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Abstract 

This MQP is part of a larger project for the Department of Defense’s Strategic 

Environmental Research and Development Program. This project seeks to reduce metal waste 

generated at US military forward operating bases. In partnership with other research laboratories, 

WPI’s Center for Heat Treating Excellence is developing a 3D-printing-enabled investment 

casting manufacturing process to allow soldiers to make replacement parts. To support this 

initiative, our MQP team was tasked with evaluating the metallurgical properties of heat-treated 

carbon steels. We conducted multiple heat treatment operations on two steel alloys, which 

provided a set of samples with known hardness and grain structure data. Our team was also 

tasked with creating an improved furnace control system. This was accomplished by prototyping 

a custom circuit board and control interface. Additionally, our team conducted an axiomatic design 

decomposition, which broke down those two tasks into their respective design matrices, resulting 

in improved task efficiency. 
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Executive Summary 

 As a sub-project under a larger initiative for the Department of Defense’s Strategic 

Environmental Research and Development Program (DoD SERDP), our goal was to increase the 

utility of furnace equipment on forward operating bases, and the experience of the individuals 

using them. In order to achieve this, the team divided the project into three objectives to 

accomplish. The first objective was to heat treat two carbon steel alloys, 8630 and 1018, in order 

to collect more imagery data for a deep learning system which then will help to guide soldiers 

through heat treatment operations. The second objective was to improve the furnace control 

system by implementing a custom circuit and program, increasing accuracy and usability. The 

third objective was to utilize axiomatic design to optimize the processes of the other two 

objectives. 

In pursuit of these objectives, the team performed quenching and tempering on samples 

of 8630 steel alloy. For 1018 steel, the team performed normalizing and annealing. These 

samples were mounted in polyurethane pucks, hardness tested, etched, and image analyzed. 

These images and data were uploaded to the deep learning model, increasing both its accuracy 

in prescribing heat treatment procedures, and the range of steel alloys it can prescribe operations 

for. The furnace control system was improved by replacing the current controller module with a 

microcontroller, custom circuit, and laptop. Then an axiomatic design analysis was conducted by 

creating a process flow chart and economic analysis for both of the other two objectives. 
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1 Introduction 

This MQP is a component part of a larger project for the Department of Defense’s Strategic 

Environmental Research and Development Program (DoD SERDP), led in part by our project 

advisors, Professor Brajendra Mishra, and Professor Jianyu Liang. The SERDP initiative seeks 

to bring metalworking capabilities to soldiers in forward operating bases (FOBs), allowing them to 

manufacture replacement parts for equipment that breaks in the field. This initiative addresses 

two DoD objectives simultaneously by developing a means of recycling scrap steel on military 

installations, as well as alleviating logistics problems on both a tactical and strategic level. At the 

tactical level, soldiers can manufacture “good enough” replacement parts for their equipment and 

facilities, reducing the impact of faulty equipment on missing effectiveness. At the strategic level, 

it saves significant resources from being squandered on shipping new equipment up to the front. 

To guide soldiers in selecting the proper heat treatment procedures (temperatures, times, 

etc.), a convolutional neural network (CNN) model is being developed that is able to calculate and 

prescribe heat treatment procedures to the customer based on what the part’s function will be, 

and the chemical composition of the available steel. The CNN model is a deep learning system, 

which means that when given the heat treatment cycle performed on a particular piece (ex. 

tempered at 400℃ for 2 hours), the chemical composition of that steel, and an image of the steel’s 

crystal microstructure, it can predict the hardness of the steel. When presented with these data 

points, the CNN model will learn and adjust its future predictions to be more in-tune with the reality 

of what it has been presented. In basic terms, the more data that is given to the model, the more 

accurate the model’s predictions will be. 
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1.1 Problem Statement and Objectives 

 That is where our MQP comes in. We were seeking to improve the experience of the 

individuals using the foundries and furnaces, and the utility of the equipment. In pursuit of this 

goal, we developed two technical objectives for our project: to provide quality data points to the 

existing CNN model, and to create a user-friendly furnace control interface. Additionally, we 

pursued a third, overarching objective of utilizing axiomatic design to streamline and optimize the 

processes of the two technical objectives. See below in Figure 1 a flowchart of the three objectives 

of our project, and how they interact. 

 

 

Figure 1. Overall flow chart of the whole project. 
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1.1.1 Acquisition of Data Points for CNN Model 

This objective was to provide the CNN model with numerous solid data points for several 

different compositions of steel after having undergone various heat treatment operations. Our 

team’s efforts towards this started with background research on various heat treatment 

processes, formulas, and diagrams, in order to better understand what goes into heat treatment 

operations. Next, we developed an experimental procedure to perform those heat treatment 

operations on steel samples, which we then executed. Afterward, we evaluated the hardness of 

the samples, and captured images of their microstructures. These images and data were then 

uploaded to the CNN model, becoming part of its database for future use. The desired end-state 

for the CNN model is that a soldier will be able to enter the steel composition of their manufactured 

replacement part, and what mechanical properties it will need to accomplish its job, and the CNN 

model will tell them what heat treatment cycle(s) to subject it to. This will allow soldiers to innovate 

and fix problems that have arisen on the front lines with self-made, heat-treated steel products. 

 

1.1.2 Improved Furnace Control 

One of the key aspects of any heat treatment process is maintaining an accurate 

temperature in the oven in which the sample is being heated. The user interface panel that came 

with the furnace consisted of only four buttons and two seven-segment display modules to both 

program the furnace and display the current temperature. This configuration, though relatively 

simple, was unintuitive to use and did not allow for a friendly and efficient use experience. To fix 

these issues, we prototyped an alternative control system utilizing an Arduino microcontroller and 

a laptop as an interface to allow for accurate, real-time temperature analysis and to provide a 

visually appealing and easy-to-use control panel to the furnace operator.  
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1.1.3 Axiomatic Design  

 To better achieve the aforementioned objectives, we used the principles of axiomatic 

design to perform a process flow analysis and an economic analysis. Process flow helped our 

project by showing us the most efficient manner to complete these objectives. We performed this 

by setting out the different steps of the heat treatment process and comparing how the steps of 

this process interact. Then we organized the process so that we completed steps that interact 

before they affect future steps. Our economic analysis justifies this project by showing how our 

different objectives as a whole adds value. We also look at how this project could have been done 

but show that our project was more effective in the manner that we completed it. 

 

1.2 Report Overview 

In pursuit of the objectives outlined above, we first conducted extensive background 

research on the larger DoD initiative our project was a part of, the history and nature of heat 

treatment operations, furnace control systems and interfaces, and axiomatic design. We then 

developed experimental procedures to guide our efforts toward collecting steel samples and 

developing a better user interface. Our results section highlights the data gathered from our 

experimental procedures, including steel hardness data and images, the effectiveness of the CNN 

model, the improved furnace user interface, and an economic analysis of our efforts as a whole. 

Finally, we summarize our findings, discuss the project completion, make recommendations to 

groups going forward, and reflect on our group experience within this MQP as a whole. 
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2 Background 

2.1 The SERDP Initiative 

When a piece of a soldier’s equipment gets broken on the front lines, it takes an inordinate 

amount of work hours, money, and planning to get replacement parts to them. This has both 

tactical and strategic level consequences by blunting mission effectiveness of the unit and wasting 

significant DoD resources, respectively. In an effort to minimize the logistics involved with 

replacing and/or fixing equipment, the DoD’s SERDP funded a project to provide front line soldiers 

with the foundry and furnace equipment necessary to fix and create items on their own. Our MQP 

advisors, Professor Jianyu Liang, and Professor Brajendra Mishra, serve in leadership roles for 

that project (8). If properly implemented, the addition of this metalworking equipment will alleviate 

a massive chunk of the front lines’ logistics backup. In addition, this will enable soldiers to solve 

problems stemming from faulty/broken parts of their own initiative, instead of relying on logistics 

to replace it, making units at the front more self-reliant.  

This project also simultaneously addresses another issue SERDP has identified, which 

pertains to improper waste material disposal in forward areas. While things like wood and paper 

can biodegrade, there is currently no program in place to reuse/recycle spent metal products, 

specifically ferrous metals (steel, iron, etc.). This problem of metal recycling can be addressed 

while also providing soldiers the opportunity to fix their equipment and parts.  

However, the average soldier is not an expert in material science. While heat treatment 

procedures and the formulas and the science behind them are common knowledge to a student 

or professor who studies these topics, or to an industry expert who collaborates with them daily, 

they are not readily accessible to soldiers in the field. This is the main purpose of the CNN model 

discussed in the intro; to take on the role of a technical subject matter expert and do the research 
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and calculations for heat treatment procedures on behalf of the individual utilizing it. With this 

approach, soldiers gain the benefit of access to metalworking facilities while mitigating the 

drawback of lacking technical knowledge. 

 

2.2 The Heat-Treating Process 

The reason the heat-treating process is important for metals is that it is able to increase 

the strength of metals or achieve other desired characteristics such as improve its ductility (5). 

Heat treating takes a metal and changes the molecular structure by heating the material to a 

critical point and then cooling it with various cooling speeds. This takes advantage of the fact that 

metals and alloys have a more fluid molecular structure when they are heated. The common 

methods of heat treating are quenching, tempering, normalizing, and annealing.  

The quenching process starts off by heating an alloy to its critical temperature and then 

abruptly cooling it down in either water or oil. The critical temperature is the point at which the 

microstructure of the alloy becomes uniform and miscible in all proportions. This produces a 

steel with the smallest possible microstructure crystals and is therefore its hardest possible state. 

The tempering process follows after a material is quenched and pulls back the hardness level 

while increasing the material’s ductility. This occurs when a quenched sample is reheated and 

held at a less-than-critical temperature, allowing the crystalline structure to relax. Normalizing is 

the process of cooling a heated sample—either at the critical temperature, or at a lower one, in 

the case of tempering—in the open air, coming to a stop when the sample reaches room 

temperature. This produces softer steel than quenching, as it allows the crystalline microstructure 

to develop for a longer period of time, resulting in larger crystals. Annealing is similar to 

normalizing, but instead of cooling in the open air, you allow the sample to cool inside of the 
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furnace. This allows the microstructure crystals to grow for the longest possible time, producing 

the softest possible steel. 

Through studying the effects of heat treatment on the properties of steel, methods have 

been developed for predicting the outcome of a heat-treating cycle. One such method is the 

Hollomon-Jaffe parameter, an equation relating temperature and time to a specific parameter for 

the given steel. One can use this parameter to decide if there is a different temperature their 

specific heat-treating operation can be conducted that results in a quicker treatment time. Below 

is a screenshot of the equation, where H is the Hollomon-Jaffe parameter, T is the temperature 

in degrees Kelvin, t is the time in hours, and C is a constant, determined by the carbon content of 

the steel (21). 

 

𝐻 = 𝑇[𝐶 + 𝑙𝑜𝑔(𝑡)] / 1000 

 

In addition to the Holloman-Jaffe parameter, there are several types of phase diagrams 

that can be used to predict the composition and properties of a steel sample being subjected to 

heat treatment. The continuous cooling transformation (CCT) diagram is one such phase diagram. 

By measuring the starting temperature and the steel piece’s rate of cooling, one can determine 

what its phase composition will be, and therefore its physical properties, such as hardness, 

ductility, etc. Below is an example of a CCT diagram for an unspecified steel: 
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Figure 2. Sample CCT Diagram. (7) 

 

Another such phase diagram is the time-temperature-transformation (TTT) diagram. Also 

called the isothermal transformation diagram, it instead works by selecting a single target 

temperature for cooling, and the length of time held at that temperature. Below is an example of 

a TTT diagram for an unspecified steel: 

 

Figure 3. Sample TTT Diagram. (19) 
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While both of these diagram types serve a purpose, the CCT diagram is more useful. Not 

only can it be used to determine hardness and microstructure of a piece (which TTT cannot), it is 

also more user-friendly; for a TTT diagram, the piece needs to be rapidly cooled to a single 

temperature, and then held there, whereas for a CCT diagram you do not always need to rapidly 

cool the piece that quickly (11).  

 

2.3 Background of the data analysis tool 

As previously mentioned in the introduction, the team used a software model to further 

analyze all the data. The software was developed based on the Convolutional Neural Network 

(CNN) model (4). The ideology behind the whole software model is that because the properties 

of the metal are related to its microstructures, analyzing these microstructures will help the soldier 

to discover which type of metal it actually is. However, the microstructures are hard to distinguish 

by the untrained majorities. By using the CNN, it will be able to study the microstructures of the 

metal sample and then find out its heat treatment parameters along with the mechanical 

properties (4).  

2.4 Temperature Control and Furnace Operation 

 The ability to accurately control the temperature during any heat treatment process is 

crucial for obtaining the desired metallurgical properties of an alloyed steel. Under or overshooting 

the desired temperature may result in either incomplete metallurgic or undesired phase 

transformations (22). Furnaces must be able to manage various operating conditions and change 

between them efficiently (6). Operating conditions include loading or removing a workpiece from 

the furnace and heating or cooling to specific temperatures to manage these changes, each 

furnace is equipped with a control system which includes a temperature sensor, set-point 
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programmer, and a controller. The controller uses the temperature sensor to read the temperature 

inside the furnace, comparing that value to the set point temperature, and makes the necessary 

adjustments to the heating elements to bring the two values to a matching state. 

 There are four common types of temperature sensors used in typical applications: 

thermocouples, thermistors, semiconductor based integrated circuits, and resistance temperature 

detectors. The thermocouple is the most commonly used type of temperature sensor and 

operates by using the Seebeck effect, where two different metal wires are joined together and the 

temperature difference between the two metals causes a voltage difference. This voltage 

difference between the two metals can be measured and used to calculate the temperature 

difference (1). Heat treatment ovens use thermocouples as their temperature sensor due to their 

quick response times and wide temperature ranges. Depending on the type of thermocouple 

used, temperatures ranging from -270°C to 2000°C can be measured. Table 1 below shows the 

properties of common thermocouple types. 

 

Table 1. Thermocouple Types and Characteristics Modified from “Tutorial 6500 Temperature Sensor Tutorial” (9) 

Code Type Conductors Alloys (+/-) Temperature Ranges Sensitivity (µV/°C) 

K Nickel Chromium / Nickel 
Aluminum 

-180 to 1300°C 41 

B Platinum / Rhodium  0 to 1820°C 10 

T Copper / Constantan -250 to 400°C 43 

J Iron / Constantan -180 to 800°C 55 

N Nicrosil / Nisil -270 to 1300°C 39 

R/S Copper / Copper Nickel 
Compensating 

-50 to 1750°C 10 

E Nickel Chromium / 
Constantan 

-40 to 900°C 68 

 

 There are two types of controllers used in typical heat-treating ovens: two-position and 

modulation control. With two-position control systems, the actual furnace temperature oscillates 
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in a sinusoidal motion above and below the desired, or set point, temperature, Figure 4 

demonstrates this effect.  

 

 

Figure 4. Two-position temperature control. 

 

During the initial ramping up to the set point temperature, the thermal inertia of the process 

will cause an overshoot and the controller needs to compensate for this by turning the heating 

elements off to let the furnace cool. As the furnace cools it then drops below the desired 

temperature requiring the heating elements to be turned back on. This process repeats in a cyclic 

nature, moving the temperature above and below the set point by turning on and off the heating 

elements to generate an average temperature equal to that of the set point temperature. This 

cycling on and off can cause damage to the furnace and control system if it is done too quickly. 

Rapid changes to electrical current have the potential to cause power surges which can destroy 

components if they are not properly rated to manage the needed loads. The way to prevent the 

damage from constant cycling is to add a hysteresis component to the controller logic. This 

component limits the frequency at which the furnace is switched on and off by increasing the 

acceptable accuracy window. For example, rather than having the furnace turn off as soon as the 

temperature goes above the set point or turn on when the temperature drops below the set point, 

a window of ±2.5℃ can be added. This means that instead of the furnace switching at exactly 

100℃, it will turn off when it reaches 102.5℃ and turn back on when it reaches 97.5℃. Because 

temperature cannot change instantly it will take longer to reach the trigger points of the window 

thus slowing the rate at which the switch is flipped. In addition to saving the switch from constantly 

turning on and off, the hysteresis saves the heating coils from thermal fatigue.  
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 Modulation controllers are used when process temperatures are critical and when 

substantial amounts of energy are being consumed. They work by more precisely controlling the 

power that flows into the heating elements, instead of the all-or-nothing like the two position 

controllers do. Modulation controllers operate using a Proportional, Integral, and Derivative or PID 

loop. More information about modulating controllers and PID loops can be found in the ASM 

Handbook, Volume 04B (6). Both controller types have different variations of how they are 

implemented though generally two-position controls are simpler to operate, easier to maintain, 

and inexpensive compared to modulation control. However, two-position control is far less 

efficient in terms of power usage. Modulating controllers adjust the energy input to match any 

change offsets while maintaining the desired temperature and also have the capability to eliminate 

the overshoot caused by thermal inertia seen in two-position controllers (14).   

 An important distinction to make is that the laboratory ovens used during this project and 

the ones that will be used in the FOBs are controlled with a solid-state relay (SSR) which provide 

a digital signal output and can be used with a modulating controller, however, they require the 

use of pulse width modulation which complicates the control logic.   

2.4.1 User Interfaces 

 Heat treatment ovens come with a variety of temperature controllers, all with differing sizes 

and functionalities. The controllers used throughout this MQP and the ones that will be used on 

the furnaces in the FOBs are simple on-off or proportional control modules similar to the ones 

produced by companies like Honeywell and Inkbird. These simple controllers consist of four 

buttons and two seven-segment display modules similar to the one shown in figure 5.  
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Figure 5. Temperature control module interface. 

 

 In their report on usability of interfaces, Professors Sam Mahemoff and Dawson Johnston 

define the usability of an interface with six essential properties: task efficiency, reusability, user-

computer communication, robustness, flexibility, and comprehensibility. Task efficiency is 

straightforward in its definition; a user interface should provide an efficient means of 

accomplishing the user’s tasks. Reusability in user interfaces allows users to transfer the prior 

knowledge from one interface to another while maintaining task efficiency, for example, all 

furnaces have similar parameters to be programmed—temperature, time, and ramp rate—

therefore, entering these values should be consistent when programming any furnace available. 

User-computer communication relates to the fact that there should be constant back and forth 

communication whenever changes to the system occur, whether that be errors, confirmations, or 

other factors instigated by either the human or the computer. Robustness is the program’s ability 

to prevent and recover from errors caused internally or when the user misinforms the program 

tasks, such as a type. To meet the objective for any collaboration between a user and a computer, 

the system must be built using aspects from both parties. Flexibility ensures that these aspects 

are considered. A flexible program should incorporate features that lead to an effective workflow, 

for example, it may be useful to have the ability to load predetermined temperature profiles into 

the furnace. This feature will save time rather than having to reprogram the same temperature 

profile many times. The final property to be taken into consideration is that of comprehensibility. 
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Interfaces are comprehensible when users of any skill level are able to operate the controls with 

ease (10).  

When we compare the temperature control modules made by Honeywell or Inkbird, like 

the one in Figure 5, to the interface usability criteria laid out previously, we find that they fall 

short in many regards. These controller modules are not task efficient and take a considerable 

amount of time to learn how they operate. They are moderately flexible and allow for up to three 

saved profiles to be loaded for quick use. Although they are “simple” in design, they are not 

comprehensible to use as there are many quirks and unique features you need to learn before 

you can comfortably and efficiently use the furnace, especially for someone with little to no 

experience. It is assumed that the soldiers who will be operating the ovens in the FOBs will 

have little to no experience programming them and therefore, it would be beneficial for them to 

have an improved user interface that encompasses the six essential properties listed prior.  

 

2.5 Axiomatic Design Background 

Manufacturing has existed in civilization since before humans kept records. As civilization 

has grown, so has the complexity of our manufacturing processes. Axiomatic design is a way to 

lay out customer demands, and customer needs so that the allocation of resources is most 

effective at producing the consumer's product. A well-known example of axiomatic design is 

Toyota’s pioneering of lean manufacturing (3)(12)(15). These methods are also applied to 

anything from software development to the education of engineers in a college course framework 

(18) (20). 

When using axiomatic design, we take the project we are working on and establish the 

top-level functional requirement (FR0). This is the end product that we want to produce. We then 

break down the steps to achieve this goal into procedural order creating a list of functional 
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requirements that all add up to achieve the FR0. After you have mapped out all your FR’s for the 

given manufacturing process, they are converted into Design Parameters or DPs. The DP’s and 

FR's are arranged on a process flow chart DP’s being on your X axis and the FR’s on your Y axis. 

The functional requirements are contrasted with the design parameters to establish their 

relationship to one another. This process is done by looking at a FR and then comparing every 

DP to it. These interactions show where different production steps interact. It is better to have 

production steps interact with the rest of the production system after we have performed them 

otherwise it is a potential for waste. 

 

Figure 6. Process Flow chart for producing and engineer (18). 
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Figure 6 applies axiomatic decomposition for developing an undergraduate engineering 

degree course framework. We can see that the red X marks are steps that interact the green 

boxes are steps that do not interact. This example allows us to see the parallels between 

manufacturing a good and creating a workforce with a systematic framework. We can see we 

have a top-level requirement and we see the steps that interact. differences between the two exist 

in how closely related each step is to the others. In the manufacturing line of a good, there is a 

more sequential order to each step. But when educating an individual, it is not necessarily a linear 

process. When looking at the simpler DP’s and FR’s in the figure, it is easier to visualize how the 

buildup of skills is needed to advance a student through this production system (20).  

    A similarly obscure application of axiomatic design is in software development. This is not 

the most intuitive application because you are not creating a physical thing that you can touch 

and feel but just like the example of teaching an engineer you are still developing a product. Its 

applications are discussed in ‘Decision Making and Software Tools for Product Development 

Based on Axiomatic Design Theory.’ (18) The authors highlight how mapping the functional 

requirements and design parameters of a given software can make conceptualizing the desired 

use of the software easier to achieve while editing.  

More specifically when software development teams are, “considering the change of a 

design, consequences must be identified so a rational economic decision about proceeding with 

the change can be made” (18). What this author is saying is that axiomatic design helps his team 

most effectively change their design plans. Thus, saving time and production costs.  
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3 Experimental Procedure  

3.1 Heat Treating and Analyzing Carbon Steels 

     As stated previously, one of the main objectives for this project was to compare the effects 

of heat treatment processes on the microstructure and mechanical properties of carbon steel 

alloys. To achieve this goal, two carbon steels were tested; the first was an 8630-alloy steel and 

the second a 1018 carbon steel. We chose to cut eighteen samples of the 8630 steel to measure 

the effects of differing tempering temperatures, and four samples of the 1018 steel to measure 

the effects of normalizing and annealing the metal. For 8630 steels, the respective number of 

samples were cut, then hardened and tempered in pairs. For 1018 steel, the team only operated 

normalizing and annealing. The variation in processes for the two types of steel was done 

because 8630 steel is meant for harder applications, which is achieved from the quenching and 

tempering processes, and the 1018 steel is used more commonly in softer applications, which is 

achieved by normalizing and annealing. Next, all samples were polished, hardness tested, and 

etched to expose the grain structure. The samples were then placed under a high-power confocal 

microscope to observe the grain growth and microstructures caused from the heat treatment 

process. This chapter describes the steps and tools used to go from the raw bar stock to the final 

results of the project. See below for Figures 7 and 8, flowcharts that concisely display our 

procedures for both types of steel. 

 

Figure 7. Flow chart of heat treatment on 8630 steel samples. 
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Figure 8. Flow chart of heat treatment on 1018 steel samples. 

 

 

3.1.1 Sample Preparation  

     The first step of this project after receiving the steel stock was to check the elemental 

composition of the material; this was done using a Hitachi PMI-Master portable Optical emission 

spectroscopy analyzer, which returns a percentage table of each element present. After 

identifying the composition of the steels, the next step was to cut the stock into small samples 

approximately half an inch wide. The samples were cut using a EXTEC chop saw with a hard 

ferrous abrasive disk rated to cut both the 8630 and 1018 steel. Once the samples had been cut, 

they were ready to be placed in the furnace for heat treating.  

 

Figure 9. Flow chart of heat treatment on 1018 steel samples. 
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3.1.2 Heat Treating 

     The initial step of heat-treating the samples was to identify the critical temperature based 

on the material’s composition. The critical temperatures for most alloy steels can be found from 

places like the American Iron and Steel Institute (AISI), American Society for Metals (ASM), and 

MatWeb. MatWeb contains one of the largest databases for materials ranging from thermoplastics 

to superalloys (13). For both 8630-alloy steel and 1018 carbon steel, the critical temperature is 

850℃. Once the critical temperature had been identified, the samples were placed in a Baker 

Model #6 Lab Oven and held at the selected temperature for at least two hours. This allowed for 

the entire sample to be heated evenly before being removed from the furnace and quenched in 

water. While quenching the 8630 steel, six samples at a time were brought up to temperature and 

quenched. Only a maximum of six samples were treated at once to minimize the effect of air-

cooling the material while the door is open, which could affect the grain structure.  

 
Figure 10. Baker Furnace with loaded samples. 
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Figure 11. Quenched 8630 samples. 

 

     With the quenching complete, the next step of the project was tempering the samples back 

to reduce their hardness, increase their ductility, and modify other material properties. The 

samples were tempered, in pairs, starting at 400℃ up to 700℃, in 50℃ increments. Tempering 

the samples this way gives a wide representation of the common temperatures used to heat treat 

steel. Figure 12 shows the various temperature profiles used while heat treating the 8630 steel 

samples. For tempering, the Baker Model #6 Lab Oven was used again, and each pair of samples 

was held at the desired temperature for one hour. A one hour holding time was chosen as our 

samples are approximately half an inch thick and tempering parts requires at least two hours of 

tempering per inch of cross section (2). To keep the tempering cycles consistent, the pairs of 

samples were placed in the oven at room temperature and brought up to the required 

temperatures at a rate of 1000℃ per hour.  
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Figure 12. Temperature profiles for 8630 steels. 

 

 The 1018 carbon steel samples were heat treated following the temperature profiles 

shown in Figure 13. All four samples were brought up to the critical temperature of 850℃ and held 

there for two hours, then two of the samples were pulled out of the oven to normalize in ambient 

air while the other two samples remained in the furnace and slowly cooled back down to room 

temperature as the furnace cooled. Once all twenty-two samples had cooled down to room 

temperature the heat treatment portion of this project was complete, and the next step was to 

analyze the microstructure and mechanical properties of each sample. 

 

Figure 13. Temperature profiles for 1018 steel. 
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3.1.3 Grinding and Polishing 

     The next step was to grind and polish the samples to prepare for hardness testing and 

image analyzing. First, the samples needed to be mounted in a polyurethane disk using the lab’s 

Buehler SimpliMet™ 4000 Mounting System. The resulting mounted set up consisted of the 

sample embedded in the disk with one face exposed. This face would then be ground and 

polished on the Buehler AutoMet 250 automatic polishing machine. The machine’s instruction 

manual described which abrasive cutter and wheel texture to use for each steel alloy, depending 

on the alloy’s hardness and material properties. After the polishing, each sample had a mirror-like 

surface as shown in Figure 14. Then each sample is ready to be hardness tested, etched, and 

analyzed under a microscope. 

 

Figure 14. Picture of polished samples. 

 

3.1.4 Etching, Hardness Testing, and Image Analyzing  

     The final steps of the project were to test the hardness of the samples using the Wilson® 

VH3300 Vickers Hardness tester, shown in figure 15, followed by etching the surface using a Nital 

solution, and finally observing the grain size and microstructure using the Sensofar® Metrology 

Confocal Microscope shown in figure 16. One tempered sample from each pair was hardness 

tested a total of ten times and had two images taken near each divot to get a clear sign of how 
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the heat treatment process influenced the microstructure and mechanical properties of the steel 

alloy.  

 
Figure 15. Wilson® VH3300 hardness tester 

        
 

 

 
Figure 16. Sensofar® Metrology Confocal Microscope 

3.2 Design of a Custom User Interface 

During the initial stages of this project, when the team first began heat treating the steel 

samples, the team members noticed how confusing and inefficient it was to use the temperature 

controller built into the furnace. After making this observation they proposed the implementation 

of a custom user interface that would be easier to use and provide more feedback to the furnace 

operator. Figure 17 shows the block diagram for the proposed control system. This system would 

allow for the furnace to be controlled with an external CPU such as a laptop or even a phone.  
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Figure 17. Temperature Control Block Diagram 

 

After the proposed system diagram was reviewed, research was done to implement a new 

control system into a laboratory oven available for the team to modify. The oven used was a 

Thermolyne Benchtop Muffle Furnace, Model #F48015 shown in Figure 18 with the 

accompanying wiring schematic shown in Figure 19.  

 

Figure 18. #F48015 Thermolyne Benchtop Furnace 
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Figure 19. Wiring Diagram for the #F48015 Thermolyne Furnace. 

 

Based on the wiring diagram of Figure 19, it was decided that an improved control system 

could be implemented by bypassing the CN1: CN71X73 Control Module and inserting a custom 

circuit in its place. This custom circuit would need to be able to read the thermocouple output, 

send that data to a microcontroller, and from there both control the solid-state relay RY1 in Figure 

19 using a feedback loop as well as send the data to the graphical interface on a laptop for real 

time analysis. Building this custom circuit required a microcontroller as well as a way to read the 

thermocouple output, for this, an Arduino Uno, and Adafruit Universal Thermocouple Amplifier 

model Max31856 were used, respectively. The Max31856 amplifier is used to amplify the voltage 

difference caused by the Seebeck effect generated by the K-type thermocouple located in the 

furnace. Figure 20 shows the wiring diagram of the custom circuit and Figure 21 shows the 

physical circuit fully assembled. The circuit operates by having the Arduino read the temperature 

inside the furnace through the thermocouple amplifier, comparing this value against the set point 
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temperature defined by the user through the interface, and either turning on or off the switch in 

the solid-state relay that gives power to the heating elements of the furnace. If the temperature is 

below the set point, the heating elements turn on, and if the temperature is above the set point, 

the heating elements are turned off. This is considered a two-position control system as described 

in section 2.4. In addition to controlling the heating elements, the Arduino also sends the data to 

a user interface on a laptop to provide real time analysis for the furnace operator.  

 
Figure 20. Wiring Diagram for Custom Control Circuit. 
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Figure 21. Fully Assembled Custom Control Circuit. 

 

The graphical user interface was designed using the MegunoLink software and 

accompanying Arduino IDE libraries. MegunoLink is a configurable tool for designing interfaces 

to control Arduino sketches. The MegunoLink software communicates to the Arduino by sending 

and receiving serial commands to either update values in the Arduino program or values of the 

graphical interface. These values can be visualized in many forms including real time plotting, 

serial monitoring, tabulating, and more (22). Below are functional requirements the team wanted 

the improved control interface to meet: 

● Program up to eight stages of a temperature profile 

○ Each stage requiring the set point temperature, holding time, and ramp rate to be 

defined 

● Display, in text format, the actual furnace temperature and the set point temperature 

● Calculate and monitor the total program time 

● Have the programmed temperature profile overlaid with a real time plot of the furnace 

temperature 
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● Make a comprehensible interface incorporating the usability elements defined by 

Mahemoff and Johnston as described in section 2.4.1  

 Meeting these requirements would provide a usable interface for both students and 

soldiers alike allowing for quick, efficient, and precise control of a furnace while also enabling the 

possibility of future data analysis and improvements to the heat-treating process.  

 

3.3 Process Flow  

During the axiomatic design breakdown, we found our top-level functional requirements. 

We then created a process flow chart to break down our FR0. We then took our FR chart and 

used it to develop a design parameter (DP) chart. These two charts intersect to produce a process 

flow chart. 

 

3.3.1 Heat Treating steel  

 
Figure 22. Designs Parameters for heat treatment. 
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Figure 23. Functional Requirements for heat treatment. 

 

 
Figure 24. Process flow chart for heat treatment. 

 

The three figures listed above are an axiomatic design decomposition and a process flow 

analysis that helped us order the steps of this project to better. We can see that the majority of 

the interactions are underneath the diagonal line created by the FR’s and DP’s of the same 

number interacting with each other. This is good because it shows that our project was completed 
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in a manner to reduce as much waist as possible. 

 

3.3.2 Furnace Control System  

 

Figure 25. Design Parameters for furnace control system. 

 
Figure 26. Functional requirements for furnace control system. 
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Figure 27. Process flow chart for furnace control system. 

 

In these past three figures we mapped and then plotted the steps to creating the furnace 

control system. We can see the interactions plotted and we can see how the graph supports the 

procedural order that we used. The graph supports this process because as stated earlier having 

the interactions below the line allows steps to build properly on one another. 
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4 Results 

4.1 Hardness results for 8630 and 1018 steel  

The following table is the hardness tests results on our 8630 heat treated samples:  

Table 2. 8630 steel hardness test results. 

Tempering Temperature Hardness Test Results [HV] 

As Purchased  

(Neither quenched nor 

tempered) 

173 

Control 

(Quenched but not tempered) 

511 

400℃ 388 

450℃ 327 

500℃ 305 

550℃ 290 

600℃ 259 

650℃ 230 

700℃ 201 

 

These results clearly show that the quenched control is the hardest, with the tempered 

samples coming after, progressively getting softer from 400℃ to 700℃, and finally arriving at the 

softest sample; the as purchased control. This is consistent with the heat treatment processes 

discussed in Section 2.2; the faster a steel sample is cooled from its high furnace temperature, 

the harder the steel sample will be, making the quenched sample the hardest. Additionally, it 
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makes sense that a lower tempering temperature results in a harder sample than a higher 

tempering temperature, because at lower temperatures the sample is given less energy to change 

its microstructure, and therefore more closely resembles the quenched steel. 

 Below is the data from the hardness tests conducted on our annealed and normalized 

samples: 

Table 3. Annealed and normalized 1018 steel hardness test results. 

Process followed Hardness Test Results [HV] 

Annealing 123 

Normalizing 141 

 

These results are consistent with what we know about annealing and normalizing (see 

Section 2.2). Annealing will produce the softest possible steel for a given composition, with 

normalizing also producing soft steel, but to a slightly lesser extent. Another finding from this data 

is the role the steel’s chemical composition plays in hardness. The 8630 stock was purchased as 

cast steel from the manufacturer, where molten metal is poured into a mold, and left to cool. So, 

the “as purchased” 8630 steel is normalized. After both undergoing normalization, the 1018 steel 

is a full thirty hardness values softer than the 8630 steel, showing the importance of identifying 

the composition of the steel one wishes to treat. 

 

4.2 CNN Model 

 The captured images were then uploaded to the CNN model being developed by Yutao 

Wang. The model analyzed the images based on the microstructure of the image and inputted 

values for chemical composition and heat treatment cycle and gave its prediction on what the 

hardness of the sample would be. Out of 1260 available data points, 252 were randomly selected 
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to test the accuracy of the model. Comparing the model-predicted hardness value to the actual 

hardness value, the model was 95.37955% accurate, the full results can be found in Appendix A.  

 

4.3 Using the Improved Interface  

Implementing the design requirements for the user interface described in section 3.2 

resulted in the user interface panel that is shown in figure 28. There is a drop-down box for 

selecting between one and eight stages to be run. Each stage consists of a ramping time to get 

the furnace up to temperature plus the holding time where the furnace and sample sit at the set 

point temperature. Once the number of stages has been selected, entry boxes appear to set each 

of the stage’s parameters: the set point temperature in degrees Celsius, the holding time in 

minutes for how long the sample should be held at the set point temperature, and finally the ramp 

rate in degrees Celsius per hour for how long it will take to ramp up or down to the next stage’s 

temperature. Once all the stage parameters are set the operator can click the Set Stages button 

to display the temperature profile in the plot on the bottom half of the interface and read the Total 

Program Time to check that the parameters, they entered are correct. If they are incorrect, the 

user can either change the parameters individually or press the Clear Stages button to reset all 

parameters back to a zero value. After confirming the temperature profile and stage parameters 

are set to the desired configuration, the furnace operator can then press the green Start button in 

the top middle panel which will begin the heat treatment process. During this process, the Arduino 

reads the actual furnace temperature every second and runs the logic to either turn the heating 

elements on or off. In addition, the Arduino will also update the user interface by displaying the 

Programmed Temperature, the Furnace Temperature, the Time Elapsed from when the program 

started, and the Time Remaining until the program finishes. Along with displaying the furnace 

temperature in a textual format, the custom interface has a real-time data plot which displays the 
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programmed temperature profile with a black line and the real furnace temperature with a red line 

on top of each other. This allows the furnace operator to check whether or not the furnace has 

maintained the proper temperature through the heat treatment process.  

 
Figure 28. Custom graphical user interface for furnace control. 

 

After the program completes the Arduino will turn off the switch giving power to the heating 

elements and the furnace will cool down at its natural cooling rate. Figures 29 and 30 show two 

different temperature profiles being run with the interface. The first program ran was a four-stage 

profile starting at ~100°C ramping up to 150°C, holding for 5 minutes, then increasing to 200°C 

for 10 minutes, then 400°C for 5 minutes, and finally ramping down to 100°C for another 10 

minutes. From the temperature plot generated as the program ran it can be observed that around 

the 15-minute mark there was a sudden increase in temperature from what was programmed. 

This was due to the furnace door being secured shut as there is naturally a large gap in the 

insulation through which heat can escape. Another feature of note, by looking at the temperature 

plot, is that the programmed ramp down rate was higher than that of the natural cooldown rate of 

the furnace and thus the sample being heat treated did not have the expected properties. The 

second program run was a five-stage profile starting at room temperature, increasing to 100°C 
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for 10 minutes, then to 200°C for 15 minutes, then 300°C for 10 minutes, then 500°C for 15 

minutes, and finally 600°C for 5 minutes. There was no cooldown stage for this profile signifying 

that the sample was removed from the furnace to normalize.  

 

Figure 29. Four stage temperature profile run with the custom interface. 

 

 

Figure 30. Five stage temperature profile run with the custom interface. 
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After the second program had been run, both the programmed and furnace temperature 

data were downloaded and compared to evaluate the accuracy of the control system. Averaging 

the difference between what the temperature should have been to what it actually was resulted 

in a -0.05°C offset over the entire course of the heating cycle. This value is well within the ±2.5°C 

for temperatures under 675°C to maintain an accurate and uniform temperature distribution within 

the furnace and sample being heated (5).  

Apart from having improved accuracy over the original control interface, the new interface 

incorporates the six essential properties defined by Mahemoff and Johnston in section 2.4.1. The 

interface has improved task efficiency as it requires less time to program the desired heat 

treatment profile, it is reusable as it incorporates the familiar configurable parameters such as the 

set point temperature, holding time, and ramp rate. Next, the user interface has improved user-

computer communication with real time plotting and error messages that tell the furnace operator 

exactly what is happening at a given time. The design is robust and will limit the user inputs as to 

not damage itself or any of the equipment used while the program is running. Finally, it is flexible 

and comprehensive in regards that future additions can be easily implemented and operators of 

any level, from novice to experienced, can use the interface without the need of training.  

 

4.4 Economic Analysis  

 When looking at the economic effect that our project had on the greater DOD initiative, we 

can identify multiple different costs. Our first step was to understand what percentage our project 

affected the greater DOD initiative. To do this we looked at what WPI added which was a computer 

algorithm to predict grain structure and hardness from known heat treatment data. This provided 

an understanding of the material properties without expensive testing equipment. 

Our project provided half the test data that was needed to properly calibrate WPI’s 
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algorithm. The initial investment into the project consisted of metal to perform tests of and the 

cost of using the machines to run these tests equated to a total expense of six hundred dollars. 

 

Table 4. Initial investment to the project. 

Machine time $500 

Test material $100 

Total  $600 

 

To present a value-added chart we first subtracted our six-hundred-dollars to find our initial 

starting point. Then we estimated how much we predict this will save the DOD as a percentage 

of what they invested to fund this research. For this, we are going to say that our MQP team 

contributed 0.01% to solving WPI’s section of the project. We know that WPI was given 1.15 

million to complete its research. that leaves us with an evaluation of $11,500 annually for having 

our team conduct this research. 

 

Figure 31. Value added over 1 year. 
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Displayed above we can see a visual representation of the value that our project adds 

from the initial point of investment. The visual representation that this provides is extremely 

powerful as presenting graphs instead of a variety of charts with numbers provides clarity as to 

when our project will be seeing significant growth. This allows our project to be shared more 

broadly as it is simple to understand what these numbers mean. It is obvious that this project has 

a low initial cost and a significant amount of lead time but once we reach implementation our 

project rapidly becomes profitable. It also displays when our project is predicted to become 

profitable and at what rate it will be profitable. 

These analytics are all very theoretical as we are taking the value of our project based on 

the DoD investment, we are also approximating the amount of involvement that our project has 

with the DoD. This creates a certain level of ambiguity that cannot be avoided. The important 

thing that this evaluation shows is that our project is continuously providing value. We also see 

that even though our numbers are rough estimates we still have significant margins and if we 

were valued at a significantly less percent of involvement our project would still be profitable. The 

one major drawback for the work we did is the time of implementation. During our project we did 

not take into consideration that the DoD granted the funds and then had to wait for however long 

our project took to implement. This is a significant opportunity cost that could be avoided by 

collaborating directly with a corporation instead of an institution of higher learning. However, if we 

were employees the cost to implement would have been in the thousands not the hundreds. This 

demonstrates another extremely effective part of the value-added chart. We can demonstrate 

how increasing the speed at which our project gets completed would decrease the time to 

implementation, but it would increase the startup cost significantly. 

 



46 

 

 

Table 5. Potential cost of contracting. 

Machine time $500 

Test material  $100 

Engineer working cost $5000 

Total  $600 

 

As an example, we are going to say that an engineer must spend half a month collecting 

data samples for our algorithm. We approximate this is going to cost approximately five thousand 

dollars in engineering working time. This increases our initial cost to five thousand six hundred 

but decreases our wait time by six months resulting in a very similar value-added chart just without 

that six-month lead period. 
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Figure 32. Potential value added of contracting. 

This hypothetical situation demonstrates the importance of creating value added charts. It 

outlines how our ability to demonstrate how the effects of what we do will greatly impact your 

ability to share our work with other MQP teams. We can also see that rapid prototyping allows us 

to view a problem from many angles. We could look at examples with an added variable of the 

DOD spending two million dollars a month until our product is produced. Does it make sense to 

wait for a college team to solve this problem instead of paying for a contractor? It might be more 

expensive upfront but helps the DOD solve the problem sooner so they can reduce spending. Or 

we could see how this project would affect a civilian contractor who might not have the same 

ability to wait as long or thinks they can make more money off it so paying a significantly higher 

upfront cost increases revenue in that 1-year window. 

In conclusion, value add tools are an extremely versatile and powerful tool that helped our 

team demonstrate the profitability of our project. With an analysis of our value-added chart, we 

strongly support the execution of this project. 
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5 SUMMARY AND CONCLUSIONS 

5.1 Summary 
 

 According to the final results, the team found out that 8630 has its highest hardness results 

while it was just quenched as 201HV and quenched at 700℃. The range of the hardness results 

is in between 511 HV to 201HV, with 173 HV as the hardness of just bought 8630 material. These 

findings are expected because this has been supported by the background research that after the 

metals have been heat-treated, they will become softer. Here is a temperature profile of 8630 

after tempering conducted by all the results that was collected from the imaging section.  

 

Figure 33. Temperature profile of 8630 after tempering with linear regression line. 

 

Adding on to the previous finding, during the quenched process, the higher the 

temperature it has been quenched, the lower the hardness results the materials will get. The grain 

size for 8630 after quenched is normally smaller visually under confocal. The smaller the grain 
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size of steel, the harder that steel is, and that is reflected in these samples’ microstructures. To 

highlight this finding, below are two images captured using the lab microscope, one of the 400℃ 

tempered sample, and the other of the 700℃ tempered sample. One can clearly see the difference 

in grain size between the 400℃ and 700℃ samples. 

 

 

Figure 34. 400℃ tempered 8630 steel. 

 

Figure 35. 700℃ tempered 8630 steel. 
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The grain size for the images of 8630 that was normalized and annealed are dissimilar. 

The grain sizes for 8630 are normally smaller compared to annealed 1018 steel. Based on the 

results, the annealed sample is considerably softer than the normalized sample. These 

differences between the two processes are also shown in our captured images, seen below. The 

earlier correlation between larger grain size and softer steel applies here, with the larger grained 

annealed sample being softer than the smaller grained normalized sample. 

 

Figure 36. Annealed 1018 steel image. 

 

Figure 37. Normalized 1018 steel image. 



51 

 

5.2 Conclusion and Future Recommendations 

We accomplished the three main objectives we set for ourselves with this project. Firstly, 

providing data samples for the CNN model. While there were many roadblocks we ran into along 

the way, we were able to accomplish our objective of selecting multiple varieties of commonly 

used steels (8630 and 1018), heat treating them in controlled environments, testing their 

properties, imaging them, and running that data through the CNN model. These efforts produced 

160 unique images, and one hundred hardness data points, improving the accuracy and utility of 

the CNN model. The second objective was a success as well. Not only was the new furnace 

control interface more accurate than the original, and also effectively incorporated the six 

essential interface properties of task efficiency, reusability, user-computer communication, 

robustness, flexibility, and comprehensibility, resulting in an all-around improved interface. The 

third objective was also completed, with an axiomatic design decomposition executed in the form 

of a process flow and economic analysis. 

While we were successful in achieving our objectives, the work does not end there; these 

objectives are iterative and ongoing. While we added a significant body of data to the CNN model, 

more can and must be added. We improved the user interface, but it can be improved further. 

And any changes to those objectives will prompt a change in their respective process flows and 

economic analyses. For those who pick up these objectives where we leave them off, we 

recommend the following: 

1. Continue to gather heat treatment data for new steel alloys commonly used by the 

DoD and get more data points on alloys that have already been tested, to increase 

the CNN model’s accuracy. 

2. Conduct nontypical heat treatments on alloys, instead of just typical ones (ex. Put 

8630 steel through annealing). Even though 8630 steel is best used for 

applications requiring high hardness, a situation on a FOB may call for a softer 
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part, and the only steel in copious quantities on base is 8630. This will increase 

the usefulness of the model, allowing soldiers to be more resourceful. 

3. Ensure full access (or as close to full access as possible) to facilities necessary for 

conducting your heat treatment operations. Our team was limited to only times 

when our TA could let us into the furnace room, polishing room, etc. This hindered 

our ability to plan and conduct lab work, as we were limited to our TA’s availability 

from the beginning. 

4. Make the user-interface wireless, so one does not need to hook up their laptop to 

the furnace in order to run the program, and instead can control the furnace from 

elsewhere with their phone, laptop, or other wireless device. 

5. To improve the custom control system to be even more accurate, a PID control 

loop can be added which can completely eliminate the overshoot caused by 

thermal inertia.  

6. When designing a custom user interface, use a software program that is well 

documented and easy to debug and get help on. During this project we started 

with using Visual Studio but ran into many issues with no valid solutions even after 

researching.  
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APPENDICES 

APPENDIX A: Model Output Raw Data 

This is the raw data dump from the model run described in the Results section. It shows 

what the actual hardness was, what the model predicted the hardness would be, how accurate 

that prediction was in percentage, and the error, or difference between the actual and predicted 

value. 

 

Hardness 

(HV) 

Predicted 

Hardness (HV) 

Accuracy 

(%) 

Error 

378 337.4424473 89.27049 -40.5576 

378 367.8706312 97.32027 -10.1294 

378 343.1127142 90.77056 -34.8873 

389 343.4574181 88.2924 -45.5426 

389 330.8285696 85.0459 -58.1714 

390 336.5091877 86.28441 -53.4908 

390 377.4991227 96.79465 -12.5009 

390 331.4503354 84.98727 -58.5497 

380 330.3526549 86.93491 -49.6473 

380 337.9197757 88.92626 -42.0802 
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380 380.9896273 99.73957 0.989627 

380 348.8850552 91.81186 -31.1149 

380 338.6094951 89.10776 -41.3905 

380 344.5907766 90.68178 -35.4092 

380 361.0230612 95.00607 -18.9769 

389 359.8225638 92.49937 -29.1774 

389 368.0039027 94.60255 -20.9961 

389 330.8970743 85.06352 -58.1029 

385 357.3887663 92.82825 -27.6112 

385 353.504198 91.81927 -31.4958 

385 319.5879056 83.00985 -65.4121 

397 381.8605881 96.18655 -15.1394 

397 382.4584887 96.33715 -14.5415 

397 343.9799131 86.64481 -53.0201 

397 380.1574594 95.75755 -16.8425 

397 354.8349477 89.37908 -42.1651 

397 379.4819729 95.5874 -17.518 

397 393.0948306 99.01633 -3.90517 
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394 384.9378122 97.69995 -9.06219 

394 353.4960033 89.7198 -40.504 

394 353.4502856 89.70819 -40.5497 

394 372.5514737 94.55621 -21.4485 

394 366.4001644 92.99497 -27.5998 

394 336.8042922 85.48332 -57.1957 

394 336.3569151 85.36978 -57.6431 

394 362.776628 92.07529 -31.2234 

378 381.6970778 99.02194 3.697078 

378 354.9390346 93.89922 -23.061 

378 351.279293 92.93103 -26.7207 

378 341.7043785 90.39798 -36.2956 

378 381.5865694 99.05117 3.586569 

361 336.3572745 93.17376 -24.6427 

361 312.7872034 86.64465 -48.2128 

361 324.9858789 90.02379 -36.0141 

335 327.7025129 97.82165 -7.29749 

335 325.8919906 97.28119 -9.10801 
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335 331.7649921 99.03433 -3.23501 

327 325.5169999 99.54648 -1.483 

327 322.60833 98.65698 -4.39167 

327 325.1448366 99.43267 -1.85516 

327 335.2396824 97.48022 8.239682 

327 315.5831486 96.50861 -11.4169 

322 321.1957891 99.75025 -0.80421 

322 336.2909143 95.56183 14.29091 

322 316.5841701 98.31807 -5.41583 

322 313.8582152 97.4715 -8.14178 

322 322.3039885 99.90559 0.303988 

322 307.3217078 95.44152 -14.6783 

330 336.1018256 98.15096 6.101826 

330 336.8047235 97.93796 6.804723 

330 324.9775884 98.47806 -5.02241 

318 325.1471129 97.75248 7.147113 

318 317.1131586 99.72112 -0.88684 

323 317.9234141 98.4283 -5.07659 
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320 328.4673741 97.35395 8.467374 

320 328.365276 97.38585 8.365276 

320 350.6076403 90.43511 30.60764 

320 311.5316675 97.35365 -8.46833 

320 321.66787 99.47879 1.66787 

310 323.7864238 95.55277 13.78642 

310 327.6926649 94.29269 17.69266 

310 309.906508 99.96984 -0.09349 

310 311.8034339 99.41825 1.803434 

310 302.6851813 97.64038 -7.31482 

320 299.8368453 93.69901 -20.1632 

320 317.5621171 99.23816 -2.43788 

320 279.4390879 87.32471 -40.5609 

320 287.9035687 89.96987 -32.0964 

310 336.8902166 91.32574 26.89022 

310 298.0082085 96.13168 -11.9918 

310 293.2053024 94.58236 -16.7947 

310 283.2932196 91.38491 -26.7068 
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309 302.9296321 98.03548 -6.07037 

309 301.8447109 97.68437 -7.15529 

309 322.6687478 95.57646 13.66875 

309 307.7787652 99.60478 -1.22123 

309 291.6445143 94.38334 -17.3555 

309 323.98445 95.15066 14.98445 

311 307.6881684 98.9351 -3.31183 

311 312.0061924 99.67647 1.006192 

311 298.807406 96.07955 -12.1926 

311 303.915067 97.72189 -7.08493 

299 306.5174067 97.48582 7.517407 

299 309.1013203 96.62163 10.10132 

299 304.4703647 98.17045 5.470365 

299 313.0033083 95.31662 14.00331 

299 316.9482106 93.99725 17.94821 

303 338.2301914 88.37287 35.23019 

303 329.4624772 91.26651 26.46248 

303 306.5647058 98.82353 3.564706 
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303 321.1082713 94.02367 18.10827 

303 309.5092695 97.85173 6.509269 

303 322.4546317 93.57933 19.45463 

299 356.3316758 80.82553 57.33168 

299 305.2661837 97.90429 6.266184 

299 299.7371913 99.75345 0.737191 

299 328.5226762 90.1262 29.52268 

299 311.4811336 95.82571 12.48113 

302 298.9900133 99.00332 -3.00999 

302 293.1291421 97.06263 -8.87086 

302 299.5795274 99.19852 -2.42047 

298 308.7100361 96.40603 10.71004 

298 284.7830769 95.56479 -13.2169 

298 297.9367806 99.97879 -0.06322 

283 275.6760022 97.41201 -7.324 

283 286.8613761 98.63556 3.861376 

283 267.1171208 94.38768 -15.8829 

293 281.118609 95.94492 -11.8814 
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293 286.2388915 97.69245 -6.76111 

293 278.9907284 95.21868 -14.0093 

293 278.4868511 95.04671 -14.5131 

293 277.9796492 94.8736 -15.0204 

297 271.6098629 91.45113 -25.3901 

297 271.6061669 91.44989 -25.3938 

290 282.0406848 97.25541 -7.95932 

290 292.3751831 99.18097 2.375183 

290 299.4380134 96.74551 9.438013 

290 275.3072893 94.93355 -14.6927 

290 280.3641888 96.67731 -9.63581 

290 279.1464753 96.25741 -10.8535 

290 280.4910686 96.72106 -9.50893 

289 272.5490229 94.30762 -16.451 

289 273.5448988 94.65221 -15.4551 

289 272.191404 94.18388 -16.8086 

289 299.5893515 96.33586 10.58935 

287 264.6530724 92.21361 -22.3469 
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287 281.8770486 98.215 -5.12295 

287 277.6300991 96.73523 -9.3699 

287 279.2692398 97.30636 -7.73076 

287 273.5031407 95.29726 -13.4969 

294 274.864345 93.49127 -19.1357 

294 284.1675889 96.65564 -9.83241 

294 294.9207531 99.68682 0.920753 

294 280.6660084 95.46463 -13.334 

294 271.3406184 92.29273 -22.6594 

294 271.3317887 92.28972 -22.6682 

285 297.0195749 95.78261 12.01957 

285 275.7569726 96.75683 -9.24303 

285 270.0610494 94.75826 -14.939 

255 253.4361897 99.38674 -1.56381 

255 247.672259 97.12638 -7.32774 

255 252.619303 99.06639 -2.3807 

255 253.3942339 99.37029 -1.60577 

261 255.9663587 98.0714 -5.03364 
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261 268.1136256 97.27447 7.113626 

261 258.6116186 99.08491 -2.38838 

264 270.2211992 97.64349 6.221199 

264 258.4700626 97.90533 -5.52994 

264 259.6347921 98.34651 -4.36521 

264 259.0047478 98.10786 -4.99525 

264 256.0768671 96.99881 -7.92313 

264 282.237489 93.09186 18.23749 

264 262.1354231 99.29372 -1.86458 

262 240.8891203 91.94241 -21.1109 

262 258.2414441 98.56544 -3.75856 

262 256.8277231 98.02585 -5.17228 

262 242.5371207 92.57142 -19.4629 

262 263.9833605 99.24299 1.983361 

258 268.9733008 95.74678 10.9733 

258 261.922523 98.47964 3.922523 

258 254.4339406 98.61781 -3.56606 

256 265.184463 96.41232 9.184463 
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256 256.9751675 99.61908 0.975168 

256 245.5108449 95.90267 -10.4892 

256 266.364258 95.95146 10.36426 

256 263.474739 97.08018 7.474739 

256 269.7172321 94.64171 13.71723 

258 242.7453333 94.08734 -15.2547 

258 252.5550933 97.88957 -5.44491 

258 250.2121921 96.98147 -7.78781 

260 263.1313169 98.79565 3.131317 

258 247.2523713 95.83425 -10.7476 

258 243.3018142 94.30303 -14.6982 

227 230.3693101 98.51572 3.36931 

227 228.2750858 99.43829 1.275086 

227 230.0727409 98.64637 3.072741 

236 234.5677833 99.39313 -1.43222 

236 232.9667347 98.71472 -3.03327 

233 211.4752324 90.7619 -21.5248 

233 226.1231303 97.04855 -6.87687 
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233 214.5155415 92.06676 -18.4845 

232 230.3055107 99.26962 -1.69449 

232 234.2354733 99.03643 2.235473 

229 230.4540454 99.36505 1.454045 

229 210.3606085 91.86053 -18.6394 

229 220.9663686 96.49186 -8.03363 

229 232.6103857 98.42341 3.610386 

229 210.3606085 91.86053 -18.6394 

230 232.0829038 99.09439 2.082904 

230 211.8476653 92.10768 -18.1523 

230 233.1477247 98.63142 3.147725 

230 229.2253967 99.66322 -0.7746 

230 214.2164355 93.13758 -15.7836 

230 226.8840919 98.64526 -3.11591 

230 234.7007403 97.9562 4.70074 

230 235.2354076 97.72374 5.235408 

230 220.4141453 95.83224 -9.58585 

230 224.4255905 97.57634 -5.57441 
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233 238.0586593 97.8289 5.058659 

233 234.3714404 99.4114 1.37144 

233 229.9774148 98.70275 -3.02259 

233 230.3297713 98.85398 -2.67023 

233 231.4309321 99.32658 -1.56907 

233 224.4500577 96.3305 -8.54994 

233 229.6365387 98.55645 -3.36346 

233 210.3606085 90.28352 -22.6394 

221 210.3606085 95.1858 -10.6394 

221 216.1325976 97.79756 -4.8674 

196 220.0264553 87.7416 24.02646 

196 221.1585858 87.16399 25.15859 

204 211.3746828 96.38496 7.374683 

204 207.8414526 98.11694 3.841453 

204 209.6052058 97.25235 5.605206 

204 207.2741683 98.39502 3.274168 

200 258.8869852 70.55651 58.88699 

200 210.9104521 94.54477 10.91045 
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200 219.3365607 90.33172 19.33656 

200 207.7847248 96.10764 7.784725 

200 211.8170999 94.09145 11.8171 

200 209.5852553 95.20737 9.585255 

200 210.3289709 94.83551 10.32897 

198 207.387624 95.25878 9.387624 

198 209.2860145 94.29999 11.28601 

202 205.5723155 98.23153 3.572316 

200 218.4281592 90.78592 18.42816 

200 202.4522461 98.77388 2.452246 

200 204.437744 97.78113 4.437744 

200 209.3658108 95.31709 9.365811 

200 212.756856 93.62157 12.75686 

201 202.6980716 99.15519 1.698072 

201 201.2231301 99.88899 0.22313 

201 210.4496298 95.29869 9.44963 

201 207.8225443 96.6057 6.822544 

201 210.7311694 95.15862 9.731169 
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201 205.4210373 97.80048 4.421037 

201 207.2174405 96.90675 6.217441 

206 213.4183642 96.39885 7.418364 

206 195.8573695 95.07639 -10.1426 

204 211.1333619 96.50325 7.133362 

204 214.6021592 94.80286 10.60216 

200 215.0343854 92.48281 15.03439 

200 208.440692 95.77965 8.440692 

  AVG: 95.37954766 
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APPENDIX B: Arduino Code for Furnace Interface 

//Impact of Heat Treating Carbon Steels MQP: Furnace Control Code 
 
//MegunoLink and Related Libraries  
#include <MegunoLink.h> 
#include <CommandHandler.h> 
#include <TCPCommandHandler.h> 
#include <ArduinoTimer.h> 
#include <CircularBuffer.h> 
#include <EEPROMStore.h> 
#include <Filter.h> 
 
//Adafruit MAX31856 Thermocouple Amplifier Library 
#include <Adafruit_MAX31856.h> 
 
// Use software SPI: CS, DI, DO, CLK 
Adafruit_MAX31856 maxthermo = Adafruit_MAX31856(13, 12, 11, 10);   //Setting SPI pins 
 
 
//=====================================================================// 
//Parameters 
 
const int SSRPin = 7;    //Arduino pin connected to the solid state relay in the furnace 
long CountedSeconds = 0;  //Continuously increasing variable as each second passes 
int RunFlag = 0;      //Flag to begin running the furnace or not  
float InitialTemp = 21.5;  //Room temperature 
float DesiredTemp = 0.0;  //Instantiating desired temperature variable 
float TargetTemp = 0.0;   //Instantiating target temperature variable 
float MaxRampDownRate = 75; //  °C / hr  maximum cooldown rate of the furnace, measured 
int NumStages;       //How many stages will be run  
char PhaseMode = 0; // 0 = Ramp Up, 1 = Hold  //Which mode is the furnace in? Ramping or 
holding? 
char CurrentPhase = 0; 
char CurrentStage = 0; 
float CurrentStageStartTemp = 0.0;  
 
int TotalHours = 0; 
int TotalMinutes = 0; 
int TotalSeconds = 0;  
 
 
float TimeDelta; 
float TempDelta; 
float TempIncrement; 
 
float StageTemp [8]; 
float StageHoldTime [8]; 
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float StageRampRate [8]; 
float StageRampTime [8]; 
float AccumulatedTime [17]; 
 
 
CommandHandler<15> SerialCmds; 
InterfacePanel ControlPanel; 
XYPlot TempPlot; 
ArduinoTimer SecTimer; 
 
void EndProgram(); 
 
//=====================================================================// 
//SETUP 
 
void setup() { 
 //Open and Begin Serial Communication 
 Serial.begin(921600); 
 while (!Serial) delay(10); 
  
  
 //Thermocouple Setup 
 Serial.println("MAX31856 thermocouple test"); 
 
 maxthermo.begin(); 
 
 maxthermo.setThermocoupleType(MAX31856_TCTYPE_K); 
 
 Serial.print("Thermocouple type: "); 
 switch (maxthermo.getThermocoupleType() ) { 
  case MAX31856_TCTYPE_B: Serial.println("B Type"); break; 
  case MAX31856_TCTYPE_E: Serial.println("E Type"); break; 
  case MAX31856_TCTYPE_J: Serial.println("J Type"); break; 
  case MAX31856_TCTYPE_K: Serial.println("K Type"); break; 
  case MAX31856_TCTYPE_N: Serial.println("N Type"); break; 
  case MAX31856_TCTYPE_R: Serial.println("R Type"); break; 
  case MAX31856_TCTYPE_S: Serial.println("S Type"); break; 
  case MAX31856_TCTYPE_T: Serial.println("T Type"); break; 
  case MAX31856_VMODE_G8: Serial.println("Voltage x8 Gain mode"); break; 
  case MAX31856_VMODE_G32: Serial.println("Voltage x8 Gain mode"); break; 
  default: Serial.println("Unknown"); break; 
 } 
 
 //Set Initial Values to 0 
  
 
 //Serial Commands from MegunoLink 
 SerialCmds.AddCommand(F("RunFurnace"), RunFurnace);        //Begin logic to turn on heating 
elements and run the furnace 
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 SerialCmds.AddCommand(F("StopFurnace"), StopFurnace);       //Stop the furnace and turn 
off the heating elements 
 
   //Set the properties of each stage: Temperature, Holding time, Ramp Rate,  
 SerialCmds.AddCommand(F("SetStage1"), SetStage1); 
 SerialCmds.AddCommand(F("SetStage2"), SetStage2); 
 SerialCmds.AddCommand(F("SetStage3"), SetStage3); 
 SerialCmds.AddCommand(F("SetStage4"), SetStage4); 
 SerialCmds.AddCommand(F("SetStage5"), SetStage5); 
 SerialCmds.AddCommand(F("SetStage6"), SetStage6); 
 SerialCmds.AddCommand(F("SetStage7"), SetStage7); 
 SerialCmds.AddCommand(F("SetStage8"), SetStage8); 
  
 SerialCmds.AddCommand(F("SetStages"), SetStages);         //Update the plot to show the 
temperature profile 
 SerialCmds.AddCommand(F("ClearStages"), ClearStages);       //Clear the values set in the 
stage entry boxes and clear the plot  
  
 SerialCmds.AddCommand(F("SelectStages"), SelectStages); 
 
 pinMode(SSRPin, OUTPUT); 
} 
 
//=====================================================================// 
//MAIN LOOP 
 
void loop() { 
 SerialCmds.Process(); 
  
 float Temp = maxthermo.readThermocoupleTemperature(); 
 
 if(RunFlag == 1){ 
  if(SecTimer.EllapsedSeconds() > CountedSeconds){ 
 
  float PlotMinutes = CountedSeconds/60.0; 
   
  int RunningSeconds = CountedSeconds; 
  int RunningMinutes = CountedSeconds / 60; 
  int RunningHours = RunningMinutes / 60; 
  RunningSeconds %= 60; 
  RunningMinutes %= 60; 
  RunningHours %= 24; 
   
  String RunningTime; 
 
  if(RunningHours < 10){ 
   RunningTime += "0"; 
  } 
  RunningTime += String(RunningHours) + ":"; 
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  if(RunningMinutes < 10){ 
   RunningTime += "0"; 
  } 
  RunningTime += String(RunningMinutes) + ":"; 
  if(RunningSeconds < 10){ 
   RunningTime += "0"; 
  } 
  RunningTime += String(RunningSeconds); 
  
  //Display Elapsed Time 
  ControlPanel.SetText(F("TimeElapsed"), RunningTime); 
 
  float RunningDecimalMinutes = CountedSeconds / 60.0; 
  float RemainingDecimalMinutes = AccumulatedTime[16] - RunningDecimalMinutes; 
 
//  TotalHours = (AccumulatedTime[16] / 60); 
//  TotalMinutes = (AccumulatedTime[16] - (TotalHours * 60)); 
//  TotalSeconds = (AccumulatedTime[16] - (TotalHours * 60) - TotalMinutes)*60; 
   
   
  int RemainingHours = (RemainingDecimalMinutes / 60);   
  int RemainingMinutes = (RemainingDecimalMinutes - (RemainingHours * 60)); 
  int RemainingSeconds = (RemainingDecimalMinutes - (RemainingHours * 60) - 
RemainingMinutes)*60; 
 
   
 
  String RemainingTime; 
 
  if(RemainingHours < 10){ 
   RemainingTime += "0"; 
  } 
  RemainingTime += String(RemainingHours) + ":"; 
  if(RemainingMinutes < 10){ 
   RemainingTime += "0"; 
  } 
  RemainingTime += String(RemainingMinutes) + ":"; 
  if(RemainingSeconds < 10){ 
   RemainingTime += "0"; 
  } 
  RemainingTime += String(RemainingSeconds); 
  
 
  
  //Display Remaining Time 
  ControlPanel.SetText(F("RemainingTime"), RemainingTime); 
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//  Serial.print("Cold Junction Temp: "); 
//  Serial.println(maxthermo.readCJTemperature()); 
//  
//  Serial.print("Thermocouple Temp: "); 
//  Serial.println(maxthermo.readThermocoupleTemperature()); 
  // Check and print any faults 
  uint8_t fault = maxthermo.readFault(); 
  if (fault) { 
   if (fault & MAX31856_FAULT_CJRANGE) Serial.println("Cold Junction Range Fault"); 
   if (fault & MAX31856_FAULT_TCRANGE) Serial.println("Thermocouple Range Fault"); 
   if (fault & MAX31856_FAULT_CJHIGH) Serial.println("Cold Junction High Fault"); 
   if (fault & MAX31856_FAULT_CJLOW)  Serial.println("Cold Junction Low Fault"); 
   if (fault & MAX31856_FAULT_TCHIGH) Serial.println("Thermocouple High Fault"); 
   if (fault & MAX31856_FAULT_TCLOW)  Serial.println("Thermocouple Low Fault"); 
   if (fault & MAX31856_FAULT_OVUV)  Serial.println("Over/Under Voltage Fault"); 
   if (fault & MAX31856_FAULT_OPEN)  Serial.println("Thermocouple Open Fault"); 
  } 
 
  TempPlot.SendData(F("Programmed Temperature"), PlotMinutes, DesiredTemp, 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  //Plot Furnace Temperature 
  TempPlot.SendData(F("Furnace Temperature"), PlotMinutes, Temp, XYPlot::Red, 
XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   
  //Display Furnace Temperature 
  ControlPanel.SetText(F("FurnaceTemp"), Temp); 
 
  if(CountedSeconds == 0){ 
    TimeDelta = (StageRampTime[CurrentStage] * 60.0); 
    TempDelta = (StageTemp[CurrentStage] - InitialTemp); 
    TempIncrement = (TempDelta / TimeDelta); 
    TargetTemp = StageTemp[CurrentStage]; 
    DesiredTemp = InitialTemp; 
  } 
 
  //Controlling the Heating Elements 
  if(PhaseMode == 0){ 
   DesiredTemp += TempIncrement; 
//   Serial.print("Desired Temp: "); 
//   Serial.println(DesiredTemp); 
  } 
 
 
  //Change PhaseMode Depented on Stage 
  if((CountedSeconds / 60.0) >= AccumulatedTime[CurrentPhase]){ 
   CurrentPhase++; 
//   Serial.println("PhaseSelection Test"); 
   //Starting a new stage, Ramping 
   if((CurrentPhase % 2) == 0){ 
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    CurrentStage++; 
    CurrentStageStartTemp = StageTemp[CurrentStage - 1]; 
    PhaseMode = 0; 
    TimeDelta = (StageRampTime[CurrentStage] * 60.0); 
    TempDelta = (StageTemp[CurrentStage] - CurrentStageStartTemp); 
    TempIncrement = (TempDelta / TimeDelta); 
    TargetTemp = StageTemp[CurrentStage]; 
    DesiredTemp = CurrentStageStartTemp; 
//    Serial.println("Flip");  
   } 
   //Done Ramping, now Holding 
   else{ 
    PhaseMode = 1; 
    TargetTemp = StageTemp[CurrentStage]; 
    DesiredTemp = TargetTemp; 
//    Serial.println("Flop"); 
   }      
  } 
   
  ControlPanel.SetText(F("ProgTemp"), DesiredTemp);  
   
  if(Temp <= DesiredTemp - 0.5){ 
   digitalWrite(SSRPin, HIGH);  
  } 
  else if(Temp >= DesiredTemp + 0.5){ 
   digitalWrite(SSRPin, LOW); 
  } 
  else{ 
   digitalWrite(SSRPin, LOW); 
  } 
   
  CountedSeconds++; 
  } 
  if(CountedSeconds >= AccumulatedTime[16]*60){ 
  EndProgram(); 
  } 
 } 
  
} 
 
 
//=====================================================================// 
//Serial Command Functions 
 
//Run the furnace when the Start button is pressed 
void RunFurnace(CommandParameter &p){ 
 SecTimer.Reset(); 
 ControlPanel.ShowControl(F("BtnStop"), true); 
 ControlPanel.ShowControl(F("BtnRun"), false); 
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 ControlPanel.DisableControl(F("StageSelection")); 
 TempPlot.Clear("Furnace Temperature"); 
 RunFlag = 1;  
} 
 
//Stop the furnace and temperature monitoring when the program reaches the end 
void EndProgram(){ 
 Serial.println("END PROGRAM"); 
 SecTimer.Reset(); 
 ControlPanel.ShowControl(F("BtnStop"), false); 
 ControlPanel.ShowControl(F("BtnRun"), true); 
 ControlPanel.EnableControl(F("StageSelection")); 
 ControlPanel.SetText(F("TimeElapsed"), "00:00:00"); 
 digitalWrite(SSRPin, LOW); 
 RunFlag = 0;  
 CountedSeconds = 0; 
} 
 
//Stop the furnace when the Stop button is pressed 
void StopFurnace(CommandParameter &p){ 
 SecTimer.Reset(); 
 ControlPanel.ShowControl(F("BtnStop"), false); 
 ControlPanel.ShowControl(F("BtnRun"), true); 
 ControlPanel.EnableControl(F("StageSelection")); 
 ControlPanel.SetText(F("TimeElapsed"), "00:00:00"); 
 digitalWrite(SSRPin, LOW); 
 RunFlag = 0;  
 CountedSeconds = 0; 
} 
 
 
void SetStage1(CommandParameter &p){ 
 StageTemp[0] = p.NextParameterAsInteger(); 
 StageHoldTime[0] = p.NextParameterAsInteger(); 
 StageRampRate[0] = p.NextParameterAsInteger(); 
 StageRampTime[0] = (abs((StageTemp[0]-InitialTemp)) / StageRampRate[0])*60; 
} 
 
void SetStage2(CommandParameter &p){ 
 StageTemp[1] = p.NextParameterAsInteger(); 
 StageHoldTime[1] = p.NextParameterAsInteger(); 
 StageRampRate[1] = p.NextParameterAsInteger(); 
 if(StageTemp[0] > StageTemp[1]){ 
  if(StageRampRate[1] > MaxRampDownRate){ 
   StageRampRate[1] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[1] = (abs((StageTemp[1] - StageTemp[0])) / StageRampRate[1])*60; 
} 
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void SetStage3(CommandParameter &p){ 
 StageTemp[2] = p.NextParameterAsInteger(); 
 StageHoldTime[2] = p.NextParameterAsInteger(); 
 StageRampRate[2] = p.NextParameterAsInteger(); 
 if(StageTemp[1] > StageTemp[2]){ 
  if(StageRampRate[2] > MaxRampDownRate){ 
   StageRampRate[2] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[2] = (abs((StageTemp[2] - StageTemp[1])) / StageRampRate[2])*60; 
} 
 
void SetStage4(CommandParameter &p){ 
 StageTemp[3] = p.NextParameterAsInteger(); 
 StageHoldTime[3] = p.NextParameterAsInteger(); 
 StageRampRate[3] = p.NextParameterAsInteger(); 
 if(StageTemp[2] > StageTemp[3]){ 
  if(StageRampRate[3] > MaxRampDownRate){ 
   StageRampRate[3] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[3] = (abs((StageTemp[3] - StageTemp[2])) / StageRampRate[3])*60; 
} 
 
void SetStage5(CommandParameter &p){ 
 StageTemp[4] = p.NextParameterAsInteger(); 
 StageHoldTime[4] = p.NextParameterAsInteger(); 
 StageRampRate[4] = p.NextParameterAsInteger(); 
 if(StageTemp[3] > StageTemp[4]){ 
  if(StageRampRate[4] > MaxRampDownRate){ 
   StageRampRate[4] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[4] = (abs((StageTemp[4] - StageTemp[3])) / StageRampRate[4])*60; 
} 
 
void SetStage6(CommandParameter &p){ 
 StageTemp[5] = p.NextParameterAsInteger(); 
 StageHoldTime[5] = p.NextParameterAsInteger(); 
 StageRampRate[5] = p.NextParameterAsInteger(); 
 if(StageTemp[4] > StageTemp[5]){ 
  if(StageRampRate[5] > MaxRampDownRate){ 
   StageRampRate[5] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[5] = (abs((StageTemp[5] - StageTemp[4])) / StageRampRate[5])*60; 
} 
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void SetStage7(CommandParameter &p){ 
 StageTemp[6] = p.NextParameterAsInteger(); 
 StageHoldTime[6] = p.NextParameterAsInteger(); 
 StageRampRate[6] = p.NextParameterAsInteger(); 
 if(StageTemp[5] > StageTemp[6]){ 
  if(StageRampRate[6] > MaxRampDownRate){ 
   StageRampRate[6] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[6] = (abs((StageTemp[6] - StageTemp[5])) / StageRampRate[6])*60; 
} 
 
void SetStage8(CommandParameter &p){ 
 StageTemp[7] = p.NextParameterAsInteger(); 
 StageHoldTime[7] = p.NextParameterAsInteger(); 
 StageRampRate[7] = p.NextParameterAsInteger(); 
 if(StageTemp[6] > StageTemp[7]){ 
  if(StageRampRate[7] > MaxRampDownRate){ 
   StageRampRate[7] = MaxRampDownRate; 
  } 
 } 
 StageRampTime[7] = (abs((StageTemp[7] - StageTemp[6])) / StageRampRate[7])*60; 
} 
 
 
//Set the stages based on the values entered in the stage parameter boxes and update the plot 
to show the temperature profile 
void SetStages(CommandParameter &p){ 
 TempPlot.Clear("Temperature Profile"); 
 TempPlot.Clear("Programmed Temperature"); 
 TempPlot.Clear("Furnace Temperature"); 
 
 InitialTemp = maxthermo.readThermocoupleTemperature(); 
 
 AccumulatedTime[0] = StageRampTime[0]; 
 AccumulatedTime[1] = StageHoldTime[0]+AccumulatedTime[0]; 
 
 int i; 
 for(i=1; i<NumStages; i++){ 
  AccumulatedTime[2*i] = StageRampTime[i]+AccumulatedTime[(2*i)-1]; 
  AccumulatedTime[(2*i)+1] = StageHoldTime[i]+AccumulatedTime[2*i]; 
 } 
 
 AccumulatedTime[16] = AccumulatedTime[(2*(i-1))+1];  // + (((StageTemp[(i-1)] - 21.5)) / 
(MaxRampDownRate / 60.0));  
 
 TotalHours = (AccumulatedTime[16] / 60); 
 TotalMinutes = (AccumulatedTime[16] - (TotalHours * 60)); 
 TotalSeconds = (AccumulatedTime[16] - (TotalHours * 60) - TotalMinutes)*60; 
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 String TotalTime; 
 if(TotalHours < 10){ 
  TotalTime += "0"; 
 } 
 TotalTime += String(TotalHours) + ":"; 
 if(TotalMinutes < 10){ 
  TotalTime += "0"; 
 } 
 TotalTime += String(TotalMinutes) + ":"; 
 if(TotalSeconds < 10){ 
  TotalTime += "0"; 
 } 
 TotalTime += String(TotalSeconds); 
  
  
  
 ControlPanel.SetText(F("TotalTime"), TotalTime); 
  
 //TempPlot.SendData("Programmed Temperature", AccumulatedTime[16], 21.5, 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  
 switch (NumStages){ 
  case 8: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[15], StageTemp[7], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[14], StageTemp[7], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  case 7: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[13], StageTemp[6], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[12], StageTemp[6], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  case 6: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[11], StageTemp[5], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[10], StageTemp[5], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  case 5: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[9], StageTemp[4], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[8], StageTemp[4], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  case 4: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[7], StageTemp[3], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[6], StageTemp[3], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
  case 3: 
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   TempPlot.SendData("Temperature Profile", AccumulatedTime[5], StageTemp[2], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[4], StageTemp[2], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);  
  case 2: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[3], StageTemp[1], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[2], StageTemp[1], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);  
  case 1: 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[1], StageTemp[0], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker); 
   TempPlot.SendData("Temperature Profile", AccumulatedTime[0], StageTemp[0], 
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);  
 } 
 
 TempPlot.SendData("Temperature Profile", 0, InitialTemp, XYPlot::Black, XYPlot::Solid, 
1 ,XYPlot::NoMarker); 
} 
 
//Clear all values entered in the stage parameters 
void ClearStages(CommandParameter &p){ 
 TempPlot.Clear("Temperature Profile"); 
 ControlPanel.SetNumber(F("Stage1Temp"), 0); ControlPanel.SetNumber(F("Stage1Time"), 
0); ControlPanel.SetNumber(F("Stage1Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage2Temp"), 0); ControlPanel.SetNumber(F("Stage2Time"), 
0); ControlPanel.SetNumber(F("Stage2Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage3Temp"), 0); ControlPanel.SetNumber(F("Stage3Time"), 
0); ControlPanel.SetNumber(F("Stage3Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage4Temp"), 0); ControlPanel.SetNumber(F("Stage4Time"), 
0); ControlPanel.SetNumber(F("Stage4Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage5Temp"), 0); ControlPanel.SetNumber(F("Stage5Time"), 
0); ControlPanel.SetNumber(F("Stage5Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage6Temp"), 0); ControlPanel.SetNumber(F("Stage6Time"), 
0); ControlPanel.SetNumber(F("Stage6Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage7Temp"), 0); ControlPanel.SetNumber(F("Stage7Time"), 
0); ControlPanel.SetNumber(F("Stage7Ramp"), 0); 
 ControlPanel.SetNumber(F("Stage8Temp"), 0); ControlPanel.SetNumber(F("Stage8Time"), 
0); ControlPanel.SetNumber(F("Stage8Ramp"), 0); 
} 
 
//Update the control panel to the selected number of stages 
void SelectStages(CommandParameter &p){ 
 NumStages = p.NextParameterAsInteger(); 
 switch (NumStages){ 
  case 1: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), false); 
   ControlPanel.ShowControl(F("Stage3"), false); 
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   ControlPanel.ShowControl(F("Stage4"), false); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage5"), false); 
   ControlPanel.ShowControl(F("Stage6"), false); 
   ControlPanel.ShowControl(F("Stage7"), false); 
   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 2: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), false); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), false); 
   ControlPanel.ShowControl(F("Stage5"), false); 
   ControlPanel.ShowControl(F("Stage6"), false); 
   ControlPanel.ShowControl(F("Stage7"), false); 
   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 3: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), true); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), false); 
   ControlPanel.ShowControl(F("Stage5"), false); 
   ControlPanel.ShowControl(F("Stage6"), false); 
   ControlPanel.ShowControl(F("Stage7"), false); 
   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 4: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), true); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), true); 
   ControlPanel.ShowControl(F("Stage5"), false); 
   ControlPanel.ShowControl(F("Stage6"), false); 
   ControlPanel.ShowControl(F("Stage7"), false); 
   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 5: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), true); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), true); 
   ControlPanel.ShowControl(F("Stage5"), true); 
   ControlPanel.ShowControl(F("Stage6"), false); 
   ControlPanel.ShowControl(F("Stage7"), false); 
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   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 6: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), true); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), true); 
   ControlPanel.ShowControl(F("Stage5"), true); 
   ControlPanel.ShowControl(F("Stage6"), true); 
   ControlPanel.ShowControl(F("Stage7"), false); 
   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 7: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), true); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), true); 
   ControlPanel.ShowControl(F("Stage5"), true); 
   ControlPanel.ShowControl(F("Stage6"), true); 
   ControlPanel.ShowControl(F("Stage7"), true); 
   ControlPanel.ShowControl(F("Stage8"), false); 
   break; 
  case 8: 
   ControlPanel.ShowControl(F("Stage1"), true); 
   ControlPanel.ShowControl(F("Stage2"), true); 
   ControlPanel.ShowControl(F("Stage3"), true); 
   delay(10); 
   ControlPanel.ShowControl(F("Stage4"), true); 
   ControlPanel.ShowControl(F("Stage5"), true); 
   ControlPanel.ShowControl(F("Stage6"), true); 
   ControlPanel.ShowControl(F("Stage7"), true); 
   ControlPanel.ShowControl(F("Stage8"), true); 
   break; 
 } 
} 
 

 

 

 


