
Multi-Level Semantic SLAM

by

Karter Krueger

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Masters of Science

in

Robotics Engineering Department

by

May 2023

APPROVED:

Professor Jing Xiao, Advisor

Professor Nitin Sanket, Thesis Committee Member

Professor Carlo Pinciroli, Thesis Committee Member



Abstract

This thesis presents a novel Multi-Level Semantic Simultaneous Localization and

Mapping (ML Semantic SLAM) method designed to improve the accuracy and re-

liability of robot mapping and localization in sparse and repetitive environments.

By incorporating both low-level and high-level semantic features, our approach ad-

dresses the challenges associated with limited distinguishable keypoint ORB features

and generates a more semantically rich map. We detail the development, implemen-

tation, and evaluation of our ML Semantic SLAM system in various simulated and

real-world environments, demonstrating its superior performance compared to tra-

ditional SLAM techniques, such as ORB-SLAM2. The system achieves up to a 70%

error reduction in highly sparse environments and exhibits modest improvements

in more moderate environments, showcasing its robustness and versatility. We also

propose several future directions to extend the research. By continually refining and

expanding upon the Multi-Level Semantic SLAM method, we hope to enable more

accurate and reliable SLAM systems for various real-world applications.



Acknowledgements

I would like to thank those who have guided and supported me during my aca-

demic journey as they helped make this thesis possible.

I express my gratitude to my thesis advisor, Dr. Jing Xiao, for her expertise,

support, and direction throughout the development of this thesis. Thank you as

well to my committee members Dr. Nitin Sanket and Dr. Carlo Pinciroli for their

time and support.

I thank my family and my mom, Karla, a professor whose hard work and dedica-

tion to academia was a source of my work ethic and inspiration to pursue graduate

school. Additionally, I want to thank my sister, Karris, for her support during our

time together at WPI. In loving memory of my late grandmother, Verla, I want to

acknowledge her support and enthusiasm for robotics and engineering.

I am grateful for my undergraduate professors, Dr. Yan-Bin Jia and Dr. Alex

Stoychev, who had an impact on my professional growth and my inspiration to

pursue graduate school.

Special thanks go to my high-school FIRST Tech Challenge robotics mentors,

Dave Mundhenke, Neil Erickson, and Val Frey, for their pivotal role in introducing

me to the world of robotics, nurturing my passion for the field, and providing me

with extensive hands-on robotics experience.

Lastly, I would like to extend my appreciation to my partner Trisha for her

continuous support throughout this journey.

This work is partially supported by funding from Raytheon Technologies through

the NSF Industry/University Cooperative Research Center (I/UCRC) on Robots

and Sensors for Human Well-being (ROSE-HUB), NSF-1939061.

i



Contents

1 Introduction 2

1.1 Mathematical SLAM Formulation . . . . . . . . . . . . . . . . . . . . 3

1.2 Key SLAM Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Common Sensors for SLAM . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Vision-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Semantic SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Visual and Semantic SLAM Methods 8

2.1 Point-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Line-based SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Semantic SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Notable SLAM Methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . 11

3 Problem Statement and Approach 13

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Approach of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Multi-Level Semantic SLAM 16

4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ii



4.2 Multi-Level Feature Extraction . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Semantic Line Detection . . . . . . . . . . . . . . . . . . . . . 22

4.2.3 Plane Detection and Tracking . . . . . . . . . . . . . . . . . . 25

4.2.4 Object Detection and Tracking . . . . . . . . . . . . . . . . . 26

4.3 Bundle Adjustment Formulation . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Edge Definition and Covariance Weights . . . . . . . . . . . . 28

4.3.2 Optimization Formulation . . . . . . . . . . . . . . . . . . . . 30

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Simulation Environments and Experimental Evaluation 33

5.1 Experimental Simulation Setup . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Airplane Exterior Simulation with Gazebo . . . . . . . . . . . 34

5.1.2 Airplane Interior Simulation with Unreal Engine . . . . . . . . 34

5.1.3 Augmented Simulation Model Potential . . . . . . . . . . . . . 35

5.2 Experimental Results and Comparisons . . . . . . . . . . . . . . . . . 37

6 Discussion and Future Work 42

6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Future Extensions to ML Semantic SLAM . . . . . . . . . . . . . . . 43

6.3 Proposed Extension: Active Semantic SLAM . . . . . . . . . . . . . . 45

6.3.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3 Active SLAM for Semantic Coverage . . . . . . . . . . . . . . 46

6.3.4 Adaptive Ideal Distance for Semantic Labeling . . . . . . . . . 46

6.3.5 Multi-resolution Mapping . . . . . . . . . . . . . . . . . . . . 47

6.3.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iii



6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

iv



List of Figures

4.1 System diagram of feature extraction leading to BA . . . . . . . . . . 16

4.2 A semantic map that represents what is seen by the Multi-Level Se-

mantic SLAM, showing features of multiple levels in the airplane

environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 RGB image (left) with semantic class predictions (right) for an air-

plane environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 RGB image (left) with semantic class predictions (right) for a bath-

room environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Line segment detection based on semantic boundaries, demonstrated

in the airplane environment . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 Fitted planes and several detected windows for the airplane environ-

ment are overlaid on the semantically-colored point cloud. . . . . . . 26

4.7 YOLO detections on the RGB frame . . . . . . . . . . . . . . . . . . 27

4.8 Factor Graph of Objects and Poses . . . . . . . . . . . . . . . . . . . 29

5.1 Exterior of a simulated plane environment (with the drone present in

the lower center) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Simulated multirotor agent in Gazebo using the RotorS [7] library . . 35

5.3 A long hallway-like interior of a simulated cargo plane environment . 35

5.4 Plane interior simulation with added cargo and obstacles . . . . . . . 36

v



5.5 Plane exterior with a sample of augmented realistic textures included 36

5.6 Plane exterior with a sample of augmented realistic textures included 37

5.7 Plane model reconstructed using NeRF . . . . . . . . . . . . . . . . . 37

5.8 Position estimates from ORB SLAM2 and the Multi-Level Semantic

SLAM vs. Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.9 Tracking errors from ORB SLAM2 and the Multi-Level Semantic

SLAM vs Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.10 The semantic features and map from our SLAM is overlayed on the

RGB input from this semi-sparse bathroom environment with repet-

itive floor tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1



Chapter 1

Introduction

The past few decades have witnessed an exponential growth of robots and automa-

tion, reaching nearly every aspect of our society. As the world increasingly embraces

new technologies, the use of autonomous robots has expanded to include a wide range

of applications, from household chores and manufacturing to rescue operations and

inspection. A core component of robotics development is the ability for these au-

tonomous systems to perceive and navigate in a variety of environments. This abil-

ity, commonly referred to as Simultaneous Localization and Mapping (SLAM), has

become a key component in the continued functionality and expansion of robotics.

Simultaneous Localization and Mapping (SLAM) is a fundamental problem in

robotics, involving the estimation of a robot’s pose within an unknown environment

while building a map of the environment at the same time. It is a critical capability

for autonomous systems, enabling them to perceive, navigate, and interact with

their surroundings. This chapter provides a comprehensive introduction on the

background of SLAM, including the mathematical formulation, key approaches, and

common sensors used in SLAM.

One of the earliest works on robot SLAM was by J.J. Leonard et. al [18] with

2



a robot that used a servo-mounted range sensor to build a map and localize. Over

time, SLAM continued to expand into new sensor domains and to 3D environments.

Today, SLAM is most commonly performed using 3D LiDAR scanners and cameras.

Visual SLAM has proved to be one of the most popular areas as cameras (monocular,

stereo, and RGBD) are much lower cost than LiDAR scanners. SLAM is very widely

used across applications in robotics and autonomous vehicles today for a variety of

tasks such as indoor navigation, self-driving cars, and robotic exploration.

1.1 Mathematical SLAM Formulation

The idea of SLAM is that given a sequence of sensor measurements, the goal is

to estimate the robot’s pose and a map for the surrounding environment. The

measurements are in a variety of forms such as IMU accelerations, camera features,

and LiDAR points. The pose for 3D environments is typically defined in 6-DOF

(degrees of freedom) space, with a position and orientation for the x, y, and z axes.

In the mathematical formulation, the robot’s trajectory is represented by a se-

quence of poses, x = x1, x2, ..., xt, where xt denotes the robot’s pose at the time

step t. The map of the environment is represented by a set of features/landmarks,

m = m1,m2, ...,mn, where mi denotes the i-th landmark in the map. The objec-

tive is to estimate the joint posterior distribution of the robot’s trajectory and the

map given a sequence of sensor measurements, z = z1, z2, ..., zt, and optionally a

sequence of control inputs, u = u1, u2, ..., ut. Mathematically, the SLAM problem

can be formulated to find x and m using z and u as follows:

P (x,m|z, u)

To solve this problem, we need to model both the motion model and the observation

3



model. The motion model represents how the pose x of the robot changes over time

due to the control inputs u, expressed as:

xt = f(xt−1, ut) + wt

where f is a nonlinear function representing the dynamics of the robot with wt

motion noise.

The observation model relates the sensor measurements z to the pose x of the

robot and the mapped landmarks m, expressed as:

zt = h(xt,m) + vt

where h is a nonlinear function representing the sensor observations of the landmarks

with vt measurement noise.

1.2 Key SLAM Approaches

There are several approaches to solving the SLAM problem, with the most popular

methods based on either filtering or optimization techniques.

Filtering methods, such as particle filters and Kalman filters, recursively estimate

the robot’s pose and the map based on the motion and observation models. Particle

filters represent the posterior distribution using a set of particles and update them

using importance sampling, while Kalman filters maintain a Gaussian distribution

over the robot’s pose and the map and update it using linearizations of the motion

and observation models.

Graph-SLAM formulates the SLAM problem as a graph optimization problem,

where the nodes of a graph represent robot poses and landmarks/features, and the

4



edges represent the constraints between nodes created by the motion and observation

models. The objective is to find the graph of nodes that minimizes the error of the

edge constraints. This method is especially used in applications that require loop-

closing on the map, as it allows for efficient and accurate estimation of the robot’s

trajectory and the map. There are various techniques to solve the graph optimization

problem in Graph-SLAM, including iterative linearization methods, such as Gauss-

Newton and Levenberg-Marquardt algorithms, and sparse linear solvers, such as

the Conjugate Gradient method. Additionally, there are several methods for loop

closure detection in Graph-SLAM, including appearance-based techniques, which

rely on visual similarities between images, and geometric methods, which exploit

the spatial consistency of features. In this work, we focus on the graph approach to

SLAM, as it provides a flexible and efficient framework for incorporating our novel

semantic SLAM method.

1.3 Common Sensors for SLAM

There are several common sensors used in SLAM, including inertial measurement

units (IMUs), LiDARs, and cameras.

1. IMUs: Inertial Measurement Units measure the linear acceleration and angular

velocity of a robot, providing information about its motion. They are often

used as a supplementary sensor that is used in combination with other sensors

to provide more accurate and robust pose estimation.

2. LiDAR: Light Detection and Ranging (LiDAR) sensors use laser beams to

measure distances to objects in the environment, creating high-resolution 2D

or 3D point clouds. These sensors are particularly useful for mapping and

5



obstacle detection, especially in high-precision applications, but are often ex-

pensive and require more maintenance.

3. Vision: Cameras, including monocular, stereo, and RGB-D systems, capture

visual information about the environment. Cameras have the advantage of be-

ing low-cost, lightweight, and easy to use compared to other sensors. Monoc-

ular cameras are typically the goal sensor as they are the cheapest and easiest

to use, but they are the most challenging to work with, due to the lack of

depth information that is used to determine the scale of the SLAM map.

Stereo and RGB-D (color and depth) cameras are more popular when map

scale and higher-precision are required. Cameras are also widely used as they

provide rich visual information that can be used for semantic understanding

of the environment, which is essential for our proposed ML Semantic SLAM

method.

In recent years, SLAM research has primarily focused on vision-based methods

due to the accessibility and simplicity of cameras.

1.4 Vision-based SLAM

Vision-based SLAM methods rely on cameras to obtain observations of the environ-

ment. These methods can be categorized into feature-based, direct, and semi-dense

approaches, depending on the type of visual information they exploit. Feature-

based methods extract and match distinct visual features, such as points or lines,

from successive frames to estimate the robot’s motion and reconstruct the envi-

ronment. Direct methods, on the other hand, use all available pixel intensities to

estimate motion and depth directly. Semi-dense approaches lie in between these

two extremes, utilizing a subset of the image pixels to estimate depth and motion.

6



The trade-offs in accuracy and computational cost are between these approaches are

typically weighed based on what processing power is available on-board the robot

and what performance is required for the application.

1.5 Semantic SLAM

Semantic SLAM extends traditional SLAM methods by incorporating high-level se-

mantic information extracted from the sensor data, typically using machine learning

techniques. This additional information can help improve the accuracy and robust-

ness of the SLAM system, as well as generate more informative maps. Semantic

SLAM methods can be classified into several categories based on the type of se-

mantic information used, such as object-level semantics, place-level semantics, or

scene-level semantics. One common example of an application for Semantic SLAM

is robots tasked with searching for specific objects in an environment, such as a

house.

7



Chapter 2

Visual and Semantic SLAM

Methods

In the following sections, we categorize existing related visual SLAM methods based

on the types of features they use.

2.1 Point-based SLAM

In both the early and recent methods of visual SLAM, visual keypoint features were

found using various methods that detect pixels with high local contrast scores, such

as SIFT [20] and ORB [28]. Many SLAM approaches are built purely on these

keypoints.

ORB-SLAM2 [23] is one of the best known SLAM methods in recent years, which

is capable of running on monocular, stereo, or RGB-D cameras. Visual features are

found using ORB [28] points that can be matched between frames based on unique

feature descriptors. Keypoints without depth cannot be used for determining scale,

but contribute to rotation and translation estimations. The camera pose is estimated

8



using Bundle Adjustment (BA) to optimize orientation and position by minimizing

re-projection error of the matched keypoints in global 3D coordinates.

2.2 Line-based SLAM

In one alternative to using point features, Chandraker et al. [4] used lines to perform

better in scenes that lack reliable point features, but have an abundance of line

features, such as offices and buildings. Infinite lines are tracked to avoid the issue

of determining end-points. Straight lines are found with a Sobel edge detector and

tracked using multi-level optical-flow. A RANSAC-based framework is then used

to estimate position without using bundle adjustment. Another example of a line-

based SLAM [35] targets corridor environments by tracking vertical and floor lines.

SLAM is performed on the line features using an EKF-SLAM method to determine

the line positions and camera pose. While similar in features, [13] uses a more

modern approach to SLAM, with a bundle adjustment (BA) back-end based on

both points and edgelets (short line sections). Edgelets are measured by changes in

pixels along the perpendicular and parallel directions.

2.3 Semantic SLAM

Semantic SLAM approaches fall into two categories, some use semantic objects

purely for creating a rich map and others use the semantics for both the mapping

and robot localization. In work from Qian et al. [26], semantic objects are detected

using YOLOV3 [27]. ORB features are associated to the enclosing object bounding

boxes to be used for object data-association. Quadrics are then fitted around the

features of each object. An extension of this [25] also used the semantic objects to

perform more accurate loop closure in repetitive environments, but did not focus on

9



improving localization in such environments.

In [9], Guan et al. developed a semantic Point-Object SLAM (PO-SLAM) that

considered both points and objects for localization and mapping. PO-SLAM focuses

on improving SLAM accuracy in settings with variations of appearance and bright-

ness in the environment. The tracking is based on point-point, point-object, and

object-object data associations. Point features use ORB descriptors and point-point

association from ORB-SLAM2 [23]. Object features are extracted from images us-

ing the YOLOv3 object detector and objects are segmented from the background

using a depth histogram from the RGB-D camera. Point-object associations are

then determined using point features that are located within the segmented object

boundaries. Object-object associations are determined between frames by distance

between object coordinates and classes. Bundle adjustment is performed by com-

bining the point-point, point-object, and object-object errors.

CubeSLAM [33] performs SLAM using cube objects, as an extension on ORB-

SLAM2 [23]. Cuboid proposals are estimated from 2D bounding boxes using van-

ishing points. Bundle adjustment (BA) is performed on new object measurements

to optimize camera, object, and point poses. Point-features are included, as objects

alone typically aren’t enough to fully constrain the camera poses. Dynamic objects

are separately included with motion properties in the BA to enhance tracking.

[34] uses both objects and planes for SLAM in structured environments. Objects

are assumed to be structured as they are supported by the floor and match nearby

wall normals. Data association then matches objects and planes between frames

by finding the match with the highest number of identical points contained in the

object or along the plane. Standard bundle adjustment then jointly optimizes the

poses of the camera and all objects.

In addition to SLAM, there are several non-SLAM works that have considered

10



semantic features for localization without the mapping component. One example,

Visual Semantic Odometry [19], is incorporates semantic labels to the low-level

feature points to improve the matching accuracy and therefore the odometry ac-

curacy. This is primarily useful for distant features that look similar, but belong

to separate semantic classes. Another example, SimVOIDS [12], is focused on a

pure neural-network approach for predicting semantic objects, depth estimation,

and pose estimation from a series of RGB images.

2.4 Notable SLAM Methods

ORB-SLAM [3,22,23] is one of the most popular visual SLAM methods used today

due to it’s robust performance and open-sourced code. There are now three versions

of the ORB-SLAM method that have iteratively built on the previous versions to

improve performance and add additional features. ORB-SLAM2 is still very widely

used as it supports monocular, stereo, and RGBD sensing modes and the work in

this thesis is built on top of an ORB-SLAM2 framework due to it’s RGBD support.

RTAB-MAP [17] is another example of an open-source SLAM method that is

widely used. The primary advantage of RTAB-MAP is that it outputs a dense

3d map of the environment rather than a sparse set of feature points like ORB-

SLAM2. Thanks to the dense map, RTAB-MAP is more applicable to applications

that require a 3D occupancy map for obstacle avoidance.

2.5 Limitations and Challenges

While there are many versions of existing SLAM methods that cover a wide variety

of specialties, there exist environments where nearly all SLAM methods struggle and

these are areas that either lack features or contain only repetitive features. This is

11



a fundamental struggle for SLAM methods as they rely on unique, distinguishable

features that can be matched between image frames.

12



Chapter 3

Problem Statement and Approach

Despite years of advancements, SLAM algorithms often struggle in environments

with scarce distinctive landmarks or features. These challenging environments ne-

cessitate the development of novel SLAM approaches that can overcome the limita-

tions of conventional methods. One such application with significant potential for

improved safety and efficiency is the aviation industry, where autonomous robots

can streamline the inspection process for cracks and damages in airplanes.

Human inspection of aircraft is a labor-intensive and time-consuming process,

requiring highly skilled technicians to carefully examine every surface of an airplane,

searching for defects or signs of wear. By employing autonomous robots in aircraft

inspection, the frequency and reliability of these inspections can be increased, ul-

timately leading to safer air travel. Airplanes serve as a compelling edge case for

developing a novel SLAM method, given their highly repetitive interior textures and

limited variety of displayed objects.

13



3.1 Problem Statement

Conventional SLAM approaches, primarily based on vision or RGB-D sensing, when

applied to repetitive and sparse environments lacking unique objects and textures,

often leads to the accumulation of errors, potentially causing navigation failures in

environments such as airplane interiors. Consequently, autonomous robots tasked

with inspecting airplanes for defects or damages may experience challenges in ac-

curately mapping and navigating the environment, limiting their ability to identify

potential damage and ensure aircraft safety.

The shortcomings of existing methods in these challenging environments primar-

ily lie in what types of features are used. Existing methods have mostly focused on

using a single type of feature per method, being ORB feature points, lines/edges,

and semantic objects. There has been some combinations of these features, but not

to the fullest extent that would fully support such a challenging environment such

as an airplane.

3.2 Approach of This Thesis

To address these challenges, this thesis presents the development of a Multi-Level

Semantic SLAM (ML Semantic SLAM) method, leveraging both high-level seman-

tics and low-level key-point features in RGB-D sensing. By integrating machine

learning techniques for semantic segmentation and object detection, our proposed

approach achieves superior performance in tracking the robot’s position and ori-

entation while constructing a semantically-detailed map of the environment. This

capability enables the robot to navigate and perform inspection tasks with increased

precision and reliability.

The primary contribution of this thesis is the combination of all of these types of

14



existing features (points, lines, and semantic objects), in addition to incorporating

additional features such as semantic regions. The combination of all of these features

together is what sets our approach out from the others to perform the best in

extremely sparse and repetitive environments.

15



Chapter 4

Multi-Level Semantic SLAM

Figure 4.1: System diagram of feature extraction leading to BA

In this chapter, we delve into the technical details of our Multi-Level Seman-

tic SLAM (ML Semantic SLAM) method, which aims to address the challenges of

conventional SLAM approaches in sparse and repetitive environments by leverag-

ing multiple levels of high-level objects and low-level features. Our ML Semantic

SLAM builds upon the well-established ORB-SLAM2 framework and incorporates

additional semantic information, such as objects and planar surfaces, into the bun-

16



dle adjustment (BA) optimization process. This fusion of high-level and low-level

features allows the system to achieve improved localization accuracy and robustness,

as demonstrated in our experimental results in Chapter 4.

The structure of this chapter is as follows: First, we provide an overview of the

ML Semantic SLAM system architecture and discuss its main components. Next,

we present the details of our feature extraction process, which includes the detection

of point features, line segments, and objects, as well as the identification of planar

surfaces. We then explain how these extracted features are integrated into the

bundle adjustment module to optimize the SLAM solution and produce a semantic

map.

4.1 System Architecture

As shown in Fig. 4.1, our ML Semantic SLAM system consists of several intercon-

nected modules that work in parallel to process the input data, extract features,

and optimize the graph with Bundle Adjustment at the end. This architecture

method builds upon the ORB-SLAM2 framework [23] and further extends it with

additional semantic capabilities introduced by [26]. The main components of the

system include:

• Low-level point feature tracking: We employ ORB-SLAM2 to track low-level

point features, which are extracted using the ORB feature detector. This

module is also responsible for maintaining the continuity of the tracked features

across consecutive frames.

• Semantic Segmentation: We extract class labels for each pixel and use these

as part of the following features:

17



– Line segment detection: Line segments are detected on the semantically-

segmented frames to identify edges along semantic objects and class

boundaries. This step enhances the geometric representation of the envi-

ronment and provides additional constraints for the optimization process.

– Planar surface extraction: Planar surfaces, such as walls, floors, and

ceilings, are identified from the semantic masks in conjunction with the

depth information obtained from an RGB-D camera. These planar sur-

faces provide valuable geometric information for the SLAM optimization

process.

• Object detection and segmentation: Objects within the environment are de-

tected using both the semantic masks and YOLOv3 [27]. The combination

of these methods allows us to accurately identify and track individual objects

and their boundaries.

• Bundle adjustment module: All the detected features, including point features,

line segments, objects, and planar surfaces, are integrated into the bundle ad-

justment module. This module optimizes the positions of all objects, features,

and key-frames by minimizing the re-projection error in 3D space.

The above features are annotated on an example image in Fig. 4.2. Next, we

explain the full details for all of the above components.

4.2 Multi-Level Feature Extraction

In this section, we present the details of our multi-level feature extraction process,

which involves the detection of point features, line segments, objects, and the iden-

tification of planar surfaces. We discuss how these extracted features contribute to

18



Figure 4.2: A semantic map that represents what is seen by the Multi-Level Semantic
SLAM, showing features of multiple levels in the airplane environment

the robustness and accuracy of our ML Semantic SLAM approach and provide a

comprehensive understanding of the overall system.

4.2.1 Semantic Segmentation

Semantic segmentation plays a crucial role in our ML Semantic SLAM approach,

as it provides the foundation for extracting high-level semantic information from

the environment. Semantics of the scene often extend beyond objects, as semantic

regions stretch beyond the view of the camera. Given that regions such as walls,

floors, and ceilings typically stretch across many views, they can be incorporated into

SLAM as consistent landmarks to help localize, and as additional map information

the robot can use to interact with the environment.

In this sub-section, we describe our custom fine-tuned DeepLabV3 RESNET-50

architecture and its application to different environments, such as airplane interiors

19



and general indoor scenes. We also discuss the training process for the segmentation

network and illustrate the quality of the semantic predictions obtained from this

network.

DeepLabV3 RESNET-50 Architecture

Our semantic segmentation is based on the DeepLabV3 RESNET-50 architecture,

which performs pixel-wise semantic segmentation on RGB images. We have adapted

the original network to produce 13-channel output, representing 13 classes specific

to our target environments, such as walls, floors, ceilings, windows, and doors, with

one class reserved for unknowns. Fig. 4.3 shows an example of the input RGB image

and the corresponding semantic class predictions.

Training and Fine-tuning for Airplane Environment

To tailor the segmentation network to the airplane environment, we started with

pre-trained weights for the COCO dataset and then fine-tuned it on objects com-

monly found in aircraft environments, such as windows and doors. Pairs of RGB

and ground truth segmentation masks for the fine-tuning process were collected in

simulated aircraft environments using the UnReal Engine [6].

Figure 4.3: RGB image (left) with semantic class predictions (right) for an airplane
environment

20



Semantic Segmentation for General Indoor Environments

For general indoor environments, we utilized a standard Semantic Segmentation

network from Zhou et al. [36, 37] with weights pre-trained on the ADE20k dataset

of indoor scenes. This network is suitable for a large variety of indoor settings, such

as bathrooms, hallways, offices, and kitchens. It outputs semantic labels for objects

such as rugs, toilets, sinks, and cabinets, in addition to general classes of floors,

walls, and ceilings. An example view of the corresponding RGB input and semantic

segmentation output frames for a bathroom environment is shown in Fig. 4.4.

Figure 4.4: RGB image (left) with semantic class predictions (right) for a bathroom
environment

By leveraging semantic segmentation, our ML Semantic SLAM system is capable

of extracting high-level information about the environment, which is essential for

accurately detecting and tracking objects and planar surfaces. This additional layer

of semantic understanding enables our approach to track higher-level semantic re-

gions that are easier to track in repetitive scenes compared to conventional low-level

features.

21



4.2.2 Semantic Line Detection

In this sub-section, we detail the process of semantic line detection, an essential

component of our approach. We explain how semantic lines are extracted from the

scene using semantic masks and present the data association algorithm used for

tracking the detected line features.

Semantic line detection serves as a valuable tool in SLAM applications, as it

helps in identifying and tracking structures in environments with little texture but

distinct boundaries. Such environments include indoor spaces, where lines can be

found along the seams of walls, ceilings, and floors, or between sparse objects. In this

sub-section, we discuss the line detection process and the data association algorithm

used to track these lines across frames.

Line Detection from Semantic Masks

We start by iterating through the semantic class masks and perform contour de-

tection using the algorithm proposed in [32] to find clusters of pixels representing

individual windows, walls, or other structures. Next, we filter the contours and

discard any contour with a region area smaller than a preset threshold. To simplify

the region boundaries, we compute the convex hull for points in the contour region

using Sklansky’s algorithm [31], which runs in O(N logN) complexity, where N is

the number of pixels on the contour. The convex hull is then approximated by

a simpler polygon using the Douglas-Peucker algorithm [5]. We consider the line

segments on these polygons as semantic line segments. An example of the detected

edges and their endpoints is shown in Fig. 4.5.

22



Figure 4.5: Line segment detection based on semantic boundaries, demonstrated in
the airplane environment

Data Association for Semantic Lines

We formulate the data association problem for semantic lines as a maximum weighted

bipartite matching problem. For each pair of semantic lines lm and ln, we introduce

a set of Boolean decision variables:

smn =


1, if lm is matched with ln,

0, otherwise.

(4.1)

For every line segment of the same class, a score is calculated between every

semantic line segment in Framea and every potential matching line segment from

Frameb. The score between line lm in Framea and ln in Frameb is calculated as

the weighted sum of the difference of endpoint coordinates as follows:

23



cmn = w1

2∑
i=1

||xm,i − xn,i|| (4.2)

where w1 is the weight for the endpoint coordinates difference.

The maximum weighted bipartite matching problem seeks to perform the fol-

lowing constrained optimization:

smn

∑
lm∈Framea

∑
ln∈Frameb

cmnsmn (4.3)

s.t.
∑

lm∈Framea

smn ≤ 1,
∑

ln∈Frameb

smn ≤ 1. (4.4)

The constraints (4.4) mean that each semantic line in Framea can be assigned

to at most one line in Frameb and vice versa.

The problem defined in 4.3 can be solved using a cost-scaling push-relabel algo-

rithm [2, 8, 11], readily implemented in [24]. This algorithm has a time complexity

of O(
√
NM log (NC)), where N and M are the number of nodes and edges in the

bipartite graph, and C is the largest edge cost (all edge costs need to be converted

to integers).

By incorporating the semantic line detection and data association methods ex-

plained above, our system can effectively track semantic line features in environ-

ments with limited texture or distinct structures, such as indoor spaces. This track-

ing contributes to the overall accuracy and robustness of our SLAM system in a

variety of environmental contexts.

24



4.2.3 Plane Detection and Tracking

Planar surfaces are prevalent in various environments and often stretch across mul-

tiple views, making them valuable features to track. In this section, we explain the

process of detecting and tracking planar surfaces, with the help of the Point Cloud

Library (PCL) [29].

Plane Detection

To detect planes, we first generate binary masks for the wall, floor, and ceiling

classes from the output of the semantic segmentation network. Masked pixels are

then separated into clusters (e.g., the left and right walls are separate). Depth values

from the RGB-D camera are collected for the clustered pixels, and the pixel (u, v)

coordinates are projected to the 3D space of (x, y, z) using the intrinsic matrix of the

calibrated camera. We then fit a plane to the 3D coordinates with PCL using least-

squares minimization with RANSAC outlier-removal, which determines the optimal

A,B,C,D parameters for the following plane representation:

Ax+By + Cz = D (4.5)

The normal vector and intercept point of the plane are calculated and stored for

subsequent matching.

Plane Tracking and Data Association

Data association matches the planes between frames by minimizing a plane-difference

error composed of the normal vector and plane separation distance. This approach

allows the module to consistently track planar surfaces across consecutive frames.

Figure 4.6 provides an example of fitted planes and detected windows in the

25



Figure 4.6: Fitted planes and several detected windows for the airplane environment
are overlaid on the semantically-colored point cloud.

airplane environment, overlaid on the semantically-colored point cloud.

4.2.4 Object Detection and Tracking

The environment contains objects with varying dimensions, from flat 2D objects such

as windows and paintings to 3D objects like chairs and tables. In this subsection,

we describe the methods employed for detecting and tracking both types of objects

using semantic segmentation and the YOLOv3 neural network.

2D Object Detection and Tracking

For flat 2D objects, we detect clusters of pixels in each class-specific semantic mask

generated from the output of the semantic segmentation network. Additionally, we

use the YOLOv3 [27] neural network to detect a higher number of unique object

classes, as semantic segmentation networks typically focus on higher-level regions

rather than individual objects. We used a YOLO model pre-trained on the COCO

dataset and we fine-tuned it on a custom dataset for objects that are common to

the airplane environment, such as windows.

26



The custom dataset consists of RGB images with bounding-box labels of window

objects from various views, both interior and exterior, of simulated aircraft models.

The network outputs a 2D bounding box, class ID, and confidence for each detected

object in the scene. Bounding boxes are projected back to the camera plane, and 3D

coordinates are determined using depth information. Semantic 2D objects are rep-

resented by rectangles due to their planar properties. Data association for semantic

2D objects is performed by matching objects with the same class and minimizing

a score composed of position error, object area difference, and the intersect over

union (IoU) of the two masked regions. Figure 4.7 provides an example of YOLO

detecting 2D windows in an aircraft interior.

Figure 4.7: YOLO detections on the RGB frame

When operating in environments outside of airplanes, such as homes and offices,

the original pre-trained weights for COCO can be used to detect many common

objects. The standard model based on COCO includes common objects such as

people, chair, table, computer, and etc. For a bathroom dataset that we also test

on, there are common classes such as sink, towel, and bottle.

27



3D Object Detection and Tracking

Detection and tracking of 3D objects is based on the method presented in work by

Qian et al. [26], where objects are represented as quadrics. The data association is

conducted using bipartite matching to maximize a score based on the ORB features

and BoW (bag of words) vectors located inside the bounding quadric region of the

object.

The above object detection and tracking techniques effectively manage both

2D and 3D objects, allowing for a comprehensive understanding of objects in the

environment.

4.3 Bundle Adjustment Formulation

Bundle Adjustment (BA) is a crucial optimization step in SLAM systems that aims

to improve the consistency and accuracy of the estimated camera poses and map fea-

tures. Given the initial estimates of camera poses and map features, BA refines the

poses by minimizing the reprojection error between observed and predicted feature

positions in the image plane. This optimization is performed by iteratively updating

the camera poses and feature positions based on error minimization criteria until

convergence. The bundle adjustment process leverages the redundancies in feature

observations across multiple frames, allowing it to deliver a globally consistent map

and camera trajectory. An example of the graph for bundle adjustment, with feature

nodes and measurement edges is shown in Fig. 4.8.

4.3.1 Edge Definition and Covariance Weights

Edges are defined by an observation in camera coordinates and the 3D XYZ position

of the point in global coordinates to be optimized. The edge observation values,

28



Figure 4.8: Factor Graph of Objects and Poses

z = (ul, ur, v), are in camera image coordinates, with v being the ”y-axis” of the

image plane and the ”x-axis” image plane coordinates of ul and ur being from

cameras l and r, respectively. When a right camera is absent, such as the case where

we have a single RGB-D camera, the ur value is estimated using the corresponding

depth value d and a constant stereo-camera baseline value bl as

ur = ul − bl ∗ d

Edge covariance weights play a crucial role in the accuracy of the SLAM sys-

tem, as they should be proportional to the confidence of the measurement to ensure

erroneous points do not skew positions during optimization. In feature-repetitive en-

vironments, the ORB features may provide misleading readings due to mismatches;

thus, we multiply the covariance by a scale factor of 20 times the original values. The

covariance values of the semantic features are weighted proportional to their cubed

depth values, as the furthest features exhibit the most noise and are the hardest to

properly estimate and track. We tuned these parameter weights and definitions to

29



find the appropriate balance based on the noise of the ORB feature points and the

stability of the semantic features.

4.3.2 Optimization Formulation

The bundle adjustment aims to perform a joint maximum a posterior (MAP) esti-

mation of map objects (2D objects, 3D objects, plane objects, ORB Points, lines)

and camera poses for the keyframes that have been saved along the robot trajec-

tory. In the optimization process, p(qi+1 | xi+1, xi) represents the probability of the

odometry measurement given the current and next camera poses, p(xi) and p(τj) are

the priors for camera poses and map objects, respectively, and p(zji | xi, τj) denotes

the probability of the reprojection error of the map object τj observed in keyframe

Ki given the camera pose xi and the map object itself. A mathematical formulation

for the optimization process is below:

X ∗, T ∗ =X ,T
∏
xi

p(qi+1 | xi+1, xi)︸ ︷︷ ︸
Odometry

·
∏
τi

p(xi)︸ ︷︷ ︸
Pose Prior

·

∏
τj

∏
xi

p(zji | xi, τj)︸ ︷︷ ︸
Map object reprojection error

·
∏
τj

p(τj)︸ ︷︷ ︸
Object Prior

(4.6)

where T = τj is the set of map objects, X = xi = T i
w is the set of camera poses

of keyframes, qi is the odometry measurement, and zji is the measurement of object

τj on keyframe Ki. By assuming Gaussian measurement and process models and

a uniform distribution of object and pose, taking the negative log on the objective

function in (4.6) can rewrite the problem as a nonlinear least-squares problem:

30



X ∗, T ∗ =X ,T
∑
xi

∥ho(xi+1, xi)− qi+1∥2Σu

+
∑
τj

∑
xi

∥hs(xi, τj)− zji ∥2Σz

(4.7)

where ∥·∥Σ is the Mahalanobis norm, and Σu and Σz are the covariance matrices

of odometry measurements and map object measurements, respectively. Note that

Σz is not a constant covariance matrix; instead, it should be weighted according to

the quality of the measurement, as discussed earlier. The values ho and hs are the

sensor models of odometry and map objects, respectively.

The nonlinear least-squares problem described in (4.7) can be solved using mod-

ern optimization libraries such as g2o [16]. These libraries provide efficient optimiza-

tion techniques tailored to SLAM systems, handling large-scale optimization prob-

lems with many poses and features. Other popular solvers include Ceres Solver [1]

and the iSAM2 algorithm [10].

4.4 Chapter Summary

In this chapter, we have presented a comprehensive overview of the Multi-Level

Semantic SLAM method. The proposed approach combines deep learning and ge-

ometric techniques to improve the performance of traditional SLAM systems. We

discussed the system architecture and detailed all of the key components that take

place in the feature extraction process and the bundle adjustment.

The Multi-Level Feature Extraction section provided an extensive look into the

process of acquiring semantic information and detecting different types of features

in the environment. Semantic segmentation is the foundation for feature extraction,

31



as it allows for the identification and classification of objects and structures. We

also went into detail for the various sub-sections of this process, such as semantic

line detection, plane detection and tracking, and object detection and tracking. By

incorporating multiple feature representations, we improve the robustness of the

SLAM system, especially for environments that lack features. Our bundle adjust-

ment formulation is responsible for refining the estimated camera poses and map

features using all of the available semantic information and features.

In conclusion, the Multi-Level Semantic SLAM method presented in this chap-

ter showcases the potential of combining deep learning techniques with traditional

geometric SLAM approaches. The next chapter will validate the proposed approach

through experimental tests, further demonstrating the benefits and effectiveness of

the Multi-Level Semantic SLAM method in real-world scenarios.

32



Chapter 5

Simulation Environments and

Experimental Evaluation

In this chapter, we evaluate the performance of our Multi-Level Semantic SLAM

method using a variety of simulated and real-world environments. The goal of these

experiments is to validate the performance of the proposed method and demonstrate

its robustness under challenging conditions. This chapter also highlights a motivat-

ing example where existing methods failed to track and how our system fills the

gap. The details of our simulated experimental setup are also highlighted to show

how we constructed the environments.

5.1 Experimental Simulation Setup

First, we walk through the setup of our key simulation environments of the airplane

for the application of airplane inspection for cracks and damage.

33



5.1.1 Airplane Exterior Simulation with Gazebo

We first started with a model of a common airplane exterior in the Gazebo [14]

physics simulator. We simulated an aerial robot (drone) using the RotorS [7] library

from ETHZ ASL. The RotorS library is capable of simulating a variety of multirotor

aerial vehicles in Gazebo along with a variety of sensors including IMUs and RGB-D

(or stereo) cameras. We utilized the firefly vehicle with an RGB-D camera setup

for our testing. Visuals of both the simulated airplane (Fig. 5.1) and the simulated

multirotor vehicle (Fig. 5.2) below.

Figure 5.1: Exterior of a simulated plane environment (with the drone present in
the lower center)

5.1.2 Airplane Interior Simulation with Unreal Engine

As we expanded our inspection focus to airplane interiors, we realized the need for

a simulation platform capable of higher-resolution modeling and textures, which

Gazebo wasn’t designed for. This led us to use Unreal Engine [6] and Microsoft

Airsim [30] to simulate a high-resolution model with ability to control an aerial

34



Figure 5.2: Simulated multirotor agent in Gazebo using the RotorS [7] library

robot (quad-rotor) through ROS and Python interfaces. The simulated interior

environment is displayed in Fig. 5.3 from the perspective of the aerial robot camera.

Figure 5.3: A long hallway-like interior of a simulated cargo plane environment

5.1.3 Augmented Simulation Model Potential

The environment also supports modifications such as adding obstacles and cargo to

the simulation for more challenging navigation tasks and SLAM testing on additional

object classes, as seen in Fig. 5.4.

35



Figure 5.4: Plane interior simulation with added cargo and obstacles

Augmented models for more realistic textures from real airplane images. In

one example, we modify the simulated textures using real-world airplane photos

of textures that include real windows and riveted side panels. An example of the

modified texture with patches of real images demonstrated in Fig. 5.5 and Fig. 5.6.

This example is not fully complete as the textures could be blended further, but

largely serves the purpose to show that augmenting the simulated models is possible

for further realistic testing.

Figure 5.5: Plane exterior with a sample of augmented realistic textures included

We also experimented with creating more realistic simulation environments by

reconstructing public videos of airplanes into a 3D model using Neural Radiance

Fields (NeRFs) [21]. An example of an environment reconstructed from a video

36



Figure 5.6: Plane exterior with a sample of augmented realistic textures included

using a NeRF method is included in Fig. 5.7. We did not explicitly test our SLAM

method in this environment, but show that it is another avenue to explore for more

realistic SLAM testing in future works.

Figure 5.7: Plane model reconstructed using NeRF

5.2 Experimental Results and Comparisons

To test the effectiveness of our ML Semantic SLAM method, we first demonstrate

results on an extremely sparse environment, a simulated airplane interior. We eval-

uate the performance of our system on a simulated environment of the interior of

an airplane with sparse objects and very repetitive texture features 1. The key test

1Note that a real airplane could offer more features and thus a less challenging environment.

37



we highlight here shows a drone flying straight down a long hallway-like interior of

the plane (as seen in Fig. 5.3). We chose this environment and specific test-case to

highlight a degeneracy case for systems that use only ORB features that mis-match

in situations with a high number of near-identical points in a repetitive texture. In

the tests conducted, this environment was shown to be extremely challenging for

ORB-SLAM2, which drifts by 1.8 meters over the course of a 12 meter flight along

the Y-axis (forward). The ground truth flight path is shown in Fig. 5.8 with a com-

parison to the drone positions from ORB-SLAM2 and our Multi-Level Semantic

SLAM.

Figure 5.8: Position estimates from ORB SLAM2 and the Multi-Level Semantic
SLAM vs. Ground Truth

Fig. 5.9 shows a comparison of the error along the flight path between ground

38



Figure 5.9: Tracking errors from ORB SLAM2 and the Multi-Level Semantic SLAM
vs Ground Truth

truth and both ORB-SLAM2 and our Multi-Level Semantic SLAM. The rate of

error accumulation of ORB-SLAM2 along the Y-axis appears relatively consistent

along the flight path as the floor textures repeat along the entire flight. It is noticed

that the rate of error from our system starts off matching that of the ORB-SLAM2,

but as semantic objects come into view our system starts to accumulate error at a

much lower rate until the end of the flight where few objects are left in view and

the error begins to accumulate faster as it must again focus on the ORB features

that are still in view. Over the course of the full 12m flight, the ORB-SLAM2’s

estimate of drone position drifted 187cm, while the estimate by our method drifted

only 115cm, a difference of 40% improvement. At its best point, while semantic

39



objects are still within view around the 26 second mark, ORB-SLAM2’s position

estimate has an error of 152cm, while the position estimate by our system has an

error of only 47cm, for an improvement of 70% in tracking accuracy.

We also tested our system on the simulated exterior of an airplane. See Fig. 5.1.

As the drone moves forward, the ORB SLAM2 failed after 5 seconds due to severe

mismatches of ORB features. This shows that even with our system, there are

still limitations when the environment reaches a point of extreme cases of sparse

and repetitive features. Future works could explore adding IMU information to our

method to improve further for edge cases such as the above exterior environment.

We also tested our ML Semantic SLAM method on a more standardized envi-

ronment of a bathroom with a variety of features including repetitive flooring tiles.

The repeating features pose an additional challenge over typical environments. Our

ML Semantic SLAM method showed modest gains of a 2% reduction in error over

the course of the trajectory which completed three movements of 1.95 meters in

and out of the bathroom and then returned to the same starting position. Full-

trajectory ground-truth data was not available given that this data was collected

in the real-world without a motion capture system available. However, the position

was measured relative a fixed reference point at the start and end of the trajectory.

The output of our Semantic SLAM map of the bathroom environment is seen in

Fig. 5.10.

Both of the above datasets (Simulated Airplane and Real-World Bathroom) are

open-sourced. They are available online at [15].

40



Figure 5.10: The semantic features and map from our SLAM is overlayed on the
RGB input from this semi-sparse bathroom environment with repetitive floor tiles

41



Chapter 6

Discussion and Future Work

This chapter provides discussion of results and future extensions of our approach.

6.1 Summary of Results

In this thesis, we have presented the development and evaluation of our Multi-Level

Semantic SLAM (ML Semantic SLAM) method, demonstrating its effectiveness in

various simulation environments and real-world scenarios. Our method capitalizes

on various low-level and high-level semantic features to reduce tracking errors in

sparse environments and create a more semantically rich map. Our approach im-

proves the overall performance of SLAM systems by incorporating multiple feature

types and levels, including planes, lines, semantic regions, and objects, to address

the sparsity of environments with limited distinguishable keypoint ORB features.

As demonstrated in the above experimental results section, our ML Semantic

SLAM system has achieved significant error reductions, with up to 70% improvement

in an extremely sparse simulated environment characterized by very few distinct

features, and a modest 2% error reduction in a less-sparse real-world bathroom

environment. These performance improvements can be attributed to the effective

42



integration of diverse feature types at various semantic levels. The success of our

method in an extremely challenging environment highlights its potential to offer

similar improvements in other repetitive and sparse environments, such as long

hallways devoid of distinctive floor or wall textures.

6.2 Future Extensions to ML Semantic SLAM

Despite the promising results, there are still areas for improvement and expansion

in future works. The following are some possible directions to further enhance the

performance and capabilities of our ML Semantic SLAM method:

• Incorporate more sensor modalities:

The current implementation of our ML Semantic SLAM system primarily

utilizes an RGB-D camera. Integrating additional sensors, such as IMUs or

additional cameras could help improve the accuracy and robustness of the

system in more challenging environments or edge cases.

• Expand object detection and semantic segmentation capabilities:

Currently, our method leverages a predefined set of semantic objects. Extend-

ing the variety and types of detectable objects would enable our system to

work more effectively in diverse environments and cater to specific application

domains.

• Develop an adaptive and dynamic weighting strategy:

Our current approach uses a fixed weighting strategy for combining semantic

and ORB features (described in the bundle adjustment section). Future work

could explore a more adaptive and dynamic weighting strategy that adjusts

according to the environment, object confidence, feature similarity scores, and

43



other factors, further improving the system’s overall performance.

• Investigate real-time performance optimization:

The current implementation of our ML Semantic SLAM method may not

be optimal for real-time performance, as it runs slower than 10FPS. Future

work could explore methods to optimize the system for real-time applications,

such as reducing computational complexity, accelerating object detection and

segmentation, or leveraging hardware acceleration techniques.

• Enhance the realism of simulation environments:

Our experimental evaluation mainly focused on simulated environments (other

than one real-world scene). We explored a few methods to enhance the en-

vironments, such as augmenting with real-world textures and reconstructing

from public videos with NeRFs, but we didn’t explicitly test on these yet.

Future work could continue to explore and test on more realistic simulation

environments, such as those based on Neural Radiance Fields (NeRFs) or pho-

togrammetry, to better understand and evaluate the performance of our ML

Semantic SLAM system in real-world situations.

In conclusion, the Multi-Level Semantic SLAM method shows great promise in

enhancing the performance of traditional SLAM systems in various environments.

As we continue to refine and expand upon our system, we hope to further advance

the field of robotics and enable more reliable and accurate SLAM for a wide range

of applications.

44



6.3 Proposed Extension: Active Semantic SLAM

While we detailed specific future work directions for the ML Semantic SLAM specif-

ically, we also have a detailed plan of how the work could be extended to an Active

SLAM method.

6.3.1 Context

Active SLAM aims to enhance the capabilities of traditional SLAM techniques as

it actively utilizes the generated map to enable a robot to explore and navigate its

environment autonomously. Existing active SLAM methods have mostly focused

on open frontier exploration for geometric coverage or object discovery. One re-

search area that is still unexplored is the application of Active SLAM to a semantic

exploration task. In an application such as airplane inspection, there is a desire

to determine semantic labels for areas of interest in the airplane, such as windows

for inspection. This is challenging as off-the-shelf semantic segmentation networks

frequently face difficulties in predicting correct and consistent class labels when ob-

serving objects at varying distances. To address these challenges, we propose a

research direction centered on Active Semantic SLAM for confident semantic label-

ing and exploration.

6.3.2 Research Objectives

The primary objectives of this research are to develop an Active Semantic SLAM

approach capable of:

1. Exploring unknown areas with the goal of achieving confident semantic labels

for goal semantic classes (e.g., windows for inspection).

45



2. Improving and filtering noisy labels from off-the-shelf semantic segmentation

networks.

3. Investigating multi-agent coordination for semantic coverage with different

sensors.

6.3.3 Active SLAM for Semantic Coverage

This research will focus on developing an active SLAM approach that ensures se-

mantic coverage of semantically-important areas without exhaustive coverage of the

entire environment. This could leverage modified coverage planning methods for

active SLAM with an added semantic component and employing learning-based

techniques to predict exploration directions.

Additional methods to be explored include Neural Radiance Fields (NeRF) for

predicting the location of semantics of interest in the environment and incorporating

a multi-resolution mapping component for efficient data storage and representation.

6.3.4 Adaptive Ideal Distance for Semantic Labeling

To enhance the quality of semantic labeling, we propose to develop an adaptive

distance threshold for determining the confidence of the semantic prediction based

on the distance to the observed pixel. This approach would define an ideal distance

for each class and adjust it over time based on the size of the class regions and

the distribution of confidence scores in the regions. By learning the ideal distance

for each class and adjusting the confidence accordingly, the proposed system can

achieve confident semantic labels without relying on prior knowledge or training on

a specific dataset.

46



6.3.5 Multi-resolution Mapping

Another essential aspect of this research is the investigation of multi-resolution map-

ping techniques for reducing storage space and focusing computation on regions of

interest that require higher resolution. By employing techniques such as OctoMaps

with varying resolutions, the proposed system can achieve increased resolution for

specific regions of the map as more observations are collected, while maintaining

lower-resolution maps for uninteresting areas.

6.3.6 Remarks

The proposed research on Active Semantic SLAM for confident semantic labeling

aims to address the limitations of traditional active SLAM methods and enhance the

quality of semantic labeling in various environments. By focusing on the develop-

ment of an active SLAM approach that achieves confident semantic labels, improves

noisy labels from existing segmentation networks, and investigates multi-agent co-

ordination for semantic coverage, this research has great potential for inspection

applications and beyond.

6.4 Conclusions

In this thesis, we have presented a comprehensive exploration of the development,

implementation, and evaluation of our Multi-Level Semantic SLAM method, which

addresses the challenges of accurate and reliable localization and mapping in sparse

and repetitive environments. Our approach stands out by leveraging both low-level

and high-level semantic features to create semantically-detailed maps and achieve

significant error reduction.

We provided an in-depth analysis of how our method works, with step-by-step

47



details of feature extraction and the bundle adjustment formulation that ties all the

features together. We showcased the robustness and versatility of our approach in

various simulated and real-world environments, emphasizing its potential for im-

proved performance in other challenging scenarios, such as airplane environments

for inspection.

Additionally, we proposed a research direction focused on Active Semantic SLAM

for Semantic Coverage Exploration, which aims to expand traditional Active SLAM

techniques and enhance the quality of semantic maps in new environments. This

research proposal underlines the importance of continual innovation and expansion

in the field, and we believe it provides a solid foundation for future investigations.

As a final remark, this thesis not only contributes to the advancement of SLAM

systems and robotics but also serves as a catalyst for future research and develop-

ment in the area. We hope that our findings inspire further exploration, refinement,

and implementation of novel approaches to SLAM, leading to more accurate and

reliable systems that benefit a broad range of real-world applications.

48



Bibliography

[1] Agarwal, S., Mierle, K., and Team, T. C. S. Ceres Solver, 3 2022.

[2] Burkard, R., Dell’Amico, M., and Martello, S. Assignment problems:
revised reprint. SIAM, 2012.

[3] Campos, C., Elvira, R., Rodŕıguez, J. J. G., Montiel, J. M., and
Tardós, J. D. Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam. IEEE Transactions on Robotics 37, 6 (2021),
1874–1890.

[4] Chandraker, M., Lim, J., and Kriegman, D. Moving in stereo: Efficient
structure and motion using lines. In 2009 IEEE 12th International Conference
on Computer Vision (2009), IEEE, pp. 1741–1748.

[5] Douglas, D. H., and Peucker, T. K. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica: the international journal for geographic information and geovi-
sualization 10, 2 (1973), 112–122.

[6] Epic Games. Unreal engine.

[7] Furrer, F., Burri, M., Achtelik, M., and Siegwart, R. Robot Oper-
ating System (ROS): The Complete Reference (Volume 1). Springer Interna-
tional Publishing, Cham, 2016, ch. RotorS—A Modular Gazebo MAV Simula-
tor Framework, pp. 595–625.

[8] Goldberg, A. V., and Kennedy, R. An efficient cost scaling algorithm for
the assignment problem. Mathematical Programming 71, 2 (1995), 153–177.

[9] Guan, P., Cao, Z., Chen, E., Liang, S., Tan, M., and Yu, J. A
real-time semantic visual slam approach with points and objects. International
Journal of Advanced Robotic Systems 17, 1 (2020), 1729881420905443.

[10] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and
Dellaert, F. isam2: Incremental smoothing and mapping using the bayes
tree. The International Journal of Robotics Research 31, 2 (2012), 216–235.

49



[11] Kennedy Jr, J. R. Solving unweighted and weighted bipartite matching prob-
lems in theory and practice. Stanford University, 1995.

[12] Kim, U.-H., Kim, S.-H., and Kim, J.-H. Simvodis: Simultaneous visual
odometry, object detection, and instance segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence 44, 1 (2020), 428–441.

[13] Klein, G., and Murray, D. Improving the agility of keyframe-based slam.
In European conference on computer vision (2008), Springer, pp. 802–815.

[14] Koenig, N., and Howard, A. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566)
(2004), vol. 3, IEEE, pp. 2149–2154.

[15] Krueger, K. Sparse slam datasets, 2023.

[16] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Bur-
gard, W. g 2 o: A general framework for graph optimization. In 2011 IEEE
International Conference on Robotics and Automation (2011), IEEE, pp. 3607–
3613.

[17] Labbé, M., and Michaud, F. Rtab-map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and long-term
online operation. Journal of Field Robotics 36, 2 (2019), 416–446.

[18] Leonard, J., and Durrant-Whyte, H. Simultaneous map building
and localization for an autonomous mobile robot. In Proceedings IROS
’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91
(1991), pp. 1442–1447 vol.3.

[19] Lianos, K.-N., Schonberger, J. L., Pollefeys, M., and Sattler, T.
Vso: Visual semantic odometry. In Proceedings of the European conference on
computer vision (ECCV) (2018), pp. 234–250.

[20] Lowe, D. G. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision 60, 2 (2004), 91–110.

[21] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ra-
mamoorthi, R., and Ng, R. Nerf: Representing scenes as neural radiance
fields for view synthesis. Communications of the ACM 65, 1 (2021), 99–106.

[22] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. Orb-slam: a
versatile and accurate monocular slam system. IEEE transactions on robotics
31, 5 (2015), 1147–1163.

50



[23] Mur-Artal, R., and Tardós, J. D. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics
33, 5 (2017), 1255–1262.

[24] Perron, L., and Furnon, V. Or-tools.

[25] Qian, Z., Fu, J., and Xiao, J. Towards accurate loop closure detection
in semantic slam with 3d semantic covisibility graphs. IEEE Robotics and
Automation Letters 7, 2 (2022), 2455–2462.

[26] Qian, Z., Patath, K., Fu, J., and Xiao, J. Semantic slam with au-
tonomous object-level data association. In 2021 IEEE International Conference
on Robotics and Automation (ICRA) (2021), IEEE, pp. 11203–11209.

[27] Redmon, J., and Farhadi, A. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767 (2018).

[28] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. Orb: An
efficient alternative to sift or surf. In 2011 International conference on computer
vision (2011), Ieee, pp. 2564–2571.

[29] Rusu, R. B., and Cousins, S. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA) (Shang-
hai, China, May 9-13 2011).

[30] Shah, S., Dey, D., Lovett, C., and Kapoor, A. Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. In Field and Service
Robotics (2017).

[31] Sklansky, J. Finding the convex hull of a simple polygon. Pattern Recognition
Letters 1, 2 (1982), 79–83.

[32] Suzuki, S., et al. Topological structural analysis of digitized binary images
by border following. Computer vision, graphics, and image processing 30, 1
(1985), 32–46.

[33] Yang, S., and Scherer, S. Cubeslam: Monocular 3-d object slam. IEEE
Transactions on Robotics 35, 4 (2019), 925–938.

[34] Yang, S., and Scherer, S. Monocular object and plane slam in structured
environments. IEEE Robotics and Automation Letters 4, 4 (2019), 3145–3152.

[35] Zhang, G., and Suh, I. H. A vertical and floor line-based monocular slam
system for corridor environments. International Journal of Control, Automation
and Systems 10, 3 (2012), 547–557.

51



[36] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and Tor-
ralba, A. Scene parsing through ade20k dataset. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (2017).

[37] Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A.,
and Torralba, A. Semantic understanding of scenes through the ade20k
dataset. International Journal on Computer Vision (2018).

52


	Introduction
	Mathematical SLAM Formulation
	Key SLAM Approaches
	Common Sensors for SLAM
	Vision-based SLAM
	Semantic SLAM

	Visual and Semantic SLAM Methods
	Point-based SLAM
	Line-based SLAM
	Semantic SLAM
	Notable SLAM Methods
	Limitations and Challenges

	Problem Statement and Approach
	Problem Statement
	Approach of This Thesis

	Multi-Level Semantic SLAM
	System Architecture
	Multi-Level Feature Extraction
	Semantic Segmentation
	Semantic Line Detection
	Plane Detection and Tracking
	Object Detection and Tracking

	Bundle Adjustment Formulation
	Edge Definition and Covariance Weights
	Optimization Formulation

	Chapter Summary

	Simulation Environments and Experimental Evaluation
	Experimental Simulation Setup
	Airplane Exterior Simulation with Gazebo
	Airplane Interior Simulation with Unreal Engine
	Augmented Simulation Model Potential

	Experimental Results and Comparisons

	Discussion and Future Work
	Summary of Results
	Future Extensions to ML Semantic SLAM
	Proposed Extension: Active Semantic SLAM
	Context
	Research Objectives
	Active SLAM for Semantic Coverage
	Adaptive Ideal Distance for Semantic Labeling
	Multi-resolution Mapping
	Remarks

	Conclusions


