

Impact of Heat-Treatment on Carbon Steel Alloys
 A study on the microstructure and mechanical properties of heat-treated steel

4/27/2022

By Students:

Wenlan Fan

Samuel Furman

Dawson Scheid

Daniel Tengdin

Advisors:

Professor Brajendra Mishra

Professor Jianyu Liang

Professor Walter Thomas Towner

Professor Stephen John Bitar

A Major Qualifying Project Proposal submitted to the faculty of
Worcester Polytechnic Institute in partial fulfillment of the requirements of the

Degree of Bachelor of Science

This report represents the work of WPI undergraduate students submitted to the faculty as evidence of
completion of the degree requirement. WPI routinely publishes these reports on the web without editorial

or peer review. For more information about the project's program at WPI, please see
http://wpi.edu/academics/ugradstudies/project-learning.html

http://wpi.edu/academics/ugradstudies/project-learning.html

1

Abstract

This MQP is part of a larger project for the Department of Defense’s Strategic

Environmental Research and Development Program. This project seeks to reduce metal waste

generated at US military forward operating bases. In partnership with other research laboratories,

WPI’s Center for Heat Treating Excellence is developing a 3D-printing-enabled investment

casting manufacturing process to allow soldiers to make replacement parts. To support this

initiative, our MQP team was tasked with evaluating the metallurgical properties of heat-treated

carbon steels. We conducted multiple heat treatment operations on two steel alloys, which

provided a set of samples with known hardness and grain structure data. Our team was also

tasked with creating an improved furnace control system. This was accomplished by prototyping

a custom circuit board and control interface. Additionally, our team conducted an axiomatic design

decomposition, which broke down those two tasks into their respective design matrices, resulting

in improved task efficiency.

2

Acknowledgments

 We would like to thank Professor Brajendra Mishra and Professor Jianyu Liang for

providing this project for the team to participate in. We would also like to thank them for guiding

us to be on track with all processes. We are also grateful to have Professor Walter Thomas

Towner and Professor Stephen John Bitar as co-advisors for this project. We would also like to

thank our teaching assistant Yutao Wang for laboratory and technical support. Finally, we would

like to thank Michael Collins for granting us access to the facilities and tools in the Washburn

shops.

3

Table of Contents

ABSTRACT 1

ACKNOWLEDGMENTS 2

TABLE OF CONTENTS 3

TABLE OF FIGURES 4

TABLE OF TABLES 5

EXECUTIVE SUMMARY 6

1 INTRODUCTION 7

1.1 PROBLEM STATEMENT AND OBJECTIVES 8
1.1.1 Acquisition of Data Points for CNN Model 9
1.1.2 Improved Furnace Control 9
1.1.3 Axiomatic Design 10

1.2 REPORT OVERVIEW 10

2 BACKGROUND 11

2.1 THE SERDP INITIATIVE 11
2.2 THE HEAT-TREATING PROCESS 12
2.3 BACKGROUND OF THE DATA ANALYSIS TOOL 15
2.4 TEMPERATURE CONTROL AND FURNACE OPERATION 15

2.4.1 User Interfaces 18
2.5 AXIOMATIC DESIGN BACKGROUND 20

3 EXPERIMENTAL PROCEDURE 23

3.1 HEAT TREATING AND ANALYZING CARBON STEELS 23
3.1.1 Sample Preparation 24
3.1.2 Heat Treating 25
3.1.3 Grinding and Polishing 28
3.1.4 Etching, Hardness Testing, and Image Analyzing 28

3.2 DESIGN OF A CUSTOM USER INTERFACE 29
3.3 PROCESS FLOW 34

3.3.1 Heat Treating steel 34
3.3.2 Furnace Control System 36

4 RESULTS 38

4.1 HARDNESS RESULTS FOR 8630 AND 1018 STEEL 38
4.2 CNN MODEL 39
4.3 USING THE IMPROVED INTERFACE 40
4.4 ECONOMIC ANALYSIS 43

5 SUMMARY AND CONCLUSIONS 48

5.1 SUMMARY 48
5.2 CONCLUSION AND FUTURE RECOMMENDATIONS 51

REFERENCES 53

APPENDICES 56

APPENDIX A: MODEL OUTPUT RAW DATA 56
APPENDIX B: ARDUINO CODE FOR FURNACE INTERFACE 71

4

Table of Figures

FIGURE 1. OVERALL FLOW CHART OF THE WHOLE PROJECT. .. 8

FIGURE 2. SAMPLE CCT DIAGRAM. (7) .. 14

FIGURE 3. SAMPLE TTT DIAGRAM. (19) ... 14

FIGURE 4. TWO-POSITION TEMPERATURE CONTROL. .. 17

FIGURE 5. TEMPERATURE CONTROL MODULE INTERFACE. ... 19

FIGURE 6. PROCESS FLOW CHART FOR PRODUCING AND ENGINEER (18). ... 21

FIGURE 7. FLOW CHART OF HEAT TREATMENT ON 8630 STEEL SAMPLES. .. 23

FIGURE 8. FLOW CHART OF HEAT TREATMENT ON 1018 STEEL SAMPLES. .. 24

FIGURE 9. FLOW CHART OF HEAT TREATMENT ON 1018 STEEL SAMPLES. .. 24

FIGURE 10. BAKER FURNACE WITH LOADED SAMPLES. ... 25

FIGURE 11. QUENCHED 8630 SAMPLES. ... 26

FIGURE 12. TEMPERATURE PROFILES FOR 8630 STEEL. .. 27

FIGURE 13. TEMPERATURE PROFILES FOR 1018 STEEL. .. 27

FIGURE 14. PICTURE OF POLISHED SAMPLES. .. 28

FIGURE 15. WILSON® VH3300 HARDNESS TESTER .. 29

FIGURE 16. SENSOFAR® METROLOGY CONFOCAL MICROSCOPE .. 29

FIGURE 17. TEMPERATURE CONTROL BLOCK DIAGRAM .. 30

FIGURE 18. #F48015 THERMOLYNE BENCHTOP FURNACE ... 30

FIGURE 19. WIRING DIAGRAM FOR THE #F48015 THERMOLYNE FURNACE. ... 31

FIGURE 20. WIRING DIAGRAM FOR CUSTOM CONTROL CIRCUIT. .. 32

FIGURE 21. FULLY ASSEMBLED CUSTOM CONTROL CIRCUIT. .. 33

FIGURE 22. DESIGNS PARAMETERS FOR HEAT TREATMENT. .. 34

FIGURE 23. FUNCTIONAL REQUIREMENTS FOR HEAT TREATMENT. .. 35

FIGURE 24. PROCESS FLOW CHART FOR HEAT TREATMENT.. 35

5

FIGURE 25. DESIGN PARAMETERS FOR FURNACE CONTROL SYSTEM. ... 36

FIGURE 26. FUNCTIONAL REQUIREMENTS FOR FURNACE CONTROL SYSTEM. .. 36

FIGURE 27. PROCESS FLOW CHART FOR FURNACE CONTROL SYSTEM. .. 37

FIGURE 28. CUSTOM GRAPHICAL USER INTERFACE FOR FURNACE CONTROL. .. 41

FIGURE 29. FOUR STAGE TEMPERATURE PROFILE RUN WITH THE CUSTOM INTERFACE. ... 42

FIGURE 30. FIVE STAGE TEMPERATURE PROFILE RUN WITH THE CUSTOM INTERFACE.. 42

FIGURE 31. VALUE ADDED OVER 1 YEAR. ... 44

FIGURE 32. POTENTIAL VALUE ADDED OF CONTRACTING. .. 47

FIGURE 33. TEMPERATURE PROFILE OF 8630 AFTER TEMPERING WITH LINEAR REGRESSION LINE. ... 48

FIGURE 34. 400℃ TEMPERED 8630 STEEL. .. 49

FIGURE 35. 700℃ TEMPERED 8630 STEEL. .. 49

FIGURE 36. ANNEALED 1018 STEEL IMAGE. ... 50

FIGURE 37. NORMALIZED 1018 STEEL IMAGE. .. 50

Table of Tables

TABLE 1. THERMOCOUPLE TYPES AND CHARACTERISTICS MODIFIED FROM “TUTORIAL 6500 TEMPERATURE SENSOR

TUTORIAL” (9) ... 16

TABLE 2. 8630 STEEL HARDNESS TEST RESULTS. .. 38

TABLE 3. ANNEALED AND NORMALIZED 1018 STEEL HARDNESS TEST RESULTS. .. 39

TABLE 4. INITIAL INVESTMENT TO THE PROJECT. ... 44

TABLE 5. POTENTIAL COST OF CONTRACTING. .. 46

6

Executive Summary

 As a sub-project under a larger initiative for the Department of Defense’s Strategic

Environmental Research and Development Program (DoD SERDP), our goal was to increase the

utility of furnace equipment on forward operating bases, and the experience of the individuals

using them. In order to achieve this, the team divided the project into three objectives to

accomplish. The first objective was to heat treat two carbon steel alloys, 8630 and 1018, in order

to collect more imagery data for a deep learning system which then will help to guide soldiers

through heat treatment operations. The second objective was to improve the furnace control

system by implementing a custom circuit and program, increasing accuracy and usability. The

third objective was to utilize axiomatic design to optimize the processes of the other two

objectives.

In pursuit of these objectives, the team performed quenching and tempering on samples

of 8630 steel alloy. For 1018 steel, the team performed normalizing and annealing. These

samples were mounted in polyurethane pucks, hardness tested, etched, and image analyzed.

These images and data were uploaded to the deep learning model, increasing both its accuracy

in prescribing heat treatment procedures, and the range of steel alloys it can prescribe operations

for. The furnace control system was improved by replacing the current controller module with a

microcontroller, custom circuit, and laptop. Then an axiomatic design analysis was conducted by

creating a process flow chart and economic analysis for both of the other two objectives.

7

1 Introduction

This MQP is a component part of a larger project for the Department of Defense’s Strategic

Environmental Research and Development Program (DoD SERDP), led in part by our project

advisors, Professor Brajendra Mishra, and Professor Jianyu Liang. The SERDP initiative seeks

to bring metalworking capabilities to soldiers in forward operating bases (FOBs), allowing them to

manufacture replacement parts for equipment that breaks in the field. This initiative addresses

two DoD objectives simultaneously by developing a means of recycling scrap steel on military

installations, as well as alleviating logistics problems on both a tactical and strategic level. At the

tactical level, soldiers can manufacture “good enough” replacement parts for their equipment and

facilities, reducing the impact of faulty equipment on missing effectiveness. At the strategic level,

it saves significant resources from being squandered on shipping new equipment up to the front.

To guide soldiers in selecting the proper heat treatment procedures (temperatures, times,

etc.), a convolutional neural network (CNN) model is being developed that is able to calculate and

prescribe heat treatment procedures to the customer based on what the part’s function will be,

and the chemical composition of the available steel. The CNN model is a deep learning system,

which means that when given the heat treatment cycle performed on a particular piece (ex.

tempered at 400℃ for 2 hours), the chemical composition of that steel, and an image of the steel’s

crystal microstructure, it can predict the hardness of the steel. When presented with these data

points, the CNN model will learn and adjust its future predictions to be more in-tune with the reality

of what it has been presented. In basic terms, the more data that is given to the model, the more

accurate the model’s predictions will be.

8

1.1 Problem Statement and Objectives

 That is where our MQP comes in. We were seeking to improve the experience of the

individuals using the foundries and furnaces, and the utility of the equipment. In pursuit of this

goal, we developed two technical objectives for our project: to provide quality data points to the

existing CNN model, and to create a user-friendly furnace control interface. Additionally, we

pursued a third, overarching objective of utilizing axiomatic design to streamline and optimize the

processes of the two technical objectives. See below in Figure 1 a flowchart of the three objectives

of our project, and how they interact.

Figure 1. Overall flow chart of the whole project.

9

1.1.1 Acquisition of Data Points for CNN Model

This objective was to provide the CNN model with numerous solid data points for several

different compositions of steel after having undergone various heat treatment operations. Our

team’s efforts towards this started with background research on various heat treatment

processes, formulas, and diagrams, in order to better understand what goes into heat treatment

operations. Next, we developed an experimental procedure to perform those heat treatment

operations on steel samples, which we then executed. Afterward, we evaluated the hardness of

the samples, and captured images of their microstructures. These images and data were then

uploaded to the CNN model, becoming part of its database for future use. The desired end-state

for the CNN model is that a soldier will be able to enter the steel composition of their manufactured

replacement part, and what mechanical properties it will need to accomplish its job, and the CNN

model will tell them what heat treatment cycle(s) to subject it to. This will allow soldiers to innovate

and fix problems that have arisen on the front lines with self-made, heat-treated steel products.

1.1.2 Improved Furnace Control

One of the key aspects of any heat treatment process is maintaining an accurate

temperature in the oven in which the sample is being heated. The user interface panel that came

with the furnace consisted of only four buttons and two seven-segment display modules to both

program the furnace and display the current temperature. This configuration, though relatively

simple, was unintuitive to use and did not allow for a friendly and efficient use experience. To fix

these issues, we prototyped an alternative control system utilizing an Arduino microcontroller and

a laptop as an interface to allow for accurate, real-time temperature analysis and to provide a

visually appealing and easy-to-use control panel to the furnace operator.

10

1.1.3 Axiomatic Design

 To better achieve the aforementioned objectives, we used the principles of axiomatic

design to perform a process flow analysis and an economic analysis. Process flow helped our

project by showing us the most efficient manner to complete these objectives. We performed this

by setting out the different steps of the heat treatment process and comparing how the steps of

this process interact. Then we organized the process so that we completed steps that interact

before they affect future steps. Our economic analysis justifies this project by showing how our

different objectives as a whole adds value. We also look at how this project could have been done

but show that our project was more effective in the manner that we completed it.

1.2 Report Overview

In pursuit of the objectives outlined above, we first conducted extensive background

research on the larger DoD initiative our project was a part of, the history and nature of heat

treatment operations, furnace control systems and interfaces, and axiomatic design. We then

developed experimental procedures to guide our efforts toward collecting steel samples and

developing a better user interface. Our results section highlights the data gathered from our

experimental procedures, including steel hardness data and images, the effectiveness of the CNN

model, the improved furnace user interface, and an economic analysis of our efforts as a whole.

Finally, we summarize our findings, discuss the project completion, make recommendations to

groups going forward, and reflect on our group experience within this MQP as a whole.

11

2 Background

2.1 The SERDP Initiative

When a piece of a soldier’s equipment gets broken on the front lines, it takes an inordinate

amount of work hours, money, and planning to get replacement parts to them. This has both

tactical and strategic level consequences by blunting mission effectiveness of the unit and wasting

significant DoD resources, respectively. In an effort to minimize the logistics involved with

replacing and/or fixing equipment, the DoD’s SERDP funded a project to provide front line soldiers

with the foundry and furnace equipment necessary to fix and create items on their own. Our MQP

advisors, Professor Jianyu Liang, and Professor Brajendra Mishra, serve in leadership roles for

that project (8). If properly implemented, the addition of this metalworking equipment will alleviate

a massive chunk of the front lines’ logistics backup. In addition, this will enable soldiers to solve

problems stemming from faulty/broken parts of their own initiative, instead of relying on logistics

to replace it, making units at the front more self-reliant.

This project also simultaneously addresses another issue SERDP has identified, which

pertains to improper waste material disposal in forward areas. While things like wood and paper

can biodegrade, there is currently no program in place to reuse/recycle spent metal products,

specifically ferrous metals (steel, iron, etc.). This problem of metal recycling can be addressed

while also providing soldiers the opportunity to fix their equipment and parts.

However, the average soldier is not an expert in material science. While heat treatment

procedures and the formulas and the science behind them are common knowledge to a student

or professor who studies these topics, or to an industry expert who collaborates with them daily,

they are not readily accessible to soldiers in the field. This is the main purpose of the CNN model

discussed in the intro; to take on the role of a technical subject matter expert and do the research

12

and calculations for heat treatment procedures on behalf of the individual utilizing it. With this

approach, soldiers gain the benefit of access to metalworking facilities while mitigating the

drawback of lacking technical knowledge.

2.2 The Heat-Treating Process

The reason the heat-treating process is important for metals is that it is able to increase

the strength of metals or achieve other desired characteristics such as improve its ductility (5).

Heat treating takes a metal and changes the molecular structure by heating the material to a

critical point and then cooling it with various cooling speeds. This takes advantage of the fact that

metals and alloys have a more fluid molecular structure when they are heated. The common

methods of heat treating are quenching, tempering, normalizing, and annealing.

The quenching process starts off by heating an alloy to its critical temperature and then

abruptly cooling it down in either water or oil. The critical temperature is the point at which the

microstructure of the alloy becomes uniform and miscible in all proportions. This produces a

steel with the smallest possible microstructure crystals and is therefore its hardest possible state.

The tempering process follows after a material is quenched and pulls back the hardness level

while increasing the material’s ductility. This occurs when a quenched sample is reheated and

held at a less-than-critical temperature, allowing the crystalline structure to relax. Normalizing is

the process of cooling a heated sample—either at the critical temperature, or at a lower one, in

the case of tempering—in the open air, coming to a stop when the sample reaches room

temperature. This produces softer steel than quenching, as it allows the crystalline microstructure

to develop for a longer period of time, resulting in larger crystals. Annealing is similar to

normalizing, but instead of cooling in the open air, you allow the sample to cool inside of the

13

furnace. This allows the microstructure crystals to grow for the longest possible time, producing

the softest possible steel.

Through studying the effects of heat treatment on the properties of steel, methods have

been developed for predicting the outcome of a heat-treating cycle. One such method is the

Hollomon-Jaffe parameter, an equation relating temperature and time to a specific parameter for

the given steel. One can use this parameter to decide if there is a different temperature their

specific heat-treating operation can be conducted that results in a quicker treatment time. Below

is a screenshot of the equation, where H is the Hollomon-Jaffe parameter, T is the temperature

in degrees Kelvin, t is the time in hours, and C is a constant, determined by the carbon content of

the steel (21).

𝐻 = 𝑇[𝐶 + 𝑙𝑜𝑔(𝑡)] / 1000

In addition to the Holloman-Jaffe parameter, there are several types of phase diagrams

that can be used to predict the composition and properties of a steel sample being subjected to

heat treatment. The continuous cooling transformation (CCT) diagram is one such phase diagram.

By measuring the starting temperature and the steel piece’s rate of cooling, one can determine

what its phase composition will be, and therefore its physical properties, such as hardness,

ductility, etc. Below is an example of a CCT diagram for an unspecified steel:

14

Figure 2. Sample CCT Diagram. (7)

Another such phase diagram is the time-temperature-transformation (TTT) diagram. Also

called the isothermal transformation diagram, it instead works by selecting a single target

temperature for cooling, and the length of time held at that temperature. Below is an example of

a TTT diagram for an unspecified steel:

Figure 3. Sample TTT Diagram. (19)

15

While both of these diagram types serve a purpose, the CCT diagram is more useful. Not

only can it be used to determine hardness and microstructure of a piece (which TTT cannot), it is

also more user-friendly; for a TTT diagram, the piece needs to be rapidly cooled to a single

temperature, and then held there, whereas for a CCT diagram you do not always need to rapidly

cool the piece that quickly (11).

2.3 Background of the data analysis tool

As previously mentioned in the introduction, the team used a software model to further

analyze all the data. The software was developed based on the Convolutional Neural Network

(CNN) model (4). The ideology behind the whole software model is that because the properties

of the metal are related to its microstructures, analyzing these microstructures will help the soldier

to discover which type of metal it actually is. However, the microstructures are hard to distinguish

by the untrained majorities. By using the CNN, it will be able to study the microstructures of the

metal sample and then find out its heat treatment parameters along with the mechanical

properties (4).

2.4 Temperature Control and Furnace Operation

 The ability to accurately control the temperature during any heat treatment process is

crucial for obtaining the desired metallurgical properties of an alloyed steel. Under or overshooting

the desired temperature may result in either incomplete metallurgic or undesired phase

transformations (22). Furnaces must be able to manage various operating conditions and change

between them efficiently (6). Operating conditions include loading or removing a workpiece from

the furnace and heating or cooling to specific temperatures to manage these changes, each

furnace is equipped with a control system which includes a temperature sensor, set-point

16

programmer, and a controller. The controller uses the temperature sensor to read the temperature

inside the furnace, comparing that value to the set point temperature, and makes the necessary

adjustments to the heating elements to bring the two values to a matching state.

 There are four common types of temperature sensors used in typical applications:

thermocouples, thermistors, semiconductor based integrated circuits, and resistance temperature

detectors. The thermocouple is the most commonly used type of temperature sensor and

operates by using the Seebeck effect, where two different metal wires are joined together and the

temperature difference between the two metals causes a voltage difference. This voltage

difference between the two metals can be measured and used to calculate the temperature

difference (1). Heat treatment ovens use thermocouples as their temperature sensor due to their

quick response times and wide temperature ranges. Depending on the type of thermocouple

used, temperatures ranging from -270°C to 2000°C can be measured. Table 1 below shows the

properties of common thermocouple types.

Table 1. Thermocouple Types and Characteristics Modified from “Tutorial 6500 Temperature Sensor Tutorial” (9)

Code Type Conductors Alloys (+/-) Temperature Ranges Sensitivity (µV/°C)

K Nickel Chromium / Nickel
Aluminum

-180 to 1300°C 41

B Platinum / Rhodium 0 to 1820°C 10

T Copper / Constantan -250 to 400°C 43

J Iron / Constantan -180 to 800°C 55

N Nicrosil / Nisil -270 to 1300°C 39

R/S Copper / Copper Nickel
Compensating

-50 to 1750°C 10

E Nickel Chromium /
Constantan

-40 to 900°C 68

 There are two types of controllers used in typical heat-treating ovens: two-position and

modulation control. With two-position control systems, the actual furnace temperature oscillates

17

in a sinusoidal motion above and below the desired, or set point, temperature, Figure 4

demonstrates this effect.

Figure 4. Two-position temperature control.

During the initial ramping up to the set point temperature, the thermal inertia of the process

will cause an overshoot and the controller needs to compensate for this by turning the heating

elements off to let the furnace cool. As the furnace cools it then drops below the desired

temperature requiring the heating elements to be turned back on. This process repeats in a cyclic

nature, moving the temperature above and below the set point by turning on and off the heating

elements to generate an average temperature equal to that of the set point temperature. This

cycling on and off can cause damage to the furnace and control system if it is done too quickly.

Rapid changes to electrical current have the potential to cause power surges which can destroy

components if they are not properly rated to manage the needed loads. The way to prevent the

damage from constant cycling is to add a hysteresis component to the controller logic. This

component limits the frequency at which the furnace is switched on and off by increasing the

acceptable accuracy window. For example, rather than having the furnace turn off as soon as the

temperature goes above the set point or turn on when the temperature drops below the set point,

a window of ±2.5℃ can be added. This means that instead of the furnace switching at exactly

100℃, it will turn off when it reaches 102.5℃ and turn back on when it reaches 97.5℃. Because

temperature cannot change instantly it will take longer to reach the trigger points of the window

thus slowing the rate at which the switch is flipped. In addition to saving the switch from constantly

turning on and off, the hysteresis saves the heating coils from thermal fatigue.

18

 Modulation controllers are used when process temperatures are critical and when

substantial amounts of energy are being consumed. They work by more precisely controlling the

power that flows into the heating elements, instead of the all-or-nothing like the two position

controllers do. Modulation controllers operate using a Proportional, Integral, and Derivative or PID

loop. More information about modulating controllers and PID loops can be found in the ASM

Handbook, Volume 04B (6). Both controller types have different variations of how they are

implemented though generally two-position controls are simpler to operate, easier to maintain,

and inexpensive compared to modulation control. However, two-position control is far less

efficient in terms of power usage. Modulating controllers adjust the energy input to match any

change offsets while maintaining the desired temperature and also have the capability to eliminate

the overshoot caused by thermal inertia seen in two-position controllers (14).

 An important distinction to make is that the laboratory ovens used during this project and

the ones that will be used in the FOBs are controlled with a solid-state relay (SSR) which provide

a digital signal output and can be used with a modulating controller, however, they require the

use of pulse width modulation which complicates the control logic.

2.4.1 User Interfaces

 Heat treatment ovens come with a variety of temperature controllers, all with differing sizes

and functionalities. The controllers used throughout this MQP and the ones that will be used on

the furnaces in the FOBs are simple on-off or proportional control modules similar to the ones

produced by companies like Honeywell and Inkbird. These simple controllers consist of four

buttons and two seven-segment display modules similar to the one shown in figure 5.

19

Figure 5. Temperature control module interface.

 In their report on usability of interfaces, Professors Sam Mahemoff and Dawson Johnston

define the usability of an interface with six essential properties: task efficiency, reusability, user-

computer communication, robustness, flexibility, and comprehensibility. Task efficiency is

straightforward in its definition; a user interface should provide an efficient means of

accomplishing the user’s tasks. Reusability in user interfaces allows users to transfer the prior

knowledge from one interface to another while maintaining task efficiency, for example, all

furnaces have similar parameters to be programmed—temperature, time, and ramp rate—

therefore, entering these values should be consistent when programming any furnace available.

User-computer communication relates to the fact that there should be constant back and forth

communication whenever changes to the system occur, whether that be errors, confirmations, or

other factors instigated by either the human or the computer. Robustness is the program’s ability

to prevent and recover from errors caused internally or when the user misinforms the program

tasks, such as a type. To meet the objective for any collaboration between a user and a computer,

the system must be built using aspects from both parties. Flexibility ensures that these aspects

are considered. A flexible program should incorporate features that lead to an effective workflow,

for example, it may be useful to have the ability to load predetermined temperature profiles into

the furnace. This feature will save time rather than having to reprogram the same temperature

profile many times. The final property to be taken into consideration is that of comprehensibility.

20

Interfaces are comprehensible when users of any skill level are able to operate the controls with

ease (10).

When we compare the temperature control modules made by Honeywell or Inkbird, like

the one in Figure 5, to the interface usability criteria laid out previously, we find that they fall

short in many regards. These controller modules are not task efficient and take a considerable

amount of time to learn how they operate. They are moderately flexible and allow for up to three

saved profiles to be loaded for quick use. Although they are “simple” in design, they are not

comprehensible to use as there are many quirks and unique features you need to learn before

you can comfortably and efficiently use the furnace, especially for someone with little to no

experience. It is assumed that the soldiers who will be operating the ovens in the FOBs will

have little to no experience programming them and therefore, it would be beneficial for them to

have an improved user interface that encompasses the six essential properties listed prior.

2.5 Axiomatic Design Background

Manufacturing has existed in civilization since before humans kept records. As civilization

has grown, so has the complexity of our manufacturing processes. Axiomatic design is a way to

lay out customer demands, and customer needs so that the allocation of resources is most

effective at producing the consumer's product. A well-known example of axiomatic design is

Toyota’s pioneering of lean manufacturing (3)(12)(15). These methods are also applied to

anything from software development to the education of engineers in a college course framework

(18) (20).

When using axiomatic design, we take the project we are working on and establish the

top-level functional requirement (FR0). This is the end product that we want to produce. We then

break down the steps to achieve this goal into procedural order creating a list of functional

21

requirements that all add up to achieve the FR0. After you have mapped out all your FR’s for the

given manufacturing process, they are converted into Design Parameters or DPs. The DP’s and

FR's are arranged on a process flow chart DP’s being on your X axis and the FR’s on your Y axis.

The functional requirements are contrasted with the design parameters to establish their

relationship to one another. This process is done by looking at a FR and then comparing every

DP to it. These interactions show where different production steps interact. It is better to have

production steps interact with the rest of the production system after we have performed them

otherwise it is a potential for waste.

Figure 6. Process Flow chart for producing and engineer (18).

22

Figure 6 applies axiomatic decomposition for developing an undergraduate engineering

degree course framework. We can see that the red X marks are steps that interact the green

boxes are steps that do not interact. This example allows us to see the parallels between

manufacturing a good and creating a workforce with a systematic framework. We can see we

have a top-level requirement and we see the steps that interact. differences between the two exist

in how closely related each step is to the others. In the manufacturing line of a good, there is a

more sequential order to each step. But when educating an individual, it is not necessarily a linear

process. When looking at the simpler DP’s and FR’s in the figure, it is easier to visualize how the

buildup of skills is needed to advance a student through this production system (20).

 A similarly obscure application of axiomatic design is in software development. This is not

the most intuitive application because you are not creating a physical thing that you can touch

and feel but just like the example of teaching an engineer you are still developing a product. Its

applications are discussed in ‘Decision Making and Software Tools for Product Development

Based on Axiomatic Design Theory.’ (18) The authors highlight how mapping the functional

requirements and design parameters of a given software can make conceptualizing the desired

use of the software easier to achieve while editing.

More specifically when software development teams are, “considering the change of a

design, consequences must be identified so a rational economic decision about proceeding with

the change can be made” (18). What this author is saying is that axiomatic design helps his team

most effectively change their design plans. Thus, saving time and production costs.

23

3 Experimental Procedure

3.1 Heat Treating and Analyzing Carbon Steels

 As stated previously, one of the main objectives for this project was to compare the effects

of heat treatment processes on the microstructure and mechanical properties of carbon steel

alloys. To achieve this goal, two carbon steels were tested; the first was an 8630-alloy steel and

the second a 1018 carbon steel. We chose to cut eighteen samples of the 8630 steel to measure

the effects of differing tempering temperatures, and four samples of the 1018 steel to measure

the effects of normalizing and annealing the metal. For 8630 steels, the respective number of

samples were cut, then hardened and tempered in pairs. For 1018 steel, the team only operated

normalizing and annealing. The variation in processes for the two types of steel was done

because 8630 steel is meant for harder applications, which is achieved from the quenching and

tempering processes, and the 1018 steel is used more commonly in softer applications, which is

achieved by normalizing and annealing. Next, all samples were polished, hardness tested, and

etched to expose the grain structure. The samples were then placed under a high-power confocal

microscope to observe the grain growth and microstructures caused from the heat treatment

process. This chapter describes the steps and tools used to go from the raw bar stock to the final

results of the project. See below for Figures 7 and 8, flowcharts that concisely display our

procedures for both types of steel.

Figure 7. Flow chart of heat treatment on 8630 steel samples.

24

Figure 8. Flow chart of heat treatment on 1018 steel samples.

3.1.1 Sample Preparation

 The first step of this project after receiving the steel stock was to check the elemental

composition of the material; this was done using a Hitachi PMI-Master portable Optical emission

spectroscopy analyzer, which returns a percentage table of each element present. After

identifying the composition of the steels, the next step was to cut the stock into small samples

approximately half an inch wide. The samples were cut using a EXTEC chop saw with a hard

ferrous abrasive disk rated to cut both the 8630 and 1018 steel. Once the samples had been cut,

they were ready to be placed in the furnace for heat treating.

Figure 9. Flow chart of heat treatment on 1018 steel samples.

25

3.1.2 Heat Treating

 The initial step of heat-treating the samples was to identify the critical temperature based

on the material’s composition. The critical temperatures for most alloy steels can be found from

places like the American Iron and Steel Institute (AISI), American Society for Metals (ASM), and

MatWeb. MatWeb contains one of the largest databases for materials ranging from thermoplastics

to superalloys (13). For both 8630-alloy steel and 1018 carbon steel, the critical temperature is

850℃. Once the critical temperature had been identified, the samples were placed in a Baker

Model #6 Lab Oven and held at the selected temperature for at least two hours. This allowed for

the entire sample to be heated evenly before being removed from the furnace and quenched in

water. While quenching the 8630 steel, six samples at a time were brought up to temperature and

quenched. Only a maximum of six samples were treated at once to minimize the effect of air-

cooling the material while the door is open, which could affect the grain structure.

Figure 10. Baker Furnace with loaded samples.

26

Figure 11. Quenched 8630 samples.

 With the quenching complete, the next step of the project was tempering the samples back

to reduce their hardness, increase their ductility, and modify other material properties. The

samples were tempered, in pairs, starting at 400℃ up to 700℃, in 50℃ increments. Tempering

the samples this way gives a wide representation of the common temperatures used to heat treat

steel. Figure 12 shows the various temperature profiles used while heat treating the 8630 steel

samples. For tempering, the Baker Model #6 Lab Oven was used again, and each pair of samples

was held at the desired temperature for one hour. A one hour holding time was chosen as our

samples are approximately half an inch thick and tempering parts requires at least two hours of

tempering per inch of cross section (2). To keep the tempering cycles consistent, the pairs of

samples were placed in the oven at room temperature and brought up to the required

temperatures at a rate of 1000℃ per hour.

27

Figure 12. Temperature profiles for 8630 steels.

 The 1018 carbon steel samples were heat treated following the temperature profiles

shown in Figure 13. All four samples were brought up to the critical temperature of 850℃ and held

there for two hours, then two of the samples were pulled out of the oven to normalize in ambient

air while the other two samples remained in the furnace and slowly cooled back down to room

temperature as the furnace cooled. Once all twenty-two samples had cooled down to room

temperature the heat treatment portion of this project was complete, and the next step was to

analyze the microstructure and mechanical properties of each sample.

Figure 13. Temperature profiles for 1018 steel.

28

3.1.3 Grinding and Polishing

 The next step was to grind and polish the samples to prepare for hardness testing and

image analyzing. First, the samples needed to be mounted in a polyurethane disk using the lab’s

Buehler SimpliMet™ 4000 Mounting System. The resulting mounted set up consisted of the

sample embedded in the disk with one face exposed. This face would then be ground and

polished on the Buehler AutoMet 250 automatic polishing machine. The machine’s instruction

manual described which abrasive cutter and wheel texture to use for each steel alloy, depending

on the alloy’s hardness and material properties. After the polishing, each sample had a mirror-like

surface as shown in Figure 14. Then each sample is ready to be hardness tested, etched, and

analyzed under a microscope.

Figure 14. Picture of polished samples.

3.1.4 Etching, Hardness Testing, and Image Analyzing

 The final steps of the project were to test the hardness of the samples using the Wilson®

VH3300 Vickers Hardness tester, shown in figure 15, followed by etching the surface using a Nital

solution, and finally observing the grain size and microstructure using the Sensofar® Metrology

Confocal Microscope shown in figure 16. One tempered sample from each pair was hardness

tested a total of ten times and had two images taken near each divot to get a clear sign of how

29

the heat treatment process influenced the microstructure and mechanical properties of the steel

alloy.

Figure 15. Wilson® VH3300 hardness tester

Figure 16. Sensofar® Metrology Confocal Microscope

3.2 Design of a Custom User Interface

During the initial stages of this project, when the team first began heat treating the steel

samples, the team members noticed how confusing and inefficient it was to use the temperature

controller built into the furnace. After making this observation they proposed the implementation

of a custom user interface that would be easier to use and provide more feedback to the furnace

operator. Figure 17 shows the block diagram for the proposed control system. This system would

allow for the furnace to be controlled with an external CPU such as a laptop or even a phone.

30

Figure 17. Temperature Control Block Diagram

After the proposed system diagram was reviewed, research was done to implement a new

control system into a laboratory oven available for the team to modify. The oven used was a

Thermolyne Benchtop Muffle Furnace, Model #F48015 shown in Figure 18 with the

accompanying wiring schematic shown in Figure 19.

Figure 18. #F48015 Thermolyne Benchtop Furnace

31

Figure 19. Wiring Diagram for the #F48015 Thermolyne Furnace.

Based on the wiring diagram of Figure 19, it was decided that an improved control system

could be implemented by bypassing the CN1: CN71X73 Control Module and inserting a custom

circuit in its place. This custom circuit would need to be able to read the thermocouple output,

send that data to a microcontroller, and from there both control the solid-state relay RY1 in Figure

19 using a feedback loop as well as send the data to the graphical interface on a laptop for real

time analysis. Building this custom circuit required a microcontroller as well as a way to read the

thermocouple output, for this, an Arduino Uno, and Adafruit Universal Thermocouple Amplifier

model Max31856 were used, respectively. The Max31856 amplifier is used to amplify the voltage

difference caused by the Seebeck effect generated by the K-type thermocouple located in the

furnace. Figure 20 shows the wiring diagram of the custom circuit and Figure 21 shows the

physical circuit fully assembled. The circuit operates by having the Arduino read the temperature

inside the furnace through the thermocouple amplifier, comparing this value against the set point

32

temperature defined by the user through the interface, and either turning on or off the switch in

the solid-state relay that gives power to the heating elements of the furnace. If the temperature is

below the set point, the heating elements turn on, and if the temperature is above the set point,

the heating elements are turned off. This is considered a two-position control system as described

in section 2.4. In addition to controlling the heating elements, the Arduino also sends the data to

a user interface on a laptop to provide real time analysis for the furnace operator.

Figure 20. Wiring Diagram for Custom Control Circuit.

33

Figure 21. Fully Assembled Custom Control Circuit.

The graphical user interface was designed using the MegunoLink software and

accompanying Arduino IDE libraries. MegunoLink is a configurable tool for designing interfaces

to control Arduino sketches. The MegunoLink software communicates to the Arduino by sending

and receiving serial commands to either update values in the Arduino program or values of the

graphical interface. These values can be visualized in many forms including real time plotting,

serial monitoring, tabulating, and more (22). Below are functional requirements the team wanted

the improved control interface to meet:

● Program up to eight stages of a temperature profile

○ Each stage requiring the set point temperature, holding time, and ramp rate to be

defined

● Display, in text format, the actual furnace temperature and the set point temperature

● Calculate and monitor the total program time

● Have the programmed temperature profile overlaid with a real time plot of the furnace

temperature

34

● Make a comprehensible interface incorporating the usability elements defined by

Mahemoff and Johnston as described in section 2.4.1

 Meeting these requirements would provide a usable interface for both students and

soldiers alike allowing for quick, efficient, and precise control of a furnace while also enabling the

possibility of future data analysis and improvements to the heat-treating process.

3.3 Process Flow

During the axiomatic design breakdown, we found our top-level functional requirements.

We then created a process flow chart to break down our FR0. We then took our FR chart and

used it to develop a design parameter (DP) chart. These two charts intersect to produce a process

flow chart.

3.3.1 Heat Treating steel

Figure 22. Designs Parameters for heat treatment.

35

Figure 23. Functional Requirements for heat treatment.

Figure 24. Process flow chart for heat treatment.

The three figures listed above are an axiomatic design decomposition and a process flow

analysis that helped us order the steps of this project to better. We can see that the majority of

the interactions are underneath the diagonal line created by the FR’s and DP’s of the same

number interacting with each other. This is good because it shows that our project was completed

36

in a manner to reduce as much waist as possible.

3.3.2 Furnace Control System

Figure 25. Design Parameters for furnace control system.

Figure 26. Functional requirements for furnace control system.

37

Figure 27. Process flow chart for furnace control system.

In these past three figures we mapped and then plotted the steps to creating the furnace

control system. We can see the interactions plotted and we can see how the graph supports the

procedural order that we used. The graph supports this process because as stated earlier having

the interactions below the line allows steps to build properly on one another.

38

4 Results

4.1 Hardness results for 8630 and 1018 steel

The following table is the hardness tests results on our 8630 heat treated samples:

Table 2. 8630 steel hardness test results.

Tempering Temperature Hardness Test Results [HV]

As Purchased

(Neither quenched nor

tempered)

173

Control

(Quenched but not tempered)

511

400℃ 388

450℃ 327

500℃ 305

550℃ 290

600℃ 259

650℃ 230

700℃ 201

These results clearly show that the quenched control is the hardest, with the tempered

samples coming after, progressively getting softer from 400℃ to 700℃, and finally arriving at the

softest sample; the as purchased control. This is consistent with the heat treatment processes

discussed in Section 2.2; the faster a steel sample is cooled from its high furnace temperature,

the harder the steel sample will be, making the quenched sample the hardest. Additionally, it

39

makes sense that a lower tempering temperature results in a harder sample than a higher

tempering temperature, because at lower temperatures the sample is given less energy to change

its microstructure, and therefore more closely resembles the quenched steel.

 Below is the data from the hardness tests conducted on our annealed and normalized

samples:

Table 3. Annealed and normalized 1018 steel hardness test results.

Process followed Hardness Test Results [HV]

Annealing 123

Normalizing 141

These results are consistent with what we know about annealing and normalizing (see

Section 2.2). Annealing will produce the softest possible steel for a given composition, with

normalizing also producing soft steel, but to a slightly lesser extent. Another finding from this data

is the role the steel’s chemical composition plays in hardness. The 8630 stock was purchased as

cast steel from the manufacturer, where molten metal is poured into a mold, and left to cool. So,

the “as purchased” 8630 steel is normalized. After both undergoing normalization, the 1018 steel

is a full thirty hardness values softer than the 8630 steel, showing the importance of identifying

the composition of the steel one wishes to treat.

4.2 CNN Model

 The captured images were then uploaded to the CNN model being developed by Yutao

Wang. The model analyzed the images based on the microstructure of the image and inputted

values for chemical composition and heat treatment cycle and gave its prediction on what the

hardness of the sample would be. Out of 1260 available data points, 252 were randomly selected

40

to test the accuracy of the model. Comparing the model-predicted hardness value to the actual

hardness value, the model was 95.37955% accurate, the full results can be found in Appendix A.

4.3 Using the Improved Interface

Implementing the design requirements for the user interface described in section 3.2

resulted in the user interface panel that is shown in figure 28. There is a drop-down box for

selecting between one and eight stages to be run. Each stage consists of a ramping time to get

the furnace up to temperature plus the holding time where the furnace and sample sit at the set

point temperature. Once the number of stages has been selected, entry boxes appear to set each

of the stage’s parameters: the set point temperature in degrees Celsius, the holding time in

minutes for how long the sample should be held at the set point temperature, and finally the ramp

rate in degrees Celsius per hour for how long it will take to ramp up or down to the next stage’s

temperature. Once all the stage parameters are set the operator can click the Set Stages button

to display the temperature profile in the plot on the bottom half of the interface and read the Total

Program Time to check that the parameters, they entered are correct. If they are incorrect, the

user can either change the parameters individually or press the Clear Stages button to reset all

parameters back to a zero value. After confirming the temperature profile and stage parameters

are set to the desired configuration, the furnace operator can then press the green Start button in

the top middle panel which will begin the heat treatment process. During this process, the Arduino

reads the actual furnace temperature every second and runs the logic to either turn the heating

elements on or off. In addition, the Arduino will also update the user interface by displaying the

Programmed Temperature, the Furnace Temperature, the Time Elapsed from when the program

started, and the Time Remaining until the program finishes. Along with displaying the furnace

temperature in a textual format, the custom interface has a real-time data plot which displays the

41

programmed temperature profile with a black line and the real furnace temperature with a red line

on top of each other. This allows the furnace operator to check whether or not the furnace has

maintained the proper temperature through the heat treatment process.

Figure 28. Custom graphical user interface for furnace control.

After the program completes the Arduino will turn off the switch giving power to the heating

elements and the furnace will cool down at its natural cooling rate. Figures 29 and 30 show two

different temperature profiles being run with the interface. The first program ran was a four-stage

profile starting at ~100°C ramping up to 150°C, holding for 5 minutes, then increasing to 200°C

for 10 minutes, then 400°C for 5 minutes, and finally ramping down to 100°C for another 10

minutes. From the temperature plot generated as the program ran it can be observed that around

the 15-minute mark there was a sudden increase in temperature from what was programmed.

This was due to the furnace door being secured shut as there is naturally a large gap in the

insulation through which heat can escape. Another feature of note, by looking at the temperature

plot, is that the programmed ramp down rate was higher than that of the natural cooldown rate of

the furnace and thus the sample being heat treated did not have the expected properties. The

second program run was a five-stage profile starting at room temperature, increasing to 100°C

42

for 10 minutes, then to 200°C for 15 minutes, then 300°C for 10 minutes, then 500°C for 15

minutes, and finally 600°C for 5 minutes. There was no cooldown stage for this profile signifying

that the sample was removed from the furnace to normalize.

Figure 29. Four stage temperature profile run with the custom interface.

Figure 30. Five stage temperature profile run with the custom interface.

43

After the second program had been run, both the programmed and furnace temperature

data were downloaded and compared to evaluate the accuracy of the control system. Averaging

the difference between what the temperature should have been to what it actually was resulted

in a -0.05°C offset over the entire course of the heating cycle. This value is well within the ±2.5°C

for temperatures under 675°C to maintain an accurate and uniform temperature distribution within

the furnace and sample being heated (5).

Apart from having improved accuracy over the original control interface, the new interface

incorporates the six essential properties defined by Mahemoff and Johnston in section 2.4.1. The

interface has improved task efficiency as it requires less time to program the desired heat

treatment profile, it is reusable as it incorporates the familiar configurable parameters such as the

set point temperature, holding time, and ramp rate. Next, the user interface has improved user-

computer communication with real time plotting and error messages that tell the furnace operator

exactly what is happening at a given time. The design is robust and will limit the user inputs as to

not damage itself or any of the equipment used while the program is running. Finally, it is flexible

and comprehensive in regards that future additions can be easily implemented and operators of

any level, from novice to experienced, can use the interface without the need of training.

4.4 Economic Analysis

 When looking at the economic effect that our project had on the greater DOD initiative, we

can identify multiple different costs. Our first step was to understand what percentage our project

affected the greater DOD initiative. To do this we looked at what WPI added which was a computer

algorithm to predict grain structure and hardness from known heat treatment data. This provided

an understanding of the material properties without expensive testing equipment.

Our project provided half the test data that was needed to properly calibrate WPI’s

44

algorithm. The initial investment into the project consisted of metal to perform tests of and the

cost of using the machines to run these tests equated to a total expense of six hundred dollars.

Table 4. Initial investment to the project.

Machine time $500

Test material $100

Total $600

To present a value-added chart we first subtracted our six-hundred-dollars to find our initial

starting point. Then we estimated how much we predict this will save the DOD as a percentage

of what they invested to fund this research. For this, we are going to say that our MQP team

contributed 0.01% to solving WPI’s section of the project. We know that WPI was given 1.15

million to complete its research. that leaves us with an evaluation of $11,500 annually for having

our team conduct this research.

Figure 31. Value added over 1 year.

45

Displayed above we can see a visual representation of the value that our project adds

from the initial point of investment. The visual representation that this provides is extremely

powerful as presenting graphs instead of a variety of charts with numbers provides clarity as to

when our project will be seeing significant growth. This allows our project to be shared more

broadly as it is simple to understand what these numbers mean. It is obvious that this project has

a low initial cost and a significant amount of lead time but once we reach implementation our

project rapidly becomes profitable. It also displays when our project is predicted to become

profitable and at what rate it will be profitable.

These analytics are all very theoretical as we are taking the value of our project based on

the DoD investment, we are also approximating the amount of involvement that our project has

with the DoD. This creates a certain level of ambiguity that cannot be avoided. The important

thing that this evaluation shows is that our project is continuously providing value. We also see

that even though our numbers are rough estimates we still have significant margins and if we

were valued at a significantly less percent of involvement our project would still be profitable. The

one major drawback for the work we did is the time of implementation. During our project we did

not take into consideration that the DoD granted the funds and then had to wait for however long

our project took to implement. This is a significant opportunity cost that could be avoided by

collaborating directly with a corporation instead of an institution of higher learning. However, if we

were employees the cost to implement would have been in the thousands not the hundreds. This

demonstrates another extremely effective part of the value-added chart. We can demonstrate

how increasing the speed at which our project gets completed would decrease the time to

implementation, but it would increase the startup cost significantly.

46

Table 5. Potential cost of contracting.

Machine time $500

Test material $100

Engineer working cost $5000

Total $600

As an example, we are going to say that an engineer must spend half a month collecting

data samples for our algorithm. We approximate this is going to cost approximately five thousand

dollars in engineering working time. This increases our initial cost to five thousand six hundred

but decreases our wait time by six months resulting in a very similar value-added chart just without

that six-month lead period.

47

Figure 32. Potential value added of contracting.

This hypothetical situation demonstrates the importance of creating value added charts. It

outlines how our ability to demonstrate how the effects of what we do will greatly impact your

ability to share our work with other MQP teams. We can also see that rapid prototyping allows us

to view a problem from many angles. We could look at examples with an added variable of the

DOD spending two million dollars a month until our product is produced. Does it make sense to

wait for a college team to solve this problem instead of paying for a contractor? It might be more

expensive upfront but helps the DOD solve the problem sooner so they can reduce spending. Or

we could see how this project would affect a civilian contractor who might not have the same

ability to wait as long or thinks they can make more money off it so paying a significantly higher

upfront cost increases revenue in that 1-year window.

In conclusion, value add tools are an extremely versatile and powerful tool that helped our

team demonstrate the profitability of our project. With an analysis of our value-added chart, we

strongly support the execution of this project.

48

5 SUMMARY AND CONCLUSIONS

5.1 Summary

 According to the final results, the team found out that 8630 has its highest hardness results

while it was just quenched as 201HV and quenched at 700℃. The range of the hardness results

is in between 511 HV to 201HV, with 173 HV as the hardness of just bought 8630 material. These

findings are expected because this has been supported by the background research that after the

metals have been heat-treated, they will become softer. Here is a temperature profile of 8630

after tempering conducted by all the results that was collected from the imaging section.

Figure 33. Temperature profile of 8630 after tempering with linear regression line.

Adding on to the previous finding, during the quenched process, the higher the

temperature it has been quenched, the lower the hardness results the materials will get. The grain

size for 8630 after quenched is normally smaller visually under confocal. The smaller the grain

49

size of steel, the harder that steel is, and that is reflected in these samples’ microstructures. To

highlight this finding, below are two images captured using the lab microscope, one of the 400℃

tempered sample, and the other of the 700℃ tempered sample. One can clearly see the difference

in grain size between the 400℃ and 700℃ samples.

Figure 34. 400℃ tempered 8630 steel.

Figure 35. 700℃ tempered 8630 steel.

50

The grain size for the images of 8630 that was normalized and annealed are dissimilar.

The grain sizes for 8630 are normally smaller compared to annealed 1018 steel. Based on the

results, the annealed sample is considerably softer than the normalized sample. These

differences between the two processes are also shown in our captured images, seen below. The

earlier correlation between larger grain size and softer steel applies here, with the larger grained

annealed sample being softer than the smaller grained normalized sample.

Figure 36. Annealed 1018 steel image.

Figure 37. Normalized 1018 steel image.

51

5.2 Conclusion and Future Recommendations

We accomplished the three main objectives we set for ourselves with this project. Firstly,

providing data samples for the CNN model. While there were many roadblocks we ran into along

the way, we were able to accomplish our objective of selecting multiple varieties of commonly

used steels (8630 and 1018), heat treating them in controlled environments, testing their

properties, imaging them, and running that data through the CNN model. These efforts produced

160 unique images, and one hundred hardness data points, improving the accuracy and utility of

the CNN model. The second objective was a success as well. Not only was the new furnace

control interface more accurate than the original, and also effectively incorporated the six

essential interface properties of task efficiency, reusability, user-computer communication,

robustness, flexibility, and comprehensibility, resulting in an all-around improved interface. The

third objective was also completed, with an axiomatic design decomposition executed in the form

of a process flow and economic analysis.

While we were successful in achieving our objectives, the work does not end there; these

objectives are iterative and ongoing. While we added a significant body of data to the CNN model,

more can and must be added. We improved the user interface, but it can be improved further.

And any changes to those objectives will prompt a change in their respective process flows and

economic analyses. For those who pick up these objectives where we leave them off, we

recommend the following:

1. Continue to gather heat treatment data for new steel alloys commonly used by the

DoD and get more data points on alloys that have already been tested, to increase

the CNN model’s accuracy.

2. Conduct nontypical heat treatments on alloys, instead of just typical ones (ex. Put

8630 steel through annealing). Even though 8630 steel is best used for

applications requiring high hardness, a situation on a FOB may call for a softer

52

part, and the only steel in copious quantities on base is 8630. This will increase

the usefulness of the model, allowing soldiers to be more resourceful.

3. Ensure full access (or as close to full access as possible) to facilities necessary for

conducting your heat treatment operations. Our team was limited to only times

when our TA could let us into the furnace room, polishing room, etc. This hindered

our ability to plan and conduct lab work, as we were limited to our TA’s availability

from the beginning.

4. Make the user-interface wireless, so one does not need to hook up their laptop to

the furnace in order to run the program, and instead can control the furnace from

elsewhere with their phone, laptop, or other wireless device.

5. To improve the custom control system to be even more accurate, a PID control

loop can be added which can completely eliminate the overshoot caused by

thermal inertia.

6. When designing a custom user interface, use a software program that is well

documented and easy to debug and get help on. During this project we started

with using Visual Studio but ran into many issues with no valid solutions even after

researching.

53

REFERENCES

1. Awati, R. (2021, October 18). What is the Seebeck effect? SearchNetworking. Retrieved

April 4, 2022, from https://www.techtarget.com/searchnetworking/definition/Seebeck-

effect

2. Bryson, B. (1997). Heat treatment, selection, and application of Tool Steels. Hanser

Gardner Publications.

3. Becker, Ronald M. "Lean manufacturing and the Toyota production system."

Encyclopedia of world biography (1998).

4. Deep learning tools to predict mechanical properties of steel alloys, Presented by Yutao

Wang, DoD Steel Summit, November 2021.

5. Dossett, J. L., & Boyer, H. E. (2006). Practical heat treating. Asm International.

6. Dossett, Jon L. Totten, George E.. (2014). ASM Handbook, Volume 04B - Steel Heat

Treating Technologies. ASM International. Retrieved from

https://app.knovel.com/hotlink/toc/id:kpASMHVBS2/asm-handbook-volume-4b/asm-

handbook-volume-4b

7. File:CCT curve steel.svg. Wikimedia Commons. (n.d.). Retrieved April 11, 2022, from

https://commons.wikimedia.org/wiki/File:CCT_curve_steel.svg

8. Final Revised serdp technical section. (n.d.). Retrieved October 11, 2022, from

https://drive.google.com/drive/folders/1dfN2bPlORKBHjKJGkvnmk0VGZBdxQ9zg

9. Gums, J. (2018, January 26). Types of temperature sensors. Digi. Retrieved April 4,

2022, from https://www.digikey.com/en/blog/types-of-temperature-

sensors#:~:text=There%20are%20four%20types%20of,based%20integrated%20circuits

%20(IC)

https://www.techtarget.com/searchnetworking/definition/Seebeck-effect
https://www.techtarget.com/searchnetworking/definition/Seebeck-effect
https://app.knovel.com/hotlink/toc/id:kpASMHVBS2/asm-handbook-volume-4b/asm-handbook-volume-4b
https://app.knovel.com/hotlink/toc/id:kpASMHVBS2/asm-handbook-volume-4b/asm-handbook-volume-4b
https://commons.wikimedia.org/wiki/File:CCT_curve_steel.svg
https://commons.wikimedia.org/wiki/File:CCT_curve_steel.svg
https://www.digikey.com/en/blog/types-of-temperature-sensors#:~:text=There%20are%20four%20types%20of,based%20integrated%20circuits%20(IC)
https://www.digikey.com/en/blog/types-of-temperature-sensors#:~:text=There%20are%20four%20types%20of,based%20integrated%20circuits%20(IC)
https://www.digikey.com/en/blog/types-of-temperature-sensors#:~:text=There%20are%20four%20types%20of,based%20integrated%20circuits%20(IC)

54

10. Lin, W. (2021, April 15). Megunolink Pro: The Swiss Army Knife for Arduino.

MegunoLink. Retrieved April 4, 2022, from https://www.megunolink.com/

11. MacKenzie, D. S. (2018, November 29). D. Scott Mackenzie, Ph.d., FASM. Gear

Solutions Magazine Your Resource to the Gear Industry. Retrieved April 4, 2022, from

https://gearsolutions.com/departments/hot-seat/continuous-cooling-transformation-

diagrams/

12. Ohno, Taiichi. Toyota Production System Beyond Large-Scale Production.Boca Raton,

FL: CRC Press, 1988.

13. Online materials information resource. MatWeb.(n.d.). Retrieved April 11, 2022, from

http://www.matweb.com/index.aspx

14. Principles for a usability-oriented pattern language. IEEE Xplore. (n.d.). Retrieved April

4, 2022, from

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=732206&tag=1

15. Shirouzu, Norihiko. “How Toyota Thrives When the Chips Are Down.” Reuters. Thomson

Reuters, March 9, 2021. https://www.reuters.com/article/us-japan-fukushima-

anniversary-toyota-in/how-toyota-thrives-when-the-chips-are-down-idUSKBN2B1005.

16. Temperature sensor tutorial - maxim. DigiKey. (n.d.). Retrieved April 4, 2022, from

https://www.digikey.com/en/pdf/m/maxim/temperature-sensor-tutorial

17. Totten, G. E. (Ed.). (2019). Steel heat treatment: Equipment and process design. CRC

Press.

18. Towner, Jr., Walter T. 2013. The Design of Engineering Education As a Manufacturing

System. : Worcester Polytechnic Institute.

19. TTT Curve. MECHTECH GURU. (1970, January 1). Retrieved April 11, 2022, from

https://www.mechtechguru.com/2020/08/ttt-curve.html

https://www.megunolink.com/
https://gearsolutions.com/departments/hot-seat/continuous-cooling-transformation-diagrams/
https://gearsolutions.com/departments/hot-seat/continuous-cooling-transformation-diagrams/
http://www.matweb.com/index.aspx
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=732206&tag=1
https://www.reuters.com/article/us-japan-fukushima-anniversary-toyota-in/how-toyota-thrives-when-the-chips-are-down-idUSKBN2B1005
https://www.reuters.com/article/us-japan-fukushima-anniversary-toyota-in/how-toyota-thrives-when-the-chips-are-down-idUSKBN2B1005
https://www.digikey.com/en/pdf/m/maxim/temperature-sensor-tutorial
https://www.mechtechguru.com/2020/08/ttt-curve.html

55

20. V. Harutunian, M. Nordlund, D. Tate, et al. Decision Making and Software Tools for

Product Development Based on Axiomatic Design Theory CIRP Annals - Manufacturing

Technology, 45 (1) (1996)

21. What is the holloman-jaffe parameter? TWI. (n.d.). Retrieved April 4, 2022, from

https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-the-holloman-jaffe-

parameter

22. Why control heat treatment temperature? Industrial Metallurgists.(2021, December 13).

Retrieved April 4, 2022, from https://www.imetllc.com/why-control-heat-treatment-

temperature/

https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-the-holloman-jaffe-parameter
https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-the-holloman-jaffe-parameter

56

APPENDICES

APPENDIX A: Model Output Raw Data

This is the raw data dump from the model run described in the Results section. It shows

what the actual hardness was, what the model predicted the hardness would be, how accurate

that prediction was in percentage, and the error, or difference between the actual and predicted

value.

Hardness

(HV)

Predicted

Hardness (HV)

Accuracy

(%)

Error

378 337.4424473 89.27049 -40.5576

378 367.8706312 97.32027 -10.1294

378 343.1127142 90.77056 -34.8873

389 343.4574181 88.2924 -45.5426

389 330.8285696 85.0459 -58.1714

390 336.5091877 86.28441 -53.4908

390 377.4991227 96.79465 -12.5009

390 331.4503354 84.98727 -58.5497

380 330.3526549 86.93491 -49.6473

380 337.9197757 88.92626 -42.0802

57

380 380.9896273 99.73957 0.989627

380 348.8850552 91.81186 -31.1149

380 338.6094951 89.10776 -41.3905

380 344.5907766 90.68178 -35.4092

380 361.0230612 95.00607 -18.9769

389 359.8225638 92.49937 -29.1774

389 368.0039027 94.60255 -20.9961

389 330.8970743 85.06352 -58.1029

385 357.3887663 92.82825 -27.6112

385 353.504198 91.81927 -31.4958

385 319.5879056 83.00985 -65.4121

397 381.8605881 96.18655 -15.1394

397 382.4584887 96.33715 -14.5415

397 343.9799131 86.64481 -53.0201

397 380.1574594 95.75755 -16.8425

397 354.8349477 89.37908 -42.1651

397 379.4819729 95.5874 -17.518

397 393.0948306 99.01633 -3.90517

58

394 384.9378122 97.69995 -9.06219

394 353.4960033 89.7198 -40.504

394 353.4502856 89.70819 -40.5497

394 372.5514737 94.55621 -21.4485

394 366.4001644 92.99497 -27.5998

394 336.8042922 85.48332 -57.1957

394 336.3569151 85.36978 -57.6431

394 362.776628 92.07529 -31.2234

378 381.6970778 99.02194 3.697078

378 354.9390346 93.89922 -23.061

378 351.279293 92.93103 -26.7207

378 341.7043785 90.39798 -36.2956

378 381.5865694 99.05117 3.586569

361 336.3572745 93.17376 -24.6427

361 312.7872034 86.64465 -48.2128

361 324.9858789 90.02379 -36.0141

335 327.7025129 97.82165 -7.29749

335 325.8919906 97.28119 -9.10801

59

335 331.7649921 99.03433 -3.23501

327 325.5169999 99.54648 -1.483

327 322.60833 98.65698 -4.39167

327 325.1448366 99.43267 -1.85516

327 335.2396824 97.48022 8.239682

327 315.5831486 96.50861 -11.4169

322 321.1957891 99.75025 -0.80421

322 336.2909143 95.56183 14.29091

322 316.5841701 98.31807 -5.41583

322 313.8582152 97.4715 -8.14178

322 322.3039885 99.90559 0.303988

322 307.3217078 95.44152 -14.6783

330 336.1018256 98.15096 6.101826

330 336.8047235 97.93796 6.804723

330 324.9775884 98.47806 -5.02241

318 325.1471129 97.75248 7.147113

318 317.1131586 99.72112 -0.88684

323 317.9234141 98.4283 -5.07659

60

320 328.4673741 97.35395 8.467374

320 328.365276 97.38585 8.365276

320 350.6076403 90.43511 30.60764

320 311.5316675 97.35365 -8.46833

320 321.66787 99.47879 1.66787

310 323.7864238 95.55277 13.78642

310 327.6926649 94.29269 17.69266

310 309.906508 99.96984 -0.09349

310 311.8034339 99.41825 1.803434

310 302.6851813 97.64038 -7.31482

320 299.8368453 93.69901 -20.1632

320 317.5621171 99.23816 -2.43788

320 279.4390879 87.32471 -40.5609

320 287.9035687 89.96987 -32.0964

310 336.8902166 91.32574 26.89022

310 298.0082085 96.13168 -11.9918

310 293.2053024 94.58236 -16.7947

310 283.2932196 91.38491 -26.7068

61

309 302.9296321 98.03548 -6.07037

309 301.8447109 97.68437 -7.15529

309 322.6687478 95.57646 13.66875

309 307.7787652 99.60478 -1.22123

309 291.6445143 94.38334 -17.3555

309 323.98445 95.15066 14.98445

311 307.6881684 98.9351 -3.31183

311 312.0061924 99.67647 1.006192

311 298.807406 96.07955 -12.1926

311 303.915067 97.72189 -7.08493

299 306.5174067 97.48582 7.517407

299 309.1013203 96.62163 10.10132

299 304.4703647 98.17045 5.470365

299 313.0033083 95.31662 14.00331

299 316.9482106 93.99725 17.94821

303 338.2301914 88.37287 35.23019

303 329.4624772 91.26651 26.46248

303 306.5647058 98.82353 3.564706

62

303 321.1082713 94.02367 18.10827

303 309.5092695 97.85173 6.509269

303 322.4546317 93.57933 19.45463

299 356.3316758 80.82553 57.33168

299 305.2661837 97.90429 6.266184

299 299.7371913 99.75345 0.737191

299 328.5226762 90.1262 29.52268

299 311.4811336 95.82571 12.48113

302 298.9900133 99.00332 -3.00999

302 293.1291421 97.06263 -8.87086

302 299.5795274 99.19852 -2.42047

298 308.7100361 96.40603 10.71004

298 284.7830769 95.56479 -13.2169

298 297.9367806 99.97879 -0.06322

283 275.6760022 97.41201 -7.324

283 286.8613761 98.63556 3.861376

283 267.1171208 94.38768 -15.8829

293 281.118609 95.94492 -11.8814

63

293 286.2388915 97.69245 -6.76111

293 278.9907284 95.21868 -14.0093

293 278.4868511 95.04671 -14.5131

293 277.9796492 94.8736 -15.0204

297 271.6098629 91.45113 -25.3901

297 271.6061669 91.44989 -25.3938

290 282.0406848 97.25541 -7.95932

290 292.3751831 99.18097 2.375183

290 299.4380134 96.74551 9.438013

290 275.3072893 94.93355 -14.6927

290 280.3641888 96.67731 -9.63581

290 279.1464753 96.25741 -10.8535

290 280.4910686 96.72106 -9.50893

289 272.5490229 94.30762 -16.451

289 273.5448988 94.65221 -15.4551

289 272.191404 94.18388 -16.8086

289 299.5893515 96.33586 10.58935

287 264.6530724 92.21361 -22.3469

64

287 281.8770486 98.215 -5.12295

287 277.6300991 96.73523 -9.3699

287 279.2692398 97.30636 -7.73076

287 273.5031407 95.29726 -13.4969

294 274.864345 93.49127 -19.1357

294 284.1675889 96.65564 -9.83241

294 294.9207531 99.68682 0.920753

294 280.6660084 95.46463 -13.334

294 271.3406184 92.29273 -22.6594

294 271.3317887 92.28972 -22.6682

285 297.0195749 95.78261 12.01957

285 275.7569726 96.75683 -9.24303

285 270.0610494 94.75826 -14.939

255 253.4361897 99.38674 -1.56381

255 247.672259 97.12638 -7.32774

255 252.619303 99.06639 -2.3807

255 253.3942339 99.37029 -1.60577

261 255.9663587 98.0714 -5.03364

65

261 268.1136256 97.27447 7.113626

261 258.6116186 99.08491 -2.38838

264 270.2211992 97.64349 6.221199

264 258.4700626 97.90533 -5.52994

264 259.6347921 98.34651 -4.36521

264 259.0047478 98.10786 -4.99525

264 256.0768671 96.99881 -7.92313

264 282.237489 93.09186 18.23749

264 262.1354231 99.29372 -1.86458

262 240.8891203 91.94241 -21.1109

262 258.2414441 98.56544 -3.75856

262 256.8277231 98.02585 -5.17228

262 242.5371207 92.57142 -19.4629

262 263.9833605 99.24299 1.983361

258 268.9733008 95.74678 10.9733

258 261.922523 98.47964 3.922523

258 254.4339406 98.61781 -3.56606

256 265.184463 96.41232 9.184463

66

256 256.9751675 99.61908 0.975168

256 245.5108449 95.90267 -10.4892

256 266.364258 95.95146 10.36426

256 263.474739 97.08018 7.474739

256 269.7172321 94.64171 13.71723

258 242.7453333 94.08734 -15.2547

258 252.5550933 97.88957 -5.44491

258 250.2121921 96.98147 -7.78781

260 263.1313169 98.79565 3.131317

258 247.2523713 95.83425 -10.7476

258 243.3018142 94.30303 -14.6982

227 230.3693101 98.51572 3.36931

227 228.2750858 99.43829 1.275086

227 230.0727409 98.64637 3.072741

236 234.5677833 99.39313 -1.43222

236 232.9667347 98.71472 -3.03327

233 211.4752324 90.7619 -21.5248

233 226.1231303 97.04855 -6.87687

67

233 214.5155415 92.06676 -18.4845

232 230.3055107 99.26962 -1.69449

232 234.2354733 99.03643 2.235473

229 230.4540454 99.36505 1.454045

229 210.3606085 91.86053 -18.6394

229 220.9663686 96.49186 -8.03363

229 232.6103857 98.42341 3.610386

229 210.3606085 91.86053 -18.6394

230 232.0829038 99.09439 2.082904

230 211.8476653 92.10768 -18.1523

230 233.1477247 98.63142 3.147725

230 229.2253967 99.66322 -0.7746

230 214.2164355 93.13758 -15.7836

230 226.8840919 98.64526 -3.11591

230 234.7007403 97.9562 4.70074

230 235.2354076 97.72374 5.235408

230 220.4141453 95.83224 -9.58585

230 224.4255905 97.57634 -5.57441

68

233 238.0586593 97.8289 5.058659

233 234.3714404 99.4114 1.37144

233 229.9774148 98.70275 -3.02259

233 230.3297713 98.85398 -2.67023

233 231.4309321 99.32658 -1.56907

233 224.4500577 96.3305 -8.54994

233 229.6365387 98.55645 -3.36346

233 210.3606085 90.28352 -22.6394

221 210.3606085 95.1858 -10.6394

221 216.1325976 97.79756 -4.8674

196 220.0264553 87.7416 24.02646

196 221.1585858 87.16399 25.15859

204 211.3746828 96.38496 7.374683

204 207.8414526 98.11694 3.841453

204 209.6052058 97.25235 5.605206

204 207.2741683 98.39502 3.274168

200 258.8869852 70.55651 58.88699

200 210.9104521 94.54477 10.91045

69

200 219.3365607 90.33172 19.33656

200 207.7847248 96.10764 7.784725

200 211.8170999 94.09145 11.8171

200 209.5852553 95.20737 9.585255

200 210.3289709 94.83551 10.32897

198 207.387624 95.25878 9.387624

198 209.2860145 94.29999 11.28601

202 205.5723155 98.23153 3.572316

200 218.4281592 90.78592 18.42816

200 202.4522461 98.77388 2.452246

200 204.437744 97.78113 4.437744

200 209.3658108 95.31709 9.365811

200 212.756856 93.62157 12.75686

201 202.6980716 99.15519 1.698072

201 201.2231301 99.88899 0.22313

201 210.4496298 95.29869 9.44963

201 207.8225443 96.6057 6.822544

201 210.7311694 95.15862 9.731169

70

201 205.4210373 97.80048 4.421037

201 207.2174405 96.90675 6.217441

206 213.4183642 96.39885 7.418364

206 195.8573695 95.07639 -10.1426

204 211.1333619 96.50325 7.133362

204 214.6021592 94.80286 10.60216

200 215.0343854 92.48281 15.03439

200 208.440692 95.77965 8.440692

 AVG: 95.37954766

71

APPENDIX B: Arduino Code for Furnace Interface

//Impact of Heat Treating Carbon Steels MQP: Furnace Control Code

//MegunoLink and Related Libraries
#include <MegunoLink.h>
#include <CommandHandler.h>
#include <TCPCommandHandler.h>
#include <ArduinoTimer.h>
#include <CircularBuffer.h>
#include <EEPROMStore.h>
#include <Filter.h>

//Adafruit MAX31856 Thermocouple Amplifier Library
#include <Adafruit_MAX31856.h>

// Use software SPI: CS, DI, DO, CLK
Adafruit_MAX31856 maxthermo = Adafruit_MAX31856(13, 12, 11, 10); //Setting SPI pins

//===//
//Parameters

const int SSRPin = 7; //Arduino pin connected to the solid state relay in the furnace
long CountedSeconds = 0; //Continuously increasing variable as each second passes
int RunFlag = 0; //Flag to begin running the furnace or not
float InitialTemp = 21.5; //Room temperature
float DesiredTemp = 0.0; //Instantiating desired temperature variable
float TargetTemp = 0.0; //Instantiating target temperature variable
float MaxRampDownRate = 75; // °C / hr maximum cooldown rate of the furnace, measured
int NumStages; //How many stages will be run
char PhaseMode = 0; // 0 = Ramp Up, 1 = Hold //Which mode is the furnace in? Ramping or
holding?
char CurrentPhase = 0;
char CurrentStage = 0;
float CurrentStageStartTemp = 0.0;

int TotalHours = 0;
int TotalMinutes = 0;
int TotalSeconds = 0;

float TimeDelta;
float TempDelta;
float TempIncrement;

float StageTemp [8];
float StageHoldTime [8];

72

float StageRampRate [8];
float StageRampTime [8];
float AccumulatedTime [17];

CommandHandler<15> SerialCmds;
InterfacePanel ControlPanel;
XYPlot TempPlot;
ArduinoTimer SecTimer;

void EndProgram();

//===//
//SETUP

void setup() {
 //Open and Begin Serial Communication
 Serial.begin(921600);
 while (!Serial) delay(10);

 //Thermocouple Setup
 Serial.println("MAX31856 thermocouple test");

 maxthermo.begin();

 maxthermo.setThermocoupleType(MAX31856_TCTYPE_K);

 Serial.print("Thermocouple type: ");
 switch (maxthermo.getThermocoupleType()) {
 case MAX31856_TCTYPE_B: Serial.println("B Type"); break;
 case MAX31856_TCTYPE_E: Serial.println("E Type"); break;
 case MAX31856_TCTYPE_J: Serial.println("J Type"); break;
 case MAX31856_TCTYPE_K: Serial.println("K Type"); break;
 case MAX31856_TCTYPE_N: Serial.println("N Type"); break;
 case MAX31856_TCTYPE_R: Serial.println("R Type"); break;
 case MAX31856_TCTYPE_S: Serial.println("S Type"); break;
 case MAX31856_TCTYPE_T: Serial.println("T Type"); break;
 case MAX31856_VMODE_G8: Serial.println("Voltage x8 Gain mode"); break;
 case MAX31856_VMODE_G32: Serial.println("Voltage x8 Gain mode"); break;
 default: Serial.println("Unknown"); break;
 }

 //Set Initial Values to 0

 //Serial Commands from MegunoLink
 SerialCmds.AddCommand(F("RunFurnace"), RunFurnace); //Begin logic to turn on heating
elements and run the furnace

73

 SerialCmds.AddCommand(F("StopFurnace"), StopFurnace); //Stop the furnace and turn
off the heating elements

 //Set the properties of each stage: Temperature, Holding time, Ramp Rate,
 SerialCmds.AddCommand(F("SetStage1"), SetStage1);
 SerialCmds.AddCommand(F("SetStage2"), SetStage2);
 SerialCmds.AddCommand(F("SetStage3"), SetStage3);
 SerialCmds.AddCommand(F("SetStage4"), SetStage4);
 SerialCmds.AddCommand(F("SetStage5"), SetStage5);
 SerialCmds.AddCommand(F("SetStage6"), SetStage6);
 SerialCmds.AddCommand(F("SetStage7"), SetStage7);
 SerialCmds.AddCommand(F("SetStage8"), SetStage8);

 SerialCmds.AddCommand(F("SetStages"), SetStages); //Update the plot to show the
temperature profile
 SerialCmds.AddCommand(F("ClearStages"), ClearStages); //Clear the values set in the
stage entry boxes and clear the plot

 SerialCmds.AddCommand(F("SelectStages"), SelectStages);

 pinMode(SSRPin, OUTPUT);
}

//===//
//MAIN LOOP

void loop() {
 SerialCmds.Process();

 float Temp = maxthermo.readThermocoupleTemperature();

 if(RunFlag == 1){
 if(SecTimer.EllapsedSeconds() > CountedSeconds){

 float PlotMinutes = CountedSeconds/60.0;

 int RunningSeconds = CountedSeconds;
 int RunningMinutes = CountedSeconds / 60;
 int RunningHours = RunningMinutes / 60;
 RunningSeconds %= 60;
 RunningMinutes %= 60;
 RunningHours %= 24;

 String RunningTime;

 if(RunningHours < 10){
 RunningTime += "0";
 }
 RunningTime += String(RunningHours) + ":";

74

 if(RunningMinutes < 10){
 RunningTime += "0";
 }
 RunningTime += String(RunningMinutes) + ":";
 if(RunningSeconds < 10){
 RunningTime += "0";
 }
 RunningTime += String(RunningSeconds);

 //Display Elapsed Time
 ControlPanel.SetText(F("TimeElapsed"), RunningTime);

 float RunningDecimalMinutes = CountedSeconds / 60.0;
 float RemainingDecimalMinutes = AccumulatedTime[16] - RunningDecimalMinutes;

// TotalHours = (AccumulatedTime[16] / 60);
// TotalMinutes = (AccumulatedTime[16] - (TotalHours * 60));
// TotalSeconds = (AccumulatedTime[16] - (TotalHours * 60) - TotalMinutes)*60;

 int RemainingHours = (RemainingDecimalMinutes / 60);
 int RemainingMinutes = (RemainingDecimalMinutes - (RemainingHours * 60));
 int RemainingSeconds = (RemainingDecimalMinutes - (RemainingHours * 60) -
RemainingMinutes)*60;

 String RemainingTime;

 if(RemainingHours < 10){
 RemainingTime += "0";
 }
 RemainingTime += String(RemainingHours) + ":";
 if(RemainingMinutes < 10){
 RemainingTime += "0";
 }
 RemainingTime += String(RemainingMinutes) + ":";
 if(RemainingSeconds < 10){
 RemainingTime += "0";
 }
 RemainingTime += String(RemainingSeconds);

 //Display Remaining Time
 ControlPanel.SetText(F("RemainingTime"), RemainingTime);

75

// Serial.print("Cold Junction Temp: ");
// Serial.println(maxthermo.readCJTemperature());
//
// Serial.print("Thermocouple Temp: ");
// Serial.println(maxthermo.readThermocoupleTemperature());
 // Check and print any faults
 uint8_t fault = maxthermo.readFault();
 if (fault) {
 if (fault & MAX31856_FAULT_CJRANGE) Serial.println("Cold Junction Range Fault");
 if (fault & MAX31856_FAULT_TCRANGE) Serial.println("Thermocouple Range Fault");
 if (fault & MAX31856_FAULT_CJHIGH) Serial.println("Cold Junction High Fault");
 if (fault & MAX31856_FAULT_CJLOW) Serial.println("Cold Junction Low Fault");
 if (fault & MAX31856_FAULT_TCHIGH) Serial.println("Thermocouple High Fault");
 if (fault & MAX31856_FAULT_TCLOW) Serial.println("Thermocouple Low Fault");
 if (fault & MAX31856_FAULT_OVUV) Serial.println("Over/Under Voltage Fault");
 if (fault & MAX31856_FAULT_OPEN) Serial.println("Thermocouple Open Fault");
 }

 TempPlot.SendData(F("Programmed Temperature"), PlotMinutes, DesiredTemp,
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 //Plot Furnace Temperature
 TempPlot.SendData(F("Furnace Temperature"), PlotMinutes, Temp, XYPlot::Red,
XYPlot::Solid, 1 ,XYPlot::NoMarker);

 //Display Furnace Temperature
 ControlPanel.SetText(F("FurnaceTemp"), Temp);

 if(CountedSeconds == 0){
 TimeDelta = (StageRampTime[CurrentStage] * 60.0);
 TempDelta = (StageTemp[CurrentStage] - InitialTemp);
 TempIncrement = (TempDelta / TimeDelta);
 TargetTemp = StageTemp[CurrentStage];
 DesiredTemp = InitialTemp;
 }

 //Controlling the Heating Elements
 if(PhaseMode == 0){
 DesiredTemp += TempIncrement;
// Serial.print("Desired Temp: ");
// Serial.println(DesiredTemp);
 }

 //Change PhaseMode Depented on Stage
 if((CountedSeconds / 60.0) >= AccumulatedTime[CurrentPhase]){
 CurrentPhase++;
// Serial.println("PhaseSelection Test");
 //Starting a new stage, Ramping
 if((CurrentPhase % 2) == 0){

76

 CurrentStage++;
 CurrentStageStartTemp = StageTemp[CurrentStage - 1];
 PhaseMode = 0;
 TimeDelta = (StageRampTime[CurrentStage] * 60.0);
 TempDelta = (StageTemp[CurrentStage] - CurrentStageStartTemp);
 TempIncrement = (TempDelta / TimeDelta);
 TargetTemp = StageTemp[CurrentStage];
 DesiredTemp = CurrentStageStartTemp;
// Serial.println("Flip");
 }
 //Done Ramping, now Holding
 else{
 PhaseMode = 1;
 TargetTemp = StageTemp[CurrentStage];
 DesiredTemp = TargetTemp;
// Serial.println("Flop");
 }
 }

 ControlPanel.SetText(F("ProgTemp"), DesiredTemp);

 if(Temp <= DesiredTemp - 0.5){
 digitalWrite(SSRPin, HIGH);
 }
 else if(Temp >= DesiredTemp + 0.5){
 digitalWrite(SSRPin, LOW);
 }
 else{
 digitalWrite(SSRPin, LOW);
 }

 CountedSeconds++;
 }
 if(CountedSeconds >= AccumulatedTime[16]*60){
 EndProgram();
 }
 }

}

//===//
//Serial Command Functions

//Run the furnace when the Start button is pressed
void RunFurnace(CommandParameter &p){
 SecTimer.Reset();
 ControlPanel.ShowControl(F("BtnStop"), true);
 ControlPanel.ShowControl(F("BtnRun"), false);

77

 ControlPanel.DisableControl(F("StageSelection"));
 TempPlot.Clear("Furnace Temperature");
 RunFlag = 1;
}

//Stop the furnace and temperature monitoring when the program reaches the end
void EndProgram(){
 Serial.println("END PROGRAM");
 SecTimer.Reset();
 ControlPanel.ShowControl(F("BtnStop"), false);
 ControlPanel.ShowControl(F("BtnRun"), true);
 ControlPanel.EnableControl(F("StageSelection"));
 ControlPanel.SetText(F("TimeElapsed"), "00:00:00");
 digitalWrite(SSRPin, LOW);
 RunFlag = 0;
 CountedSeconds = 0;
}

//Stop the furnace when the Stop button is pressed
void StopFurnace(CommandParameter &p){
 SecTimer.Reset();
 ControlPanel.ShowControl(F("BtnStop"), false);
 ControlPanel.ShowControl(F("BtnRun"), true);
 ControlPanel.EnableControl(F("StageSelection"));
 ControlPanel.SetText(F("TimeElapsed"), "00:00:00");
 digitalWrite(SSRPin, LOW);
 RunFlag = 0;
 CountedSeconds = 0;
}

void SetStage1(CommandParameter &p){
 StageTemp[0] = p.NextParameterAsInteger();
 StageHoldTime[0] = p.NextParameterAsInteger();
 StageRampRate[0] = p.NextParameterAsInteger();
 StageRampTime[0] = (abs((StageTemp[0]-InitialTemp)) / StageRampRate[0])*60;
}

void SetStage2(CommandParameter &p){
 StageTemp[1] = p.NextParameterAsInteger();
 StageHoldTime[1] = p.NextParameterAsInteger();
 StageRampRate[1] = p.NextParameterAsInteger();
 if(StageTemp[0] > StageTemp[1]){
 if(StageRampRate[1] > MaxRampDownRate){
 StageRampRate[1] = MaxRampDownRate;
 }
 }
 StageRampTime[1] = (abs((StageTemp[1] - StageTemp[0])) / StageRampRate[1])*60;
}

78

void SetStage3(CommandParameter &p){
 StageTemp[2] = p.NextParameterAsInteger();
 StageHoldTime[2] = p.NextParameterAsInteger();
 StageRampRate[2] = p.NextParameterAsInteger();
 if(StageTemp[1] > StageTemp[2]){
 if(StageRampRate[2] > MaxRampDownRate){
 StageRampRate[2] = MaxRampDownRate;
 }
 }
 StageRampTime[2] = (abs((StageTemp[2] - StageTemp[1])) / StageRampRate[2])*60;
}

void SetStage4(CommandParameter &p){
 StageTemp[3] = p.NextParameterAsInteger();
 StageHoldTime[3] = p.NextParameterAsInteger();
 StageRampRate[3] = p.NextParameterAsInteger();
 if(StageTemp[2] > StageTemp[3]){
 if(StageRampRate[3] > MaxRampDownRate){
 StageRampRate[3] = MaxRampDownRate;
 }
 }
 StageRampTime[3] = (abs((StageTemp[3] - StageTemp[2])) / StageRampRate[3])*60;
}

void SetStage5(CommandParameter &p){
 StageTemp[4] = p.NextParameterAsInteger();
 StageHoldTime[4] = p.NextParameterAsInteger();
 StageRampRate[4] = p.NextParameterAsInteger();
 if(StageTemp[3] > StageTemp[4]){
 if(StageRampRate[4] > MaxRampDownRate){
 StageRampRate[4] = MaxRampDownRate;
 }
 }
 StageRampTime[4] = (abs((StageTemp[4] - StageTemp[3])) / StageRampRate[4])*60;
}

void SetStage6(CommandParameter &p){
 StageTemp[5] = p.NextParameterAsInteger();
 StageHoldTime[5] = p.NextParameterAsInteger();
 StageRampRate[5] = p.NextParameterAsInteger();
 if(StageTemp[4] > StageTemp[5]){
 if(StageRampRate[5] > MaxRampDownRate){
 StageRampRate[5] = MaxRampDownRate;
 }
 }
 StageRampTime[5] = (abs((StageTemp[5] - StageTemp[4])) / StageRampRate[5])*60;
}

79

void SetStage7(CommandParameter &p){
 StageTemp[6] = p.NextParameterAsInteger();
 StageHoldTime[6] = p.NextParameterAsInteger();
 StageRampRate[6] = p.NextParameterAsInteger();
 if(StageTemp[5] > StageTemp[6]){
 if(StageRampRate[6] > MaxRampDownRate){
 StageRampRate[6] = MaxRampDownRate;
 }
 }
 StageRampTime[6] = (abs((StageTemp[6] - StageTemp[5])) / StageRampRate[6])*60;
}

void SetStage8(CommandParameter &p){
 StageTemp[7] = p.NextParameterAsInteger();
 StageHoldTime[7] = p.NextParameterAsInteger();
 StageRampRate[7] = p.NextParameterAsInteger();
 if(StageTemp[6] > StageTemp[7]){
 if(StageRampRate[7] > MaxRampDownRate){
 StageRampRate[7] = MaxRampDownRate;
 }
 }
 StageRampTime[7] = (abs((StageTemp[7] - StageTemp[6])) / StageRampRate[7])*60;
}

//Set the stages based on the values entered in the stage parameter boxes and update the plot
to show the temperature profile
void SetStages(CommandParameter &p){
 TempPlot.Clear("Temperature Profile");
 TempPlot.Clear("Programmed Temperature");
 TempPlot.Clear("Furnace Temperature");

 InitialTemp = maxthermo.readThermocoupleTemperature();

 AccumulatedTime[0] = StageRampTime[0];
 AccumulatedTime[1] = StageHoldTime[0]+AccumulatedTime[0];

 int i;
 for(i=1; i<NumStages; i++){
 AccumulatedTime[2*i] = StageRampTime[i]+AccumulatedTime[(2*i)-1];
 AccumulatedTime[(2*i)+1] = StageHoldTime[i]+AccumulatedTime[2*i];
 }

 AccumulatedTime[16] = AccumulatedTime[(2*(i-1))+1]; // + (((StageTemp[(i-1)] - 21.5)) /
(MaxRampDownRate / 60.0));

 TotalHours = (AccumulatedTime[16] / 60);
 TotalMinutes = (AccumulatedTime[16] - (TotalHours * 60));
 TotalSeconds = (AccumulatedTime[16] - (TotalHours * 60) - TotalMinutes)*60;

80

 String TotalTime;
 if(TotalHours < 10){
 TotalTime += "0";
 }
 TotalTime += String(TotalHours) + ":";
 if(TotalMinutes < 10){
 TotalTime += "0";
 }
 TotalTime += String(TotalMinutes) + ":";
 if(TotalSeconds < 10){
 TotalTime += "0";
 }
 TotalTime += String(TotalSeconds);

 ControlPanel.SetText(F("TotalTime"), TotalTime);

 //TempPlot.SendData("Programmed Temperature", AccumulatedTime[16], 21.5,
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);

 switch (NumStages){
 case 8:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[15], StageTemp[7],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[14], StageTemp[7],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 7:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[13], StageTemp[6],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[12], StageTemp[6],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 6:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[11], StageTemp[5],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[10], StageTemp[5],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 5:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[9], StageTemp[4],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[8], StageTemp[4],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 4:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[7], StageTemp[3],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[6], StageTemp[3],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 3:

81

 TempPlot.SendData("Temperature Profile", AccumulatedTime[5], StageTemp[2],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[4], StageTemp[2],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 2:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[3], StageTemp[1],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[2], StageTemp[1],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 case 1:
 TempPlot.SendData("Temperature Profile", AccumulatedTime[1], StageTemp[0],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 TempPlot.SendData("Temperature Profile", AccumulatedTime[0], StageTemp[0],
XYPlot::Black, XYPlot::Solid, 1 ,XYPlot::NoMarker);
 }

 TempPlot.SendData("Temperature Profile", 0, InitialTemp, XYPlot::Black, XYPlot::Solid,
1 ,XYPlot::NoMarker);
}

//Clear all values entered in the stage parameters
void ClearStages(CommandParameter &p){
 TempPlot.Clear("Temperature Profile");
 ControlPanel.SetNumber(F("Stage1Temp"), 0); ControlPanel.SetNumber(F("Stage1Time"),
0); ControlPanel.SetNumber(F("Stage1Ramp"), 0);
 ControlPanel.SetNumber(F("Stage2Temp"), 0); ControlPanel.SetNumber(F("Stage2Time"),
0); ControlPanel.SetNumber(F("Stage2Ramp"), 0);
 ControlPanel.SetNumber(F("Stage3Temp"), 0); ControlPanel.SetNumber(F("Stage3Time"),
0); ControlPanel.SetNumber(F("Stage3Ramp"), 0);
 ControlPanel.SetNumber(F("Stage4Temp"), 0); ControlPanel.SetNumber(F("Stage4Time"),
0); ControlPanel.SetNumber(F("Stage4Ramp"), 0);
 ControlPanel.SetNumber(F("Stage5Temp"), 0); ControlPanel.SetNumber(F("Stage5Time"),
0); ControlPanel.SetNumber(F("Stage5Ramp"), 0);
 ControlPanel.SetNumber(F("Stage6Temp"), 0); ControlPanel.SetNumber(F("Stage6Time"),
0); ControlPanel.SetNumber(F("Stage6Ramp"), 0);
 ControlPanel.SetNumber(F("Stage7Temp"), 0); ControlPanel.SetNumber(F("Stage7Time"),
0); ControlPanel.SetNumber(F("Stage7Ramp"), 0);
 ControlPanel.SetNumber(F("Stage8Temp"), 0); ControlPanel.SetNumber(F("Stage8Time"),
0); ControlPanel.SetNumber(F("Stage8Ramp"), 0);
}

//Update the control panel to the selected number of stages
void SelectStages(CommandParameter &p){
 NumStages = p.NextParameterAsInteger();
 switch (NumStages){
 case 1:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), false);
 ControlPanel.ShowControl(F("Stage3"), false);

82

 ControlPanel.ShowControl(F("Stage4"), false);
 delay(10);
 ControlPanel.ShowControl(F("Stage5"), false);
 ControlPanel.ShowControl(F("Stage6"), false);
 ControlPanel.ShowControl(F("Stage7"), false);
 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 2:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), false);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), false);
 ControlPanel.ShowControl(F("Stage5"), false);
 ControlPanel.ShowControl(F("Stage6"), false);
 ControlPanel.ShowControl(F("Stage7"), false);
 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 3:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), true);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), false);
 ControlPanel.ShowControl(F("Stage5"), false);
 ControlPanel.ShowControl(F("Stage6"), false);
 ControlPanel.ShowControl(F("Stage7"), false);
 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 4:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), true);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), true);
 ControlPanel.ShowControl(F("Stage5"), false);
 ControlPanel.ShowControl(F("Stage6"), false);
 ControlPanel.ShowControl(F("Stage7"), false);
 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 5:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), true);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), true);
 ControlPanel.ShowControl(F("Stage5"), true);
 ControlPanel.ShowControl(F("Stage6"), false);
 ControlPanel.ShowControl(F("Stage7"), false);

83

 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 6:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), true);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), true);
 ControlPanel.ShowControl(F("Stage5"), true);
 ControlPanel.ShowControl(F("Stage6"), true);
 ControlPanel.ShowControl(F("Stage7"), false);
 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 7:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), true);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), true);
 ControlPanel.ShowControl(F("Stage5"), true);
 ControlPanel.ShowControl(F("Stage6"), true);
 ControlPanel.ShowControl(F("Stage7"), true);
 ControlPanel.ShowControl(F("Stage8"), false);
 break;
 case 8:
 ControlPanel.ShowControl(F("Stage1"), true);
 ControlPanel.ShowControl(F("Stage2"), true);
 ControlPanel.ShowControl(F("Stage3"), true);
 delay(10);
 ControlPanel.ShowControl(F("Stage4"), true);
 ControlPanel.ShowControl(F("Stage5"), true);
 ControlPanel.ShowControl(F("Stage6"), true);
 ControlPanel.ShowControl(F("Stage7"), true);
 ControlPanel.ShowControl(F("Stage8"), true);
 break;
 }
}

