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Abstract

The goal of this project was to create a hardware and software platform for performing 5-axis
additive manufacturing. The 5-axis 3D printer translated in the x-, y-, and z-axes, and rotated
in the a- and b-axes. Although the hardware printed using fused deposition modeling (FDM),
the platform was adaptable to a variety of deposition systems such as cold spray. The software
converted a 3D model into 5-axis instructions for the printer, with no further user input. This
software made 5-axis 3D printing, previously a niche research area, accessible to anyone with a 3D
object file.
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Chapter 1

Introduction

Additive manufacturing (AM) is relatively new to the manufacturing space, but has revolution-
ized the way in which objects are created. Previously, the popular method of manufacturing a part
or product out of a solid block of material was to remove material until only the desired geometry
remains. This method is known as subtractive machining (SM) and can be seen in the form of lathes
or computer numerically controlled (CNC) mills, as shown in Figure 1.1. In contrast, AM works by
depositing material to build up the shape of the object. This is typically done in a layer-by-layer
fashion called layered manufacturing (LM). The object is "sliced" from its base up to its highest
extreme, creating a sequence of planar layers which will be deposited independently, one after the
other. A consumer-grade layered manufacturing machine, or 3D printer, is depicted in figure 1.2a.
AM has many benefits over SM, such as efficiency in low volume production and prototyping and a
simplified process[12]. There are many disadvantages, however, to LM, particularly with consumer
3D printers.

(a) Lathe
(b) CNC Mill

Figure 1.1: (a) shows a lathe cutting down a metal rod spinning very quickly to shape. (b) shows
a CNC mill using a drill to remove material from a block of metal.

One disadvantage of LM is that in order for material to be deposited, there must be previously
deposited material directly underneath it. As a result, objects with overhanging features cannot
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(a) 3D printer
(b) The support structures for a Lego brick built at
an odd angle

Figure 1.2: 1.2a shows a 3D printer depositing the material for an object layer by layer[11] 1.2b
shows the support structures for a Lego brick built at an odd angle.[18]

be printed unless support structures are also printed beneath the overhang, as shown in Figure
1.2b. Printing support structures increases the amount of material used, print time, and post-print
processing, which usually involves the manual removal of the support structures from the final part
[3].

One way to minimize the need for support structures is the implementation of a 5-axis 3D
printer, in which either the nozzle or the base platform has two additional rotational axes. These
axes allow the printer to deposit material in different orientations. The potential impact of a 5-axis
3D printer on AM can be compared to the impact of a similar advancement in the SM space,
with which the industry jumped from 3-axis to 5-axis machines. To further improve 5-axis SM,
researchers such as Mahadevan Balasubramaniam published research on the automatic toolpath
generation for the process. These substantial advancements also reduced manufacturing time and
cost, and allowed for the manufacturing of previously impossible geometries.

This paper describes the design and implementation of an original 5-axis 3D printing system.
This system includes hardware for a 3D printer with 5 degrees of freedom, as well as software to
facilitate in the use of hardware and remove the need for skilled operators. We have developed
a complete software package which automates the toolpath generation for a 5-axis 3D printer
instructions for 3D models. By detecting simple overhanging features of a 3D model, the software
makes use of the benefits of the 5-axis printer by generating instructions to print these overhangs
at the appropriate orientations to reduce support structures. We also designed and built the 5-axis
3D printer hardware compatible with the aforementioned software. Our 3D printer hardware used
a standard stationary material extruder coupled with a base plate operating in the three Cartesian
axes, similar to a traditional 3D printer. Our printer hardware adds two additional rotational axes,
B and A, to the build plate. These additional axes provide the capability to rotate the object being
printed, and thereby print some overhang features without support structures. This closed system
of both software and hardware allows for simple, automated 5-axis printing.

This project began as a entrepreneurial endeavor, targeting the market for a unique 5-axis
printer. We participated in the Accelerate WPI program, an entrepreneurial program funded by
WPI, to develop a value proposition and find customer segments. Interviews with potential cus-
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tomers, industry professionals, and other 3D printing start-ups helped to identify consumer pain
points with existing 3D printers. These pain points included low build quality, time consuming
prints, steep learning curves, and unreliability. Based on these insights into the 3D printing mar-
ket, we pivoted our value proposition from a 5-axis 3D printer to an easy-to-use, intuitive, and
reliable 3D printer. We also presented our product and progress to the WPI Board of Trustees, the
Dean of Engineering Advisory Board, and to WPI’s Tech Advisory Network.
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Chapter 2

Background

2.1 Additive Manufacturing
Additive manufacturing (AM) is a manufacturing technique that is growing rapidly and expand-

ing the scope of manufacturing. Commonly referred to as 3D printing, AM was first proposed in the
1980’s as an alternative to the traditional fabrication process, in which useless material was removed
from an solid block until the desired shape was obtained. This process, also known as subtractive
manufacturing (SM), uses tools such as lathes and milling machines to create the desired shape [17].
In contrast, AM involves the deposition of planar layers to build a predefined 3-dimensional shape,
and as such is also referred to as layered manufacturing (LM) [2]. The LM process has exploded
into many different areas of manufacturing, with over 30,000 3D-printing-related patents filed in
the United States alone. Not only is AM an important manufacturing process for many industries,
it is also extremely affordable, enabling home inventors to expand their manufacturing capabilities.
The rapid growth, wide range of applicability, and recent affordability all suggest that we are at
the beginning of a manufacturing revolution [17].

Additive manufacturing provides many benefits over traditional manufacturing techniques. Per-
haps one of the most well known and widely taken advantage of benefits of additive manufacturing
is the speed and ease at which a part can be manufactured. AM helps to bridge the gap between a
computer model of a shape, and the physical part itself. In other words, AM provides an extremely
fast method of manufacturing a part from an arbitrary computer model, allowing the manufacturer
to avoid the many iterative stages that are typically involved in manufacturing. Using traditional
manufacturing, even simple changes or complexities in a design can dramatically increase the num-
ber of stages that must be carried out to manufacture the end product. AM has been widely
referred to as rapid prototyping (RP) as a result of these advantages. The process has primarily
been used to speed up the prototyping of parts, which would often hinder other phases of product
development [14].

In addition to the fast pace at which AM can bring a computer model into the physical world,
AM can also substantially reduce the cost of manufacturing by reducing the number of processes
and resources required for manufacturing. Using traditional manufacturing techniques may require
many different processes, which might include molding, CNC machining, hand carving, etc. Each
process requires different, often expensive resources, as well as expertise about the process. De-
pending on the computer model to be manufactured, all of these processes may be required at once.
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In contrast, using AM to manufacture a computer model typically requires fewer steps, using a
single process regardless of geometric complexity. In fact, the higher the geometric complexity, the
greater the advantage AM has over CNC machining [14]. The cost benefits are another benefit that
make AM great for rapid prototyping. However, with recent developments in the process AM has
proven to be a useful manufacturing technique in many more areas than just rapid prototyping.

AM is no longer simply a fast process for prototype manufacturing. As technologies have
developed and additive manufacturing has been explored more thoroughly, the process has begun
to move from a prototype-focused process to one that can be used to manufacture parts fit for
end use. This is a result of advances in accuracy and material properties of 3D printing. Parts
manufactured using AM are now used for a variety of applications, including medical prosthetics,
aerospace applications, and automotive applications [14].

2.2 3-axis vs. 5-axis 3D printing
Traditionally, 3D printers have three degrees of freedom, allowing the nozzle to move in the 3

axes defined by the 3D Cartesian coordinate system: x, y, and z [22] as illustrated in Figure 2.1.
These printers build from the bottom up, creating the bottom layer of the object on a flat platform,
then moving in the positive z direction to build the next layer. This means the z -axis value of the
nozzle of the printer only moves in a positive direction once printing begins. A setback of this layer
by layer technique is that all extruded material must have previously extruded material below it
to prevent it from falling. A feature which does not have material directly below it is referred to
as an overhang. 3D printers are typically capable of printing overhangs which extend from existing
material below a given angle with no support structures. This maximum angle is usually 45 degrees
from the build direction but varies depending on the material. The weight and adhesive properties
of the printing material are two factors which impact the maximum overhang angle. For overhangs
that extend from existing material at a angle greater than this maximum angle, support structures
must be built below the overhang to prevent it from falling. These support structures require
extra material and printing time, and must be manually removed from the object after printing is
completed, which is a tedious process and can damage the surface quality of the object. Figure 2.2
shows two different overhangs: (a), which is printable without the use of support structures, and
(b) which requires support structures to be printed.
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Figure 2.1: A 3 dimensional coordinate system, with axes X, Y, and Z. The X-coordinate of point
P is a, the Y-coordinate is b, and the Z-coordinate is c [21].

Figure 2.2: Two different overhangs: (a) is a printable without the need for support structures,
and (b) requires support structures to support the overhanging feature, which is at an angle of 90
degrees

One way to minimize the need for support structures is the implementation of a 5-axis 3D
printer, in which either the nozzle or the base platform has two additional rotational axes. These
axes allow the printer to deposit material in more than one direction. Figure 2.3 represents the
approach taken to print a part with an overhang using rotational axes on the base platform of the
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Figure 2.3: The basic overview of the steps involved in printing a simple part with an overhang.
In order to print the part represented in (e), the build platform rotates along with any previously
deposited material. This allows overhangs to be deposited onto previously deposited material,
such as from (b) to (c). (f) shows the output of a traditional 3-axis 3D printer, which deposits
support structures to support overhanging features.

printer. In Figures 2.3(b) and (c), the base platform rotates the part, allowing the overhang to
be deposited. The part must then be rotated again to print the rest of the object. Figure 2.3(f)
shows what final printed object would look like without 5-axes, using support material to support
the overhang.

2.3 Computer 3D model representations
AM typically uses a 3D model of the geometry, which is then converted into instructions for

the printer hardware. Meshes are a common representation of 3D objects, in which each face of a
finite set of faces is discretely represented [leon]. This finite set of faces represents a 3D model or
a collection of disjoint 3D models. Because of this format, there are no curved surfaces. Instead,
"curves" are represented as many small faces, with the size depending on the resolution of the
StereoLithography (STL) file. An STL file, created by 3D Systems Inc., is a common file type for
representing meshes in many 3D printing softwares [24]. An STL file represents a 3D object as a
collection of unidirectional triangular faces, meaning a face which has only one orientation. Each
face represents face of the mesh, and is represented with a normal vector and three vertices, each
represented with three numbers in Cartesian form.

2.4 3-axis slicing algorithms
In order to 3D print an object using 3-axis AM, a mesh of the object is converted into layer by

layer instructions for the printer. Thanks to software both open-source and proprietary, this process
has been automated into a single step [17]. To generate instructions for the printer hardware, slicing
software divides the object into horizontal flat slices which lie perpendicular to the build direction,
which is always the positive z-axis. Each printer has a defined layer height, which is the thickness
of the material being extruded from the nozzle. Moving positively along the build direction by
increments of the layer height, a slicing algorithm divides the shape into slices until the entire
height of the object has been sliced [2]. The slices can then be used to generate a toolpath, or a
pattern for the material deposition of an entire 3 dimensional object [3]. Open-source consumer
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slicing software packages such as Cura [20] and Slic3r [19] also automate the generation of support
structures in order to resolve complications caused by overhangs described in Chapter 2.5.

Existing 3-axis slicing software provides solutions to many different problems that 5-axis 3D
printing has in common. Although 3-axis slicing and toolpath algorithms are very relevant to 5-
axis slicing and toolpath algorithms, this paper does not explore these algorithms in detail. Instead,
the 3-axis toolpath software is used without modification to directly solve sub-problems of 5-axis
toolpath generation, as described in Chapter 3.2. These algorithms have been studied extensively.

Of more interest is the ability to generate support structures, which involves the detection of
overhanging features as well. One way to detect overhanging faces is to simply take each face of the
object and measure it’s normal relative to the build direction. If that angle is greater than some
cutoff (typically 45 degrees), then it’s considered an overhang face and is marked for support [13].
The second part, generation of the support structure shape, is much more nuanced. A variety of
solutions have been developed to solve this problem, ranging from cellular support structures [9],
meant to remove as much volume as possible from the structure, to tree-like structures which branch
out from each other to create far-reaching supports with minimal material [13]. The detection of
overhanging features on an object is discussed in Chapter 2.5 as it relates to 5-axis slicing algorithms.

2.5 5-axis slicing algorithms
Adding two or more rotational axes to traditional three axes 3D printers enables the ability of

overhang deposition without support structures. The rotational axes, which are implemented on
the printer as either nozzle or base platform movement axes [16], allow for better surface quality,
reduced print time, and minimal post-processing, which usually involves removing the support
structures from the final part [3]. In order to generate the printer toolpaths for 5-axis printing,
however, a team of researchers is usually required to customize controls for the printer for specific
geometries [16]. Unlike 3-axis 3D printing, 5-axis printing has no software package which makes
slicing and toolpath generation a single automated step. In this paper, a description of the software
implementation and hardware necessary to perform such 5-axis 3D printing in a single step is
provided.

Despite the lack of existing 5-axis slicing and toolpath generation software, there has been a
number of publications describing algorithms needed to create such software. The problem descrip-
tion is relatively constant throughout the previous research on the topic: "How much of a part
should be made in a particular direction and why?" [3, p.129].

In order to answer this question, it is important to first understand the different factors which
the software must take into account in order to generate a printer toolpath. These factors include
the collision of the nozzle with the printed piece, the support of the printed material such that
it does not collapse under its own weight, and the minimization of support structure use. By
optimizing the toolpath according to these factors, a 5-axis printer using the generated toolpath
from the software can accomplish the previously listed benefits of 5-axis over 3-axis 3D printing.

The steps that must be taken in an algorithm which slices and generates a toolpath for an object
are common to various publications which attempt to outline such an algorithm. These are the
core steps which were used to design our algorithm and software, listed below [3] [16] [6].

• Decomposing the volume into sub-volumes

• Determining the build orientation for sub-volumes
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• Sequencing the sub-volumes

Volume Decomposition

The first objective in 5-axis slicing and path planning is the identification of overhang surface
features which cannot be built without rotation or support structures. In "Slicing Algorithms for
Multi-Axis 3-D Metal Printing of Overhangs", Lee and Jee observe that the detection of under-
cut/overhang features, when given an STL file is "a simple set theory between two adjacent sliced
layers" [16],p. 5141. The upper slice, Sk

T, and the lower slice, Sk
B, are compared to determine

the topology relationship. Only four different relationships can occur, which are shown in Figure
2.4. Using the relationship between two layers, we can begin to deconstruct the volume into sep-
arate sub-volumes. By separating each layer into buildable and unbuildable parts, we can sum all
unbuildable parts of all layers to find the unbuildable sub-volume [16]. The buildable parts of all
layers can also be summed to determine the buildable volume.

Figure 2.4: Only four topology relationships are possible between two adjacent layers: (a) a
partial overlap, (b) a complete inclusion such that the bottom slice is completely contained in the
top slice, (c) a complete inclusion such that the top slice is completely contained in the bottom
slice, and (d) a complete overlap[16]

There are various other approaches that are taken to this problem which are outlined in other
publications. In "A Slicing Procedure for 5-Axis LaserAided DMD Process," Sundaram and Choi
propose the use of surface interrogation to detect overhangs. This approach, which compares the
surface normals to the z-axis, examines all points on the surface of the object, marking any angle
which exceeds the maximum overhang as an unbuildable surface. Once the lowest overhang point is
determined, An intersection graph is created by intersecting a plane horizontal to the z axis at said
lowest point with the object. By sweeping this intersection graph in the build direction, buildable
and unbuildable sub-volumes can be identified [6].

Singh and Dutta improve on this technique in "Multi-Direction Slicing for Layered Manufactur-
ing" in order to resolve a substantial error that Sundaram and Choi overlooked in their algorithm.
Singh and Dutta use silhouette edges, as opposed to all surfaces with an unbuildable normal, to
determine which surfaces are buildable [3]. Despite this improvement, both algorithms require a
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Figure 2.5: Representation of a build map where all values corresponding to a normal pi are
removed from the build map. The plane Hi represents the area of the build map to be removed.[3]

3-dimensional sweep of a two-dimensional shape, which is a complex algorithm. In addition, the vol-
ume decomposition may need to be recursively performed when a identified connected sub-volume
cannot be build in any single build direction. For this reason, in addition to the existence of a
previously implemented overhang detection algorithm loosely based on Sundaram and Choi’s tech-
nique in the open source Cura Engine, we focused on Sundaram and Choi’s research for volume
decomposition.

Sub-volume Orientation

Once sub-volume decomposition is complete, a build direction must be assigned for each sub-
volume which cannot be built along the original build direction. Singh and Dutta propose a concept
of a "build map" to represent a set of valid build directions, with a valid build direction defined as a
orientation at which the entire sub-volume can be built, layer by layer, without support structures
or further decomposing the sub-volume into more sub-volumes [3]. It is possible for a build map
to be empty for a given sub-volume, in which case the sub-volume may need to be decomposed
further or support structures may be required [3]. A build map is represented as a filled portion of
a sphere’s surface, where any vector that has its origin at the sphere’s origin and passes through
the filled portion of the sphere’s surface is a valid build direction, shown in Figure 2.5.

The build map starts out as a representation of a sphere’s surface. Then, for every face on
the sub-volume, a certain portion of the sphere is subtracted from the build map. The portion
subtracted is the surface created by every point where the angle between the normal of the face and
the point is greater than π − θmax. Once this has been done for each face on the sub-volume, any
portion of the sphere’s surface that remains is a valid build direction. While this provides a way of
determining a valid orientation, it does not guarantee that a given valid orientation will not cause
the nozzle to collide with other parts of the object while constructing the sub-volume. Collision
detection must be done separately, and with proper sequencing each sub-volume can be built at its
optimal orientation. Once again, a sequence of sub-volumes that causes no collisions may not exist,
in which case sub-volumes may need to be built at different orientations or support structures may
be needed [3].
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Figure 2.6: The side view of an example of an invalid sequencing computed using the process
described in [6]. (a) shows the figure that is being constructed using a 5-axis 3D printer. (b)
Shows the initial sequencing after the first volume decomposition. (c) shows the sequencing of
sub-volumes after all sub-volumes are decomposed. In order to print sub-volume 4 of (c), the print
nozzle must move in the area indicated by the green box. A collision occurs when the nozzle
collides with sub-volume 2, indicated by a red square.

Sub-volume Sequencing

The order in which sub-volumes are printed is determined by two constraints. First, a base for
which to print the sub-volume upon must exist. That is, if sub-volume a is being printed using
sub-volume b as a base, sub-volume b must be printed before sub-volume a. Second, collisions
between the nozzle and layers that have already been deposited must be avoided [3]. To solve this
problem, Sundaram and Choi propose simply extruding sub-volumes in order of their heights [6].
This does not, however, take into account any sub-volumes which must be further subdivided. An
example in which this technique does not provide a valid build sequence is shown in Figure 2.6.
Figure 2.6a shows a two-dimensional representation of the three-dimensional object which is being
printed. Figure 2.6c shows the object divided into it’s four sub-volumes as described in Section
3.2.1. Using Sundaram and Choi’s solution, sub-volume’s 3 and 4 will be printed first, resulting in
a collision with sub-volume 2 when printing sub-volume 4.

Path planning

Slicing and path planning are the final steps in generating instructions for the 3D printer. Slicing
refers to the division of an object into equal thickness parts along the build direction. Unlike 3-
axis 3D printing, this build direction is not constant in 5-axis printing. Path planning refers to
the material deposition patterns within each slice [3]. Volume slicing for 3-axis printers has been
extensively studied, as well as implemented in consumer software packages such as Cura and Slic3r.
The division of a volume into sub-volumes which can be printed completely along one build direction
can be used to produce a full 5-axis slicing and toolpath for an object. Due to the fact that 3-axis
slicing and path planning has been extensively studied and implemented, this paper assumes the
ability to generate these toolpaths. Section 3.2 describes further how to generate a 5-axis toolpath
with this information.

2.6 5-axis 3D printer
Only a few examples of 5-axis 3D printing have been created and made public, such as DMG

MORI’s LASERTEC 65 3D, TWI’s Laser Metal Deposition Printer, and Øyvind Kallevik Grutle’s
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Pentrarod [10] [23] [15]. These systems however, lack a robust software that will generate G-code
for any arbitrary STL file. The G-code used for test objects with Grutle’s Pentarod were taken
from CNC machine G-code and altered by hand to work the 5-axis printer [15]p. 56. Despite their
limitations, these systems were the foundation for our 3D printer. As the LASERTEX 65 3D is a
proprietary system, not much information was able to be retrieved about how the system is built
and works. However, Grutle’s Pentarod design is published in a Master’s Thesis paper from the
University of Oslo and is available academically.

There are three types of configurations a 5-axis 3D printer can use: table/table, head/table, and
head/head [15]. In a table/table configuration, the build platform of the printer rotates in the two
additional axes, A andBb, while the nozzle stays fixed at a given orientation, still able to move in
the three Cartesian coordinate system axes. In a head/table configuration, the table rotates in one
additional axis, either A or B, and the nozzle can rotate in the other axis, still providing the same
degrees of freedom. In a head/head configuration, the build platform remains stationary, while
the nozzle rotates in both rotational axes in addition to the Cartesian coordinate system axes [15]
p. 10-11. While all configurations provide the same degrees of freedom, they each have their own
distinct strengths and weaknesses. These differences include issues with the weight of the object
being printed, accuracy, and material deposition [15] p. 24.
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Chapter 3

Methodology

3.1 Overview
This chapter describes the design and implementation of an original 5-axis 3D printing system.

This system includes hardware for a 3D printer with 5 degrees of freedom, as well as software to
facilitate in the use of hardware and remove the need for skilled operators. We have developed
a complete software package which automates the toolpath generation for a 5-axis 3D printer
instructions for a limited set of 3D models. By detecting simple overhanging features of a 3D
model, the software made use of the benefits of a 5-axis printer by generating instructions to print
these overhangs at the appropriate orientations to reduce support structures. We also designed and
built the 5-axis 3D printer hardware compatible with the aforementioned software. Our 3D printer
hardware used a standard stationary material extruder coupled with a base plate operating in the
three Cartesian axes, similar to a traditional 3D printer. Our printer hardware adds two additional
rotational axes, B and A, to the build plate. These additional axes provide the capability to rotate
the object being printed, and thereby print some overhang features without support structures.
This closed system of both software and hardware allows for simple, automated 5-axis printing.

3.2 Software
In order to create a user friendly 5-axis 3D printer, a software package is necessary to allow

the user to simply input a 3D object file and generate instruction for the 5-axis printer. In this
chapter, we discuss the algorithms developed and implemented to solve the four main sub-problems
which compose the overall task of generating these 5-axis printer instructions for an arbitrary 3D
model. First, volume decomposition breaks the 3D object into smaller 3D "sub-volumes," such
that all overhanging volumes which would normally require support structures are disjoint. Then,
sub-volume orientation determines which orientation each sub-volume can be built in. Sub-volume
sequencing outputs an sequence of sub-volumes which allow them to be built with no collisions or
complications. Finally, path planning uses the output of these algorithms to generate the tool path
for the 5-axis 3D printer.
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3.2.1 Volume Decomposition
In order to minimize the use of support structures by varying the orientation at which an

overhanging feature is built, the volume of each overhanging feature must be separated from the
original volume so that it can be processed independently, as described in the following sections. By
separating all overhanging volumes from the original volume, the result is one buildable sub-volume
which can be built entirely without support structures, and a collection of sub-volumes which must
be built at different orientations to avoid the use of support structures. Several factors must be
accounted for in performing this decomposition, which are:

1. Mesh integrity

2. Overhang bases

3. Speed of computation

The integrity of the mesh refers to maintaining a mesh, such that each triangular face is sur-
rounded by three other faces, sharing exactly one edge with each surrounding face. This issue
frequently arises when performing mesh operations to disconnect sub-volumes that are identified as
overhangs from the buildable volume of object. In order to make any given cut on a mesh, which
separates the mesh into two disjoint meshes, any existing face intersecting the cut must be cut by a
line which is determined by projecting the plane of the cut onto the face. As shown in Figure 3.1a
and Figure 3.1b, the ideal cut frequently results in the need to split a triangle into a triangle and
a quadrilateral. As a quadrilateral face is not compatible with a mesh representation, additional
calculations must be performed to maintain the integrity of the mesh and divide the quadrilateral
into two triangular faces, as seen in Figure 3.1b.
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(a) Overhang cut (b) Evenly split faces, side A

(c) Evenly split faces, side B

Figure 3.1: (a) shows how cutting the overhang clean through would result in open faces. (b) and
(c) both show how the faces cut in two (yellow) would be further split to maintain mesh integrity
(red).

Overhang bases are also and important factor in build decomposition. Any sub-volume which is
determined to be an overhang must be printed onto a surface on previously deposited material. If
this surface is not generally flat, it may present difficulties for layer adhesion and nozzle collisions.
It is therefore important that the volume decomposition algorithm takes into account the simplicity
of overhang bases when determining the optimal cut to separate an overhanging volume from the
base volume.

Although solutions to the mesh integrity and overhang base problems exist, the difficulty is in
performing them in a reasonable time-frame for the user. Since overhangs may themselves have
overhangs, this algorithm is recursive and must run as many times as there are total overhang
volumes. Each time the algorithm runs, it must iterate through all of the faces in the buildable and
unbuildable meshes. This gives a O(N2) run time, where N is the number of faces on the mesh to
be printed. In order to mitigate the effects of this run-time, special attention is paid to the number
of individually buildable overhangs in the input mesh. The algorithm will run recursively through
sub-meshes for as many sub-meshes as are identified, which translates directly to the number of
overhangs.
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The completed algorithm was split up into several steps:

1. Identifying transition faces

2. Finding the cut along a transition face

3. Splitting the transition face smoothly

4. Recursing through the overhang base faces

5. Assembling the final sub-mesh graph

The algorithm begins by going through all sliced layers of the object. For each layer, it iterates
through all the faces which contributed segments to the layer and identifies which ones belong to
both an unbuildable mesh (overhang) and the buildable mesh; these are known as transition faces.
Each transition face is split into two or more sub-faces in order to create a smooth cut between the
meshes, and then its neighbors are checked to find more transition faces. The algorithm recurses
through neighbors of transition faces until it returns back to the original transition face, essentially
cutting off the entire unbuildable mesh from the buildable mesh. The overhang mesh is added to
the graph of meshes, with the buildable mesh as its parent. Once all unbuildable meshes have been
discovered, each one has the algorithm recursively called on it to discover any further overhangs.

Identifying Transition Faces

To identify transition faces, the algorithm begins by slicing the mesh in its designated build
direction, as a standard 3-axis slicer would. Each layer is a 2D polygon representing one slice of
the object that will be printed. Two types of layers are used in this portion of the algorithm: the
current layer and the comparison layer. Understanding what each of these layers does is crucial to
the identification process.

The comparison layer essentially represents the boundary for any faces which should be consid-
ered buildable. When a face is flattened by simply eliminating the z-component of its three vertices,
the resulting vertices can be checked to see if they fall inside or outside the comparison polygon.
This can be seen in Figure 3.2 A face with all three of its vertices inside or on the boundary, of the
comparison polygon is considered a buildable face. Any face with all three of its vertices outside
the comparison polygon is part of an overhang. Finally, any face with some vertices inside and
some vertices outside the polygon is a transition face, meaning it connects the buildable mesh with
the unbuildable mesh.

This layer is used in conjunction with the current layer to identify all buildable and unbuildable
components of a volume. The current layer is simply the slice of the object that is currently being
processed. Each face that contributed to a segment of the current layer is flattened and checked for
membership to the buildable, unbuildable, or transition faces using the comparison layer.

By iterating through all layers of the object and using the comparison layer and current layer,
all transition faces can be identified. The algorithm begins by setting the first layer of the object
as the initial comparison layer, and the second layer as the current layer. Each face in the current
layer is iterated through and checked to see if it is a transition face. If it is, the face is passed into
a separate function which identifies the cut points where the face will be split into sub-faces for
buildable and unbuildable meshes.
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(a) Non-overhanging face

(b) Fully overhanging face

(c) Transition face

Figure 3.2: All three cases encountered when comparing a face with the comparison polygon.

Identifying Split Points of Each Transition Face

Identifying how to cut a face into sub-faces, each of which is either entirely buildable or un-
buildable, is dependent on the concept of flattening 3D polygons. Although the current layer is
already a 2D shape, the transition face which must be split exists in 3D. Thankfully, the cut is
assumed to always be parallel with the build direction, and this simplification allows for the use of
the comparison polygon itself to make the cut.

First, the transition face is flattened by eliminating the z-component of each of its vertices. The
comparison polygon is then taken and subtracted from the flattened transition face. What remains
is the portion of the face which belongs exclusively to the unbuildable mesh. This can be seen
in Figure 3.3a. Each point of the resulting shape is checked to see if it lies on the edge of the
comparison polygon. If the point does, then the point is considered a split point: a location on an
edge of the face where the cut will occur. This can be seen in Figure 3.3b.

Two possible cases exist for these split points. Either the face has one split point, or it has two
split points. The former occurs only when the face shares exactly one vertex with the comparison
polygon, and nothing else. In that case, the subtraction removes none of the face’s area and the
only common point is the vertex; no further splitting need occur, and the algorithm proceeds with
neighbor checking. If there are two split points and each split point corresponds to a unique vertex,
the face remains intact and is separated from a neighboring faces. In all other cases where there
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(a) Overhang portions of the face only (b) Split points identified

Figure 3.3: (a) shows what remains of the face after subtracting the portion of it inside the
comparison polygon. (b) shows the points where the face was cut.

are two split points the face will have to be split into two or more faces. All cases can be seen in
Figure 3.5.

Furthermore, there is another complication to this part of the algorithm. It is possible that one
face may be part of multiple different overhangs. In this case, the face would be split in different
ways along multiple sets of split points. An important observation, however, allows this problem to
be resolved fairly simply. If a face belongs to multiple overhangs, the subtraction of the comparison
polygon from the face will always result in as many distinct polygons as there are overhangs. This
concept is seen in Figure 3.4. Each of these polygons can be iterated through individually and the
split points for each found. After which the entire set of split points is returned.

(a)

(b)

Figure 3.4: (a) shows a face which spans two separate overhangs. (b) shows how the subtraction
by the comparison polygon requires two sets of split points to be found.

Splitting a Transition Face

Once a face has been identified as being part of an overhang, the face must be split so that the
part of the face that is an overhang is put into a separate mesh and the other part of the face remains
connected to the original mesh. This sometimes involves creating new vertices and sometimes new
faces inside the mesh, explained in more detail in the following paragraph. Inside the mesh data
structure, each vertex and face must update it’s adjacent vertices and faces to correctly represent
the new mesh. A face on the edge of a split cannot be connected to the corresponding face on
the opposite side of the split or the meshes will stay connected. After each face is split, the same
procedure is applied to the neighboring faces that share the split line. Each time a face is split it
creates the new vertices and faces if needed and updates it’s adjacency lists.

We identified four possible cases that could happen when splitting a face with a straight line.
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In the first case, the line goes through two separate edges of the face. In the second case, the line
goes through one edge and the opposite vertex. In the third case, the line goes through exactly
one vertex. Finally, in the last case, the line goes through two vertices, therefore running along the
edge of the face. A diagram of the different cases can be seen below.

(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

Figure 3.5: The four different cases encountered when splitting a mesh face.

For each case the vertices are labeled with x, y, and z, where x is equal to either 0, 1, or 2, and
y = (x+ 1) mod 2, and z = (x+ 2) mod 2), meaning {x, y, z} can be equivalent to either {0, 1, 2},
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{1, 2, 0}, or {2, 0, 1}. The edges are identified as the xth edge being the edge created by vertices x
and y, the yth edge created by y and z, and the zth edge being the edge created by vertices z and
x. This way, regardless of the orientation of the face the correct indices of adjacent vertices and
faces can be called variably, allowing us to treat them the same. For example, if two faces were a
case 3, but one has the line going through vertex 0 and the other going through vertex 1, x could
be set to 0 and 1 respectively, and the same code could handle both cases. In cases 1 and 2, new
faces have to be created, which are labelled alphabetically in the order they are created, with the
Ath face being the original face only with it’s adjacent vertices and faces updated. The following
figures show the labelling of the different cases as well as a chart showing which cases can follow a
given case when iterating through the faces.

Figure 3.6: Case 1 labeled

Figure 3.7: Case 2 labeled

Figure 3.8: Case 3 labeled
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Figure 3.9: Case 4 labeled

case 1 case 2

case 3

case 4

Figure 3.10: Graph of possible cases

Representing Sub-volumes in a Graph

Volume decomposition constructs a directed graph of the sub-volume’s in order to store infor-
mation about relationships between them. The need for this graph is described further in 3.2.3. A
sub-volume is represented as a node in the graph, which also contains information about the build
direction, as well as all direct descendants of the node. A directed edge from node A to node B
represents that sub-volume A must be printed before sub-volume B. Upon completion of volume
decomposition, a new node is created for the identified buildable sub-volumes. Each disjoint over-
hang sub-volume is also a new node, and stored as a descendant of the buildable node. Volume
decomposition is recursively run on the descendant nodes, until all nodes in the graph represent a
sub-volume which is completely buildable in one build direction.
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3.2.2 Build Direction
To determine the optimal orientation at which to deposit a sub-volume, the algorithm described

by Singh and Dutta and overviewed in Section 2.5 is used. This algorithm uses the surface of a
sphere to represent viable orientations for which to build a sub-volume. We represent the surface of
the sphere as a series of discrete points, specifically 3,240,000 ((360 degrees · 0.1 b-axis precision)
· (90 degrees · 0.1 a-axis precision)) points, in spherical coordinates in the form of (r, θ, φ). In
spherical coordinates, r represents the distance of the point from the origin, θ represents the angle
from the positive x-axis of the projection of the vector onto the xy plane, and finally φ represents
the angle of the vector from the positive z-axis, shown in Figure 3.11. This precision matches the
limitations of the hardware, as each rotational axis on the printer hardware can only rotate to a
tenth of a degree, as described in Section 3.3.1. In spherical coordinates we can represent every
point on the semi-sphere with the integer points in the rectangle in the form of (1, x, y). This means
we substitute θ with the x coordinate of the rectangle and φ with the y coordinate of the rectangle.
Because it is a semi-sphere we can use a constant, in this case 1, as a constant for r.

x

y

z

r

θ

φ

Figure 3.11: Spherical coordinate diagram

Using this representation of a build map, we can remove sections of the build map that are
determined to be invalid build directions, using the formula described in Section 2.5. To remove
these points from the 2D rectangle, for each face we remove every integer point inside the ellipse
with the following equation, where θ and φ are the spherical coordinates of the normal of the face
and θmax is the max overhang angle.
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(
(x− θ)× sinφ

θmax

)2

+

(
y − φ
θmax

)2

= 1 (3.1)

Because the rectangle is representing a sphere, the ellipse must wrap around the rectangle
horizontally. This means if the right edge of the ellipse is out of bounds of the rectangle, whatever
section is out of bounds was removed from the left side of the rectangle. By removing every point
within the ellipse created by equation 3.1 for each face, we are left with the valid points (if any) that
represent the directions at which the sub-volume can be built. The following pseudo code outlines
creating the build map given a mesh.

Algorithm 1 Construct Build Map

1: procedure Construct-Build-Map(F) . F is a set of faces on a mesh
2: map ← {x ∈ N, y ∈ N | x ≤ number of discrete b-axis points, y ≤

number of discrete a-axis points}
3: for all f ∈ F do
4: centerθ ← f.normal.θ
5: centerφ ← f.normal.φ+ π

6: ellipse← {x ∈ N, y ∈ N | ( (x−centerθ)×sin(centerφ)
θmax

)2 + (
y−centerφ
θmax

)2 = 1}
7: map← map \ ellipse
8: end for
9: return(map)

10: end procedure

Once the build map has had all invalid points removed, we need to find to optimal build direction
at which the sub-volume can be built, assuming the build map has a positive area. Every valid
orientation can be assigned a heuristic, and we want to find the orientation with the smallest
heuristic, although any valid orientation is acceptable. The heuristic we use to determine optimal
build quality is the average cusp height of the object if it were to be built at a given build direction.
Cusp height is defined as the closest distance from the base of a layer to the expected surface of an
object. A perfectly vertical object would theoretically have a cusp height of zero, while an object
with a 45 degree angle would have a cusp height of zτ ·

√
2, where zτ is the slice thickness. Figure

3.12 provides a diagram of cusp height. To determine the optimal build direction, we first start by
finding any valid point on the build map to use as our starting point for a hill climbing search. To
first find any valid point we start with the entire build map and cut it in half vertically. We choose
whichever half of the build map still has an area greater than zero. If both halves have an area
greater than zero it does not matter which half we choose. From there we cut the section in half
horizontally and repeat the process, alternatively cutting the section vertically and horizontally,
until we have focused onto a single point. The pseudo code outlining this process is described
below.
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Figure 3.12: Cusp Height [3]

Algorithm 2 Find Valid Orientation

1: procedure Find-Valid-Orientation(map, F) . map is the build map, F is a set of faces on
a mesh

2: if map.area = 0 then
3: return(null)
4: end if
5: S ← map
6: while S.size 6= 1 do
7: h1, h2← Split(S) . Split(S) returns two halves of search
8: if h1.area > 0 then
9: S ← h1

10: else
11: S ← h2
12: end if
13: end while
14: return(Get-Element(S, 1)) . returns the first (and only) element of S
15: end procedure

Once a valid direction has been determined, we perform a hill climbing search to find the
optimal valid orientation to guaranteed we find a local minimum. One problem we encountered
is that the search may determine the edge of a build map to be a local minimum, if its direct
neighbor is actually considered to be an invalid direction, with a heuristic of infinity. To fix this
problem, when a neighboring point has a lower heuristic, it is added to a queue. Each point on
the queue then performs its own hill climbing search until it reaches a local minimum. From each
local minimum found, the minimum with the lowest value is chosen. Algorithm 4 describes the hill
climbing algorithm.

To weigh a given build direction for a sub volume, we first check if the build direction is in the
build map for that sub-volume. If it is not, then the heuristic will be infinity, to show that the
direction is not feasible. If not, we calculate the heuristic with the equation below, for a sub-volume
with n faces.
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∑n
i=1(zT |face[i].normal • build_direction|) · face[i].area∑n

i=1 face[i].area
(3.2)

Algorithm 3 Weigh Build Direction

1: procedure Weigh-Build-Direction(map, v, F) . map is the build map, v is a proposed
vector, F is a set of faces on a mesh

2: if v /∈ map then
3: return(∞)
4: end if
5: cuspHeight← 0
6: area← 0
7: for all f ∈ F do
8: cuspHeight← cuspHeight+ (zτ × |v · f.normal| × f.area)
9: area← area+ f.area

10: end for
11: cuspHeight← cuspHeight

area
12: return(cuspHeight)
13: end procedure
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Algorithm 4 Find Optimal Orientation

1: procedure Find-Optimal-Orientation(map, F)
2: V ← ∅ . all local minimums
3: dx← (map.width/4, 0)
4: dy ←,map.height/4)
5: Q← {Find-Valid-Orientation(map, F )} . queue used for depth-first search
6: while Q 6= ∅ do
7: v ← Pop(Q) . returns first element of Q and removes it from set
8: h←Weigh-Build-Direction(map, v, F ) . get heuristics of all directions
9: n←Weigh-Build-Direction(map, v + dy, F )

10: s←Weigh-Build-Direction(map, v − dy, F )
11: e←Weigh-Build-Direction(map, v + dx, F )
12: w ←Weigh-Build-Direction(map, v − dx, F )
13: if vh < Min(n, s, e, w) then
14: if dx = 1 ∧ dy = 1 then
15: V ← V ∪ {v} . local minimum has been found
16: else
17: Q← Q ∪ {v} . search needs to be narrowed so add v back to queue
18: end if
19: else
20: if n < h then
21: Q← Q ∪ {v + dy}
22: end if
23: if s < h then
24: Q← Q ∪ {v − dy}
25: end if
26: if e < h then
27: Q← Q ∪ {v + dx}
28: end if
29: if w < h then
30: Q← Q ∪ {v − dx}
31: end if
32: end if
33: dx← dx/2 . narrow search
34: dy ← dy/2
35: end while
36: return(Min(V ))
37: end procedure

The following figures show an example of a single build map visualized in MATLAB as both
a 2-dimensional rectangle and a 3-dimensional semi-sphere. In the 2-dimensional representation,
the z value represents the heuristic, with invalid directions are given a heuristic of negative one
for readability. On the sphere however, the heuristic is represented with the radius, with invalid
directions given a heuristic of zero.
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Figure 3.13: Build map 2D representation

Figure 3.14: Build map 3D representation

3.2.3 Build Sequencing
Once an object is divided into printable sub-volumes, it is necessary to sort these sub-volumes

in the order in which they will be printed. Two constraints determine the order of the sub-volume
printing. Firstly, all but one sub-volume (the base sub-volume) must be printed on a previously
printed sub-volume as opposed to the build plate. Therefore, the sub-volume acting as a base must
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be printed first. Secondly, all sub-volumes must be printed in a way that the material-extruding
nozzle does not collide with parts of the object which have already been built.

3D printing with 5 degrees of freedom introduces the possibility that, while printing an object,
the nozzle will collide with parts of the object that have previously been printed. This is a result of
the varying build directions relative to the orientation of the object being printed. These collisions
must be avoided at all costs because a collision would result in a failed print. This complex problem
of anticipating all possible collisions when printing material can be discretized by recognizing that,
since the build direction does not change relative to the sub-volume orientation while printing this
sub-volume, collisions cannot occur within a sub-volume. This is the same reason that collisions
cannot occur on a 3-axis 3D printer. Therefore, the nozzle can only collide with a sub-volume which
is not the sub-volume being currently printed.

These constraints on the sequence of the printing of sub-volumes motivates the use of a directed
graph to represent the printing sequence, described in Section 3.2.1. Using this graph, a simple
topological sort will determine a valid print sequence of the sub-volumes. In the event of a graph
which does not have a valid topological sort, traditional 3D printing can be used to print the
entire object. In this case, traditional 3D printing eliminates the benefits of the 5-axis 3D printing.
However, accommodations are made in the software to allow for future work in this area, discussed
further in Chapter 5.

Implementing build sequencing requires building software which constructs the graph data struc-
ture described above, and performing a topological sort on this graph. To construct the graph,
volume decomposition establishes the simple relationships between sub-volumes, indicating which
sub-volumes are built upon which other sub-volumes. These relationships represent an incomplete
sequence graph, with no collisions taken into account. 3.2.4 describes the implementation of a col-
lision detection algorithm which can identify these constraints and add the appropriate edges into
the graph.

3.2.4 Collision Detection
Collision detection must be performed for each sub-volume created by volume decomposition.

This involves testing the sub-volume against other sub-volumes in the print. To minimize the
number of collision detections performed, which involves many expensive polygon operations using
the Clipper library, an oriented bounded box collision detection is first performed. Any collisions
detected by the oriented bounded box (OBB) collision detection are then tested again with a more
precise technique. The OBB collision detection is outlined in Algorithm 5. This algorithm creates
an oriented bounding box for the subject sub-volume, and then extends the OBB in the direction
of the build direction. This additional area of the OBB represents the space which the nozzle will
occupy when printing the sub-volume. To detect collisions, an OBB for each other sub-volume in
the print is created, then checked for intersections with the subject sub-volume. If the axis-aligned
bounding box of a sub-volume is found to intersect with the OBB of the subject sub-volume, the
ID of this sub-volume is added to the list of possible collision ID’s.
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Algorithm 5 OBB Collision Detection

1: procedure OBB-Collision-Detection(sequenceGraphNode) .
sequenceGraphNode is the node being printed on the semi-constructed sequence graph, which
has an empty set of collision edges . returns the ID’s of sub-volume nodes that may cause
collisions with the nozzle while printing sequenceGraphNode

2: ret← ∅ . set of ID’s of graph nodes which may cause collisions
3: sequenceGraph . the entire Sequence Graph
4: transformation← the sequenceGraphNode’s transformation
5: printingOBB ← the OBB of sequenceGraphNode’s mesh
6: printingOBB.extend(transformation)
7: for all node ∈ sequenceGraph do
8: collisionAABB ← the AABB of the node’s graph
9: if printingOBB.hit(collisionAABB) then

10: ret← ret ∪ node.ID
11: end if
12: end for
13: return(ret)
14: end procedure

OBB collision detection may find false positives, however it does not find any false negatives.
Therefore, performing precise collision detection on the nodes found by OBB collision detection
finds all collisions with no false positives or negatives. Once OBB collision detection is complete,
precise collision detection is performed, ignoring all but the candidate nodes identified by OBB
collision detection.

The precise collision detection algorithm, which detects collisions with no false positives or false
negatives, works similarly to Algorithm 5 in that the sub-volume is extended upwards in it’s build
direction, as to represent the area in which the printing nozzle will occupy. Once this volume
has been extended, it must be checked for intersections with other sub-volumes which have been
determined to be candidates by the OBB Collision detection, as described in Algorithm 6. To
detect intersections, a slice is taken on the same plane for the subject sub-volume mesh and all
candidate meshes. The slice of the subject mesh is unioned with all slices beneath it, to account
for the upwards (in the positive build direction) expansion of the sub-volume, which represent the
printer nozzle location. Then this modified slice is checked for intersection against all other slices
along this plane. This is repeated with parallel planes along the build direction.

32



Algorithm 6 Precise Collision Detection

1: procedure Precise-Collision-Detection(sequenceGraphNode, candidates) .
sequenceGraphNode is the node being printed on the semi-constructed sequence graph, which
has an empty set of collision edges . candidates is a collection of ID’s of nodes which
sequenceGraphNode will be tested against . returns the ID’s of sub-volume nodes that cause
collisions with the nozzle while printing sequenceGraphNode

2: ret← ∅ . set of node IDs that collide with mesh
3: height← 0
4: while height < Max-Height(sequenceGraphNode) do . continues until we are past all

meshes
5: S ← ∅ . slices for each mesh in M
6: for all c ∈ canditates do
7: tempSlice← Slice(m,P lane(height, buildDirection))
8: tempSlice.parent← m
9: S ← S ∪ {tempSlice}

10: end for
11: slice← slice ∪ Slice(mesh, height) . union slice with union of all previous slices
12: expandedSlice← Expand(slice, rτ ) . rτ is the radius of the nozzle
13: for all s ∈ S do
14: if Intersects(expandedSlice, s) then
15: ret = ret ∪ {s.parent}
16: end if
17: end for
18: height← height+ 1
19: end while
20: return(ret)
21: end procedure

3.2.5 5-axis G-code Generation
Once overhanging volumes have been identified as sub-volumes, an optimal build direction has

been determined for each sub-volume, and a valid sequence for the building of each sub-volume has
been determined, the next step is to send instructions to control the printer. These instructions are
sent in the form of G-code, a set of locations and instructions for every movement and action the
printer must make. To generate these instructions, each sub-volume must be sliced perpendicular
to the build orientation, such that each sub-volume is cut into flat layers along the axis of its build
orientation.

There are several existing open source software packages that convert 3D models into 3D printer
G-code by performing slice operations on the entire volume along the z-axis, and converting the
sliced object into printer instructions. This software is suitable for use within the 5-axis slicer
software, with each sub-volume being sliced and converted into G-code individually through the
open source program. We used Ultimaker’s Cura [20] to perform these operations, which have been
extensively studied and implemented.
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3.3 Printer

3.3.1 Mechanical Design
In order to enable the printer to reach any point and orientation in the build space, the printer

required 5 independent stages, two rotational and three linear. The three linear stages comprise
the Cartesian movements in X, Y, and Z while the two rotary stages, denoted as A and B, were
responsible for changing the orientation of the nozzle. The key design criteria the printer had to
satisfy were as follows:

• Relatively easy to manufacture

• Modular for future development with other printing processes such as cold spray

• Durable to withstand harsher printing processes

• Upgradeable

• Accurate to 10 microns

In many processes, such as cold spray, the nozzle assembly for depositing the material is unwieldy,
complex, and heavy. This prompted the design of the stages to be centered on a actuating the build
plate while the nozzle remained stationary. Additionally, both the linear stages and rotary stages
need to be in series respectively to enable the machine to reach any three dimensional orientation
and position. This narrowed the stage configurations to two possible arrangements, either the rotary
stages formed the base and the linear stages attached atop them or the linear stages formed the
base with the rotary stages attached atop. The latter was chosen because it minimized the total
amount of power needed to actuate the rotary stages. The printer was modeled in Solidworks first.
The material of choice was aluminum 6061-T6 because of its easy machinability, ready availability,
and low cost.
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Figure 3.15: CAD Rendering of 5-axis 3D Printer

Linear Stages

Given the weight demands, each of the linear stages utilized a leadscrew driven by a stepper
motor for increased torque when compared to belt driven stages. The critical design choices were
the diameter of the leadscrew and pitch. Additionally, the linear stages in concert needed to
be able to make precise movements of 10 microns. Standard stepper motors offer 1.8o angular
accuracy with microstepping up to a division of 8 typically. Thus most stepper motors are capable
of 0.225o step sizes. For the prototype of the printer, it was unlikely movement of the rotary
stages and linear stages was possible due to the constraints with the slicer algorithm. Therefore the
assumption was made that the rotary stages remain stationary during printing and the maximum
resolution, or minimum distance, occurs when all linear stages are moving then the individual
resolutions at minimum must be 10µm√

3
≈ 5.773 µm according to Pythagorean Theorem. The

critical pitch, largest possible pitch which satisfies the design criteria, can thus be calculated using
pc = 5.773 µm

(
1600 steps

rev

)
, which for a 0.225o step size evaluates to approximately 9.237 millimeters

or 0.364 inches.
All three of the stages utilize stepper motors with coaxial encoders which allow for closed loop

feedback. The ends plates of each stage have limit switches for detection of when the stages carriages
have reached the end of their travel.

The torque required to turn the leadscrew was calculated with the following equations [5]. Note
that the torque to lower the carriage on the stage only applies to the Z stage, because both the
X and Y stages are arranged perpendicular to the pull of gravity and thus only require use the
torque to raise. Additionally, this particular application requires precision movement and as such
an ACME leadscrew will be used giving a thread angle of 29o.

Traise =
Fdm

2

(
l + πµdm secα

πdm − µl secα

)
(3.3)
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Tlower =
Fdm

2

(
πµdm secα− l
πdm − µl secα

)
(3.4)

In the above equations, F is the applied load on the leadscrew, dm is the mean diameter, l is the
lead, also called pitch, α is half the thread angle, and µ is the coefficient of friction for the leadscrew
and the nut. Using the equations above, a 0.1 inch leadscrew pitch and the approximate weight for
the Y stage to carry given the Solidworks model as well as a factor of safety of two accounting for 50
pounds then the torque required to turn the screw is approximately 47.5 oz-in given the coefficient
of friction for polyacetal nut on steel is 0.25. With the above criteria a NEMA 23 175 oz-in stepper
motor from Anaheim Automation was selected for two reasons, it provided a maximum speed for
the given torque of 31.75 mm/s which a comparable to print speeds on many consumer printers for
high resolution and it had an integrated driver.

The print volume was determined by comparing commercially available consumer grade 3D
printers. In the future, it is desired that the printer be tested for build quality against comparable
printers therefore a cubic build volume with 8 inch sides was chosen. In turn, this mean that each
stage needed to actuate 8 inches. This resulted in the X and Y stages having a total length of 12
inches, 4 inches of which accounted for the carriage and the remaining for travel. The Z stage had
an additional half inch of length because it had to accommodate large linear bearings due to the
size of the linear shafts but retained the same amount of total travel.

X & Y Stages

The X and Y stages formed the base of the printer. Each stage was comprised of several main
components: the carriage, leadscrew, guide rails, end plates, and bottom plates. The carriage in-
cluded a shallow U-shaped cross section. The pocket allowed for the addition of sheet metal plate to
be placed over top and secured on the end plates. In conjunction with the sheet metal plates added
to the sides, positive air pressure could be flown through the stage to prevent dirt and/or powder
from collecting inside the stage and binding the moving components. In addition, the carriage had
four linear bearings capable of 1o of misalignment, two for each guide rail. In the center affixed via
a angle bracket was the anti-backlash nut. The anti-backlash nut was made from polyacetal and
therefore self-lubricating and removed slop from the leadscrew and nut with a preloading spring.
The guide rails were fully supported to minimize deflection and increase the levelness of the machine
as opposed to unsupported horizontal rods. In addition, they were responsible for carrying the load
of the stages atop them, freeing the leadscrew to only withstand the axial load and torque from
actuation.

Z Stage

Unlike the X and Y stages, the Z Stage is mounted vertically. Though, guide rails would also be
suitable in this orientation, they would require the addition of a back plate which would be heavy
and significantly add to the overall weight of the assembly. Therefore, larger three quarter inch
linear shafts of high carbon steel were used to minimize deflection of the build plate.
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Rotary Stages

Both rotary stages are comprised of a slew ring, timing belt pulleys, and the stepper motors.
The A rotary stage is affixed to the carriage of the Z-axis stage and rotaries about the local Y-
coordinate axis. Mounted perpendicularly to the A stage is the B stage which rotates about the
local Z-axis. Together, any orientation of the nozzle is achievable in 3D space. In both cases, the
standard stepper motor shaft size for a NEMA 23 motor was a quarter inch which limited the
size of the timing belt pulleys that were compatible with that shaft size to 14 and 72 teeth as the
minimum and maximum available on McMaster-Carr. This limitation set the upper limit of the
prototypes angular resolution to 80 microns at a 4 inch radius given a gear ratio of approximately
5.143. Increasing the resolution of microstepping with an alternative driver capable of above 1600
steps per revolution is feasible as a retro fit in the future. Cost limitations and machine availability
restricted the possibility of higher resolution microstepping drivers.

3.3.2 Nozzle Gantry
The nozzle is held by a separate gantry which is not physically connected to the printer. This

is a safety precaution to prevent major machine damage if the nozzle was to collide with the build
plate or printer. Instead of bending, the gantry will be pushed away. Additionally, the gantry
holds the extruder motor and filament holder. The extruder motor is NEMA 17 stepper motor
salvaged from a 3D printer kit with an accuracy of 0.225o when microstepping. The gantry was
constructed from 80-20 aluminum extrusions for modularity and allowed for easy adjustment of
the nozzle height. The hot end was affixed using angle bracket with a slotted clamping plate that
snugly fit with the groves in the hot end and prevented the it from moving vertically. Three touch
servo touch probes were attached to the nozzle hot end to be used in the printers calibration which
is detailed in the following section.

3.3.3 Printer Calibration
It is impossible to ensure perfect alignment of the nozzle normal to the build plate. As such,

calibration is required to account for discrepancies and enable the printer to compensate. Here
a simplistic approach is detailed although more advanced techniques could be employed later on.
First, the assumption is made that the build plate surface is flat. However, its coordinate frame
may be misaligned with respect the idealized coordinate frame in which the nozzle is perpendicular
to the xy plane of the build plate.

To account for the build plate’s orientation being misaligned two independent angles are required
which have been defined as ρ and ψ, where ρ is the angle the normal of the misaligned build plane
makes with the z unit axis of the idealized coordinate system when projected into the x-z plane of
the parent coordinate system and ψ is the angle between the normal of the misaligned plane and
the projection in the x-z plane. This can be seen in Figure 3.16.
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Figure 3.16: Build plate normal defined by ρ and ψ in stage coordinate system

Each of the angles will constitute a rotational coordinate transformation shown below in Equa-
tion 3.5.

Ry(ρ)Rx(ψ) =


cos ρ 0 sin ρ 0

0 1 0 0
− sin ρ 0 cos ρ 0

0 0 0 1




1 0 0 0
0 cosψ − sinψ 0
0 sinψ cosψ 0
0 0 0 1



=


cos ρ 0 sin ρ 0

sinψ sin ρ cosψ − cos ρ sinψ 0
− cosψ sin ρ sinψ cosψ cos ρ 0

0 0 0 1


(3.5)

To find ρ and ψ the first step is to probe the build surface with three points, measuring the
point at which the nozzle makes contact with the surface and recording the relative coordinates.
These three points constitute a plane, the normal of which represents the z unit vector of the local
coordinate system. This normal can then be used to calculate the angles.
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Given A = (xa, ya, za), B = (xb, yb, zb), and C = (xc, yc, zc), two vectors can be constructed,
~AB and ~BC. The normal of these two vectors is found via their cross product.

~AB = (xa − xb)̂i+ (ya − yb)ĵ + zabk̂ = xabî+ yabĵ + zak̂ (3.6a)

~BC = (xb − xc)̂i+ (yb − yc)ĵ + (zb − zc)k̂ = xbcî+ ybcĵ + zbck̂ (3.6b)

~vn = ~AB × ~BC =

∣∣∣∣∣∣
î ĵ k̂
xab yab zab
xbc ybc zbc

∣∣∣∣∣∣
= (yabzbc − zabybc)̂i+ (zabxbc − xabzbc)ĵ + (xabybc − yabxbc)k̂ = xnî+ ynĵ + znk̂

(3.7)

Now that the components for the normal vector of the build plane have been calculated in the
parent coordinate system, it is possible to compute ψ using the dot product between the projection
of the normal into the x-z plane and it.

~vyz = ynĵ + znk̂ (3.8)

~vn · ~vyz = | ~vn|| ~vyz|cos(ψ) (3.9)

ψ = cos−1
(
~vn · ~vp
| ~vn||~vp|

)
= cos−1

(
y2n + z2n√

(x2n + y2n + z2n)(y2n + z2n)

)
= cos−1

(√
y2n + z2n

x2n + y2n + z2n

)
(3.10)

The same process is used to compute ρ. However, the projection is dotted with the z axis for the
parent coordinate system.

~vRx = xnĵ +
√
y2n + z2nk̂ (3.11)

~vRx · ẑ = |~vRx||ẑ|cos(ρ)

ρ = cos−1
(
~vRx · ẑ
|~vRx||ẑ|

)
= cos−1

(
zn
√
y2n + z2n√

x2n + y2n + z2n

)
(3.12)

3.3.4 Forward Kinematics
Unlike conventional 3D printers that traditionally operate with three orthogonal stages, X, Y,

and Z, a 5 axis 3D printer has two additional rotary axes, A and B. Depending on their orientation
at any point during printing, it is not necessarily true that the positions of the linear stages map
directly to the position above the build plate. Therefore, coordinate transformation matrices are
required to convert frame positions to build space positions, given θ and φ, the angles of the rotary
axes A and B respectively.

Figure 3.17 shows the three coordinate frames of interest for the printer. For clarity, the individ-
ual joint transformations have been omitted. Note in the configuration of the printer’s axes, S is a
constant which is experimentally obtained at the start of a print and remains constant throughout
the print. However, the position vectors s and vbuild plate change depending on the position the
nozzle must be over the build plate.
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Cbuild plate
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Figure 3.17: Coordinate Systems

Position

The first task is to develop a transform that maps vectors inside the nozzle coordinate frame to
the printer’s frame coordinate frame. This is done using homogeneous coordinate transformations.
Equation 3.13 is comprised of the individual transformations between each of the stages of the
printer and the calibration matrices from the previous section. Note Tframe is comprised of the
x, y, and z positions of the stages because each of the stages are orthogonal and combining them
into a single transform preserves some brevity. Each transform in their matrx representations are
shown below.

H = Tframe(−Toffset)R(θ)yToffsetR(φ)zR(ρ)yR(ψ)xTbuild plate (3.13)
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Tframe =


1 0 0 xframe
0 1 0 yframe
0 0 1 zframe
0 0 0 1

 Toffset =


1 0 0 0
0 1 0 0
0 0 1 −zoffset
0 0 0 1

 R(θ)y =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1



R(φ)z =


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 1 0
0 0 0 1

 R(ρ)y =


cos ρ 0 sin ρ 0

0 1 0 0
− sin ρ 0 cos ρ 0

0 0 0 1

 R(ψ)x =


1 0 0 0
0 cosψ − sinψ 0
0 sinψ cosψ
0 0 0 1



Tbuild plate =


1 0 0 xbuild plate
0 1 0 ybuild plate
0 0 1 zbuild plate
0 0 0 1


The homogeneous transformation matrix H takes the form shown in Equation 3.14a where R is

a 3 by 3 rotational transformation and P is position vector [7].

H =

 R P

0 0 0 1

 (3.14a)

R =

 cφcρcθ − sρsθ sψ(cρsθ + cφcθsρ)− cψcθsφ cψ(cρsθ + cφcθsρ) + cθsφsψ
cρsφ cφcψ + sφsψsρ cψsφsρ − cφsψ

−cθsρ − cφcρsθ sψ(cρcθ − cφsρsθ) + cψsφsθ cψ(cρcθ − cφsρsθ)− sφsψsθ

 (3.14b)

P =



xframe − xbuild plate(sρsθ − cφcρcθ)− zoffsetsθ + ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

+zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ)

yframe + ybuild plate(cφcψ + sφsψsρ)− zbuild plate(cφsψ − cψsφsρ) + xbuild platecρsφ

zoffset + zframe − xbuild plate(cθsρ + cφcρsθ)− zoffsetcθ + ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)

+zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)


(3.14c)

As was mentioned in the beginning of this section, S remains constant for the duration of the
print but must be experimentally determined at the beginning of it based on known positions of
the stages such as when the nozzle is located at the origin of the build plate. Equation 3.15 shows
that S corresponds to P given that it always points to the origin of the nozzle.

S = H


0
0
0
1

 =

[
P
1

]
= constant (3.15)
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Velocity

Although the forward kinematics for velocity will not be of much use because S is constant and
therefore its derivative is 0, the equation 0 = Ṗ will be of interest in the next section for finding the
velocity of the stages and nozzle above the build plate. P is differentiated by first computing the
Jacobian of P and then multiplying by the velocity joint space vector which includes the velocities
for both the x y z of the frame and build plate coordinate systems as well as θ and φ. Note that ψ
and ρ do not change during printing and are constants therefore they are excluded from the joint
space vector.

0 = Ṗ = J(q)q̇ (3.16a)

q̇ =



ẋframe
ẏframe
żframe

ẋbuild plate
ẏbuild plate
żbuild plate

θ̇

φ̇


(3.16b)

J(q) =

1 0 0 j1 j2 j3 j4 j5
0 1 0 j6 j7 j8 j9 j10
0 0 1 j11 j12 j13 j14 j15

 (3.16c)

j1 = ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)− zoffsetcθ − xbuild plate(cθsρ + cφcρsθ)

+zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)
j2 = zbuild plate(cφcθsψ − cψcθsφsρ)− ybuild plate(cφcψcθ + cθsφsψsρ)− xbuild platecρcθsφ
j3 = cφcρcθ − sρsθ
j4 = sψ(cρsθ + cφcθsρ)− cψcθsφ
j5 = cψ(cρsθ + cφcθsρ) + cθsφsψ
j6 = 0
j7 = zbuild plate(sφsψ + cφcψsρ)− ybuild plate(cψsφ − cφsψsρ) + xbuild platecφcρ
j8 = cρsφ
j9 = cφcψ + sφsψsρ
j10 = cψsφsρ − cφsψ
j11 = xbuild plate(sρsθ − cφcρcθ) + zoffsetsθ − ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

−zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ)
j12 = ybuild plate(cφcψsθ + sφsψsρsθ)− zbuild plate(cφsψsθ − cψsφsρsθ) + xbuild platecρsφsθ
j13 = −cθsρ − cφcρsθ
j14 = sψ(cρcθ − cφsρsθ) + cψsφsθ
j15 = cψ(cρcθ − cφsρsθ)− sφsψsθ

Acceleration

Now differentiating Ṗ a second time yields the acceleration equations. Again the second deriva-
tive of S is 0, but now the chain rule must be applied to the Jacobian and joint space vector as
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seen in Equations 3.17a, 3.17b, and 3.17c. Note that the acceleration joint space vector is now
comprised of the acceleration for the angles of the rotaries, and the x, y, z of the build plate and
frame. Additionally, the derivative of Jacobian results in the first 3 by 3 sub matrix being a set of
zeroes, which indicates that the velocities of the frame have no bearing on the accelerations.

0 = P̈ = J̇(q)q̇ + J(q)q̈ (3.17a)

q̈ =



ẍframe
ÿframe
z̈frame

ẍbuild plate
ÿbuild plate
z̈build plate

θ̈

φ̈


(3.17b)

J̇(q) =

0 0 0 j̇1 j̇2 j̇3 j̇4 j̇5
0 0 0 j̇6 j̇7 j̇8 j̇9 j̇10
0 0 0 j̇11 j̇12 j̇13 j̇14 j̇15

 (3.17c)
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j̇1 = θ̇(xbuild plate(sρsθ − cφcρcθ) + zoffsetsθ − ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

−zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ))− ẋbuild plate(cθsρ + cφcρsθ)

+φ̇(ybuild plate(cφcψsθ + sφsψsρsθ)− zbuild plate(cφsψsθ − cψsφsρsθ)
+xbuild platecρsφsθ) + ẏbuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)

+żbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)
j̇2 = θ̇(ybuild plate(cφcψsθ + sφsψsρsθ)− zbuild plate(cφsψsθ − cψsφsρsθ) + xbuild platecρsφsθ)

−φ̇(zbuild plate(cθsφsψ + cφcψcθsρ)− ybuild plate(cψcθsφ − cφcθsψsρ) + xbuild platecφcρcθ)

−ẏbuild plate(cφcψcθ + cθsφsψsρ) + żbuild plate(cφcθsψ − cψcθsφsρ)− ẋbuild platecρcθsφ
j̇3 = −θ̇(cθsρ + cφcρsθ)− φ̇cρcθsφ
j̇4 = θ̇(sψ(cρcθ − cφsρsθ) + cψsφsθ)− φ̇(cφcψcθ + cθsφsψsρ)

j̇5 = θ̇(cψ(cρcθ − cφsρsθ)− sφsψsθ) + φ̇(cφcθsψ − cψcθsφsρ)
j̇6 = 0

j̇7 = żbuild plate(sφsψ + cφcψsρ)− ẏbuild plate(cψsφ − cφsψsρ)− φ̇(ybuild plate(cφcψ + sφsψsρ)

−zbuild plate(cφsψ − cψsφsρ) + xbuild platecρsφ) + ẋbuild platecφcρ
j̇8 = φ̇cφcρ
j̇9 = −φ̇(cψsφ − cφsψsρ)
j̇10 = φ̇(sφsψ + cφcψsρ)

j̇11 = ẋbuild plate(sρsθ − cφcρcθ) + φ̇(ybuild plate(cφcψcθ + cθsφsψsρ)− zbuild plate(cφcθsψ − cψcθsφsρ)
+xbuild platecρcθsφ)− ẏbuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

−żbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ) + θ̇(xbuild plate(cθsρ + cφcρsθ) + zoffsetcθ

−ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)− zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ))
j̇12 = ẏbuild plate(cφcψsθ + sφsψsρsθ)− żbuild plate(cφsψsθ − cψsφsρsθ)

+θ̇(ybuild plate(cφcψcθ + cθsφsψsρ)− zbuild plate(cφcθsψ − cψcθsφsρ)
+xbuild platecρcθsφ) + φ̇(zbuild plate(sφsψsθ + cφcψsρsθ)

−ybuild plate(cψsφsθ − cφsψsρsθ) + xbuild platecφcρsθ)

+ẋbuild platecρsφsθ
j̇13 = θ̇(sρsθ − cφcρcθ) + φ̇cρsφsθ
j̇14 = φ̇(cφcψsθ + sφsψsρsθ)− θ̇(sψ(cρsθ + cφcθsρ)− cψcθsφ)

j̇15 = −φ̇(cφsψsθ − cψsφsρsθ)− θ̇(cψ(cρsθ + cφcθsρ) + cθsφsψ)

3.3.5 Inverse Kinematics
Position of the Frame Given Nozzle Position

Using the equations derived in the previous section it is now possible to compute the joint
positions (i.e. the positions of the individuals stages) given the desired position above the build
plate. Recall that S is constant during printing and represents the position vector of the nozzle
inside the coordinate system of the frame. Also note that the frame position happens to be a simple
addition to the vector and therefore, it can be separated and the equation can be rearranged to
give the frame position in terms of the build plate position and the rotary positions.
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S = P

S =



xframe − xbuild plate(sρsθ − cφcρcθ)− zoffsetsθ + ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

+zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ)

yframe + ybuild plate(cφcψ + sφsψsρ)− zbuild plate(cφsψ − cψsφsρ) + xbuild platecρsφ

zoffset + zframe − xbuild plate(cθsρ + cφcρsθ)− zoffsetcθ + ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)

+zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)



S =

xframeyframe
zframe

+



−xbuild plate(sρsθ − cφcρcθ)− zoffsetsθ + ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

+zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ)

ybuild plate(cφcψ + sφsψsρ)− zbuild plate(cφsψ − cψsφsρ) + xbuild platecρsφ

zoffset − xbuild plate(cθsρ + cφcρsθ)− zoffsetcθ + ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)

+zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)



S = Pframe+



−xbuild plate(sρsθ − cφcρcθ)− zoffsetsθ + ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

+zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ)

ybuild plate(cφcψ + sφsψsρ)− zbuild plate(cφsψ − cψsφsρ) + xbuild platecρsφ

zoffset − xbuild plate(cθsρ + cφcρsθ)− zoffsetcθ + ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)

+zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)



Pframe = S−



−xbuild plate(sρsθ − cφcρcθ)− zoffsetsθ + ybuild plate(sψ(cρsθ + cφcθsρ)− cψcθsφ)

+zbuild plate(cψ(cρsθ + cφcθsρ) + cθsφsψ)

ybuild plate(cφcψ + sφsψsρ)− zbuild plate(cφsψ − cψsφsρ) + xbuild platecρsφ

zoffset − xbuild plate(cθsρ + cφcρsθ)− zoffsetcθ + ybuild plate(sψ(cρcθ − cφsρsθ) + cψsφsθ)

+zbuild plate(cψ(cρcθ − cφsρsθ)− sφsψsθ)


Position of Nozzle Above Build Plate

In addition to knowing the position of the frame, it is also desirable to be able to confirm
the position above the build plate given the frame positions so as to error correct for quantized
movements of the stepper motors in otherwise unconstrained G-code positions provided by the
slicer. Following the methodology above, the position above the build plate can be separated,
although this time with slightly more difficulty.

S =

xframeyframe
zframe

+

 −zoffsetsθ
0

zoffset(1− cθ)

+Rp

xbuild plateybuild plate
zbuild plate
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Rp =

 cφcρcθ − sρsθ sψ(cρsθ + cφcθsρ)− cψcθsφ cψ(cρsθ + cφcθsρ) + cθsφsψ
cρsφ cφcψ + sφsψsρ cψsφsρ − cφsψ

−cθsρ − cφcρsθ sψ(cρcθ − cφsρsθ) + cψsφsθ cψ(cρcθ − cφsρsθ)− sφsψsθ



Pbuild plate = R−1p

S − Pframe −
 −zoffsetsθ

0
zoffset(1− cθ)



R−1p =

 cφcρcθ − sρsθ cρsφ −cθsρ − cφcρsθ
cρsψsθ − cψcθsφ + cφcθsψsρ cφcψ + sφsψsρ cρcθsψ + cψsφsθ − cφsψsρsθ
cψcρsθ + cθsφsψ + cφcψcθsρ cψsφsρ − cφsψ cψcρcθ − sφsψsθ − cφcψsρsθ


Velocity of the Frame Given Nozzle Velocity

In the same manner as the computations of the position of the frame or nozzle above, the inverse
kinematics for the velocity can be computed by rearranging and solving for the frame velocity and
nozzle velocity in the build space.

0 =

1 0 0
0 1 0
0 0 1

ẋframeẏframe
żframe

+

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẋbuild plate
ẏbuild plate
żbuild plate

θ̇

φ̇



0 =

ẋframeẏframe
żframe

+

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẋbuild plate
ẏbuild plate
żbuild plate

θ̇

φ̇



0 = Vframe +

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẋbuild plate
ẏbuild plate
żbuild plate

θ̇

φ̇



Vframe = −

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẋbuild plate
ẏbuild plate
żbuild plate

θ̇

φ̇
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Velocity of Nozzle above Build Plate

Again the equation is rearranged and solved for the velocity of the nozzle inside the build plate
coordinate system.

0 = Vframe +

 j1 j2 j3
j6 j7 j8
j11 j12 j13

ẋbuild plateẏbuild plate
żbuild plate

+

 j4 j5
j9 j10
j14 j15

[θ̇
φ̇

]

0 = Vframe +

 j1 j2 j3
j6 j7 j8
j11 j12 j13

Vbuild plate +

 j4 j5
j9 j10
j14 j15

[θ̇
φ̇

]

Vbuild plate = −

 j1 j2 j3
j6 j7 j8
j11 j12 j13

−1Vframe +

 j4 j5
j9 j10
j14 j15

[θ̇
φ̇

]
Acceleration of the Frame Given Nozzle Acceleration

Rearrangement of the acceleration equations, solving for the frame acceleration are shown below.

0 = P̈ = J̇(q)q̇ + J(q)q̈

Aframe =

ẍframeÿframe
z̈frame


0 = P̈ = J̇(q)q̇ +

1 0 0 j1 j2 j3 j4 j5
0 1 0 j6 j7 j8 j9 j10
0 0 1 j11 j12 j13 j14 j15

 q̈

0 = ˙J(q)q̇ +

1 0 0
0 1 0
0 0 1

ẍframeÿframe
z̈frame

+

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẍbuild plate
ÿbuild plate
z̈build plate

θ̈

φ̈



0 = J̇(q)q̇ +Aframe +

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẍbuild plate
ÿbuild plate
z̈build plate

θ̈

φ̈



Aframe = −J̇(q)q̇ −

 j1 j2 j3 j4 j5
j6 j7 j8 j9 j10
j11 j12 j13 j14 j15



ẍbuild plate
ÿbuild plate
z̈build plate

θ̈

φ̈
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Acceleration of Nozzle Above Build Plate

Lastly, the acceleration is obtained inside the build plate coordinate system given the accelera-
tion of the frame.

0 = J̇(q)q̇ +Aframe +

 j1 j2 j3
j6 j7 j8
j11 j12 j13

ẍbuild plateÿbuild plate
z̈build plate

+

 j4 j5
j9 j10
j14 j15

[θ̈
φ̈

]

0 = J̇(q)q̇ +Aframe +

 j1 j2 j3
j6 j7 j8
j11 j12 j13

Abuild plate +

 j4 j5
j9 j10
j14 j15

[θ̈
φ̈

]

Abuild plate = −

 j1 j2 j3
j6 j7 j8
j11 j12 j13

−1J̇(q)q̇ +Aframe +

 j4 j5
j9 j10
j14 j15

[θ̈
φ̈

]
3.3.6 Nozzle and Heated Bed

In order to extrude the plastic from the nozzle of the printer, the nozzle must be heated to a
temperature such that plastic can flow under the force of the filament being pushed. For polylactic
acid (PLA), the material of choice, this temperature is between 180 and 220 degrees Celsius [4].

In effect, this is a transient heat transfer problem and as such any reasonable assumptions will
significantly decrease the complexity of solving the problem. One possible assumption is the lumped
capacitance method. Simply stated, if the rate of convective heat transfer from the surface of the
object is significantly less than the rate of conduction within the object, it is safe to assume that
the object abides at one uniform temperature.

The Biot number is a dimensionless parameter in heat transfer that is a ratio of the convective to
conductive heat transfer as seen in Equation 3.18, where h is the convective heat transfer coefficient,
k is the thermal conductivity of the object, and Lc is the characteristic length. This length is simply
the ratio of the volume V to surface area As.

B =
hLc
k

(3.18)

Lc =
V

As
(3.19)

Therefore if Biot number is less than 0.1, lumped capacitance is a valid assumption. As seen in
Table 3.1, the condition is satisfied for both the hot end and build plate.

Component k
( W

m K

)
V (m3) As (m2) Lc (m) h

( W
m2 K

)
Bi

Hot End Aluminum (205) 2.75× 10−6 9.38× 10−4 0.00294 0.0273 3.916× 10−7

Build Plate Glass (1.05) 1.29× 10−4 0.0451 0.00284 0.389 0.00105

Table 3.1: Constants and calculations of Biot number for hot end and build plate

With the lumped capacitance method validated, the heat transfer between the surrounding air
and the hot end when no plastic is flowing or build plate can be described as a first order differential
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equation during start up, where h is the convection coefficient, A is the surface area, T∞ is the
ambient temperature, T is the desired temperature of the nozzle, u is the input power from a
resistive heating element, c is the specific heat of the nozzle, m is the mass of the nozzle, W is the
volume of the nozzle, and ρ is the density of the nozzle.

mc
dT

dt
+
∑

hA(T − T∞) = u (3.20)

m = ρW

u = P =
V 2

R

ρWc
dT

dt
+
∑

hA(T − T∞) =
V 2

R
(3.21)

(a) (b)

Figure 3.18: Plot of temperature vs time during transient state given voltage for (a) the hot end
and (b) the build plate

During printing the heat transfer can be approximated by a steady state assumption, because the
nozzle is fixed and perturbations to the temperature and movement of the ambient air is minimal.
However, in this case plastic is flowing through the nozzle and thus an extra term is added to
account for heat lost to the plastic flow.∑

hA(T − T∞) + ṁplasticCplastic(T − T∞) =
V 2

R
(3.22)

Anozzle =
πd2nozzle

4
(3.23)

ṁplastic = ρplasticAnozzlevnozzle (3.24)
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V =

√
R(T − T∞)

(∑
hA+ ṁplasticCplastic

)
(3.25)

When the plastic enters the nozzle it will be at the temperature of the ambient air, T∞ and
should be heated to the nozzle temperature upon exit, T . In actuality, the heating of the plastic can
be considered insignificant compared to heat lost from convection considering the volume of plastic
extruded per second is on the order of 10−9. Therefore, this term is dropped and the following
equation is resolved.

V =

√
R
(∑

hA
)

(T − T∞) (3.26)

(a)
(b)

Figure 3.19: Plot of input voltage vs steady state temperature for printer (a) hot end and (b) build
plate

In all of the aforementioned equations, the convection coefficient was used to determine the
various quantities of interest. This is performed using Nusselt number correlations [1]. In all, three
dimensionless parameters are required, the Nusselt, Rayleigh, and Prandtl numbers which can be
seen below as Nu, Ra, and Pr respectively. In the following equations, v is the kinematic viscosity
of the fluid, g is the acceleration due to gravity, k is the thermal conductivity of the fluid, T∞ is
the ambient temperature, T is the surface temperature, Cp is the specific heat of the fluid, β is the
volumetric expansion coefficient of the fluid and ρ is the fluid density. In the case of the hot end,
it is assumed to be a box with the upper surface missing, because the top is covered by the input
region of the filament. The build plate, a glass plate atop a heater, is simply a horizontal surface.

Ra =
gβ(T − T∞)L3Pr

v2

Pr =
v

α
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α =
k

Cpρ

Nu =
hL

k

h =
kNu

L

L =
V

A

C̄l = 0.515

CHt = 0.14

CVt = 0.103

Nusselt Number Correlations for Heated Vertical Flat Plate with Constant Surface Temperature

NuT = C̄lRa
1/4 (3.27a)

Nul =
2.8

ln(1 + 2.8/NuT )
(3.27b)

Nut = CVt Ra
1/3 (3.27c)

Nu = [(Nul)
m + (Nut)

m]1/m, m ≈ 6 (3.27d)

Nusselt Number Correlations for Heated Horizontal Upward-Facing Flat Plate

NuT = 0.835C̄lRa
1/4 (3.28a)

Nul =
1.4

ln(1 + 1.4/NuT )
(3.28b)

Nut = CHt Ra
1/3 (3.28c)

Nu = [(Nul)
m + (Nut)

m]1/m, m = 10 (3.28d)

Nusselt Number Correlations for Heated Horizontal Downward-Facing Flat Plate

Nu ≈ Nul =
0.527(Ra1/5)

(1 + (1.9/Pr)9/10)2/9
(3.29)
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Temperature Sensing

A negative temperature coefficient (NTC) 3950 Thermistor was used to measure the temperature
of the hot end and build plate. As the temperature increases the resistance drops. In turn, the
voltage drop across the resistor changes and is measured with a voltage divider connected to the
analog input of the microcontroller. A circuit diagram of the voltage divider is shown in Figure
3.20.

ϑ

Rth

Rref

3.3 V

Vth

Figure 3.20: Thermistor circuit

The equation, shown in Equation 3.30, for the voltage drop across the thermistor, Rth given the
value of the reference resistor, Rref, is

Vth =
Rth

Rth +Rref
Vin (3.30)

This equation is then solved for the thermistor’s resistance as in Equation 3.31, where the voltage
drop across the thermistor is now the input.

Rth =
Rref

Vin
Vth
− 1

(3.31)

Lastly, the temperature of the resistor was calculated using the β parameter equation, Equation
3.32, which is essentially and alternative form of the the Steinhart-Hart Equation, where R0 is the
resistance of thermistor at a temperature T0, and β is the given parameter for the type of thermistor.
Note the temperatures are in absolute units, either Kelvin or Rankine. For the particular thermistor
used, the β parameter was 3950 K, T0 was 298 K, and R0 was 10 KΩ.

T =
1

1
T0

+ 1
β ln

(
Rth
R0

) (3.32)
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Figure 3.21: Plot of thermistor resistance vs temperature using β parameter equation

The reference resistor determines the precision of the temperature measurement. In this case
plus or minus one degree is more than sensitive enough. However, it was possible to increase the
temperature measurement accuracy to 0.15o C using the correct choice of resistor, 1500 Ω. Figure
3.22 shows the sensitivity in ADC counts per 0.15o C given the value of the reference resistor at 40
and 300 degrees Celsius, the bounds of sensing requirements. Any resistor between the intersection
of the blue and red curves with the yellow line is suitable. In particular, the sensitivity of a 1500
Ω reference resistor is plotted in Figure 3.23 between 0 and 300 degrees Celsius. In both cases the
analog-to-digital converter (ADC) has a resolution of 13 bits.
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Figure 3.22: Sensitivity of resistor as a function of the reference resistor
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Figure 3.23: Sensitivity as a function of the temperature for 1500 Ω reference resistor

Thermal Control

The current is much too large for the heating elements to be driven directly by the microcon-
troller. Therefore a transistor is required to control flow of current given an input signal from the
microcontroller. Furthermore, it is possible to regulate the average amount of power flowing through
the heating element using a pulse width modulation (PWM) signal to the gate of the transistor.
Given a sufficiently high frequency the average voltage can be determined by Equation 3.33, where
V is the supply voltage and D is the duty cycle. In this particular application a N-channel logic level
enhancement mode metal-oxide-semiconductor field-effect transistor (MOSFET), PHP79NQ08LT,
was used as seen in Figure 3.24.

VAVG = DV (3.33)
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4Ω

6 V

3.3 V

10KΩ

Figure 3.24: Temperature control circuit

3.4 Embedded Design

3.4.1 Control Loop
The max resolution desired was 10 microns. Thus this was the shortest path the printer was

intended to travel. If the rotary stages were assumed to be at fixed angles and all three of the
linear stages were actuated at their max possible speeds then it was possible to calculate the time
interval required between control loops. Note that assuming the rotary stages were fixed simplifies
calculations and was reasonable since the stages needed to travel slower while the rotary stages
were moving to obtain the same linear speed due to the radius.

The motors max RPM at load was 23.75 rps and the stepper motors had a max resolution of 1600
steps/revolution. Thus the number of steps per second followed as 1600 steps

revolution x 23.75 revolutions
second =

38000 steps
second . If all of the stages moved at their max speed, vmax = vx = vy = vz, which was identi-

cal then the magnitude of the velocity vector followed as v =
√
v2x + z2y + v2z =

√
3v2max =

√
3vmax.

Therefore, it followed that the time, t, to travel 10 microns at the max velocity was given by
t = 10µm√

3vmax
. The max velocity was equal to the pitch of the leadscrew, 0.1 in or 2.54 mm, and the

max RPS of the motor, 23.75 RPS. Thus vmax = 2.54 mm
revolution x 23.75 revolution

s = 60.325 mm
s

From the previous equation for the time interval, it can be shown as t = 10µm

60.325 mm
s

√
3
≈ 95.71µm.

This represents the period between control loops, thus the required minimum frequency is f = 1
T =

1
95.71µm = 10.449 kHz. The actual frequency selected for the control loop was 20 kHz, as modern
microcontroller speeds could easily exceed 10.449 kHz and guaranteed a 10 micron resolution.

3.4.2 Closed-Loop Feedback
In order to receive positional feedback from the stepper motors to adjust for error, motors

were selected which came with precision rotary encoders. The motors were Anaheim Automation’s
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23MD106D model, which came with an integrated driver and a 1000-count rotary encoder. Using
full quadrature encoding, this resulted in 4000 steps per rotation, or a 0.09 degree precision.

In order to read from up to five rotary encoders at once, we chose to use LS7166 encoder counter
ICs. This freed the microcontroller from having to run an interrupt service routine to handle encoder
counting which, using full quadrature encoding, could occur very frequently for five steppers. These
ICs use an 8-bit parallel port for communication, and using the timing characteristics provided in
the datasheet, it was possible to estimate the minimum amount of time required to retrieve a count
value from an IC.

For a read, the LS7166 requires 110 ns between activation of the read pin and reading 8-bits of
valid data. Additionally, it needed 30 ns between deactivation of the read pin and return to normal
tri-state on the data-bus. Each single-bit pin read takes one instruction, which at 180 MHz takes
5.56 ns. Since this was a 24-bit encoder, this sequence had to occur three times. We added the
individual components in order to get a final read-time value: 3(110 ns + 8(5.56 ns) + 30 ns) =
553.44 ns. We were reading up to five encoders at once, which meant a full read of all stage positions
took 2.767 µs.

3.4.3 Stepper Operation
In order to operate the stepper motors, the integrated drivers required a clock signal to time

when to perform a tick on the motor shaft. The driver also included pins which enabled or disabled
the motor, selected the stepping (with options for full, half, quarter, or eighth stepping), and
selected either clockwise or counter-clockwise rotation.

In order to achieve our desired minimum resolution of 10 microns, we opted to permanently set
the motors at eighth stepping. This gave 1600 steps per revolution, or 0.225 degrees per tick. The
selected lead screws travelled 2.54mm per rotation, which meant that at eighth stepping our motors
achieved 1.5875 microns

revolution .
To time the motors, we initially opted to perform bit-banging using a timer interrupt on the

microcontroller. The stepper control loop ran at 100 kHz, separately from the master control
loop, and the counters it used to determine when to pull the clock line high or low were updated
constantly in the background at a much faster rate. Although excellent performance was achieved
when the microcontroller was only operating motors, this timer approach failed when incorporating
parsing G-code from a file. The file reads took too long, delaying the execution of the control loop
and therefore the updating of the stepper motor counters.

To overcome this issue, the timer approach was replaced by a hardware solution. The Analog
Devices AD9833 chip generated square waves from 0 Hz to 12.5 MHz which was more than enough
to cover our stepper’s maximum range of 0 Hz to 40 kHz, obtained by multiplying 1600 steps per
revolution by the 25 RPS maximum velocity.

The chip communicated using Serial Peripheral Interface (SPI) at maximum speeds of 40MHz.
In order to change the frequency of the output, 64 bits of data were written to the SPI bus in total.
Additionally, it took eight clock cycles at 25 MHz before the frequency changed to the new value.
All in all, this meant the response time between sending a speed command and the new speed being
reflected in the stepper was 8(40 ns) + 64(25 ns) = 1.92 µs. For five steppers, this meant updating
all five speeds took 9.6 µs.

Altogether, a complete cycle of reading all five stepper positions and setting all five stepper
speeds took 12.367 µs. Considering that our control loop ran at 20 kHz, which meant one run
every 50 µs, the time cost it took to use external solutions for timing and counting the steppers
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rather than doing it onboard was well within the bounds of operation.

3.4.4 Microcontroller Selection
In order to successfully deposit an object onto the build plate, the printer’s microcontroller

needed to be able to fulfill several high-level requirements. These requirements were for it to be
capable of:

• Operate six stepper motors (one for each stage and one for extrusion).

• Receive closed-loop positional feedback from the stages.

• Read and parse G-code from an SD card.

• Compute inverse kinematics from the given G-code.

• Extrude filament at a constant rate.

• Modulate a PWM signal for temperature control of the nozzle and print bed.

The control loop of the printer operated at 20 kHz, but also needed to be capable of buffering and
processing inverse kinematics live from inputted G-code. After reviewing several options currently
available, including the Arduino Mega, Intel Galileo, Raspberry Pi, and Beaglebone Black, the
Teensy 3.6 was selected to operate the printer. The Teensy had the following features which made
it advantageous:

• Used a 180 MHz Cortex M4 ARM processor which more than fulfilled the processing power
requirements.

• Was designed to be integrated into a breadboard or protoboard, which made development
easier.

• Had a built in SD-card module with high-speed SDIO support for parsing G-code.

• Was compatible with the Arduino library which streamlined development.

• Had 39 digital I/O pins to operate the steppers and receive feedback.

• Had hardware support for multiple USART and SPI ports, which allowed for easy USB
debugging while operating the printer and could max out the 40MHz communication limit of
the frequency generators.

• Had an active support and knowledge base.

One of the disadvantages of the Teensy was its logic levels. All Teensy digital I/O pins wrote
or read at +3.3V TTL, and were not +5V tolerant. On the other hand, the stepper motor drivers,
encoders, and LS7166 encoder counter chips all operated at +5V TTL. The frequency generators
operated at either +3.3V or +5V, and outputed a wave anywhere in that range as well. In order
to accommodate these differences, several bi-directional level shifters were purchased in order to
translate TTL levels from +3.3V to +5V and back again.
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3.4.5 Power
In order to power the printer, four different power sources were used. The first was the +3.3V

power from the Teensy, which went directly to the level shifters responsible for converting the
Teensy logic levels to +5V logic levels. The Teensy itself was powered via USB.

The second source of power was +5V from a standard lab power supply. This supply powered
the +5V end of the level shifters, the rotary encoders, the encoder counter chips, and the frequency
generators. Together, the +3.3V and +5V power sources drew on the order of mA in order to power
the various logic circuits.

The third source of power was the 24.0V, 13.0A power source dedicated to powering the stepper
motors. Each motor consumed at most 2.0A and therefore at full stall all five motors consumed a
total of 10.0A.

The fourth and final source of power was a 12.0V, 21.0A power supply. This supply was ex-
clusively responsible for powering the heating elements in the nozzle and build plate. The nozzle
consumed at most 1.5A of power and the build plate 10.0A, creating a total maximum consumption
of 11.5A.

Figure 3.25 shows how the various power levels were distributed to the printer systems.

SM1

SM2

SM3

3.3 V 24 V 5 V

EM1

EM2 LSM1

Figure 3.25: Distribution of power systems. SM are stepper modules, EM are encoder modules,
and LSM is the level shift module.
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3.4.6 Circuitry & Wiring
Several steps were taken to minimize wiring complexity and streamline connecting and dis-

connecting the actual printer hardware from the embedded logic. The modifications made to the
various electrical elements were meant to fulfill the following requirements:

1. Given a severe printer malfunction where the connection between a motor and the embedded
logic is strained, the connection broke away before damaging any equipment.

2. All I/O lines between a specific piece of printer hardware and the embedded logic were easily
removable and replaceable without rewiring individual pins.

3. Electrical components were assembled in individual modules for easy future replacement in
case of failure or upgrade.

In order to achieve items 1 and 2, DB15 cables were used to package all digital I/O coming from
the printer hardware. Each stepper motor used the following pins:

• Seven driver pins

• Five encoder pins

• Two limit switch pins

As such, each motor required fourteen pins for full operation. A DB15 screw terminal was
sticky-taped to the body of the each stepper motor, with each of the fourteen leads going into one
of the screw terminals. A DB15 ribbon cable was then plugged in to the terminal, with the other
plugged into a printer stepper module. In this way, the DB15 cables were free to disconnect from
either the motors or stepper modules without damaging the fragile pins on either.

The printer stepper modules were made in order to interface two steppers with the microcon-
troller in an easy to use, replaceable module. Each stepper module consisted of a protoboard with:
two DB15 terminals with protoboard-compatible pins, a level-shifter with four conversion points,
+24V power, +3.3V power, +5V power, and wires for connecting the clock, direction, and enable
pins of both steppers, and the A and B channels of both encoders. The clock cable went directly to
the output of a frequency generator running on +5V. The enable and direction pins were plugged
into the level shifter +5V pins. The A and B pins were plugged into the A and B inputs on the
LS7166 encoder counters. Three of these modules were built and mounted on a board to wire the
printer. An example module is shown in Figure 3.26.

Accompanying the stepper modules were two additional stand-alone modules: the encoder mod-
ule and the level-shifter module. The encoder module was composed of three LS7166 encoder count-
ing chips on a single protoboard, with their common pins tied together. These pins included all
communications pins:

• RD pin

• WR pin

• CD pin

• Parallel pins 0-7
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(a) Top view of the stepper module (b) Bottom view of the stepper module

Figure 3.26: A stepper module used to convert control signals from the microcontroller to two
separate steppers.

The only pins which required their own dedicated line to the microcontroller were the chip
select pins, required to select which encoder chip would receive parallel communications from the
controller.

The common pins and chip select pins were then wired to the level-shifter module. The level
shifter module was composed of four level-shifters, each with four conversion points. This provided
a total of 16 conversion points, which exactly matched the sixteen pins required to operate all five
encoder counting modules: 11 communications pins and five chip select pins. In turn, the +3.3V
side of the level shifter conversion points were wired to various digital I/O pins on the controller.
The encoder and level shifter modules are shown in Figure 3.27.

(a) Top view of the encoder module (b) Top view of the level shifter module

Figure 3.27: The stepper motor rotary encoder channels are wired to each encoder counter chip
which communicates to the microcontroller through the level shifter module.
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3.4.7 Path Planning
Path planning was by far the most algorithmically intensive portion of the embedded devel-

opment. The path planning algorithm needed to perform the following steps, all in time for the
printer control loop running at 20 kHz to pick up velocity instructions without interruption:

1. Parse and buffer G-code commands from a G-code file stored on an SD card.

2. From the commands, splice together the travel points into a smooth travel path using splines.

3. Run inverse kinematics on the desired feed rates to compute individual stage velocities.

4. Buffer the velocity instructions so that the control loop can pick them up and process them
as the printer deposits material.

To accomplish this, the path smoother utilized a double-buffer system along with a 15-point look-
ahead function to safely plan a path for the printer’s build plate. The double-buffer systems served
to initially buffer characters from a file and parse them into unprocessed G-code commands, and
then buffer the parsed G-code into velocity commands for the control loop to send to the steppers.
The control loops pulled from the velocity command buffer, while both buffers were updated in
the background between control loop cycles. The look-ahead function was used to ensure that the
nozzle’s target feed rate was capable of safely traversing through future path segments.

The path smoothing was divided into x primary segments:

1. Corner smoothing

2. Segment smoothing

3. Feed-rate protection

Corner Smoothing

The printer instructions were specified in terms of straight line segments in G-code. Unfor-
tunately, in their raw state the printer would be unable to follow the path without completely
decelerating to a stop at every point. This significantly increases the time to traverse the path.
An alternative is to blend individual segments together with a spline which was constrained by a
maximum chord error to ensure that the path was followed to within an allowed tolerance as shown
in Figure 3.28 as emax.

Additionally, constraints were required to simplify the spline processing into something man-
ageable as a dynamic computation on the microcontroller. It happened that two constraints signif-
icantly reduced the complexity of computing the spline. First, the magnitude of the entry and exit
velocities to the spline were restricted to be equal. Second, the start and end points of the spline
were restricted to be equidistant along their respective line segments from the shared point, pm.

Inside the G-code the slicer specified a desired speed, F , which became the upper bound of the
printers movement. Though it tried to traverse the path at this speed limitations imposed by the
ends of path, tight corners, and chord error may have required the printer to slow down.

62



pi

pm

pf

p1 p2

δ δ

emax

v1 v2

Figure 3.28: Diagram of corner smoothing using spline

A benefit of these constraints was that the equations of motion for the linear stages, x, y, and z,
were reduced to second order polynomials, the coefficients of which represented stage acceleration,
initial velocity, and initial position. Boundary conditions were required to determine the actual
acceleration coefficient. It was assumed that the time required to traverse the spline was equal to
the time to traverse the straight line distances between p1, pm, and p2. Thus the time at the exit
of the spline was tf = 2δ

F where δ was the offset to the entry and exit of the spline from pm and F
was the feed rate. Note that both F and δ were scalar and the coefficient a for each of the stages
was computed using Equation 3.34.

a =
v2 − v1
tf

(3.34)

x2 =
1

2
axt

2 + vx1
t+ x1 (3.35a)

y2 =
1

2
ayt

2 + vy1t+ y1 (3.35b)

z2 =
1

2
azt

2 + vz1t+ z1 (3.35c)

emax =
√

(xm − xe)2 + (ym − xe)2 + (zm − xe)2 (3.36)

Under theses constraints the max error, emax, always occurred at half the time required to
traverse the spline or t = δ

F . Then using a simple distance formula for the point pm and pe the
max error position at the aforementioned time, the max error was computed. If this error was ever
exceeded, then the max velocity was reduced across the buffer to allow the spline to be traversed
without violating the error constraint. This smoothing operation was performed on the buffer which
produced a path now conjoined at the point by splines as in Figure 3.29.
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Figure 3.29: Example path with smoothing of corners by second order parametric Spline

Segment smoothing

Although a large portion of the path smoothing involved connecting two separate path segments,
a significant amount of optimization was performed on the straight-line segments which connected
spline entry and exit points. These optimizations allowed the printer to more quickly deposit a layer,
as it aimed to always reach a maximum feed rate when connecting two points with a straight line.
This meant the build plate accelerated to a specified maximum velocity and would then decelerate
to the target velocity at the target destination.

In order to achieve this, an S-curve was computed and discretized to generate timed velocity
instructions for the steppers. The goal of the S-curve was to allow the printer to determine, given
a distance to travel in a straight line, how to travel that distance as fast as possible, constrained
by the entry and exit velocities of the straight-line segment.

To begin, the printer was given a rate at which each stepper accelerated at. Using a set acceler-
ation and the entry and exit velocities, the maximum velocity which could be accelerated to while
still reaching the final velocity and travelling the required distance was computed. The equation to
compute this maximum velocity was derived and is shown below. d1 and d2 represent the distance
travelled when accelerating to maximum velocity from the entry velocity, and the distance travelled
when decelerating to target velocity from the maximum velocity. These were added to get l, the
total distance travelled. The variables were rearranged to isolate vm.

d1 =
v2m − v2i

2a1
(3.37a)

d2 =
v2f − v2m

2a2
(3.37b)

a2 = −a1 (3.37c)

l = d1 + d2 (3.37d)

l =
v2m − v2i

2a1
+
v2f − v2m

2a2
(3.37e)

l =
v2m − v2i

2a1
+
−v2f + v2m

2a1
(3.37f)
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l =
1

2a1
(2v2m − v2i − v2f ) (3.37g)

v2m =
2a1l + v2i + v2f

2
(3.37h)

vm =

√
a1l +

v2i
2

+
v2f
2

(3.37i)

This value was then capped by the computed maximum velocity of the steppers. The maximum
velocity of each stepper was set by the manufacturer’s data-sheet at 25 RPS; however, only the
linear stages were considered for this, as the printer was not expected to both rotate and translate
at the same time. The resulting magnitude of the maximum feed rate vector was computed to be
60.325 mm/s. This meant that the printer would max out the angular velocity of any one stepper
motor to 25RPS and adjust any others down accordingly.

Using this maximum feed rate, every possible S-curve case was identified and handled in code
to optimize straight-line paths. In total, there were ten specific cases. However, of these ten, there
were only four unique cases, and the rest were variations of these cases. Each case is shown in
Figure 3.30.
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Figure 3.30: All possible S-curve cases
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The S-curves defined three separate velocities to bound the velocity commands: vi, vf , vmax,
and tf . vi represents the magnitude of the velocity at the beginning of the straight-line segment,
which was the exit point of the previous spline. vf represents the magnitude of the velocity at
which the nozzle should be when reaching the end of the straight-line segment, which was the entry
point of the next spline. vmax is the magnitude of the maximum feed rate, specified above. Finally,
tf is the time it took to reach the end of the line segment.

The first four cases starting from the top represented when the feed rate could actually reach
vmax. The first was a special case where all velocities were equal, which was the simplest case
to handle. The rest were variations of accelerating up to vmax and then back down to the target
velocity.

The last six cases all occurred when the nozzle did not have the time to accelerate to vmax.
The last two in specific were error cases, where the maximum feed rate was not properly computed
and led to a spline failure. This ended the path smoothing.

Once the entry, maximum, and exit velocities were set, the path smoother discretized the S-
curve into velocity instructions. Each individual portion of the S-curve was translated to a velocity
instruction with a given acceleration for a set time.

Feed rate protection

In order to avoid running into the bottom two cases of the S-curve graphs, a 15-point look-ahead
function was used to provide feed rate protection. This look-ahead computed the maximum feed
rate possible for each stage when traversing a corner, and the entry feed rate possible at the last
segment assuming that the final point must reach a velocity of 0 m/s. This ensured that:

1. All corners were traversed.

2. If the last point required the printer to stop, it was able to.

To compute the maximum feed rate of each stage in a corner, the following equation was used:

F = |a ∗ δ ∗ d1 ∗ d2 ∗
1

−s1 ∗ d2 − d1 ∗ s2
| (3.38)

Here, a is the maximum acceleration of each stage. δ is half the length of the shortest path
segment. d1 and d2 are the lengths of each segment. Finally, s1 and s2 are the vectors representing
each line segment.

This equation gave the maximum feed rate in a corner for each stage. This was run on every
corner in the 15-point buffer and the lowest component velocity was chosen, limiting all stage
velocities to that minimum. This feed rate was dynamically computed as the printer continued
processing G-code points.
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Chapter 4

Results & Discussion

The goal of the project was to use 5-axis 3D printer hardware to reduce the time and wasted
material of a 3D print, by reducing the use of support structures. To measure success, various other
goals and success metrics were established at the beginning of the project for software development,
mechanical engineering, and embedded design. This section evaluates accomplishments and setbacks
in each area.

4.1 Software Development
To determine success in the software development portion of this project, we set one fundamental

goal at the beginning of the project, to develop a complete software pipeline which generates 5-axis
printer instructions from a 3D model in the form of an STL file. This pipeline can be broken down
into five steps, which are described in Section 3.2.1. These steps are:

• Volume decomposition

• Build orientation

• Sub-volume sequencing

• Collision detection

• 5-axis G-code generation

Many of these steps were fully implemented into a final successful pipeline from STL file to 5-axis
G-code. Time constraints meant that optimizations to the algorithms and their implementations
were sometimes foregone, and in few cases that some features were minimally implemented to
complete the pipeline.

4.1.1 Volume Decomposition
Implementation of volume decomposition required the modification of mesh representations of

3D shapes, such that faces on overhang volumes and the base volumes are disjoint. Once the
mesh has been modified to this extent, it must then be broken into separate meshes. The final
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implementation of volume decomposition deterministically decomposed some test 3D models into
one mesh representing the base volume, and multiple meshes representing overhanging volumes.
An example of a successfully decomposed test model is shown in Figure 4.1. For all successful mesh
modifications of 3D volumes with overhangs, the mesh was successfully broken into correct mesh
representations of the object features. The output of each successful volume decomposition was
verified by analyzing each 3D volume. There were no cases in which the volume decomposition
implementation identified and output more than one 3D shape when there were no overhanging
features on the original 3D shape.

(a) Example 3D Model
(b) Decomposed Example 3D Model

Figure 4.1: (a) shows an example 3D model to test our software one. (b) shows the example 3D
model after volume decomposition, with identified overhangs in red.

4.1.2 Build Orientation
Build orientation was successfully implemented such that, with all tested 3D shapes, at least

one valid build orientation were found when at least one existed, and no valid build orientation
were found when it was not possible to print a 3D shape in 3-axes. These tests were validated
with extensive testing on a library of diverse STL files. Upon determining the heuristic of each
valid build orientations, the build orientation algorithm performs a hill-climbing search to find
the lowest non-zero heuristic. Due to the nature of hill-climbing, this is prone to being caught
in a local minimum, in which the hill-climbing search will find a local minimum instead of the
global minimum, as described in Russel and Norvig’s "Artificial Intelligence A Modern Approach"
[8]. This issue with hill-climbing was overcome using simulated annealing [8]. Extensive testing
was performed, analyzing by sight the orientations determined by the combined hill-climbing and
simulated annealing methods, to determine that this method performs reliably.
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4.1.3 Sub-volume Sequencing
Sub-volume sequencing was implemented to the extent that the sequence determined guaranteed

that all overhanging features were printed after the base on which they must be printed. This
was determined using the sequence graph described in Section 3.2.1. Many advanced sequence
algorithms remain to be designed and implemented, to optimize the printing of 3D shapes which
would normally result in collisions between the nozzle and previously deposited material. These
were not implemented due to time constraints during the project.

4.1.4 Collision Detection
Collision detection is intended to prevent the nozzle colliding with previously deposited material

after the base plate is rotated. The algorithm described in 3.2.4 was not implemented due to time
constraints. Instead we only used test models that we knew would not cause a nozzle collision.

4.1.5 5-axis G-code generation
To generate 5-axis G-code to be used on the 5-axis printer hardware, 3-axis G-code was combined

into a single G-code file, separated by rotational movements to reorient the object such that next
sub-volume can be built at it’s determined build orientation. A G-code parser was implemented to
parse 3-axis G-code files generated by Cura Engine for each sub-volume. This parser generates a
new G-code file with the 5-axis G-code, the final output of the software.

4.2 Printer
The printer was easily manufactured in part due to its readily available materials and simple

design. However, the price of machine shop contracted parts was considerably higher than expected
and delayed the overall construction of the printer because of the addition of time required to
machine parts that could not be contracted due to cost. In addition, the parts that were water
jet cut were found to be significantly cheaper. As a result, future redesigns and iterations of the
printer will likely be comprised of parts capable of being water jet cut with minimal post machining
requirements. This further aided the reduction of weight, because ordinarily time consuming milling
steps for weight reducing pockets did not add to the total cost or manufacturing time for water
jet cut parts. All of the linear stages performed exactly as intended. Each stage’s accuracy was
confirmed using a ten thousandth dial indicator, however error in actuation of the stages away and
back was nearly zero as expected because the resolution of the dial indicator was approximately 12
microns while the stages had a resolution of 2 microns. Higher precision measurement tools were
prohibitively expensive to be purchased on the budget of the project.
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Figure 4.2: Image of fully assembled printer

Unfortunately, the rotary stages from the initial design were not able to be actuated by the
175 oz-in stepper motors due to unexpected friction addition from the slew rings and additional
weight from the steel timing belt pulleys on both stages. However, the replacement of the motor
with a 425 oz-in stepper motor solved the problem and both rotary stages performed as expected.
Additionally, slop in the slew rings contributed to a slight downward angle. It appears that the
plane bearing’s polyacetal center is not stiff enough to withstand the moment. The issue would
not prevent printing but is a consideration in possible sources of error. Fortunately, this possible
error can be mitigated by the printer calibration, however, a future improvement would be two fold:
reduce the weight of the B stage as well as replace the slew ring with a heavier duty full metal one.
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4.3 Embedded Design

4.3.1 Circuitry & Hardware
Although the modular design of the circuitry and the consolidation of stepper cabling did aid

in improving the electrical design of the printer, several issues were encountered when running the
electronics as described. These issues ranged from less critical ones involving cable management,
to problems affecting proper operation of the printer. The components affected were as follows:

1. Steppers

2. DB15 terminals

3. Frequency generators

Steppers

The first issue arose when first assembling the rotary stages. During mechanical assembly of the
printer, no aluminum belt-drive gears of the appropriate size were found, and those were therefore
abandoned in favor of steel gears. The additional weight of these gears meant the A-stage stepper
motor was no longer capable of producing enough torque to fully rotate the build plate 90 degrees.

Several potential solutions to this problem were explored. One was to re-machine the vertical
component of the build plate to include a counter-weight that would ease the torque requirements
on the stepper. The second option was to re-adjust stepper motor selection to more closely match
torque requirements. In this case, this meant replacing the A-stage stepper motor with a larger
stepper in the same NEMA category, and replacing the B-stage stepper with a smaller, lighter option
as it only needed to rotate the relatively light glass build plate, easing the torque requirements on
the A-stage. The second option was selected and this proved adequate to properly operate both
rotational stages.

Although the steppers worked very well when operated individually, issues began to arise when
all were running at the same time. In those conditions, the motors would dump too much back-
EMF in the clock lines such that the signals became unstable and the motors skipped or operated
improperly. This was especially visible in the A-stage which would fail to produce enough torque
to fully rotate the build plate 90 degrees. As it was also the largest motor, it consumed the most
power and dumped the most back-EMF into the clock lines. Although it was not expected that the
rotational and translational axes operate at the same time during printing of a part, the printer was
expected to be capable of doing so in order to support future, more advanced software operations.

Several solutions were brainstormed to solve this issues as well. The first was to implement
a low-pass filter on the clock line to filter out high-frequency noise. The second was to more
clearly separate the individual logic lines to avoid cross-talk. This was accomplished by establishing
separate analog and digital ground lines, and making sure each high-power, analog, and digital
ground was properly isolated. The third potential way to improve noise would be to physically
separate the logic lines from the power lines when running wires to the stepper motors. In its
current implementation, the high-voltage, high-current lines shared spots on the same ribbon cable
as the logic lines. Inductive interference from the high-powered lines potentially added noise to
clock signals.
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DB15 terminals

The original intentions for using DB15 ribbon cables and terminals were two-fold: streamline
and clean-up the wiring between logic and mechanical actuators, and ensure communications lines
break before pulling enough that an actuator or microcontroller is damaged. While the DB15 cables
improved wiring, they performed poorly as a safety factor. The DB15 connector fit very snugly
inside of the terminal and required quite a bit of force for removal, and typically had to be pulled
in one specific direction for proper removal. The worry was that the terminal would pull on and
damage the protoboard before the cable would disconnect. Thankfully, the installation of limit
switches made it extremely unlikely that the printer would ever be able to extend the steppers
outside the range of the cables.

Frequency generators

Although the frequency generators performed well as a variable clock source at our current
resolution and control loop frequencies, some issues remained with their use. For one, control of the
steppers could only be done by way of sending clock signal frequencies to the frequency generators,
and precise movement had to be timed rather than counted out by number of steps. This meant
that the microcontroller was incapable of step by step control of the stages. This was an issue both
in terms of controlling precision of the stages, and providing manual control to the user. Although
12 micron accuracy was confirmed via use of a dial indicator, further raising this resolution or
step-by-step control would require the microcontroller to itself time control of the steppers.

4.3.2 Embedded software
Given an arbitrary set of discrete path points, the algorithm was capable of computing and

smoothing the path into discrete velocity points. Unfortunately, due to the aforementioned electrical
issues, the path planning was not tested using an actual object toolpath. The clock signals going
into the stepper motors during operation proved too noisy to properly test toolpaths. However, the
path planning algorithm was implemented and tested via MATLAB simulation. This can be seen
in Figure 4.3.

Some issues were encountered when implementing the G-code processing on the microcontroller.
Namely, the process of reading from a file was lengthy in comparison to the processing speed of the
microcontroller. Although the buffer systems for separately processing file characters and velocity
instructions worked to reduce the impact, the operations performed by the microcontroller had to
be carefully balanced and timed to ensure the steppers would have continuous path smoothing.
An improvement on this would be to add an additional microcontroller to the embedded logic.
The responsibilities of running the steppers and processing instructions would be split off to two
different processors. The instructions controller would be connected to the stepper controller via a
high-speed communications port to transfer instructions.
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Figure 4.3: Path smoothing algorithm simulation for printing a cylindrical base. The square in
blue is the build plate, the purple represents extruded material, and the nozzle is the red inverted
square pyramid.
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Chapter 5

Conclusion & Future Work

The goal of the project was to develop a hardware and software platform capable of 5-axis 3D
printing. Given the time scale of the project and the size of the team, many hurdles were overcome
despite those constraints. A prototype printer was constructed in addition to a software package
capable of generating 5-axis G-code instructions for the printer. Although unexpected setbacks
in the electronics of the printer ultimately prevented printing test pieces, independent validation
of the sub-components through either simulation or testing gave credence to the capabilities of
the platform. However, some addition improvements need to be made in order to make the printer
capable of printing which are detailed below in addition to optimizations and general improvements.

5.0.1 Continuous 5-axis Printing
Currently our printer uses an approach that separates the 3-axis printing from the rotational

axes, meaning material is never extruded while the rotational axes are in use, and once they have
stopped rotating printing is treated as 3-axis printing. To fully make use of the 5 axes, our printer
would extrude material while using the linear and rotational axes simultaneously. This would allow
for even better build quality and potentially faster print times.

5.0.2 Advanced Collision Detection
Collision detecting for 5-axis 3D printing is an issue with very little background research avail-

able, as it is not an issue that arises in 3-axis printing. While we believe our for collision detection
does not produce any false negatives in collision detection (saying there is not a collision while in
reality there is one), there are many opportunities for false positives, which can lead to longer print
times or worse build quality. For example, when rotating the object, we move the build plate to its
lowest z value before rotating to avoid hitting the nozzle. It is possible for the software to calculate
the minimum distance the build plate needs to move to ensure the nozzle does not collide with the
already printed object.

5.0.3 Advanced Sub-Volume Sequencing
There are many possible objects that have two or more sub-volumes that cannot be printed

at their optimal orientation due to collisions with the nozzle. At this stage our software does not
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seek a solution to this problem and instead reverts to traditional 3-axis printing if such a cycle is
detected. We hope to implement algorithms to find solutions to collision cycles, either by finding
different orientations for the sub-volumes or generating support structures in different orientations.

5.0.4 Software Optimizations
There are numerous ways to optimize our software to run faster, although some are more im-

pactful than others. Some significant optimizations we plan to make include multi-threading, mem-
oization (storing results of an possibly expensive operation so the operation only needs to be called
once), and improving time complexity of our algorithms.

5.0.5 Servos
A future improvement that could be retro fitted to the existing prototype of the printer are

servos as an alternative to stepper motors. A similarly sized servo motor, at least in terms of
current, would have far more torque. In addition, jerk limited control would be advantageous
over acceleration limited control that is used with the stepper motors. Lastly, a dc motor with
accompanying encoder would be significantly cheaper than a stepper motor.

76



Bibliography

[1] Warren M Rohsenow, James P Hartnett, and Ejup N Ganic. “Handbook of heat transfer
fundamentals”. In: New York, McGraw-Hill Book Co., 1985, 1440 p. No individual items are
abstracted in this volume. (1985).

[2] Prashant Kulkarni, Anne Marsan, and Debasish Dutta. “A review of process planning tech-
niques in layered manufacturing”. English. In: Rapid Prototyping Journal 6.1 (Mar. 2000),
pp. 18–35. doi: 10 . 1108 / 13552540010309859. url: http : / / search . proquest . com /
docview/214037039.

[3] Prabhjot Singh and Debasish Dutta. “Multi-Direction Slicing for Layered Manufacturing”.
English. In: Journal of Computing and Information Science in Engineering 1.2 (2001), p. 129.
doi: 10.1115/1.1375816.

[4] Yodthong Baimark and Robert Molloy. “Synthesis and characterization of poly (L-lactide-
co-ε-caprolactone) copolymers: Effects of stannous octoate initiator and diethylene glycol
coinitiator concentrations”. In: Science Asia 30 (2004), pp. 327–334.

[5] Joseph E Shigley, Charles R Mischke, and Richard G Budynas.Mechanical engineering design.
McGraw-Hill, 2004.

[6] R. Sundaram and J. Choi. “A Slicing Procedure for 5-Axis LaserAided DMD Process”. English.
In: Journal of Manufacturing Science and Engineering 126.3 (2004), p. 632. doi: 10.1115/
1.1763180.

[7] John J Craig. Introduction to robotics: mechanics and control. Vol. 3. Pearson Prentice Hall
Upper Saddle River, 2005.

[8] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach. English. 3rd ed.
2010. Upper Saddle River, New Jersey: Prentice Hall, 2010.

[9] G. Strano et al. “A new approach to the design and optimisation of support structures in
additive manufacturing”. English. In: The International Journal of Advanced Manufacturing
Technology 66.9 (June 2013), pp. 1247–1254. doi: 10.1007/s00170-012-4403-x.

[10] James Anderton. 3D Printing and 5-Axis Machining Combined in One Machine > ENGI-
NEERING.com. Oct. 2014. url: http://www.engineering.com/advancedmanufacturing/
articleid/8778/3d-printing-and-5-axis-machining-combined-in-one-machine.
aspx.

[11] Jonathan Juursema. A photo of the printing head of a FELIX 3D Printer in action. 2014. url:
https://commons.wikimedia.org/wiki/File:Felix_3D_Printer_-_Printing_Head.JPG.

77



[12] “’Subtractive’ Industries Are Coming to Terms with Additive Manufacturing”. English. In:
(Nov. 2014).

[13] J. Vanek, J. A. G. Galicia, and B. Benes. “Clever Support: Efficient Support Structure Gen-
eration for Digital Fabrication”. English. In: Computer Graphics Forum 33.5 (Aug. 2014),
pp. 117–125. doi: 10.1111/cgf.12437. url: http://onlinelibrary.wiley.com/doi/10.
1111/cgf.12437/abstract.

[14] Ian Gibson, David Rosen, and Brent Stucker. Additive Manufacturing Technologies. English.
2nd ed. 2015. New York, NY: Springer New York, 2015. doi: 10.1007/978-1-4939-2113-3.

[15] Øyvind Kallevik Grutle. 5-axis 3D Printer. Aug. 2015. url: http://www.robotikk.com/
student/projects/OyvindKallevikGrutle3Dprint_5ax_ELDAT/Grutle-master.pdf.

[16] Kyubok Lee and Haeseong Jee. “Slicing algorithms for multi-axis 3-D metal printing of
overhangs”. English. In: Journal of Mechanical Science and Technology 29.12 (Dec. 2015),
pp. 5139–5144. doi: 10.1007/s12206-015-1113-y.

[17] A. Savini and G. G. Savini. “A short history of 3D printing, a technological revolution just
started”. English. In: IEEE, 2015, pp. 1–8. doi: 10.1109/HISTELCON.2015.7307314. url:
http://ieeexplore.ieee.org/document/7307314.

[18] Pranjal Singh. Graphic showing support structures for a lego block. 2015. url: https://
commons.wikimedia.org/wiki/File:Supports_in_3D_printing.png.

[19] Alessandro Ranellucci. Slic3r. Version 1.2.9. Apr. 19, 2017. url: http://slic3r.org/.

[20] Ultimaker. Cura. Version 2.5. Apr. 19, 2017. url: https://ultimaker.com/en/products/
cura-software.

[21] url: http://electron9.phys.utk.edu/vectors/images/p20.gif.

[22] 3D Coordinate System. url: http://electron9.phys.utk.edu/vectors/3dcoordinates.
htm.

[23] Revolutionary development cuts manufacturing times using Laser Metal Deposition - Case
Study 583. url: http://www.twi-global.com/news-events/case-studies/revolutionary-
development-cuts-manufacturing-times-using-laser-metal-deposition-583/.

[24] What Is An STL File? url: https://www.3dsystems.com/quickparts/learning-center/
what-is-stl-file.

78


