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Abstract

A WIoT is a wireless network of low-power sensing nodes placed on the human body.

While operating, these networks routinely collect physiological signals to send to offsite

medical professionals for review. In this manner, these networks support a concept known

as pervasive healthcare in which patients can be continuously monitored and treated re-

motely. Given that these networks are used to guide medical treatment and depend on

transmitting sensitive data, it is important to ensure that the communication channel re-

mains secure. Symmetric pairwise cryptography is a traditional scheme that can be used

to provide such security. The scheme functions by sharing a cryptographic key between

a pair of sensors. Once shared, the key can then be used by both parties to encrypt and

decrypt all future messages. To configure a WIoT to support the use of symmetric pair-

wise cryptography a key distribution protocol is required. Schemes for pre-deployment

are often used to perform this distribution. These schemes usually require inserting key

information into WIoT devices before they can be used in the network. Unfortunately,

this need to manually configure WIoT devices can decrease their usability. In this thesis

we propose and evaluate an alternative approach to key distribution that uses physio-

logical signals derived from accelerometer and gyroscope sensors. The evaluation of our

approach indicates that more study is required to determine techniques that will enable

ballistocardiography-derived physiological signals to provide secure key distribution.
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Chapter 1

Introduction

A WIoT is a wireless network of health sensors positioned on a human body.

In this network these sensors regularly collect and transmit vital signs. As such, WIoT

networks support a concept known as pervasive healthcare. In pervasive healthcare a

WIoT sends vital sign data to an offsite medical professional. In so doing, patient health

can be continuously monitored. This affords individualized plans for medical treatment

and timely diagnoses [3]. For WIoT to be used in this clinical manner, at least two

criteria need to be satisfied. The first criterion is that the integrity of the vital sign

data should not be compromised. This is essential because these vital signs are used to

guide treatment. The second criterion is that the confidentiality of the vital sign data

should not be violated. This is essential due to laws that govern the privacy of patient

data. If these requirements are not met, adversaries can view patient data and adversely

affect patient safety. For example, an adversary within range of a WIoT could connect to

the network with a properly configured transceiver. This would allow for the collection

of communicated vital signs and the injection of fake data. Therefore, it is important to

secure the wireless communications transpiring within a WIoT. This problem must be

solved before these networks can come into widespread use.

In the domain of network security, cryptography is often used to provide secure chan-

nels for communication. Cryptography works by encoding information so that only autho-
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rized endpoints can decode that data. The guarantees afforded by cryptography typically

include confidentiality, integrity, authentication, and non-repudiation. Generally speak-

ing, there exist two different types of crypto systems. The first type are symmetric crypto

systems and the second type are asymmetric crypto systems. Symmetric crypto systems

work by providing the same secret information to all communicating parties. This secret

information is known as a cryptographic key. During operation that key is used as a mech-

anism for encrypting and decrypting the data to send. On the other hand, asymmetric

crypto systems work by using something called a public key infrastructure (PKI). In an

asymmetric crypto system every device has two different cryptographic keys. The first key

is a private key that is only known to the device. The second key is a public key shared

to all through the PKI. To communicate data in this crypto system, the information is

encrypted with the public key of the destination. Once received, the destination decrypts

that information using its private key.

In the context of WIoT, symmetric cryptography is often used [3]. Advan-

tages in using this technique include shorter key size and the lack of a need to configure

and maintain a PKI. Both points are important when considering the resource-limited

nature of WIoT sensors. Specifically, these sensors run on battery power and have limited

memory and computational ability. The only device that is more capable within these

networks is the aggregation device that also serves as a gateway between the WIoT and

a wide area network (WAN). This device is termed as the sink. To enable the use of

symmetric cryptography, a protocol for key distribution is required. Some known

protocols include probabilistic key distribution [8], master key based distribution [7], and

Bluetooth pairing [6]. Unfortunately, none of these techniques for key distribution provide

usable security. Namely, the use of pre-deployment in [8] and [7] requires each WIoT

device to be manually loaded with the appropriate key information prior to use. On the

other hand, the use of a Bluetooth pairing approach in [6] decreases usability by requiring

user involvement for additional security properties. To enhance the usability of WIoT, it

would be best if the network could perform key distribution automatically without user
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involvement.

Given that WIoT devices are in contact with the body, we consider using vital

signs to perform key distribution. The general strategy for this approach is to use

the similarity in the synchronously-recorded physiological signals to help transfer a dy-

namically generated key. This would eliminate both the need for pre-deployment as well

as the need for any user involvement. An existing solution that uses this approach is a

protocol called physiological signal based key agreement [3]. Within that scheme a

cryptographic primitive, known as a fuzzy vault, is used to hide the key information during

transfer to the other endpoint. The similarity in the signals then helps that endpoint to

unlock the vault and recovery the key. While depending on this scheme as a foundation,

our approach differs by using accelerometer and gyroscope sensors to derive the

physiological signals. We do not leverage the special sensing hardware present within

the WIoT sensors. We believe this approach to be an improvement because the sink,

which does not have specialized hardware, can now be incorporated into the key distribu-

tion process. If successful, this approach would allow for the entire WIoT to be configured

to use symmetric crypto systems like AES in a plug-n-play manner.

Due to our use of physiological signal based key agreement, our evaluation consists of

assessing how well our derived vital signs could satisfy the design guidelines enumerated in

[3]. This included assessing the properties of distinctiveness and temporal variance.

Both properties determine the degree to which an adversary can circumvent the physio-

logical signal based key agreement scheme. Having sufficient distinctiveness means that

vital signs from other individuals cannot be used to predict key values. Similarly, having

sufficient temporal variance means that future vital signs cannot be used to predict key

values. To perform our evaluation, we first developed a testbed to collect accelerometer

and gyroscope data from a set of participants. The next step was to filter this raw data

into two different signal types, blood volume pulse (BVP) and ballistocardiography

(BCG). Next, the physiological signal based key agreement scheme was followed for each

signal type and aggregate statistics were computed through the use of three different algo-
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rithms. This statistical information was then analyzed to determine whether our approach

would be successful according to the physiological signal based key agreement criteria.

There are two contributions made in this thesis. The first contribution is the idea

of using vital signs derived from gyroscope and accelerometer sensors to perform key

distribution. The second contribution is an evaluation of that scheme according to the

physiological signal based key agreement criteria. The two types of derived signals that we

evaluate in particular are BVP and BCG. Unfortunately, the results from the evaluation

clearly indicate that while key distribution can be performed, the guidelines for physio-

logical signal based key agreement are not satisfied. This means that our approach is able

to be attacked by adversaries who either acquire data from other individuals or capture

data from the same individual at some different point in time.

1.1 Outline

The remainder of this thesis is formatted as follows. Chapter 2 contains information on

our system model, threat model, and problem statement. Chapter 3 describes related

work on key distribution. Chapter 4 provides background information on physiological

signal based key agreement and ballistocardiography. Chapter 5 details our approach to

key distribution. Chapter 6 provides information on our evaluation and results. Chapter

7 provides a discussion on potential sources of error. Finally, Chapter 8 summarizes this

work and concludes the thesis.
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Chapter 2

Models and Problem Statement

In this chapter we focus on describing the capabilities and structure of the WIoT sys-

tems considered in this research. Next, we describe our adversaries and their respective

capabilities. This includes a statement of our assumptions. Finally, we conclude with a

statement of the problem our thesis seeks to address.

2.1 System Model

A WIoT consists of a collection of sensing nodes placed on the body of an individual [2]

(Figure 2.1). While able to have their nodes wired together, WIoTs are usually wireless

in nature. During their operation, the sensing nodes in a WIoT routinely collect data on

physiological or environmental signals. When collected by the sensing nodes, this data

is then forwarded to an aggregation device. This aggregation device, known as the sink,

is the only other type of device existing within the WIoT. Similar to the sensing nodes,

the sink is typically placed on the body. In general, there are a few differences between

the sensing nodes and the sink. The first difference is functionality. Specifically, sensing

nodes are designed to perform simple tasks due to their limited power, computational

ability, and storage. Conversely, the sink is able to perform sophisticated processing while

acting as a gateway between the WIoT and a wide area network (WAN).

Related to functionality, another difference between sensing nodes and the sink are
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Figure 2.1: A WIoT network

the hardware components they contain. To perform its functionality, a typical sensing

node consists of a battery, memory module, microprocessor, transceiver, sensing unit,

and analog-to-digital converter (ADC) [2]. Similarly, the sink also contains a battery,

transceiver, and ADC. However, the sink may not necessarily contain the same sensing

unit as the sensing nodes. Link layer technologies used for communicating data between

the sensing nodes and the sink include those existing within the industrial scientific and

medical (ISM) band. Examples include, but are not limited to, Bluetooth, Zigbee, and

WiFi [2]. To route communicated data across the WIoT, there exist at least three different

topologies. The first is a single-hop topology in which every node is at most one-hop away

from another node. The second is a multi-hop topology in which many nodes can be

traversed. The third is a so-called star-topology in which the sink exists at the center of

the network with every other node as a connected point.

Within the context of our work, we make a few assumptions about our WIoT. In par-

ticular, we assume that all of the devices are in contact with the body of the individual

wearing the network. Another assumption that we make is that all devices contain the

same sensing hardware. In our case, this means having an inertial measurement unit

(IMU) containing an accelerometer and gyroscope. Finally, we also assumed all WIoT
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communications to be wireless in nature. If this were not the case then the wired connec-

tion between nodes would already provide sufficient security.

2.2 Threat Model

Within our work we focus on developing a scheme for securing the wireless channel used

for intra-WIoT communication. To understand what providing security would mean in

this context, we first identify the capabilities of our potential adversaries. The insecure

system, evaluated from a conceptual standpoint, was one in which information is openly

exchanged between WIoT devices. This means that no cryptographic transformations are

applied to the information in transit and that anyone using the same link-layer technology

and a transceiver can have the potential to be disruptive. The two types of adversaries

anticipated were active and passive. Active adversaries would focus on inserting or modi-

fying information. Passive adversaries would focus on reading the wireless medium to

acquire knowledge about the system or to record physiological data transmitted by the

sensing nodes to the sink. The key concern associated with passive adversaries was the

potential to violate the confidentiality of WIoT data. The concern for active adversaries

was the potential to violate the integrity of WIoT data.

Specific attacks capable of being launched by active adversaries included the injection

of new data, spoofing, the modification of data in transit, and the ability to replay

old communications. The only attack capable of being launched by passive adversaries

was eavesdropping. While these were the attacks forming the foundation for our threat

model, it is important to identify threats we did not address. For instance, one critical

aspect of WIoTs is that they can be used to continuously monitor patient health. This

makes ensuring availability important. However, because we focus primarily on confiden-

tiality and integrity, we do not address denial-of-service (DoS) or resource consumption

attacks. Additionally, we do not consider the exploitation of the software or hardware in

WIoT nodes. Consequently, physical attacks such as supply chain compromise or network

infiltration at the sink were not a concern.
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Further assumptions of ours include that we do not anticipate our adversaries to make

use of side channels to indirectly acquire physiological data. Given our scheme for key

distribution, adversaries might want to do this to enhance their chances of determining the

shared key. Another assumption we make is that the wearer of the WIoT is not actively

collaborating with the adversary. If this were the case, violating our scheme would be

trivial. Finally, the last assumption is that no attacks will be directed between the sink

and its connection to the WAN because that communication is protected by measures

such as TLS.

2.3 Problem Statement

The task of this work is to securely perform key distribution for all devices partici-

pating within the confines of a WIoT. A secondary objective is to ensure that this process

for distributing key information does not require user interaction and can be com-

pleted automatically. With WIoTs emerging as a technology to support pervasive

healthcare, it is important that their data be kept confidential and unmodified. Basing

plans for medical treatment on inaccurate information has the potential to adversely af-

fect patient safety and well-being. Additionally, disclosing medical information without

patient consent is illegal. In an attempt to provide WIoTs with a secure communication

channel, we propose a scheme based on [3] that will use derived physiological signals.

The benefit assumed here is that all devices will be able to be configured provided that

they possess an accelerometer and gyroscope. To validate our approach, we evaluate two

different design goals inherited from [3] called distinctiveness and temporal variance. Both

design goals are meant to guarantee that an adversary cannot gain the ability to reliably

guess keys based on additional information. This would include physiological data col-

lected either from other individuals or from the same individual at some different point in

time.
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Chapter 3

Related Work

Existing schemes for key distribution in wireless sensor networks include the use of pre-

deployment and the use of Bluetooth pairing. In work performed in [8] the authors

describe a scheme for pre-deployment in which a ring of keys are inserted into each sen-

sor prior to the use of the network. This ring, facilitates the use of pairwise symmetric

cryptography if at least q of the keys in each ring for each sensor match. To reduce compu-

tational overhead the scheme reduces the number of these q keys that are used to produce

a single shared key to some upper bound value of s. Because it is not always guaranteed

that at least q keys match between pairs of sensors, this a probabilistic approach. In

work performed in [7] the authors describe the setup of a body area network in which

pre-deployment of a master key is used to ensure secure communication between all of the

sensors. A survey conducted in [1] discusses the basic approach of manually inserting key

information in sensor nodes. Additionally, [1] discusses distributing chains of keys from a

random pool to sensors. This method is the predecessor to the scheme mentioned in [8].

Our proposed approach improves upon both schemes by dynamically generating keys and

facilitating their distribution during network operation without any user involvement.

In work from [6] the authors discuss a scheme for using Bluetooth to pair groups of

devices in a body area network. Additional security properties that the authors focus on

developing include ensuring that the legitimacy of nodes in a formed group can be verified
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through an out-of-band channel and allowing nodes to be added and removed from formed

groups. The out-of-band channel used is a visual channel which requires devices in the

network to blink LEDs to indicate their group membership. Upon this blinking the user

can then know whether all nodes within a group are legitimate nodes belonging to that

group. Our proposed approach does not focus on providing all of the security guarantees

mentioned in that paper. Instead, our concerns are ensuring that key distribution is

performed securely without any need for user involvement among pairs of devices. With

respect to not requiring user involvement, our proposed approach is an improvement.
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Chapter 4

Background Material

4.1 Physiological Signal Based Key Agreement

As mentioned previously, our proposed approach leverages a scheme for key distribution

described in [3] called physiological signal based key agreement. Dissimilar to the

schemes mentioned in [8] and [7], physiological signal based key agreement does not require

any pre-deployment of key information. Instead, keys can be dynamically generated

and the similarity in synchronously recorded physiological signals helps to perform the

distribution. To distribute a pseudo-randomly generated key, physiological signal based

key agreement operates in a total of seven phases. These include randomly generating

a polynomial of a pre-determined order, synchronously collecting a physiological signal

for a fixed duration, constructing an entity known as a vault, sending that vault over

the wireless medium, reversing that vault to re-acquire the key information, confirming

the correctness of the recovered key, and using the key in the context of a traditional

crypto-system such as AES.

Since physiological signal based key agreement was developed to support pairwise sym-

metric key distribution, the setup occurs between two devices. The first device generates

a key and securely distributes it to the second device. These two devices are respectively

termed as the sender and the receiver. In the first phase, the sender uses a pseudo-random
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number generator (PRNG) to produce each coefficient in a polynomial of a pre-determined

order. When concatenated together as a binary string, the coefficients form an integer

value representing the key to share. In the second phase, the sender and the receiver

synchronously record the same type of physiological signal for the same duration at the

same sampling rate. After these first two phases, a cryptographic primitive known as a

fuzzy vault is then constructed by the sender. This construct is important in the physi-

ological signal based key agreement scheme because it enables the secure exchange of the

polynomial.

To construct the vault, the sender first examines the physiological signal that it had

recorded. Specifically, the sender takes that signal and divides it into five equally-sized

and consecutive windows having fifty percent overlap. Next, these windows of time-series

data are then transformed into frequency-domain data by applying a fast-fourier-transform

(FFT). Once in the frequency domain, the first 32 data points in each window are searched

for local peaks using a local maxima detector. When finding these peaks, numerical values

called features are formed. To construct each feature, the index and amplitude value of

that peak are concatenated together into a single binary string consisting of 13 bits. The

first 8 bits consist of the amplitude value of the observed peak. The next 5 bits consist of

the index value at which the peak was observed. After generating these features, the next

step is to transpose them onto the polynomial.

To transpose these features, each unique feature was provided as input to the polyno-

mial. The result was a collection of two-dimensional legitimate points. The horizontal

value of each point was the numerical value of the feature, while the vertical value was

the evaluation of that feature when provided to the polynomial. After producing these

legitimate points, the next step of vault production in physiological signal based key agree-

ment is to pseudo-randomly generate a much larger set of distraction points. These points

are termed chaff and are generated so that they do not overlap with any existing legit-

imate points or chaff points. Once produced, the chaff points are then permuted with

the legitimate points to form a set known as the vault (Figure 4.1). This vault is then
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Figure 4.1: A vault according to the physiological signal based key agreement scheme

communicated from the sender to the receiver in the next phase of physiological signal

based key agreement.

To send the vault and ensure the recovery of the key, the sender constructs a message.

This message consists of the ID of the sender, the ID of the receiver, the vault, a nonce

value, and a message authentication code (MAC) formed from the key and an OR

operation on the vault, nonce, and sender ID. In this message the IDs are used for routing,

the vault is used to support key recovery, the nonce is used to prevent replay, and the MAC

is used to confirm key recovery. When sent to the receiver, the vault is then extracted and

the process of unlocking the vault is initiated. The first step taken in the unlocking process

is for the receiver to acquire the features from its recorded version of the physiological

signal. Next, the intersection of these features and the horizontal component of the vault

points is found. This forms a set of two-dimensional points believed to be legitimate

points. Assuming that there is at least one more than the order of the polynomial such

points the receiver can then start the recovery of the polynomial.

To recover the polynomial in the physiological signal based key agreement scheme, a

technique known as Lagrangian interpolation is applied (Equation 4.1). This technique

works by taking the order plus one points and using one of those points as a test point. A
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polynomial of the appropriate order that is capable of linking these points is then formed.

Once re-acquired, the second to last phase of physiological signal based key agreement

is to confirm whether the recovered polynomial is the same as the original polynomial.

To perform this check, the receiver recomputes the MAC that it had been sent. If the

MAC that it computes matches the MAC that it had been sent, the receiver knows it

has correctly recovered the key. If this is the case, the last step in physiological signal

based key agreement is to confirm this recovery with the sender. To do this the receiver

sends a message to the sender containing a different MAC. This MAC is formed from the

recovered key and an OR operation on the nonce, sender ID, and receiver ID. If the sender

can re-compute this MAC with its key then AES can begin to be used in the WIoT.

p(x) =
v∑

j=0

yjdj(x) , dj(x) =
i=v∏

i 6=j,i=0

x− xi
xj − xi

(4.1)

4.2 Ballistocardiography

Apart from physiological signal based key agreement, we also leverage two techniques for

deriving ballistocardiography signals. Ballistocardiography signals are related to subtle

movements of the body caused by ejection of blood from the heart muscle as

it beats. When the human body is still, work in [5] and [6] has shown that gyroscope

and accelerometer sensors can be used to detect these movements. By naturally detecting

acceleration and rotation, accelerometers and gyroscopes capture this movement data in

the form of meters/second2 and radians/second, respectively. Upon removing noise from

gyroscope and accelerometer data these body movements should appear.
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Chapter 5

Approach

In this chapter we detail all of the steps involved in our proposed approach to performing

key distribution in WIoTs. As mentioned earlier, the general idea for our approach is to

use accelerometer and gyroscope data to derive physiological signals. Those signals are

then used in the context of a scheme known as physiological signal based key agreement

to perform key distribution. At the abstract level, these are the steps involved. More

concretely, there are four steps. The first consists of collecting the raw sensor data. The

second consists of deriving physiological signals from the raw data. The third consists

of extracting features from the derived signals. The fourth consists of using the features

in accordance with the physiological signal based key agreement protocol. Each of these

steps is described further in the sections that follow.

5.1 Data Collection

Within our approach, the process of data collection is an activity performed synchronously

between two devices in the WIoT. These devices form a pair wanting to communicate with

one another (Figure 5.1). For both devices it is assumed that they have accelerometer

and gyroscope sensors. Initiating data collection occurs when one of the devices in the

pair sends a future timestamp to the other device. Afterward, both devices wait for that

future timestamp to occur in real time as opposed to system time. Upon the future
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Figure 5.1: A pair of devices wanting to communicate in a WIoT

timestamp, both devices then begin to simultaneously collect triaxial accelerometer and

triaxial gyroscope data from their own sensors at the same sampling rate for the same

timespan. The sampling rate used was 100 Hz and the timespan was 7.68 seconds. The

result of this collection are six streams of data per device. These components are for the

X, Y, and Z axes of each of the two sensors. Measurement units for each of the sensors

across both devices were assumed to be the same. Gyroscope values were recorded in

radians/second while accelerometer values were recorded in meters/second2. Finally, all

sensors were assumed to be properly calibrated prior to the sampling of their readings.

All data collection was performed ethically by having participants review and sign an

approved consent form from the institutional review board.

5.2 BCG Generation

After collecting the raw accelerometer and gyroscope data, the next step was to use that

data to derive a physiological signal for each device in the pair. In our approach, we eval-

uate two different filtering techniques to arrive at those signals. Specifically, we leverage
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work from [5] and [4] to derive blood-volume-pulse (BVP) and ballistocardiography (BCG)

signals. In both cases, these signals relate to subtle motion caused by the expansion and

contraction of the heart muscle. Through sequences of signal processing techniques de-

scribed in [5] and [4], the six axes of accelerometer and gyroscope data from each device

are transformed into a single time-series signal. Applying the technique from [5] generates

a BVP signal while applying the technique from [4] generates a BCG signal.

To derive a BCG signal from the six streams of data for each device (Figure 5.2),

four steps were required according to [4]. In the first step of the BCG derivation, each

of the six streams of data were normalized so that they would have zero mean and unit

variance (Figure 5.3). This meant that each stream would first have its mean subtracted

from all of its data values and would then have all of those values divided by its standard

deviation. This was done to reduce the influence that different scales might have when

filtering the data in later steps. Next, an averaging filter of 35 samples was subtracted

from each normalized stream to remove the presence of slow motions due to other body

signals [4] (Figure 5.4). Following this step, a Butterworth bandpass filter with cut off

frequencies of 4 Hz and 11 Hz and order 4 was applied to each normalized and detrended

stream of data (Figure 5.5). This was done to isolate the BCG waveform for each stream

[4]. Finally, the stream with the highest amplitude response in the frequency domain was

selected (Figure 5.6).

To derive a BVP signal for each device only the three streams of data from the gyro-

scope sensor were required (Figure 5.7). According to [5] the process involved four steps.

The first step was to subtract an averaging filter of three samples from each of the three

streams of data (Figure 5.8). The second step was to apply a bandpass Butterworth filter

with cutoff frequencies of 10 Hz and 13 Hz and order 4 to each of the three streams of

data (Figure 5.9). The third step was to combine the three data streams into one stream

by taking the square root of the sum of the squared components from each stream (Figure

5.10). The last step was to apply a bandpass Butterworth filter to the single stream of

data with cutoff frequencies of 0.75 Hz and 2.5 Hz and order 2 (Figure 5.11).
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Figure 5.2: The six axes of raw accelerometer and gyroscope data from a WIoT device
(BCG)
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Figure 5.3: The six axes of normalized accelerometer and gyroscope data from a WIoT
device (BCG)
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Figure 5.4: The six axes of detrended accelerometer and gyroscope data from a WIoT
device (BCG)
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Figure 5.5: The six axes of BCG filtered accelerometer and gyroscope data from a WIoT
device (BCG)

21



Figure 5.6: Selection of the signal with the best frequency response from a WIoT device
(BCG)

22



Figure 5.7: The three axes of raw gyroscope data from a WIoT device (BVP)
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Figure 5.8: The three axes of detrended gyroscope data from a WIoT device (BVP)
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Figure 5.9: The three axes of BCG filtered gyroscope data from a WIoT device (BVP)
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Figure 5.10: The L2 norm of the three axes of gyroscope data from a WIoT device (BVP)

Figure 5.11: The BVP waveform from a WIoT device (BVP)
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5.3 Feature Extraction

In the physiological signal based key agreement scheme described in [3] features are nu-

merical values used for assessing the similarity of two physiological signals. Features are

critical because without an ability to assess the similarity of two physiological signals, the

physiological signal based key agreement scheme would not be able to perform secure key

distribution. To mirror physiological signal based key agreement, we first divide our time-

series physiological signals into 5 equally-sized and consecutive windows with 50 percent

overlap. In the context of our signals, which consisted of 768 time-series data points, this

meant producing windows on the following index-described intervals: [0, 256), [128, 384),

[256, 512), [384, 640), [512, 768). After dividing our signals into these windows, we then

perform FFT on each window. The result was a collection of 5 windows consisting of

128 frequency-domain data points. Specifically, these data points were amplitude values.

Next, we examined each window for local peaks. This was done by sliding a window of size

32 to a horizontal offset within the window. This offset value was determined by a method

that will be described later. Upon proper positioning at the offset, the sub-window of size

32 in each window was then searched by a local peak detector. The index (i.e., 0 - 31)

and value for each local peak were then concatenated together in the form of a binary

string. The result for each peak was a 13 bit integer value called a feature. The first 8 bits

consisted of the amplitude value of the observed peak, and the next 5 bits consisted of

the index value of the observed peak. To ensure that all binary strings used were integers

and not floats, the amplitude values were scaled by a constant factor and truncated. In

the case of our BCG signals, this factor was a factor of 1. In the case of our BVP signals

this was a factor of 1000. To ensure that this result would fit within the designated 8 bits

the remainder of division by 256 was taken.

To determine the offset at which to position the size 32 windows within our 5 size

128 windows, we evaluated all of the 96 possible placements within the size 128 windows.

This evaluation consisted of assessing the number of instances in which the number feature

matches for signals from the same users in our dataset was greater than the number of

27



feature matches between each user and all others in our dataset. For our BVP signals,

this offset was determined to be 79 while for our BCG signals this offset was determined

to be 41.

5.4 Physiological Signal Based Key Agreement

After extracting features from our physiological signals, we then use those features to assess

how well the signals perform with respect to physiological signal based key agreement. This

includes the evaluation of a property known as distinctiveness. This property was assessed

by acquiring aggregate statistics on feature matches between the two signals obtained from

the same users and by acquiring aggregate statistics on feature matches between signals

from each user and all others. These aggregate statistics were then compared. If there were

significantly less distinct feature matches between users than there were for the same user

there was sufficient distinctiveness. Otherwise, there was not sufficient distinctiveness.

The other property assessed was temporal variance. To assess this property multiple

signals from the same user were recorded at different time offsets and feature matches

between each offset signal were recorded. Aggregate statistics on the number of feature

matches for each time offset for each user were recorded in order to construct a plot of

feature matches over time. If the resulting curves did not quickly decrease to have 0

matching features then there was not sufficient temporal variance.
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Chapter 6

Performance Results

This thesis recruited a total of 18 participants. To ensure that sufficient data was collected

for analysis, 10 minutes of gyroscope and accelerometer data were recorded per trial. For

each participant only one trial was performed. After collecting this triaxial accelerometer

and gyroscope data from our participants, a filtering procedure was applied to each 10

minute sample. This filtering procedure was used to convert each sample into either a

BCG or BVP signal. Next, these BVP or BCG signals were each divided into 74 segments

consisting of 768 time-series data points. These segments were then further divided into 5

windows with 50 percent overlap. FFT was then applied to each window in each segment.

Finally, algorithms were applied to the segments and their frequency domain windows to

assess suitability of the BCG or BVP signals for key distribution. Overall, there were three

algorithms for producing the aggregate statistics used in our analysis. These algorithms

evaluated properties such as the degree to which the signals matched for each participant,

the degree to which the signals were different between the participants, and the degree to

which the signals varied over time.

6.1 Participants and Design

In order to acquire sufficient data for analysis, we collected 10 minutes of data per partici-

pant at a sampling rate of 100 Hz. In total, this amounted to 1332 segments. As previously
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Figure 6.1: Histograms for sample population characteristics

mentioned, we recruited a total of 18 participants for the study. This population was ran-

domly sampled from the larger population of undergraduate and graduate students in

the computer science department at WPI. Recruitment in this context consisted largely of

word-of-mouth advertisement and the willingness of individuals to participate when asked.

With regard to the characteristics of the sample population, there were 16 males and 2

females. The ages of the sample population ranged from 19 to 31 with an average age of

24.6 and a standard deviation of 3.7 (Figure 6.1). Half of the sample population had their

data collected in the student commons and the other half had their data collected in the

B17 lab.

6.2 Apparatus and Materials

Participants whom we recruited were asked to wear two LG Urbane W150 smartwatches

(one on each wrist) while accelerometer and gyroscope data were collected during a 10

minute trial. These smartwatches were used as analogue sensing nodes in a WIoT. Having

limited battery power, limited processing capability, and limited memory along with the

ability to communicate wirelessly through WiFi, these devices were regarded as suitable

sensing nodes. During collection each smartwatch simultaneously collected accelerom-

eter and gyroscope data from its physical sensors. According to information retrieved

from use of the Android Sensors API, the gyroscope and accelerometer sensors are those

30



present within an InvenSense MPU6515 chip. The accelerometer and gyroscope were au-

tomatically calibrated by using the calibrated form of the sensor available through the

Android Sensor API. The resolution of the gyroscope was 0.0010681152 radians/second

with a range from -34.906586 radians/second to 34.906586 radians/second. The resolu-

tion of the accelerometer was 0.0005950928 meters/second2 with a range from -19.613297

meters/second2 to 19.613297 meters/second2.

6.3 Reducing Noise

To reduce sources of noise, a few measures were take in the design of our study. First, it

was ensured that none of the participants in our study had engaged in physical exercise

prior to experimentation. This was done because an increased heart rate typically results

in more frequent contractions and expansions of the heart. This increased frequency can

result in differently shaped BCG and BVP signals. This is due to blood passing more fre-

quently under the gyroscope and accelerometer sensors, resulting in more frequent subtle

movement. Therefore, to make sure that our BCG and BVP signals were evaluated fairly

when assessing their suitability for key distribution, they were collected from participants

with a resting heart rate. Another measure taken was to ensure that participants did

not make any voluntary movement while we collected their data. Finally, participants

were also advised not to engage in conversation during data collection and to sit in a

fixed chair with their arms resting on a sturdy desk. Preventing conversation was done

to eliminate the influence of any vibrations resulting from speech. Maintaining the same

posture across participants during data collection was done for consistency.

6.4 Procedure for Data Collection

The study procedure was performed in the following way: First the investigator prepared

the testbed apparatus for data collection. This involved powering on both smartwatches,

connecting both smartwatches to a wireless basestation, launching the Android applica-
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Figure 6.2: Testbed for data collection

tion for data collection on both smartwatches, and launching two data collection servers

on a laptop computer connected to the same basestation. Following this setup phase,

participants were then asked to read and sign the consent form that had been approved

by the institutional review board. Next, participants securely fastened one of the two

smartwatches to each of their wrists. If not securely fastened by adjustment of the

strap, participants were asked to slide the smartwatches up their forearms until they were

securely in contact with their skin. Once the participant was comfortable, he or she was

asked to sit in a fixed chair with their forearms resting on a sturdy desk. Finally, the

investigator initiated the data collection sequence by providing a start command to one

of the servers running on the laptop. The participant then sat still for 10 minutes while

their data was collected and streamed to the laptop for later use.

As per the description of the study outlined in the consent form, participants were

allowed to opt-out of the study at any time if they felt uncomfortable. In this case, the

data of that participant was removed since it would not provide a full 10 minutes of

continuously collected data. The data collection apparatus can be seen in Figure 6.2.
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Figure 6.3: Algorithm for finding matches between two signals from the same participant

6.5 Analysis Algorithms

After applying the filtering techniques mentioned in section 6, the next step was to evalu-

ate the derived BVP and BCG signals with respect to their ability to be used successfully

in the physiological signal based key agreement scheme. To perform this evaluation three

different algorithms were developed to return aggregate statistics capable of indicating

whether the signals would have sufficient temporal variance and distinctiveness. Prior to

executing these algorithms, each 10 minute signal was divided into 74 segments consisting

of 768 data points. Next each of those segments was divided into five 50 percent overlap-

ping windows and FFT was performed on each window. All of the frequency-domain data

for each window of each segment for a signal from a participant was then written out in

order to a CSV file. This allowed the segment data for either of a given participant’s two

signals to quickly be retrieved while the algorithms ran.

The first algorithm developed was one in which the two signals synchronously recorded

from a participant were compared. In particular, the corresponding segments between a

participant’s two signals were each assessed for the number of features that they shared

(Figure 6.3). After iterating through all 74 segments, the average number of feature

matches for a user was then computed. Once this process of evaluation was completed,

the average number of matching features for each user was then determined. In the context

of the physiological signal based key agreement scheme, this information along with the

average number of features shared between a given user and all other users helped to

determine whether a suitable polynomial order existed.

The second algorithm developed was for finding the average number of feature matches
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between the derived signals of a given participant and those of all other participants. The

was done by comparing every segment from the two signals of a given participant to all

other segments from all other participants. The average of the resulting sum of matches

was then computed in each case. An illustration of the algorithm is shown below in Figure

6.3.

The third algorithm developed was for assessing temporal variance. This assessment

was performed by computing the number of matches between the segments in a signal as

the number of segments between them increased. After computing these offset matches for

every segment in each of the two signals for a participant the average number of matches

for each offset was able to be computed. The result was a collection of averages that

could be drawn on a graph for each participant. In the graph, the number of separating

segments was indicated along the horizontal axis and the number of matches was recorded

along the vertical axis. By representing the results of the algorithm in this visual manner,

the degree to which the number of feature matches would be affected by a given time

offset could be observed. An illustration of this algorithm for temporal variance is shown

in Figure 6.4.

6.6 Evaluation Metrics

This section describes the metrics used in our evaluation of our BVP and BCG signals

for distinctiveness and temporal variance. Specifically, when evaluating distinctiveness we

use the mean, mode, and maximum number of feature matches as our aggregate statistics.

The mean is used to provide a measure of central tendency for the distributions of our

feature matches across users. Namely, our two distributions consist of feature matches for

the same users and between a given user and all others, respectively. The mode is used

to provide an indication of what the most common number of feature matches tended

to be within each distribution. The maximum was used to provide an upper bound on

the number of feature matches within each distribution. These metrics were indicative of

sufficient distinctiveness if all aggregate statistics for feature matches for the same users
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Figure 6.4: Algorithm for finding signal matches across participants
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Figure 6.5: Algorithm for finding signal matches for the same participant over time
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were greater than those for the number of feature matches between a given user and all

others.

To evaluate temporal variance only the mean number of feature matches for each time

offset for a given user was used. In the majority of cases the mean tended to accurately

represent the center of the distribution of feature matches for each time offset. Since the

curves for the mean number of feature matches over time were plotted for each user, visual

inspection was used to assess whether sufficient temporal variance existed. This was done

by observing how long it would take for a significant decline in the number of feature

matches to occur. A significant decline would mean a drop to roughly 0 feature matches

on average.

6.7 Evaluation

To perform an evaluation of our approach, we focus on assessing how well our derived BCG

and BVP signals perform with respect to the design guidelines described in physiological

signal based key agreement [3]. These guidelines were that the derived signals should

have sufficient distinctiveness and temporal variance. Sufficient distinctiveness means

that acquiring signal data from other individuals cannot help to predict the features of a

given individual. Sufficient temporal variance means that acquiring signal data from the

same individual at some different point in time cannot help to predict features for that

individual. While we do evaluate each of our derived signals separately with respect to

this criteria, we also perform a comparative analysis. Ultimately, the results indicate that

while BVP performed slightly better than BCG for distinctiveness and temporal variance,

both signals were inadequate for key distribution.

To evaluate distinctiveness for our derived BCG and BVP signals, we examined statis-

tics computed over the sample population and over the two sub-populations within that

population. The statistical measures that we used in each case were the mean, mode, and

maximum number of feature matches between and for the same participants. As shown

in the distributions of Figures 6.6 and 6.7 and as summarized in Table 6.1, the difference
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Table 6.1: Evaluating the distinctiveness of derived BCG signals overall

between the mean number of features matches for the same participant and the mean

number of features matches between participants for BCG signals was 0.3242 matches.

Given that only an integer value can represent the order of a candidate polynomial in

physiological signal based key agreement, this meant that no polynomial order could be

formed from the mean. In Table 6.1, the mode for BCG did not perform any better. In

fact, it performed worse because it indicated that more features tended to match between

individuals than for the same individual. Specifically, the most common number of feature

matches for the same individual was observed to be 19 while the most common number

of feature matches between individuals was observed to be 20. Finally, the maximum

in Table 6.1 indicated that the largest number of matching features between individuals

was much greater than the largest number of matching features for the same individual.

Specifically, the maximum number of BCG feature matches for the same individual was

28 while the maximum number of BCG feature matches between individuals was 43.

The numerical results for the distinctiveness of our derived BCG signals was not any

better when considering the shape of the distributions shown in Figures 6.6 and 6.7. The

shape of these distributions is very similar in the sense that both are left-skewed and have

their shape positioned to cover roughly the same values. The number of occurrences can

be ignored when comparing these distributions because that depended on the algorithms

used for acquiring the aggregate statistics. Naturally, more comparisons are needed to find

the average number of feature matches between individuals, resulting in more occurrences.

Analysis of the distinctiveness of derived BCG signals over each of the two sub-

populations showed similar results. For the B17 lab sub-population, the mean and mode
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Figure 6.6: Histogram of BCG feature matches for same participant (sample population)

Figure 6.7: Histogram of BCG feature matches between participants (sample population)
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Figure 6.8: Histogram of BCG feature matches for same participant (B17 lab)

number of feature matches for the same individual was shown to be slightly higher than the

mean and mode number of feature matches between individuals (Table 6.2). For the mean,

this difference was a positive, but negligible, 0.7761 feature matches. A mean of 19.7958

features matched for the same individual, while a mean of 19.0197 features matched be-

tween individuals. For the mode, this difference was an additional feature match. A mode

of 21 features matched for the same individual, while a mode of 20 features matched

between individuals. The maximum number of feature matches remained considerably

larger between individuals. A maximum of 28 features matched for the same individual,

while a maximum of 43 features matched between individuals. The student commons

sub-population performed worse than both the B17 sub-population and the sample popu-

lation. Namely, both the mean and mode values for the same individual were less than the

mean and mode values between individuals (Table 6.3). Additionally, the distributions

for each sub-population remained left-skewed with roughly the sample population shape

(Figures 6.8, 6.9, 6.10, and 6.11).

Next, we evaluated the distinctiveness of our derived BVP signals over the sample

population. As observed in Table 6.3, the mean performed worse when compared to the

use of the mean for BCG. For the same individual the mean number of feature matches
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Figure 6.9: Histogram of BCG feature matches between participants (B17 lab)

Table 6.2: Evaluating the distinctiveness of derived BCG signals (B17 lab)

Figure 6.10: Histogram of BCG feature matches for same participant (Commons)
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Figure 6.11: Histogram of BCG feature matches between participants (Commons)

Table 6.3: Evaluating the distinctiveness of derived BCG signals (Commons)
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Figure 6.12: Histogram of BVP feature matches for same participant (sample population)

was 11.5473 while the mean number of feature matches between individuals was 12.167.

Similar to BCG, this difference of -0.6197 was negligible. On the other hand, the mode

number of features for the same individual was greater than the mode number of features

between individuals. A mode of 18 features matched for the same individual while a mode

of 15 features matched between individuals. Similar to BCG, the maximum number of

feature matches for the same individual was considerably less than the maximum number of

features between individuals. A maximum of 28 features matched for the same individual

while a maximum of 55 features matched between individuals.

The numerical results for the distinctiveness of our derived BVP signals was not nec-

essarily made better when considering the distributions in Figures 6.12 and 6.13. As can

be seen in the distribution of Figure 6.11, the number of matching features between indi-

viduals was most commonly either 0 or a number of matches between 3 and 23. In Figure

6.12, the number of matching features for the same individual roughly followed a uniform

distribution from 0 to 22 feature matches. Given that these two distribution shapes were

not necessarily comparable, Table 6.3 was used to evaluate BVP distinctiveness.

When examining the distinctiveness of BVP over the two sub-populations, it was ob-

served that the B17 sub-population performed in a similar manner to the sample popula-
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Figure 6.13: Histogram of BVP feature matches between participants (sample population)

Table 6.4: Evaluating the distinctiveness of derived BVP signals overall
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Figure 6.14: Histogram of BVP feature matches for same participant (B17 lab)

Table 6.5: Evaluating the distinctiveness of derived BVP signals (B17 lab)

tion. The student commons sub-population performed worse than the sample population.

As can be observed in Table 6.4, the B17 sub-population had a mean number of fea-

tures for the same individual that was nearly identical to the mean number of features

between individuals. Additionally, the B17 sub-population expressed the same sample

population trends of having a larger mode number of features for the same individual and

having a larger maximum number of features between individuals. The student-commons

population performed worse with respect to all summary statistics used in Table 6.5.

After evaluating the distinctiveness of the derived BCG and BVP signals across our

populations, the next step was to evaluate the temporal variance of those same signals.

In Figure 6.18 the temporal variance of BCG signals over the sample population can be

observed. Similarly, in Figure 6.19 the temporal variance of the BVP signals over the

sample population can be observed. In both cases, the figures also show the temporal
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Figure 6.15: Histogram of BVP feature matches between participants (B17 lab)

Figure 6.16: Histogram of BVP feature matches for same participant (Commons)

Table 6.6: Evaluating the distinctiveness of derived BVP signals (Commons)
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Figure 6.17: Histogram of BCG feature matches between participants (Commons)

variance for each sub-population. When reviewing Figure 6.18, it was shown that there

was very little temporal variance for our derived BCG signals. In fact, only one participant

from the student commons sub-population experienced a significant decline in the number

of matching features after an offset of 40 segments (i.e., units of 7.68 seconds). On the

other hand, in Figure 6.19 it was shown that there was more temporal variance for BVP

signals. In nearly all instances a gradual decline in the number of matching features over

time was observed.

47



Figure 6.18: Temporal variance of BCG signals (red is student commons, gray is B17 lab)

Figure 6.19: Temporal variance of BVP signals (red is student commons, gray is B17 lab)
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Chapter 7

Discussion

As the results indicated, neither our derived BCG signals nor our derived BVP signals

were able to satisfy the design goals stated in physiological signal based key agreement [3].

One potential cause for this poor performance could have been due to an issue in using

the Android Sensor API to sample our sensors. In particular, when a developer uses the

API he or she has the ability to provide a recommended sampling rate by specifying a

delay in microseconds. Unfortunately, the API provides no guarantee that the sensors will

actually sample at that exact sampling rate. Consequently, there are some small polling

inaccuracies that can accumulate over time, especially over a duration as long as 10

minutes. Inaccuracies of this nature could have allowed for more features to match for

different time offsets when evaluating temporal variance. Additionally, these inaccuracies

could also have the potential to reduce the number of matching features for signals derived

from the same individual.

Another potential source of error could have been that we did not use interpolation

to account for the inaccuracy of the Android Sensor API. If interpolation had been used,

we would have been able to artificially simulate a sampling rate of exactly 100 Hz by

filling in any instances of missing points. This would have eliminated any accumulation

of sampling inaccuracies over time. Use of the technique could likely have improved the

number of feature matches for the same individual as well as temporal variance. However,
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we did not evaluate the use of any interpolation functions, so the effect of applying them is

not known. Here we are merely assuming that interpolation would have helped by filling

in missing data.

Lastly, another source of error could have been that half of the data from our sample

population was collected from the student commons. This particular location had far more

sources of background noise present in its environment when compared to the calm

laboratory setting from which the other half of our data was collected. Our evaluation of

both sub-populations ultimately provides some information relating to this point. Namely,

a comparison between Tables 2 and 3 and Tables 4 and 5 ultimately indicate that data

collected from the student commons had lower mean and mode feature matches both

between and from the same individual. Therefore, where we sampled from could have

been a source of error.
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Chapter 8

Conclusion and Future Work

In conclusion, our approach of using derived physiological signals to perform key distri-

bution was not successful. While part of this lack of success may be attributable to the

sources of error mentioned in our discussion, it is likely that our techniques may also not

have worked. This might include our use of the filtering techniques mentioned in [4] and

[5] or the manner in which we generated features according to [3]. Regardless, it may

still be possible to achieve secure key distribution through the use of derived physiological

signals. Unfortunately, we were not able to experience such an outcome with our collected

data and testbed and analysis implementations. The results of the physiological signal

based key agreement paper in [3] had demonstrated the ability to perform key distribution

when measuring PPG and EKG signals using dedicated hardware. If derived physiolog-

ical signals can be acquired just as accurately, it should be possible to use them for key

distribution.

Given that WIoT devices reside in close proximity to the human body, it is rather

natural to think of using the data that they regularly collect to help them perform key

distribution in a dynamic way. The benefit of approaching key distribution in this phys-

iological manner is that it can be performed without the need for any user involvement.

As WIoTs become more widespread, ensuring that they can secure their wireless commu-

nication channel in a usable way will be increasingly important.
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To continue work in this domain, it would likely be useful to explore different methods

for both deriving physiological signals and generating features. Once suitable physiological

signal derivation and feature generation methods are found, it would be best to evaluate

their performance in a more active setting. As opposed to an environment in which the

WIoT wearer is still, an active setting would allow for an understanding of how well such a

system would operate under real world usage scenarios. This is essentially what we would

have done had our results indicated a successful outcome.
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Appendix A

IRB Consent Form
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