of industrial land use was eliminated from further
consideration by several reasons. It did not appear in the top models when half the
variables were run together to look at the top models. Another reason for discarding this
variable was that only one road segment had industrial land use, so for the areas under
consideration in this study, industrial land use is not a large percentage so should not
have a large effect on the overall prediction model. The correlation between the
remaining variables that describe residential and commercial land use was very high with

a coefficient of —0.9997. Table 39 shows the full correlation matrix for the land use
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variables. The negative sign in this case means that the two variables are present in
opposite conditions, when one segment shows ninety percent residential use, commercial
use will then conversely be ten percent. Despite being negatively correlated, the two
variables are still strongly correlated meaning that one of them can be removed from
further evaluation. It was decided to leave the variable representing the percentage of

residential land use for use in further model developments.

Table 39: Pearson Correlation Coefficients for Land Use Variables

commercial [residential
commercial|{1.0000 -0.9997

residential |-0.9997 1.0000
One final variable was eliminated from further evaluation during the secondary

variable elimination stage. This variable, widthsr, is the width of the shoulder on the road
segment and was eliminated since shoulders only occurred on one road segment, it was
determined that the variable did not carry enough information that could be used to make
further conclusions about the data. The secondary variable elimination stage allowed for
many variables to be eliminated and the total number to be used for further model

development brought down to a manageable twenty-five.

5.2.3 Linear Model Groups

After the primary and secondary variable elimination methods were used, three
models were contenders for accident prediction models. There were three sets of
variables ranging from 24 to 26 variables. A model selection criterion of the highest
adjusted coefficient of determination was used to choose the most significant model from

the three variable groups.
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5.2.3.1 Variable Group One

The first group was run with the remaining 24 variables after the primary and
secondary elimination methods had been used to bring the total number of variables
down to a workable number. The adjusted R-square selection method was used in that
the best models were sorted by the largest adjusted R-square values, but the coefficient of
See Table 40 for the list of

determination was also give for comparison purposes.

possible variables.

Table 40: Variable Group One

Variable

ospole Length
vol Grade
pmeter SD
maccess Curves
fence Crest
residential | Markings
parkinglots | Pavement
allaccess Median
benches Widthsida
hazards Lane
heavyveh | Widtha
parking lighting

The best model that was developed from the top group of variables included 19
variables with a coefficient of determination of 0.9451 and an adjusted coefficient of
0.7961, both values are extremely good. The analysis of variance table seen below shows
important values relating to this model, including the F-statistic value and the P-statistic

value which indicate that the overall model is significant to a greater than 0.05 percent.
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Table 41: ANOVA Table for First Model from Variable Group One

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 19 5620.52175 | 295.81693 6.34 0.0093

Error 7 326.49177 46.64168

Corrected 26 5947.01352

Total

Root MSE 6.82947 R-Square 0.9451

Dependent | 23.14741 Adj. R-Sq 0.7961

Mean

Coeff Var 29.50426

The parameter estimates and standard errors can be seen in Table 42. All but four
of the variables are significant to greater than 0.1 percent.
significant to greater than 0.05 percent which leaves only three variables significant
between 0.1 and 0.05 percent.
important to the model.

variables are significant. As the model currently stands this is not the case and the model

is cumbersome with so many variables being included.

And twelve variables are

This shows that most of the included variables are

It is desirable, however, to have a model where all of the

Table 42: Parameter Estimates for First Model from Variable Group One

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 -129.33712 | 69.27231 -1.87 0.1041
Benches 1 -14.91338 3.69498 -4.04 0.0050
Fence 1 2.73710 1.02511 2.67 0.0320
Ospole 1 3.30055 1.70866 1.93 0.0947
Pmeter 1 -0.51043 0.43612 -1.1 0.2801
parkinglots | 1 -1.75103 0.55093 -3.18 0.0155
allaccess 1 0.85415 0.32706 2.61 0.0348
Vol 1 0.00287 0.00051511 | 5.57 0.0008
Length 1 -0.02017 0.00453 -4.45 0.0030
Grade 1 -3.91493 1.53683 -2.55 0.0382
SD 1 18.37744 10.87777 1.69 0.1350
Curves 1 17.41656 5.78500 3.01 0.0196
Crest 1 10.54793 1.87318 5.63 0.0008
Widtha 1 -6.51575 1.85164 -3.52 0.0097
widthsida 1 5.11999 1.47432 3.47 0.0104
Parking 1 0.20599 0.09052 2.28 0.0570
Median 1 14.13734 7.94326 1.78 0.1183
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Table 42: Parameter Estimates for First Model from Variable Group One Continued

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Lane 1 -16.19383 4.96841 -3.26 0.0139

markings 1 6.55813 4.31383 1.52 0.1723

Lighting 1 1.45846 0.66942 2.18 0.0658

In an attempt to have a more workable model and one where the variables are
significant, further work was done. By looking at the individual variable’s significance
and coefficient of partial determination, variables were removed from the model. An
alpha level of 0.10 was set and a coefficient of partial determination level was set at 150.
This criterion must be met to be kept for further model development. The coefficient of
partial determination “measures the marginal contribution of one X variable when all
others are already included in the model” (Neter et al 274). If this contribution is small
and the variable insignificant then the variable was removed from further development.

The graphical diagnostics showed this model to follow a normal distribution and
the overall model was significant. Despite these attributes, four variables were not
significant enough and had low coefficients of partial determination so were eliminated.
Based on significance less than 0.1 and coefficients of partial determination less than
150, the variables pmeter, SD, median and markings were be eliminated to produce a
better model.

The model was rerun with the remaining fifteen variables and overall was again
significant. The coefficients of determination and P-value can be seen in Table 43. But,
once more, not all the individual variables were significant. Six more variables were

identified for removal.
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Table 43: ANOVA Table for Second Model from First Variable Group

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 15 4967.41170 | 331.16078 3.72 0.0167

Error 11 979.60182 89.05471

Corrected 26 5947.01352

Total

Root MSE 9.43688 R-Square 0.8353

Dependent | 23.14741 Adj. R-Sq 0.6107

Mean

Coeff Var 40.76863

This process was repeated three more times until all the remaining variables were
significant to better than a =0.10. This resulted in all but two variables being removed
from the model. The variables that remained were ospole and length. So now all the
variables in the model and the model as a whole were significant as can be seen Table 44
in by the F-statistic. Unfortunately, the coefficient of determination was lowered as more
variables were eliminated to such a level that the model no longer explains an acceptable
amount of the variation in the data. With R* =0.4095not even half the variation is

explained so that the model is not effective at predicting an accident rate.

Table 44: ANOVA Table for Best Model from Variable Group One

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 2 243548284 | 1217.74142 | 4.26 0.0063

Error 24 3511.53068 | 146.31378

Corrected 26 5947.01352

Total

Root MSE 12.09602 R-Square 0.4095

Dependent 23.14741 Adj. R-Sq 0.3603

Mean

Coeff Var 52.25649

Rate = 24.6167 +2.99030spole —0.0069/ength The coefficients are mostly the

expected signs and even with a 90 percent confidence level do not become zero. The
parameter estimate for ospole is positive indicating that the more overhead sign poles on

the road segment the higher the accident rate becomes. The coefficient’s sign for the
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length parameter by intuition would be positive meaning that the longer the segment the
more accidents but turned out to be negative implying that the longer segments have
lower accident rates. This is due to the division of road segments by major signalized
intersections where the shorter the road segment the closer together the signalized
intersections are which is where there are large numbers of conflicts and accidents are

more likely to occur.
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Figure 60: Normal Probability Plot for Best Model from Variable Group One

In spite of the fact that the model does not violate any of the assumptions and
follows a normal distribution as seen in Figure 60 this model does not perform well. The
coefficient of determination is low and only two variables are included in the model.
This model could possibly be used to compare whether or not a road segment has an
accident rate extremely different from other similar segments, but even that would not
produce reliable results or be helpful in determining what is causing an accident problem

on a segment.
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5.2.3.2 Variable Group Two

Variable group two consists of twenty-six variables that can be seen in Table 45.
The difference between group one and group two are the two variables of pole and
lanelength. These two variables are compilations from other variables that are also in the
group of variables, which is why they were excluded from variable group one. Pole and
lanelength were accidentally left into the calculations, but the resulting adjusted
coefficient of determination and the coefficient of determination were very high, so the
top model was left in for consideration. The top model from this set of variables included
twenty-five of the possible twenty-six variables and had a coefficient of determination of
0.9997 and an adjusted coefficient of determination of 0.9925, both of which are

extremely high values.

Table 45: Variable Group Two

Variables

ospole length
vol grade
pmeter SD
maccess curves
fence crest
residential | markings
pole pavement

parkinglots | median
lanelength | widthsida
allaccess lane
benches widtha
hazards lighting
heavyveh | parking

In addition to the high coefficients, the overall model is significant to greater than
0.1 percent with a P-value of 0.0669. The parameter estimates can be seen in Table 46.
Nine of the variables are not significant to greater than 0.1 percent. Nine variables are

also significant to greater than 0.05 percent, leaving eight that are significant between 0.1
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and 0.05 percent. The graphical diagnostics show that the normal distribution and model
assumptions are not violated, but despite that there is some concern since many of the
variables have a possibility that their parameters could be zero, so this is not the best
possible model. Since there are so many variables in this model, it is very cumbersome
to use and since so many of the variables are not significant in this model, further work

will be done looking for the best model.

Table 46: Initial Model from Variable Group Two

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 -432.53610 | 31.46908 -13.74 0.0462
Benches 1 -10.06556 1.73497 -5.80 0.1087
Fence 1 6.62433 0.90468 7.32 0.0864
Ospole 1 9.89939 0.58810 16.83 0.0378
Hazards 1 1.13725 0.08916 12.76 0.0498
Pole 1 -1.16616 0.11494 -10.15 0.0625
Maccess 1 2.16695 0.77721 2.79 0.2192
Parkinglots | 1 -4.74461 0.21713 -21.85 0.0291
Allaccess 1 0.78614 0.18859 4.17 0.1499
Vol 1 0.00233 0.00034406 | 6.76 0.0935
Heavyveh 1 -11.00644 1.16075 -9.48 0.0669
Lanelength | 1 11.43583 4.04092 2.83 0.2162
Residential | 1 -0.33445 0.06253 -5.35 0.1177
Length 1 -0.04953 0.00679 -7.29 0.0868
Grade 1 -2.70225 0.84165 -3.21 0.1922
SD 1 10.49614 4.06884 2.58 0.2354
Curves 1 18.03077 1.34017 13.45 0.0472
Crest 1 16.58164 0.89836 18.46 0.0345
Widtha 1 -10.77932 0.65018 -16.58 0.0384
widhtsida 1 7.88668 0.77867 10.13 0.0627
Parking 1 0.02956 0.01891 1.56 0.3624
Median 1 18.23474 4.30093 4.24 0.1475
Lane 1 -18.03378 1.67547 -10.76 0.0590
Pavement 1 -43.05961 5.03997 -8.54 0.0742
Markings 1 21.79006 1.50729 14.46 0.0440
lighting 1 4.68225 0.33764 13.87 0.0458

The second variation of a model from variable group two consisted of sixteen

variables. This model had a coefficient of determination of 0.8199, an adjusted
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coefficient of 0.5317, and overall was significant with a P-statistic of 0.049. This model
has all the indications of a good predictor. The overall model is significant, only three
individual variables are insignificant and none of the model assumptions were violated.
The normal probability plot in Figure 61 shows how closely this model follows the

normal distribution.
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Figure 61: Normal Probability Plot from the Second Model from Variable Group Two

Since this model was so close to working, the three insignificant variables were
removed and the model was rerun in the hope that this would be a final model.
Unfortunately, this was not to be. The model was run with thirteen variables, and only
one variable remained significant. A model with only one variable, besides not doing a
good job at predicting an accident rate, will not be useful in finding areas where the road
segment differs from other similar section and needs improvement. The lack of

significant variables makes this stream of models unacceptable for a final model.
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5.2.4 Variable Group Three

Variable group three consists of one more variable than does group one with the
addition of the variable lanelength. This can be seen in Table 47. This is because in the
model elimination process, this variable as a combination of other variables slipped
passed the elimination process. By keeping this variable in the group of possible

variables, the adjusted coefficient of determination of the primary model increased from

0.7961 to 0.8114.

Table 47: Variable Group Three

Variables
ospole length
vol grade
pmeter SD
maccess curves
fence crest
residential | markings
parkinglots | pavement
lanelength | median
allaccess | widthsida
benches lane
hazards widtha
heavyveh | lighting
parking

The overall model is also significant to greater than 0.05 percent. That and other

important numbers can be seen in the ANOVA table below.
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Table 48: ANOVA Table for First Model from Variable Group Three

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 17 5558.71886 | 7.58 6.34 0.002

Error 9 388.29466 43.14385

Corrected 26 5947.01352

Total

Root MSE 6.56840 R-Square 0.9349

Dependent | 23.14741 Adj. R-Sq 0.8114

Mean

Coeff Var 28.37639

The parameter estimates of the seventeen variables included in this model are
mostly significant and can be seen in Table 49. Only two are significant to less than 0.1
percent and eleven are significant to more than 0.05 percent, leaving four variables than
are significant to between 0.05 and 0.1 percent. This appears to be a good start of a

model with most of the variables being significant.

Table 49: Parameter Estimates from First Model from Variable Group Three

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 -128.80349 | 60.38898 -2.13 0.0617
Benches 1 -13.45230 3.96662 -3.39 0.0080
Ospole 1 4.03357 1.61127 2.50 0.0337
Pmeter 1 -0.70446 0.32812 -2.15 0.0603
Maccess 1 2.00412 0.88028 2.28 0.0488
parkinglots | 1 -1.57689 0.46397 -3.40 0.0079
lanelength 1 -10.73818 5.26643 -2.04 0.0719
Vol 1 0.00170 0.00054720 | 3.11 0.0124
residential 1 -0.19403 0.09163 -2.12 0.0633
Grade 1 -0.74894 0.59604 -1.26 0.2406
Curves 1 16.46455 4.77198 3.45 0.0073
Crest 1 7.89294 1.69974 4.64 0.0012
Widtha 1 -5.32279 2.05407 -2.59 0.0291
widthsida 1 2.49877 1.12959 2.21 0.0543
Parking 1 0.21567 0.08139 2.65 0.0265
Lane 1 -11.11592 4.40139 -2.53 0.0325
markings 1 7.03538 4.409001 1.72 0.1195
Lighting 1 1.68026 0.67519 2.49 0.0345
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The coefficients of partial determination are also relatively high, which is a good
indication of the quality of the parts of the model. As with any model the model
assumptions must be reviewed to ensure that the data and the model do not violate any of
the assumption. Looking at both the diagnostic graphs, it can be seen that the model
assumptions are not violated. The residuals versus the fitted values give a good
impression if the model fits the assumptions by showing that there is a constant variance
and symmetry about zero, implying that the model follows the normal distribution. This

is seen in Figure 62.
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Figure 62: Residuals versus Fitted Values for first Model from Variable group Three
The box plot of the residuals also helps to show this by showing the symmetry in

the residuals. In this particular instance there is a small lack in symmetry as there is a
greater variation of values on the positive side as can be seen in Figure 63. There are also

several points that fall outside of the range of the majority. This would lead to questions
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of outlying points expect that there are no points that appear to quality as outliers when

looking at the residual scatter plots, so that this is not a cause for concern.
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Figure 63: Boxplot for first Model from Variable group Three

Since there were two variables that were insignificant in the model, they were
removed and the model was run again. The coefficient of determination and the adjusted
coefficient decreased a small amount from 0.9349 and 0.8114 to 0.8882 and 0.7358
respectively, but the overall model was still significant. The new version of the model
had fifteen variables, but sadly the previous removal of two insignificant variables caused
an avalanche reaction of more variables being insignificant. Now seven variables
became insignificant to the model. The model diagnostics still showed that the type of
model was appropriate, but the variable parameters being insignificant over rules the

positive aspects.

195



Once again the model was rerun with the insignificant variables removed. This
created a model with eight variables and a coefficient of determination of 0.7788. The

overall model is highly significant with a P-statistic of 0.0001 (See Table 50).

Table 50: ANOVA Table from Second Model from Variable Group Three

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 8 4631.70060 | 578.96258 7.92 0.0001

Error 18 1315.31292 | 73.07294

Corrected 26 5947.01352

Total

Root MSE 8.54827 R-Square 0.7788

Dependent | 23.14741 Adj. R-Sq 0.6805

Mean

Coeff Var 36.92971

Rate = —48.49 —1.41benches + 5.070spole —1.69 parkinglots — 0.38residential + 5.4curves
+3.51crest +0.13 parking + 0.59/ighting

This time three variables were shown to be insignificant those of benches, curves, and
lighting. The fact that the number of benches was shown to be insignificant was not
unexpected and the percentage of lighting on the segment is also not surprising since
most urban arterials have some amount of lighting many with 100 percent lighting. The
presence of horizontal curves being found to be insignificant is less expected since
horizontal curvature is typically an area where many accidents occur in rural areas.
Again, the insignificant variables were removed and the model was rerun. This
time, however, the overall model was shown to be significant and all the remaining
variables were shown to be significant. The coefficient of determination was 0.7301 and
the adjusted coefficient was 0.6658, both of which are only slightly lower than those of
the previous model. The parameter estimates and their standard errors can be seen in
Table 51. The only parameter estimate that is not significant is that of the model’s

intercept. The 95 percent confident interval for the intercept is —4.534 to 21.463 which
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does mean that there is a possibility that the intercept is zero. This however is not such a
problem that the intercept could be zero as it would be if a parameter estimate for the
variable was zero. If the variable’s parameter was zero it would mean that the variable
possibly should not be included in the model at all, but the intercept gives a value when

the variables do not affect the model and a zero value is acceptable.

Table 51: Parameter Estimates for Significant model from Variable Group Three

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 8.46399 6.25048 1.35 0.1901
Ospole 1 5.49178 1.26238 4.35 0.0003
parkinglots | 1 -1.56312 0.30367 -5.15 <0.0001
residential 1 -0.30680 0.05085 -6.03 <0.0001
Crest 1 3.32415 1.18981 2.79 0.0109
Parking 1 0.16131 0.05364 3.01 0.0067

The graphical diagnostics show that the model does not violate any of the model
assumptions. The residuals versus the fitted values show that there is a constant variance
and no points appear to be strong outliers as can be seen in Figure 64. The box plot of
the residuals shows a slight tendency for the model to predict accident rates that are lower
than those that are actually experienced by the road segments. This can be seen in Figure

65. This is, however, not a large tendency and is not cause for any concern.
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Figure 64: Residuals versus Fitted Values for Significant Model
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Figure 65: Boxplot for Significant Model

The normal probability plot shows that the model closely follows a normal

distribution with only very minor deviations.

Figure 66 shows that with the model’s

distribution falling a little lower than that of the normal distribution. The maximum
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value falls along the same plane and minor variations appear on the left hand side of the

graph.
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Figure 66: Normal Probability Plot for Significant t Model

This model is composed of only five variables, which will allow for road
segments to compare their accident rates to that of other segments with similar
characteristics to give a base line to determine if a road segment has an abnormally high
accident rate. Since the number of variables is on the low side, it does make identifying
locations were improvements could be made more difficult. To try and improve this
quality in the model, the last three variables that were removed at one time from the
model were removed one at a time to see the effect each one has on the overall model.

The variable representing the total number of benches on the segment was the
first to be removed. This was for several reasons including primarily that it had the
lowest significance between itself and lighting and curves. Another reason was that so

few segments had benches and it was more likely representing the presence of
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pedestrians and the use of residential land type helps to represent the major types of
pedestrian use that would be seen on the segment. The model without benches had a very
similar coefficient of determination to the model with eight variables changing from
0.7788 to 0.7759, but had a better adjusted coefficient changing from 0.6805 to 0.6933.
This improvement in the adjusted coefficient of determination helps to show that more
variables do not always create a better model. In this instance, it was better to remove the
variable benches rather than keep it in the model.

This new version of the model was overall significant, but the remaining two
variables curves and lighting still proved to be insignificant as can be seen in Table 52
showing the parameter estimates. The coefficients of partial determination held out the
same information, identifying lighting and curves as variables that should be removed
from the model. Looking at the 95 percent confidence intervals for the parameter
estimates also identified lighting and curves as the only two variables that could possibly
have parameters with zero value coefficients making them the only variables that maybe

should not be included in the model.

Table 52 : Parameter Estiamates for 7 Variable Model

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 -43.92377 45.93690 -0.96 0.3510
Ospole 1 5.01303 1.26393 3.97 0.0008
parkinglots | 1 -1.65882 0.29631 -5.60 <0.0001
residential 1 -0.31326 0.05289 -5.92 <0.0001
Curves 1 5.83270 4.46161 1.31 0.2067
Crest 1 3.32708 1.14025 2.92 0.0088
Parking 1 0.12963 0.05576 2.32 0.0313
Lighting 1 0.54114 0.45446 1.19 0.2484

The graphical diagnostics continue to show that these models do not violate the

model assumptions. The plot of the residuals versus the fitted values in Figure 67 show
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the constant error variance and show that there is a fairly even distribution around zero,

with a slight tendency toward larger negative residuals but not a strong one.
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Figure 67: Residuals versus Fitted Values for 7 Variable Model

The normal probability plot shows that there is very little difference between a
normal distribution and the distribution that occurs in the residuals which indicates an

almost exact normal distribution of the residuals. This can be seen in Figure 68.
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Figure 68: Normal Probability Plot for 7 Variable Model

To check that lighting was the better of the remaining variables to remove, the
model was run with the variable /ighting and without the variable curves. When this
happened, the coefficient of determination was slightly lower than then model with both
curves and lighting in it with a value of 0.7557 versus 0.7759. The adjusted coefficient
of determination was also slightly lower at 0.6824 as opposed to 0.6933. The overall
model was still significant and the variable lighting was still insignificant.

Since a six variable model with lighting was still insignificant, a six variable
model without /ighting but with curves was explored. In the seven variable model curves
was of higher significance than was lighting, so this model was expected to perform
better. The coefficient of determination is again slightly lower than that of the model
with eight variables changing from 0.7788 to 0.7557. The adjusted coefficient of
determination, however, is again larger than that of the eight variable model going from

0.6805 to 0.6869. The overall model exhibits full significance with the variable curves
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remaining insignificant in this version of the model. The alpha level for significance was
set at 0.10 and the value from curves is only 0.136 which is only slightly above the limit
set. All of the coefficients of partial determination indicate that the variables should
remain in the model, so that there is some debate that could occur on whether or not
curves should be removed. Since the presence of horizontal curves historically plays a
large role in identifying potential accident locations it would be informative if it were left
in as a variable in the model. In looking at the 95 percent confidence levels for the
parameter estimates, again, the only questionable estimate where the value could be zero
is for the one variable that does not reach the full significance that was indicated.

Rate=10.29 + 4.920spole—1.65parkinglos — 0.33residentid + 6.8 Tcurves
+3.30crest+0.13parking

The graphical diagnostics show that there is no problem perceived with this model
violating the linear model assumptions. The plot of the residuals versus the fitted values
in Figure 69 shows a very constant error variance and an even distribution between
positive and negative residuals. No extreme points are observed on the graph that would

imply an outlying point.
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Figure 69: Residuals versus Fitted Values for 6 Variable Model with Curves

Only slight departures from normality can be observed in Figure 70 of the normal
probability plot. The distribution for the model has a slightly lower maximum value, but

other wise is very similar.
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Figure 70: Normal Probability Plot for 6 Variable Model with Curves

This last version of the model from variable group three with six variables
including the number of overhead sign poles, the number of parking lots, the percentage
of residential land use, an indication of horizontal curves, the largest crest value and the
percentage of on-street parking, was the best model in terms of having an acceptable
coefficient of determination and adjusted coefficient while also being overall significant

and having variables that are significant under statistical testing.

5.2.4.1 Linear Model Summary

In the search for the best possible model to predict the total accident rate, two
viable contenders were developed. Variable group one and group three yielded models
where the overall model was significant and the individual variables were significant.
The coefficients of determination and the adjusted coefficients can be seen in Table 53 to

establish the better model.

205



Table 53: Comparison of Final Linear Accident Rate Models

Variable Group | # of Variables | g2 R’
1 2 0.4095 | 0.3603
3 6 0.7591 | 0.6869

As can be seen in the above table the better of the two models comes from
variable group three. This model has a higher coefficient of determination and a higher
adjusted coefficient. The overall significance of model is also greater than the model
from variable group one. Since the coefficients of the model from group three are higher
it is the better choice of a model to predict the total accident rate. The higher coefficients
mean that that model can explain more of the variation in the data. Comparison by the
coefficients of determination is possible because the models were developed at the same
time from the same data set. If they had been created at different times with different

data sets, more care would need to be taken instead of this straightforward comparison.

5.2.5 Multiplicative Model Development Process

An additive model silently assumes that the effect of different roadside
characteristics are separate and don’t effect each other. This is not the best assumption so
a multiplicative model was attempted where the roadside characteristics would work with
each other to predict the accident rate. The same method was used as when looking for
the best risk and accident rate compilation in section 3.4. The first attempt used the
variables that were determined to have some significance from the additive model
development. The variables that appeared in the top additive models were considered for
the multiplicative model. The problem that developed from this automatic transference
of variables, is that any variable that had a zero value, whether it was an indicator

variable or just a value of zero, did not work well with the multiplicative methodology.
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To do the multiplicative model, the log of each variable was taken. So that what is
actually modeled is the log of the variable.

The characteristic of not being able to take the logarithm of zero caused many of
the variables to be unable to be just transferred from the additive model variable set.
Several variables were eliminated totally due to their status as an indicator variable or as
a count variable where many segments have a value of zero. A few transformations were
attempted were count variables are concerned. If the count variable had values on almost
every segment, the zero value was changed to a very small number that represents zero
without actually being written as zero. The variables parkinglots, allaccess, parking,
maccess, and residential were transformed this way. Using the logarithm of the variable
also increased the correlation of several of the variables causing some to be eliminated
from further model development.

The first attempt at the multiplicative model had a very large coefficient of
determination with R*> =0.977. The large coefficient of determination may be indicating
more than that the model is a good fit for the data, but also may be showing that the
model is overfit to the data set and not transferable to other data sets. The adjusted

coefficient was not as large, but it was still good with R? =0.7241. Another issue that

was found is that of the P-statistic for the overall model. It shows that the overall model
is insignificant, with a statistic of 0.3791, implying that there is something incorrect with
the model

The variable coefficients for this model also have a P-statistic that shows that
none of the variables were significant to the selected level of 0.10. Since none of the

variables were significant, for further investigation any variable that was significant to
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less than 0.5 was eliminated. This created a basic level to see if the variables were
significant in further development and if a multiplicative model developed this way was
possible.

In addition to the significance of the model and the variables being a problem,
some of the graphical diagnostics also indicated this. The most severe problem was seen
in the normal quantile plot, which should show the residuals falling along or near the
solid line (See Figure 71). The points in this situation are all well above the line which

implies that this model does not do a good job at explaining the variation in the data.
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Figure 71: Normal Quantile Plot for First Multiplicative Model

The next step in the multipliable model development looked at the model created
from the remaining variables after the five least significant variables were removed from
further consideration. The new model has an overall significance that is acceptable as
can be seen by the P-statistic of 0.0005. The coefficient of determination is lower than in

the previous model, but is still high at 0.6707. In this model, besides the overall model
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being significant, some of the individual coefficients are also significant, with length,

lighting, and  pole  being  significant to  greater  than a =0.10.

—23.091 —0.0088 7.587 0.581

Rate =e vol *'" length™** grade crest " lighting " pole

There is some concern with some of the coefficients due to their standard errors.
Some of the standard errors show that with only one deviation the coefficient could
become zero, which causes some concern for the overall model, but this only affects the
variables that are not significant in the model to begin with. Unlike the first model, the
diagnostics do not give any indication of a violation in model assumption.

The second model, like the first, still had variables included in the final version
that were not significant. So despite the overall model working, the insignificant
variables were removed in anticipation of the remaining variables keeping their
significance and the overall model being significant.

The third model is significant and while the coefficient of determination
decreased slightly than from the second model, 0.6672 from 0.6707, the adjusted
coefficient of determination increased from 0.5719 to 0.6238, showing that this is the
The coefficients and other numbers of interest can be seen in

better of the two models.

Table 54 below.

Table 54: ANOVA Table for Multiplicative Model

Source DF Sum of Squares | Mean Square | F Value | Pr>F
Model 3 10.05655 3.35218 15.37 <0.0001
Error 23 5.01511 0.21805

Corrected Total 26 15.07167

Root MSE 0.46696 R-Square 0.6672

Dependent Mean | 2.90341 Adj. R-Sq 0.6238

Coeff Var 16.08302

The significance for the individual coefficients also increased slightly with all of

the variables, including the intercept, being significant to greater than 0.10. The standard
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errors for all of the coefficients are also acceptable in that one deviation can be taken and

there is no concern with the parameter estimate possibly becoming zero. This can be

seen in Table 55.

Table 55: Parameter Estimates for Multiplicative Model

Variable DF | Parameter Estimate | Standard Error | F Value | Pr>|t|
Intercept 1 -28.29984 10.22157 -2.77 0.0109
llength 1 -0.95851 0.25768 -3.72 0.0011
llighting 1 7.80913 2.17984 3.58 0.006
Ipole 1 0.56736 0.30369 1.87 0.0745

The final diagnostics to check since the model and all variables are significant are
the graphs to check model assumptions. The residuals versus the fitted values show that
there is a constant variance (See Figure 72). The studentized residuals versus the fitted
values shows the same thing with the addition of being able to identify outliers, of which
there are none to be concerned about in this model that can skew the model in one

direction or the other (See Figure 73).
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Figure 72: Residuals versus Fitted Values for Multiplicative Model
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Figure 73: Studentized Residuals versus Fitted Values for Multiplicative Model

The box plot of the residuals in Figure 74 shows that they are highly symmetric
with a slight skewness towards positive residuals, which implies that the model will have
a tendency to predict a higher accident rate than the actual rate. This is, however, a very

minor tendency and not a reason to disregard this model.
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Figure 74: Boxplot of Multiplicative Model

The normal quantile plot, seen in Figure 75, also shows that the model follows the
assumptions for a normal distribution with the residuals falling along the line. There is
no obvious departure from the normal line in a recognizable pattern that could indicate a

model violation.
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Figure 75: Normal Quantile Plot of Multiplicative Model

There are only very minor deviations from normality that can be seen in the
normal probability plot in Figure 76. The dashed line, which represents the model’s
distribution, almost exactly follows the solid line, which is a normal distribution. This

indicates that the model does not violate any of the model assumptions.
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Figure 76: Normal Probability Plot of Multiplicative Model

The parameter estimates for the variable length, in the second and third variations
of this model had a negative coefficient near negative one. This is suggestive of a rate.
The remaining variables were transformed into densities, to explore whether or not the
variable length could be dropped from the model. Despite, the coefficient near negative
one, the variable length was never shown to be insignificant even when all the other
variables were densities or percentages. This implies that length in this model format
remains an important factor towards predicting the crash rates for the total number of
accidents.

Rate = e length™**lighting™” pole®**" 1s the only model that was developed where
the overall model and each of the individual variables passed their significance tests, and
while this is the best version of the multiplicative model, only three variables are
included in it; length, lighting, and pole. From a modeling standpoint this is fine, but for

traffic engineers hoping to tell what part of a road section to improve this is not
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completely helpful. The engineers will be able to determine if their road section differs
greatly from other similar sections, but with so few variables included in the model there
is no clear way to be able to estimate changes in accident rate by improvements. Length
can be improved by becoming shorter or longer only by changing signal locations, which
is rare in urban settings. Lighting can also be improved only so much until the full
segment is lit, but in urban locations most arterial roads are already fully lit. The number
of poles can also be changes, but some will be necessary to mark street names and other
important driving directions. So while this model does a good job at predicting accident
rates, it does not do a good job in helping to make decisions on where to spend the

limited roadway improvement/safety dollars.

5.2.6 Injury Accident Model

In the same way that there were three variable groups when looking for the model
to predict the total number of accidents, the same three variable groups were used in the
process for an injury accident model. This is possible since the same data set is being
used and the correlation between variables does not change with a change in dependent
variables, allowing the same variables to be eliminated from further consideration. The
dependent variable in this model is the accident rate for injury accidents only. This
classification includes all types of injuries, including fatalities, and excludes property-
damage only accidents. Injury accidents account for approximately one-third of the
crashes observed in the study area. Being able to predict the number of injury accidents,
or the injury rate is important because the majority of resources for responding to

accidents and the care of their victims come from this group. The more injury accidents
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prevented the fewer resources needed to be set aside and earmarked toward emergency

response and care and could be used for repairing and updating roadway conditions.

5.2.6.1 Variable Group One

Variable group one consisted of the top twenty-four variables under
consideration. The possible combinations of variables were sorted by their adjusted
coefficients of determination to choose the best possible model that could come from the
twenty-four variables. The top model contained seventeen variables with an adjusted
coefficient of determination of 0.8508. The coefficient of determination and other values
can be seen in Table 56. The same o level of significance is used for the injury accident

model as was used for the total accident model, that of 0.01.

Table 56: ANOVA Table of Injury Accident Model Variable Group One Trial One

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 17 924.0355 54.35503 9.72 0.0008

Error 9 50.32513 5.59168

Corrected 26 974.36063

Total

Root MSE 2.36467 R-Square 0.9484

Dependent 7.9237 Adj. R-Sq 0.8508

Mean

Coeff Var 29.84303

The overall model passed the test for significance with a P-statistic of 0.0008.

Almost all of the variables in the model also passed their individual significance test with
only two failing. The variables that represent the number of minor access points and the
percentage of heavy vehicles in the traffic mix did not pass their significance tests. With
P-values of 0.2668 and 0.1536, respectively, these two variables needed to be removed
from the model by the significance a criteria. The same two variables were the only ones

whose 95 percent confidence limits for the parameter estimates included zero which
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indicates that there is a chance for the coefficient to be zero and the variable not part of
the model. Similarly, the partial coefficient of determination only indicates maccess and

heavyveh for exclusion.
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Figure 77: Residuals versus Fitted Values for Injury Accident Rate Variable Group One

The graphical diagnostics for this model indicate that none of the model
assumptions are violated. Figure 77 shows the residuals versus the predicted values
which indicates that there are not any outlying points and that the variance is

approximately constant based on the small data set available.
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Figure 78: Normal Probability Plot for Injury Accident Rate Variable group One

The normal probability graph indicates how closely the residuals of the model
follow a normal distribution. There is a small amount of variation on the left hand side of
the graph and on the top as can be seen in Figure 78. Despite the good qualities of this
model, there are two variables that are insignificant and further development is needed.

The next step in the model development consisted of a model that had only fifteen
variables with maccess and heavyveh being removed from the potential variables. This
second model passes the overall significance test with a P-statistic of 0.0002. The
coefficient of determination decreased slightly from 0.9484 to 0.9319 with a
corresponding minimal decrease in the adjusted coefficient from 0.8508 to 0.839; these

and other statistics can be seen in Table 57.
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Table 57: ANOVA Table for Variable Group One Final Model

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 15 907.99025 60.53268 10.03 0.0002

Error 11 66.37038 6.03367

Corrected 26 974.36063

Total

Root MSE 2.45635 R-Square 0.9319

Dependent 7.9237 Adj. R-Sq 0.839

Mean

Coeff Var 31.00006

Surprisingly, at this early stage in the model selection, all of the variables passed
their individual significance tests at the specified alpha level of 0.10.  The partial
coefficient of determination also did not identify any variables for possible elimination.
Review of the 95 percent confidence limits, did show one variable whose interval
included zero that of curves, which indicates the presence of one or more horizontal
curves. So there is a possibility that one variable maybe should not be in this model, but
only one of the possible identifying traits of that indicates that to be true.

The graphical diagnostics do not indicate any reason for this model to be
unacceptable. The residuals versus the predicted values plot indicates that the residuals
have a constant variance and are basically symmetric about zero, with perhaps a slight
tendency towards the negative side, predicting values that are lower than they really are

as can be seen in Figure 79.
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Figure 79: Residuals versus Fitted Values for Variable Group One Final Model

The distribution that the residuals follow almost completely follows that of a
normal distribution without the slight extra peak on the left hand side that the previous
model had. The residual distribution and a normal distribution can be seen in Figure 80.
The normal distribution is the solid line while the dashed line that follows closely is the

distribution from the residuals from this data set.

220



~300707
8
1

15 7

10

o T E— T T T T T T =
-6.75 -5.25 -3.75 -2.25 -0.75 0.75 225 3.75 5.25
Resi dual

Figure 80: Normal Probability Plot for Variable Group One Final Model
5.2.6.2 Variable Group Two

Variable group two consists of twenty-six possible variables. This
includes two more over group one, those of pole and lanelength. This is the same second
group of variables that was used for the development of the prediction models for the
total number of accidents that occur on a road segment. The variables were run through a
selection process that used the adjusted coefficient of determination to determine the top
models. The top model from variable group two consisted of twenty-five variables with a
coefficient of determination of 1.0. While this is the maximum allowable value for the
coefficient of determination, it is not always a good idea to reach the maximum allowable
value. This shows that while the model is a good representation of the given data set,
with other data, there will most likely be a problem since the model is over fit to the
original database. Event the adjusted coefficient of determination indicates that the

model is over fit with a value of 0.9998. Though the coefficients of determination were
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very high, almost all of the variables passed their individual significance tests with only
one variable failing the test. The variable that represents the percentage of on-street
parking was found to not pass the significance test, and only just barely. Parking had a P-
statistic of 0.103 and it needed to be smaller than 0.100. So this was a very close call.
The overall model was significant with not as a high a P-statistic as would be thought
with such a high coefficient of determination. The P-statistic was only 0.0121, but that is
enough to call the model significant. The graphical diagnostics hold true to the good
quality of the model as expected by the coefficients of determination. The boxplot of the
residuals shows that they are symmetrical about zero implying the constant variance of

the error residuals. This can be seen in Figure 81.
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Figure 81: Boxplot for Variable Group Two Preliminary Model
The normal probability plot also indicates the high quality of the model with the

distribution created from the residuals closely following that of a normal distribution as

can be seen in Figure 82. There are only minor deviations on the left side of the
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distribution with the peak of the residual distribution being slightly higher than that of the

normal distribution.
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Figure 82: Normal Probability Plot for Variable Group One Preliminary Model

Since one of the variables failed its significance test, it was removed and the
model was rerun. There was little change in the coefficients of determination and the
adjusted coefficient with a change from 1.0 to 0.9996 and from 0.9998 to 0.9953
respectively. This model, however, passes the overall significance test with a higher
statistical value of 0.0043 instead of 0.0121.

In this second draft of the model, all of the remaining twenty-four variables
passed their individual significance tests.  In this second draft of the model, all of the
remaining twenty-four variables passed their individual significance tests. The only
variable were there is some concern is that of SD, an indicator variable for problems with
stopping sight distance, where the 95 percent confidence limits show that there is a

possibility that the coefficient for this variable could be zero. That shows that there is a
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small possibility that SD should not be included in the overall model, but since it passed
the individual significance test, this variable was left in the model. It has historically
been found to be significant in affecting accidents, so there was not a strong concern with
leaving the variable in the model.

The graphical diagnostics showed that while the model does not violate any of the
model assumptions, such as constant variance, this is not the best possible model
available. Figure 83 shows the studentized residuals versus the predicted values which

shows the residuals to be evenly distributed about zero and have a constant variance.
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Figure 83: Studentized Residuals versus Predicted Values for Variable Group Two Final
Model

The normal quantile plot on the other hand, shows a variation in the data that
appears to possibly have a variation that could be describe by some function. The points
deviate from normal on the positive or negative side and then abruptly switch with a
sharp increase in deviance as can be seen in Figure 84. This implies that there could be a

model that follows the normal distribution closer.
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Figure 84: Normal Quantile Plot for Variable Group Two Final Model

The normal probability plot confirms this idea that other models conform to the
model assumptions better. The distribution formed from the residuals rises sharply above
that of the normal distribution with the peak falling between 30 and 40 percent higher.
There is also a deviation in both extreme sides with the distribution formed from the
residuals having small peaks on each of the extremities while the normal distribution
remains smooth. This can be seen in Figure 85. These graphical diagnostics show that
while numerically this model appears to be a close fit to the data and a good
representation, there should be a model where the residuals follow the normal distribution

closer.

225



100

~300707

-0.375 -0.225 -0. 075 0. 075
Resi dual

Figure 85: Normal Probability Plot for Variable Group Two Final Model
5.2.6.3 Variable Group Three

Variable group three consist of the variables in group one with the addition of the
variable lanelength (Refer to Table 47 in section 5.2.4). Using the same methods as the
other variable groups, the model selection criteria of the adjusted coefficient of
determination was used to choose the top model that could be formed from this group of
variables. The first version of this model had the highest adjusted coefficient of
determination at 0.9026 and consisted of twenty-one variables. The coefficients of

determination can be seen in Table 58.
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Table 58: ANOVA Table for Variable Group Three Preliminary Model

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 21 956.10864 45.52898 12.47 0.0054

Error 5 18.25199 3.65040

Corrected 26 974.36063

Total

Root MSE 1.91060 R-Square 0.9813

Dependent 7.92370 Adj. R-Sq 0.9026

Mean

Coeff Var 24.11248

The model overall passed its significance test with an F-value of 12.47. The
individual variables mostly passed their significance test with only the variables benches
and curves not passing. These two variables were only barely insignificant with P-values
of 0.1064 and 0.1381 respectively. They were also the only variables were zero appeared
in their 95 percent confidence limits for the parameter estimates, which shows that there
is a possibility that the variables should not be included in the final model.

The graphical diagnostics support the fact that the model form chosen is the

correct one. There was no indication of an inconstant variance and the residuals follow

closely along a normal distribution as can be seen in Figure 86.
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Figure 86: Normal Probability Plot for Variable Group Three Preliminary Model

Since two of the variables were not significant in the model, the model needed to
be rerun without those two variables. This second version of the model had nineteen
variables and an only slightly lower coefficient of determination at 0.9379 from 0.9813
previously.  The adjusted coefficient of determination, however, changed more
dramatically at 0.7692 from the previous 0.9026. This is a large change in the
coefficient, but the value is still large enough to make exploring this avenue worthwhile.

The model for the second version was found to pass the overall significance test
with a P-value of 0.0136. The individual parameter estimates did not fair so well as in
the previous model, with four failing to pass their significance tests. The variables
allaccess, witha, lane and markings were found to be insignificant to this overall model.
Due to the variables insignificance the process was repeated again, with the insignificant

variables removed from further consideration.
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The third version of this model contained fifteen variables.

As expected the

coefficient of determination and the adjusted coefficient again had lower values, but the

model still provides a good prediction value for the injury accident rates as can be seen in

Table 59.
Table 59: ANOVA Table for Variable Group Three Final Model
Source DF Sum of Mean F Value Pr>F
Squares Square
Model 15 850.98591 56.73239 5.06 0.0050
Error 11 123.37472 11.21588
Corrected 26 974.36063
Total
Root MSE 3.34901 R-Square 0.8734
Dependent 7.92370 Adj. R-Sq 0.7007
Mean
Coeff Var 42.26574

The model again passed the overall significance test, but in addition to that all the
variables this time passed their individual significance tests. There was no indication of
problems with the variables when looking at the partial coefficients of determination.
There was a slight indication that one of the variables may not be vital to the model when
looking at the 95 percent confidence levels. One variable, ospole, the number of
overhead sign pole, had a confidence limit that included zero which implies that the
variable might not be important to the overall model. As this was the only indication of
such a problem, however, the variable was left in the model.

The graphical diagnostics did not indicate that there were any problems with

model violations. The plot of the residuals versus the predicted values indicates a

constant variance and a symmetric division about zero as seen in Figure 87.
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Figure 87: Residuals versus Fitted Values for Variable Group Three Final Model

The normal proability plot also shows that there are no problems with this
model’s residuals not following a normal distribution. There are only minor variations
from the normal as can be seen in Figure 88 where the model’s distribution is slightly left

of normal and has a slightly lower peak value.
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Figure 88: Normal Probability Plot for Variable Group Three Final Model
5.2.6.4 Injury Accident Model Summary

In the search for the best possible model to predict the injury accident rate, three
viable contenders were developed. Variable group one and group three yielded models
with fifteen variables while variable group two developed into a model with twenty-four
variables. Each of these three models had coefficients of determination and adjusted
coefficients that would allow them to be used as good models. These coefficients can be

seen to compare in Table 60.

Table 60: Comparison of Final Injury Accident Rate Models

Variable Group | # of Variables | g R’

1 15 0.9319 | 0.839
2 24 0.9996 | 0.9953
3 15 0.8734 | 0.7007

Despite having higher coefficients the model developed from variable group two
was not selected as the best model. This model appears to be over fit to the database used

to develop it, which would make it less useful when applying the model to other data sets.
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This model also has a large number of variables which makes is fairly cumbersome to
work with. The remaining models from variable groups one and three both have the
same number of variables, so that does not separate them. Model one des have both the
higher coefficient of determination and adjusted coefficient of determination. Since both
are possible models the significance of the models were also compared. Model one had a
P-statistic of 0.0002 while Model 3 had a P-statistic of 0.005. The model with the larger
significance also had the larger coefficient values and therefore was selected as the best

model to predict injury accident rates.
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6 Results

The results of this research are three different crash prediction models. One
model predicts the total number of accidents on a road segment using an additive model
while the second uses a multiplicative or log-linear model. The last model predicts the
total number of injury accidents on each road segment. The models predict the total
number of crashes meaning the ones that occur on the main (straight segment part)
segment and at the major intersection of each segment, which is at the end of the segment
with the largest street numbers. This is an important distinction to make since most
prediction models are limited by either predicting crashes just at an intersection or just on

the segment.

6.1 Final Linear Model

The best model developed fort predicting the total number of accidents on a
segment with an additive model consists of six independent variables. The variables are
the number of overhead sign poles, the number of parking lot entrances, the percentage of
residential land use, an indication of whether or not horizontal curves are present, the
percentage of the crest on the road, and the percent of parallel on-street parking allowed
on the road segment. This model does a good job at explaining the variation in historical
accident data on the segments with a coefficient of determination of 0.7591 and an
adjusted coefficient of 0.6869. These coefficients are important in that a coefficient of
determination of less than 0.7 is typically considered as the break even point with models
with greater coefficients being acceptable for use and models with lower coefficients not
being used. The model statistics can be seen in Table 61. The overall model exhibits full

significance with an F-value of 10.51 leading to a P-statistics of less than 0.0001. This
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indicates that there is only a very small chance that this overall model is not the correct
one. The acceptable limit that was set as a model requirement was that this value must be

significant to greater than or equal to 90 percent, which the model more than meets.

Table 61: ANOVA Table for the Total Accident Prediction Model

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 6 4514.59295 | 752.43216 10.51 <0.0001

Error 20 1432.42057 | 71.62103

Corrected 26 5947.01352

Total

Root MSE 8.46292 R-Square 0.7591

Dependent | 23.14741 Adj. R-Sq 0.6869

Mean

Coeff Var 36.56099

In addition to the overall model being significant, the individual parameters were
examined for their significance and to determine what exactly the parameter estimates
were saying in the model. The only parameters that did not pass their significance tests
were that of the intercept and of the variable curves as shown in Table 62. The alpha
level for significance was set at 0.10 and both parameter estimates just barely fail their
significance tests. The intercept fails by just over one percent with a value 0.1106 and

the variable curves fails by less than four percent with a value of 0.1359.

Table 62: Parameter Estimates for the Total Accident Prediction Model

Variable DF Parameter Standard F Value Pr>|t|
Estimate Error

Intercept 1 10.29065 6.16320 1.67 0.1106
Ospole 1 4.92627 1.27494 3.86 0.0010
parkinglots | 1 -1.65091 0.29932 -5.52 <0.0001
residential 1 -0.33020 0.05147 -6.42 <0.0001
Curves 1 6.86994 4.42122 1.55 0.1359
Crest 1 3.29592 1.15180 2.86 0.0096
Parking 1 0.12747 0.05631 2.26 0.0349
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All the parameter estimates have some flexibility in that based on the standard
error of the estimate there is at least one standard error amount of space before there is a
question of the parameter estimate becoming zero. The coefficients of partial
determination also indicate that all the variables should remain in the model, so that there
is some debate that could occur on whether or not curves should be removed. There were
two major criteria for allowing a variable to remain in the model, that of the variable’s
individual significance and that of the coefficient of partial determination. The
coefficients of partial determination can be seen in Table 63. Type I SS indicates that
that is the value of the coefficient of partial determination if all the previous variables are
in the model. The value for residential is 1791.21721 which is the value gained by
adding the variable residential to a model that already contains the variables of ospole
and parkinglots. Type II SS is the coefficient of partial determination if the variable in
question is added to a model already containing the other variables. For instance, the
value for crest is 586.46737 which is the value gained by adding the variable crest to a
model that also contains the variables ospole, parkinglots, residential, curves and

parking. The remainder of the table lists the limits within which with a 95 percent

confidence it can be stated that the parameter estimate should be located.

Table 63: Parameter Estimate Statistics for the Total Accident Prediction Model

Variable DF Type I SS Type I SS 95% Confidence Limits
Intercept 1 14467 199.67010 -2.56557 23.14686
Ospole 1 798.66967 1069.28885 | 2.26679 7.58576
parkinglots | 1 565.28903 2178.83710 | -2.27527 -1.02655
residential 1 1791.21721 | 2947.73249 | -0.43757 -0.22284
Curves 1 478.60265 172.92665 -2.35257 16.09245
Crest 1 513.75622 586.46737 0.89332 5.69853
Parking 1 367.05818 367.05818 0.01002 0.24492
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Since the presence of horizontal curves historically plays a large role in
identifying potential accident locations it would be informative if it were left in as a
variable in the model. In looking at the 95 percent confidence levels for the parameter
estimates, again, the only questionable estimate where the value could be zero is for the
one variable that does not reach the full significance that was indicated. The easiest way
to notice a problem is when one side of the confidence limit has a negative value and the
other side a positive one which happens only with the intercept and the variable curves.

Looking closer at the parameter estimates shows that for the most part the signs of
the coefficients are as expected or can be explained. The intercept has a positive
coefficient, which means that there is a base accident rate for urban arterials. If the
coefficient were negative, this would be impossible in reality as there can only be
positive accident rates. The coefficient for the variable residential also makes sense in
much the same way. It is intuitive that residential locations would have lower accident
rates than busy commercial areas. The type of traffic in residential areas is mostly
restricted to only the people who live or are visiting in the area with the majority of
traffic occurring when people are traveling to and from work; otherwise people do not
traverse these areas. Commercial areas, on the other hand, have people who can be
unfamiliar with the area and large amounts of traffic at most times of the day, leading to a
higher possibility for accidents. The negative coefficient for the residential variable
demonstrates that where the land use is residential, there is a lowering of the accident
rate.

The other parameter estimate that has a negative sign with it is that of the

variables parkinglots. This states that the more entrances to parking lots the lower the
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expected crash rate should be. At first glance this could seem contradictory. Why, with
more places for turning vehicles, would the number of parking lots decrease the number
of accidents? This can be explained in that the parking lot variable does not really
represent just parking lots, but helps to represent the land use and the traffic patterns on
the segment. Besides creating places where turning conflicts can occur, parking lots have
the affect of removing parked vehicles from the sides of the road and of concentrating
pedestrians away from the roadway. Parking lots put many vehicles together in one area
and possibly remove some of those vehicles from the street. Parking on the street can
cause sight distance problems and create hazards by placing more objects around that can
be struck, but also by people entering and exiting their vehicles and entering and exiting
their parking spaces. If a driver is not paying attention, a person entering or leaving a
parked vehicle can cause a problem with the driver side door opening in the traffic path.
The same way a vehicle in the process of parallel parking can potentially cause problems
with other inattentive drivers. These problems are removed by having locating the
parking vehicles in lots where speed is slower and drivers are aware of the constant
parking maneuvers.

In the same way, that parking lots can remove vehicles from the side of the road,
the percentage of on-street parallel parking can add to crash rates. The coefficient of the
variable parking, which represents the percentage of on-street parallel parking that is
allow on a road segment, was found to be positive in this model indicating that the more
on-street parking is available the higher the crash rates should be expected to be. For
similar reasons why the variable parkinglots lowered the crash rates, the percent of

parking increases them. The presence of vehicles doing parking maneuvers and
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pedestrians going to and from their vehicles and nearby buildings can cause situations
that a driver is not expecting. While on an arterial, a driver typically expects to be able to
continuously move except when at a traffic light. When more pedestrians and parking
maneuvers occur on a segment they can startle a driver who is not expecting many of
these motions to occur.

The signs of the remaining parameter estimates are what would be intuitively
expected. The number of overhead sign poles has a positive coefficient, indicating that
the more sign poles the more crashes will occur. This can be for several reasons
including the fact that there are more hazards that can be struck by passing vehicles.
Overhead signs typically indicate that the entrance to a major arterial is nearby which
causes the need for turning movements onto the arterial and also sudden movements of
drivers who may have found themselves in the wrong lane to get onto the arterial. Both
of these actions can lead to the occurrence of crashes, which implies the positive sign of
the parameter estimate.

The variables crest and curves also have positive values for their parameter
estimates. Historically the presence of curves has been an indication of a location where
accidents can occur. This has been observed in many studies that have occurred on rural
and urban roads and much attention has been given to the proper design of horizontal
curvature, so it comes as no surprise that the presence of one or more horizontal curves in
this study indicates an increase of accident rates. If drivers are not expecting a change in
horizontal alignment or are traveling at speeds that are unsafe for the particular design

crashes are more likely to occur. This variable also has the parameter with the largest
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value of a coefficient either positive or negative, which implies that the presence of
horizontal curvature has a large impact on crashes.

Similarly, the variable crest has a positive coefficient signifying that segments
with larger crests will have larger accident rates. This is more likely an indication of the
road surface and condition rather than a reflection on the actual crest value because the
allowable limits for crests on new roads are rather limited. In New England where
problems such as frost heave and freeze-thaw problems are very important, the crest of
the road can increase with these problems or with the actual structure of the pavement
failing and causing part of the road way to sink. Another environmental problem that
develops with large crests, includes that of rain. During heavy rains water can build up in
the edge of the crest and cause vehicles to hydroplane and have problems. Variables such
as the quality of the pavement and the pavement markings were not found to be
significant in this model, but the crest could be representing some of these variables
qualities. This is a little difficult to state exactly, due to the small nature of the data set
from which this model was built. These parameter estimates all lead to the following

model:

Rate =10.29 + 4.920spole —1.65 parkinglots — 0.33residential + 6.87curves
+ 3.30crest + 0.13 parking

Every model needs to ensure that it is not violating any of the model assumptions.
Reviewing the graphical analysis of the model mostly covers the model assumptions.
The boxplot in Figure 89 shows that the residuals are centered on zero as is expected
based on the form of the model. The boxplot also shows where the quarter points of the
locations of the residuals fall, this is ideally a symmetric distribution. This plot suggests

that this model has a larger variation when it predicts lower than expected rates.
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Figure 89: Boxplot of the Total Accident Prediction Model

The graphical diagnostics show that there is no problem perceived with this model
violating the linear model assumptions. The plot of the residuals versus the fitted values
shows a very constant error variance and an even distribution between positive and

negative residuals (See Figure 90).
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Figure 90: Residuals versus Predicted Values for the Total Accident Prediction Model

There are no points that can be perceived as outliers either. This can more clearly
be seen in the studentized residuals versus the predicted values plot in Figure 91. The
heuristic for knowing whether to qualify a point as an outlier is if the studentized residual
is greater than four. For this model there is not even a point that deserves consideration

as an outlier, as the largest studentized residual value that occurred was -2.387.
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Figure 91: Studentized Residuals versus Predicted Values for the Total Accident Prediction
Model

The normal quantile plot in Figure 92 indicates that there is a strong inclination
towards normality as the majority of the points closely follow the line that indicates a
linear relationship. There are few points that deviate from following the line and are
mostly clustered around it. This is an indication that the model assumptions are not

violated.
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Figure 92: Normal Quantile Plot Values for the Total Accident Prediction Model
Again, only slight departures from normality can be observed in Figure 93 of the

normal probability plot. The solid line represents a normal distribution, while the dashed
line represents the distribution of the residuals from this model. The distribution for the
model has a slightly lower maximum value, and deviates slightly from normal with a

small skewness toward the right, but other wise is very similar to the normal distribution.
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Figure 93: Normal Probability Plot for the Total Accident Prediction Model

This model predicts the rate for the total number of accidents that occur on an
arterial road segment. Overall it appears to be a good model to use to predict these
crashes and it takes an additive form. The additive form indicates that the variables in
question tend to act individually upon the roadway in terms of causing crashes to happen.
They do not act together to change crash rates, which will allow each item to be reviewed
separately if the segment is about to be repaired or redesigned. This allows each variable

to be independently adjusted by traffic engineers and a visible effect to be noticed.

6.2 Final Multiplicative Model

A model that predicted the total number of accidents, but in a multiplicative form,
was also developed alongside the previous model. The final model chosen as the best
model that can predict the total number of accidents included only three variables: length,

lighting and pole. For this the coefficient of determination was 0.6672 and the adjusted

244



coefficient of determination was 0.6238. These values, while not low, are in a range that
is generally not acceptable for an accurate model. The coefficient of determination is
lower than that of the linear model at 0.7591. This makes the linear model appear to be
the better of the two for predicting the total number of accidents. The coefficients and
other statistics can be seen in Table 64 below. Having a lower coefficient of
determination and adjusted coefficient does not stop this multiplicative model from
passing the overall significance test with a value of less than 0.0001 when anything less

than 0.10 would be acceptable.

Table 64: ANOVA Table for Multiplicative Model

Source DF Sum of Squares | Mean Square | F Value | Pr>F
Model 3 10.05655 3.35218 15.37 <0.0001
Error 23 5.01511 0.21805

Corrected Total 26 15.07167

Root MSE 0.46696 R-Square 0.6672

Dependent Mean | 2.90341 Adj. R-Sq 0.6238

Coeff Var 16.08302

The significance for the individual coefficients including the intercept, were
found to be significant to greater than 0.10. With pole having the lowest passing statistic
at 0.0745. The standard errors for all of the coefficients are also acceptable in that one
deviation can be taken for all of the variables and in most cases two standard deviations,
eliminating the majority of the concern that the parameter estimates could possibly

become zero. This can be seen in Table 65.

Table 65: Parameter Estimates for Multiplicative Model

Variable DF | Parameter Estimate | Standard Error | F Value | Pr>|t|
Intercept 1 -28.29984 10.22157 -2.77 0.0109
Llength 1 -0.95851 0.25768 -3.72 0.0011
Llighting 1 7.80913 2.17984 3.58 0.006
Ipole 1 0.56736 0.30369 1.87 0.0745

The model created has the form of Rare = e length™**lighting ™ pole"*"" .
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The parameter estimate for the variable /ength has a negative coefficient
approaching negative one. This is suggestive of a rate. A transformation had been
attempted where all the variables were rates or densities in order to try and determine if
length should be removed from the model. Despite the estimate near negative one the
variable length was never shown to be insignificant even when all the other variables
were densities or percentages. This implies that length in this model format remains an
important factor towards predicting the crash rates for the total number of accidents. The
parameters for the other two variables are not suggestive of a rate and so no
transformations were tried on them.

The final diagnostics to check, since the model and all variables are significant,
are the graphs to check model assumptions. The residuals versus the fitted values show
that there is a constant variance (See Figure 94). This can be a little difficult to see due to
the way that the majority of the points are all clustered together towards the right hand
side of the plot, but the cluster does not show any signs of a systematic departure from

normality.
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Figure 94: Residuals versus the Predicted Values for the Multiplicative Model

The studentized residuals versus the fitted values show a similar view as the
residuals versus the predicted values with the addition of being able to identify outliers.
Based on the heuristic of needing to be greater than four before being considered an
outlier, none of the points quality or cause concern in this model. Figure 95 shows the

studentized residual plot.
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Figure 95: Studentized Residuals versus the Predicted Values for the Multiplicative Model

The box plot of the residuals in Figure 96 shows that the residuals are highly
symmetric with a slight skewness on the positive side, which implies that the model will
have a tendency to predict with a higher variance when overestimating the accident rate.

This is, however, a very minor tendency and not a significant reason to regard this model

as suspect.

248




Resi dual
1.07]

0.97
0.87
0.7
0.6
0.57
0.47
0.37]
0.27
0. 17
0.0
-0.17]
-0.27
-0.3]]
-0.47]
-0.57]
-0.6]
-0.77]

-0.87]
-0.97
-1.07

1

boxpl ot

Figure 96: Boxplot for the Multiplicative Model

The normal quantile plot, seen in Figure 97, also shows that the model follows the
assumptions for a normal distribution with the residuals falling along the line. There is
no obvious departure from the normal line in a recognizable pattern that could indicate a

model violation. This is a good indication that the model assumptions are being met.
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Figure 97: Normal Quantile Plot for the Multiplicative Model

There are only very minor deviations from normality that can be seen in the
normal probability plot in Figure 98. The dashed line, which represents the model’s
distribution, almost exactly follows the solid line, which is a normal distribution. The
distribution from the model has a slightly higher peak than does the normal distribution
and a small jag on the left side of the distribution. The jag is not duplicated on the right
side of the plot where the model’s distribution mimics the normal distribution. The
graphical diagnostics all indicate that the model does not violate any of the model

assumptions and the model form is appropriate for the given dataset.
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Figure 98: Normal Probability Plot of Multiplicative Model

This model predicts the total number of accidents that occur on an urban roadway
segment. It is a fairly good model, but not quite as good as the linear model that predicts
the rate of the total number of accidents based on the coefficient of determination. The
model form, that of a multiplicative or log-linear model, appears to not be the best choice
of functional form for a model in an urban area. This form has been used, but most often
in rural areas, where geometric and traffic characteristics greatly effect one another and
there combined effects cause the crashes. It appears that a linear, or additive model, is
more appropriate in an urban setting where most geometric and traffic characteristics

appear to work independently of each other.

6.3 Final Injury Accident Model

The best model developed that predicts the total number of injury accidents only
on a segment with an additive model consists of a fifteen independent variable model.

The variables include fence, ospole, hazards, parkinglot, vol, residential, length, grade,
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curves, crest, widtha, widthsida, pavement, markings, and lighting. This model does a
good job at explaining the variation in historical injury accident data that exists on the
segments with a coefficient of determination of 0.9319 and an adjusted coefficient of
0.8390. These coefficients are important in that a coefficient of determination of less
than 0.7 is typically considered as the break even point with models with greater
coefficients being acceptable for use and models with lower coefficients not being used.
These statistics can be seen in Table 66. The overall model exhibits full significance with
an F-value of 10.03 leading to a P-statistics of 0.0002. This indicates that there is only a
very small chance that this overall model is not the correct one. The acceptable limit that
was set as a model requirement was that this value must be significant to greater than or
equal to 90 percent, which the model more than meets. In this model the dependent
variable is the injury accident rate. The number of injury accidents consists of all types
of accidents, including fatalities, because in this data set fatalities were very rare, so they

were treated as if they were a very bad injury.

Table 66: ANOVA Table for the Injury Accident Model

Source DF Sum of Mean F Value Pr>F
Squares Square

Model 15 907.99025 60.53268 10.03 0.0002

Error 11 66.37038 6.03367

Corrected 26 974.36063

Total

Root MSE 2.45635 R-Square 0.9319

Dependent 7.92370 Adj. R-Sq 0.8390

Mean

Coeff Var 31.00006

In addition to the overall model being significant, the individual parameters were
examined for their significance and to determine what exactly the parameter estimates

were saying in the model. All of the parameters passed their significance tests with an
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alpha value of 0.1. Only one variable had a significance value that was greater than even
0.05. This can be seen in Table 67. All the parameter estimates have some flexibility in
that based on the standard error of the estimate there is at least two standard error

deviations of space before there is a question of any of the parameter estimates becoming

Z€10.

Table 67: Parameter Estimates for the Injury Accident Model
Variable DF Parameter Standard F Value Pr>|t|

Estimate Error

Intercept | -127.70032 | 26.22728 -4.87 0.0005
Fence | 2.02433 0.37825 5.35 0.0002
Ospole 1 1.81684 0.44240 4.11 0.0017
hazards 1 0.23576 0.05119 4.61 0.0008
parkinglots | 1 -1.58959 0.19219 -8.27 <0.0001
Vol 1 0.00044898 | 0.00015171 | 2.96 0.0130
residential 1 -0.13374 0.03427 -3.90 0.0025
Length 1 -0.00999 0.00292 -3.42 0.0058
grades | -0.78490 0.26125 -3.00 0.0120
Curves 1 2.90953 1.37192 2.12 0.0575
Crest | 3.45836 0.55909 6.19 <0.0001
Widtha 1 -1.00710 0.38811 -2.59 0.0249
widthsida | 2.09122 0.40398 5.18 0.0003
Pavement 1 -16.96193 3.24304 -5.23 0.0003
Markings 1 4.10381 1.08137 3.80 0.0030
lighting | 1.03749 0.23049 4.50 0.0009

There were two main criteria for allowing a variable to remain in the model, the
primary being the variable’s individual significance. The coefficients of partial
determination can be seen in Table 68 and were also reviewed to see if they indicated that
a variable should be removed from the model. There was no specific limit set for the
coefficient of partial determination, but if they appeared low then special care was taken
in regard to those variables. The table lists the limits within which with a 95 percent

confidence it can be stated that the parameter estimate should be located. By reviewing

the 95 percent confidence limits, it can be seen whether or not there is a possibility for the
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parameter estimate to be zero. As long as the confidence limits have the same sign for
the upper and lower limits, there is no concern. One variable only had confidence limits
that encompassed both a positive and a negative sign. That variable was curves,
representing an indication of whether a segment had one or more horizontal curves on it.
The confidence interval of -0.11005 to 5.92911 is strongly positive, but there is a small
negative range displaying the possibility of the parameter estimate actually being zero
and consequently not part of the model. Despite this possibility of the parameter estimate
becoming zero, the variable was left in the model for several reasons. There does not
appear to be a strong possibility of the estimate becoming zero and also the variable was

in the linear model predicting the total number of crashes on a segment. The variable has

also played a large role in prediction models for crashes that occur in rural areas, so it

was decided to leave it in the model.

Table 68: Parameter Estimate Statistics for the Injury Accident Model

Variable DF Type I SS Type I SS 95% Confidence Limits
Intercept 1 1695.19717 | 143.04048 -184.42618 | -69.97445
Fence 1 116.16753 172.81621 1.1911 2.85685
Ospole 1 57.39137 101.76015 0.84311 2.79056
hazards 1 114.78938 127.98072 0.12309 0.34843
parkinglots | 1 7.18908 412.76577 -2.01259 -1.16659
Vol 1 22.65698 52.84756 0.00011508 | 0.00078288
residential 1 241.80529 91.88955 -0.20917 -0.05834
Length 1 12.77385 70.37872 -0.01643 -0.00355
grades 1 0.32334 54.46064 -1.35992 -0.20988
Curves 1 24.60478 27.13734 -0.11005 5.92911
Crest 1 24.75725 230.86339 2.22781 4.68892
Widtha 1 6.42181 40.62676 -1.86133 -0.15287
widthsida 1 74.50164 161.68351 1.20207 2.98037
Pavement 1 55.12456 165.05443 -24.09982 -9.82405
Markings 1 27.23838 86.89846 1.72375 6.48388
lighting 1 122.24501 122.24501 0.53017 1.54480
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Looking a little closer at the parameter estimates shows that for the most part the
signs of the coefficients are as expected or can be explained. The intercept has a negative
coefficient, which is not the best possible one. It would be more appropriate if it were
positive because there cannot be a negative accident rate in nature. This base rate for
injury accidents is negative however due to the fact that the variable vol, representing the
average daily traffic on each segment, was included in the model. Due to the large
volume of the traffic this is somewhat counteracted. The other variable that was included
in the model that helps to counteract this large, negative coefficient is that of lighting.
The majority of urban streets are fully lit and as lighting has a positive coefficient, it is
instrumental in countering the majority of this coefficient.

The coefficients for the variables fence, ospole and hazards are what they would
be based on intuition. All three variables represent either a specific roadside hazard or
the total number of roadside hazards observed on the segment, with fence representing
the number of fences or retaining walls observed on the segment, ospole representing the
number of overhead sign posts and hazards representing the total number of roadside
hazards observed. These indicated that the more hazards there are on the segment the
higher the crash rate is going to be which makes intuitive sense. The more places a driver
can run into things, the more likely that will happen.

For the same reasons as were stated in the section on the total number of accidents
model above, the parameter estimate of the variable parkinglots was negative. The more
parking lots on a segment the lower the crash rate becomes. This is mainly due to the

fact that the variable is representative of how the traffic is behaving. Removing the slow
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traffic and parking maneuvers and confining them to a parking lot, instead of the street,
can avoid conflicts.

The variable vol, representing the volume or ADT on the segment has a positive
coefficient as was expected. The main school of thought behind that is the more traffic
on the roadway the more expected accidents. While some researches find that this is not
a linear increase but an exponential increase, there is still an upward trend. The
parameter estimate is one of the smallest numerically because it is multiplied by the
ADT, which is in the tens of thousands for the arterials in the database.

Residential also has the expected coefficient sign of a negative value. This shows
that the more residential an area is the less crashes occur because of the differences in
mindsets of the drivers. When a driver is in a residential area, he knows that there will be
slower traffic more turning vehicles and pedestrians and adjusts his behavior accordingly.
There is also a more regular pattern to the traffic, in that the majority of it happens at the
beginning and the end of the workday with only scattered times between then. Despite
these residential areas occurring on arterials as opposed to residential neighborhoods,
there are fewer people who need to access the adjoining land during the day.
Commercial areas tend to attract large volumes of traffic throughout the day and do not
have a time when people are not going there.

Length is one of the variables where the sign of the parameter estimate at first
glance seems contradictory. Intuitively the longer a road segment is the more accidents
there should be, but the negative sign implies that the longer the road segment the fewer
crashes happen. This is not as counterintuitive as it first seems due to the way that

crashes were assigned to segments. The crashes were assigned to a segment by the
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location of the incident with crashes occurring on the long stretch of the segment clearly
going to that segment, but this model predicts the total number of injury accidents which
includes accidents at the major intersection of each segment. Most models focus on
either segment or intersection crashes and they are rarely combined in one model, but
when traffic engineers are looking at problem locations, they can often include both
segment and intersections at the same location when major reconstruction is planned.
Due to this inclusion of what would normally be considered intersection accidents, the
parameter estimate for the segment length was negative. This means that the longer the
segment is the fewer accidents. This is because the short segments have only a small
distance before the intersection accidents start taking effect. The longer segments have
more space where the intersection does not influence the accidents and intersections have
long been agreed to be a location where many crashes happen.

The variables crest and curves have positive values for their parameter estimates.
Historically the presence of curves has been an indication of a location where accidents
happen. This has been confirmed by many studies that have looked at rural and urban
roads and much attention has been given to the proper design of horizontal curvature, so
it comes as no surprise that the presence of one or more horizontal curves in this study
indicates an increase of accident rates. If drivers are not expecting a change in horizontal
alignment or are traveling at speeds that are unsafe for the particular design, crashes are
more likely to occur. Similarly, the variable crest has a positive coefficient signifying
that segments with larger crests will have larger accident rates. This is more likely an
indication of the road surface and condition rather than a reflection on the actual crest

value because the allowable limits for crests on new roads are rather limited. In New
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England where problems such as frost heave and freeze-thaw problems are very
important, the crest of the road can increase with these problems or with the actual
structure of the pavement failing and causing part of the road way to sink. Another
environmental problem that can occur is the build up of rain water on the edge of the road
when the crest is too large, this can cause vehicles to hydroplane and get into problems.

Continuing to look at the variables that relate to geometric alignment, the variable
grade has a negative value for its parameter estimate. This appears to mean that the
larger the grade becomes the lower the accident rate becomes. This goes against intuitive
thought, because it seems that the larger the grade becomes the more crashes should
occur. In an urban area, however, there is so much happening that the geometric
alignment of the road does not play as important a role as it does on rural arterial roads.
There is much more traffic and commotion, that in an urban setting, the steeper the grade
becomes on the road, the fewer accidents occur because drivers slow down, so that
pedestrians and traffic becomes easier to see and easier to determine the relative distances
from these objects.

The variables widtha and widthsida both relate to the geometric design of the
road. Widthsida is the average width of the sidewalks on the segment, which is an
average of the two sides of the road. This has a positive parameter estimate, which
makes intuitive sense. The wider the sidewalk is, the more accidents occur. This is due
to similar reasons as that of why the coefficient for the residential parameter is negative.
The sidewalks become wider as they are used more and they get used more in areas
where there are the most attractions such as shops and parks. It is in these locations

where pedestrians can be found in large numbers. The more pedestrians that are around
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the more possibilities there are for accidents to occur. This is due to the fact that
pedestrian accidents can occur, but by watching to ensure that the pedestrians are safe,
drivers may loose sight of the other nearby vehicles or be forced to take actions to protect
the pedestrians, such as stopping quickly, that they wouldn’t have ordinarily taken.
Where the sidewalks are narrower, there are fewer pedestrians and problems are less
likely to happen.

On the other side, the coefficient for widtha is negative meaning that the wider the
traffic lanes are the fewer crashes occur. This is the expected value of the coefficient due
to the wider lanes making drivers feel more comfortable with oncoming traffic and
putting more distance between the passing vehicles.

The variable pavement has a positive value for the parameter estimate. Pavement
has two possible values that of zero meaning the pavement is of fair or bad quality and
that of one meaning the pavement is of good quality. The sign of the parameter reflects
this. The better the pavement is, so if the pavement qualifies as having a good condition,
the less crashes occur. This would be the expected condition because when the pavement
is in bad shape whether due to patching and cracking, or rutting on the road, there are
more problems that could occur. If the cracks are severe or if potholes develop, there is
no problem in seeing how crashes can happen. Even if the problems are not so severe,
they cause the driver to need to devote more attention to the road surface and remove the
driver’s attention from the other events that are occurring on the road at the same time,
including other drivers.

The parameter estimate for the variable that represents the quality of the pavement

markings is positive. At first glance this means that the better the pavement markings are
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the more crashes are going to occur. This statement however is not as contradictory as it
first may seem. When roads are well marked, drivers are more comfortable with their
surroundings and more likely to pay less attention to the task of driving. This parameter
does not represent itself as much as it represents more the driver’s attitude. If they can
clearly see the road and the lane markings and where they should be located, then their
attention can wander. If the markings are harder to see, then the drivers pay closer
attention in order to determine where they and their vehicle should be located.

The variable /ighting indicates the percentage of each segment that is lit. The
parameter estimate is positive which at first review seem to mean that the more lighting
the more accidents occur and conversely the less lighting available the fewer accidents
occur. This however is not truly the situation. This variable helps to counteract the
majority of the intercept value. Since most urban minor arterials have full lighting, this
brings the intercept coefficient closer to zero. So while playing an important role in the
model, the value of the coefficient cannot be interpreted in the conventional way.

These parameter estimates all lead to the following model:

Rate=-127.7 + 2.02 fence +1.820spole + 0.24hazards — 1.59 parkingloss + 0.00045V ol
—0.13residential —0.001length — 0.78grade + 2.9 1curves + 3.46crest —1.01widtha +
2.09widthsida—16.96 pavment + 4.10markings +1.04lighting

Every model needs to ensure that it is not violating any of the model assumptions.
This is mostly done by reviewing the graphical analysis of the model. The boxplot in
Figure 99 shows that the residuals are centered on zero as is expected based on the form
of the model. The boxplot also shows where the quarter points of the locations of the
residuals fall, this is ideally a symmetric distribution. This plot suggests that this model

has a larger variation when it predicts lower than the expected rates.
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Figure 99: Boxplot of the Injury Accident Model

The graphical diagnostics do not indicate that this model violates any of the
model assumptions. The residuals versus the predicted values plot indicates that the
residuals have a constant variance and are basically symmetric about zero, as can be seen
in Figure 100. The residuals on the positive side can be easily seen to fall under a
constant line at approximately 2.75. On the negative side there is one point that falls
outside of this range by a small amount with a value of approximately -3.75 but all the

other points fall under the -2.75 constant line.
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Figure 100: Residuals versus Predicted Values for the Injury Accident Model

There are no points that can be perceived as true outliers despite the one point not
exactly behaving in the residual versus predicted values plot. This can more clearly be
seen in the studentized residuals versus the predicted values plot in Figure 101. The
heuristic for knowing whether to qualify a point as an outlier is if the studentized residual
is greater than four. For this model there is not any points that deserve consideration as
an outlier as none of the studentized residual values are larger than 2.0. So despite one

point not being ideal, there are not any outlying points.
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Figure 101: Studentized Residuals versus Predicted Values for the Injury Accident Model

The normal quantile plot in Figure 102 indicates that there is a strong inclination
towards normality as the majority of the points closely follow the line that indicates a
linear relationship with several even falling on the line. Most of the points cluster around

the line with only a few deviating ones. This is an indication that the model assumptions

are not violated.
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Figure 102: Normal Quantile Plot for the Injury Accident Model

The distribution that the residuals follow almost completely follows that of a
normal distribution as can be seen in Figure 103. The peak of the model’s distribution is
only slightly lower than that of the normal distribution and skewed slightly towards the
right. The normal distribution is the solid line while the dashed line that follows closely
is the distribution from the residuals from this data set. This indicates that the residuals

from the model follow a normal distribution, which is one of the model assumptions.
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Figure 103: Normal Probability Plot for the Injury Accident Model

This model predicts the rate for the total number of injury accidents that occur on
arterial road segments. Overall it appears to be a good model to use to predict these
crashes and it takes an additive form. The additive form indicates that the variables in
question tend to individual act upon the roadway in terms of causing crashes to happen.
They do not act together to change crash rates, which will allow each item to be reviewed
separately if the segment is about to get repaired or redesigned. This allows each variable
to be independently adjusted by traffic engineers and a visible effect to be noticed. More
variables were included in the model that predicts injury accidents than were in the model
that predicts the total number of accidents. This is because the total number of accidents
is more difficult to predict, since property-damage-only accidents can be caused in many
more occasions than are injury accidents. The more exact influence of traffic and
geometric characteristics on injury accidents allows for more variables to be included in

the final model.
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7 Validation

The final step in the modeling process involves validation of the model through
independent data by comparing the results from the model with the actual values from a
data set that was not used to help create the model. This allows for a review of how well
the new data is represented by the model.

For the validation process, two data samples were used. One sample contained
what would have been the next segments added to the database had data collection
continued. These segments were located on parts of Park Avenue that were not
previously sampled. Since these six segments would have been included in the model
building database, they fit the exact profile of streets where the model can be
appropriately applied. The second data sample consisted of six segments from
Shrewsbury Street, which is classified as an urban arterial, though it is not a state primary
as were all the other segments. This set of segments was useful in seeing how robust the

developed models are and if some further application of the model is appropriate.

7.1 Linear Model Validation

The linear model from a surface review appears to be more robust than the model
that predicts injury accident rates. This is due to the fact that only five variables are
involved in this model as opposed to the fifteen in the injury accident rate model.

The first data grouping used for validation of the total accident model came from
Park Avenue in Worcester. These segments would have been the next to be surveyed if
more time had been available for collection of data for the model building. These

segments fit the profile of the segments used to develop the model: an urban arterial,
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preferably a state primary, with an average volume between ten and fifty thousand

vehicles per day.
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Figure 104: Predicted Values vs. Actual Values for Total Accident Rate Model with Park
Avenue Data

When the six Park Avenue segments were entered into the model there was a
fairly good result. As can be seen in Figure 104 there was a decent linear trend of the
actual values of the total accident rate versus the predicted values from the model for four
of the six segments. Two points, however, fall away from the linear trend. One does so
due to the model predicting a negative accident rate, which would translate into a zero
accident rate occurring on that segment since negative values do not occur. The other
outlying point is when the actual accident rate of the segment was very low and the
model forecast a much higher one. These both raise different concerns.

The one point where there is a very low actual accident rate may be indicating
that this segment, BPP, has an unusually low occurrence of crashes compared with other
similar road segments. This is not a bad thing, just a segment with better than average
conditions. The accident prediction model, gives what could be considered an average

accident rate, based on volume, length, percentage of residential land, number of parking
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lots, and several other factors. This allows for segments that are better than ‘average’ to
have low actual rates, while the predicted ones are much higher. Salisbury Street and
Sagamore Road bound this segment on Park Ave and the most unusually thing about this
road segment is that, while there was some commercial land use, there were no parking
lots observed. This is mainly due to the fact that the few businesses were located in
converted residential buildings that only had limited space for customer parking with
parking provided by driveways and on-street parking. While this is not the most common
conditions it is not unheard of and several segments that were used in the model
development phase had similar characteristics of combined commercial and residential
land use and no observed parking lot entrances.

The second point that leads to some concerns due to its lack of linearity compared
with the other points comes from the fact that the model did not predict a positive
accident rate. Instead the of the actual crash rate of 24.71 crashes per million vehicle
miles, a rate of —13.25 crashes per million vehicle miles was predicted. There does not
seem to be a particular reason why this negative rate would be observed. The only
unusually characteristic noted on the segment that spans between Chandler Street and
May Street, CPP, was a very large number of parking lot entrances, but the number of 27
falls below the maximum of 33 that was used to develop the model.

If the two outlying points are disregarded the amount of error in the predictions is
relatively low with the four remaining points all having percent of error of less than

twenty percent and two points less than ten percent as can be seen in Table 69.
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Table 69: Error Table for Total Accident Rate Model with Park Avenue Data

Segment | Actual Accident Rate | Predicted Rate | % Error
APP 15.39 15.76 2.39
BPP 6.59 22.53 241.65
CPP 24.71 -13.25 153.64
DPP 21.88 19.56 10.62
EPP 23.77 21.60 9.12
FPP 10.49 8.47 19.27

The second data group used to validate the model came from Shrewsbury Street
in Worcester. While an urban arterial, this road is not a state primary and throughout its
length does not have a large variety in areas such as land use and alignment. The use of
these segments will help show how robust the model is in its ability to be applied to more

streets than originally designed for.
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Figure 105: Predicted Values vs. Actual Values for Total Accident Rate Model with
Shrewsbury Street Data

The predicted values versus the actual values for the data from Shrewsbury
Street can be seen in Figure 105. As with the data from Park Avenue, there are two
points that do not follow the linear relationship that is observed with four of the segment
points. In terms of linearity Shrewsbury Street appears to perform just as well as Park
Avenue does in the model with only two of six points as outliers. Like one of the points

in the Park Avenue data, the outlying point on the negative side of the y-axis is due to the
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prediction model producing a negative accident rate for the segment of Shrewsbury Street
bounded by Adams Street and Fantasia Street (Segment DS). The only thing that appears
different in this segment than in the others is again a fairly large number of parking lot
entrances at 23 for this segment and while this is less than the maximum number used in
the model database, the next highest number of parking lot entrances was in the high
teens. On both occasions where large numbers of parking lots were observed, negative
crash rates are predicted. This leads to a restriction needing to be placed on the
prediction model of segments needing to possess less than a certain number of parking lot
entrances. This limit set at sixteen comes from the second highest number of parking lots
observed in the database with several segments having parking lot counts in the mid-
teens. This sensitivity of the model due to the number of parking lot entrances
emphasizes the fact that urban roads especially state primary ones have characteristics
that influence crashes that are different than on rural roads where geometry plays the
main role.

The second point that appears to be outlying from Figure 105 is similar to the
Park Avenue data has a vastly different actual crash rate than would be supposed from
the predicted rate. In the Park Ave. data the outlying point had an unusually low crash
rate, in this Shrewsbury Street data the opposite is true with the segment displaying a
very high crash rate of 36.63 while the predicted rate is 19.75 crashes per million vehicle
miles. This segment, FS, is bounded by Belmont Street (Rt. 9) on one side and the
entrances to a McDonalds and the Piccadilly Shopping Plaza on the other side. The
segment is also relatively short though not so much that it would not fit parameters in the

database. The practice of including both link and intersection crashes most likely is the
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cause of this deviation between actual and predicted rates. The intersection that is
included on this segment is with a state primary route and is in a configuration not of a T-
intersection, but of a three-way angled intersection and this combination, despite the
traffic lights regulating vehicles is the most probable explanation for the large actual

crash rates.

Table 70: Error Table for Total Accident Rate Model with Shrewsbury Street Data

Segment | Actual Accident Rate | Predicted Rate | % Error
AS 17.52 24.84 41.8

BS 16.37 19.48 19.0

CS 10.23 14.78 44.5
DS 8.82 -18.57 310.5
ES 6.14 10.24 66.8

FS 36.63 19.75 46.1

The error observed from the segments on Shrewsbury Street is more than those
segments from Park Avenue, but fairly reasonable with the exception of the one segment
with a negative accident rate as can be seen in Table 70. Without that segment the error

rate is under seventy percent.
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Figure 106: Predicted Values vs. Residuals for Validation of Total Accident Rate Model

The standard graphical diagnostic to check the model assumptions is looking at

the plot of the predicted values versus the residuals (See Figure 106). With the exception
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of the two points that do not fit the model by having too many parking lot entrances the
other points from both Shrewsbury Street and Park Avenue show a constant error
variance that follows that of the overall model. The variance for the segments used to
develop the model ranged from approximately negative twenty to positive twenty and the
validation data follows this trend. Two points even in this range could be considered
outlying where the true range would be between negative ten and positive ten. These
two points are the ones with either an unusually high or unusually low real crash rate as
opposed to what the model predicted.

The linear total accident rate model is fairly robust. Restrictions must be placed
on the allowable number of parking lots that can be on a segment in order for it to work
properly. There is an indication that predicting the accidents on state primary roads
works well, with an error rate at maximum of twenty percent, and the predicting crash
rates for urban arterials that are not state primaries has a larger error rate, closer to sixty
percent. While not originally designed for general urban arterials this model can be used

and if reworked with a larger database, even perform well for these roads.

7.2 Multiplicative Model Validation

The multiplicative model appears to be less robust than the linear model that
predicts total accident rates. This is due to the fact that fewer variables are involved in
the multiplicative model and the multiplicative model has a lower coefficient of
determination, 0.6672.

The same two groups of data were used for validation of the multiplicative model

as were used to validate the linear model; Park Avenue and Shrewsbury Street. The first
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data grouping used for validation of the total accident model came from Park Avenue in

Worcester.
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Figure 107: Predicted Values vs. Actual Values for Multiplicative Model with Park Avenue
Data

When the six segments were entered into the model there was a fairly good result.
As can be seen in Figure 107 there was a decent trend of the actual values of the total
accident rate versus the predicted values from the model. Two points, however, fall away
from the trend of the remaining points. One of these points is the one that was removed
from applying to the total accident rate linear model in the previous section CPP. It is
located below the trend line. The second of the two points was also previously discussed
due to the segment having a particularly low accident rate and therefore the more average
rate developed from the model does not fit segment BPP causing it to be located above
the trend of the model. The characteristics observed in the total accident rate linear
model remain true with the log-linear model. The same restriction on the database based
on the number of parking lot entrances should remain true in spite of the fact that the
number of parking lots was not determined to be a significant variable in the

multiplicative model.
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If the two outlying points are disregarded the amount of error in the predictions is
relatively low with the four remaining points all having percent of error of less than
twenty percent and three points less than ten percent as can be seen in Table 71. This low
error means that the model is doing a good job at predicting values that are near the

actual ones.

Table 71: Error Table for Multiplicative Model with Park Avenue Data

Segment | Actual Accident Rate | Predicted Rate | % Error
APP 2.73 2.77 1.5
BPP 1.89 2.75 45.9
CPP 3.21 2.73 14.8
DPP 3.09 291 5.6
EPP 3.17 3.03 4.5

FPP 2.35 2.74 16.5

The second data group used to validate the model came from Shrewsbury Street
in Worcester. While an urban arterial, this road is not a state primary and throughout its
length does not have a large variety in areas such as land use and alignment, but with so
few variables in this model, the lack of variety in the data may not have a strong effect on

the outcome of the model.
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Figure 108: Predicted Values vs. Actual Values for Multiplicative Model with Shrewsbury
Street Data
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The predicted values versus the actual values for the data from Shrewsbury
Street can be seen in Figure 108. As with the data from Park Avenue, there are some
points that do not follow the relationship that is observed with the other four segments,
however there is not a strong deviation from the noticed trend. These outliers depend on
where the trend is assumed to be, but there is not a clear indication of this location. The

previous outliers DS and FS are not as apparent in deviating from the remaining points.

Table 72: Error Table for Multiplicative Model with Shrewsbury Street Data

Segment | Actual Accident Rate | Predicted Rate | % Error
AS 2.86 2.76 84.2
BS 2.80 3.11 81.0
CS 2.32 2.96 71.1
DS 2.18 2.62 70.3
ES 1.81 2.90 52.7
FS 3.60 3.69 89.9

The error observed from the segments on Shrewsbury Street is significantly
higher than those segments from Park Avenue, but all within the same range of each
other as can be seen in Table 72. The jump from error rates of less than twenty percent to
error rates around eighty percent show how while the model does work in that it predicts
reasonable values for non-state primary roads, it does best with the exact type of roads
that it was modeled for. If a larger database was originally collected that included all
types of non-access controlled urban arterial roadways then it would probably yield a

better match with the data from Shrewsbury Street.
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Figure 109: Predicted Values vs. Residuals for Validation of Multiplicative Model

The standard graphical diagnostic to check the model assumptions is looking at
the plot of the predicted values versus the residuals (See Figure 109). With the exception
of the two points that do not fit the model by having too many parking lot entrances the
other points from both Shrewsbury Street and Park Avenue show a constant error
variance that follows that of the overall model.

The total accident rate log-linear model is fairly robust. The slightly lower
coefficients of determination and the adjusted coefficient have values that are typically
not acceptable for working models with 0.6672 and 0.6238 respectively, but that does not
prevent the model from giving a general range of what the crash rate on a segment should
be near. It was found that restrictions placed on the allowable number of parking lots in
other models should also be carried over to this model for it to work properly. There is
an indication that predicting the accidents on state primary roads works well, with an
error rate at maximum of twenty percent, and the predicting crash rates for urban arterials

that are not state primaries has a larger error rate of closer to eighty percent. While this
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model works well for the roads it was designed for, extending this exact model to other

urban arterial roads is not suggested.

7.3 Injury Accident Model Validation

The total accident rate linear model appears to be more robust than the linear
injury accident rate model. Though having the same functional form of a linear model
with a normal error distribution, the injury accident model has many more variables,
fifteen as opposed to six, which may cause it to be too specific to the model building data
set. The use of many more variable shows that more factors are needed when predicting
the injury accident rate, but this can be due to the fact that injury crashes compose only
approximately one third of all crashes.

The first data grouping used for validation of the injury accident model came
from Park Avenue in Worcester. These segments would have been the next to be
surveyed if more time had been available for collection of data for the model building.
These points fit the parameters of the model, an urban arterial, preferably a state primary,
with an average volume between ten and fifty thousand vehicles per day minus the one
point that has found to not fit the model parameters by reason of having too many parking

lot entrances.
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Figure 110: Predicted Values vs. Actual Values for Injury Accident Rate Model with Park
Avenue Data

When the six segments were entered into the model there was a fairly good result.
As can be seen in Figure 110 there was a fairly linear trend of the actual values of the
total accident rate versus the predicted values from the model for four of the six points.
This can be more fully seen when segment CPP, that has been removed from eligibility
for the model, is no longer in the plot (See Figure 111). Even though one segment has a
negative accident rate predicted, it remains along the line defined by the other data points
in the plot. The segment removed from the model parameters in the total accident rate

model, is again removed based on those same considerations.
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Figure 111: Predicted Values vs. Actual Values for Injury Accident Model with Valid Park
Avenue Data

The two points that lead to concern are the same points that brought concern in
the total accident rate model. In the injury rate model, both of these points have a
prediction of negative crash rates, which should effectively translate into a zero accident
rate occurring since negative accidents do not occur. The remaining point that is
removed from the range of acceptable predictions does not appear to have any specific
area where its characteristics are extreme from those that the model was formed from.
The segment does have a relative low actual accident rate, but not by any means the
lowest that was used to create the model, so no particular cause can be identified as the
reason for the negative injury accident rate.

Even when the extreme points are disregarded the amount of error in the
predictions is relatively high. Only two segments had an error less than 100 percent

positive or negative and only one segment had a percent error less than fifty percent as
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can be seen in Table 73. These large errors show that while the injury accident rate
model may have a large coefficient of determination at 0.9319, this does not mean that
the model will be robust enough for other data to be well represented and able to be

predicted accurately.

Table 73: Error Table for Injury Accident Rate Model with Park Avenue Data

Segment | Actual Accident Rate | Predicted Rate | % Error
APP 4.6 0.45 90.2
BPP 1.06 -1.47 808.4
CPP 6.72 -11.02 264
DPP 5.39 11.90 120.6
EPP 8.00 16.26 103.2
FPP 3.37 4.84 43.6

The second data set used to validate the model came from Shrewsbury Street in
Worcester. While an urban arterial, this road is not a state primary and throughout its

length does not have a large variety in areas such as land use and alignment.
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Figure 112: Predicted Values vs. Actual Values for Injury Accident Rate Model with
Shrewsbury Street Data

The predicted values versus the actual values for the data from Shrewsbury
Street can be seen in Figure 112. As oppose to the data from Park Avenue, none of the

points follow the expected linear relationship. With the Shrewsbury Street data, no
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positive injury accident rates were predicted, in spite of the fact that injury accidents did
occur. The actual injury accident rates are in the same range as those as the Park Avenue
data and the same range as those from which the model was built. This lack of any viable
accident rates, whether with a large amount of error or not makes this model not

applicable to non-state primary roads.
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Figure 113: Predicted Values vs. Residuals for Validation of Injury Accident Rate Model

The standard graphical diagnostic to check the model assumptions is looking at
the plot of the predicted values versus the residuals (See Figure 113). The data from Park
Avenue when the segment that does not fit with the number of parking lots is removed
from the data set mostly shows that the error terms follow the normal assumptions. They
show that there is a constant variance that falls within that of the model. The Shrewsbury
Street data on the other hand does not follow the normal assumptions, and as the model
does not appear work for the non-state primary roads, this does not create any surprises.

It appears that there is some systematic error in the residuals, but as the residuals did not
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exhibit this trait when building the model a transformation is not likely to help at this
stage leaving this model to provide very inexact results. By putting the residuals of both
validation data sets together it can be easily seen how the Shrewsbury Street data does
not work and how the Park Avenue data does work better. The conclusions that can be
drawn from this validation process include that the injury accident rate model is not

nearly as robust as that of the total accident rate model.

7.4 Summary of Validation

Some important issues have been brought to light during the validation process.
One of these is that the model is limited by the number of parking lot entries a segment
has. Segments with large number of parking lot entries did not perform well in either the
total accident rate model or the injury accident rate model. This sensitivity to the number
of parking lot entrances should be further examined in the future.

The total accident rate model was found work well for roads that exactly fit the
profile of urban state primary roads with volumes between ten and fifty thousand vehicles
per day with error rates of less than twenty percent. With other urban roads the total
accident rate model performed adequately but with error rates closer to fifty percent. The
total accident rate model can be used with a degree of confidence for state primary roads
and with a lesser amount of confidence for other urban roads.

The injury accident rate model was found to be less robust than the total accident
rate model. With the data that matched the model specifications (Park Avenue data), the
error rates were very high, and when the Shrewsbury Street data was used the model did

not perform well at all predicting only negative injury accident rates. While a general
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idea can be gained about injury accident rates on state primary roads, this injury accident
rate model should not be applied to other urban roads.

The multiplicative model was found to be of median robustness. It works well
with error rates under twenty percent for the urban roads it was designed for, but this
model’s range cannot be extended. When applied to non-state primary roads, the model

routinely produced error rates around eighty percent.
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8 Conclusions

The study of the causes of vehicle crashes is a complex mixture of vehicle, driver,
environment, traffic and road characteristics. These all combine in a myriad of ways that
a mathematical model can only attempt to duplicate. The major classifications of rural
and urban roads, followed by the classifications of arterial, collector and local roads all
have their own patterns and relationships that need to be examined individually and
separate from the others. Rural arterials have long been given much attention based on
the large number of miles of the roads and the large percentage of crashes that occur on
them and many advances have been made in the art of predicting crashes and speed on
those roads. But, closer spaced junctions, difference in land use patterns, geometric
consideration and traffic patterns along with different layout of link and junctions lend
themselves toward a different approach in urban locations than in the longer studied rural
ones. The urban environment is similar to the rural one, in that there are geometric and
traffic issues that occur, but with the larger populations and numbers of vehicles and
pedestrians using the roads, the urban locations become more complex with closely
spaced buildings, access points, roadside hazards and people.

In crowded environments the possibilities that exist for crashes to occur are
numerically greater leading to more actual crashes with the corresponding damage to
property and people. This large number of crashes and limited amount of funds to
respond to these incidents and to maintain and improve the roadway network is why the
ability to predict where and how many of these incidents will occur is an important skill.
A prediction model is also useful in that even if the exact crash rate it predicts is not exact

the model does give an idea of what similar road segments should have and allows for
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especially hazardous or safe sites to be identified and then examined for the
characteristics that are causing the extreme conditions.

The prediction of crashes has many level not the least of which is what should
actually be the depended variable, the number of crashes, a crash rate or something else.
Historically, crash rates and the total number of crashes have been the choice for
dependent variables. Both offer unique challenges as a primary choice. Crash rates are
typically normalized by length and volume leading to the question of whether crashes are
linearly related to these two items. The other common choice of dependent variable of
total number of crashes causes problems in that crashes are discrete and non-negative
which causes the normal distribution typically used for the error structure of prediction
models to not apply to the dependent variable. The issues relating to the relationships of
the variables in crash rates have not been verified repeatedly to be linear or non-linear in
nature. Experimenting with the database used in this research no clear relationship
between crash rate variables was established as linear or non-linear. The relationship of
the number of crashes following a Poisson or negative binomial distributions was found
to be equally unclear. This uncertainty lead to no clear trend being identified in the data
and the more conventional choice of crash rate chosen as the dependent variable.

Using a dependent variable of crash rate meant that the error structure is normally
distributed. The other major choice in modeling that occurs is how the independent
variables interact with each other. The forms that were considered as the most likely
form for predicting crash rates in urban area were linear relationships and multiplicative
relationships. Both have been used to develop models in rural areas but no agreed upon

relationship has been found in urban areas. Models were developed to predict the total
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crash rate with both a linear and multiplicative form. The linear form was found to have
a better fit for the data and to be a more robust model in that both state primary roads and
other arterial roads could have crash rates predicted to a better than fifty percent error.
The multiplicative model while working well for the state primary roads did not perform
well on other urban arterial roads. In addition to the functional form, it is necessary to
specify the form of the crash rate. The linear model that predicts the total crash rate has
many more independent variables that were found to be significant to predicting the crash
rate with fifteen variables as opposed to the six in the total accident rate model.

The models that were developed due to this research help show that the complex
nature of crashes in an urban environment need to have a different approach than those in
rural areas. The difference in the interaction between variables in the different
environments needs to have more exploration since both forms produce workable models
and the true model most likely lies in between the two forms. Limitations were also
placed on the model due to the small size of the database used to develop the models.

With a larger database the relationships between variables should be easier to identify.
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A Appendix: Database for Creating Model

This appendix has the datasheets for the arterial segments that were used to create

the models in this paper. The summary sheet of that data is also included.
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Segrment A

Date: Q/Q\ -0 3 Weather: Surw\\/

HS55 2 |
< b
| >
& Belmont Sweet K19 .
5 \
3 ks
by “—® J
3 — \
@ 7
S
5 5 %%1] 2
LE 2+ %5 [
;jv‘) <V g‘%
b I x
Posted Speed: A5
Minor Access Points (Road Names)
LA}
# of driveways Il = 2~
# of parking lots =
roadside hazards: firehydrants mailboxes %!'IJI flighd poles benches trees
W = l 3 = 1O i by =10
overhead
monument fences wall buildings sign poles sign
o =9 "= ay = Gt Lyt = i = Y
parking meter rock
(R o
Section Length: %90 it
Vertical Grade: 7.5 % Crest on road: 3.0 %
Terrain Type: level @ mountainous
Land Use % residential commerical OO 76 industrial
# lanes: Going Left: D Going Right: L

A-W




width of lanes: 10, (O 0.5 (] 105
type of shoulder.  paved dirt one
width of shoulder: @) O
sidewalk present: no width: 6'
curb present: @ no
drainage present: no
pavement quality: good fair bad
describe: a Low po&d’\ »
pavement marking quality good fair bad
describe: FhOS'H\[ 90)’\2
parking allowed yes % allowed
road lighting: not 0O %
sight distance issues: yes
describe:
horizontal curvature describe: curve
approximate curve length:
radius:
median type: grass painted other
width in

A-12




Segment 515

-0
Date: 9-2 Weather: 50"(\\/
Q ™~ Q.
E —
9 RY 9 4 3§
X Q S
oL Relmont ST V| & ¢
o 5 ¥ 9
¢}
§ -
Y A+ L
YY) ! Y
S
< z
Posted Speed: 25
Minor Access Points (Road Names)
# O
# of driveways O
# of parking lots O
!
roadside hazards: firehydrants mailboxes utllity/@poles benches trees
@) =2 (@)
— overhead
monument fences buildings sign poles sign
! ) =3 (&) O I =
parking meter rock
o S
Section Length: &a (o ft
Vertical Grade: O.Q % Crest on road: O .7 %
Terrain Type: rolling mountainous
Land Use % residential commerical OO 7o industrial
# lanes: Going Left: Q\ Going Right: 9—

A-135




width of lanes:
type of shoulder:
width of shoulder:

sidewalk present:

paved

@

curb present:
drainage present:

pavement quality:

good

width: o'

no

bad

describe: cuHng P atchaind
pavement marking quality good bad
describe:  _ Yartng +0 Lo JC
parking allowed yes % allowed
road lighting: not OO %
sight distance issues: yes
describe:
horizontal curvature describe: curve
approximate curve length:
radius:
median type: grass paved w/ curb painted other
width ft in

5.5

frone)

\/



segment C5

Date: Q-21-04 Weather: SU”V‘Y #<7
#1/9 4 /
U
£ $
|8
23 0 Q¢
3 5)’ Y F &
3 0 J & 8
[L, N
—{D
@
— -
~ ¥ t Y 9
g § Belmoent Stree & D
\wy W
~ V4
% 3 R+ .9 & é
< 9
Posted Speed: Q) 5
Minor Access Points (Road Names)
A
# of driveways O
# of parking lots (1 ="~
roadside hazards: firehydrants mailboxes utilitydighPpoles  benches trees
| = o w =5 | (@)
overhead
monument fences buildings s;gn poles sign
@) y2 A wr_ =7 n_=
parking meter rock
we =5 o
Section Length: 503.5
Vertical Grade: H.| % Crest on road: O. 5 %
Terrain Type: level mountainous
Land Use % residential commerical 1O 75 industrial
# lanes: Going Left: Going Right: -

A-15




width of lanes: | |

It |2

type of shoulder:  paved

width of shoulder:

i

sidewalk present: no
curb present: no

drainage present:

pavement quality: good

width: (O'5

no

bad

describe:  (\ J¥+ing, , Cw pa{fhes

pavement marking quality good
describe:

road lighting:
sight distance issues:

describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass
width

fair
L{O % allowed

not 100 %
yes

paved w/ curb painted other
ft in

A-16

[10'G"

none,




Date: q--03

Segment D3

Weatherr Surnmnm \/

A-\11

3 5
Q <
g A §
G0 132 @ \¥ © |3
= Ko V)
& ‘Q oY) a}
i
3 v < | = %:;
v N 2 @ ‘Q( Cy S
N N S ) )
AN o "
[\ \4
=31
»139 #\17 # 154 e
Posted Speed: ALS)
Minor Access Points (Road Names)
#
# of driveways AT MUy 11l =+3
# of parking lots {y =2
roadside hazards: firehydrants mailboxes utilityight poles  benches trees
i = 1 o | Ty =17
overhead
monument fu%uces buillf,;'jngs sign poles sign
) M - Wt by =30 bl =29 !
parking meter “rock
(& (&R
Section Length: 24071 ft 3"
Vertical Grade: q.1 % Crest on road: L/ .8 %
Terrain Type: level ( rollin§f> mountainous
Land Use % residential ‘0 75 commerical ‘A0 o industrial
# lanes: Going Left: d Going Right: 1



width of lanes: / é ’ QQ '

type of shoulder:  paved dirt

\ [
width of shoulder: O O

sidewalk present: no width: B l
curb present: no

drainage present: no
pavement quality: good bad

describe: crol Ks'ng e uttin G

pavement marking quality good fair

describe: very faded, can't fell \anes

parking allowed no CQO % allowed
road lighting: @ not OO0 %

sight distance issues: no yes
describe:

curve —p =00

horizontal curvature describe: straight ;{

approximate curve length: j - Hay'
radius: X Yo'
median type: grass paved w/ curb painted other
width ft in

A-1€




segment £3

Date: 4 - 2\-0% Weather: stn r\\/ .
#2829 #3280 — #259 a4g
N » -4 9 " N
~ _—
S N 4 £ b £ 2
Lo |petplrp | (Mol ® |3|e ] 3
%__ ) Ny Y § = )
K 1B =l —
<< =
{5 Yolsl@ 3| @
S S
SO @ g < @ < @ 3 o
Q £ Q M C é
o & Q? L))’ =
>~
> S
3 2
N <
Pe\m ont Stree
_Y. 9
Posted Speed:
Minor Access Points (Road Names)
o
# of driveways st T 1 = 1]
# of parking lots i
roadside hazards: firehydrants mailboxes %}_ht%_ oles benches Lr;es
'_“__’5_ o Mt =0 m5
overhead
monument fences buildings sign poles sign
l jﬁ?”/ =13 Qﬂufr’ = (I M##w%m:3q Il = 2
parking meter rock
O 0o
Section Length: A2 90 ft
Vertical Grade: g.8 / 8.9 o Crest on road: 4.7 %
Terrain Type: level rolling
Land Use % residential |0 70 commerical ‘RO 7o industrial
# lanes: Going Left: 2 Going Right: 2l

A-19



width of lanes:

' W

type of shoulder:

width of shoulder:

dirt none

G 4

W

sidewalk present: no
curb present: no

drainage present: (yes

pavement quality: good

. )
width: o

no

bad

e pubhng, Some g atching

pavement marking quality good

describe: Cad™ 3

parking allowed no
road lighting:
sight distance issues:

describe:

horizontal curvature describe:
approximate curve length:
radius:

median type: grass
width

bad

30 % allowed

not <O %
yes
@ curve
paved w/ curb painted other
ft in

A-20

(nong)




Segment FB

pate: A-RN-0D Weather: Sanny
r ¥ 3
3+ #aq0 AB8F ©
a v g
3 3 ¥
U -
b 2
0]
oA
5°
Gemont St RY 9
Posted Speed:
Minor Access Points (Road Names)
# o
# of driveways O
# of parking lots 1
roadside hazards: firehydrants mailboxes utility@ poles benches trees
\ O wr =1 (o) o
overhead
monument fences buildings sign poles sign
&) h = | iy =14 I
parking meter rock
o o
Section Length: 5 ,39 ft
Vertical Grade: _3 % Crest on road: 9 v L—l %
Terrain Type: rolling mountainous
Land Use % residential commerical OO 70 industrial
# lanes: Going Left: 9\ Going Right: s

A-3|




width of lanes: \\:5\ 1ne' | \Q.\

type of shoulder:  paved dirt

\ ]
width of shoulder: O O

\
sidewalk present: @ no width: ©

curb present: no
drainage present: no

pavement quality: good bad
describe:  |\s o€ rudnd

pavement marking quality good bad

describe: Cad‘\f‘%
parking allowed yes % allowed

road lighting: not LOO %
sight distance issues: yes

describe:

horizontal curvature describe: curve
approximate curve length:

®

radius:
, ravsed _
median type: grass aved w/ cu painted other
width ft in
)
310
&' a man sechkon

A-2Q




Date: G-R-0D Weather: §unr\\/
P H 90
+# 304 7
>~
5 'S
- 3
) U © (o%
v - R}
\ g O
% 3 [ £
: %)
] 9 o
-t
o 3H—*
9 &
<
I
QL
el mont S treet
Ry. 9
Posted Speed: :
Minor Access Points (Road Names)
# {
# of driveways O
# of parking lots i = Y
roadside hazards: firehydrants mailboxes utility/fghbpoles  benches trees
\ O i =4 o @)
overhead
monument fences buildings SJ_QQ poles sign
O { W= o wr =10 Q
parking meter rock
o (&)
Section Length: H 10 ft
Vertical Grade: .o % Crest on road: 3. %
Terrain Type: level mountainous
Land Use % residential commerical VOO 7o industrial
# lanes: Going Left: :7 Going Right: L"

A-3D




width of lanes: ”:5/‘ “/, /).5‘ I 1 “, ”

type of shoulder:  paved dirt non

width of shoulder: O\ O ‘

sidewalk present: @ no width: 54"
curb present: bot no

drainage present: no

pavement quality: good bad
describe: (2,5 crocics deep ruthno

pavement marking quality fair bad
describe:
parking allowed yes % allowed

road lighting: not [OO %

sight distance issues: yes

describe:
horizontal curvature describe: curve
approximate curve length:
radius:
-
median type: grass paved w/ curb painted other
width o 1t (@) in

A-2y




segmen + HB

Date:  g.gn-05 Weather. Sunny
LS ——
¥ Hoo —
500 “2 =+ s0Y
4 ayg
Y S “ +
< 0 - " r * &
N 4 \(’ N N 4
< o o) < N <
N R EIEE: @ A3 a5l 8
A > 9 p < s |©1:1915 19 4
Q -~ C S
g J < b 1 V¢ Ul |2 <
PIES :
N @— 2
S !
4 r————/ N
Gelmont S+ R4
Posted Speed:
Minor Access Points (Road Names)
g
# of driveways M1 =&
# of parking lots w71 = l
roadside hazards: firehydrants mailboxes utili ty/l@poles benches }%Ees
M_‘q_ L_____ ﬁffn’ = IS _u_'ia
overhead
monument fences buj ldmgs sign poles sign
o W= 4 =9 "mfl?fu%i"nf TS
parking meter rock il :_"qi Ei
R o
Section Length: AP0 1t
Vertical Grade: 5.2 BT % Crest on road: 4 %
Terrain Type: level mountainous
Land Use % residential commerical 10 O o industrial
# lanes: Going Left: 3 Going Right: D

A-25



width of lanes: 1.5 ”,5l H‘ | i

type of shoulder:  paved dirt

width of shoulder: O 0’

sidewalk present: @ no width: )

curb present: @ no
drainage present: no

pavement quality: good ( faip bad
describe: rudbng

pavement marking quality good @ bad
describe: Codno

parking allowed yes % allowed

road lighting: not 1OO %
sight distance issues:

describe:

yes
horizontal curvature describe: curve
approximate curve length:

radius:
roised
median type: grass paved w/ curl) painted other
width ft in
N
4 s

. |0" 4—main Secion

3

A-20




Segment A

Date: q - Q’_' - O ,b Weather: (0 4)) 5 *”\/
+ | —»
+
O
o~ Y
v &
L\
59
%]
™)
A £
Qhand-\@’ Shree <
s
24 \2R 1AAA
Posted Speed:
Minor Access Points (Road Names)
LA\
# of driveways O
# of parking lots (1| =D
roadside hazards: firehydrants mailboxes utility@poles benches trees
Wi =7 ° # =5 o o
overhead
monument tences buildings sj&g poles sign
(&) o T = ar SO M =@
parking meter rock
M =77 @)
Section Length: L’t(oq ft
Vertical Grade: O. 5 % Crest on road: 2. L" %
Terrain Type: (Tevel S rolling mountainous
Land Use % residential A0 o commerical ke O7s industrial
# lanes: Going Left: & Going Right: A

A-277




' ‘
width of lanes: .5 A [ 16.5
type of shoulder:  paved dirt one
{ {
width of shoulder: O O
!

sidewalk present: no width: 10,5 (O
curb present: no
drainage present: no
pavement quality: good bad

describe: minor rotHmna + crock 3
pavement marking quality good bad

describe: s\arfin 9 Yo Yacde
parking allowed no R0 % allowed
road lighting: @ not OO %
sight distance issues: yes

describe:
horizontal curvature describe: straight

approximate curve length:

radius: 4y '
median type: grass paved w/ curb painted other lone,

width ft in S~

A-29




q-21-03

Z

Date:

Segmen + >C

Weather mMr.SHY

115
.
& 3
RY 122 1A 3 Y
\Y)
Chandler Street S
Posted Speed:
Minor Access Points (Road Names)
3
# of drivewaysn = 2~
# of parking lots 4t wnr 4™ =15
roadside hazards: firehydrants mailboxes utili ‘poles benches trees
W => ing =4 wru =V O
overhead
monument fences buildings poles sign
o w =5 m*fml =4 wug'“” =14 !
e%rking meter rock
LU s =25 O
Section Length: 1163
Vertical Grade: 3.0 29 GO% Crest on road: 3.4 %

Terrain Type: level mountainous
Land Use % residential commerical OO 76 _industrial
# lanes: Going Left: a Going Right: ‘-

A-29



width of lanes:

type of shoulder:  paved

width of shoulder:

sidewalk present: @ no

no
drainage present:

pavement quality:
describe:

curb present:

good

pavement marking quality good
describe: Star hn

parking allowed yes no

road lighting: ( presenti

sight distance issues:
describe:

horizontal curvature describe:
approximate curve length:

radius: KR IO ¥
median type: grass
' width

width:

no

(air) bad

minor roHn g ) cracking

bad
3 o ace

75 % allowed
not 100 %
yes
straight @
paved w/ curb painted other
ft in

A-30

'

(nong}

N~N—



SQ@YYI ent CC

Date: Gd-271-6 > Weather: ' ¢S ’LY
#Hlio —> 4D |
_ 4
A
o
4 ~
V) 4 Ny
)
> N
3 9
3 Chonaler Dt reet &
3
3 Ry 2, \22A
Posted Speed:
Minor Access Points (Road Names)
# O
# of driveways It =9-
# of parking lots j1 =
roadside hazards: firehydrants mailboxes utility/Lif;ht poles benches trees
i N=9 Hy = o e
overhead
monument fences buildings s’llgn poles sign
o ! we =25 w7 m=2
parking meter rock
(CR o
Section Length: 290 ft
Vertical Grade: 3- 2 % Crest on road: 3, L/ %
Terrain Type: level mountainous
Land Use % residential commerical 1 OO Yo industrial
# lanes: Going Left: ). Going Right: =L

A-21



width of lanes: /(05, 'L 12 .5

type of shoulder:  paved dirt

t 4
width of shoulder: O O

sidewalk present: no width: (1
curb present: no

drainage present: no
pavement quality: good bad

describe:  ynynor pu-HvW\ﬂ r crackin g

pavement marking quality @ fair bad
describe:

parking allowed yes % allowed

road lighting: not OO0 %
sight distance issues: yes

describe:

horizontal curvature describe: curve

approximate curve length:
radius:

median type: grass paved w/ curb painted other none
NS

width ft in

A-32



Date: Q‘ Qﬂ -O fb

S ngemL DC

Weather: meer

F 1D\ —» 5
%) J %
£
—-
5 :
: v
8 Oaon Aler Stveet
Q- Ry \23, Va2 A
Posted Speed:
Minor Access Points (Road Names)
# O
# of driveways [
# of parking lots M =4
roadside hazards: firehydrants mailboxes utility/light poles benches trees
\ e =4 O (@)
overhead
monument fences buildings sign poles sign
O \ wri =G wr__~5 !
B%Lking meter rock
ST o) fe)
1
Section Length: 340k # IO
Vertical Grade: D, H o Crest on road: 3.4 %
Terrain Type: level mountainous
Land Use % residential commerical 100 7o  industrial
# lanes: Going Left: 9\ Going Right: L

A-3>



v i !
width of lanes: .5 |2 12 6.5
type of shoulder:  paved dirt
. \
width of shoulder: O O
sidewalk present: no width: {1 | O
curb present: no
drainage present: no
pavement quality: good bad
describe: minor craclkes + eattS
pavement marking quality fair bad
describe:
parking allowed no OO % allowed
road lighting: (present ) not LOO %
sight distance issues: .@ yes
describe:
horizontal curvature describe: curve
approximate curve length:
radius:
median type: grass paved w/ curb painted other @
width it in

A-34




SengnJr EC

pate: -2 1- 03 Weather. M{SHY
_P
B 18l =199
) |2]e

41/9{;0 8‘) N

l c IV, ‘o)

8

&) Y

§ ]

N
S |
Chandler Syreet  RY YB3 Y234

Posted Speed:
Minor Access Points (Road Names)
#
\

# of driveways = 5
# of parking lots-a1T ) =@

roadside hazards: firehydrants mailboxes utility/light poles benches trees

u_=9 o i =% O g =2
overhead

monument fences buildings ﬂgn poles sign
[CR— M =D s =17 it =13 D=3
parking meter rock
o o

Section Length: Q‘/Q D) 5 ft

Vertical Grade: 7,0 % Crest on road: 3. (‘f %

Terrain Type: level mountainous

Land Use % residential H40 o commerical 55 70 industrial 5 Zi

# lanes: Going Left: 9\ Going Right: &.

A-35



{ ! t i

width of lanes: 105 /Q ’ 2 /é 6

type of shoulder:  paved dirt
\
width of shoulder: @) o'

! M /
sidewalk present: no width: ) o / O~5
curb present: no
drainage present: no
pavement quality: good bad

descibe: minor roHg minor cracks
pavement marking quality fair bad
describe:
parking allowed no BO % allowed
road lighting: not OO %
sight distance issues: no [ lor
describe: con' ¥ see 5\‘32’\o\l — Sng,m 4o tell you signa colo
horizontal curvature describe: straight
approximate curve length:
radius:
~ 35D
median type: grass paved w/ curb painted other Nnone
width ft in N———

A-36



Segment FC

Date: Q-271-0 5 Weather: m\‘si\y
9 \O —
#19 ﬂg; #anY N, ?’317
g
¢ L
g2] 2
5 <
| »
N s
9 -
3 N

Chandler St

RY 123, T2 A

Posted Speed: 20 mph
Minor Access Points (Road Names)

# 5
# of drivewaysHit” = 2
# of parking lots /il =7

roadside hazards: firehydrants mailboxes
]
monument fences
O =2
parking meter rock

> o
Section Length: - 98aAw T

Vertical Grade: 0.l %
Terrain Type: @ rolling
Land Use % residential 57
# lanes: Going Left: Q

utility/light poles benches trees
L =% O py =4

overhead
B%ijdir:gs sign poles sign
Wbr= 1 ML 26 =3
Crest on road: ©.O %
mountainous

commerical 7D 7 industrial

Going Right: QN

A-37T



width of lanes: /@,5‘ . )’D,l [ (0.5

type of shoulder:  paved

width of shouider:

sidewalk present: @ no

curb present: no
drainage present:

pavement quality: good

width: 10" 11° (' &"

no

bad

describe: pai‘chl\n [

pavement marking quality good

bad

describe: Star+imn 3 o Fade

parking allowed no

road lighting:
sight distance issues:

describe:

horizontal curvature describe;

approximate curve length:

radius: 0o ;) OO0

median type: grass
width

B O % allowed
not OO %

yes

straight
paved w/ curb painted other @

ft in

A-3%



Segmen + GC

Date: F-A7-0D> Weather: mvs 4‘>/

JAD:N

Chrondler S+ RY 123 /V

Posted Speed:
Minor Access Points (Road Names)
#

# of driveways srar T #/ = (t‘rrr yn3
# of parking lots =T 4T 44T £T-

roadside hazards: fnrehydrants mailboxes utili %/Ilght poles benches treei%”
,ﬁ =% w=> Wi wrr=20 0 =7
overhead
monument fences buildin sn oles sign
o T <16 o, %'43 mw*’ffrm 257 4 =5
parking meter rock Tt L
# =D (8]
Section Length: 265\ ¢ 2"
Vertical Grade: 4.0 % Crest on road: D. ] %
Terrain Type: level mountainous
Land Use % residential Q5 To commerical 15 o industrial
# lanes: Going Left: 1 Going Right: /[

A-39



width of lanes:

type of shoulder:  paved

width of shoulder:

sidewalk present: no
curb present: no

drainage present: (‘yes

pavement quality: good

describe: 0 oFonn )

pavement marking quality
describe:

sight distance issues:

describe:

parking allowed no

road lighting:

horizontal curvature describe:
approximate curve length:
radius:

median type: grass
width

width: Q'q"

bad

2: 277
3363
paved w/ curb painted other

fair bad
B O % allowed
LOQ) %
yes

straight >

ft in

0 4

Qong]




Sesmem" HC

pate: I-30-0 > Weather 6O Sunny/
D —
Q DS
3 B E g
3 ® Bl @ il @ B3 ®
T o () \L
—— , —+
N
\
— T 3
5 % D)
N4 ’(,‘3 dﬁ _ 3 l\
0
= J® 5@ |
) ® s ® S :
S N
- )
Chandler S Q¥ \3AA
Posted Speed:
Minor Access Points (Road Names)
e

# of driveways-iT-T 77T HIT H = 30
# of parking lots !

roadside hazards: firehydrants mailboxes %g}jtyllight poles benches t‘;ggﬁn, J;;? 3
M= o My =19 O AT Y T 1)
overhead
monument fences byildings sign poles sign
| ! ﬁmﬁk“ﬁ J::«rgn_r*%?m:?q [0)
parking meter rock 2 T HT
| [8)
Section Length: loUS 1
Vertical Grade: 9-3; 3.0 % Crest on road: 5&0, L/rQ %
Terrain Type: level mountainous
Land Use % residential | OO 7o commerical industrial
# lanes: Going Left: i Going Right: i—

A-4\



width of lanes: QO\ QO

type of shoulder:  paved dirt

width of shoulder: _ O O

!
sidewalk present: no width: q 4
curb present: no
drainage present: no

pavement quality: good

describe: lots OC c chkl'ng

pavement marking quality good air bad
describe: Starkng +o fade

\d

(O'Y

parking allowed yes no [OO % allowed

road lighting: not [OO%

sight distance issues: yes

describe:

horizontal curvature describe; curve

approximate curve length:
radius:

median type: grass paved w/ curb painted
width ft in

]

A-42

other NO f\e



Segment |C

pate: 9- 30 -0 Weatherr 60O S Sunny
62 — + 50 4+ 474
N
I TR
SIF: @ 13 > °
EP $10\5| @ 2
2 Y L\s:g

A

_? g%‘ et
S IONNN QS

£ d §

T 3 =

e

® 2 @

5

Re)
N4

&
3
=

St
Posted Speed: Chqr’\d \er” Ry. Vo {QL/_.%

Minor Access Points (Road Names)

* g
o w0
# of drivewaysfnnr:wurmr T

# of parking lotstr s =44

roadside hazards: firehydrants mailboxes
Hfﬂ =[O0 \
monument fgnces
N e
parking meter rock

e = o

Section Length: 52945

Vertical Grade: 1. J 2.1 %
Terrain Type: rolling
Land Use % residential a5 %
# lanes: Going Left: /’

%W/@ poles  benches

ity 224 o)
buildings sign poles
e s e s
il =84

ublty pole

T “”'MM/ =4l

- ,,(r;m’&ﬂ"

Crest on road: 5 91

w =€4

22

wr
eSS oy wr
Wt e A e Y

overhead

sign

(=2

%

mountainous
commerical 5 70 industrial
Going Right: d

A-U3



width of lanes: Q\O Q O

type of shoulder:  paved dirt

width of shoulder: @) O

" N 4
sidewalk present: no width: ol oX Vo G'Y

curb present: no

drainage present: no
pavement quality: ( gooa ' bad

describe: Con cvacks

pavement marking quality good

describe: starhing o Cad@
parking allowed  (yes no S (O % allowed 0% L

road lighting: not [IOO %
sight distance issues: yes

bad

®

describe:

horizontal curvature describe: straight Y
approximate curve length: ) 54\ . 9571
radius: )

2: 36" 4: 704"

median type: grass paved w/ curb painted other @
width ft in

A-44)



Segment 3

pate: 4-30-O™D Weather GO'S SN Y
P — teR
% H o5 ©
Ny
§ +
20,
9
Chemdler Stveet RY QL
Posted Speed:
Minor Access Points (Road Names)
* O
# of driveways O
# of parking lots WV T T ) = le
roadside hazards: firehydrants mailboxes utility@poles benches trees
A E— =2 i =7 O s = 1O
overhead
monument fences buildings agn ﬁples sign
@) O i =% Y by~ A i) =
rkmg meter rock j
Eﬁ%mn A O 7 “9_ 2L
Section Length: 777"
Vertical Grade: 0. % Crest on road: 5. O %
Terrain Type: vel rolling mountainous
Land Use % residential commerical | O O 70 industrial
# lanes: Going Left: /I Going Right: 7

A-45



]
width of lanes: Q O &O

type of shoulder:  paved dirt
[
Q

width of shoulder: O

sidewalk present: no width: q |l0 I O

curb present: no

drainage present: no
pavement quality: good bad

describe: crackng
pavement marking quality bad
describe: 5Lor{'m‘j Yo Lo e

parking allowed no | OO % allowed
road lighting: not 100 %

sight distance issues: (no ) yes
describe:

horizontal curvature describe: straight * \

approximate curve length:
radius: o |43

median type: grass paved w/ curb painted other NoONE
width ft in N~

A-46



Segment An

Date: Q-/ -0 Weather: Scinny
H 26
‘77: l - > __§
3 A
) >
— T 19
) 5 3
S (8
< S
N S g
) T
S Rrgnland Sheeet
Qv
Posted Speed:
Minor Access Points (Road Names)
o
# of driveways 11 *
# of parking lots s// 3
roadside hazards: firehydrants mailboxes utility@poles benches trees
I o M =6 o K<l
overhead
monument fences buildings sign poles sign
O /=3 =& i =6 Hif =4
parking meter rock
o
Section Length: S0 3 ft
Vertical Grade: / O ‘ C) % Crest on road: (0 % %

Terrain Type: level mountainous

OO 70 industral

Land Use % residential commerical

# lanes: Going Left: Q- Going Right: 9\
A-47]




width of lanes: \ 9‘ \' Q'

type of shoulder.  paved dirt non

width of shoulder: O )

sidewalk present: (ye no width: % 9" 6"
curb present: oth no

drainage present: no
pavement quality: good bad

describe: IoYs o rurfra
pavement marking quality good fair

describe: most very Laded Some o\ gon&
parking allowed yes % allowed

road lighting: not OO %
sight distance issues: no
describe: y
secrbe Qo N o wup i\ hord o Sel —‘v('amc, lla Yr\—

horizontal curvature describe: curve

approximate curve length:
radius:

median type: grass paved w/ curb painted other NoONL

width ft in —

A-U<



Date: Q-[(-0O2

Segment BH

Weather: Sunn Y

G —p # 45
# 2
~+ *
Q
&
x %,
v — C
> b\
Ole %’ ?
<
g |3 S
> c g
&1y g
T |9 A
Ry. 9
Posted Speed:
Minor Access Points (Road Names)
o
# of driveways 11 =>
# of parking lots |
roadside hazards: firehydrants mailboxes utilioles benches trees
| o il = &) &)
overhead
monument fences buildings sign poles sign
) j| =< g => Ml =7 )
parking meter rock
i i =9 o
Section Length: Q?q ft 9 ‘
Vertical Grade: Q.2 ) g:q % Crest on road: 6 <3 %
Terrain Type: level mountainous
Land Use % residential commerical [OO 70 industrial
# lanes: Going Left: @ Going Right: S

A-49




width of lanes: lg‘, IQ‘ 19‘ . '9

type of shoulder:  paved dirt (none )

width of shoulder: O O

¢
sidewalk present: no width: CO

curb present: no

drainage present: no
pavement quality: good bad

describe: some cu+Hn?d

pavement marking quality good fair

describe: vee Qxded, can't see Mmost of them
parking allowed yes @ % allowed

road lighting: not 1O %
sight distance issues: yes

describe:.
horizontal curvature describe: traight>- curve
approximate curve length:
radius:
median type: grass paved w/ curb painted other
width ft in

A-50

frong)




Date: q—ICa -O3

Segment CH

Weather. SUnn\ + Cloud\/

2 %
[ + B
I
| 3 5 3
+ L 3 Sl [ © (3| © |
gL N 0 3 | S v
Z Z
Q Hiahland Skreet
“ ) 3
R+9 A
Y 3 Ay
o w (3§
C 2 %
i § ©
~
< <
§ o
3 O ¥ 14
HUS #3\ 2
Posted Speed:
Minor Access Points (Road Names)
# T | [l =<
# of driveways K
# of parking lots QL
roadside hazards: firehydrants mailboxes utilioles benches trees
=3 m== ML I =19 ) =
overhead
monument fences bmjldln S sign o!?; n sign
i Wl =& o =30 i =
parking meter rock g\ec)nr\cal beox
1l =g |
Section Length: | 44D "
Vertical Grade: 3.9 % Crest on road: 3.0 %
Terrain Type: level mountainous
Land Use % residential 10 70 commerical qo Z industrial
# lanes: Going Left: 4 Going Right: 7

A-5)




width of lanes:

2.5

type of shoulder:  paved

width of shoulder:

dirt

sidewalk present: no

.
drainage present:

pavement quality:

curb present:

good

width:

no

describe: some U +ing

pavement marking quality good
describe: C Wn g
parking allowed no

road lighting:

sight distance issues:
describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass

width

not
yes
paved w/ curb

ft

A-53

3 a'qa
bad
bad
50O % allowed
100 4
curve
painted other none
in v



Date: Q{5 _ Weather: Cloudy 70's
s H\q,r‘5 2 220 —> 955
g =
? - + " « ¥
+ W (
v 7 9 ) |
N Y - ) -~ [
Ak AN SEINCENEC 3
—V-' Q Q ¥
,_,\_E- d 0 \g s &
+ e Y
§} dighland Street  RE:. 9 X
") Y
A Y}
/) D | - Q
V !
Y >3 v -+ -+
= X ® |¥|Eo|s V) v
: . s 94| |® |z
Q - 3 - V(€
o 3 < S 2 A
5 2 | < S N 4
W b= W | 2 0 =%
Posted Speed:
Minor Access Points (Road Names)
# %
# of driveways 41T 7 #1111 = 1€
# of parking lots
roadside hazards: firehydrants mailboxes utili ty@bpoles benches
it 1 =71 =2 “"J =2 ”"e”'f"
overhead
monument fences bunldln sign pole sign
T ues @ e
parking meter rock
M =5 I
Section Length: A0S ft S5
Vertical Grade: 0.2 % Crest on road: 5. T 0. %
Terrain Type: level rolling mountainous
Land Use % residential 15 %o commerical XD 7o industrial
# lanes: Going Left: 4 Going Right: 2

A-53




%

other

width of lanes: 1.5 1o 5
type of shoulder:  paved dirt
{ i
width of shoulder: @) @)
sidewalk present: no width: <
curb present: bot no
drainage present: no
pavement quality: good bad
describe: seme ruthng
pavement marking quality good bad
describe: Caon 4
parking allowed no 50 % allowed
road lighting: not 10O
sight distance issues: yes
describe:
horizontal curvature describe: curve
approximate curve length:
radius:
median type: grass paved w/ curb painted
width ft in

A-54

fone)
N—



SQQTY\QV\‘I' AP

Date: 10-7-05 Weather: Sunny
439 # 150
- 4;%
%)
o ] ¢
3 R
9 2
g o+
2 S o T 2
> b . ~
< gg) v
il @ ¥ @ B ®
3 z
g
Eork Ave Ry9 Ry 1224

Posted Speed: 35
Minor Access Points (Road Names)

#

>
# of driveways it = q
# of parking lots

roadside hazards: firehydrants mailboxes 3H]ityllight poles benches tﬁ,es
’ wr=95_ S we = 1O (@] _4-:r_r_w_r_:~_’_€>
overhead
monument fences buildings ?,39»" poles sign
o w =2 w =Y =1 m=3
parking meter rock
o e
Section Length: | D% ©5
Vertical Grade: 2.0 , 3.9~ % Crest on road: , L{ Lk %
Terrain Type: level mountainous
Land Use % residential 10O 7o commerical industrial
# lanes: Going Left: & Going Right: oL

A-55



width of lanes: 1(0‘ ! \Q la\ I o

type of shoulder:  paved dirt none

width of shoulder: O @)

[y ]
sidewalk present: no width: Q's 125

curb present: no
drainage present: no

pavement quality: good bad
describe: rut bino
pavement marking quality good bad

describe: Skar h na o Qde
parking allowed yes % allowed

road lighting: not 100 %
sight distance issues: yes

describe:

horizontal curvature describe: curve
approximate curve length:

radius:

median type: grass paved w/ curb painted other @

width ft in S~

A-56



Ok Ave 2y 2 Ry 1A

Posted Speed: 35
Minor Access Points (Road Names)

*Q

# of driveways s =77
# of parking lots + ey i =12

UBES -5
[ et nJ
overhead

sign

w=>

%

roadside hazards: firehydrants mailboxes utility, poles benches
o= > ‘___ Wy o= o
monument fences buildings S les
O i) “"‘J =0 M =l
parking meter rock eleckn'cal oo
© o ~

Section Length: 1Q BC

Vertical Grade: L, % Crest on road: . H.¥

Terrain Type: rolling mountainous

Land Use % residential | 5 70 commerical S5 75 industrial

# lanes: Going Left: 9\ Going Right: g\

A-57



width of lanes: o \Q 2 16

type of shoulder:  paved dirt
]

Y
width of shoulder: @) @)

. | \
sidewalk present: no width: Cf S

curb present: no
drainage preéent: @ no

pavement quality: good bad
describe: Mminor (‘UH'\‘V_'Q

pavement marking quality good bad
describe: stac W a Yo Cc\ ad e

parking allowed yes % allowed

road lighting: not OO0 %
sight distance issues: yes

describe:
horizontal curvature describe: (straight > curve
approximate curve length:
radius:
median type: grass paved w/ curb painted othgr f\OV\Q>
width ft in —~—

A-58



SQ_SmQV\+ g

Date: -2~ 05 Weather: Sunny  m d @O0 s
A— —
# 250
v ~
y [ %,
e
v) 5
<
S
N X
W e
X
vl Ave RE9 RF2
Posted Speed: 30
Minor Access Points (Road Names)
)
# of driveways (Il =5
# of parking lots O
=47
roadside hazards: firehydrants mailboxes utilityAghDpoles  benches ,i,'}eﬁ?w :,’r "
=4 iy =9 @) Ty it e
overhead
monument fences buildings S.-iﬂ!] poles sign
wr =5 W= O gt =10 m ~>
parking meter rock
o W=k
Section Length: |34 n 5"
Vertical Grade: O.b % Crest on road: . 3.0 %
Terrain Type: rolling mountainous
Land Use % residential \OO 76 commerical industrial
# lanes: Going Left: X Going Right: Q~

A-59



width of lanes: l 5

%' > P

type of shoulder:  paved

width of shoulder:

i

sidewalk present: no
curb present: no

drainage present:

pavement quality: good
describe:

pavement marking guality good
describe:

parking allowed yes @

road lighting:
sight distance issues:

describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass
width

width: 3

no
bad
% allowed
not 100 %
yes
straight
paved w/ curb painted other
ft in

A-60




Segment DOP

Date: §-22-07> Weather: Sonnf
7

<
Q

+ Ld

2 <

— -

3
6'/’ -

E1lm St

Par K Ave 7 i Ry 1

Posted Speed:
Minor Access Points (Road Names)

e

# of driveways\\ = 2
# of parking lots uurytrut =12

roadside hazards: firehydrants mailboxes u‘t"\lity@ poles benches trees
wy =4 we =9 we =B o My b
overhead
monument fences Bg\jldings ii_g‘n eoles sign
\ ®) W =15 ot =19 g =2
arkJ&x_g meter rock T
,E‘T #7 =20 O ”"L‘ i
Section Length: Uz n
Vertical Grade: R.7D 9 Crestonroad: 2.0 %
Terrain Type: rolling mountainous
Land Use % residential commerical ] O O 7o industrial
# lanes: Going Left: g Going Right: ‘A

A-Gl



width of lanes: \ 5

type of shoulder.  paved dirt @
\ t
width of shoulder: O O
sidewalk present: no width: 1o
curb present: no
drainage preéent: no
pavement quality: good bad
describe: some. r\uH;"‘ 9, craclang
pavement marking gquality good bad

describe: starbing yo F&! [~

parking allowed yes no

road lighting:
sight distance issues:

describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass
width

<L O % allowed

not

yes

paved w/ curb
ft

A-G2

OO %

painted

curve

in

other @

N—



segment EP

Date: -2 ‘06 Weather: SUAWV
HBQR50 & -
1 +-
B %
\ -+
N
5 j
E E
JJ &
ark Ave QL9 Ry v
Posted Speed:

Minor Access Points (Road Names)

0

# of driveways \\ = > 5
# of parking lots vt wtT HT = (

roadside hazards:

Svection Length:
Vertical Grade:
Terrain Type:
Land Use %

# lanes:

4.1

trees
=&
overhead
sign

-

) "0

%

firehydrants mailboxes utility/light poles benches
= W =D wrl =bo o
monument fences buildings npoles _z
O e 5 -0 S 5 o2
parking meter rock
(ST
"
711 # 1O

X- 1 % Crest on road:
@ rolling mountainous
residential commerical | OO 7o __industrial
Going Lett: 9\ Going Right: Q\.

A-63



width of lanes: \ 5 | ) Kb ]3 |6

[ V4
type of shoulder:  paved dirt (none}
\ {
width of shoulder: O O
) (
sidewalk present: no width: [O 'R

curb present: no
drainage preSent: no

pavement quality: @ fair bad
describe: m\nor cracks

pavement marking quality good bad
describe: for J—IV\5 vo fade

parking allowed  yes @ % allowed

road lighting: not OO %
sight distance issues: yes

describe:

horizontal curvature describe: curve

approximate curve length:
radius:

median type: grass paved w/ curb painted other NoNg
width ft in N~

A-GH



B Appendix: Databases for Validation Data

This appendix has the datasheets for the arterial segments that were used to
validate the models in this paper. This includes the data from both Park Avenue and
Shrewsbury Street. The summary sheets of that data are also included. The data from

Park Avenue is first followed by that of Shrewsbury Street starting on page B-16.
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Segment APE

Date: 4 -5 -OY Weather: Suwn ny SO
3= 7=
#P t, °
v
W o
0
X
v 2
Q ~
s )
]
v 3
) bL
Pork Ave Ry Yo 1Raa

Posted Speed: 35
Minor Access Points (Road Names)
L

# of driveways Il <%
# of parking lots s sif nu = 1

roadside hazards: firehydrants mailboxes utility/igh} poles benches trees

i ="> prou =< P \ %4 =i
overhead

monument fences ngldings #n poles sign
\ i e =4 o =19 "n=%*
parking meter rock uklohby poles elechrical
[ N [~ 0= a 1=

Section Length: 1) A% ft

Vertical Grade: | :O % Crest on road: _ <, (o_ %

Terrain Type: rolling mountainous

Land Use % residential ]O 70 commerical QO 70 industrial Q %

# lanes: Going Left: g\ Going Right: 8

B-Y




width of lanes: }o

12 12 b

type of shoulder:  paved

width of shoulder:

dirt (none 37

sidewalk present: no
ho
drainage present:

pavement quality:

curb present:

good

width: 1O

no

bad

describe: m Nals YAl as) *;_“(\6

pavement marking quality
describe:

good

parking allowed yes

road lighting:

horizontal curvature describe:
approximate curve length:
radius: :

sight distance issues:
describe:

median type: grass

width

@ bad
Syarkn g to fade

QO % allowed
not OO %
yes
straight A @
~ 250
paved w/ (;urb painted other
t in




Segment 15 PE
Date: 4/-|5-04 Weather: Sty 505 v50

Nalisbury St

Pac Ave Ry 3 199A

Posted Speed: 3 5

Minor Access Points (Road Names)
# Nz

# of driveways ™ #t~ Il = 14
# of parking lots O

roadside hazards: firehydrants mailboxes utility@ poles benches M'ees

=G o 4 -1 o) =30
overhead
monument fences buildings sign poles sign
W =2 1§~ o m@gﬁwﬂﬂo &MPMH‘Q& =
parking meter rock gy ple éﬁdﬂéﬁl
| Qo o =4 ]
Section Length: \ 51D ft
Vertical Grade: 3. & % Crest on road: , L{' O %

Terrain Type: level mountainous

Land Use % residential KD 7> commerical /O 7»  industral Q7

# lanes: Going Left: 9\ Going Right: Sl

B-6



width of lanes: l q ‘

%) 13" 14

type of shoulder:  paved

width of shoulder:

dirt
@) 0O

sidewalk present: ( Qess no

curb present: <both ) no
drainage present:

pavement quality:

describe:

pavement marking quality good

width: 4.5 \ 4,5

no

fair bad

bad

describe: S\-C\( .\1“3 ‘o CadQ

parking allowed no
road lighting:
sight distance issues:

describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass
width

20 % allowed

not / OO %
yes
straight _j_
2 500
paved w/ curb painted other @
ft in N—




Seayment PP

Date: Y-l -O 8| Weather: Somr\v 50\ S
~~
W +
3 V)
3 N
+ ) By
< \
2 !/ 22| 3 ¢ | %o
4
\
Q )
3
3 g
< ‘
0 L 2
V)
%
AL
S
Cark Ave QX V2 -
Posted Speed: ﬁé
Minor Access Points (Road Names)
# =3
# of driveways
# of parking lots U~ pH” 4w JWT 0% 1l = 277
roadside hazards: firehydrants mailboxes utility/igBX poles benches trees
i 1 g ,
Me-e I g =14 o w=y
overhead
monument fences buﬂdmgs mgn poles sign
[®) [ =Y ‘ﬂﬁ‘: it = Al o M =33 {
parking meter rock yh 'k pola
(o) 6] I
Section Length: | N
Vertical Grade: 9 p 5 % Crest on road: 5 O %
Terrain Type: rolling mountainous
Land Use % residential S 70 commerical LD 7oindustrial QA4
# lanes: Going Left: 9 Going Right: 9~

B-3



i
width of lanes: (%)

12 2 16

type of shoulder:  paved

width of shoulder:

sidewalk present: no
N
drainage preéent: @

curb present:

pavement quality: good
describe:

pavement marking quality ( goos
describe:

parking allowed no

road lighting:

sight distance issues:
describe:

horizontal curvature describe:
approximate curve length:
radius:

median type: grass

width

no

bad

crackng rotag

fair bad
{ O % allowed
not 1O %
yes

curve

paved w/ curb painted
ft in

other

®-9

oNe




SQSMQV\ + O Py

AN
Date: 4-16-OU Weather. Sunny HO S
— —p
AL B Y A
3, 35 I :
ik 3 5" 27
& = Y 9
' Q
A
>~
6 T ——
N L
A aco bre b
A A
S\
@OJ K AVe Q* \g-'
Posted Speed: 20
Minor Access Points (Road Names)
# W\ =y
# of drivewaysi\ =
# of parking lots awr P‘“’” =17
roadside hazards: firehydrants mailboxes utility/light poles benches t\r\ees
w =4 n=2__ o M=%
overhead
monument fences bui ldmgs sign poles sign
S me> gl et
parking meter rock w_ec:_\—
o e i
Section Length: 120 "I ft
Vertical Grade: O -q % Crest on road: _ H . L‘f %
Terrain Type: rolling mountainous
Land Use % residential 5 72) commerical Q5 7o industrial 6 7%
# lanes: Going Left: Q Going Right: 9

3-10



{
width of lanes: / lo [ 2 l 9 / (9
type of shoulder:  paved dint

width of shoulder: O O

)
sidewalk present: no width: 1S 1O

curb present: no
drainage preéent: no
pavement quality: good bad

describe: cuthng, ¢ rackins
pavement marking quality good bad
describe: Starhing to Fad@

parking allowed no 50 % allowed
road lighting: <present3 not 1IQO %

sight distance issues: yes

describe:
horizontal curvature describe: ( straight ) curve
approximate curve length:
ragdius:
median type: grass paved w/ curb painted other nong )
width ft in N~




Segment t

= PP

Date: Lf—-lb—OL/ Weather: Suy\r\k/ 50‘5
e »
>
§9 5 :
— V)
3
ﬁ
Q
Q
-— 3
S + 2
It . |2
: ;
VOO AYe 1>

Posted Speed: 30O
Minor Access Points (Road Names)
#\W=">

# of driveways |\
# of parking lots ¥ W = %

roadside hazards: firehydrants mailboxes utility/light poles benches tl\'ees
) @) ey =G W =¥
overhead
monument fences buijdings sign poles sign
S TR Wu=12 ﬁn‘g{md‘ i I
parking meter rock erecrrical
/
o S N
Section Length: 765
Vertical Grade: A .O % Crest on road: 5, "{ %
Terrain Type: rolling mountainous
Land Use % residential IO 70 commerical GO 7o industiat = O o
# lanes: Going Left: 2 Going Right: Q

B-1



width of lanes:

0.5

type of shoulder:  paved dirt ‘ @
width of shoulder: O Ql
sidewalk present: no width:
curb present: no
drainage preéent: yes no
pavement quality: good

describe:

pavement marking quality

describe:
no
road lighting:
@

horizontal curvature describe:
approximate curve length:
radius:

parking allowed

sight distance issues:
describe:

median type: grass

width

corHng | cracking

fair

40

not

yes

paved w/ curb
ft

G-13

bad
bad

% allowed

(OO 4

painted

curve

other @
in



nt F PP

Segme
Date: H’lb‘oq Weather: Ounny 50\5
—— —
G
\
3
I

%
>
:
N
N

pV
I g b
8§31 3% §
YRR
&8 &
3
Posted Speed: 30
Minor Access Points (Road Names)
i =2
# of drivewayswt = 5
# of parking lofs i Mt i = l"l
roadside hazards: firehydrants mailboxes utility/light poles benches trees
overhead
monument fences builgjngs j'i‘gn oles sign
o M=o pWEHIEEY fcbrac e O
parking meter rock e\ectvical
o o | —
Section Length: 4d 2>
Vertical Grade: 2).—7 Y% Crest on road: 5 . (8 %
Terrain Type: level rolling mountainous
Land Use % residential 5 To commerical 95 70 industrial O 7o
# lanes: Going Left: Q Going Right: Q

B-14



2 20

none

width:

O

1O

20

. U
width of lanes: ple) e
type of shoulder:  paved dirt
t

width of shoulder: O
sidewalk present: no
curb present: no
drainage preéent: no
pavement quality: good _

describe: paé—(.\n %<
pavement marking quality good

describe: | Ca dng
parking allowed no
road lighting: not

sight distance issues: ( noS

describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass
width

yes

paved w/ curb

ft

bad

bad

% allowed

100

painted

curve

%

other @
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.Segyncyﬂ4'24f5

4-1-04
Date:3-2%-0D Weather: Sunm/
-
¥ V
-+~ ¢ A g
— 9 < 3
= q°
= % V)
j — g)
) >
c
v [
+ 'y g
J g 3
=3 0 8
— I =
- 9 3
Shrewsbury Sheet
Posted Speed: 30O
Minor Access Points (Road Names)
*3
# of driveways # = @
# of parking lots wr = 5
roadside hazards: firehydrants mailboxes utility/light poles benches trees
I = | WM =\ ho= 2 =4
overhead
monument fences buildings sign poles sign
! | My <P jrdll =l Q
parking meter rock elednical box
(O S T
Section Length: Ny s i
Vertical Grade: 1.7 % Crest on road: 2.9 %
Terrain Type: rolling mountainous
Land Use % residential commerical 1OO “Zo  industrial
# lanes: Going Left: X Going Right: /®]

B-1%



width of lanes:

type of shoulder: dirt none

width of shoulder:

\
sidewalk present: @ no width: u4 s

curb present: no
drainage presént: no

pavement quality: good fair @
describe: eracked , rufdn =)

pavement marking quality good fair
describe: (’C\ an o

parking allowed @ no 5 () % allowed

road lighting: ( presenti‘ not |OO %

sight distance issues: yes

describe:

horizontal curvature describe: straight

approximate curve length:

radius: 500
median type: grass paved w/ curb painted other @
width ft in S~
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H-7-04
Date: 4-2>-O™>

Weather: Sunn{

Segmont BN

Cross SF ?

Lark:M S

~.
Y g+ — =+
&éj @1\ < “f: V)
& 3 s
~cg ;
25§ W Shrewsowy S
Posted Speed: 20
Minor Access Points (Road Names)
# 4
# of driveways ©
# of parking lots W1 = 6
roadside hazards: firehydrants mailboxes utility/@gh3 poles benches trees
Il n=o- W =e 0] =
overhead
monument fences buildings sign poles sign
It =2 =2 =10 pr i =7 o
parking meter rock
o e
Section Length: 5@ 5 ft
Vertical Grade: 1.9 % Crest on road: 2.7 %
Terrain Type: rolling mountainous
Land Use % residential commerical JOO 7. industrial
# lanes: Going Left: Q Going Right: oL
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width of lanes:

type of shoulder:

dirt none
width of shoulder:
sidewalk present: no width: o '
curb present: no
drainage preSent: @ no
pavement quality: good bad
describe:
pavement marking quality good fair
describe:
parking allowed no LBO % allowed
road lighting: not 10O %
sight distance issues: yes
describe:
horizontal curvature describe: curve

approximate curve length:

radius:

median type: grass

width

paved w/ curb

<< ft

painted

in

other ass yUrb



Segment CS

Yy - -04
Date: 4-24 -0 Weather: St 7V
+ &K ¢
N + N "
8 S n + " N
@ SQ 0 VA
S $3 < < "
-+ PRV I ) A § < 0
p v Q 7~ g R g PN B
\u o |¥ - L & J
7
X
S— - o NG
2 I~ t) o 1 h
Cor ¥ 0 K %
% b W
(o4
Shrewsbury Shveet
Posted Speed: D
Minor Access Points (Road Names)
# 5
# of driveways |
# of parking lotsa{ ) =G
roadside hazards: firehydrants mailboxes tmﬁtyllight poles benches trees
M =z> w =4 wiru = V& i =4 wr =S
overhead
monument fences Wdings as&gn poles sign
=D m=> i LN Tt = 5 o
parking meter rock
(© R e
Section Length: q 5 5 ft
Vertical Grade: A0 % Crest on road: 0.5 %
Terrain Type: eve rolling mountainous
Land Use % residential commerical /OO 7o industrial
# lanes: Going Left: R Going Right: Al
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width of lanes:

type of shoulder: dirt none

width of shoulder:

sidewalk present: no width: q ‘
curb present: no

drainage preSent: no
pavement quality: good fair

describe:
pavement marking quality good fair @
describe:

parking allowed no lOO % allowed

road lighting: not |OQ %
sight distance issues: yes

describe:

horizontal curvature describe: curve
approximate curve length:

radius:

median type: grass paved w/ curb painted other qQra s.s +or o )
width ft in <
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SQ@QO+ DS

4 -1-c4
Date: I0‘3‘03 Weather: SUNNY
&
58
<
7 NS NN ¢ ;\L ?‘\ &
: T 73 $ “(\&:“S " § ~ 3 J 2z "
g UL T A E
- * I SN b\l
<4 |» ~ ¥ ™ I
Y q [ § Y tl A LBe |+ P
. LN = 3D nES YV
A < P s 3.1. §
3 v $ 3 3 9
~
) R 7 3 ©
Shrewsbury Stveed
Posted Speed: ()
Minor Access Points (Road Names)
# 10
# of drivewaystT m = ¥
# of parking lots sy g 4 W in = 25
roadside hazards: firehydrants mailboxes utility/light poles benches trees <3y
s
ﬁﬁmu il i mm‘ =1 m%m =23 l »m{ﬁwrﬁgtmgm:/m
overhead
monument f‘('e'pc_es B&tlﬂnﬂg 33 slgwoﬁsw =45 sign
w=> ar =9 rattiotfh I et Q
parking meter rock
o L=
Section Length: ADHO 1t
Vertical Grade: 20 % Crest on road: _ 0.9 %
Terrain Type: rolling mountainous
Land Use % residential Q0 7, commerical SO /> industrial
# lanes: Going Left: A Going Right: ‘L
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width of lanes:

type of shoulder: @

width of shoulder:

dirt none

sidewalk present: no

curb present. bot no

drainage presént:

pavement quality: good
describe:

pavement marking quality good
describe:

parking allowed no

road lighting:
sight distance issues:

describe:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass
width

width: 3 %

no

fair
fair

[ OO % allowed
not (OO %

yes

paved w/ curb painted other m

ft in N~/
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wU90

Segment ES

y-1-04
Date: {0->-05 Weather: Surv\\/
&4 —
4
B, -+
3 { ¥
: g o
- " [l 3 " 1 [
5 A NP AL A
3. 1 ® + # 1Ty & —
3 -
= i A
| £ X 3% 3 3 { +58 1) | S w A
7l IR T g L M A B I 0
Zz 0 n y L 3 bX x <
£ ) S 3 9 " Q
3% < 5 1<l 1.8 Ki o
o y‘ (\
Q ™ O = 3 é V) § <
£
Shrewsburny Siveet
1]
Posted Speed: 50
Minor Access Points (Road Names)
L4
# of driveways #¥ =5 -
# of parking lots w1 =1
roadside hazards: firehydrants mailboxes WWight poles benches trees
)_ \W
Wi =< n=> LT i gy =29 l w =9
overhead
monument fences buildings sign poles sign
| =9 =4 ﬁﬁ&" =2 ""gm[”'pﬂw_r""'»“}#“’f o
parking meter rock W
&) o) i
Section Length: |95 ft
Vertical Grade: H.20 % Crest on road: 2.9 %
Terrain Type: level mountainous
Land Use % residential commerical 10O Zo industrial
# lanes: Going Left: 2 Going Right: 2%
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width of lanes:

type of shoulder:

width of shoulder:

dirt none

sidewalk present: no
"
drainage present:

curb present:

pavement quality: good

width: )

no

fair @

describe: oco oks, Po\wm 9, rurhns

pavement marking quality good

describe:
parking allowed no

sight distance issues:

describe:

road lighting:

horizontal curvature describe:

approximate curve length:

radius:

median type: grass

width

fair

Caded -mosH'y gon@

BO % allowed
not [OO %

yes

paved w/ curb
ft in

cuive

@

271

painted other ( 9rass +Urb




4 -7 -o0M
Date: iO-3-0C3 Weather: SLNvV
v 4

C Y 3 o

0 Ny < 07
9+ ¥ & § s

g | N 33
i}; K

RBelmant St
RS,

Piecadilly Plaq,
par k‘"é lo

Sherewsbury S et

Posted Speed: 20
Minor Access Points (Road Names)

#4

# of driveways O
# of parking lots i =4

roadside hazards: firehydrants mailboxes utility/light poles benches trees
IR, z
I | B AHT 0 w=sd
overhead
monument fences buildings ﬁipn oles sign
0 W =9 W = Y e 0
parking meter rock elechvical box
6] (8) )
Section Length: 4aqo
Vertical Grade: 4.5 9% Crest on road: _ L‘” %
Terrain Type: level mountainous
Land Use % residential commerical |OO 7> industrial
# lanes: Going Left: A Going Right: X

3-2%




width of lanes:

type of shoulder:

width of shoulder:

dirt none

sidewalk present: no

.
drainage present:

pavement quality:
describe:

curb present:

pavement marking quality good
describe: bons

parking allowed no

road lighting:

sight distance issues:
describe:

horizontal curvature describe:
approximate curve length:
radius:

median type: grass

width

width:

no

fair

20

not

yes

paved w/ curb
ft

painted

-9

\

3 3
bad
bad
% allowed
IO %
curve

other /gcass + curb

in



C Appendix: SAS Code and Output

This appendix has SAS code that was used to create the three final models for this
paper. The main output from that code is also included. The code and output for the
linear total accident rate model is first starting on page C-2 followed by the multiplicative
model starting on page C-10. The injury accident rate model’s code and output is the last

part of this appendix starting on page C-21.
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SAS Code and Output
options 1ls=70 ps=65 pageno=1 nocenter;

Linear: Total Accident Rate Model and graphical

diagnostics Code
proc reg data=thesis;

model rate=ospole parkinglots residential curves crest

parking/p r clb clm cli ssl ss2 pcorr2;

output out=thesisl p=pred r=resid student=student;

run;
*/studentized residuals vs predicted*/;
symbol i=none v=dot c=red width=1;
proc gplot data=thesisl;
plot student*pred/vref=0;
run;
* /boxplot of residuals*/;
symbol i=boxt c=red width=5;
proc gplot data=thesisl;
plot resid*boxplot;
run;
*/residual vs predicted */;
symbol i=none v=dot c=red width=1;
proc gplot data=thesisl;
plot resid*pred/vref=0;
run;
* /normal quantile plot*/;
symbol v=dot w=1 i=none c=red;
proc univariate data=thesisl;
var resid;

ggplot resid/normal (L=1 mu=est sigma=est);

run;

* /normal probability plot*/;
proc univariate data=thesisl plot;
var resid;
histogram resid/normal kernal (L=2);
run;

C-2



SAS Output

Linear: Total Accident Rate Model

Analysis of Variance

F Value Pr > F

Sum of Mean
Source DF Squares Square
Model 6 4515.67464 752.61244 1
Error 20 1431.33888 71.56694
Corrected Total 26 5947.01352
Root MSE 8.45972 R-Square 0
Dependent Mean 23.14741 Adj R-Sqg 0
Coeff Var 36.54718

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value
Intercept 1 10.37975 6.16058 1.68
ospole 1 4.92593 1.27469 3.86
parkinglots 1 -1.65140 0.29927 -5.52
residential 1 -0.32989 0.05145 -6.41
curves 1 6.88388 4.41977 1.56
crest 1 3.28343 1.15060 2.85
parking 1 0.12701 0.05631 2.26
Parameter Estimates
Variable DF Type I SS Type II SS
Intercept 1 14467 203.16183
ospole 1 798.66967 1068.76438
parkinglots 1 570.80662 2179.17560
residential 1 1790.74362 2942 .29802
curves 1 479.64386 173.61223
crest 1 511.73310 582.80331
parking 1 364.07778 364.07778
Parameter Estimates

Variable DF 95% Confidence Limits
Intercept 1 -2.47101 23.23050
ospole 1 2.26698 7.58488

C-3

0.52 «<.0001

.7593
.6871

Pr > |t|

.1076
.0010
.0001
.0001
.1350
.0098
.0355

OO OAN N OO

Squared
Partial
Corr Type II

.42749
.60356
.67273
.10817
.28936
.20278

[eNeolNelNelNelNol



parkinglots 1

residential 1

curves 1

crest 1

parking 1

Dep Var

Obs rate

1 48.9100

2 8.2600

3 38.9300

4 23.2400

5 29.4400

6 55.3400

7 11.3000

8 6.9200

9 9.5900

10 26.4300

11 24.5500

12 30.3700

13 44.5000

14 12.0800

15 2.2000

16 15.2600

17 21.%8200

18 13.0500

19 55.5500

20 35.2800

21 23.2100

22 15.1900

23 7.1300

24 20.0400

25 7.9300

26 26.6500

27 11.7100
Student

Obs 95%
Residual

1l 24.9451

2 -2.0799

Output Statistics

.27566
.43721
.33559
.88333
.00955

Predicted

45.
18.
.3467
.5316
.2618
45.
.0561
.8574
.1594
.7040
36.
27.
34.
.2252
11.
21.
.2608
15.
47.
35.
.3166
15.
.8066
14.
10.
.3240
.6061

31
32
30

34

14

14

13

24
28

Value

6876
0749

3906

9293
2705
4644

4314
5142

1797
4363
9613
9486

5142
7204

-1.
.22257
16.
.68354
.24447

Std Error

Mean Predict

CL Predict

66.4301
38.2297

WUtWhkheWWwWwdkUwWwbdWwwwbd wWNWLToDD WHSNDBMWOM

4

.2262
.6679
.5308
.6389
.5020
.5306
.1864
.2732
.2138
.9436
.9476
.9494
.7857
.8996
.2849
.7228
.5560
.4919
.1358
.9762
.1793
.8230
.4594
.4725
.2396
.8704
.6398
Output Statistics

02713

10336

95% CL Mean

34.7860 56.5883
8.3377 27.8120
26.0677 36.6258
22.8550 42.2082
22.9567 37.5669
35.9401 54.8412
-6.8486 18.9608
-6.1424 15.8572
-4.6305 12.9493
26.4778 42.9303
30.7808 43.0779
19.0322 35.5089
24.4817 44 .4472
6.0908 22.3596
4.5793 18.2836
13.7485 29.2800
4.7572 23.7645
7.8957 22.4636
36.7233 58.1494
25.5813 46.3414
6.6848 19.9485
7.9740 23.9232
-3.4956 15.1087
7.2706 21.7577
-0.2092 21.6500
16.2504 32.3976
18.9276 38.2847

Std Error

Residual Residual
3.2224 6.652 0.484
-9.8149 7.055 -1.391



W30 0w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Obs

0 J0 Ul b WNER

L9273
.4059
.1628
.3727
.8057
.9369
.5553
.2342
.2422
. 7955
.1898
.2061
.4989
.2344
.7822
.9112
. 7923
.4882
.5351
.4163
.1417
.5613
.0368
.9181
.4796

49.
.6573

52

49,
.4086
27.
25.
23.
54.
55.
46.

65

54
33

34
34

33

43
48

7661

3607

9178
6516
8740
1739
6165
7455

.7391
.6564
30.
40.
.3039
.2705
68.
56.
32.
35.
25.
.5897
31.
.7299
. 7327

3618
7941

0803
4345
1683
3135
7549

4776

Output Statistics

.5833
.2916
.8218
.9494
.2439
.0626
.4306
.2740
.3793
.0995
.0356
.1452
.2314
.2542
.6592
.1297
.1137
.6813
.8934
.7586
.3234
.5258
.7904
.3260
.8961

Cook's

C-5

oo el lNoNolNoNololNolNololololNoe ol

.021
.121
.012
.106
.000
.111
.136
.009
.026
.048
.048
.007
.139
.003
.036
.023

NN NN NOOAAN NN NN NN NN

.072
.074
.701
.144
.770
.615
.336
.484
.930
.481
.976
.507
.796
.597
.128
.705
722
.841
.840
.547
.189
.714
.642
.522
.074

.939
.313
.107
.393
.909
.312
.740
.106
.561
.414
.439
.286
.184
.823
.075
.276
.207

-0.0996

.262
.101
.184
.716
.420
.309
.389



17 | | ** | 0.067
18 | | | 0.002
19 | | ** | 0.121
20 | | | 0.001
21 | | ** | 0.037
22 | | | 0.000
23 | | | 0.002
24 | | * | 0.015
25 | | ] 0.016
26 | | | 0.004
27 | xxwx| ] 0.351
Sum of Residuals 0
Sum of Squared Residuals 1431.33888
Predicted Residual SS (PRESS) 2671.35680
S udent i zed Resi cuaz_
E L] ™
] . .
1] [ ¢ [ ]
| . .
] . v * *
b ]
03 . . .
] e
] *
.
_1-: . "
] . .
]
-2]
] .
S I B S N —
o] 10 20 30

Redicted V@l ue of rate
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Resi dual

T

-107

Rosi dual

107 . o ¢

-107]

E ANNLJNL B B L B B B IR BN St B B B B B B B S S SN SN S0 U S B B S B B R N B B B B B B B B NN B S R B B BN B B R

(o) 10 20 30 40 50
Fedcted V@l ue of rate

The UNIVARIATE Procedure



Variable: resid (Residual)

Moments
N 27 Sum Weights
27
Mean 0 Sum Observations
0
Std Deviation 7.41966949 Variance
55.0514954
Skewness -0.525266 Kurtosis -
0.5223208
Uncorrected SS 1431.33888 Corrected SS
1431.33888
Coeff Variation . Std Error Mean
1.42791606
Basic Statistical Measures
Location Variability

Mean 0.000000 Std Deviation 7.41967
Median 1.323432 Variance 55.05150
Mode . Range 26.93169

Interquartile Range 11.78004

Tests for Location: Mu0=0

Test -Statistic-  ----- p Value------
Student's t t 0 Pr > |t 1.0000
Sign M 0.5 Pr >= |M]| 1.0000
Signed Rank S 11 Pr >= |S| 0.7972

Quantiles (Definition 5)

Quantile Estimate
100% Max 10.03556
99% 10.03556
95% 9.94936
90% 9.89336
75% Q3 5.52581
50% Median 1.32343
25% Q1 -6.25423
10% -9.81488



5% -12.37934
1% -16.89613
0% Min -16.89613

Extreme Observations

—————— Lowest------ ------Highest-----
Value Obs Value Obs
-16.89613 27 7.65915 17
-12.37934 11 8.11367 19
-9.81488 2 9.89336 21
-9.29160 4 9.94936 6
-9.23143 15 10.03556 13

15 7

10 7

“Bca-voy

=10 7]

=15

Nornal Quartil es

The UNIVARIATE Procedure
Variable: resid (Residual)
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Stem Leaf # Boxplot
1 000 3 |
0 556888 6 +----- +
0 12233 5 koo -%
-0 322111 6 | |
-0 9986 4 4----- +
-1 20 2 |
-1 7 1 |

e e e &
Multiply Stem.Leaf by 10**+1

Normal Probability Plot

12.5+ FRFRPRRRS |
| khkhkk phkpk  *
| *kkkk g

-2.5+ dokkokok ok
| *pkk pkok
| R4y
-17.5++++++*
R e it i T it S T e
+
-2 -1 0 +1 +2

The UNIVARIATE Procedure
Fitted Distribution for resid

Parameters for Normal Distribution
Parameter Symbol Estimate
Mean Mu 0

Std Dev Sigma 7.419669

Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic----  ----- p Value-----
Kolmogorov-Smirnov D 0.09416938 Pr > D >0.150
Cramer-von Mises W-Sqg 0.06418911 Pr > W-Sg >0.250
Anderson-Darling A-Sg 0.43319375 Pr > A-Sq >0.250
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Quantiles for Normal Distribution
——————— Quantile-------
Percent Observed Estimated
1.0 -16.89613 -17.260732
5.0 -12.37934 -12.204270
10.0 -9.81488 -9.508689
25.0 -6.25423 -5.004491
50.0 1.32343 -0.000000
75.0 5.52581 5.004491
920.0 9.89336 9.508689
95.0 9.94936 12.204270
9.0 10.03556 17.260732
35 -
20 -
25 -
P
e 207
r
C
e
y 157
10 7
5 A
o < . T T T T T T
-27 -21 -15 -9 -3 15 21
Resi dual
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Multiplicative: Total Accident Rate Model and
graphical diagnostics Code
proc reg data=thesis;
model lrate=llength 1llighting lpole/p r;
output out=thesis2 p=pred r=resid student=student;
run;
* /studentized residuals vs predicted*/;
symbol i=none v=dot c=red width=1;
proc gplot data=thesis2;
plot student*pred/vref=0;
run;
* /boxplot of residuals*/;
symbol i=boxt c=red width=5;
proc gplot data=thesis2;
plot resid*boxplot;
run;
* /residual vs predicted */;
symbol i=none v=dot c=red width=1;
proc gplot data=thesis2;
plot resid*pred/vref=0;
run;
* /normal quantile plot*/;
symbol v=dot w=1 i=none c=red;
proc univariate data=thesis2;
var resid;
qgplot resid/normal (L=1 mu=est sigma=est) ;
run;
* /normal probability plot*/;
proc univariate data=thesis2 plot;
var resid;
histogram resid/normal kernal (L=2);
run;
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SAS Output

Multiplicative: Total Accident Rate Model
The REG Procedure

Model: MODEL1l

Dependent Variable: lrate

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 10.05655 3.35218 15.37 <.0001
Error 23 5.01511 0.21805

Corrected Total 26 15.07167

Root MSE 0.46696 R-Square 0.6672
Dependent Mean 2.90341 Adj R-Sqg 0.6238
Coeff Var 16.08302

Parameter Estimates

Parameter Standard
Variable DF Estimate Error t Value
Pr > |t|
Intercept 1 -28.29984 10.22157 -2.77 0.0109
llength 1 -0.95851 0.25768 -3.72 0.0011
llighting 1 7.80913 2.17984 3.58 0.0016
1pole 1 0.56736 0.30369 1.87 0.0745
The REG Procedure
Model: MODEL1
Dependent Variable: lrate
Output Statistics

Dep Var Predicted Std Error std

Error Student
Obs lrate Value Mean Predict Residual

Regidual Residual

1 3.8900 3.5047 0.1447 0.3853 0.444 0.868
2 2.1114 2.7666 0.1114 -0.6551 0.453 -1.445
3 3.6618 3.7813 0.1888 0.1195 0.427 -0.280
4 3.1459 3.3623 0.1677 -0.2164 0.436 -0.497
5 3.3824 2.8766 0.1091 0.5058 0.454 1.114
6 4.0135 3.1065 0.1187 0.9070 0.452 2.008
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10
11
12
13
14
15
le
17
18
19
20
21
22
23
24
25
26
27

Obs

O JO0 U1 WP

.4248
.9344
.2607
.2745
.2007
.4135
.7955
.4916
.7885
. 7252
.0874
.5688
.0173
.5633
.1446
.7206
.9643
.9977
.0707
.2828
.4604

N WNMNMNNMREFNMWWANWNONWWWWNIERELN

Output Statistics

WNDNMNNDMDODNMDMNDDWWNDWWONWWWWNNDND

.3465
.5974
.2842
.3294
.2104
.4835
.2712
.2026
.7885
.3875
.2624
.6345
.2636
.6377
.8736
.5582
.2925
.7345
.4161
.9836
.4364

-2-1 01 2

0.4670

.1832
.1226
.2410
.1463
.1395
.2324
.1191
.1877

O O OO OO oo

.1254
.1312
.1506
.1190
.1639
.1192
.1292
.2159
.1095
.2064
.0923
.2068

o elelNelNeNoeNolNo e NoloNel

Cook's

.020
.032
.004
.009%
.018
.070
.002
.040
.000
.000
.000
.002
.023
.022
.795
. 042
.003
.001
.048
.001
.006

OO0 O OO ONOODODOODOOO0OODOOCOO O
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0.0783 0.429
-0.6630 0.451
-0.0235 0.400
-0.0549 0.443
-0.009735 0.446
-0.0700 0.405

0.5243 0.452

0.2889 0.428

-1.89E-11 1.62E-6
-0.6623 0.450
-0.1750 0.448
-0.0657 0.442

0.7537 0.452
-0.0744 0.437

0.2710 0.451

0.1624 0.449
-0.3282 0.414

0.2633 0.454
-0.3454 0.419

0.2992 0.458
-0.9760 0.419

0.
-1.

182
471

-0.0588

-0.

124

-0.0218

-0.
1.
0.

173
161
676

-16E-7

-1.
-0.
-0.
.669
-0.

1

0
0
-0
0
-0
0
-2

472
390
149

170

.600
.362
.793
.580
.825
.654
.331



22 | | | 0.003
23 | * | | 0.043
24 | | * | 0.005
25 | * | | 0.041
26 | | * | 0.004
27 | Hxxx| | 0.331
Sum of Residuals -5.0919E-13
Sum of Sguared Residuals 5.01511
Predicted Residual SS (PRESS) 8.70301
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The UNIVARIATE Procedure
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Variable: resid

N

27

Mean

0

Std Deviation
0.19288893
Skewness
0.12987266
Uncorrected SS
5.01511227
Coeff Variation
0.08452239

Ba

Location

0.0000
-0.0235

Mean
Median
Mode

Tests

Test -
Student's t t
Sign M
Signed Rank S

Quantiles (Defin
Quantile

100% Max
99%

95%

90%

75% Q3

50% Median

[« eoloNeNeoNo]

(Residual)
Moments
27 Sum Weights
0 Sum Observations
0.43919123 Variance
-0.1416285 Kurtosis
5.01511227 Corrected SS

Std Error Mean

sic Statistical Measures
Variability
0 Std Deviation 0.43919
0 Variance 0.19289
Range 1.88296
Interquartile Range 0.50534
for Location: Mu0=0
Statistic- ~ ----- p Value------
0 Pr > |t 1.0000
-2.5 Pr >= |M| 0.4421
-2 Pr >= |S| 0.9628

ition 5)
Estimate

.9070042
.9070042
.7536889
.5243173
.2889438
.0235034
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25% Q1 -0.2164000
10% -0.6622623
5% -0.6630052
1% -0.9759572
0% Min -0.9759572
Extreme Observations

—————— Lowest------ ------Highest

Value Obs Value
-0.975957 27 0.385263
-0.663005 8 0.505782
-0.662262 16 0.524317
-0.655128 2 0.753689
~-0.345435 25 0.907004

—peca-eoy

The UNIVARIATE Procedure

Variable:

resid

(Residual)
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Stem Leaf
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Normal Probability Plot
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The UNIVARIATE Procedure
Fitted Distribution for resid

Parameters for Normal Distribution
Parameter Symbol Estimate

Mean Mu 0
Std Dev Sigma 0.439191
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Goodness-of-Fit Tests for Normal Distribution

Test ---Statistic----
Kolmogorov-Smirnov D 0.09940601
Cramer-von Mises W-Sq 0.05035555
Anderson-Darling A-Sg 0.29758669

Quantiles for Normal Distribution

————— p Value-----
Pr > D >0.150
Pr > W-Sg >0.250
Pr > A-Sq >0.250

—————— Quantile------
Percent Observed Estimated
1.0 -0.97596 -1.021712
5.0 -0.66301 -0.722405
10.0 -0.66226 -0.562846
25.0 -0.21640 -0.296230
50.0 -0.02350 -0.000000
75.0 0.28894 0.296230
90.0 0.52432 0.56284¢6
95.0 0.75369 0.722405
99.0 0.90700 1.021712
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30 / \
p
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e
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Linear: Injury Accident Rate and graphical
diagnostics Code
proc reg data=thesis;
model rate=fence ospole hazards parkinglots vol
residential length grades curves crest widtha widthsida
pavement markings lighting/p r clb c¢lm cli ssl ss2 pcorr2;
output out=thesis3 p=pred r=resid student=student;
run;
*/studentized residuals vs predicted*/;
symbol i=none v=dot c=red width=1;
proc gplot data=thesis3;
plot student*pred/vref=0;
run;
* /boxplot of residuals*/;
symbol i=boxt c=red width=5;
proc gplot data=thesis3;
plot resid*boxplot;
run;
*/residual vs predicted */;
symbol i=none v=dot c=red width=1;
proc gplot data=thesis3;
plot resid*pred/vref=0;
run;
*/normal quantile plot*/;
symbol v=dot w=1 i=none c=red;
proc univariate data=thesis3;
var resid;
ggplot resid/normal (L=1 mu=est sigma=est);
run;
*/normal probability plot*/;
proc univariate data=thesis3 plot;
var resid;
histogram resid/normal kernal (L=2) ;
run;
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SAS Output

Linear: Injury Accident Rate Model

The REG Procedure

Model: MODEL1

Dependent Variable:

Source

Model
Error
Corrected Total

Root MSE
Dependent Mean
Coeff Var

Variable DF
Intercept 1
fence 1
ospole 1
hazards 1
parkinglots 1
vol 1
residential 1

Variable DF
Intercept 1
fence 1
ospole 1
hazards 1
parkinglots 1
vol 1
residential 1

rate

Analysis of Variance

Sum of Mean
DF Squares Square F Value Pr > F
15 5169.87253 344.65817 4.88 0.0058
11 777.14098 70.64918
26 5947.01352
8.40531 R-Square 0.8693
23.14741 Adj R-Sq 0.6911
36.31209
Parameter Estimates
Parameter Standard
Estimate Error t Value Pr > |t]
-193.35194 89.81139 -2.15 0.0544
2.93044 1.29497 2.26 0.04459
4.86890 1.51462 3.21 0.0082
0.38116 0.17511 2.18 0.0522
-3.15499 0.65683 -4.80 0.0006
0.00075693 0.00051916 1.46 0.1728
-0.38469 0.11714 -3.28 0.0073
Parameter Estimates
Squared
Partial
Type I SS Type II SS Corr Type II
14467 327.44729 .
933.87327 361.78892 0.31766
715.58091 730.06986 0.48438
534.69451 334.72221 0.30105
18.34893 1630.01234 0.67715
55.58497 150.17803 0.16195
1686.75489 761.90869 0.439505
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Variable

Intercept
fence
ospole
hazards

parkinglots

vol

residential

Parameter Estimates

DF

PR HRP R R R

The REG Procedure

Model :

Variable
length
grade
curves
crest
widtha
widthsida
pavement
markings
lighting

Variable
length
grade
curves
crest
widtha
widthsida
pavement
markings
lighting

MODEL1
Dependent Variable:

o
o

R R R HEBERBRRR

o
0|

HRHBRRBRRR PR

C-23

95% Confidence Limits
-391.02547 4.32159
0.08024 5.78064
1.53526 8.20255
-0.00426 0.76658
-4.60067 -1.70930
-0.00038575 0.00190
-0.64251 -0.12686
rate
Parameter Estimates
Parameter Standard
Estimate Error t Value
-0.01504 0.01001 -1.50
-1.32956 0.89444 -1.49
7.75536 4.69458 1.65
6.26575 1.91241 3.28
-0.50217 1.32845 -0.38
3.34846 1.38181 2.42
-28.58297 11.10120 -2.57
3.61247 3.70068 0.98
1.51331 0.78949 1.92
Parameter Estimates
Type I SS Type II SS Corr
58.39700 159.43970
0.68897 156.10644
177.70870 192.80457
175.99482 758.38432
149.71812 10.09520
173.25068 414 .85496
226.86876 468.36239
2.83018 67.32135
259.57783 259.57783

Pr > |t
.1612
.1652
.1268
.0074
.7126
.0338
.0258
.3500
.0816

O OO O OO0 OO0

Squared
Partial
Type IT
.17024
.16727
.19878
.49389
.01282
.34803
.37604
.07972
.25038

[elelNelNelNelNolNeNolNo



Parameter Estimates

Variable DF

length
grade
curves
crest
widtha
widthsida
pavement
markings
lighting

HH R R R RP R R

The REG Procedure
Model: MODEL1

Dependent Variable:

Dep Var

Obs rate

Mean

1 48.9100
2 8.2600
3 38.9300
4 23.2400
5 29.4400
6 55.3400
7 11.3000
8 6.9200
9 9.5900
10 26.4300
11 24.5500
12 30.3700
13 44.5000
14 12.0800
15 2.2000
16 15.2600
17 21.9200
18 13.0500
19 55.5500
20 35.2800
21 23.2100
22 15.1900
23 7.1300

95% Confidence Limits

rate

52.
.7924
.8829
.7329
.1787
.6952
.1453
.7802
.8410
.4717
26.

15
44
30
24
48

10
22

28

17
13
47

23
12

.03707
.29821
.57734
. 05655
.42607
.30710
.01655
.53267
.22435

0.00699
0.63909
18.08805
10.47494
2.42173
6.38981
-4.14940
11.75760
3.25096

Output Statistics

Predicted

Value

1308

1746

.7010
35.
17.
.2000
l6.
.3075
.7902
.0950
41.

5084
6899

2404

9510

.3214
.3144
.4843

ANV N0 JUUTONNNOJO0O0S UoOyO
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Std Error
Mean Predict

.3534
.6857
.3699
.4769
.5355
.4822
.7265
.6439
.8919
.5614
.9933
.4258
.6089
.2281
.4053
.2462
.1061
.3466
.7091
.3961
.4480
.8274
.7752

38.1471
1.0772
33.0639
20.8792
9.7941
34.4280
-8.8606
-10.8429
-6.5289
5.8290
10.7825
16.7589
23.1632
1.7811
-16.3000
2.4927
1.6672
-0.1786
32.3283
27.8733
11.3304
-2.7126
-6.4278

95%

66.
.5075

30

56.
.5865
.5632
62.
25.
.4033
.2109
39.
.5667
.6431
47.
.5988
.7000
29.
.9479
.7589
61.
56.
.3123
.3414
.3964

40
38

18
28

41
40

33
20

32
27

35
27
23

CL

1146

7019

9624
1512

1143

8537

9881

8617
0286



24
25
26
27

Student
Obs
Residual

OO U W

=
o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

20.
.9300
26.
.7100

11

0400

6500

95%

.9404
.8463
.9299
. 7723
. 7444
.3328
.9834
.8012
.5354
.4126
.1088
.6814
L2677
.7096
.9629
.8085
.9179
.3912
.4242
.7038
.2753
.5196
.2774
.7163
.0468
.4130
.0044

16.1659 4.4007 6.4800 25.8519
9.3351 7.2157 -6.5466 25.2167
21.2945 4.4001 11.6099 30.9791
25.7555 5.1974 14.3161 37.1948
Output Statistics
Std Error
CL Predict Residual Residual
75.3212 -3.2208 5.503 -0.585
39.4310 -7.5324 5.094 -1.479
66.8360 -5.9529 6.466 -0.921
51.6934 -7.4929 7.114 -1.053
47.6129 5.2613 5.285 0.995
72.0576 6.6448 5.351 1.242
33.2740 3.1547 3.309 0.953
27.3616 3.1398 5.149 0.610
36.2174 -1.2510 2.893 -0.432
47.3559 3.9583 3.671 1.078
50.2405 -1.6246 4.663 -0.348
50.7206 1.6690 6.419 0.260
57.7492 8§.9916 6.260 1.436
42.0895 -5.6099 4.290 -1.308
28.3629 -2.51E-12 1.85E-6 -136E-8
39.2892 -0.9804 5.624 -0.174
41 .5329 4.6125 4.489 1.027
36.9715 -0.7402 5.511 -0.134
70.7657 8.4550 5.063 1.670
65.1981 -6.6710 5.453 -1.223
45.3675 -0.1114 6.401 -0.0174
36.1484 2.8756 4.903 0.587
32.2460 -1.3543 4.975 -0.272
37.0481 3.8741 7.161 0.541
33.7169 -1.4051 4.311 -0.326
42 .1760 5.3555 7.162 0.748
47.5065 -14.0455 6.606 -2.126
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Output Statistics

Cook's

Obs -2-1 01 2 D

1| * | | 0.029

2 | *k | | 0.235

3| * | | 0.037

4 | ** | | 0.027

5 | | * | 0.095

6 | | ** | 0.141

7 | * | 0.310

8 | | * | 0.039

9 | | | 0.087

10 | | ** | 0.308

11 | ] | 0.017

12 | | | 0.003

13 | | ** | 0.104

14 | *x | | 0.303

15 | | | 2.393

16 | | | 0.002

17 | | ** | 0.165

18 | | | 0.001

19 | | %% * | 0.306

20 | *% | | 0.129

21 | | | 0.000

22 | | * | 0.042

23 | | | 0.009

24 | | * | 0.007

25 | | | 0.019

26 | | * | 0.013

27 | xwEw| | 0.175
Sum of Residuals 0
Sum of Squared Residuals 777.14098
Predicted Residual SS (PRESS) 7406.37292
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Resi dual

107

-107

Redcted N@lue of rate

The UNIVARIATE Procedure

Variable: resid (Regidual)

Moments
N 27 Sum Weights
27
Mean 0 Sum Observations
0
Std Deviation 5.46717823 Variance
29.8900378
Skewness -0.5379714 Kurtosis
0.20121435
Uncorrected SS§ 777.140984 Corrected SS
777.140984
Coeff Variation Std Error Mean
1.05215894
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Basic Statistical Measures

Location Variability

Mean 0.00000 Std Deviation 5.46718

Median -0.11137 Variance 29.89004

Mode . Range 23.03702
Interquartile Range 7.17915

Tests for Location: Mu0=0

Test -Statistic-  ----- p Value------

Student's t t 0 Pr > |t 1.0000

Sign M -1.5 Pr >= |M| 0.7011

Signed Rank S 5 Pr >= |S]| 0.9070

Quantiles (Definition 5)

Quantile Estimate
100% Max 8.991556
99% 8.991556
95% 8.455016
90% 6.644799
75% Q3 3.958335
50% Median -0.111366
25% Q1 -3.220813
10% -7.492856
5% -7.532351
1% -14.045460
0% Min -14.045460

Extreme Observations

—————— Lowest------ ~-----Highest-----

Value Obs Value Obs
-14.04546 27 5.26134 5
-7.53235 2 5.35550 26
-7.49286 4 6.64480 6
-6.67096 20 8.45502 19
-5.95292 3 8.9915¢ 13
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Nornal Quartiles

The UNIVARIATE Procedure
Variable: resid (Residual)

Stem Leaf
50

6
0634

# Boxplot
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Normal Probability Plot
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The UNIVARIATE Procedure
Fitted Distribution for resid

Parameters for Normal Distribution
Parameter Symbol Estimate

Mean Mu 0
Std Dev Sigma 5.467178

Goodnegs-of-Fit Tests for Normal Distribution

Test ---Statistic----- ----- p Value-----
Kolmogorov-Smirnov D 0.12391328 Pr > D >0.150
Cramer-von Mises W-Sq 0.05215304 Pr > W-Sg >0.250
Anderson-Darling A-Sg 0.32431521 Pr > A-Sgq >0.250
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Quantiles for Normal Distribution

——————— Quantile-------
Percent Observed Estimated
1.0 -14.04546 -12.718558
5.0 -7.53235 -8.992708
10.0 -7.49286 -7.006471
25.0 -3.22081 -3.687556
50.0 -0.11137 -0.000000
75.0 3.95833 3.687556
90.0 6.64480 7.006471
95.0 8.45502 8.992708
99.0 8.99156 12.718558
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